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Abstract— In this paper we investigate mapping stream
programs (i.e., programs written in a streaming style for
streaming architectures such as Imagine and Raw) onto a
general-purpose CPU. We develop and explore a novel way
of mapping these programs onto the CPU. We show how the
salient features of stream programming such as computation
kernels, local memories, and asynchronous bulk memory loads
and stores can be easily mapped by a simple compilation system
to CPU features such as the processor caches, simultaneous
multi-threading, and fast inter-thread communication support,
resulting in an executable that efficiently uses CPU resources.

We present an evaluation of our mapping on a hyper-
threaded Intel Pentium 4 CPU as a canonical example of a
general-purpose processor. We compare the mapped stream
program against the same program coded in a more con-
ventional style for the general-purpose processor. Using both
micro-benchmarks and scientific applications we show that
programs written in a streaming style can run comparably to
equivalent programs written in a traditional style. Our results
show that coding programs in a streaming style can improve
performance on today’s machines and smooth the way for
significant performance improvements with the deployment of
streaming architectures.
Keywords: stream architectures/programming, prefetching,
hyper-threading.

I. INTRODUCTION

Streaming architectures [1][2][3][4] have demonstrated
significant performance advantages over traditional archi-
tectures in domains such as signal processing [5], multi-
media and graphics [6]. Early results for more general CPU
intensive workloads (e.g., scientific applications) also suggest
the potential for significant performance benefits [2]. With
the announcement of the Cell processor [7], it is likely that
streaming architectures will be common in a few years.

While applications such as signal processing require little
change to utilize a streaming architecture, most programs are
not expressed in a streaming-style. For example, scientific
programs typically feature characteristics like unstructured
meshes [8], non-linear grids [9], and adaptive griding [10]
that do not fall into obvious stream domains. Therefore,
these applications have to be recoded, with possibly new
algorithms, in order to exploit stream architectures.

A new architecture that requires a different programming
model presents challenges for software developers, particu-
larly during a transitional period when traditional architec-

tures are more common. Our work attempts to address this
issue by allowing developers to code in a streaming-style
and yet efficiently map their programs onto traditional CPU
architectures. Using our approach programmers can code in
a style that runs well today and be well positioned to exploit
the greater parallelism of future streaming architectures.

In this paper we describe techniques for mapping stream
programs onto commodity x86 CPUs (e.g., Intel Pentium
4). Even though the commodity CPUs are not originally
designed to run stream programs efficiently, we show that
effective mapping enables them to run comparably to equiv-
alent programs written in traditional programming styles
compiled with the best available commercial x86 compilers.
In experiments on real systems we show that stream versions
of scientific applications can run as much as 27% faster than
the standard C version of the programs. The performance
of micro-benchmarks show improvements as high as 92%
with the worst case micro-benchmark running 4% slower.
Note that these results do not suggest that stream programs
perform better than hand-tuned traditional programs. The
results show that by mapping stream programs effectively
even commercial compilers can generate code that runs well
on today’s processors.

We present our work as follows. In Section II we describe
the salient features of stream programming and differences
from traditional programming styles. In Section III we dis-
cuss the mapping of stream programming onto general-
purpose processors. In Section IV we present an evaluation
of the mapping on a hyper-threaded Pentium 4 processor. In
Section V we discuss the limitations of stream programming
and compare it to other techniques for obtaining high per-
formance. In Section VI we conclude the paper with a brief
summary and directions for future work.

II. STREAM PROGRAMMING PARADIGM

Stream programming encourages a style of programming
that expresses the parallelism inherent in a program by
decoupling computation and memory accesses [11][12]. The
explicit parallelism and locality of data in a stream pro-
gram makes it easier to compile efficiently using traditional
compiler optimizations. In this section we briefly review



for i = 0..n
{ 

… = a[index1[i]].val + b[index2[i]].val;
:
:

… = foo (a[index1[i]].val2 * c[index3[i]].val);
:

d[i].val = …;
}

for i = 0..n
{        

… = x[index4[i]].val;
:
:

… = bar(d[i]);
:

y[index5[i]].val = …;
}

Fig. 1. Example of a regular code. This code has two loops. In each
iteration of the first loop the data from arrays a, b, and c are loaded from
memory using index arrays, and then operated upon to produce a result d[i],
which is then stored back to memory. In each iteration of the second loop,
data from array x and array d are loaded from memory, operated upon, and
the result is stored back to memory at y[index5[i]].

the concepts underlying the stream programming style and
describe an execution model for stream programs.

A. Programming in Streaming Style

Stream programming advocates a gather, operate, and
scatter style of programming. First, the data is gathered
into a stream from arrays in memory. The data is then
operated upon by one or more kernels, where each kernel
comprises of several operations, usually several hundred of
them. Finally, the live data is scattered back to arrays in
memory. In essence, a stream program decouples computa-
tion and memory accesses by boosting the memory reads
before the computation, and postponing writes of the live
data to memory after the computation. Stream programming,
therefore, converts the memory latency problem into a mem-
ory bandwidth problem.

The gathers and scatters of data could be from or to
sequential, strided, or random locations in an array. Graphics
and image processing applications are examples of applica-
tions that use sequential loads/stores. Scientific applications,
especially irregular grid/mesh computations, exhibit random
accesses to memory which makes streaming them more
challenging. The randomly accessed locations first need to
be collected into index arrays before gathering/scattering the
data.

To highlight the differences between regular code and
stream code we present a simple example (Figures 1 and
2)1. There are several differences between the two code
fragments. In the stream code the memory operations are
completely separated from the computation kernels. The
stream code copies data into streams from arrays before
executing the kernels and copies the results from streams
to arrays after the kernel executes. The stream memory
operations are performed in bulk. Therefore, the data access
pattern is explicitly known. In addition, storing of the array d

1We have borrowed the syntax for the stream code from Stream Virtual
Machine API Specification[13].

streamGather (as, a, index1, 0, n);
streamGather (bs, b, index2, 0, n);
streamGather (cs, c, index3, 0, n);
kernelCall (“kernel1”, as, bs, cs, ds);

streamGather (xs, x, index4, 0, n);
kernelCall (“kernel2”, xs, ds, ys);
streamScatter (ys, y, index5, 0, n); 

(a) Stream Operations

kernel1 (as[], bs[], cs[], ds[])
{ 
for i = 0..n
{

… = as[i].val + bs[i].val;
:

… = foo (as[i].val2 * cs[i].val);
:

ds[i].val = …;
}

}

kernel2 (xs[], ds[], ys[])
{ 
for i = 0..n
{        

… = xs[i].val;
:

… = bar(ds[i]);
:

ys[i].val = …;
}

}

(b) Kernel code

Fig. 2. Stream Code: Data from arrays a, b, and c are gathered into
streams as, bs, and cs and then operated upon by kernel1 which produces
the stream ds. ds and data gathered from an array x are operated upon by
kernel2 producing a result ys, which is scattered back to memory (array y).
The computation kernels are separated out from the memory accesses. The
data inside kernels is mostly read from streams.

kernel1 kernel2

as

bs
cs

xs

ds ys

Fig. 3. SDF: Synchronous Data Flow graph of the example in Figure 2.
kernel1 takes in as input as, bs, and cs and produces ds. kernel2 takes the
output of kernel1 (ds) and xs as input and produces ys.

at the end of the first loop and loading it back in the second
loop is completely eliminated in the stream code. In other
words, the data produced by kernel1 is locally consumed by
kernel2. This locality, called producer-consumer locality, is
frequently exploited in stream programs.

Stream programs can be simply represented using Syn-
chronous Data Flow (SDF) graphs[14] (Figure 3). The inputs
and outputs to the computation kernels, and the dependencies
between the kernels are explicitly indicated. We use this rep-
resentation to describe the scientific applications in Section
IV.

B. Stream Execution Model

A typical procedure for executing a stream program on a
stream processor is as follows [15]. The stream program is
first compiled to a Stream Virtual Machine (SVM), which



is an abstract machine model that captures the essential
characteristics of stream architectures. The SVM is then com-
piled, using a machine specific compiler, to the underlying
stream architecture. Using SVM as an intermediate enables
development of compilation tools independent of a particular
stream architecture.

A Stream Virtual Machine is comprised of processors (con-
trol processor, compute/kernel processor, DMA engines), and
memories (global memory, local memory (Stream Register
File or SRF), and local registers)2 and defines the following
execution model:

• The control processor schedules computation kernels
and asynchronous bulk memory operations on the kernel
processor and DMA units respectively.

• The DMA units gather the stream data needed by the
computation kernels from global memory into the SRF.

• The computation kernels operate on the data in the SRF,
using the local register file for storing the intermediate
temporaries, and writing the live data back to the SRF.

• Once all the computation kernels that have producer-
consumer locality finish execution, the DMA units write
the live stream data back to global memory.

In order to execute a stream program efficiently, a stream
compiler performs several transformations and generates
SVM code. The streams are broken down into strips, each
typically several thousand bytes long, to insure that the
working set of strips is in the SRF. This optimization,
known as strip-mining, should be performed in such a way
that producer-consumer locality of streams is exploited. The
streams are double buffered so that when one buffer is being
loaded from memory, the other (already loaded) buffer can
be operated upon in parallel by the computation kernels. In
essence, the buffers are renamed to eliminate false depen-
dencies. Finally, the stream compiler selectively copies only
those fields of the original array record into the SRF that are
actually used inside the kernels.

An additional optimization we found useful was to reorga-
nize the fields of the array records [16] so the fields accessed
by kernels can be copied to/from the SRF using optimized
block copy routines rather than individual loads and stores.
These routines are effective when many fields (order of tens
of bytes) have to be copied from the original record.

III. MAPPING STREAM PROGRAMMING PARADIGM TO
THE GENERAL-PURPOSE PROCESSOR

Mapping the stream execution model to the general-
purpose processor involves mapping both the processors and
memories. Some of these mappings are straightforward –
SVM local registers and global memory map to the regis-
ter file and main memory of a general-purpose processor.

2The SVM execution model for more than one node contains multiple
sets of these processors and memories and network links to connect the
nodes. In this paper, we focus only on mapping a single node of SVM to
the general purpose processor.

Mapping SRF and the three processors (control, compute,
and DMA) is more challenging.

We present our mapping in two parts. We first discuss
mapping the SRF to a cache and then present our mapping of
computation and memory accesses onto one or more threads.
Mapping to multiple threads is particularly interesting given
the general trend among general-purpose processors to move
toward multi-threading and multiple cores.

A. Mapping Stream Register File to Cache

Programs coded for the SVM assume large, compiler-
controlled local memories that have a high bandwidth path
both to global memory and the functional units of the
processing core. This local memory (SRF) is not present in
most general-purpose CPUs. Fortunately, these CPUs do have
some on-chip memory in the form of processor caches.

While processor caches are not typically compiler-
controlled, we can effectively pin a cache-sized range of
memory addresses in cache and use it as the stream register
file (SRF) by carefully managing memory accesses in the
mapped program. We size the SRF so it comfortably fits into
the cache and control non-SRF memory references to ensure
that they do not trigger replacement of the SRF from the
cache. This ensures that the processor brings the SRF into
the cache and does not write it back or replace it until the
program has finished executing. We allocate the SRF such
that it leaves one or two cache lines in each set available for
non-SRF data.

Computation kernels access data only in the SRF and
hence will not suffer cache misses to global memory. Gather
and scatter operations are implemented by copying data in
or out of the SRF. Because the SRF is effectively pinned in
the cache, these copy operations will likely suffer memory
stalls when reading or writing global memory but will hit on
the stream data in SRF. In this way the streamGather and
streamScatter operations behave as they would on a stream
architecture. Program accesses to non-SRF memory occur
primarily during gather and scatter operations. These refer-
ences can exploit instructions that control the cacheability of
data so that SRF is not replaced.

On the Pentium 4 processor we sized the SRF to fit into
the on-chip L2 cache. The cache is large (1MB), has high
associativity (8-way) and provides fast access (25 cycles)
from the functional units. The L2 cache is also connected
to main memory by a 6.4GB/s front-side bus providing high
bandwidth access to main memory. We avoid interference in
the cache with non-SRF data arrays (from/to which streams
are loaded/stored) by using Intel’s non-temporal load/store
instructions. The gather operation uses non-temporal prefetch
instructions to load data-arrays into SRF and the scatter
operation uses non-temporal store instructions to store data-
arrays to memory.

Besides memory references generated by gather and scatter
operations, program instruction fetches, stack accesses, and
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Fig. 4. Conceptual view of mapping SRF to the memory system of general-
purpose processors: A simple example where elements of two arrays (arr1
and arr2) are summed together and stored in a third array (arr3). Each
element of arr1 is a record comprising of two fields, x and y, and only x
is used in the summation.

operating system code and data generate memory references
that could potentially conflict with the SRF. Our experience
with scientific programs (containing hundreds of local vari-
ables) has shown that this is not a problem. Measurements
of cache miss rates on the SRF show a negligible number
of misses and hence, has an undetectably small effect on the
overall performance.

Figure 4 shows a conceptual view of mapping SRF to the
memory system for a simple example. SRF is mapped to a
contiguous region in the main memory. SRF also occupies a
significant portion of the L2 cache comprising the working
set of strips. The figure illustrates a simple example in which
the contents of two arrays are added together and stored in
a third array. Elements of arr1 and arr2 are non-temporally
prefetched into the non-SRF portion of the cache. The useful
data from the arrs are copied into the SRF and then a
kernel for performing the summation is invoked. The kernel
executes and stores the result in the SRF. Finally, the result
is copied from the SRF to arr3 using non-temporal stores.

Evaluation of SRF mapping on Pentium 4: Stream
programming converts the memory latency problem to a
memory bandwidth problem. Therefore, it is important to
optimize for memory bandwidth in order to map the SRF
effectively. Using the system described later in Section IV,
we characterized the memory system bandwidth behavior for
different scenarios. We measured the bandwidth at which we
could gather and scatter data to/from the SRF as we varied
the memory access pattern.

Figures 5(a) and 5(b) shows the bandwidth, measured in
GB/s, we achieve for streamGathers of 4 bytes of data from
either (a) sequential records or (b) randomly selected records.
We vary the size of the record from 4 bytes up to 128
bytes, the size of the L2 cache line of the machine. The
field size is kept constant at 4 bytes, representing the range
of gather operations of 4 byte data from records of different

size. Figures 5(c) 5(d) shows similar data for (a) sequential
and (b) random streamScatters.

The overall behavior we see is dependent on how the cache
and memory system optimizations on the Pentium 4 support
the memory reference patterns we generate. The Pentium
4 is quite good at streaming sequentially through memory
whereas random memory accesses are not optimized. In the
following, we describe the behavior of the memory system
first without using prefetch and non-temporal instructions
(indicated by the black lines in Figure 5) and then using
prefetch and non-temporal instructions (indicated by gray
lines in Figure 5).

Sequential performance is very good when the record size
is close to the access size but drops quickly as the record
size is increased. The behavior is dominated by the cache-
line loading and hardware prefetch of the processor. Reading
4 bytes from a 4 byte record into the SRF is effectively byte
copying from memory into SRF which is stored in the cache.
The processor and its prefetch logic can do this at close to
the speed of the memory bus.

As we increase the record size, but continue to use only 4
bytes per record the cache-line fetches are less effective and
our bandwidth drops. This corresponds to strided memory
access where the record size is the stride distance. By the
time we get to 128 byte records we are using only 1/32 of
the data fetched by the processor so even though the memory
bus is fully-utilized, we get only 141MBytes/s.

For random indexed gather operations we effectively read
from random memory locations and copy them into the L2
cache. The cache line fetches generated by the processor
to our load request for 4 bytes are wasteful since there is
no locality in the reference pattern to exploit. Consequently
our bandwidth is low (63MB/s). We believe that more than
missing in the cache, missing in the TLB is the dominant
factor for the lower bandwidth. Each memory reference
suffers the delay of Pentium hardware page table walk before
the cache miss can be issued to the memory subsystem.

Figures 5(c) and 5(d) shows a very similar behavior for
both sequential stores and random scatters. For sequential
stores we have similar behavior to the sequential loads except
that to do the store the L2 cache first reads the cache line and
then later writes it back. This limits the maximum bandwidth
to half the sequential load performance. Like the random
gather case, the random scatter performance is dominated by
TLB, cache miss overheads, and inability to use hardware
prefetcher resulting in significantly lower bandwidth than the
sequential case.

As mentioned in the previous section, we desire to tag
the cache lines fetched from memory so they will not cause
replacement of the cache lines making up the SRF. On the
Pentium 4 processor this is done differently for loads and
stores. For loads, we need to use prefetch instructions with a
special non-temporal hint. For stores, the Pentium 4 processor
supports a special non-temporal store instruction (movntq).
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Fig. 5. Effects of changing record sizes on memory bandwidth usage for Sequential Loads/Stores and Random Gathers/Scatters

The gray lines in Figure 5 show the performance of the
bandwidth tests with these non-temporal hints.

Our results with non-temporal memory accesses were
mixed. For operations already highly optimized by the hard-
ware such as sequential loads that reduce to a memory
copy, the non-temporal support actually reduced performance
significantly for loads and had a mixed effect for sequential
stores. For the random cases the non-temporal support sig-
nificantly improved performance by as much as 32%.

Our experience with coding of the bulk memory operations
on the Pentium 4 lead us to believe there is an opportunity
for even further performance improvements. Although our
results came in below block copy performance others have
reported, it seems like it should be possible to specially code
these block memory copies based on the access type and
pattern and also the processor’s micro-architecture to get the
maximum possible performance out of the memory system.

B. Mapping Computation and Memory Accesses

In this section we discuss the second part of our map-
ping scheme – scheduling computation kernels and memory
accesses onto the hardware contexts of a general-purpose
processor. We first describe a low overhead implementation
of a distributed work-queue method for scheduling com-
putation/memory tasks. Later, we present mappings of this
implementation onto one or more hardware contexts of a
general-purpose processor.

1) Scheduling Using a Distributed Work Queue: The
output of a stream compiler targeting the SVM is a set of
asynchronous bulk memory accesses that gather or scatter
data in or out of the SRF, and computation kernels that
operate on data in the SRF. Along with these tasks is the
list of dependencies between the different operations. The
objective is to execute the computation kernels and memory
accesses as fast as possible by overlapping the two within
the constraints of these dependencies.

To schedule the compute and memory tasks we use a
hybrid approach employed in the stream scheduler of Imagine
[17] and also advocated by the SVM Execution Model
[15]. In the hybrid approach the dependencies between the
computation and memory tasks are determined at compile
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Fig. 6. Computation and Memory overlap: The figure depicts three
scenarios for the hyper-threaded Pentium 4 processor with two contexts:
a. Both contexts perform computation, b. Both contexts perform memory
accesses, and c. One context performs computation and the other performs
memory accesses. Each bar represents the normalized execution time to a
hyper-threaded processor running one thread in the ST (Single-Thread) mode
and taking 100 execution units.
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Fig. 7. Distributed work-queue. The upper case letters G, S, and K refer to
Gather, Scatter, and Kernel operations; the lower case letters (a, b, c, x and
y) refer to the streams; the subscripts 0...n− 1 refer to the number of the
strip; head points to the last enqueued task; tail points to the task currently
being executed; and tail depend points to the oldest task in the queue that
hasn’t yet been executed.

time and scheduling of the tasks is performed at runtime.
This approach has the advantage of handling compile time
unknowns like conditionals, execution time of kernels, etc.
For example, if kernel A or kernel B is executed depending
on the resolution of a condition at runtime, a purely compiler
based schedule would not be efficient. The stream scheduler
also determines the optimal strip-sizes of streams depending
on the flow rates of streams, SRF size, etc. We next describe
our proposed low overhead implementation of the hybrid



approach using a distributed work queue.
Based on our experience with running multiple tasks on

the Pentium 4, we adopted a scheme that limits the use
of parallel hardware contexts to overlapping bulk memory
accesses with computational kernels (as opposed, for exam-
ple, to overlapping multiple bulk memory accesses). In an
experiment shown in Figure 6, we examined the synergy
and destructive interference on running parts of computation
intensive kernels and memory accesses at the same time to
evaluate how efficiently the hardware contexts overlap the
two operations. The results are normalized to the time it
would take to perform both the operations in series using
the hyper-threaded processor in single-thread mode3.

From Figure 6 we can see that there are performance
advantages to running computation in parallel with memory
accesses and with other computation. The overall execution
time is reduced by 20% to 30%. Trying to overlap two bulk
memory accesses results in destructive interference slowing
down the operations by 6%.

We believe that the improvement in overlapping compu-
tation and memory is primarily because each thread is effi-
ciently using mutually exclusive resources of the processor
(ALU units vs. memory system resources (e.g., ld/st queues,
caches))4. Overlapping two computation operations provides
benefits primarily because of TLP (Thread-level Parallelism)
– the Instruction Window of the processor has instructions
from both the threads providing more variety of instruc-
tions for scheduling. However, depending on the instruction
mix the benefits might vary significantly. Overlapping two
memory operations doesn’t help at all because both threads
compete for the memory system resources, which is the
primary bottleneck in this experiment.

The chief challenge we faced was to efficiently schedule
the tasks on the hardware contexts within the constraints.
To do this we use a carefully crafted distributed work
queue scheme. This scheme uses two queues – one queue is
dedicated to holding memory tasks (memory queue) and the
other queue is dedicated to holding compute tasks (compute
queue). The control thread enqueues the Gather/Scatter and
Kernel tasks into the memory queue and compute queue
respectively, along with the dependence information. The
compute thread and memory thread dequeue and execute
the tasks after ensuring that the task has no outstanding
dependencies. Figure 7 illustrates this method using the
example presented in Section II (Figure 2). The figure shows
a scenario when the tasks are executing out-of-order. The
memory thread has finished executing several gather opera-
tions (Ga0, Gb0, Gc0, Gx0, and Ga1) and the compute thread
is still executing K10. The scatter task Sy0 in the memory

3In Single Thread (ST) mode, the hardware switches to executing a single
context, dedicating all the resources of the processor to this context

4Although the ld-st queue is partitioned ([18]) it doesn’t affect the results
much because the memory bandwidth rather than the number of ld-st slots
is the bottleneck

queue has not been executed yet, indicated by tail depend
pointing to Sy0. This is because Sy0 depends on the kernel
task K20 which has not yet executed. This scenario is
common if the amount of computation per memory reference
(also called arithmetic intensity) is very high.

The dependence information between tasks is encoded
using bit-vectors. Each element of the queue maintains a bit-
vector indicating which tasks it depends on. For example,
the Scatter task Sy0 maintains dependence information with
K20. Therefore, whenever a task finishes execution the
dependences should be cleared. A bit-vector representation is
useful because setting and clearing dependence information
could be performed rapidly (using simple or and and instruc-
tions, for example). However, if the number of tasks is too
large then the bit vector representation gets cumbersome. We
handle this problem by enqueuing at most a fixed maximum
number (e.g. 64) of elements in the queue at any given time.

2) Mapping to Hardware Contexts: We next present a
mapping of the distributed work-queue method to processors
that support two hardware contexts. Not only does this
mapping provide a starting point for processors that support
multiple contexts, but it also enables us to evaluate our
mapping scheme on a real system that has two contexts
(Hyper-threaded Pentium 4 processor).

Mapping computation and memory accesses to two hard-
ware contexts is a challenging problem because the com-
putation kernels, asynchronous bulk memory accesses, and
the control task should be time-multiplexed between the two
contexts. Because the control task is used only sporadically,
a possible implementation is to have one context dedicated to
memory accesses and have the other context switch between
control thread and computation thread. This implementation
is likely to be better than dedicating the computation to one
context and switching between control and memory tasks
on the other context because the control thread operations
like enqueuing of tasks are easily overlapped with the first
(gather) and last (scatter) operation of the software pipelined
stream program.

In the proposed method one thread context effectively
fetches into the cache the data needed in the other thread
context. It is implicitly assumed here that there is a level in
the cache hierarchy that is shared among multiple contexts.
This is true in the existing multi-threaded processors, and
is also true in current (IBM Power 4) and future (Intel
Montecito) multi-core processors.

The proposed implementation is easily extended to pro-
cessors that support more than two hardware contexts. The
challenge is to divide up the computation and memory tasks
into sub-tasks to maximize performance.

For processors that are limited by a single hardware
context, a plausible implementation is to have three threads
(one each for computation, memory, and control) time-
multiplex on the processor. This approach, however, has large
synchronization and thread switch overheads because the
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threads would have to time-multiplex frequently to effectively
overlap computation and memory accesses. A possibly better
implementation is to software pipeline the Gather, Kernel,
and Scatter stages on a single thread.

Evaluation of inter-thread communication mechanisms on
Pentium 4: As discussed above, an important concern in
using the proposed mapping scheme for two contexts is
that the compute thread and memory thread would have to
communicate with each other after every gather, scatter and
kernel stage. This overhead is exacerbated if streams are
strip-mined with fewer elements leading to a larger number of
strips. Therefore, a fast inter-thread communication support
is essential for good performance.

The Pentium 4 hardware contexts are organized for easy
integration into modern operating systems. The contexts are
exported to look like a shared-memory multiprocessor to
the system software. Although easing porting, the thread
abstractions make it difficult to quickly dispatch tasks from
the distributed work queue. We were faced with the trade-
off between quick tasks dispatch and increased resource
consumption when idle.

One way of implementing the tasks queue is to have one
context, for example, the one doing memory accesses, to
spin waiting for the arrival of work in the form of a scatter
or gather operations. By using Intel’s PAUSE instruction,
the resource consumption of the busy waiting spin loop can
be reduced5. This kind of spin loop allows the dispatch of
operations in as little as 175 cycles.

An alternative approach is to use the new Intel SSE3 exten-
sion instructions MONITOR and MWAIT. These instructions
appear to be intended precisely for the purpose of inter-
thread communication. They allow the hardware context to
put itself into a sleep state so that all resources are given to
the other context. A single write to an address from the other
context will wake up the sleeping context. We measured a
dispatch time of 680 cycles using this scheme. Activating
the sleeping hardware context takes significantly longer than

5A plausible reason for this behavior is that PAUSE provides a hint
to the hardware to ensure that there is at most one outstanding load for
checking the loop condition at any given time. However, we couldn’t find
any documentation from Intel corroborating this hypothesis.

simply feeding commands to an already active context.
Figure 8 shows an experiment where we investigated the

runtime overheads of these schemes. Although the PAUSE
based loop gives the smallest wakeup latency, the resources
consumed spinning greatly impacts the performance of com-
pute intensive tasks running in the other context. However,
it has only a negligible impact on memory intensive tasks.
The MONITOR/MWAIT instruction has negligible impact on
both computation and memory tasks but at a cost of higher
wakeup latency.

Other approaches such as using OS level primitives to de-
schedule and wakeup a hardware context can achieve low idle
time overheads but have significant wakeup latency measured
in the tens of thousands of processor cycles.

Since we had enough idle hardware context in our scheme
we adopted the MONITOR/MWAIT approach in our tests.
A common example of this scenario is a compute bound
program where the memory thread is idle most of the time.

IV. EXPERIMENTAL EVALUATION

In this section we present the evaluation of the stream
programming paradigm. We compare the performance of
conventional programs and their streaming versions on an
architecture (Intel Pentium 4 processor) designed for running
conventional programs efficiently. This section is divided
into three major parts. First, we describe the experimental
framework that we used for performing our experiments.
Second, we demonstrate using micro-benchmarks the range
of speedups that can be obtained by coding the programs in
a streaming-style. Third, we present the results obtained by
running a few scientific applications.

A. Experimental Framework
All our experiments were performed on a DELL Dimen-

sion 8300 with Intel 3.4GHz Pentium 4 processor (Prescott
core) running Linux (Red-Hat’s Fedora for SMP). The
Prescott core is hyper-threaded with a maximum of two
hardware contexts. The L2 cache size is 1MB with 128 byte
line size. The Front Side Bus is 800MHz and the chipset
used is i925X. The processor has some new instructions in
its ISA (PNI) including MONITOR/MWAIT.

To ensure that we use both the hardware contexts of the
HT processor, we mapped two software threads (spawned
using pthreads) to these contexts. For effective mapping the
processor was kept mostly idle except for the OS using re-
sources occasionally. We also ran each experiment for several
hundred time steps (typically several seconds). To determine
the execution time we used a low overhead instruction rdtsc
which reads the time stamp counter of the processor.

To get MONITOR/MWAIT to work on the Prescott core
was a big challenge. For reasons unknown to us, MONI-
TOR/MWAIT instructions are only available in ring 0 or
the kernel mode of the Prescott processor. We overcame
this limitation by installing a patch in the Linux kernel that
enables us to run a user process in kernel mode.



For each of the micro-benchmarks we performed the
following:

1) Coded the programs in C
2) Re-wrote the programs in streaming-style
3) Compiled the stream code by hand to SVM code, which

we discuss below in more detail
4) Linked the program with our library for distributed

work-queue scheduling and compiled using Intel C
Compiler for Linux (icc with -O3 option). In our li-
brary, we optimized the bulk memory operations like
streamGather and streamScatter using software prefetch
and non-temporal instructions

5) Executed the program on the Pentium 4 processor
6) Compiled and executed the regular code using icc with

-O3 option
7) Determined speedup computed as the ratio of the exe-

cution time of regular code to that of the stream code
We performed the following compilation steps by hand:
• Strip-mined the streams in such a way that the working-

set of strips fit in the SRF
• Double buffered the strips, so that when one buffer is

being loaded from memory, the other (already loaded)
buffer is operated upon by the computation kernels

• Aligned fields within records for fast block copies
to/from SRF

• Fused adjacent kernels when input streams are shared
between them

• Added dependencies between the stream operations and
kernels

These compilation steps are easily performed by tradi-
tional optimizing compilers. In general, stream programming
simplifies a few compiler analyses and makes a few others
redundant. For example, streams, by definition are copies
of arrays and don’t alias each other. Therefore, streams are
exempt from any alias analysis. Thus, transformations like
strip-mining and double buffering become easier. By moving
up all the memory references to the gather stage, software
prefetching also becomes easier to implement. The compiler
does not need to address difficult issues of prefetching
like determining the exact prefetching distance. Determining
dependencies between tasks is a straightforward data-flow
pass on the SDF graph.

B. Evaluation of Micro-benchmarks

In this section we present results obtained by running
a few micro-benchmarks using our mapping scheme. The
primary goal of these experiments is to estimate the range
of speedups that can be obtained if programs are written in
a streaming-style. We created a set of benchmarks that vary
the major attributes of stream programming including the
memory access patterns (i.e., types of gathers and scatters),
ratio of the amount of computation to the amount of memory
access, and the amount of producer/consumer locality. We
evaluated the following micro-benchmarks:

• LD-ST-COMP is a simple loop that traverses two ar-
rays sequentially, computes a result, and stores the
result sequentially into a third array. LD-ST-COMP
represents programs that do only sequential access to
memory. Ex. Parts of streamFEM (AdvanceCell: Fig-
ure 10(a)) and streamCDP (FindMaxAndUpdate: Figure
10(b))have this behavior.

• GAT-SCAT-COMP is similar to LD-ST-COMP except
that the arrays are read/written in a random order.
GAT-SCAT-COMP represents programs using indexed
memory accesses to perform non-sequential gathers and
scatters from memory. Ex. streamSPAS (Figure 10(d))
and parts of streamFEM (GatherCell: Figure 10(a)).

• PROD-CON accesses memory in a random order and
runs two computation loops such that the output of first
loop is input to the second one. The first loop reads in
two arrays randomly, computes a result, and stores the
result sequentially into an output array. This output array
(read sequentially) and another array (read randomly)
are operated upon, and the results are stored randomly
into a final output array. Ex. neo-hookean (Figure 10(c))
has abundant producer consumer locality although it
uses sequential loads and stores.

Figure 9 shows speedups obtained by rewriting the
micro-benchmarks in a streaming-style. For low COMP
values each program is completely memory bound and the
speedup results from improved memory bandwidth utiliza-
tion. Unlike the regular code, where the computation and
memory accesses are intermixed, in stream programs the
loads/stores are separated from computation enabling the
optimization of bulk memory loads and stores. This is
particularly visible in the speedups obtained in the LD-ST-
COMP case, where the hardware prefetcher couldn’t improve
the performance of the regular code even though the data
accesses for individual arrays were sequential because the
data accesses were intermixed.

As the computation size increases the speedup improves
in GAT-SCAT-COMP and PROD-CON because the processor
is able to more effectively overlap computation and memory
in the stream code than the regular code. This trend is
not observed for LD-ST-COMP because the program is
compute bound even at low COMP values. At large sizes of
computation there is hardly any speedup in any benchmark
because the processor is able to overlap memory accesses
and computation efficiently even for regular codes. Finally,
PROD-CON shows higher speedup than GAT-SCAT-COMP
even though both of them use random loads/stores. This
is because PROD-CON has memory bandwidth savings by
not writing back the intermediate stream to memory due to
producer-consumer locality.

C. Scientific Applications

In this section we discuss results obtained by mapping four
scientific applications (10 kernels) on the hyper-threaded pro-
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(c) PROD-CON

Fig. 9. Regular code vs. Stream code with varying computation sizes for three micro-benchmarks. The size of the computation performed with each
loaded value is varied as shown in the figure. COMP = 1 roughly corresponds to an execution time of 50 cycles.
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(a) FEM: Data are gathered
(from random locations) into
GatherFlux and GatherCell ker-
nels, AdvanceCell is a rela-
tively small kernel that loads
and stores data sequentially.
Because the data are gathered
randomly in the GatherCell ker-
nel, there is no straightforward
producer-consumer locality be-
tween the GatherFlux and Gath-
erCell kernels.
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(b) CDP: Residuals, phis and
scalar data are input into Com-
puteCell which generates the up-
dated residuals and phis. The phis
are passed through ComputePhi-
Grad which computes phi gradients.
The phi gradients and phi values
for the faces are gathered and along
with face data input to Compute-
Face. This kernel produces residuals
which are scattered and added back
to cells. FindMaxAndUpdate finds
maximum of the residuals and up-
dates residual and phi streams.
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(c) NEO-HOOKEAN: Com-
putes stresses in solids. Data
from DG stream is loaded se-
quentially, operated upon by
Compute PK kernel which gen-
erates three streams. Two of
these streams (CGT inv and up-
dated DG stream) are read se-
quentially, operated by a sec-
ond kernel (Compute Tangent)
to generate a Tangent stream.
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Matrix
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vector
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(d) SPAS: Sparse Matrix-
Vector Multiplication. The
input vector corresponding to
non-zero (nz) elements of the
matrix is gathered and the
non-zero elements of the ma-
trix are sequentially loaded
from an array. The kernel
(SpMatVec) performs a dot
product of the two streams
and stores the result sequen-
tially to memory.

Fig. 10. Important portions of SDFs of scientific applications relevant to stream programming

cessor. For each of the scientific applications, we performed
the same set of steps described in Section IV-A. However,
most of the applications were originally written in Fortran
by programmers specializing in specific application domains
(Fluid Dynamics, Solid mechanics, etc). These applications
were re-written in C and then converted to stream code in
collaboration with the application programmers.

We evaluated scientific applications that feature charac-
teristics like regular/irregular meshes, particle-in-cell com-
putations, and mechanics of solids, which are common in
scientific applications:

• streamFEM: Implementation of the Discontinuous
Galerkin (DG) Finite Element Method (FEM)[8]

• streamCDP: Implementation of a Large Eddy Simula-

tion (LES)[19]
• neo-hookean: Extends the neo-hookean finite elasticity

material model to the the compressible range [20]
• streamSPAS: Computes matrix vector multiply using

compressed sparse row storage [21]
1) streamFEM: The test case we used for evaluating

streamFEM (Figure 10(a)) is that of a blast wave com-
putation. With small extensions this application is useful
for shock wave capturing. We evaluated the application
for two PDE equation sets: Euler (4 PDEs) and Magneto-
hydrodynamics (MHD - 6 PDEs) and for two polynomial
function spaces: linear (3 degrees of freedom) and quadratic
(10 degrees of freedom). We ran these experiments for 4816
triangular cells. These parameters directly affect the amount
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(c) NEO-HOOKEAN
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(d) SPAS

Fig. 11. Regular code Vs. Stream code. (a) varying record size and computation, (b) varying number of elements and computation, (c) and (d) varying
the number of elements.

of computation and record sizes for the data.
Figure 11(a) shows the speedups obtained by rewriting

streamFEM in streaming-style. We get speedups between
1.13x to 1.26x. The speedup is mainly due to two reasons.
First, the compute operations and memory operations are
efficiently overlapped especially for smaller problem sizes
(Euler-lin and MHD-lin). As the problem size increases the
application becomes compute bound and the effective overlap
is reduced leading to smaller speedups. Second, GatherCell
and AdvanceCell kernels are fused into a single kernel. The
observation that both kernels share the same input streams
led to this optimization.

2) streamCDP: streamCDP is a transport advective equa-
tion solver typically used for large eddy simulations (LES)
(within jet engine simulation routines, for example). This ap-
plication has been implemented using a second-order WENO
(Weighted Essentially Non-Oscillatory) [19] scheme.

streamCDP (Figure 10(b)) posed several challenges
for streaming. There is limited straightforward producer-
consumer locality between kernels. Either the output data
generated by the producer kernel are randomly scattered or
the input data to the consumer kernel are randomly gathered.
Next, the ComputeFace kernel contains a data-dependent
conditional. Therefore, either data needed on both sides
of the conditional had to be gathered or an index stream
needed to be generated to gather the required data. For our
implementation we chose the former because of high spatial
locality between data needed on both sides of the conditional.
Finally, we considered fusing ComputeCell and ComputePhi-
Grad kernels to reduce memory bandwidth usage by reusing
the input streams. We decided against fusing the kernels
because some amount of re-computation was necessary for
correctness, and for our data-sets computation rather than
memory bandwidth was the dominant performance limiter.

Figure 11(b) shows the results obtained by writing this
application in streaming-style. We considered a cubic mesh
(6n or 6 neighbors) and a square grid (4n) and for each case
we varied the number of elements (4096 and 8192). The

results show that the performance improves with increasing
neighbors and increasing mesh size (.94x to 1.27x speedup).
This behavior is expected because streamCDP is compute
bound for small problem sizes and the memory bandwidth
requirement grows faster than computation with increasing
problem size.

3) neo-hookean: This application (Figure 10(c)) uses ma-
terial properties to compute stresses and the constitutive
tangent matrix of the material. This application has abundant
producer consumer locality, as seen from Figure 10(c).

Figure 11(c) shows the results obtained by writing neo-
hookean in streaming-style. The results show that we get
speedups between 1.21x and 1.23x. The primary reason for
the speedup is abundant producer consumer locality between
the kernels. The two intermediate streams are never written
back to memory resulting in huge memory bandwidth savings
(approximately Number of elements * 144 bytes). We next
present an example where the code written in streaming style
actually performs worse than the regular code.

4) streamSPAS: streamSPAS (Figure 10(d)) computes ma-
trix vector multiply using compressed sparse row storage.
The basic idea of the algorithm is to store only the non-zero
elements of the matrix and the corresponding indexes to these
elements, and compute the matrix vector product.

Figure 11(d) shows the results of re-writing streamSPAS
in streaming-style. The matrices that we used for our exper-
iments come from 3D FEM discretization. In these experi-
ments the ratio of number of nonzero elements to number of
rows in the matrix is kept constant (approximately 46).

The results show a slow-down for the meshes under
consideration primarily because when data are gathered into
the input vector stream, several elements are copied multiple
times. For every non-zero element in the matrix, one element
is copied from the input vector into the stream register file.
This is done to keep the input vector data contiguous in
the SRF when performing the dot product. This approach
disadvantages the stream code performance especially for
small mesh sizes where the cache is effective for the regular



code. By using better techniques for the stream code, like
matrix blocking, the slow-down can be avoided. As the mesh
size increases with the same ratio of non-zero elements to
number of rows, the stream code starts performing better.
We believe this is because the mesh gets sparser and this
results in fewer extra copies in the SRF.

V. DISCUSSION AND LIMITATIONS

A. Speedup Limitations

Although our study was limited to applications that have
both streaming and traditional implementations, we believe
our results will hold for many but not all scientific applica-
tions. Notable exceptions include highly-tuned applications
and applications that do not appear to map well onto the
stream programming paradigm.

Significant scientific applications such as GROMACS [22]
have already been highly tuned to run on general-purpose
processors taking advantage of the caches, special instruc-
tions such as SSE, prefetching, etc. It is unlikely that a stream
version of these applications will see speedup using our
system since if there was a faster way to run the application
it would have been coded that way already. Our approach is
to have the programmer code in a streaming style and be able
to automatically map to a high performance implementation
without the time consuming low-level optimizations.

Not all types of applications appear amenable to streaming.
SPECint benchmarks, for instance, that use data structures
such as trees and linked-lists are difficult to code in a
streaming style. Therefore, it is important to determine the
characteristics of applications that make them good candi-
dates for streaming on general purpose architectures. Some
of these characteristics include applications with: memory
bottlenecks, large numbers of elements (much bigger than the
cache size), huge records, and producer-consumer locality.
In addition, it might not always be straight-forward to write
applications in streaming-style. As seen in the streamSPAS
example, coding in streaming-style could potentially hurt
performance if several copies of the original data is made
using streams.

Although we can program Pentium 4 like a stream pro-
cessor, the Pentium 4 architecture and micro-architecture
are unable to take full advantage of it. This is because a
large fraction of the chip area is dedicated to logic that
extracts fine-grained parallelism, rather than to functional
units that performs the actual computation. In addition, the
asynchronous bulk memory transfers are affected by TLB
mapping, limiting the bandwidth utilization to a small frac-
tion of the peak memory bandwidth (as shown in Section III).
We believe that changes to the micro-architecture like adding
more functional units and increasing TLB mapping could
substantially improve the performance of stream programs.

B. Compiler Optimizations and Stream Programming

The speedups we showed in the experimental section were
based on standard C implementations using a modern com-
piler system. In theory one could write a compiler that could
take a standard C program and output a binary that executed
much in the same way as our mapping. A variety of compiler
optimizations have been developed in research compilers that
come pretty close to doing this. Examples include affine map-
pings [23], global cache reuse [24], integrated loop and data
transformations [25], and cache conscious data layout [16],
to name a few. Stream programming facilitates several of
these optimizations by separating computation and memory
accesses, reducing aliasing problems, and making explicit the
locality of data. This enables even commercial compilers to
successfully optimize difficult cases such as irregular grids.
Moreover, stream programs are written using domain-specific
information which is difficult to extract automatically by
optimizing compilers.

Hyper-threading has been used for prefetching, with one
thread performing prefetches and the other thread running
regular code [26][27]. In our scheme we not only prefetch
the data with a second thread but also copy it into the
cache. Unlike software prefetching using a compiler [28][29]
our scheme does not need to worry about prefetch distance
since we are operating with bulk asynchronous memory
gathers/scatters. We effectively turn what was a latency
problem for the program into a bandwidth problem.

A big benefit of stream programming is that it forces the
programmer to think about memory accesses and compute
operations separately. This could affect the choice of the
algorithm (s)he makes, leading to better mapping by the
compiler for huge performance gains. For example, in neo-
hookean the data access pattern was slightly changed to re-
write the code in streaming style leading to code that had
producer-consumer locality.

C. Stream vs Vector Programming Styles

Stream and vector programming styles share several sim-
ilarities. Both provide scatter and gather operations. Both
operate on a series of elements of a homogeneous type.
However, vector elements are typically limited to the basic
types whereas stream elements can have arbitrary types
(records with potentially multiple fields). In addition, vector
programming is limited to simple, predefined operations like
vector addition and subtraction. In contrast, stream program-
ming allows the use of general operators defined by the
programmers known as kernels which typically have several
hundred operations.

Intel’s Streaming SIMD Extensions (SSE) add vector-
oriented capabilities to general-purpose processors. They pro-
vide the ability to efficiently transfer multiple data elements
between memory and a small number of 128-bit vector-like
registers. In contrast, stream programming encourages the
use of bulk memory transfers (e.g., hundreds or thousands



of bytes) and computation kernels with typically several
hundred instructions. In this paper we exploited the efficient
memory access operators provided by SSE to facilitate the
bulk memory transfers. Having hardware support for bulk
memory scatter-gather could be an attractive alternative to
this approach [30]. In addition to providing optimized mem-
ory transfers, SSE provides instructions that operate in SIMD
mode on data elements using the vector-like registers. These
operations could potentially be used to optimize computa-
tional kernels in the stream programming paradigm.

VI. CONCLUSIONS AND FUTURE WORK

For CPUs with dynamically scheduled pipelines like the
Pentium 4, cache miss latency can have a large impact on
performance. Sophisticated logic in the processor attempts
to speculatively execute ahead and discover cache misses in
advance to mitigate these effects. Our experiments show that
by extracting out memory references from the computation
and using a hardware context to force feed these references
into the memory system in parallel with the computation, we
can utilize the hardware more effectively than is automati-
cally extracted by the pipeline. Stream programming provides
precisely this information needed to partition the memory and
computation across the hardware contexts.

We hope that this work will stimulate enough interest to
write more programs in streaming-style. Building an existing
base of programs could create an evolutionary path for the
deployment of new streaming architectures.

In the future, we would like to investigate in more de-
tail the architectural enhancements to the existing general
purpose processors that would improve the performance of
stream applications. In addition, we would also like to exploit
other forms of parallelism manifested by stream program-
ming like thread-level parallelism.
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