
From Reduction-based
to Reduction-free Normalization

Olivier Danvy
Department of Computer Science,

Aarhus University∗

May 2009

Abstract

We document an operational method to construct reduction-free normal-
ization functions. Starting from a reduction-based normalization function
from a reduction semantics, i.e., the iteration of a one-step reduction func-
tion, we successively subject it to refocusing (i.e., deforestation of the in-
termediate successive terms in the reduction sequence), equational simpli-
fication, refunctionalization (i.e., the converse of defunctionalization), and
direct-style transformation (i.e., the converse of the CPS transformation),
ending with a reduction-free normalization function of the kind usually crafted
by hand. We treat in detail four simple examples: calculating arithmetic ex-
pressions, recognizing Dyck words, normalizing lambda-terms with explicit
substitutions and call/cc, and flattening binary trees.

The overall method builds on previous work by the author and his stu-
dents on a syntactic correspondence between reduction semantics and ab-
stract machines and on a functional correspondence between evaluators and
abstract machines. The measure of success of these two correspondences is
that each of the inter-derived semantic artifacts (i.e., man-made constructs)
could plausibly have been written by hand, as is the actual case for several
ones derived here.

∗Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: <danvy@cs.au.dk>

i

Contents
1 Introduction 1

2 A reduction semantics for calculating arithmetic expressions 6
2.1 Abstract syntax: terms and values 6
2.2 Notion of contraction . 7
2.3 Reduction strategy . 7
2.4 One-step reduction . 9
2.5 Reduction-based normalization . 10
2.6 Summary . 10
2.7 Exercises . 11

3 From reduction-based to reduction-free normalization 13
3.1 Refocusing:

from reduction-based to reduction-free normalization 14
3.2 Inlining the contraction function . 15
3.3 Lightweight fusion:

from small-step to big-step abstract machine 15
3.4 Compressing corridor transitions . 17
3.5 Renaming transition functions and flattening configurations 18
3.6 Refunctionalization . 18
3.7 Back to direct style . 19
3.8 Closure unconversion . 19
3.9 Summary . 20
3.10 Exercises . 20

4 A reduction semantics for recognizing Dyck words 21
4.1 Abstract syntax: terms and values 22
4.2 Notion of contraction . 22
4.3 Reduction strategy . 23
4.4 One-step reduction . 25
4.5 Reduction-based recognition . 25
4.6 Summary . 26
4.7 Exercises . 26

5 From reduction-based to reduction-free recognition 26
5.1 Refocusing:

from reduction-based to reduction-free recognition 27
5.2 Inlining the contraction function . 28
5.3 Lightweight fusion:

from small-step to big-step abstract machine 28
5.4 Compressing corridor transitions . 30

ii

5.5 Renaming transition functions and flattening configurations 31
5.6 Refunctionalization . 32
5.7 Back to direct style . 33
5.8 Closure unconversion . 33
5.9 Summary . 34
5.10 Exercises . 34

6 A reduction semantics for normalizing lambda-terms with integers 34
6.1 Abstract syntax: closures and values 35
6.2 Notion of contraction . 36
6.3 Reduction strategy . 37
6.4 One-step reduction . 39
6.5 Reduction-based normalization . 39
6.6 Summary . 40
6.7 Exercises . 40

7 From reduction-based to reduction-free normalization 41
7.1 Refocusing:

from reduction-based to reduction-free normalization 42
7.2 Inlining the contraction function . 43
7.3 Lightweight fusion:

from small-step to big-step abstract machine 43
7.4 Compressing corridor transitions . 45
7.5 Renaming transition functions and flattening configurations 46
7.6 Refunctionalization . 47
7.7 Back to direct style . 48
7.8 Closure unconversion . 49
7.9 Summary . 51
7.10 Exercises . 51

8 A reduction semantics for normalizing lambda-terms with integers and
first-class continuations 52
8.1 Abstract syntax: closures, values, and contexts 52
8.2 Notion of contraction . 53
8.3 Reduction strategy . 54
8.4 One-step reduction . 55
8.5 Reduction-based normalization . 55
8.6 Summary . 55
8.7 Exercises . 55

iii

9 From reduction-based to reduction-free normalization 57
9.1 Refocusing:

from reduction-based to reduction-free normalization 57
9.2 Inlining the contraction function . 57
9.3 Lightweight fusion:

from small-step to big-step abstract machine 58
9.4 Compressing corridor transitions . 58
9.5 Renaming transition functions and flattening configurations 59
9.6 Refunctionalization . 60
9.7 Back to direct style . 61
9.8 Closure unconversion . 61
9.9 Summary . 62
9.10 Exercises . 63

10 A reduction semantics for flattening binary trees outside in 63
10.1 Abstract syntax: terms and values 64
10.2 Notion of contraction . 64
10.3 Reduction strategy . 65
10.4 One-step reduction . 66
10.5 Reduction-based normalization . 67
10.6 Summary . 67
10.7 Exercises . 67

11 From reduction-based to reduction-free normalization 68
11.1 Refocusing:

from reduction-based to reduction-free normalization 69
11.2 Inlining the contraction function . 70
11.3 Lightweight fusion:

from small-step to big-step abstract machine 70
11.4 Compressing corridor transitions . 71
11.5 Renaming transition functions and flattening configurations 73
11.6 Refunctionalization . 73
11.7 Back to direct style . 74
11.8 Closure unconversion . 74
11.9 Summary . 75
11.10Exercises . 75

12 A reduction semantics for flattening binary trees inside out 75
12.1 Abstract syntax: terms and values 75
12.2 Notion of contraction . 75
12.3 Reduction strategy . 76
12.4 One-step reduction . 77
12.5 Reduction-based normalization . 78

iv

12.6 Summary . 78
12.7 Exercises . 78

13 From reduction-based to reduction-free normalization 79
13.1 Refocusing:

from reduction-based to reduction-free normalization 79
13.2 Inlining the contraction function . 80
13.3 Lightweight fusion:

from small-step to big-step abstract machine 81
13.4 Compressing corridor transitions . 82
13.5 Renaming transition functions and flattening configurations 84
13.6 Refunctionalization . 84
13.7 Back to direct style . 85
13.8 Closure unconversion . 86
13.9 Summary . 86
13.10Exercises . 86

14 Conclusion 86

A Lambda-terms with integers 87
A.1 Abstract syntax . 87
A.2 A sample of lambda-terms . 88

B A call-by-value evaluation function 89

C Closure conversion 91

D CPS transformation 92

E Defunctionalization 93

F Lightweight fission 94

G Lightweight fusion by fixed-point promotion 96
G.1 drive o move eval . 97
G.2 drive o move apply . 98
G.3 drive o move continue . 99
G.4 Synthesis . 99

H Exercises 100

I Mini project: call by name 101

J Further projects 102

v

1 Introduction
Grosso modo, there are two ways to specify the semantics of a programming lan-
guage, given a specification of its syntax: one uses small steps and is based on a
notion of reduction, and the other uses big steps and is based on a notion of eval-
uation. Plotkin, 30 years ago [64], has connected the two, most notably by show-
ing how two standard reduction orders (namely normal order and applicative or-
der) respectively correspond to two equally standard evaluation orders (namely
call by name and call by value). In these lecture notes, we continue Plotkin’s
program and illustrate how the computational content of a reduction-based nor-
malization function—i.e., a function intensionally defined as the iteration of a
one-step reduction function—can pave the way to intensionally constructing a
reduction-free normalization function—i.e., a big-step evaluation function:

Our starting point: We start from a reduction semantics for a language of terms
[40], i.e., an abstract syntax (terms and values), a notion of reduction in the
form of a collection of potential redexes and the corresponding contraction
function, and a reduction strategy. The reduction strategy takes the form of
a grammar of reduction contexts (terms with a hole), its associated recom-
pose function (filling the hole of a given context with a given term), and a
decomposition function mapping a term to a value or to a potential redex
and a reduction context. Under the assumption that this decomposition is
unique, we define a one-step reduction function as a partial function whose
fixed points are values and which otherwise decomposes a non-value term
into a reduction context and a potential redex, contracts this potential redex
if it is an actual one (otherwise the non-value term is stuck), and recom-
poses the context with the contractum:

non-value
term

decomposition

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

one-step
reduction

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

potential redex × context

context-(in)sensitive
contraction

��

contractum × context

recomposition
rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

term

1

The contraction function is context-insensitive if it maps an actual redex to
a contractum regardless of its reduction context. Otherwise, it is context-
sensitive and maps an actual redex and its reduction context to a contrac-
tum and a reduction context (possibly another one).
A reduction-based normalization function is defined as the iteration of this
one-step reduction function along the reduction sequence.

A syntactic correspondence: On the way towards a normal form, the reduction-
based normalization function repeatedly decomposes, contracts, and re-
composes. Observing that most of the time, the decomposition function
is applied to the result of the recomposition function [38], Nielsen and the
author have suggested to deforest the intermediate term by replacing the
composition of the decomposition function and of the recomposition func-
tion by a refocus function that directly maps a contractum and a reduction
context to the next potential redex and reduction context, if there are any
in the reduction sequence. Such a refocused normalization function (i.e., a
normalization function using a refocus function instead of a decomposition
function and a recomposition function) takes the form of a small-step ab-
stract machine. This abstract machine is reduction-free because it does not
construct any of the intermediate terms in the reduction sequence on the
way towards a normal form:

2

non-value
term

decomposition

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

one-step
reduction

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

potential redex × context

context-(in)sensitive
contraction

��

contractum × context

recomposition
rrfffffffffffffffffffffffffffffffff

refocusing

��

non-value
term

decomposition

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

one-step
reduction

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

potential redex × context

context-(in)sensitive
contraction

��

contractum × context

recomposition
rrfffffffffffffffffffffffffffffffff

refocusing

��

non-value
term

decomposition

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

one-step
reduction

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

potential redex × context

context-(in)sensitive
contraction

��

contractum × context

recomposition
rrfffffffffffffffffffffffffffffffff

non-value
term

3

A functional correspondence: A big-step abstract machine is often a defunction-
alized continuation-passing program [3, 4, 5, 16, 23]. When this is the case,
such abstract machines can be refunctionalized [35, 37] and transformed
into direct style [20, 32].

It is our consistent experience that starting from a reduction semantics for a lan-
guage of terms, we can refocus the corresponding reduction-based normalization
function into an abstract machine, and refunctionalize this abstract machine into
a reduction-free normalization function of the kind usually crafted by hand. The
goal of these lecture notes is to illustrate this method with four simple exam-
ples: arithmetic expressions, Dyck words, applicative-order lambda-terms with
explicit substitutions, first without and then with call/cc, and binary trees.

Overview: In Section 2, we implement a reduction semantics for arithmetic
expressions in complete detail and in Standard ML, and we define the corre-
sponding reduction-based normalization function. In Section 3, we refocus the
reduction-based normalization function of Section 2 into a small-step abstract
machine, and we present the corresponding compositional reduction-free nor-
malization function. In Sections 4 and 5, we go through the same motions for
recognizing Dyck words. In Section 6 and 7, we repeat the construction for
lambda-terms applied to integers, and in Section 8 and 9 for lambda-terms ap-
plied to integers and call/cc. Finally, in Sections 10 to 13, we turn to flattening
binary trees. In Sections 10 and 11, we proceed outside in, whereas in Sections 12
and 13, we proceed inside out. Admittedly at the price of repetitiveness, each of
these pairs of sections (i.e., 2 and 3, 4 and 5, etc.) can be read independently. All
the other ones have the same structure and narrative and they can thus be given
a quicker read.

Structure: Sections 2, 4, 6, 8, 10, and 12 might seem intimidating, but they
should not: they describe, in ML, straightforward reduction semantics as have
been developed by Felleisen and his co-workers for the last two decades [39, 40,
73]. For this reason, these sections both have a parallel structure and as similar a
narrative as seemed sensible:

1. Abstract syntax

2. Notion of contraction

3. Reduction strategy

4. One-step reduction

5. Reduction-based normalization

4

6. Summary

7. Exercises

Similarly, to emphasize that the construction of a reduction-free normalization
function out of a reduction-based normalization function is systematic, Sections 3,
5, 7, 9, 11, and 13 have also been given a parallel structure and a similar narrative:

1. Decomposition and recomposition

2. Refocusing: from reduction-based to reduction-free normalization

3. Inlining the contraction function

4. Lightweight fusion: from small-step to big-step abstract machine

5. Compressing corridor transitions

6. Renaming transition functions and flattening configurations

7. Refunctionalization

8. Back to direct style

9. Closure unconversion

10. Summary

11. Exercises

We kindly invite the reader to play along and follow this derivational structure,
at least for a start.

Prerequisites: We expect the reader to have a very basic familiarity with the
programming language Standard ML [59] and to have read John Reynolds’s
“Definitional Interpreters” [67] at least once (otherwise the reader should start
by reading the appendices of the present lecture notes, page 87 and onwards).
For the rest, the lecture notes are self-contained.

Concepts: The readers receptive to suggestions will be entertained with the fol-
lowing concepts: reduction semantics [38, 40], including decomposition and
its left inverse, recomposition; small-step and big-step abstract machines [65];
lightweight fusion [33, 36, 63] and its left inverse, lightweight fission; defunc-
tionalization [37, 67] and its left inverse, refunctionalization [35]; the CPS trans-
formation [30, 70] and its left inverse, the direct-style transformation [20, 32];

5

and closure conversion [53] and its left inverse, closure unconversion. In partic-
ular, we regularly build on evaluation contexts being the defunctionalized con-
tinuations of an evaluation function [22, 26]. To make these lecture notes self-
contained, we have spelled out closure conversion, CPS transformation, defunc-
tionalization, lightweight fission, and lightweight fusion in appendix.

Contribution: These lecture notes build on work that was carried out at Aarhus
University over the last decade and that gave rise to a number of doctoral theses
[2, 10, 15, 24, 57, 58, 62] and MSc theses [48, 61]. The examples of arithmetic
expressions and of binary trees were presented at WRS’04 [21]. The example of
lambda-terms originates in a joint work with Lasse R. Nielsen [38], Małgorzata
Biernacka [12, 13], and Mads Sig Ager, Dariusz Biernacki, and Jan Midtgaard
[3, 5]. The term ‘lightweight fission’ was suggested by Chung-chieh Shan.1

Online material: The entire ML code of these lecture notes is available from
the home page of the author, at http://www.cs.au.dk/danvy/AFP08/, along with a
comprehensive glossary.

2 A reduction semantics for calculating arithmetic expres-
sions

The goal of this section is to define a one-step reduction function for arithmetic
expressions and to construct the corresponding reduction-based evaluation func-
tion.

To define a reduction semantics for simplified arithmetic expressions (inte-
ger literals, additions, and subtractions), we specify their abstract syntax (Sec-
tion 2.1), their notion of contraction (Section 2.2), and their reduction strategy
(Section 2.3). We then define a one-step reduction function that decomposes a
non-value term into a potential redex and a reduction context, contracts the po-
tential redex, if it is an actual one, and recomposes the context with the contrac-
tum (Section 2.4). We can finally define a reduction-based normalization function
that repeatedly applies the one-step reduction function until a value, i.e., a nor-
mal form, is reached (Section 2.5).

2.1 Abstract syntax: terms and values
Terms: An arithmetic expression is either a literal or an operation over two terms.

In this section, we only consider two operators: addition and subtraction.
1Personal communication to the author, 30 October 2008, Aarhus, Denmark.

6

datatype operator = ADD | SUB

datatype term = LIT of int | OPR of term * operator * term

Values: Values are terms without operations. We specify them with a separate
data type, along with an embedding function from values to terms:

datatype value = INT of int

fun embed_value_in_term (INT n)

= LIT n

2.2 Notion of contraction
A potential redex is an operation over two values:

datatype potential_redex = PR_OPR of value * operator * value

A potential redex may be an actual one and trigger a contraction, or it may
be stuck. Correspondingly, the following data type accounts for a successful or
failed contraction:

datatype contractum_or_error = CONTRACTUM of term | ERROR of string

The string accounts for an error message.
We are now in position to define a contraction function:

(* contract : potential_redex -> contractum_or_error *)

fun contract (PR_OPR (INT n1, ADD, INT n2))

= CONTRACTUM (LIT (n1 + n2))

| contract (PR_OPR (INT n1, SUB, INT n2))

= CONTRACTUM (LIT (n1 - n2))

In the present case, no terms are stuck. Stuck terms would arise if operators
were extended to include division, since an integer cannot be divided by 0. (See
Exercise 6 in Section 2.7.)

2.3 Reduction strategy
We seek the left-most inner-most potential redex in a term.

Reduction contexts: The grammar of reduction contexts reads as follows:

datatype context = CTX_MT

| CTX_LEFT of context * operator * term

| CTX_RIGHT of value * operator * context

7

Operationally, a context is a term with a hole, represented inside-out in a
zipper-like fashion [47]. (And “MT” is read aloud as “empty.”)

Decomposition: A term is a value (i.e., it does not contain any potential redex)
or it can be decomposed into a potential redex and a reduction context:

datatype value_or_decomposition = VAL of value

| DEC of potential_redex * context

The decomposition function recursively searches for the left-most inner-
most redex in a term. It is usually left unspecified in the literature [40]. We
define it here in a form that time and again we have found convenient [26],
namely as a big-step abstract machine with two state-transition functions,
decompose term and decompose context between two states: a term and a
context, and a context and a value.

• decompose term traverses a given term and accumulates the reduction
context until it finds a value;

• decompose context dispatches over the accumulated context to deter-
mine whether the given term is a value, the search must continue, or a
potential redex has been found.

(* decompose_term : term * context -> value_or_decomposition *)

fun decompose_term (LIT n, C)

= decompose_context (C, INT n)

| decompose_term (OPR (t1, r, t2), C)

= decompose_term (t1, CTX_LEFT (C, r, t2))

(* decompose_context : context * value -> value_or_decomposition *)

and decompose_context (CTX_MT, v)

= VAL v

| decompose_context (CTX_LEFT (C, r, t2), v1)

= decompose_term (t2, CTX_RIGHT (v1, r, C))

| decompose_context (CTX_RIGHT (v1, r, C), v2)

= DEC (PR_OPR (v1, r, v2), C)

(* decompose : term -> value_or_decomposition *)

fun decompose t

= decompose_term (t, CTX_MT)

Recomposition: The recomposition function peels off context layers and con-
structs the resulting term, iteratively:

8

(* recompose : context * term -> term *)

fun recompose (CTX_MT, t)

= t

| recompose (CTX_LEFT (C, r, t2), t1)

= recompose (C, OPR (t1, r, t2))

| recompose (CTX_RIGHT (v1, r, C), t2)

= recompose (C, OPR (embed_value_in_term v1, r, t2))

Lemma 1 A term t is either a value or there exists a unique context C such that decompose
t evaluates to DEC (pr, C), where pr is a potential redex.

Proof 1 Straightforward, considering that context and decompose context are a de-
functionalized representation. The refunctionalized counterpart of decompose et al. reads
as follows:

(* decompose’_term : term * context * (value -> value_or_decomposition)

-> value_or_decomposition *)

fun decompose’_term (LIT n, C, k)

= k (INT n)

| decompose’_term (OPR (t1, r, t2), C, k)

= decompose’_term (t1, CTX_LEFT (C, r, t2), fn v1 =>

decompose’_term (t2, CTX_RIGHT (v1, r, C), fn v2 =>

DEC (PR_OPR (v1, r, v2), C)))

(* decompose’ : term -> value_or_decomposition *)

fun decompose’ t

= decompose’_term (t, CTX_MT, fn v => VAL v)

Since decompose’ (and its auxiliary function decompose’ term) is well typed, it yields a
value or a decomposition. Since decompose’ term is compositional in its first argument
(the term to decompose) and affine in its third (its continuation), it terminates; and since
it deterministically traverses its first argument depth first and from left to right, its result
is unique. �

2.4 One-step reduction
We are now in position to define a one-step reduction function as a function that
(1) decomposes a non-value term into a potential redex and a reduction context,
(2) contracts the potential redex if it is an actual one, and (3) recomposes the
reduction context with the contractum. The following data type accounts for
whether the contraction is successful or the non-value term is stuck:

datatype reduct = REDUCT of term

| STUCK of string

9

(* reduce : term -> reduct *)

fun reduce t

= (case decompose t

of (VAL v)

=> REDUCT (embed_value_in_term v)

| (DEC (pr, C))

=> (case contract pr

of (CONTRACTUM t’)

=> REDUCT (recompose (C, t’))

| (ERROR s)

=> STUCK s))

2.5 Reduction-based normalization
A reduction-based normalization function is one that iterates the one-step reduc-
tion function until it yields a value (i.e., a fixed point), if any. The following data
type accounts for whether evaluation yields a value or goes wrong:

datatype result = RESULT of value

| WRONG of string

The following definition uses decompose to distinguish between value and non-
value terms:

(* iterate0 : value_or_decomposition -> result *)

fun iterate0 (VAL v)

= RESULT v

| iterate0 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM t’)

=> iterate0 (decompose (recompose (C, t’)))

| (ERROR s)

=> WRONG s)

(* normalize0 : term -> result *)

fun normalize0 t

= iterate0 (decompose t)

2.6 Summary
We have implemented a reduction semantics for arithmetic expressions in com-
plete detail. Using this reduction semantics, we have presented a reduction-
based normalization function.

10

2.7 Exercises
Exercise 1 Define a function embed potential redex in term that maps a potential re-
dex into a term.

Exercise 2 Show that, for any term t, if evaluating decompose t yields DEC (pr, C),
then evaluating recompose (C, embed potential redex in term pr) yields t.
(Hint: Reason by structural induction over t, using inversion at each step.)

Exercise 3 Write a handful of test terms and specify the expected outcome of their nor-
malization.

Exercise 4 Implement the reduction semantics above in the programming language of
your choice (e.g., Haskell or Scheme), and run the tests of Exercise 3.

Exercise 5 Write an unparser from terms to the concrete syntax of your choice, and
instrument the normalization function of Section 2.5 so that (one way or another) it
displays the successive terms in the reduction sequence.

Exercise 6 Extend the source language with multiplication and division, and adjust
your implementation, including the unparser of Exercise 5:

datatype operator = ADD | SUB | MUL | DIV

(* contract : potential_redex -> contractum_or_error *)

fun contract (PR_OPR (INT n1, ADD, INT n2))

= CONTRACTUM (LIT (n1 + n2))

| contract (PR_OPR (INT n1, SUB, INT n2))

= CONTRACTUM (LIT (n1 - n2))

| contract (PR_OPR (INT n1, MUL, INT n2))

= CONTRACTUM (LIT (n1 * n2))

| contract (PR_OPR (INT n1, DIV, INT 0))

= ERROR "division by 0"

| contract (PR_OPR (INT n1, DIV, INT n2))

= CONTRACTUM (LIT (n1 div n2))

In addition to the two changes just above (i.e., the definitions of operator and of contract),
what else needs to be adjusted in your extended implementation?

Exercise 7 Write test terms that use multiplications and divisions and specify the ex-
pected outcome of their evaluation, and run these tests on your extended implementation.

Exercise 8 As a follow-up to Exercise 5, visualize the reduction sequence of a stuck term.

Exercise 9 Write a function mapping a natural number n to a term that normalizes into
RESULT (INT n) in n steps. (In other words, the reduction sequence of this term should
have length n.)

11

Exercise 10 Write a function mapping a natural number n to a term that normalizes
into RESULT (INT n) in 2 × n steps.

Exercise 11 Write a function mapping an even natural number n to a term that nor-
malizes into RESULT (INT n) in n/2 steps.

Exercise 12 Write a function mapping a natural number n to a term that normalizes
into RESULT (INT n!) (i.e., the factorial of n) in 0 steps.

Exercise 13 Write a function mapping a natural number n to a term whose normaliza-
tion becomes stuck after 2n steps.

Exercise 14 Extend the data types reduct and result with not just an error message
but also the problematic potential redex:

datatype reduct = REDUCT of term

| STUCK of string * term

datatype result = RESULT of value

| WRONG of string * term

(Hint: The function embed potential redex in term from Exercise 1 will come handy.)
Adapt your implementation to this new data type, and test it.

Exercise 15 Write the direct-style counterpart of decompose’ and decompose’ term in
the proof of Lemma 1, using callcc and throw as found in the SMLofNJ.Cont library.

Exercise 16 The following function allegedly distributes multiplications and divisions
over additions and subtractions:

(* distribute : term -> term *)

fun distribute t

= let fun visit (LIT n, k)

= k (LIT n)

| visit (OPR (t1, ADD, t2), k)

= OPR (visit (t1, k), ADD, visit (t2, k))

| visit (OPR (t1, SUB, t2), k)

= OPR (visit (t1, k), SUB, visit (t2, k))

| visit (OPR (t1, MUL, t2), k)

= visit (t1, fn t1’ =>

visit (t2, fn t2’ =>

k (OPR (t1’, MUL, t2’))))

| visit (OPR (t1, DIV, t2), k)

= visit (t1, fn t1’ =>

visit (t2, fn t2’ =>

k (OPR (t1’, DIV, t2’))))

in visit (t, fn t’ => t’)

end

12

1. Verify this allegation on a couple of examples.

2. Write a new data type (or more precisely: two) accounting for additions and sub-
tractions of multiplications and divisions, and retarget distribute so that it con-
structs elements of your data type. Run your code on the same couple of examples
as just above.

3. What is the type of visit now? (To answer this question, you might want to
lambda-lift the definition of visit outside your definition of distribute so that
the two definitions coexist in the same scope, and let ML infer their type.)

Exercise 17 It is tempting to see the second parameter of visit, in Exercise 16, as a
continuation. However, the definition of visit is not in continuation-passing style since
in the second and third clause, the calls to visit are not in tail position. (Technically, the
second parameter of visit is a ‘delimited’ continuation [29].)

1. CPS-transform your definition of visit, keeping distribute in direct style for
simplicity. For comparison, CPS-transforming the original definition of visit

would yield something like the following template:

(* distribute’ : term -> term *)

fun distribute’ t

= let fun visit (..., k, mk)

= ...

in visit (t, fn (t’, mk) => mk t’, fn t’ => t’)

end

The result is now in CPS: all calls are tail calls, right up to the initial (meta-)
continuation.

2. Defunctionalize the second and third parameters of visit (i.e., the delimited con-
tinuation k and the meta-continuation mk). You now have a big-step abstract ma-
chine: an iterative state-transition system where each clause specifies a transition.

3. Along the lines of Appendix F, write the corresponding small-step abstract ma-
chine.

3 From reduction-based to reduction-free normalization
In this section, we transform the reduction-based normalization function of Sec-
tion 2.5 into a family of reduction-free normalization functions, i.e., ones where
no intermediate term is ever constructed. We first refocus the reduction-based
normalization function to deforest the intermediate terms, and we obtain a small-
step abstract machine implementing the iteration of the refocus function (Sec-
tion 3.1). After inlining the contraction function (Section 3.2), we transform this

13

small-step abstract machine into a big-step one (Section 3.3). This machine ex-
hibits a number of corridor transitions, and we compress them (Section 3.4). We
then flatten its configurations and rename its transition functions into something
more intuitive (Section 3.5). The resulting abstract machine is in defunctionalized
form, and we refunctionalize it (Section 3.6). The result is in continuation-passing
style and we re-express it in direct style (Section 3.7). The resulting direct-style
function is a traditional evaluator for arithmetic expressions; in particular, it is
compositional and reduction-free.

Modus operandi: In each of the following subsections, we derive successive
versions of the normalization function, indexing its components with the number
of the subsection. In practice, the reader should run the tests of Exercise 3 in
Section 2.7 at each step of the derivation, for sanity value.

3.1 Refocusing:
from reduction-based to reduction-free normalization

The normalization function of Section 2.5 is reduction-based because it constructs
every intermediate term in the reduction sequence. In its definition, decompose is
always applied to the result of recompose after the first decomposition. In fact, a
vacuous initial call to recompose ensures that in all cases, decompose is applied to
the result of recompose:

(* normalize0’ : term -> result *)

fun normalize0’ t

= iterate0 (decompose (recompose (CTX_MT, t)))

Refocusing, extensionally: As investigated earlier by Nielsen and the author
[38], the composition of decompose and recompose can be deforested into a
‘refocus’ function to avoid constructing the intermediate terms in the re-
duction sequence. Such a deforestation makes the normalization function
reduction-free.

Refocusing, intensionally: It turns out that the refocus function can be expressed
very simply in terms of the decomposition functions of Section 2.3 (and this
is the reason why we chose to specify them precisely like that):

(* refocus : term * context -> value_or_decomposition *)

fun refocus (t, C)

= decompose_term (t, C)

The refocused evaluation function therefore reads as follows:

14

(* iterate1 : value_or_decomposition -> result *)

fun iterate1 (VAL v)

= RESULT v

| iterate1 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM t’)

=> iterate1 (refocus (t’, C))

| (ERROR s)

=> WRONG s)

(* normalize1 : term -> result *)

fun normalize1 t

= iterate1 (refocus (t, CTX_MT))

This refocused normalization function is reduction-free because it is no longer
based on a (one-step) reduction function. Instead, the refocus function directly
maps a contractum and a reduction context to the next redex and reduction con-
text, if there are any in the reduction sequence.

3.2 Inlining the contraction function
We first inline the call to contract in the definition of iterate1, and name the
resulting function iterate2. Reasoning by inversion, there are two potential re-
dexes and therefore the DEC clause in the definition of iterate1 is replaced by two
DEC clauses in the definition of iterate2:

(* iterate2 : value_or_decomposition -> result *)

fun iterate2 (VAL v)

= RESULT v

| iterate2 (DEC (PR_OPR (INT n1, ADD, INT n2), C))

= iterate2 (refocus (LIT (n1 + n2), C))

| iterate2 (DEC (PR_OPR (INT n1, SUB, INT n2), C))

= iterate2 (refocus (LIT (n1 - n2), C))

(* normalize2 : term -> result *)

fun normalize2 t

= iterate2 (refocus (t, CTX_MT))

We are now ready to fuse the composition of iterate2 with refocus (shaded just
above).

3.3 Lightweight fusion:
from small-step to big-step abstract machine

The refocused normalization function is small-step abstract machine in the sense
that refocus (i.e., decompose term and decompose context) acts as a transition func-
tion and iterate1 as a ‘trampoline’ [43], i.e., a ‘driver loop’ or again another

15

transition function that keeps activating refocus until a value is obtained. Using
Ohori and Sasano’s ‘lightweight fusion by fixed-point promotion’ [33, 36, 63],
we fuse iterate2 and refocus (i.e., decompose term and decompose context) so that
the resulting function iterate3 is directly applied to the result of decompose term

and decompose context. The result is a big-step abstract machine [65] consisting
of three (mutually tail-recursive) state-transition functions:

• refocus3 term is the composition of iterate2 and decompose term and a clone
of decompose term;

• refocus3 context is the composition of iterate2 and decompose context that
directly calls iterate3 over a value or a decomposition instead of returning
it to iterate2 as decompose context did;

• iterate3 is a clone of iterate2 that calls the fused function refocus3 term.

(* refocus3_term : term * context -> result *)

fun refocus3_term (LIT n, C)

= refocus3_context (C, INT n)

| refocus3_term (OPR (t1, r, t2), C)

= refocus3_term (t1, CTX_LEFT (C, r, t2))

(* refocus3_context : context * value -> result *)

and refocus3_context (CTX_MT, v)

= iterate3 (VAL v)

| refocus3_context (CTX_LEFT (C, r, t2), v1)

= refocus3_term (t2, CTX_RIGHT (v1, r, C))

| refocus3_context (CTX_RIGHT (v1, r, C), v2)

= iterate3 (DEC (PR_OPR (v1, r, v2), C))

(* iterate3 : value_or_decomposition -> result *)

and iterate3 (VAL v)

= RESULT v

| iterate3 (DEC (PR_OPR (INT n1, ADD, INT n2), C))

= refocus3_term (LIT (n1 + n2), C)

| iterate3 (DEC (PR_OPR (INT n1, SUB, INT n2), C))

= refocus3_term (LIT (n1 - n2), C)

(* normalize3 : term -> result *)

fun normalize3 t

= refocus3_term (t, CTX_MT)

In this abstract machine, iterate3 implements the contraction rules of the reduc-
tion semantics separately from its congruence rules, which are implemented by
refocus3 term and refocus3 context. This staged structure is remarkable because
obtaining this separation for pre-existing abstract machines is known to require
non-trivial analyses [44].

16

3.4 Compressing corridor transitions
In the abstract machine above, many of the transitions are ‘corridor’ ones in that
they yield configurations for which there is a unique further transition, and so on.
Let us compress these transitions. To this end, we cut-and-paste the transition
functions above, renaming their indices from 3 to 4, and consider each of their
clauses in turn:

Clause refocus4 context (CTX MT, v):

refocus4_context (CTX_MT, v)

= (* by unfolding the call to refocus4_context *)

iterate4 (VAL v)

= (* by unfolding the call to iterate4 *)

RESULT v

Clause iterate4 (DEC (PR OPR (INT n1, ADD, INT n2), C)):

iterate4 (DEC (PR_OPR (INT n1, ADD, INT n2), C))

= (* by unfolding the call to iterate4 *)

refocus4_term (LIT (n1 + n2), C)

= (* by unfolding the call to refocus4_term *)

refocus4_context (C, INT (n1 + n2))

Clause iterate4 (DEC (PR OPR (INT n1, SUB, INT n2), C)):

iterate4 (DEC (PR_OPR (INT n1, SUB, INT n2), C))

= (* by unfolding the call to iterate4 *)

refocus4_term (LIT (n1 - n2), C)

= (* by unfolding the call to refocus4_term *)

refocus4_context (C, INT (n1 - n2))

There are two corollaries to the compressions above:

Dead clauses: The clause “iterate4 (VAL v)” is dead, and therefore can be im-
plemented as raising a “DEAD CLAUSE” exception.

Invariants: All live transitions to iterate4 are now over DEC (PR OPR (v1, r,

v2), C), for some v1, r, v2, and C.

17

3.5 Renaming transition functions and flattening configurations
The resulting simplified machine is a familiar ‘eval/apply/continue’ abstract ma-
chine [54]. We therefore rename refocus4 term to eval5, refocus4 context to
continue5, and iterate4 to apply5. We also flatten the configuration iterate4

(DEC (PR OPR (v1, r, v2), C)) into apply5 (v1, r, v2, C). The result reads as
follows:

(* eval5 : term * context -> result *)

fun eval5 (LIT n, C)

= continue5 (C, INT n)

| eval5 (OPR (t1, r, t2), C)

= eval5 (t1, CTX_LEFT (C, r, t2))

(* continue5 : context * value -> result *)

and continue5 (CTX_MT, v)

= RESULT v

| continue5 (CTX_LEFT (C, r, t2), v1)

= eval5 (t2, CTX_RIGHT (v1, r, C))

| continue5 (CTX_RIGHT (v1, r, C), v2)

= apply5 (v1, r, v2, C)

(* apply5 : value * operator * value * context -> result *)

and apply5 (INT n1, ADD, INT n2, C)

= continue5 (C, INT (n1 + n2))

| apply5 (INT n1, SUB, INT n2, C)

= continue5 (C, INT (n1 - n2))

(* normalize5 : term -> result *)

fun normalize5 t

= eval5 (t, CTX_MT)

3.6 Refunctionalization
Like many other abstract machines [3, 4, 5, 16, 23], the abstract machine of Sec-
tion 3.5 is in defunctionalized form [37]: the reduction contexts, together with
continue5, are the first-order counterpart of a function. The higher-order coun-
terpart of this abstract machine reads as follows:

(* eval6 : term * (value -> ’a) -> ’a *)

fun eval6 (LIT n, k)

= k (INT n)

| eval6 (OPR (t1, r, t2), k)

= eval6 (t1, fn v1 =>

eval6 (t2, fn v2 =>

apply6 (v1, r, v2, k)))

18

(* apply6 : value * operator * value * (value -> ’a) -> ’a *)

and apply6 (INT n1, ADD, INT n2, k)

= k (INT (n1 + n2))

| apply6 (INT n1, SUB, INT n2, k)

= k (INT (n1 - n2))

(* normalize6 : term -> result *)

fun normalize6 t

= eval6 (t, fn v => RESULT v)

The resulting refunctionalized program is a familiar eval/apply evaluation func-
tion in CPS.

3.7 Back to direct style
The refunctionalized definition of Section 3.6 is in continuation-passing style
since it has a functional accumulator and all of its calls are tail calls [30, 20].
Its direct-style counterpart reads as follows:

(* eval7 : term -> value *)

fun eval7 (LIT n)

= INT n

| eval7 (OPR (t1, r, t2))

= apply7 (eval7 t1, r, eval7 t2)

(* apply7 : value * operator * value -> value *)

and apply7 (INT n1, ADD, INT n2)

= INT (n1 + n2)

| apply7 (INT n1, SUB, INT n2)

= INT (n1 - n2)

(* normalize7 : term -> result *)

fun normalize7 t

= RESULT (eval7 t)

The resulting program is a traditional eval/apply evaluation function in direct
style, à la McCarthy, i.e., a reduction-free normalization function of the kind usu-
ally crafted by hand.

3.8 Closure unconversion
This section is intentionally left blank, since the expressible values in the inter-
preter of Section 3.7 are first-order.

19

3.9 Summary
We have refocused the reduction-based normalization function of Section 2 into
a small-step abstract machine, and we have exhibited a family of corresponding
reduction-free normalization functions. Most of the members of this family are
ML implementations of independently known semantic artifacts: abstract ma-
chines, big-step operational semantics, and denotational semantics.

3.10 Exercises
Exercise 18 Reproduce the construction above in the programming language of your
choice, starting from your solution to Exercise 4 in Section 2.7. At each step of the
derivation, run the tests of Exercise 3 in Section 2.7.

Exercise 19 Up to and including the normalization function of Section 3.5, it is simple
to visualize the successive terms in the reduction sequence, namely by instrumenting
iterate1, iterate2, iterate3, iterate4, and apply5. Do you agree? What about from
Section 3.6 and onwards?

Exercise 20 Would it make sense, in the definition of normalize6, to take fn v => v

as the initial continuation? If so, what would be the definition of normalize7 and what
would be its type?

Exercise 21 Refocus the reduction-based normalization function of Exercise 6 in Sec-
tion 2.7 and move on until the eval/apply evaluation function in CPS. From then on, to
write it in direct style, the simplest is to use a dynamically scoped exception handled at
the top level:

exception WRONG of string

(* eval7 : term -> value *)

fun eval7 (LIT n)

= INT n

| eval7 (OPR (t1, r, t2))

= apply7 (eval7 t1, r, eval7 t2)

(* apply7 : value * value -> value *)

and apply7 (INT n1, ADD, INT n2)

= INT (n1 + n2)

| apply7 (INT n1, SUB, INT n2)

= INT (n1 - n2)

| apply7 (INT n1, MUL, INT n2)

= INT (n1 * n2)

| apply7 (INT n1, DIV, INT 0)

= raise (WRONG "division by 0")

20

| apply7 (INT n1, DIV, INT n2)

= INT (n1 div n2)

(* normalize7 : term -> result *)

fun normalize7 t

= RESULT (eval7 t)

handle (WRONG s) => STUCK s

In a pinch, of course, a lexically scoped first-class continuation (using callcc and
throw as found in the SMLofNJ.Cont library) would do as well:

(* normalize7’ : term -> result *)

fun normalize7’ t

= callcc (fn top =>

let (* eval7 : term -> value *)

fun eval7 (LIT n)

= INT n

| eval7 (OPR (t1, r, t2))

= apply7 (eval7 t1, r, eval7 t2)

(* apply7 : value * value -> value *)

and apply7 (INT n1, ADD, INT n2)

= INT (n1 + n2)

| apply7 (INT n1, SUB, INT n2)

= INT (n1 - n2)

| apply7 (INT n1, MUL, INT n2)

= INT (n1 * n2)

| apply7 (INT n1, DIV, INT 0)

= throw top (STUCK "division by 0")

| apply7 (INT n1, DIV, INT n2)

= INT (n1 div n2)

in RESULT (eval7 t)

end)

4 A reduction semantics for recognizing Dyck words
The goal of this section is to define a one-step reduction function towards rec-
ognizing well-parenthesized words, i.e., Dyck words, and to construct the corre-
sponding reduction-based recognition function.

To define a reduction semantics for recognizing Dyck words, we first specify
the abstract syntax of parenthesized words (Section 4.1), the associated notion
of contraction (Section 4.2), and the reduction strategy (Section 4.3). We then
define a one-step reduction function that decomposes a non-empty word into a
redex and a reduction context, contracts the redex, and recomposes the context
with the contractum if the contraction has succeeded (Section 4.4). We can finally

21

define a reduction-based recognition function that repeatedly applies the one-
step reduction function until an empty word is reached, if each contraction has
succeeded (Section 4.5).

4.1 Abstract syntax: terms and values
Pre-terms: We start from a string of characters and parse it into a word, i.e., an

ML list of parentheses:

datatype parenthesis = L of int | R of int

type word = parenthesis list

(* smurf : string -> word option *)

fun smurf s

= let fun loop (~1, ps)

= SOME ps

| loop (i, ps)

= (case String.sub (s, i)

of #"("

=> loop (i - 1, (L 0) :: ps)

| #"["

=> loop (i - 1, (L 1) :: ps)

| #"{"

=> loop (i - 1, (L 2) :: ps)

| #"}"

=> loop (i - 1, (R 2) :: ps)

| #"]"

=> loop (i - 1, (R 1) :: ps)

| #")"

=> loop (i - 1, (R 0) :: ps)

| _

=> NONE)

in loop ((String.size s) - 1, nil)

end

Terms: A term is a word.

Values: A value is an empty word, i.e., an empty list of parentheses.

4.2 Notion of contraction
Our notion of contraction consists in removing matching pairs of parentheses in
a context. As usual, we represent redexes as a data type and implement their
contraction with a function:

22

datatype potential_redex = PR_MATCH of int * int

type contractum_or_error = bool

(* contract : potential_redex -> contractum_or_error *)

fun contract (PR_MATCH (l, r))

= l = r

4.3 Reduction strategy
We seek the left-most pair of matching parentheses in a word.

Reduction contexts: The grammar of reduction contexts reads as follows:

type left_context = int list

type right_context = word

type context = left_context * right_context

Decomposition: A term is a value (i.e., it does not contain any potential redex,
i.e., here, it is the empty word), it can be decomposed into a potential redex
and a reduction context, or it is neither:

datatype value_or_decomposition = VAL

| DEC of potential_redex * context

| NEITHER of string

The decomposition function iteratively searches for the left-most potential
redex in a word. As in Section 2.3, we define it as a big-step abstract ma-
chine with auxiliary functions, decompose word, decompose word paren, and
decompose context between three states: a left and a right context; a left
context, a left parenthesis, and a right context; and a left context and an
optional right parenthesis and right context.

• decompose worddispatches on the right context and defers to decompose

word paren, and decompose context;
• decompose word paren dispatches on the current parenthesis, and de-

fers to decompose word or decompose context;
• decompose context determines whether a value has been found, a po-

tential redex has been found, or neither.

23

(* decompose_word : left_context * right_context

-> value_or_decomposition *)

fun decompose_word (ls, nil)

= decompose_context (ls, NONE)

| decompose_word (ls, p :: ps)

= decompose_word_paren (ls, p, ps)

(* decompose_word_paren : left_context * parenthesis * right_context

-> value_or_decomposition *)

and decompose_word_paren (ls, L l, ps)

= decompose_word (l :: ls, ps)

| decompose_word_paren (ls, R r, ps)

= decompose_context (ls, SOME (r, ps))

(* decompose_context : left_context * (parenthesis * right_context) option

-> value_or_decomposition *)

and decompose_context (nil, NONE)

= VAL

| decompose_context (nil, SOME (r, ps))

= NEITHER "unmatched right parenthesis"

| decompose_context (l :: ls, NONE)

= NEITHER "unmatched left parenthesis"

| decompose_context (l :: ls, SOME (r, ps))

= DEC (PR_MATCH (l, r), (ls, ps))

(* decompose : word -> value_or_decomposition *)

fun decompose w

= decompose_word (nil, w)

Recomposition: The recomposition function peels off the layers of the left con-
text and constructs the resulting term, iteratively:

(* recompose_word : context -> word *)

fun recompose_word (nil, ps)

= ps

| recompose_word (l :: ls, ps)

= recompose_word (ls, (L l) :: ps)

(* recompose : context * unit -> word *)

fun recompose ((ls, ps), ())

= recompose_word (ls, ps)

Lemma 2 A word w is either a value, or there exists a unique context C such that
decompose w evaluates to DEC (pr, C), where pr is a potential redex, or it is stuck.

Proof 2 Straightforward (see Exercise 25 in Section 4.7).

24

4.4 One-step reduction
We are now in position to define a one-step reduction function as a function that
(1) maps a non-value, non-stuck term into a potential redex and a reduction con-
text, (2) contracts the potential redex if it is an actual one, and (3) recomposes
the reduction context with the contractum. The following data type accounts for
whether the contraction is successful or the non-value term is stuck:

datatype reduct = REDUCT of word

| STUCK

(* reduce : word -> reduct *)

fun reduce w

= (case decompose w

of VAL

=> REDUCT nil

| (DEC (pr, C))

=> if contract pr

then REDUCT (recompose (C, ()))

else STUCK

| (NEITHER s)

=> STUCK)

4.5 Reduction-based recognition
A reduction-based recognition function is one that iterates the one-step reduction
function until it yields a value or finds a mismatch. In the following definition,
and as in Section 2.5, we use decompose to distinguish between value terms, de-
composable terms, and stuck terms:

(* iterate0 : value_or_decomposition -> bool *)

fun iterate0 VAL

= true

| iterate0 (DEC (pr, C))

= if contract pr

then iterate0 (decompose (recompose (C, ())))

else false

| iterate0 (NEITHER s)

= false

(* normalize0 : word -> bool *)

fun normalize0 w

= iterate0 (decompose w)

The correctness and termination of this definition is simple to establish: each
iteration removes the left-most pair of matching parentheses, and the procedure
stops if no parentheses are left or if no left-most pair of parentheses exists or if
they do not match.

25

4.6 Summary
We have implemented a reduction semantics for recognizing well-parenthesized
words, in complete detail. Using this reduction semantics, we have presented a
reduction-based recognition function.

4.7 Exercises
Exercise 22 Write a handful of test words and specify the expected outcome of their
recognition.

Exercise 23 Implement the reduction semantics above in the programming language of
your choice, and run the tests of Exercise 22.

Exercise 24 Instrument the implementation of Exercise 23 to visualize a reduction se-
quence.

Exercise 25 In the proof of Lemma 2, do as in the proof of Lemma 1 and write the re-
functionalized counterpart of decompose et al.

Exercise 26 Let us modify the notion of contraction to match as many left and right
parentheses as possible:

(* contract : potential_redex -> contractum_or_error *)

fun contract (PR_MATCH (l, r), C)

= let fun visit (l :: ls, (R r) :: ps)

= if r = l

then visit (ls, ps)

else NONE

| visit (ls, ps)

= SOME (ls, ps)

in if l = r

then visit C

else NONE

end

Use the result of Exercise 24 to visualize a reduction sequence with such a generalized
contraction.

5 From reduction-based to reduction-free recognition
In this section, we transform the reduction-based recognition function of Sec-
tion 4.5 into a family of reduction-free recognition functions, i.e., one where no in-
termediate word is ever constructed. We first refocus the reduction-based recog-
nition function to deforest the intermediate words, and we obtain a small-step

26

abstract machine implementing the iteration of the refocus function (Section 5.1).
After inlining the contraction function (Section 5.2), we transform this small-step
abstract machine into a big-step one (Section 5.3). This abstract machine exhibits
a number of corridor transitions, and we compress them (Section 5.4). We then
flatten its configurations and rename its transition functions into something more
intuitive (Section 5.5). The resulting abstract machine is in defunctionalized form,
and we refunctionalize it (Section 5.6). The result is in continuation-passing style
and we re-express it in direct style (Section 5.7). The resulting direct-style func-
tion is compositional and reduction-free.

Modus operandi: In each of the following subsections, and as in Section 3, we
derive successive versions of the recognition function, indexing its components
with the number of the subsection. In practice, the reader should run the tests of
Exercise 22 in Section 4.7 at each step of the derivation, for sanity value.

5.1 Refocusing:
from reduction-based to reduction-free recognition

The recognition function of Section 4.5 is reduction-based because it constructs
every intermediate word in the reduction sequence. In its definition, decompose is
always applied to the result of recompose after the first decomposition. In fact, a
vacuous initial call to recompose ensures that in all cases, decompose is applied to
the result of recompose:

(* normalize0’ : word -> bool *)

fun normalize0’ w

= iterate0 (decompose (recompose ((nil, w), ())))

Refocusing, extensionally: The composition of decompose and recompose can be
deforested into a ‘refocus’ function to avoid constructing the intermediate
words in the reduction sequence. Such a deforestation makes the recogni-
tion function reduction-free.

Refocusing, intensionally: As in Section 3.1, the refocus function can be ex-
pressed very simply in terms of the decomposition functions of Section 4.3:

(* refocus : context * unit -> value_or_decomposition *)

fun refocus ((ls, ps), ())

= decompose_word (ls, ps)

The refocused evaluation function therefore reads as follows:

27

(* iterate1 : value_or_decomposition -> bool *)

fun iterate1 VAL

= true

| iterate1 (DEC (pr, C))

= if contract pr

then iterate1 (refocus (C, ()))

else false

| iterate1 (NEITHER s)

= false

(* normalize1 : word -> bool *)

fun normalize1 w

= iterate1 (refocus ((nil, w), ()))

This refocused recognition function is reduction-free because it is no longer based
on a (one-step) reduction function. Instead, the refocus function directly maps a
contractum and a reduction context to the next redex and reduction context, if
there are any in the reduction sequence.

5.2 Inlining the contraction function
We first inline the call to contract in the definition of iterate1, and name the
resulting function iterate2:

(* iterate2 : value_or_decomposition -> bool *)

fun iterate2 VAL

= true

| iterate2 (DEC (PR_MATCH (l, r), C))

= if l = r

then iterate2 (refocus (C, ()))

else false

| iterate2 (NEITHER s)

= false

(* normalize2 : word -> bool *)

fun normalize2 w

= iterate2 (refocus ((nil, w), ()))

We are now ready to fuse the composition of iterate2 with refocus (shaded just
above).

5.3 Lightweight fusion:
from small-step to big-step abstract machine

The refocused recognition function is a small-step abstract machine in the sense
that refocus (i.e., decompose word, decompose word paren, and decompose context)

28

acts as a transition function and iterate1 as a driver loop that keeps activat-
ing refocus until a value is obtained. Using Ohori and Sasano’s ‘lightweight
fusion by fixed-point promotion’ [33, 36, 63], we fuse iterate2 and refocus

(i.e., decompose word, decompose word paren, and decompose context) so that the
resulting function iterate3 is directly applied to the result of decompose word,
decompose word paren, and decompose context. The result is a big-step abstract
machine [65] consisting of four (mutually tail-recursive) state-transition func-
tions:

• refocus3 word is the composition of iterate2 and decompose word and a clone
of decompose word;

• refocus3 word paren is the composition of iterate2 and decompose word paren

and a clone of decompose word paren;

• refocus3 context is the composition of iterate2 and decompose context that
directly calls iterate3 instead of returning to iterate2 as decompose context

did;

• iterate3 is a clone of iterate2 that calls the fused function refocus3 word.

(* refocus3_word : left_context * right_context -> bool *)

fun refocus3_word (ls, nil)

= refocus3_context (ls, NONE)

| refocus3_word (ls, p :: ps)

= refocus3_word_paren (ls, p, ps)

(* refocus3_word_paren : left_context * parenthesis * right_context

-> bool *)

and refocus3_word_paren (ls, L l, ps)

= refocus3_word (l :: ls, ps)

| refocus3_word_paren (ls, R r, ps)

= refocus3_context (ls, SOME (r, ps))

(* refocus3_context : left_context * (parenthesis * right_context) option

-> bool *)

and refocus3_context (nil, NONE)

= iterate3 VAL

| refocus3_context (nil, SOME (r, ps))

= iterate3 (NEITHER "unmatched right parenthesis")

| refocus3_context (l :: ls, NONE)

= iterate3 (NEITHER "unmatched left parenthesis")

| refocus3_context (l :: ls, SOME (r, ps))

= iterate3 (DEC (PR_MATCH (l, r), (ls, ps)))

(* iterate3 : value_or_decomposition -> bool *)

and iterate3 VAL

29

= true

| iterate3 (DEC (PR_MATCH (l, r), C))

= if l = r

then refocus3_word C

else false

| iterate3 (NEITHER s)

= false

(* normalize3 : word -> bool *)

fun normalize3 w

= refocus3_word (nil, w)

In this abstract machine, iterate3 implements the contraction rule of the re-
duction semantics separately from its congruence rules, which are implemented
by refocus3 word, refocus3 word paren, and refocus3 context. This staged struc-
ture is remarkable because obtaining this separation for pre-existing abstract ma-
chines is known to require non-trivial analyses [44].

5.4 Compressing corridor transitions
In the abstract machine above, several transitions are ‘corridor’ ones in that they
yield configurations for which there is a unique further transition, and so on.
Let us compress these transitions. To this end, we cut-and-paste the transition
functions above, renaming their indices from 3 to 4, and consider each of their
clauses in turn:

Clause refocus4 context (nil, NONE):

refocus4_context (nil, NONE)

= (* by unfolding the call to refocus4_context *)

iterate4 VAL

= (* by unfolding the call to iterate4 *)

true

Clause refocus4 context (nil, SOME (r, ps)):

refocus4_context (nil, SOME (r, ps))

= (* by unfolding the call to refocus4_context *)

iterate4 (NEITHER "unmatched right parenthesis")

= (* by unfolding the call to iterate4 *)

false

Clause refocus4 context (l :: ls, NONE):

30

refocus4_context (l :: ls, NONE)

= (* by unfolding the call to refocus4_context *)

iterate4 (NEITHER "unmatched left parenthesis")

= (* by unfolding the call to iterate4 *)

false

Clause refocus4 context (l :: ls, SOME (r, ps)):

refocus4_context (l :: ls, SOME (r, ps))

= (* by unfolding the call to refocus4_context *)

iterate4 (DEC (PR_MATCH (l, r), (ls, ps)))

= (* by unfolding the call to iterate4 *)

if l = r

then refocus4_word (ls, ps)

else false

There is one corollary to the compressions above:

Dead clauses: All of the calls to iterate4 have been unfolded, and therefore the
definition of iterate4 is dead.

5.5 Renaming transition functions and flattening configurations
The resulting simplified machine is an ‘eval/dispatch/continue’ abstract ma-
chine. We therefore rename refocus4 word to eval5, refocus4 word paren to eval5

paren, and refocus4 context to continue5. The result reads as follows:

(* eval5 : left_context * right_context -> bool *)

fun eval5 (ls, nil)

= continue5 (ls, NONE)

| eval5 (ls, p :: ps)

= eval5_paren (ls, p, ps)

(* eval5_paren : left_context * parenthesis * right_context -> bool *)

and eval5_paren (ls, L l, ps)

= eval5 (l :: ls, ps)

| eval5_paren (ls, R r, ps)

= continue5 (ls, SOME (r, ps))

(* continue5 : left_context * (parenthesis * right_context) option

-> bool *)

and continue5 (nil, NONE)

= true

| continue5 (nil, SOME (r, ps))

= false

| continue5 (l :: ls, NONE)

31

= false

| continue5 (l :: ls, SOME (r, ps))

= if l = r

then eval5 (ls, ps)

else false

(* normalize5 : word -> bool *)

fun normalize5 w

= eval5 (nil, w)

5.6 Refunctionalization
The above definitions of eval5 and continue5 are in defunctionalized form. The
reduction contexts, together with continue5, are the first-order counterpart of a
function. The higher-order counterpart of this abstract machine reads as follows:

(* eval6 : ((parenthesis * right_context) option -> bool)

* right_context

-> bool *)

fun eval6 (k, nil)

= k NONE

| eval6 (k, p :: ps)

= eval6_paren (k, p, ps)

(* eval6_paren : ((parenthesis * right_context) option -> bool)

* parenthesis * right_context

-> bool *)

and eval6_paren (k, L l, ps)

= eval6 (fn NONE

=> false

| (SOME (r, ps))

=> if l = r

then eval6 (k, ps)

else false,

ps)

| eval6_paren (k, R r, ps)

= k (SOME (r, ps))

(* normalize6 : word -> bool *)

fun normalize6 w

= eval6 (fn NONE

=> true

| (SOME (r, ps))

=> false,

w)

32

5.7 Back to direct style
The refunctionalized definition of Section 5.6 is in continuation-passing style
since it has a functional accumulator and all of its calls are tail calls [30, 20].
Its direct-style counterpart reads as follows:

val callcc = SMLofNJ.Cont.callcc

val throw = SMLofNJ.Cont.throw

(* normalize7 : word -> bool *)

fun normalize7 w

= callcc (fn top =>

let (* eval7 : right_context

-> (int * right_context) option *)

fun eval7 nil

= NONE

| eval7 (p :: ps)

= eval7_paren (p, ps)

(* eval7_paren : parenthesis * right_context

-> (int * right_context) option *)

and eval7_paren (L l, ps)

= (case eval7 ps

of NONE

=> throw top false

| (SOME (r, ps))

=> if l = r

then eval7 ps

else throw top false)

| eval7_paren (R r, ps)

= SOME (r, ps)

in case eval7 w

of NONE

=> true

| (SOME (r, pr))

=> false

end)

The resulting definition is that of a recursive function that makes as many calls as
it encounters left parentheses and that returns when encountering a right paren-
thesis and escapes in case of mismatch.

5.8 Closure unconversion
This section is intentionally left blank, since the expressible values in the inter-
preter of Section 5.7 are first-order.

33

5.9 Summary
We have refocused the reduction-based recognition function of Section 4 into a
small-step abstract machine, and we have exhibited a family of corresponding
reduction-free recognition functions. Most of the members of this family corre-
spond to something one could write by hand.

5.10 Exercises
Exercise 27 Reproduce the construction above in the programming language of your
choice, starting from your solution to Exercise 23 in Section 4.7. At each step of the
derivation, run the tests of Exercise 22 in Section 4.7.

Exercise 28 Continue Exercise 26 and refocus the reduction-based recognition function
with generalized contraction. Do you end up with a big-step abstract machine in defunc-
tionalized form?

6 A reduction semantics for normalizing lambda-terms with
integers

The goal of this section is to define a one-step reduction function for lambda-
terms and to construct the corresponding reduction-based evaluation function.

To define a reduction semantics for lambda-terms with integers (arbitrary lit-
erals and a predefined successor function), we specify their abstract syntax (Sec-
tion 6.1), their notion of contraction (Section 6.2), and their reduction strategy
(Section 6.3). We then define a one-step reduction function that decomposes a
non-value closure into a potential redex and a reduction context, contracts the
potential redex, if it is an actual one, and recomposes the context with the contrac-
tum (Section 6.4). We can finally define a reduction-based normalization function
that repeatedly applies the one-step reduction function until a value, i.e., a nor-
mal form, is reached (Section 6.5).

The abstract syntax of lambda-terms with integer literals reads as follows. It
is completely standard:

structure Syn

= struct

datatype term = LIT of int

| IDE of string

| LAM of string * term

| APP of term * term

end

The S combinator (i.e., λf.λg.λx.f x (g x)), for example, is represented as follows:

34

local open Syn

in val S = LAM ("f", LAM ("g", LAM ("x",

APP (APP (IDE "f", IDE "x"),

APP (IDE "g", IDE "x")))))

end

In the course of the development, we will make use of environments to rep-
resent the bindings of identifiers to denotable values. Our representation is a
canonical association list (i.e., list of pairs associating identifiers and denotable
values):

structure Env

= struct

type ’a env = (string * ’a) list

val empty = [] (* : ’a env *)

fun extend (x, v, env) (* : string * ’a * ’a env -> ’a env *)

= (x, v) :: env

fun lookup (x, env) (* : string * ’a env -> ’a option *)

= let fun search []

= NONE

| search ((x’, v) :: env)

= if x = x’ then SOME v else search env

in search env

end

end

In the initial environment, the identifier succ denotes the successor function.
More about explicit substitutions can be found in Delia Kesner’s recent over-

view of the field [50]. In this section, we consider an applicative order of Curien’s
calculus of closures [12, 19].

6.1 Abstract syntax: closures and values
A closure can either be an integer, a ground closure pairing a term and an en-
vironment, a combination of closures, or the successor function. A value can
either be an integer, the successor function, or a ground closure pairing a lambda-
abstraction and an environment. Environments bind identifiers to values.

datatype closure = CLO_INT of int

| CLO_GND of Syn.term * bindings

| CLO_APP of closure * closure

| CLO_SUCC

and value = VAL_INT of int

35

| VAL_SUCC

| VAL_FUNC of string * Syn.term * bindings

withtype bindings = value Env.env

Values are specified with a separate data type. The corresponding embedding of
values in closures reads as follows:

fun embed_value_in_closure (VAL_INT n)

= CLO_INT n

| embed_value_in_closure (VAL_FUNC (x, t, bs))

= CLO_GND (Syn.LAM (x, t), bs)

| embed_value_in_closure VAL_SUCC

= CLO_SUCC

The initial environment binds the identifier succ to the value VAL SUCC:

val initial_bindings = Env.extend ("succ", VAL_SUCC, Env.empty)

6.2 Notion of contraction
A potential redex is a ground closure pairing an identifier and an environment,
the application of a value to another value, and a ground closure pairing a term
application and an environment:

datatype potential_redex = PR_IDE of string * bindings

| PR_APP of value * value

| PR_PROP of Syn.term * Syn.term * bindings

A potential redex may be an actual one and trigger a contraction, or it may
be stuck. Correspondingly, the following data type accounts for a successful or
failed contraction:

datatype contractum_or_error = CONTRACTUM of closure

| ERROR of string

The string accounts for an error message.
We are now in position to define a contraction function:

• A potential redex PR IDE (x, bs) is an actual one if the identifier x is bound
in the environment bs. If so, the contractum is the denotation of x in bs.

• A potential redex PR APP (v0, v1) is an actual one if v0 stands for the suc-
cessor function and if v1 stands for an integer value, or if v0 stands for
a functional value that arose from evaluating a ground closure pairing a
lambda-abstraction and an environment.

36

• A ground closure pairing a term application and an environment is con-
tracted into a combination of ground closures.

(* contract : potential_redex -> contractum_or_error *)

fun contract (PR_IDE (x, bs))

= (case Env.lookup (x, bs)

of NONE

=> ERROR "undeclared identifier"

| (SOME v)

=> CONTRACTUM (embed_value_in_closure v))

| contract (PR_APP (VAL_SUCC, VAL_INT n))

= CONTRACTUM (embed_value_in_closure (VAL_INT (n + 1)))

| contract (PR_APP (VAL_SUCC, v))

= ERROR "non-integer value"

| contract (PR_APP (VAL_FUNC (x, t, bs), v))

= CONTRACTUM (CLO_GND (t, Env.extend (x, v, bs)))

| contract (PR_APP (v0, v1))

= ERROR "non-applicable value"

| contract (PR_PROP (t0, t1, bs))

= CONTRACTUM (CLO_APP (CLO_GND (t0, bs), CLO_GND (t1, bs)))

A non-value closure is stuck whenever it(s iterated reduction) gives rise to a po-
tential redex which is not an actual one, which happens when an identifier does
not occur in the current environment (i.e., an identifier is used but not declared),
or for ill-typed applications of one value to another.

6.3 Reduction strategy
We seek the left-most inner-most potential redex in a closure.

Reduction contexts: The grammar of reduction contexts reads as follows:

datatype context = CTX_MT

| CTX_FUN of context * closure

| CTX_ARG of value * context

Operationally, a context is a closure with a hole, represented inside-out in a
zipper-like fashion [47].

Decomposition: A closure is a value (i.e., it does not contain any potential redex)
or it can be decomposed into a potential redex and a reduction context:

datatype value_or_decomposition = VAL of value

| DEC of potential_redex * context

37

The decomposition function recursively searches for the left-most inner-
most redex in a closure. It is usually left unspecified in the literature [40].
As usual, we define it here as a big-step abstract machine with two state-
transition functions, decompose closure and decompose contextbetween two
states: a closure and a context, and a context and a value.

• decompose closure traverses a given closure and accumulates the re-
duction context until it finds a value;

• decompose context dispatches over the accumulated context to deter-
mine whether the given closure is a value, the search must continue,
or a potential redex has been found.

(* decompose_closure : closure * context -> value_or_decomposition *)

fun decompose_closure (CLO_INT n, C)

= decompose_context (C, VAL_INT n)

| decompose_closure (CLO_GND (Syn.LIT n, bs), C)

= decompose_context (C, VAL_INT n)

| decompose_closure (CLO_GND (Syn.IDE x, bs), C)

= DEC (PR_IDE (x, bs), C)

| decompose_closure (CLO_GND (Syn.LAM (x, t), bs), C)

= decompose_context (C, VAL_FUNC (x, t, bs))

| decompose_closure (CLO_GND (Syn.APP (t0, t1), bs), C)

= DEC (PR_PROP (t0, t1, bs), C)

| decompose_closure (CLO_APP (c0, c1), C)

= decompose_closure (c0, CTX_FUN (C, c1))

| decompose_closure (CLO_SUCC, C)

= decompose_context (C, VAL_SUCC)

(* decompose_context : context * value -> value_or_decomposition *)

and decompose_context (CTX_MT, v)

= VAL v

| decompose_context (CTX_FUN (C, c1), v0)

= decompose_closure (c1, CTX_ARG (v0, C))

| decompose_context (CTX_ARG (v0, C), v1)

= DEC (PR_APP (v0, v1), C)

(* decompose : closure -> value_or_decomposition *)

fun decompose c

= decompose_closure (c, CTX_MT)

Recomposition: The recomposition function peels off context layers and con-
structs the resulting closure, iteratively:

(* recompose : context * closure -> closure *)

38

fun recompose (CTX_MT, c)

= c

| recompose (CTX_FUN (C, c1), c0)

= recompose (C, CLO_APP (c0, c1))

| recompose (CTX_ARG (v0, C), c1)

= recompose (C, CLO_APP (embed_value_in_closure v0, c1))

Lemma 3 A closure c is either a value or there exists a unique context C such that
decompose c evaluates to DEC (pr, C), where pr is a potential redex.

Proof 3 Straightforward (see Exercise 38 in Section 6.7).

6.4 One-step reduction
As in Section 2.4, we are now in position to define a one-step reduction func-
tion as a function that (1) maps a non-value closure into a potential redex and
a reduction context, (2) contracts the potential redex if it is an actual one, and
(3) recomposes the reduction context with the contractum. The following data
type accounts for whether the contraction is successful or the non-value closure
is stuck:

datatype reduct = REDUCT of closure

| STUCK of string

(* reduce : closure -> reduct *)

fun reduce c

= (case decompose c

of (VAL v)

=> REDUCT (embed_value_in_closure v)

| (DEC (pr, C))

=> (case contract pr

of (CONTRACTUM c’)

=> REDUCT (recompose (C, c’))

| (ERROR s)

=> STUCK s))

6.5 Reduction-based normalization
As in Section 2.5, a reduction-based normalization function is one that iterates
the one-step reduction function until it yields a value (i.e., a fixed point). The
following definition uses decompose to distinguish between value and non-value
closures:

datatype result = RESULT of value

| WRONG of string

39

(* iterate0 : value_or_decomposition -> result *)

fun iterate0 (VAL v)

= RESULT v

| iterate0 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM c’)

=> iterate0 (decompose (recompose (C, c’)))

| (ERROR s)

=> WRONG s)

(* normalize0 : term -> result *)

fun normalize0 t

= iterate0 (decompose (CLO_GND (t, initial_bindings)))

6.6 Summary
We have implemented an applicative-order reduction semantics for lambda-terms
with integers and explicit substitutions in complete detail. Using this reduction
semantics, we have presented a reduction-based applicative-order normalization
function.

6.7 Exercises
Exercise 29 Implement an alternative representation of environments such as

type ’a env = string -> ’a option

and verify that defunctionalizing this representation yields a representation isomorphic
to the one that uses association lists.

Exercise 30 Define a function embed potential redex in closure that maps a poten-
tial redex into a closure.

Exercise 31 Show that, for any closure c, if evaluating decompose c yields DEC (pr,

C), then evaluating recompose (C, embed potential redex in closure pr) yields c.
(Hint: Reason by structural induction over c, using inversion at each step.)

Exercise 32 Write a handful of test terms and specify the expected outcome of their nor-
malization.
(Hint: Take a look at Appendix A.2.)

Exercise 33 Implement the reduction semantics above in the programming language of
your choice (e.g., Haskell or Scheme), and run the tests of Exercise 32.

40

Exercise 34 Write an unparser from closures to the concrete syntax of your choice, and
instrument the normalization function of Section 6.5 so that (one way or another) it
displays the successive closures in the reduction sequence.
(Hint: A ground closure can be unparsed as a let expression.) Visualize the reduction
sequences of a non-stuck closure and of a stuck closure.

Exercise 35 Extend the source language with curried addition, subtraction, multiplica-
tion, and division, and adjust your implementation.

Except for the initial bindings and the contraction function, what else needs to be
adjusted in your implementation?

Exercise 36 As a follow-up to Exercise 35, write test terms that use arithmetic opera-
tions and specify the expected outcome of their evaluation, and run these tests on your
extended implementation.

Exercise 37 Extend the data type reduct with not just an error message but also the
problematic potential redex:

datatype reduct = REDUCT of closure

| STUCK of string * closure

(Hint: A function embed potential redex in closure will come handy.) Adapt your
implementation to this new data type, and test it.

Exercise 38 In the proof of Lemma 3, do as in the proof of Lemma 1 and write the re-
functionalized counterpart of decompose et al.

7 From reduction-based to reduction-free normalization
In this section, we transform the reduction-based normalization function of Sec-
tion 6.5 into a family of reduction-free normalization functions, i.e., ones where
no intermediate closure is ever constructed. We first refocus the reduction-based
normalization function to deforest the intermediate closures, and we obtain a
small-step abstract machine implementing the iteration of the refocus function
(Section 7.1). After inlining the contraction function (Section 7.2), we transform
this small-step abstract machine into a big-step one (Section 7.3). This machine
exhibits a number of corridor transitions, and we compress them (Section 7.4).
We then flatten its configurations and rename its transition functions into some-
thing more intuitive (Section 7.5). The resulting abstract machine is in defunction-
alized form, and we refunctionalize it (Section 7.6). The result is in continuation-
passing style and we re-express it in direct style (Section 7.7). The resulting
direct-style function is in closure-converted form, and we closure-unconvert it
(Section 7.8). The result is a traditional call-by-value evaluator for lambda-terms;
in particular, it is compositional and reduction-free.

41

Modus operandi: In each of the following subsections, and as in Section 3, we
derive successive versions of the normalization function, indexing its compo-
nents with the number of the subsection. In practice, the reader should run the
tests of Exercise 32 in Section 6.7 at each step of the derivation, for sanity value.

7.1 Refocusing:
from reduction-based to reduction-free normalization

The normalization function of Section 6.5 is reduction-based because it constructs
every intermediate closure in the reduction sequence. In its definition, decompose
is always applied to the result of recompose after the first decomposition. In fact,
a vacuous initial call to recompose ensures that in all cases, decompose is applied
to the result of recompose:

(* normalize0’ : term -> result *)

fun normalize0’ t

= iterate0 (decompose (recompose (CTX_MT,

CLO_GND (t, initial_bindings))))

Refocusing, extensionally: As in Section 3.1, the composition of decompose and
recompose can be deforested into a ‘refocus’ function to avoid constructing
the intermediate closures in the reduction sequence. Such a deforestation
makes the normalization function reduction-free.

Refocusing, intensionally: As in Section 3.1, the refocus function can be ex-
pressed very simply in terms of the decomposition functions of Section 6.3:

(* refocus : closure * context -> value_or_decomposition *)

fun refocus (c, C)

= decompose_closure (c, C)

The refocused evaluation function therefore reads as follows:

(* iterate1 : value_or_decomposition -> result *)

fun iterate1 (VAL v)

= RESULT v

| iterate1 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM c’)

=> iterate1 (refocus (c’, C))

| (ERROR s)

=> WRONG s)

(* normalize1 : term -> result *)

fun normalize1 t

= iterate1 (refocus (CLO_GND (t, initial_bindings), CTX_MT))

42

This refocused normalization function is reduction-free because it is no longer
based on a (one-step) reduction function. Instead, the refocus function directly
maps a contractum and a reduction context to the next potential redex and re-
duction context, if there are any in the reduction sequence.

7.2 Inlining the contraction function
We first inline the call to contract in the definition of iterate1, and name the re-
sulting function iterate2. Reasoning by inversion, there are six cases and there-
fore the DEC clause in the definition of iterate1 is replaced by six DEC clauses in
the definition of iterate2:

(* iterate2 : value_or_decomposition -> result *)

fun iterate2 (VAL v)

= RESULT v

| iterate2 (DEC (PR_IDE (x, bs), C))

= (case Env.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v)

=> iterate2 (refocus (embed_value_in_closure v, C)))

| iterate2 (DEC (PR_APP (VAL_SUCC, VAL_INT n), C))

= iterate2 (refocus (embed_value_in_closure (VAL_INT (n + 1)), C))

| iterate2 (DEC (PR_APP (VAL_SUCC, v), C))

= WRONG "non-integer value"

| iterate2 (DEC (PR_APP (VAL_FUNC (x, t, bs), v), C))

= iterate2 (refocus (CLO_GND (t, Env.extend (x, v, bs)), C))

| iterate2 (DEC (PR_APP (v0, v1), C))

= WRONG "non-applicable value"

| iterate2 (DEC (PR_PROP (t0, t1, bs), C))

= iterate2 (refocus (CLO_APP (CLO_GND (t0, bs), CLO_GND (t1, bs)), C))

(* normalize2 : term -> result *)

fun normalize2 t

= iterate2 (refocus (CLO_GND (t, initial_bindings), CTX_MT))

We are now ready to fuse the composition of iterate2 with refocus (shaded just
above).

7.3 Lightweight fusion:
from small-step to big-step abstract machine

The refocused normalization function is small-step abstract machine in the sense
that refocus (i.e., decompose closure and decompose context) acts as a transition
function and iterate1 as a driver loop that keeps activating refocus until a value
is obtained. We fuse iterate2 and refocus (i.e., decompose closure and decompose

43

context) so that the resulting function iterate3 is directly applied to the result
of decompose closure and decompose context. The result is a big-step abstract ma-
chine consisting of three (mutually tail-recursive) state-transition functions:

• refocus3 closure is the composition of iterate2 and decompose closure and
a clone of decompose closure;

• refocus3 context is the composition of iterate2 and decompose context that
directly calls iterate3 over a value or a decomposition instead of returning
it to iterate2 as decompose context did;

• iterate3 is a clone of iterate2 that calls the fused function refocus3 closure.

(* refocus3_closure : closure * context -> result *)

fun refocus3_closure (CLO_INT n, C)

= refocus3_context (C, VAL_INT n)

| refocus3_closure (CLO_GND (Syn.LIT n, bs), C)

= refocus3_context (C, VAL_INT n)

| refocus3_closure (CLO_GND (Syn.IDE x, bs), C)

= iterate3 (DEC (PR_IDE (x, bs), C))

| refocus3_closure (CLO_GND (Syn.LAM (x, t), bs), C)

= refocus3_context (C, VAL_FUNC (x, t, bs))

| refocus3_closure (CLO_GND (Syn.APP (t0, t1), bs), C)

= iterate3 (DEC (PR_PROP (t0, t1, bs), C))

| refocus3_closure (CLO_APP (c0, c1), C)

= refocus3_closure (c0, CTX_FUN (C, c1))

| refocus3_closure (CLO_SUCC, C)

= refocus3_context (C, VAL_SUCC)

(* refocus3_context : context * value -> result *)

and refocus3_context (CTX_MT, v)

= iterate3 (VAL v)

| refocus3_context (CTX_FUN (C, c1), v0)

= refocus3_closure (c1, CTX_ARG (v0, C))

| refocus3_context (CTX_ARG (v0, C), v1)

= iterate3 (DEC (PR_APP (v0, v1), C))

(* iterate3 : value_or_decomposition -> result *)

and iterate3 (VAL v)

= RESULT v

| iterate3 (DEC (PR_IDE (x, bs), C))

= (case Env.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v)

=> refocus3_closure (embed_value_in_closure v, C))

| iterate3 (DEC (PR_APP (VAL_SUCC, VAL_INT n), C))

= refocus3_closure (embed_value_in_closure (VAL_INT (n + 1)), C)

44

| iterate3 (DEC (PR_APP (VAL_SUCC, v), C))

= WRONG "non-integer value"

| iterate3 (DEC (PR_APP (VAL_FUNC (x, t, bs), v), C))

= refocus3_closure (CLO_GND (t, Env.extend (x, v, bs)), C)

| iterate3 (DEC (PR_APP (v0, v1), C))

= WRONG "non-applicable value"

| iterate3 (DEC (PR_PROP (t0, t1, bs), C))

= refocus3_closure (CLO_APP (CLO_GND (t0, bs), CLO_GND (t1, bs)), C)

(* normalize3 : term -> result *)

fun normalize3 t

= refocus3_closure (CLO_GND (t, initial_bindings), CTX_MT)

In this abstract machine, iterate3 implements the contraction rules of the reduc-
tion semantics separately from its congruence rules, which are implemented by
refocus3 closure and refocus3 context. This staged structure is remarkable be-
cause obtaining this separation for pre-existing abstract machines is known to
require non-trivial analyses [44].

7.4 Compressing corridor transitions
In the abstract machine above, many of the transitions are ‘corridor’ ones in that
they yield configurations for which there is a unique further transition, and so
on. Let us compress these transitions. To this end, we cut-and-paste the tran-
sition functions above, renaming their indices from 3 to 4, and consider each of
their clauses in turn, making use of the equivalence between refocus4 closure

(embed value in closure v, C) and refocus4 context (C, v):

Clause refocus4 closure (CLO GND (Syn.IDE x, bs), C):

refocus4_closure (CLO_GND (Syn.IDE x, bs), C)

= (* by unfolding the call to refocus4_closure *)

iterate4 (DEC (PR_IDE (x, bs), C))

= (* by unfolding the call to iterate4 *)

(case Env.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v)

=> refocus4_closure (embed_value_in_closure v, C))

= (* eureka *)

(case Env.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v)

=> refocus4_context (C, v))

45

Clause refocus4 closure (CLO GND (Syn.APP (t0, t1), bs), C):

refocus4_closure (CLO_GND (Syn.APP (t0, t1), bs), C)

= (* by unfolding the call to refocus4_closure *)

iterate4 (DEC (PR_PROP (t0, t1, bs)), C)

= (* by unfolding the call to iterate4 *)

refocus4_closure (CLO_GND (t0, bs), CTX_FUN (C, CLO_GND (t1, bs)))

There are two corollaries to the compressions above:

Dead clauses: The clauses for non-ground closures are dead, and so is the clause
“iterate4 (VAL v).” They can therefore be implemented as raising a “DEAD CLAUSE”
exception.

Invariants: All transitions to refocus closure are now over ground closures. All
live transitions to iterate4 are now over DEC (PR APP (v0, v1), C), for some
v0, v1, and C.

7.5 Renaming transition functions and flattening configurations
In Section 7.4, the resulting simplified machine is a familiar ‘eval/apply/continue’
abstract machine [54] operating over ground closures. We therefore rename
refocus4 closure to eval5, refocus4 context to continue5, and iterate4 to apply5,
and flatten the configuration refocus4 closure (CLO GND (t, bs), C) into eval5

(t, bs, C) and the configuration iterate4 (DEC (PR APP (v0, v1), C)) into apply5

(v0, v1, C), as well as the definition of values and contexts:

datatype value = VAL_INT of int

| VAL_SUCC

| VAL_FUNC of string * Syn.term * bindings

withtype bindings = value Env.env

datatype context = CTX_MT

| CTX_FUN of context * (Syn.term * bindings)

| CTX_ARG of value * context

val initial_bindings = Env.extend ("succ", VAL_SUCC, Env.empty)

The result reads as follows:

datatype result = RESULT of value

| WRONG of string

46

(* eval5 : term * bindings * context -> result *)

fun eval5 (Syn.LIT n, bs, C)

= continue5 (C, VAL_INT n)

| eval5 (Syn.IDE x, bs, C)

= (case Env.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v)

=> continue5 (C, v))

| eval5 (Syn.LAM (x, t), bs, C)

= continue5 (C, VAL_FUNC (x, t, bs))

| eval5 (Syn.APP (t0, t1), bs, C)

= eval5 (t0, bs, CTX_FUN (C, (t1, bs)))

(* continue5 : context * value -> result *)

and continue5 (CTX_MT, v)

= RESULT v

| continue5 (CTX_FUN (C, (t1, bs)), v0)

= eval5 (t1, bs, CTX_ARG (v0, C))

| continue5 (CTX_ARG (v0, C), v1)

= apply5 (v0, v1, C)

(* apply5 : value * value * context -> result *)

and apply5 (VAL_SUCC, VAL_INT n, C)

= continue5 (C, VAL_INT (n + 1))

| apply5 (VAL_SUCC, v, C)

= WRONG "non-integer value"

| apply5 (VAL_FUNC (x, t, bs), v, C)

= eval5 (t, Env.extend (x, v, bs), C)

| apply5 (v0, v1, C)

= WRONG "non-applicable value"

(* normalize5 : term -> result *)

fun normalize5 t

= eval5 (t, initial_bindings, CTX_MT)

The resulting abstract machine is the familiar environment-based CEK machine
[41].

7.6 Refunctionalization
Like many other big-step abstract machines [3, 4, 5, 16, 23], the abstract machine
of Section 7.5 is in defunctionalized form [37]: the reduction contexts, together
with continue5, are the first-order counterpart of a function. The higher-order
counterpart of this abstract machine reads as follows:

datatype value = VAL_INT of int

47

| VAL_SUCC

| VAL_FUNC of string * Syn.term * bindings

withtype bindings = value Env.env

val initial_bindings = Env.extend ("succ", VAL_SUCC, Env.empty)

datatype result = RESULT of value

| WRONG of string

(* eval6 : term * bindings * (value -> result) -> result *)

fun eval6 (Syn.LIT n, bs, k)

= k (VAL_INT n)

| eval6 (Syn.IDE x, bs, k)

= (case Env.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v)

=> k v)

| eval6 (Syn.LAM (x, t), bs, k)

= k (VAL_FUNC (x, t, bs))

| eval6 (Syn.APP (t0, t1), bs, k)

= eval6 (t0, bs, fn v0 =>

eval6 (t1, bs, fn v1 =>

apply6 (v0, v1, k)))

(* apply6 : value * value * (value -> result) -> result *)

and apply6 (VAL_SUCC, VAL_INT n, k)

= k (VAL_INT (n + 1))

| apply6 (VAL_SUCC, v, k)

= WRONG "non-integer value"

| apply6 (VAL_FUNC (x, t, bs), v, k)

= eval6 (t, Env.extend (x, v, bs), k)

| apply6 (v0, v1, k)

= WRONG "non-applicable value"

(* normalize6 : term -> result *)

fun normalize6 t

= eval6 (t, initial_bindings, fn v => RESULT v)

The resulting refunctionalized program is a familiar eval/apply evaluation func-
tion in CPS.

7.7 Back to direct style
The refunctionalized definition of Section 7.6 is in continuation-passing style
since it has a functional accumulator and all of its calls are tail calls. Its direct-
style counterpart reads as follows:

48

datatype value = VAL_INT of int

| VAL_SUCC

| VAL_FUNC of string * Syn.term * bindings

withtype bindings = value Env.env

val initial_bindings = Env.extend ("succ", VAL_SUCC, Env.empty)

exception ERROR of string

(* eval7 : term * bindings -> value *)

fun eval7 (Syn.LIT n, bs)

= VAL_INT n

| eval7 (Syn.IDE x, bs)

= (case Env.lookup (x, bs)

of NONE

=> raise (ERROR "undeclared identifier")

| (SOME v)

=> v)

| eval7 (Syn.LAM (x, t), bs)

= VAL_FUNC (x, t, bs)

| eval7 (Syn.APP (t0, t1), bs)

= apply7 (eval7 (t0, bs), eval7 (t1, bs))

(* apply7 : value * value -> value *)

and apply7 (VAL_SUCC, VAL_INT n)

= VAL_INT (n + 1)

| apply7 (VAL_SUCC, v)

= raise (ERROR "non-integer value")

| apply7 (VAL_FUNC (x, t, bs), v)

= eval7 (t, Env.extend (x, v, bs))

| apply7 (v0, v1)

= raise (ERROR "non-applicable value")

datatype result = RESULT of value

| WRONG of string

(* normalize7 : term -> result *)

fun normalize7 t

= RESULT (eval7 (t, initial_bindings))

handle (ERROR s) => WRONG s

The resulting program is a traditional eval/apply evaluation function in direct
style and using a top-level exception for run-time errors, à la McCarthy, i.e., a
reduction-free normalization function of the kind usually crafted by hand.

7.8 Closure unconversion
The direct-style definition of Section 7.7 is in closure-converted form since its
applicable values are introduced with VAL SUCC and VAL FUNC, and eliminated in

49

the clauses of apply7. Its higher-order, closure-unconverted equivalent reads as
follows.

Expressible and denotable values. The VAL FUN value constructor is higher-order,
and caters both for the predefined successor function and for the value of
source lambda-abstractions:

datatype value = VAL_INT of int

| VAL_FUN of value -> value

type bindings = value Env.env

The occurrences of VAL FUN are shaded below.

Stuck terms. Run-time errors are still implemented by raising an exception:

exception ERROR of string

Initial bindings. The successor function is now defined in the initial environ-
ment:

val val_succ = VAL_FUN (fn (VAL_INT n)

=> VAL_INT (n + 1)

| v

=> raise (ERROR "non-integer value"))

val initial_bindings = Env.extend ("succ", val_succ, Env.empty)

The eval/apply component. In eval8, the denotation of an abstraction is now in-
lined, and in apply8, applicable values are now directly applied:

(* eval8 : term * bindings -> value *)

fun eval8 (Syn.LIT n, bs)

= VAL_INT n

| eval8 (Syn.IDE x, bs)

= (case Env.lookup (x, bs)

of NONE

=> raise (ERROR "undeclared identifier")

| (SOME v)

=> v)

| eval8 (Syn.LAM (x, t), bs)

= VAL_FUN (fn v => eval8 (t, Env.extend (x, v, bs)))

| eval8 (Syn.APP (t0, t1), bs)

= apply8 (eval8 (t0, bs), eval8 (t1, bs))

50

(* apply8 : value * value -> value *)

and apply8 (VAL_FUN f, v)

= f v

| apply8 (v0, v1)

= raise (ERROR "non-applicable value")

The top-level definition. A term t is evaluated in the initial environment. If this
evaluation completes, the resulting value is the result of the normalization
function. If this evaluation goes wrong, the given term is stuck.

datatype result = RESULT of value

| WRONG of string

(* normalize8 : term -> result *)

fun normalize8 t

= RESULT (eval8 (t, initial_bindings))

handle (ERROR s) => WRONG s

The resulting program is a traditional eval/apply function in direct style that
uses a top-level exception for run-time errors. It is also compositional.

7.9 Summary
We have refocused the reduction-based normalization function of Section 6 into
a small-step abstract machine, and we have exhibited a family of corresponding
reduction-free normalization functions. Most of the members of this family are
ML implementations of independently known semantic artifacts and coincide
with what one would have independently written by hand.

7.10 Exercises
Exercise 39 Reproduce the construction above in the programming language of your
choice, starting from your solution to Exercise 33 in Section 6.7. At each step of the
derivation, run the tests of Exercise 32 in Section 6.7.

Exercise 40 Up to and including the normalization function of Section 7.5, it is simple
to visualize the successive closures in the reduction sequence, namely by instrumenting
iterate1, iterate2, iterate3, iterate4, and apply5. Do you agree? What about from
Section 7.6 and onwards?

Exercise 41 Would it make sense, in the definition of normalize6, to take fn v => v

as the initial continuation? If so, what would be the definition of normalize7 and what
would be its type?

51

Exercise 42 In Section 7.7, we have transformed the evaluator of Section 7.6 into direct
style, and then in Section 7.8, we have closure-unconverted it. However, the the evaluator
of Section 7.6 is also in closure-converted form:

1. closure-unconvert the evaluator of Section 7.6; the result should be a compositional
evaluator in CPS with the following data type of expressible values:

datatype value = VAL_INT of int

| VAL_FUN of value * (value -> result) -> result

and result = RESULT of value

| WRONG of string

2. transform this compositional evaluator into direct style, and verify that the result
coincides with the evaluator of Section 7.8.

Exercise 43 Compare the evaluation functions of Section 7.8 and of Appendix B; of Sec-
tion 7.7 and of Appendix C; of Section 7.6 and of Appendix D; and of Section 7.5 and of
Appendix E. This comparison should explain your feeling of déjà vu.

8 A reduction semantics for normalizing lambda-terms with
integers and first-class continuations

In this section, we extend the source language of Section 6 with one more prede-
fined identifier in the initial environment: call/cc. Presentationally, we therefore
single out the increment over Section 6 rather than giving a stand-alone reduction
semantics.

8.1 Abstract syntax: closures, values, and contexts
In addition to being an integer, a ground closure pairing a term and an environ-
ment, a combination of closures, or the successor function, a closure can also be
the call/cc function or a reified context. Correspondingly, in addition to being an
integer, the successor function, or a ground closure pairing a lambda-abstraction
and an environment, a value can also be the call/cc function or a reified context.
Environments bind identifiers to values.

datatype closure = CLO_INT of int

| CLO_GND of Syn.term * bindings

| CLO_APP of closure * closure

| CLO_SUCC

| CLO_CWCC

| CLO_CONT of context

and value = VAL_INT of int

52

| VAL_SUCC

| VAL_FUNC of string * Syn.term * bindings

| VAL_CWCC

| VAL_CONT of context

and context = CTX_MT

| CTX_FUN of context * closure

| CTX_ARG of value * context

withtype bindings = value Env.env

Values are specified with a separate data type. The corresponding embedding of
values in closures reads as follows:

fun embed_value_in_closure (VAL_INT n)

= CLO_INT n

| embed_value_in_closure (VAL_FUNC (x, t, bs))

= CLO_GND (Syn.LAM (x, t), bs)

| embed_value_in_closure VAL_SUCC

= CLO_SUCC

| embed_value_in_closure VAL_CWCC

= CLO_CWCC

| embed_value_in_closure (VAL_CONT C)

= CLO_CONT C

The initial environment also binds the identifier call/cc to the value VAL CWCC:

val initial_bindings = Env.extend ("call/cc", VAL_CWCC,

Env.extend ("succ", VAL_SUCC,

Env.empty))

8.2 Notion of contraction
A potential redex is as in Section 6.2. The contraction function also accounts
for first-class continuations, and is therefore context sensitive in that it maps a
potential redex and its reduction context to a contractum and a reduction context
(possibly another one):

datatype contractum_or_error = CONTRACTUM of closure * context

| ERROR of string

Compared to Section 6.2, the new clauses are shaded:

(* contract : potential_redex * context -> contractum_or_error *)

fun contract (PR_IDE (x, bs), C)

= (case Env.lookup (x, bs)

of NONE

=> ERROR "undeclared identifier"

| (SOME v)

53

=> CONTRACTUM (embed_value_in_closure v, C))

| contract (PR_APP (VAL_SUCC, VAL_INT n), C)

= CONTRACTUM (embed_value_in_closure (VAL_INT (n + 1)), C)

| contract (PR_APP (VAL_SUCC, v), C)

= ERROR "non-integer value"

| contract (PR_APP (VAL_FUNC (x, t, bs), v), C)

= CONTRACTUM (CLO_GND (t, Env.extend (x, v, bs)), C)

| contract (PR_APP (VAL_CWCC, v), C)

= CONTRACTUM (CLO_APP (embed_value_in_closure v, CLO_CONT C), C)

| contract (PR_APP (VAL_CONT C’, v), C)

= CONTRACTUM (embed_value_in_closure v, C’)

| contract (PR_APP (v0, v1), C)

= ERROR "non-applicable value"

| contract (PR_PROP (t0, t1, bs), C)

= CONTRACTUM (CLO_APP (CLO_GND (t0, bs), CLO_GND (t1, bs)), C)

Each of the clauses implements a contraction rule, and all of the rules are context
insensitive, except the two shaded ones:

• Applying call/cc to a value leads to this value being applied to a represen-
tation of the current context. This context is then said to be “captured” and
its representation is said to be “reified.”

• Applying a captured context to a value yields a contractum consisting of
this value and the captured context (instead of the current context, which is
discarded).

8.3 Reduction strategy
We seek the left-most inner-most potential redex in a closure.

Decomposition: The decomposition function is defined as in Section 6.3 but for
the following two clauses:

fun decompose_closure ...

= ...

| decompose_closure (CLO_CWCC, C)

= decompose_context (C, VAL_CWCC)

| decompose_closure (CLO_CONT C’, C)

= decompose_context (C, VAL_CONT C’)

Recomposition: The recomposition function is defined as in Section 6.3.

Lemma 4 A closure c is either a value or there exists a unique context C such that
decompose t evaluates to DEC (pr, C), where pr is a potential redex.

Proof 4 Straightforward.

54

8.4 One-step reduction
The one-step reduction function is as in Section 6.4, save for the contraction func-
tion being context-sensitive, as shaded just below:

(* reduce : closure -> reduct *)

fun reduce c

= (case decompose c

of (VAL v)

=> REDUCT (embed_value_in_closure v)

| (DEC (pr, C))

=> (case contract (pr, C)

of (CONTRACTUM (c’, C’))

=> REDUCT (recompose (C’, c’))

| (ERROR s)

=> STUCK s))

8.5 Reduction-based normalization
The reduction-based normalization function is as in Section 8.5, save for the con-
traction function being context-sensitive, as shaded just below:

(* iterate0 : value_or_decomposition -> result *)

fun iterate0 (VAL v)

= RESULT v

| iterate0 (DEC (pr, C))

= (case contract (pr, C)

of (CONTRACTUM (c’, C’))

=> iterate0 (decompose (recompose (C’, c’)))

| (ERROR s)

=> WRONG s)

(* normalize0 : term -> result *)

fun normalize0 t

= iterate0 (decompose (CLO_GND (t, initial_bindings)))

8.6 Summary
We have minimally extended the applicative-order reduction semantics of Sec-
tion 6 with call/cc.

8.7 Exercises
As a warmup for Exercise 44, here is an interface to first-class continuations in
Standard ML of New Jersey that reifies the current continuation as a function:

55

fun callcc f

= SMLofNJ.Cont.callcc

(fn k => f (fn v => SMLofNJ.Cont.throw k v))

We also assume that succ denotes the successor function.

• Consider the following term:

succ (succ (callcc (fn k => succ 10)))

In the course of reduction, k is made to denote a first-class continuation that
is not used. This term is equivalent to one that does not use call/cc, namely

succ (succ (succ 10))

and evaluating it yields 13.

• Consider now the following term that captures a continuation and then
applies it:

succ (succ (callcc (fn k => succ (k 10))))

In the course of reduction, k is made to denote a first-class continuation that
is then applied. When it is applied, the current continuation is discarded
and replaced by the captured continuation, as if the source term had been

succ (succ 10)

and the result of evaluation is 12.
In the reduction semantics of this section, the source term reads as follows:

APP (IDE "succ",

APP (IDE "succ",

APP (IDE "call/cc",

LAM ("k", APP (IDE "succ",

APP (IDE "k", LIT 10))))))

As for the captured continuation, it reads as follows:

CLO_CONT (CTX_ARG (VAL_SUCC, CTX_ARG (VAL_SUCC, CTX_MT)))

Applying it to VAL INT 10 has the effect of discarding the current context,
and eventually leads to RESULT (VAL INT 12).

Exercise 44 Write a handful of test terms that use call/cc and specify the expected out-
come of their normalization.

56

Exercise 45 Implement the reduction semantics above in the programming language of
your choice (e.g., Haskell or Scheme), and run the tests of Exercise 44.

Exercise 46 Extend the unparser of Exercise 34 in Section 6.7 to cater for first-class
continuations, and visualize the reduction sequence of a closure that uses call/cc.

9 From reduction-based to reduction-free normalization
In this section, we transform the reduction-based normalization function of Sec-
tion 8.5 into a family of reduction-free normalization functions. Presentation-
ally, we single out the increment over Section 7 rather than giving a stand-alone
derivation.

9.1 Refocusing:
from reduction-based to reduction-free normalization

As usual, the refocus function is defined as continuing the decomposition in situ:

(* refocus : closure * context -> value_or_decomposition *)

fun refocus (c, C)

= decompose_closure (c, C)

The refocused evaluation function reads as follows. Except for the context-sensitive
contraction function, it is the same as in Section 7.1:

(* iterate1 : value_or_decomposition -> result *)

fun iterate1 (VAL v)

= RESULT v

| iterate1 (DEC (pr, C))

= (case contract (pr, C)

of (CONTRACTUM (c’, C’))

=> iterate1 (refocus (c’, C’))

| (ERROR s)

=> WRONG s)

(* normalize1 : term -> result *)

fun normalize1 ...

= ...

9.2 Inlining the contraction function
Compared to Section 7.2, there are two new clauses:

57

(* iterate2 : value_or_decomposition -> result *)

fun iterate2 ...

= ...

| iterate2 (DEC (PR_APP (VAL_CWCC, v), C))

= iterate2 (refocus (CLO_APP (embed_value_in_closure v, CLO_CONT C), C))

| iterate2 (DEC (PR_APP (VAL_CONT C’, v), C))

= iterate2 (refocus (embed_value_in_closure v, C’))

| iterate2 ...

= ...

...

9.3 Lightweight fusion:
from small-step to big-step abstract machine

Compared to Section 7.3, there are two new clauses in refocus3 closure and in
iterate3; the definition of refocus3 context is not affected:

(* refocus3_closure : closure * context -> result *)

fun refocus3_closure ...

= ...

| refocus3_closure (CLO_CWCC, C)

= refocus3_context (C, VAL_CWCC)

| refocus3_closure (CLO_CONT C’, C)

= refocus3_context (C, VAL_CONT C’)

(* refocus3_context : context * value -> result *)

fun refocus3_context ...

= ...

(* iterate3 : value_or_decomposition -> result *)

and iterate3 ...

= ...

| iterate3 (DEC (PR_APP (VAL_CWCC, v), C))

= refocus3_closure (CLO_APP (embed_value_in_closure v, CLO_CONT C), C)

| iterate3 (DEC (PR_APP (VAL_CONT C’, v), C))

= refocus3_closure (embed_value_in_closure v, C’)

| iterate3 ...

= ...

9.4 Compressing corridor transitions
Compared to Section 7.4, there are two new opportunities to compress corridor
transitions:

Clause iterate4 (DEC (PR APP (VAL CWCC, v), C)):

58

iterate4 (DEC (PR_APP (VAL_CWCC, v), C))

= (* by unfolding the call to iterate4 *)

refocus4_closure (CLO_APP (embed_value_in_closure v, CLO_CONT C), C)

= (* by unfolding the call to refocus4_closure *)

refocus4_closure (embed_value_in_closure v, CTX_FUN (C, CLO_CONT C))

= (* eureka *)

refocus4_context (CTX_FUN (C, CLO_CONT C), v)

= (* by unfolding the call to refocus4_context *)

refocus4_closure (CLO_CONT C, CTX_ARG (v, C))

= (* by unfolding the call to refocus4_closure *)

refocus4_context (CTX_ARG (v, C), VAL_CONT C)

= (* by unfolding the call to refocus4_context *)

iterate4 (DEC (PR_APP (v, VAL_CONT C), C))

Clause iterate4 (DEC (PR APP (VAL CONT C’, v), C)):

iterate4 (DEC (PR_APP (VAL_CONT C’, v), C))

= (* by unfolding the call to iterate4 *)

refocus4_closure (embed_value_in_closure v, C’)

= (* eureka *)

refocus4_context (C’, v)

The corollaries to the compressions above are the same as in Section 7.4:

Dead clauses: The clauses for non-ground closures are dead, and so is the clause
“iterate4 (VAL v).” They can therefore be implemented as raising a “DEAD CLAUSE”
exception.

Invariants: All transitions to refocus closure are now over ground closures. All
live transitions to iterate4 are now over DEC (PR APP (v0, v1), C), for some
v0, v1, and C.

9.5 Renaming transition functions and flattening configurations
The renamed and flattened abstract machine is the familiar CEK machine with
call/cc:

datatype value = ...

| VAL_CWCC

| VAL_CONT of context

and context = ...

withtype bindings = ...

val initial_bindings = Env.extend ("call/cc", VAL_CWCC,

Env.extend ("succ", VAL_SUCC,

Env.empty))

59

(* eval5 : term * bindings * context -> result *)

fun eval5 ...

= ...

(* continue5 : context * value -> result *)

and continue5 ...

= ...

(* apply5 : value * value * context -> result *)

and apply5 ...

= ...

| apply5 (VAL_CWCC, v, C)

= apply5 (v, VAL_CONT C, C)

| apply5 (VAL_CONT C’, v, C)

= continue5 (C’, v)

| apply5 ...

= ...

(* normalize5 : term -> result *)

fun normalize5 ...

= eval5 ...

9.6 Refunctionalization
The higher-order counterpart of the abstract machine of Section 9.5 reads as fol-
lows:

datatype value = ...

| VAL_CWCC

| VAL_CONT of value -> result

withtype bindings = ...

val initial_bindings = Env.extend ("call/cc", VAL_CWCC,

Env.extend ("succ", VAL_SUCC,

Env.empty))

(* eval6 : term * bindings * (value -> result) -> result *)

fun eval6 ...

= ...

(* apply6 : value * value * (value -> result) -> result *)

and apply6 ...

= ...

| apply6 (VAL_CWCC, v, k)

= apply6 (v, VAL_CONT k, k)

| apply6 (VAL_CONT k’, v, k)

= k’ v

| apply6 ...

= ...

60

(* normalize6 : term -> result *)

fun normalize6 ...

= ...

The resulting refunctionalized program is a familiar eval/apply evaluation func-
tion in CPS [46, Fig. 1, p. 295].

9.7 Back to direct style
The direct-style counterpart of the evaluation function of Section 9.6 reads as
follows [32]:

(* eval7 : term * bindings -> value *)

fun eval7 ...

= ...

(* apply7 : value * value -> value *)

and apply7 ...

= ...

| apply7 (VAL_CWCC, v)

= SMLofNJ.Cont.callcc (fn k => apply7 (v, VAL_CONT k))

| apply7 (VAL_CONT k’, v)

= SMLofNJ.Cont.throw k’ v

| apply7 ...

= ...

(* normalize7 : term -> result *)

fun normalize7 ...

= ...

The resulting program is a traditional eval/apply evaluation function in direct
style that uses call/cc to implement call/cc, meta-circularly.

9.8 Closure unconversion
As in Section 7.8, the direct-style definition of Section 9.7 is in closure-converted
form since its applicable values are introduced with VAL SUCC and VAL FUNC, and
eliminated in the clauses of apply7. Its higher-order, closure-unconverted equiv-
alent reads as follows.

Expressible and denotable values. The VAL FUN value constructor is higher-order,
and caters both for the predefined successor function, for the predefined
call/cc function, for the value of source lambda-abstractions, and for cap-
tured continuations:

61

datatype value = VAL_INT of int

| VAL_FUN of value -> value

type bindings = value Env.env

Initial bindings. The successor function is now defined in the initial environ-
ment:

val val_succ = VAL_FUN ...

val val_cwcc = VAL_FUN (fn (VAL_FUN f)

=> SMLofNJ.Cont.callcc (fn k =>

f (VAL_FUN (fn v =>

SMLofNJ.Cont.throw k v)))

| _

=> raise (WRONG "non-applicable value"))

val initial_bindings = Env.extend ("call/cc", val_cwcc,

Env.extend ("succ", val_succ,

Env.empty))

The eval/apply component. The evaluation function is the same as in Section 7.8:

(* eval8 : term * bindings -> value *)

fun eval8 ...

= ...

(* apply8 : value * value -> value *)

and apply8 ...

= ...

The top-level definition. The top-level definition is the same as in Section 7.8:

(* normalize8 : term -> result *)

fun normalize8 ...

= ...

The resulting program is a traditional eval/apply function in direct style that
uses a top-level exception for run-time errors. It is also compositional.

9.9 Summary
We have outlined the derivation from the reduction-based normalization func-
tion of Section 8 into a small-step abstract machine and into a family of corre-
sponding reduction-free normalization functions. Most of the members of this
family are ML implementations of independently known semantic artifacts and
coincide with what one usually writes by hand.

62

9.10 Exercises
Exercise 47 Reproduce the construction above in the programming language of your
choice, starting from your solution to Exercise 45 in Section 8.7. At each step of the
derivation, run the tests of Exercise 44 in Section 8.7.

Exercise 48 Up to and including the normalization function of Section 9.5, it is simple
to visualize the successive closures in the reduction sequence, namely by instrumenting
iterate1, iterate2, iterate3, iterate4, and apply5. Do you agree? What about from
Section 9.6 and onwards?

Exercise 49 Would it make sense, in the definition of normalize6, to take fn v => v

as the initial continuation? If so, what would be the definition of normalize7 and what
would be its type?

Exercise 50 In Section 9.7, we have transformed the evaluator of Section 9.6 into direct
style, and then in Section 9.8, we have closure-unconverted it. However, the the evaluator
of Section 9.6 is also in closure-converted form:

1. closure-unconvert the evaluator of Section 9.6; the result should be a compositional
evaluator in CPS with the following data type of expressible values:

datatype value = VAL_INT of int

| VAL_FUN of value * (value -> result) -> result

and result = RESULT of value

| WRONG of string

2. transform this compositional evaluator into direct style, and verify that the result
coincides with the evaluator of Section 9.8.

10 A reduction semantics for flattening binary trees out-
side in

The goal of this section is to define a one-step flattening function over binary
trees, using a left-most outermost strategy, and to construct the corresponding
reduction-based flattening function.

To define a reduction semantics for binary trees, we specify their abstract syn-
tax (Section 10.1), a notion of contraction (Section 10.2), and the left-most out-
ermost reduction strategy (Section 10.3). We then define a one-step reduction
function that decomposes a tree which is not in normal form into a redex and
a reduction context, contracts the redex, and recomposes the context with the
contractum (Section 10.4). We can finally define a reduction-based normalization
function that repeatedly applies the one-step reduction function until a value, i.e.,
a normal form, is reached (Section 10.5).

63

10.1 Abstract syntax: terms and values
Terms: A tree is either a stub, a leaf holding an integer, or a node holding two

subtrees:

datatype tree = STUB

| LEAF of int

| NODE of tree * tree

The flattening rules are as follows: the unit element is neutral on the left
and on the right of the node constructor, and the product is associative.

NODE (STUB, t)←→ t

NODE (t, STUB)←→ t

NODE (NODE (t1, t2), t3)←→ NODE (t1, NODE (t2, t3))

Normal forms: Arbitrarily, we pick flat, list-like trees as normal forms. We spec-
ify them with the following specialized data type:

datatype tree_nf = STUB_nf

| NODE_nf of int * tree_nf

Values: Rather than defining values as normal forms, as in the previous sections,
we choose to represent them as a pair: a term of type tree and its isomor-
phic representation of type tree nf:

type value = tree * tree_nf

This representation is known as “glueing” since Yves Lafont’s PhD the-
sis [52, Appendix A], and is also classically used in the area of partial eval-
uation [6].

10.2 Notion of contraction
We introduce a notion of reduction by orienting the conversion rules into con-
traction rules, and by specializing the second one as mapping a leaf into a flat
binary tree:

NODE (STUB, t) −→ t

NODE (LEAF n, STUB)←− LEAF n

NODE (NODE (t11, t12), t2) −→ NODE (t11, NODE (t12, t2))

64

We represent redexes as a data type and implement their contraction with the
corresponding reduction rules:

datatype potential_redex = PR_LEFT_STUB of tree

| PR_LEAF of int

| PR_ASSOC of tree * tree * tree

datatype contractum_or_error = CONTRACTUM of tree

| ERROR of string

(* contract : potential_redex -> contractum_or_error *)

fun contract (PR_LEFT_STUB t)

= CONTRACTUM t

| contract (PR_LEAF n)

= CONTRACTUM (NODE (LEAF n, STUB))

| contract (PR_ASSOC (t11, t12, t2))

= CONTRACTUM (NODE (t11, NODE (t12, t2)))

10.3 Reduction strategy
We seek the left-most outer-most redex in a tree.

Reduction contexts: The grammar of reduction contexts reads as follows:

datatype context = CTX_MT

| CTX_RIGHT of int * context

Decomposition: A tree is in normal form (i.e., it does not contain any potential
redex) or it can be decomposed into a potential redex and a reduction con-
text:

datatype value_or_decomposition = VAL of value

| DEC of potential_redex * context

The decomposition function recursively searches for the left-most outer-
most redex in a term. As always, we define it as a big-step abstract ma-
chine. This abstract machine has three auxiliary functions, decompose tree,
decompose node, and decompose context between three states – a term and a
context, two sub-terms and a context, and a context and a value.

• decompose tree dispatches over the given tree;
• decompose node dispatches over the left sub-tree of a given tree;
• decompose contextdispatches on the accumulated context to determine

whether the given term is a value, a potential redex has been found,
or the search must continue.

65

(* decompose_tree : tree * context -> value_or_decomposition *)

fun decompose_tree (STUB, C)

= decompose_context (C, (STUB, STUB_nf))

| decompose_tree (LEAF n, C)

= DEC (PR_LEAF n, C)

| decompose_tree (NODE (t1, t2), C)

= decompose_node (t1, t2, C)

(* decompose_node : tree * tree * context -> value_or_decomposition *)

and decompose_node (STUB, t2, C)

= DEC (PR_LEFT_STUB t2, C)

| decompose_node (LEAF n, t2, C)

= decompose_tree (t2, CTX_RIGHT (n, C))

| decompose_node (NODE (t11, t12), t2, C)

= DEC (PR_ASSOC (t11, t12, t2), C)

(* decompose_context : context * value -> value_or_decomposition *)

and decompose_context (CTX_MT, (t’, t_nf))

= VAL (t’, t_nf)

| decompose_context (CTX_RIGHT (n, C), (t’, t_nf))

= decompose_context (C, (NODE (LEAF n, t’), NODE_nf (n, t_nf)))

(* decompose : tree -> value_or_decomposition *)

fun decompose t

= decompose_tree (t, CTX_MT)

Recomposition: The recomposition function peels off context layers and con-
structs the resulting tree, iteratively:

(* recompose : context * tree -> tree *)

fun recompose (CTX_MT, t)

= t

| recompose (CTX_RIGHT (n1, C), t2)

= recompose (C, NODE (LEAF n1, t2))

Lemma 5 A tree t is either in normal form or there exists a unique context C such that
decompose t evaluates to DEC (pr, C), where pr is a potential redex.

Proof 5 Straightforward (see Exercise 56 in Section 10.7).

10.4 One-step reduction
We are now in position to define a one-step reduction function as a function that
(1) maps a tree that is not in normal form into a potential redex and a reduction
context, (2) contracts the potential redex if it is an actual one, and (3) recomposes
the reduction context with the contractum. The following data type accounts for
whether the contraction is successful or the non-value term is stuck:

66

datatype reduct = REDUCT of tree

| STUCK of string

(* reduce : tree -> reduct *)

fun reduce t

= (case decompose t

of (VAL (t’, t_nf))

=> REDUCT t’

| (DEC (pr, C))

=> (case contract pr

of (CONTRACTUM t’)

=> REDUCT (recompose (C, t’))

| (ERROR s)

=> STUCK s))

10.5 Reduction-based normalization
The following reduction-based normalization function iterates the one-step re-
duction function until it yields a normal form:

datatype result = RESULT of tree_nf

| WRONG of string

(* iterate0 : value_or_decomposition -> result *)

fun iterate0 (VAL (t’, t_nf))

= RESULT t_nf

| iterate0 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM t’)

=> iterate0 (decompose (recompose (C, t’)))

| (ERROR s)

=> WRONG s)

(* normalize0 : tree -> result *)

fun normalize0 t

= iterate0 (decompose t)

10.6 Summary
We have implemented a reduction semantics for flattening binary trees, in com-
plete detail. Using this reduction semantics, we have presented a reduction-
based normalization function.

10.7 Exercises
Exercise 51 Define a function embed potential redex in tree that maps a potential
redex into a tree.

67

Exercise 52 Show that, for any tree t, if evaluating decompose t yields DEC (pr, C),
then evaluating recompose (C, embed potential redex in tree pr) yields t.
(Hint: Reason by structural induction over t, using inversion at each step.)

Exercise 53 Write a handful of test trees and specify the expected outcome of their nor-
malization.

Exercise 54 Implement the reduction semantics above in the programming language of
your choice, and run the tests of Exercise 53.

Exercise 55 Write an unparser from trees to the concrete syntax of your choice, and
instrument the normalization function of Section 10.5 so that (one way or another) it
displays the successive trees in the reduction sequence.

Exercise 56 In the proof of Lemma 5, do as in the proof of Lemma 1 and write the re-
functionalized counterpart of decompose et al.

Exercise 57 Pick another notion of normal form (e.g., flat, list-like trees on the left in-
stead of on the right) and define the corresponding reduction-based normalization func-
tion, mutatis mutandis.

Exercise 58 Revisit either of the previous pairs of sections using glueing.

11 From reduction-based to reduction-free normalization
In this section, we transform the reduction-based normalization function of Sec-
tion 10.5 into a family of reduction-free normalization functions, i.e., one where
no intermediate tree is ever constructed. We first refocus the reduction-based
normalization function to deforest the intermediate trees, and we obtain a small-
step abstract machine implementing the iteration of the refocus function (Sec-
tion 11.1). After inlining the contraction function (Section 11.2), we transform
this small-step abstract machine into a big-step one (Section 11.3). This abstract
machine exhibits a number of corridor transitions, and we compress them (Sec-
tion 11.4). We then flatten its configurations and rename its transition functions
into something more intuitive (Section 11.5). The resulting abstract machine is in
defunctionalized form, and we refunctionalize it (Section 11.6). The result is in
continuation-passing style and we re-express it in direct style (Section 11.7). The
resulting direct-style function is a traditional flatten function that incrementally
flattens its input from the top down.

Modus operandi: In each of the following subsections, and as always, we de-
rive successive versions of the normalization function, indexing its components
with the number of the subsection. In practice, the reader should run the tests of
Exercise 53 in Section 10.7 at each step of the derivation, for sanity value.

68

11.1 Refocusing:
from reduction-based to reduction-free normalization

The normalization function of Section 10.5 is reduction-based because it con-
structs every intermediate term in the reduction sequence. In its definition, decompose
is always applied to the result of recompose after the first decomposition. In fact,
a vacuous initial call to recompose ensures that in all cases, decompose is applied
to the result of recompose:

(* normalize0’ : tree -> result *)

fun normalize0’ t

= iterate0 (decompose (recompose (CTX_MT, t)))

Refocusing, extensionally: The composition of decompose and recompose can be
deforested into a ‘refocus’ function to avoid constructing the intermediate
terms in the reduction sequence. Such a deforestation makes the normal-
ization function reduction-free.

Refocusing, intensionally: As usual, the refocus function can be expressed very
simply in terms of the decomposition functions of Section 10.3:

(* refocus : term * context -> value_or_decomposition *)

fun refocus (t, C)

= decompose_tree (t, C)

The refocused evaluation function therefore reads as follows:

(* iterate1 : value_or_decomposition -> result *)

fun iterate1 (VAL (t’, t_nf))

= RESULT t_nf

| iterate1 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM t’)

=> iterate1 (refocus (t’, C))

| (ERROR s)

=> WRONG s)

(* normalize1 : tree -> result *)

fun normalize1 t

= iterate1 (refocus (t, CTX_MT))

This refocused normalization function is reduction-free because it is no longer
based on a (one-step) reduction function. Instead, the refocus function directly
maps a contractum and a reduction context to the next redex and reduction con-
text, if there are any in the reduction sequence.

69

11.2 Inlining the contraction function
We first inline the call to contract in the definition of iterate1, and name the
resulting function iterate2. Reasoning by inversion, there are three potential
redexes and therefore the DEC clause in the definition of iterate1 is replaced by
three DEC clauses in the definition of iterate2:

(* iterate2 : value_or_decomposition -> result *)

fun iterate2 (VAL (t’, t_nf))

= RESULT t_nf

| iterate2 (DEC (PR_LEFT_STUB t, C))

= iterate2 (refocus (t, C))

| iterate2 (DEC (PR_LEAF n, C))

= iterate2 (refocus (NODE (LEAF n, STUB), C))

| iterate2 (DEC (PR_ASSOC (t11, t12, t2), C))

= iterate2 (refocus (NODE (t11, NODE (t12, t2)), C))

(* normalize2 : tree -> result *)

fun normalize2 t

= iterate2 (refocus (t, CTX_MT))

We are now ready to fuse the composition of iterate2 with refocus (shaded just
above).

11.3 Lightweight fusion:
from small-step to big-step abstract machine

The refocused normalization function is a small-step abstract machine in the
sense that refocus (i.e., decompose tree, decompose node, and decompose context)
acts as a transition function and iterate1 as a driver loop that keeps activating
refocusuntil a value is obtained. We fuse iterate2 and refocus (i.e., decompose tree,
decompose node, and decompose context) so that the resulting function iterate3 is
directly applied to the result of decompose tree, decompose node, and decompose context.
The result is a big-step abstract machine consisting of four (mutually tail-recursive)
state-transition functions:

• refocus3 tree is the composition of iterate2 and decompose tree and a clone
of decompose tree that directly calls iterate3 over a leaf instead of returning
it to iterate2 as decompose tree did;

• refocus3 node is the composition of iterate2 and decompose node and a clone
of decompose node that directly calls iterate3 over a decomposition instead
of returning it to iterate2 as decompose node did;

• refocus3 context is the composition of iterate2 and decompose context that
directly calls iterate3 over a value or a decomposition instead of returning
it to iterate2 as decompose context did;

70

• iterate3 is a clone of iterate2 that calls the fused function refocus3 tree.
(* refocus3_tree : tree * context -> result *)

fun refocus3_tree (STUB, C)

= refocus3_context (C, (STUB, STUB_nf))

| refocus3_tree (LEAF n, C)

= iterate3 (DEC (PR_LEAF n, C))

| refocus3_tree (NODE (t1, t2), C)

= refocus3_node (t1, t2, C)

(* refocus3_node : tree * tree * context -> result *)

and refocus3_node (STUB, t2, C)

= iterate3 (DEC (PR_LEFT_STUB t2, C))

| refocus3_node (LEAF n, t2, C)

= refocus3_tree (t2, CTX_RIGHT (n, C))

| refocus3_node (NODE (t11, t12), t2, C)

= iterate3 (DEC (PR_ASSOC (t11, t12, t2), C))

(* refocus3_context : context * value -> result *)

and refocus3_context (CTX_MT, (t’, t_nf))

= iterate3 (VAL (t’, t_nf))

| refocus3_context (CTX_RIGHT (n, C), (t’, t_nf))

= refocus3_context (C, (NODE (LEAF n, t’), NODE_nf (n, t_nf)))

(* iterate3 : value_or_decomposition -> result *)

and iterate3 (VAL (t’, t_nf))

= RESULT t_nf

| iterate3 (DEC (PR_LEFT_STUB t, C))

= refocus3_tree (t, C)

| iterate3 (DEC (PR_LEAF n, C))

= refocus3_tree (NODE (LEAF n, STUB), C)

| iterate3 (DEC (PR_ASSOC (t11, t12, t2), C))

= refocus3_tree (NODE (t11, NODE (t12, t2)), C)

(* normalize3 : tree -> result *)

fun normalize3 t

= refocus3_tree (t, CTX_MT)

This abstract machine is staged since iterate3 implements the contraction rules
of the reduction semantics separately from its congruence rules, which are im-
plemented by refocus3 tree, refocus3 node and refocus3 context.

11.4 Compressing corridor transitions
In the abstract machine above, many of the transitions are ‘corridor’ ones in that
they yield configurations for which there is a unique further transition, and so on.
Let us compress these transitions. To this end, we cut-and-paste the transition
functions above, renaming their indices from 3 to 4, and consider each of their
clauses in turn:

71

Clause refocus4 tree (LEAF n, C):

refocus4_tree (LEAF n, C)

= (* by unfolding the call to refocus4_tree *)

iterate4 (DEC (PR_LEAF n, C))

= (* by unfolding the call to iterate4 *)

refocus4_tree (NODE (LEAF n, STUB), C)

= (* by unfolding the call to refocus4_tree *)

refocus4_node (LEAF n, STUB, C)

= (* by unfolding the call to refocus4_node *)

refocus4_tree (STUB, CTX_RIGHT (n, C))

= (* by unfolding the call to refocus4_tree *)

refocus4_context (CTX_RIGHT (n, C), (STUB, STUB_nf))

= (* by unfolding the call to refocus4_context *)

refocus4_context (C, (NODE (LEAF n, STUB), NODE_nf (n, STUB_nf)))

Clause refocus4 node (STUB, t2, C):

refocus4_node (STUB, t2, C)

= (* by unfolding the call to refocus4_node *)

iterate4 (DEC (PR_LEFT_STUB t2, C))

= (* by unfolding the call to iterate4 *)

refocus4_tree (t2, C)

Clause refocus4 node (NODE (t11, t12), t2, C):

refocus4_node (NODE (t11, t12), t2, C)

= (* by unfolding the call to refocus4_node *)

iterate4 (DEC (PR_ASSOC (t11, t12, t2), C))

= (* by unfolding the call to iterate4 *)

refocus4_tree (NODE (t11, NODE (t12, t2)), C)

= (* by unfolding the call to refocus4_tree *)

refocus4_node (t11, NODE (t12, t2), C)

Clause refocus4 context (CTX MT, (t’, t nf)):

refocus4_context (CTX_MT, (t’, t_nf))

= (* by unfolding the call to refocus4_context *)

iterate4 (VAL (t’, t_nf))

= (* by unfolding the call to iterate4 *)

RESULT t_nf

There are two corollaries to the compressions above:

Dead clauses: All of the calls to iterate4 have been unfolded, and therefore the
definition of iterate4 is dead.

Dead component: The term component of the values is now dead. We eliminate
it in Section 11.5.

72

11.5 Renaming transition functions and flattening configurations
The resulting simplified machine is an ‘eval/apply/continue’ abstract machine.
We therefore rename refocus4 tree to flatten5, refocus4 node to flatten5 node,
and refocus4 context to continue5. The result reads as follows:

(* flatten5 : tree * context -> result *)

fun flatten5 (STUB, C)

= continue5 (C, STUB_nf)

| flatten5 (LEAF n, C)

= continue5 (C, NODE_nf (n, STUB_nf))

| flatten5 (NODE (t1, t2), C)

= flatten5_node (t1, t2, C)

(* flatten5_node : tree * tree * context -> result *)

and flatten5_node (STUB, t2, C)

= flatten5 (t2, C)

| flatten5_node (LEAF n, t2, C)

= flatten5 (t2, CTX_RIGHT (n, C))

| flatten5_node (NODE (t11, t12), t2, C)

= flatten5_node (t11, NODE (t12, t2), C)

(* continue5 : context * tree_nf -> result *)

and continue5 (CTX_MT, t_nf)

= RESULT t_nf

| continue5 (CTX_RIGHT (n, C), t_nf)

= continue5 (C, NODE_nf (n, t_nf))

(* normalize5 : tree -> result *)

fun normalize5 t

= flatten5 (t, CTX_MT)

11.6 Refunctionalization
The definitions of Section 11.5 are in defunctionalized form. The reduction con-
texts, together with continue5, are the first-order counterpart of a function. The
higher-order counterpart of this abstract machine reads as follows:

(* flatten6 : tree * (tree_nf -> ’a) -> ’a *)

fun flatten6 (STUB, k)

= k STUB_nf

| flatten6 (LEAF n, k)

= k (NODE_nf (n, STUB_nf))

| flatten6 (NODE (t1, t2), k)

= flatten6_node (t1, t2, k)

73

(* flatten6_node : tree * tree * (tree_nf -> ’a) -> ’a *)

and flatten6_node (STUB, t2, k)

= flatten6 (t2, k)

| flatten6_node (LEAF n, t2, k)

= flatten6 (t2, fn t2_nf => k (NODE_nf (n, t2_nf)))

| flatten6_node (NODE (t11, t12), t2, k)

= flatten6_node (t11, NODE (t12, t2), k)

(* normalize6 : tree -> result *)

fun normalize6 t

= flatten6 (t, fn t_nf => RESULT t_nf)

The resulting refunctionalized program is a familiar eval/apply evaluation func-
tion in CPS.

11.7 Back to direct style
The refunctionalized definition of Section 11.6 is in continuation-passing style
since it has a functional accumulator and all of its calls are tail calls. Its direct-
style counterpart reads as follows:

(* flatten7 : tree -> tree_nf *)

fun flatten7 STUB

= STUB_nf

| flatten7 (LEAF n)

= NODE_nf (n, STUB_nf)

| flatten7 (NODE (t1, t2))

= flatten7_node (t1, t2)

(* flatten7_node : tree * tree -> tree_nf *)

and flatten7_node (STUB, t2)

= flatten7 t2

| flatten7_node (LEAF n, t2)

= NODE_nf (n, flatten7 t2)

| flatten7_node (NODE (t11, t12), t2)

= flatten7_node (t11, NODE (t12, t2))

(* normalize7 : tree -> result *)

fun normalize7 t

= RESULT (flatten7 t)

The resulting definition is that of an traditional flatten function that iteratively
flattens the current left subtree before recursively descending on the current right
subtree.

11.8 Closure unconversion
This section is intentionally left blank, since the tree leaves are integers.

74

11.9 Summary
We have refocused the reduction-based normalization function of Section 10 into
a small-step abstract machine, and we have exhibited a family of correspond-
ing reduction-free normalization functions. Most of the members of this family
correspond to something one usually writes by hand.

11.10 Exercises
Exercise 59 Reproduce the construction above in the programming language of your
choice, starting from your solution to Exercise 54 in Section 10.7. At each step of the
derivation, run the tests of Exercise 53 in Section 10.7.

Exercise 60 Would it make sense, in the definition of normalize6, to take fn v => v

as the initial continuation? If so, what would be the definition of normalize7 and what
would be its type? What about normalize7’?

12 A reduction semantics for flattening binary trees inside
out

The goal of this section is to define a one-step flattening function over binary
trees, using a right-most innermost strategy, and to construct the corresponding
reduction-based flattening function.

To define a reduction semantics for binary trees, we specify their abstract syn-
tax (Section 12.1, which is identical to Section 10.1), a notion of contraction (Sec-
tion 12.2), and the right-most innermost reduction strategy (Section 12.3). We
then define a one-step reduction function that decomposes a tree which is not in
normal form into a redex and a reduction context, contracts the redex, and re-
composes the context with the contractum (Section 12.4). We can finally define a
reduction-based normalization function that repeatedly applies the one-step re-
duction function until a value, i.e., a normal form, is reached (Section 12.5).

12.1 Abstract syntax: terms and values
This section is is identical to Section 10.1.

12.2 Notion of contraction
We orient the conversion rules into contraction rules as in Section 10.2. To reflect
the inside-out reduction strategy, we represent redexes as another data type:

datatype potential_redex = PR_LEFT_STUB of value

| PR_LEAF of int

| PR_ASSOC of tree * tree * value

75

datatype contractum_or_error = CONTRACTUM of tree

| ERROR of string

(* contract : potential_redex -> contractum_or_error *)

fun contract (PR_LEFT_STUB (t, t_nf))

= CONTRACTUM t

| contract (PR_LEAF n)

= CONTRACTUM (NODE (LEAF n, STUB))

| contract (PR_ASSOC (t11, t12, (t2, t2_nf)))

= CONTRACTUM (NODE (t11, NODE (t12, t2)))

12.3 Reduction strategy
We seek the right-most inner-most redex in a tree.

Reduction contexts: The grammar of reduction contexts reads as follows:

datatype context = CTX_MT

| CTX_RIGHT of tree * context

Decomposition: A tree is in normal form (i.e., it does not contain any potential
redex) or it can be decomposed into a potential redex and a reduction con-
text:

datatype value_or_decomposition = VAL of value

| DEC of potential_redex * context

The decomposition function recursively searches for the right-most inner-
most redex in a term. As always, we define it as a big-step abstract ma-
chine. This abstract machine has three auxiliary functions, decompose tree,
decompose node, and decompose context between three states – a term and a
context, two sub-terms and a context, and a context and a value.

• decompose tree dispatches over the given tree;
• decompose node dispatches over the left sub-tree of a given tree;
• decompose contextdispatches on the accumulated context to determine

whether the given term is a value, a potential redex has been found,
or the search must continue.

(* decompose_tree : tree * context -> value_or_decomposition *)

fun decompose_tree (STUB, C)

= decompose_context (C, (STUB, STUB_nf))

| decompose_tree (LEAF n, C)

= DEC (PR_LEAF n, C)

| decompose_tree (NODE (t1, t2), C)

= decompose_tree (t2, CTX_RIGHT (t1, C))

76

(* decompose_node : tree * value * context -> value_or_decomposition *)

and decompose_node (STUB, v2, C)

= DEC (PR_LEFT_STUB v2, C)

| decompose_node (LEAF n, (t2, t2_nf), C)

= decompose_context (C, (NODE (LEAF n, t2), NODE_nf (n, t2_nf)))

| decompose_node (NODE (t11, t12), v2, C)

= DEC (PR_ASSOC (t11, t12, v2), C)

(* decompose_context : context * value -> value_or_decomposition *)

and decompose_context (CTX_MT, (t’, t_nf))

= VAL (t’, t_nf)

| decompose_context (CTX_RIGHT (t1, C), (t2’, t2_nf))

= decompose_node (t1, (t2’, t2_nf), C)

(* decompose : tree -> value_or_decomposition *)

fun decompose t

= decompose_tree (t, CTX_MT)

Recomposition: The recomposition function peels off context layers and con-
structs the resulting tree, iteratively:

fun recompose (CTX_MT, t)

= t

| recompose (CTX_RIGHT (t1, C), t2)

= recompose (C, NODE (t1, t2))

Lemma 6 A tree t is either in normal form or there exists a unique context C such that
decompose t evaluates to DEC (pr, C), where pr is a potential redex.

Proof 6 Straightforward (see Exercise 66 in Section 12.7).

12.4 One-step reduction
We are now in position to define a one-step reduction function as a function that
(1) maps a tree that is not in normal form into a potential redex and a reduction
context, (2) contracts the potential redex if it is an actual one, and (3) recomposes
the reduction context with the contractum. The following data type accounts for
whether the contraction is successful or the non-value term is stuck:

datatype reduct = REDUCT of tree

| STUCK of string

(* reduce : tree -> reduct *)

fun reduce t

= (case decompose t

77

of (VAL (t’, t_nf))

=> REDUCT t’

| (DEC (pr, C))

=> (case contract pr

of (CONTRACTUM t’)

=> REDUCT (recompose (C, t’))

| (ERROR s)

=> STUCK s))

12.5 Reduction-based normalization
The following reduction-based normalization function iterates the one-step re-
duction function until it yields a normal form:

datatype result = RESULT of tree_nf

| WRONG of string

(* iterate0 : value_or_decomposition -> result *)

fun iterate0 (VAL (t’, t_nf))

= RESULT t_nf

| iterate0 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM t’)

=> iterate0 (decompose (recompose (C, t’)))

| (ERROR s)

=> WRONG s)

(* normalize0 : tree -> result *)

fun normalize0 t

= iterate0 (decompose t)

12.6 Summary
We have implemented a reduction semantics for flattening binary trees, in com-
plete detail. Using this reduction semantics, we have presented a reduction-
based normalization function.

12.7 Exercises
Exercise 61 Define a function embed potential redex in tree that maps a potential
redex into a tree. (This exercise is the same as Exercise 51.)

Exercise 62 Show that, for any tree t, if evaluating decompose t yields DEC (pr, C),
then evaluating recompose (C, embed potential redex in tree pr) yields t.
(Hint: Reason by structural induction over t, using inversion at each step.)

78

Exercise 63 Write a handful of test trees and specify the expected outcome of their nor-
malization. (This exercise is the same as Exercise 53.)

Exercise 64 Implement the reduction semantics above in the programming language of
your choice, and run the tests of Exercise 63.

Exercise 65 Write an unparser from trees to the concrete syntax of your choice, as in
Exercise 55, and instrument the normalization function of Section 12.5 so that (one way
or another) it displays the successive trees in the reduction sequence.

Exercise 66 In the proof of Lemma 6, do as in the proof of Lemma 1 and write the re-
functionalized counterpart of decompose et al.

Exercise 67 Pick another notion of normal form (e.g., flat, list-like trees on the left in-
stead of on the right) and define the corresponding reduction-based normalization func-
tion, mutatis mutandis.

13 From reduction-based to reduction-free normalization
In this section, we transform the reduction-based normalization function of Sec-
tion 12.5 into a family of reduction-free normalization functions, i.e., one where
no intermediate tree is ever constructed. We first refocus the reduction-based
normalization function to deforest the intermediate trees, and we obtain a small-
step abstract machine implementing the iteration of the refocus function (Sec-
tion 13.1). After inlining the contraction function (Section 13.2), we transform
this small-step abstract machine into a big-step one (Section 13.3). This abstract
machine exhibits a number of corridor transitions, and we compress them (Sec-
tion 13.4). We then flatten its configurations and rename its transition functions
into something more intuitive (Section 13.5). The resulting abstract machine is in
defunctionalized form, and we refunctionalize it (Section 13.6). The result is in
continuation-passing style and we re-express it in direct style (Section 13.7). The
resulting direct-style function is a traditional flatten function with an accumula-
tor; in particular, it is compositional and reduction-free.

Modus operandi: In each of the following subsections, and as always, we de-
rive successive versions of the normalization function, indexing its components
with the number of the subsection. In practice, the reader should run the tests of
Exercise 63 in Section 12.7 at each step of the derivation, for sanity value.

13.1 Refocusing:
from reduction-based to reduction-free normalization

The normalization function of Section 12.5 is reduction-based because it con-
structs every intermediate term in the reduction sequence. In its definition, decompose

79

is always applied to the result of recompose after the first decomposition. In fact,
a vacuous initial call to recompose ensures that in all cases, decompose is applied
to the result of recompose:

(* normalize0’ : tree -> result *)

fun normalize0’ t

= iterate0 (decompose (recompose (CTX_MT, t)))

Refocusing, extensionally: The composition of decompose and recompose can be
deforested into a ‘refocus’ function to avoid constructing the intermediate
terms in the reduction sequence. Such a deforestation makes the normal-
ization function reduction-free.

Refocusing, intensionally: As usual, the refocus function can be expressed very
simply in terms of the decomposition functions of Section 12.3:

(* refocus : term * context -> value_or_decomposition *)

fun refocus (t, C)

= decompose_tree (t, C)

The refocused evaluation function therefore reads as follows:

(* iterate1 : value_or_decomposition -> result *)

fun iterate1 (VAL (t’, t_nf))

= RESULT t_nf

| iterate1 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM t’)

=> iterate1 (refocus (t’, C))

| (ERROR s)

=> WRONG s)

(* normalize1 : tree -> result *)

fun normalize1 t

= iterate1 (refocus (t, CTX_MT))

This refocused normalization function is reduction-free because it is no longer
based on a (one-step) reduction function. Instead, the refocus function directly
maps a contractum and a reduction context to the next redex and reduction con-
text, if there are any in the reduction sequence.

13.2 Inlining the contraction function
We first inline the call to contract in the definition of iterate1, and name the
resulting function iterate2. Reasoning by inversion, there are three potential
redexes and therefore the DEC clause in the definition of iterate1 is replaced by
three DEC clauses in the definition of iterate2:

80

(* iterate2 : value_or_decomposition -> result *)

fun iterate2 (VAL (t’, t_nf))

= RESULT t_nf

| iterate2 (DEC (PR_LEFT_STUB (t, t_nf), C))

= iterate2 (refocus (t, C))

| iterate2 (DEC (PR_LEAF n, C))

= iterate2 (refocus (NODE (LEAF n, STUB), C))

| iterate2 (DEC (PR_ASSOC (t11, t12, (t2, t2_nf)), C))

= iterate2 (refocus (NODE (t11, NODE (t12, t2)), C))

(* normalize2 : tree -> result *)

fun normalize2 t

= iterate2 (refocus (t, CTX_MT))

We are now ready to fuse the composition of iterate2 with refocus (shaded just
above).

13.3 Lightweight fusion:
from small-step to big-step abstract machine

The refocused normalization function is a small-step abstract machine in the
sense that refocus (i.e., decompose tree, decompose node, and decompose context)
acts as a transition function and iterate1 as a driver loop that keeps activating
refocusuntil a value is obtained. We fuse iterate2 and refocus (i.e., decompose tree,
decompose node, and decompose context) so that the resulting function iterate3 is
directly applied to the result of decompose tree, decompose node, and decompose context.
The result is a big-step abstract machine consisting of four (mutually tail-recursive)
state-transition functions:

• refocus3 tree is the composition of iterate2 and decompose tree and a clone
of decompose tree that directly calls iterate3 over a leaf instead of returning
it to iterate2 as decompose tree did;

• refocus3 context is the composition of iterate2 and decompose context that
directly calls iterate3 over a value or a decomposition instead of returning
it to iterate2 as decompose context did;

• refocus3 node is the composition of iterate2 and decompose node and a clone
of decompose node that directly calls iterate3 over a decomposition instead
of returning it to iterate2 as decompose node did;

• iterate3 is a clone of iterate2 that calls the fused function refocus3 tree.

(* refocus3_tree : tree * context -> result *)

fun refocus3_tree (STUB, C)

= refocus3_context (C, (STUB, STUB_nf))

81

| refocus3_tree (LEAF n, C)

= iterate3 (DEC (PR_LEAF n, C))

| refocus3_tree (NODE (t1, t2), C)

= refocus3_tree (t2, CTX_RIGHT (t1, C))

(* refocus3_node : tree * value * context -> result *)

and refocus3_node (STUB, v2, C)

= iterate3 (DEC (PR_LEFT_STUB v2, C))

| refocus3_node (LEAF n, (t2, t2_nf), C)

= refocus3_context (C, (NODE (LEAF n, t2), NODE_nf (n, t2_nf)))

| refocus3_node (NODE (t11, t12), v2, C)

= iterate3 (DEC (PR_ASSOC (t11, t12, v2), C))

(* refocus3_context : context * value -> result *)

and refocus3_context (CTX_MT, (t’, t_nf))

= iterate3 (VAL (t’, t_nf))

| refocus3_context (CTX_RIGHT (t1, C), (t2’, t2_nf))

= refocus3_node (t1, (t2’, t2_nf), C)

(* iterate3 : value_or_decomposition -> result *)

and iterate3 (VAL (t’, t_nf))

= RESULT t_nf

| iterate3 (DEC (PR_LEFT_STUB (t, t_nf), C))

= refocus3_tree (t, C)

| iterate3 (DEC (PR_LEAF n, C))

= refocus3_tree (NODE (LEAF n, STUB), C)

| iterate3 (DEC (PR_ASSOC (t11, t12, (t2, t2_nf)), C))

= refocus3_tree (NODE (t11, NODE (t12, t2)), C)

(* normalize3 : tree -> result *)

fun normalize3 t

= refocus3_tree (t, CTX_MT)

This abstract machine is staged since iterate3 implements the contraction rules
of the reduction semantics separately from its congruence rules, which are im-
plemented by refocus3 tree, refocus3 context and refocus3 node.

13.4 Compressing corridor transitions
In the abstract machine above, many of the transitions are ‘corridor’ ones in that
they yield configurations for which there is a unique further transition, and so
on. Let us compress these transitions. To this end, we cut-and-paste the tran-
sition functions above, renaming their indices from 3 to 4, and consider each of
their clauses in turn , making use of the equivalence between refocus4 tree (t,

C) and refocus4 context (C, t nf) when t is in normal form (and t nf directly
represents this normal form):

82

Clause refocus4 tree (LEAF n, C):

refocus4_tree (LEAF n, C)

= (* by unfolding the call to refocus4_tree *)

iterate4 (DEC (PR_LEAF n, C))

= (* by unfolding the call to iterate4 *)

refocus4_tree (NODE (LEAF n, STUB), C)

= (* by unfolding the call to refocus4_tree *)

refocus4_tree (STUB, CTX_RIGHT (LEAF n, C))

= (* by unfolding the call to refocus4_tree *)

refocus4_context (CTX_RIGHT (LEAF n, C), (STUB, STUB_nf))

= (* by unfolding the call to refocus4_context *)

refocus4_node (LEAF n, (STUB, STUB_nf), C)

= (* by unfolding the call to refocus4_node *)

refocus4_context (C, (NODE (LEAF n, STUB), NODE_nf (n, STUB_nf)))

Clause refocus4 node (STUB, (t2, t2 nf), C):

refocus4_node (STUB, (t2, t2_nf), C)

= (* by unfolding the call to refocus4_node *)

iterate4 (DEC (PR_LEFT_STUB (t2, t2_nf), C))

= (* by unfolding the call to iterate4 *)

refocus4_tree (t2, C)

= (* since t2 is in normal form *)

refocus4_context (C, (t2, t2_nf))

Clause refocus4 node (NODE (t11, t12), (t2, t2 nf), C):

refocus4_node (NODE (t11, t12), (t2, t2_nf), C)

= (* by unfolding the call to refocus4_node *)

iterate4 (DEC (PR_ASSOC (t11, t12, (t2, t2_nf)), C))

= (* by unfolding the call to iterate4 *)

refocus4_tree (NODE (t11, NODE (t12, t2)), C)

= (* by unfolding the call to refocus4_tree *)

refocus4_tree (NODE (t12, t2), CTX_RIGHT (t11, C))

= (* by unfolding the call to refocus4_tree *)

refocus4_tree (t2, CTX_RIGHT (t12, CTX_RIGHT (t11, C)))

= (* since t2 is in normal form *)

refocus4_context (CTX_RIGHT (t12, CTX_RIGHT (t11, C)), (t2, t2_nf))

= (* by unfolding the call to refocus4_context *)

refocus4_node (t12, (t2, t2_nf), CTX_RIGHT (t11, C))

There are two corollaries to the compressions above:

Dead clauses: All of the calls to iterate4 have been unfolded, and therefore the
definition of iterate4 is dead.

Dead component: The term component of the values is now dead. We eliminate
it in Section 13.5.

83

13.5 Renaming transition functions and flattening configurations
The resulting simplified machine is an ‘eval/apply/continue’ abstract machine.
We therefore rename refocus4 tree to flatten5, refocus4 node to flatten5 node,
and refocus4 context to continue5. The result reads as follows:

(* flatten5 : tree * context -> result *)

fun flatten5 (STUB, C)

= continue5 (C, STUB_nf)

| flatten5 (LEAF n, C)

= continue5 (C, NODE_nf (n, STUB_nf))

| flatten5 (NODE (t1, t2), C)

= flatten5 (t2, CTX_RIGHT (t1, C))

(* flatten5_node : tree * tree_nf * context -> result *)

and flatten5_node (STUB, t2_nf, C)

= continue5 (C, t2_nf)

| flatten5_node (LEAF n, t2_nf, C)

= continue5 (C, NODE_nf (n, t2_nf))

| flatten5_node (NODE (t11, t12), t2_nf, C)

= flatten5_node (t12, t2_nf, CTX_RIGHT (t11, C))

(* continue5 : context * tree_nf -> result *)

and continue5 (CTX_MT, t_nf)

= RESULT t_nf

| continue5 (CTX_RIGHT (t1, C), t2_nf)

= flatten5_node (t1, t2_nf, C)

(* normalize5 : tree -> result *)

fun normalize5 t

= flatten5 (t, CTX_MT)

13.6 Refunctionalization
The definitions of Section 13.5 are in defunctionalized form. The reduction con-
texts, together with continue5, are the first-order counterpart of a function. The
higher-order counterpart of this abstract machine reads as follows:

(* flatten6 : tree * (tree_nf -> ’a) -> ’a *)

fun flatten6 (STUB, k)

= k STUB_nf

| flatten6 (LEAF n, k)

= k (NODE_nf (n, STUB_nf))

| flatten6 (NODE (t1, t2), k)

= flatten6 (t2, fn t2_nf => flatten6_node (t1, t2_nf, k))

84

(* flatten6_node : tree * tree_nf * (tree_nf -> ’a) -> ’a *)

and flatten6_node (STUB, t2_nf, k)

= k t2_nf

| flatten6_node (LEAF n, t2_nf, k)

= k (NODE_nf (n, t2_nf))

| flatten6_node (NODE (t11, t12), t2_nf, k)

= flatten6_node (t12, t2_nf, fn t2_nf => flatten6_node (t11, t2_nf, k))

(* normalize6 : tree -> result *)

fun normalize6 t

= flatten6 (t, fn t_nf => RESULT t_nf)

The resulting refunctionalized program is a familiar eval/apply evaluation func-
tion in CPS.

13.7 Back to direct style
The refunctionalized definition of Section 13.6 is in continuation-passing style
since it has a functional accumulator and all of its calls are tail calls. Its direct-
style counterpart reads as follows:

(* flatten7 : tree -> tree_nf *)

fun flatten7 STUB

= STUB_nf

| flatten7 (LEAF n)

= NODE_nf (n, STUB_nf)

| flatten7 (NODE (t1, t2))

= flatten7_node (t1, flatten7 t2)

(* flatten7_node : tree * tree_nf -> tree_nf *)

and flatten7_node (STUB, t2_nf)

= t2_nf

| flatten7_node (LEAF n, t2_nf)

= NODE_nf (n, t2_nf)

| flatten7_node (NODE (t11, t12), t2_nf)

= flatten7_node (t11, flatten7_node (t12, t2_nf))

(* normalize7 : tree -> result *)

fun normalize7 t

= RESULT (flatten7 t)

The resulting definition is that of a flatten function with an accumulator, i.e., an
uncurried version of the usual reduction-free normalization function for the free
monoid [9, 7, 11, 51]. It also coincides with the definition of the flatten function
in Yves Bertot’s concise presentation of the Coq proof assistant [8, Section 4.8].

85

13.8 Closure unconversion
This section is intentionally left blank, since the tree leaves are integers.

13.9 Summary
We have refocused the reduction-based normalization function of Section 12 into
a small-step abstract machine, and we have exhibited a family of correspond-
ing reduction-free normalization functions. Most of the members of this family
correspond to something one usually writes by hand.

13.10 Exercises
Exercise 68 Reproduce the construction above in the programming language of your
choice, starting from your solution to Exercise 64 in Section 12.7. At each step of the
derivation, run the tests of Exercise 63 in Section 12.7.

Exercise 69 Would it make sense, in the definition of normalize6, to take fn v => v

as the initial continuation? If so, what would be the definition of normalize7 and what
would be its type? What about normalize7’?

Exercise 70 In Section 13.7, the reduction-free normalization function could be stream-
lined by skipping flatten7 as follows:

(* normalize7’ : tree -> result *)

fun normalize7’ t

= RESULT (flatten7_node (t, STUB_nf))

This streamlined reduction-free normalization function is the traditional flatten function
with an accumulator. It, however, corresponds to another reduction-based normalization
function and a slightly different reduction strategy. Which reduction semantics gives rise
to this streamlined flatten function?

14 Conclusion
In Jean-Jacques Beineix’s movie “Diva,” Gorodish shows Postman Jules the Zen
aspects of buttering a French baguette. He starts from a small-step description of
the baguette that is about as fetching as the one in the more recent movie “Rata-
touille” and progressively detaches himself from the bread, the butter and the
knife to culminate with a movement, a gesture, big steps. So is it for reduction-
free normalization compared to reduction-based normalization: we start from an
abstract syntax and a reduction strategy where everything is explicit, and we end
up skipping the reduction sequence altogether and reaching a state where every-
thing is implicit, expressed that it is in the meta-language, as in Per Martin Löf’s

86

original vision of normalization by evaluation [28, 55]. It is the author’s hope
that the reader is now in position to butter a French baguette at home with har-
mony and efficiency, computationally speaking, that is: whether, e.g., calculating
an arithmetic expression, recognizing a Dyck word, normalizing a lambda-term
with explicit substitutions and possibly call/cc, or flattening a binary tree, one
can either use small steps and adopt a notion of reduction and a reduction strat-
egy, or use big steps and adopt a notion of evaluation and an evaluation strategy.
Plotkin, 30 years ago [64], extensionally connected the two by showing that for
the lambda-calculus, applicative order (resp. normal order) corresponds to call
by value (resp. call by name). In these lecture notes, we have shown that this ex-
tensional connection also makes sense intensionally: small-step implementations
and big-step implementations can be mechanically inter-derived; it is the same
elephant.

Acknowledgments: These lecture notes are a revised and substantially expanded
version of an invited talk at WRS 2004 [21], for which the author is still grateful
to Sergio Antoy and Yoshihito Toyama. Thanks are also due to Rinus Plasmeijer
for the opportunity to present this material at AFP 2008; to the other organizers
and co-lecturers for a wonderful event; to Alain Crémieux, Diana Fulger and the
other AFP 2008 attendees for their interaction and feedback; to Pieter Koopman
for his editorship; to Jacob Johannsen, Ian Zerny and the anonymous review-
ers and editors for their comments; and to Sivert Bertelsen, Sebastian Erdweg,
Alexander Hansen, Dennis Decker Jensen, Finn Rosenbech Jensen and Tillmann
Rendel for their extra comments in the spring of 2009.

—

The goal of the following appendices is to review closure conversion, CPS trans-
formation, defunctionalization, lightweight fission, and lightweight fusion. To
this end, we retrace John Reynolds’s steps from a compositional evaluation func-
tion to an abstract machine [67] and then move on to lightweight fission and
fusion.

A Lambda-terms with integers
We first specify lambda-terms with integers (arbitrary literals and a predefined
successor function) and then present a computationally representative sample of
lambda-terms.

A.1 Abstract syntax
A lambda-term is an integer literal, an identifier, a lambda-abstraction or an ap-
plication:

87

datatype term = LIT of int

| IDE of string

| LAM of string * term

| APP of term * term

We assume predefined identifiers, e.g., “succ” to denote the successor function.

A.2 A sample of lambda-terms
Church numerals [17] and mappings between native natural numbers and Church
numerals form a good ground to illustrate the expressive power of lambda-terms
with integers.

Church numerals. A Church numeral is a functional encoding of a natural num-
ber that abstracts a zero value and a successor function:

val cn0 = LAM ("s", LAM ("z", IDE "z"))

val cns = LAM ("cn",

LAM ("s", LAM ("z", APP (APP (IDE "cn", IDE "s"),

APP (IDE "s", IDE "z")))))

For example, here is the Church numeral representing the natural number
3:

val cn3 = APP (cns, APP (cns, APP (cns, cn0)))

Mappings between natural numbers and Church numerals. Given a natural num-
ber n, one constructs the corresponding Church numeral by recursively ap-
plying cns n times to cn0. Conversely, applying a Church numeral that
represents the natural number n to the native successor function and the
native natural number 0 yields a term that reduces to the native represen-
tation of n.

fun n2cn 0 = cn0

| n2cn n = APP (cns, n2cn (n - 1))

fun cn2n cn

= APP (APP (cn, IDE "succ"), LIT 0)

Computing with Church numerals. As is well known, applying a Church nu-
meral to another one implements exponentiation. The following term there-
fore reduces to the native representation of 1024:

val n1024 = cn2n (APP (n2cn 10, n2cn 2))

88

B A call-by-value evaluation function
Let us write a canonical evaluator for lambda-terms with integers as specified in
Section A. The evaluator uses an environment, and proceeds by recursive descent
over a given term. It is compositional.

Environments. The environment is a canonical association list (i.e., list of pairs
associating identifiers and values):

structure Env

= struct

type ’a env = (string * ’a) list

val empty = []

fun extend (x, v, env)

= (x, v) :: env

fun lookup (x, env)

= let fun search []

= NONE

| search ((x’, v) :: env)

= if x = x’ then SOME v else search env

in search env

end

end

Values. Values are integers or functions:

datatype value = VAL_INT of int

| VAL_FUN of value -> value

Evaluation function. The evaluation function is a traditional, Scott-Tarski one.
(Scott because of the reflexive data type of values, and Tarski because of its
meta-circular fashion of interpreting a concept in term of the same concept
at the meta-level: syntactic lambda-abstractions are interpreted in terms of
ML function abstractions, and syntactic applications in terms of ML func-
tion applications.) Evaluating a program might go wrong because an unde-
clared identifier is used, because the successor function is applied to a non-
integer, or because a non-function is applied; these events are summarily
interpreted by raising an exception to the top level.

exception WRONG of string

89

(* eval0 : term * value Env.env -> value *)

fun eval0 (LIT n, e)

= VAL_INT n

| eval0 (IDE x, e)

= (case Env.lookup (x, e)

of NONE

=> raise (WRONG "undeclared identifier")

| (SOME v)

=> v)

| eval0 (LAM (x, t), e)

= VAL_FUN (fn v => eval0 (t, Env.extend (x, v, e)))

| eval0 (APP (t0, t1), e)

= apply0 (eval0 (t0, e), eval0 (t1, e))

(* apply0 : value * value -> value *)

and apply0 (VAL_FUN f, v)

= f v

| apply0 (v0, v1)

= raise (WRONG "non-applicable value")

Initial environment. The initial environment binds, e.g., the identifier succ to
the successor function:

val val_succ = VAL_FUN (fn (VAL_INT n)

=> VAL_INT (n + 1)

| v

=> raise (WRONG "non-integer value"))

val e_init = Env.extend ("succ", val_succ, Env.empty)

Main function. A term is interpreted by evaluating it in the initial environment
in the presence of an exception handler. Evaluating a term may diverge;
otherwise it either yields a value or an error message if evaluation goes
wrong:

datatype value_or_error = VALUE of value

| ERROR of string

(* interpret0 : term -> value_or_error *)

fun interpret0 t

= VALUE (eval0 (t, e_init))

handle (WRONG s) => ERROR s

90

C Closure conversion
Let us “firstify” the domain of values by defunctionalizing it: the function space,
in the data type of values in Appendix B, is inhabited by function values that arise
from evaluating two (and only two) function abstractions: one in the LAM clause
in the definition of eval0 as the denotation of a syntactic lambda-abstraction, and
one in the initial environment as the successor function. We therefore modify
the domain of values by replacing the higher-order constructor VAL FUN by two
first-order constructors VAL SUCC and VAL CLO:

datatype value = VAL_INT of int

| VAL_SUCC

| VAL_CLO of string * term * value Env.env

The first-order representation tagged by VAL CLO is known as a “closure” since
Landin’s pioneering work [53]: it pairs a lambda-abstraction and its environment
of declaration.

Introduction: VAL SUCC is produced in the initial environment as the denotation
of succ; and VAL CLO is produced in the LAM clause and holds the free vari-
ables of fn v => eval0 (t, Env.extend (x, v, e)).

Elimination: VAL SUCC and VAL CLO are consumed in new clauses of the apply

function, which dispatches over applicable values. As in Appendix B, ap-
plying VAL SUCC to an integer yields the successor of this integer and apply-
ing it to a non-integer raises an exception; and applying VAL CLO (x, t, e),
i.e., the result of evaluating LAM (x, t) in an environment e, to a value v

leads t to be evaluated in an extended environment, as in Appendix B.

Compared to Appendix B, the new parts of the following closure-converted in-
terpreter are shaded:

val e_init = Env.extend ("succ", VAL_SUCC , Env.empty)

(* eval1 : term * value Env.env -> value *)

fun eval1 (LIT n, e)

= VAL_INT n

| eval1 (IDE x, e)

= (case Env.lookup (x, e)

of NONE

=> raise (WRONG "undeclared identifier")

| (SOME v)

=> v)

| eval1 (LAM (x, t), e)

= VAL_CLO (x, t, e)

91

| eval1 (APP (t0, t1), e)

= apply1 (eval1 (t0, e), eval1 (t1, e))

(* apply1 : value * value -> value *)

and apply1 (VAL_SUCC, VAL_INT n)

= VAL_INT (n + 1)

| apply1 (VAL_SUCC, v)

= raise (WRONG "non-integer value")

| apply1 (VAL_CLO (x, t, e), v)

= eval1 (t, Env.extend (x, v, e))

| apply1 (v0, v1)

= raise (WRONG "non-applicable value")

datatype value_or_error = VALUE of value

| ERROR of string

(* interpret1 : term -> value_or_error *)

fun interpret1 t

= VALUE (eval1 (t, e_init))

handle (WRONG s) => ERROR s

The resulting interpreter is a traditional McCarthy-Landin one. (McCarthy be-
cause of his original definition of Lisp in Lisp [56] and Landin because of the
closures.) It can also be seen as an implementation of Kahn’s natural seman-
tics [49].

D CPS transformation
Let us transform eval1 and apply1, in Appendix C, into continuation-passing
style (CPS). To this end, we name each of their intermediate results, we sequen-
tialize their computation, and we pass them an extra (functional) parameter, the
continuation. As a result, the intermediate results are named by the formal pa-
rameter of each of the lambda-abstractions that define the continuation (shaded
below):

(* eval2 : term * value Env.env * (value -> value_or_error)

-> value_or_error *)

fun eval2 (LIT n, e, k)

= k (VAL_INT n)

| eval2 (IDE x, e, k)

= (case Env.lookup (x, e)

of NONE

=> ERROR "undeclared identifier"

| (SOME v)

=> k v)

92

| eval2 (LAM (x, t), e, k)

= k (VAL_CLO (x, t, e))

| eval2 (APP (t0, t1), e, k)

= eval2 (t0, e, fn v0 =>

eval2 (t1, e, fn v1 =>

apply2 (v0, v1, k)))

(* apply2 : value * value * (value -> value_or_error)

-> value_or_error *)

and apply2 (VAL_SUCC, VAL_INT n, k)

= k (VAL_INT (n + 1))

| apply2 (VAL_SUCC, v, k)

= ERROR "non-integer value"

| apply2 (VAL_CLO (x, t, e), v, k)

= eval2 (t, Env.extend (x, v, e), k)

| apply2 (v0, v1, k)

= ERROR "non-applicable value"

(* interpret2 : term -> value_or_error *)

fun interpret2 t

= eval2 (t, e_init, fn v => VALUE v)

The resulting interpreter is a traditional continuation-passing one, as can be found
in Morris’s early work [60], in Steele and Sussman’s lambda-papers [71, 69], and
in “Essentials of Programming Languages” [42].

E Defunctionalization
Let us defunctionalize the continuation of Appendix D’s interpreter. This func-
tion space is inhabited by function values that arise from evaluating three (and
only three) function abstractions—those whose formal parameter is shaded above.
We therefore partition the function space into three summands and represent it
as the following first-order data type:

datatype cont = CONT_MT

| CONT_FUN of cont * term * value Env.env

| CONT_ARG of value * cont

This first-order representation is known as that of an evaluation context [40].

Introduction: CONT MT is produced in the initial call to eval3; CONT FUN is produced
in the recursive self-call in eval3; and CONT ARG is produced in the function
that dispatches upon the evaluation context, continue3. Each constructor
holds the free variables of the function abstraction it represents.

Elimination: The three constructors are consumed in continue3.

93

Compared to Appendix D, the new parts of the following defunctionalized inter-
preter are shaded:

(* eval3 : term * value Env.env * cont -> value_or_error *)

fun eval3 (LIT n, e, C)

= continue3 (C, VAL_INT n)

| eval3 (IDE x, e, C)

= (case Env.lookup (x, e)

of NONE

=> ERROR "undeclared identifier"

| (SOME v)

=> continue3 (C, v))

| eval3 (LAM (x, t), e, C)

= continue3 (C, VAL_CLO (x, t, e))

| eval3 (APP (t0, t1), e, C)

= eval3 (t0, e, CONT_FUN (C, t1, e))

(* apply3 : value * value * cont -> value_or_error *)

and apply3 (VAL_SUCC, VAL_INT n, C)

= continue3 (C, VAL_INT (n + 1))

| apply3 (VAL_SUCC, v, C)

= ERROR "non-integer value"

| apply3 (VAL_CLO (x, t, e), v, C)

= eval3 (t, Env.extend (x, v, e), C)

| apply3 (v0, v1, C)

= ERROR "non-applicable value"

(* continue3 : context * value -> value_or_error *)

and continue3 (CONT_MT, v)

= VALUE v

| continue3 (CONT_FUN (C, t1, e), v0)

= eval3 (t1, e, CONT_ARG (v0, C))

| continue3 (CONT_ARG (v0, C), v1)

= apply3 (v0, v1, C)

(* interpret3 : term -> value_or_error *)

fun interpret3 t

= eval3 (t, e_init, CONT_MT)

Reynolds pointed at the “machine-like” qualities of this defunctionalized inter-
preter, and indeed the alert reader will already have recognized that this inter-
preter implements a big-step version of the CEK abstract machine [41]. Indeed
each (tail-)call implements a state transition.

F Lightweight fission
Let us explicitly represent the states of the abstract machine of Appendix E with
the following data type:

94

datatype state = STOP of value

| WRONG of string

| EVAL of term * value Env.env * cont

| APPLY of value * value * cont

| CONTINUE of cont * value

Non-accepting states: The STOP state marks that a value has been computed for
the given term, and the WRONG state that the given term is a stuck one.

Accepting states: The EVAL, APPLY, and CONTINUE states mark that the machine is
ready to take a transition corresponding to one (tail-)call in Appendix E, as
respectively implemented by the following transition functions move eval,
move apply, and move continue.

(* move_eval : term * value Env.env * cont -> state *)

fun move_eval (LIT n, e, C)

= CONTINUE (C, VAL_INT n)

| move_eval (IDE x, e, C)

= (case Env.lookup (x, e)

of NONE

=> WRONG "undeclared identifier"

| (SOME v)

=> CONTINUE (C, v))

| move_eval (LAM (x, t), e, C)

= CONTINUE (C, VAL_CLO (x, t, e))

| move_eval (APP (t0, t1), e, C)

= EVAL (t0, e, CONT_FUN (C, t1, e))

(* move_apply : value * value * cont -> state *)

fun move_apply (VAL_SUCC, VAL_INT n, C)

= CONTINUE (C, VAL_INT (n + 1))

| move_apply (VAL_SUCC, v, C)

= WRONG "non-integer value"

| move_apply (VAL_CLO (x, t, e), v, C)

= EVAL (t, Env.extend (x, v, e), C)

| move_apply (v0, v1, C)

= WRONG "non-applicable value"

(* move_continue : cont * value -> state *)

fun move_continue (CONT_MT, v)

= STOP v

| move_continue (CONT_FUN (C, t1, e), v0)

= EVAL (t1, e, CONT_ARG (v0, C))

| move_continue (CONT_ARG (v0, C), v1)

= APPLY (v0, v1, C)

The following driver loop maps a non-accepting state to a final result or (1) acti-
vates the transition corresponding to the current accepting state and (2) iterates:

95

(* drive : state -> value_or_error *)

fun drive (STOP v)

= VALUE v

| drive (WRONG s)

= ERROR s

| drive (EVAL c)

= drive (move_eval c)

| drive (APPLY c)

= drive (move_apply c)

| drive (CONTINUE c)

= drive (move_continue c)

For a given term t, the initial state of machine is EVAL (t, e init, CONT MT):

(* interpret4 : term -> value_or_error *)

fun interpret4 t

= drive (EVAL (t, e_init, CONT_MT))

The resulting interpreter is a traditional small-step abstract machine [65], namely
the CEK machine [41]. As spelled out in Appendix G, fusing the driver loop and
the transition functions yields the big-step abstract machine of Appendix E.

G Lightweight fusion by fixed-point promotion
Let us review Ohori and Sasano’s lightweight fusion by fixed-point promotion
[63]. This calculational transformation operates over functional programs in the
form of the small-step abstract machine of Appendix F: a (strict) top-level driver
function drive activating (total) tail-recursive transition functions. The transfor-
mation consists in three steps:

1. Inline the definition of the transition function in the composition.

2. Distribute the tail call to the driver function in the conditional branches.

3. Simplify by inlining the applications of the driver function to known argu-
ments.

One then uses the result of the third step to define new mutually recursive func-
tions that are respectively equal to the compositions obtained in the third step.

Let us consider the following function compositions in turn:

• fn g => drive (move eval g) in Appendix G.1;

• fn g => drive (move apply g) in Appendix G.2; and

• fn g => drive (move continue g) in Appendix G.3.

96

G.1 drive o move eval

1. We inline the definition of move eval in the composition:

fn g => drive (case g

of (LIT n, e, C)

=> CONTINUE (C, VAL_INT n)

| (IDE x, e, C)

=> (case Env.lookup (x, e)

of NONE

=> WRONG "undeclared identifier"

| (SOME v)

=> CONTINUE (C, v))

| (LAM (x, t), e, C)

=> CONTINUE (C, VAL_CLO (x, t, e))

| (APP (t0, t1), e, C)

=> EVAL (t0, e, CONT_FUN (C, t1, e)))

2. We distribute the tail call to drive in the conditional branches:

fn c => case c

of (LIT n, e, C)

=> drive (CONTINUE (C, VAL_INT n))

| (IDE x, e, C)

=> (case Env.lookup (x, e)

of NONE

=> drive (WRONG "undeclared identifier")

| (SOME v)

=> drive (CONTINUE (C, v)))

| (LAM (x, t), e, C)

=> drive (CONTINUE (C, VAL_CLO (x, t, e)))

| (APP (t0, t1), e, C)

=> drive (EVAL (t0, e, CONT_FUN (C, t1, e)))

Or again, more concisely, with a function declared by cases:

fn (LIT n, e, C)

=> drive (CONTINUE (C, VAL_INT n))

| (IDE x, e, C)

=> (case Env.lookup (x, e)

of NONE

=> drive (WRONG "undeclared identifier")

| (SOME v)

=> drive (CONTINUE (C, v)))

| (LAM (x, t), e, C)

=> drive (CONTINUE (C, VAL_CLO (x, t, e)))

| (APP (t0, t1), e, C)

=> drive (EVAL (t0, e, CONT_FUN (C, t1, e)))

97

3. We simplify by inlining the applications of drive to known arguments:

fn (LIT n, e, C)

=> drive (move_continue (C, VAL_INT n))

| (IDE x, e, C)

=> (case Env.lookup (x, e)

of NONE

=> ERROR "undeclared identifier"

| (SOME v)

=> drive (move_continue (C, v)))

| (LAM (x, t), e, C)

=> drive (move_continue (C, VAL_CLO (x, t, e)))

| (APP (t0, t1), e, C)

=> drive (move_eval (t0, e, CONT_FUN (C, t1, e)))

G.2 drive o move apply

1. We inline the definition of move apply in the composition:

fn g => drive (case g

of (VAL_SUCC, VAL_INT n, C)

=> CONTINUE (C, VAL_INT (n + 1))

| (VAL_SUCC, v, C)

=> WRONG "non-integer value"

| (VAL_CLO (x, t, e), v, C)

=> EVAL (t, Env.extend (x, v, e), C)

| (v0, v1, C)

=> WRONG "non-applicable value")

2. We distribute the tail call to drive in the conditional branches:

fn (VAL_SUCC, VAL_INT n, C)

=> drive (CONTINUE (C, VAL_INT (n + 1)))

| (VAL_SUCC, v, C)

=> drive (WRONG "non-integer value")

| (VAL_CLO (x, t, e), v, C)

=> drive (EVAL (t, Env.extend (x, v, e), C))

| (v0, v1, C)

=> drive (WRONG "non-applicable value")

3. We simplify by inlining the applications of drive to known arguments:

fn (VAL_SUCC, VAL_INT n, C)

=> drive (move_continue (C, VAL_INT (n + 1)))

| (VAL_SUCC, v, C)

98

=> ERROR "non-integer value"

| (VAL_CLO (x, t, e), v, C)

=> drive (move_eval (t, Env.extend (x, v, e), C))

| (v0, v1, C)

=> ERROR "non-applicable value"

G.3 drive o move continue

1. We inline the definition of move continue in the composition:

fn g => drive (case g

of (CONT_MT, v)

=> STOP v

| (CONT_FUN (C, t1, e), v0)

=> EVAL (t1, e, CONT_ARG (v0, C))

| (CONT_ARG (v0, C), v1)

=> APPLY (v0, v1, C))

2. We distribute the tail call to drive in the conditional branches:

fn (CONT_MT, v)

=> drive (STOP v)

| (CONT_FUN (C, t1, e), v0)

=> drive (EVAL (t1, e, CONT_ARG (v0, C)))

| (CONT_ARG (v0, C), v1)

=> drive (APPLY (v0, v1, C))

3. We simplify by inlining the applications of drive to known arguments:

fn (CONT_MT, v)

=> VALUE v

| (CONT_FUN (C, t1, e), v0)

=> drive (move_eval (t1, e, CONT_ARG (v0, C)))

| (CONT_ARG (v0, C), v1)

=> drive (move_apply (v0, v1, C))

G.4 Synthesis
We now use the result of the third steps above to define three new mutually
recursive functions drive move eval, drive move apply, and drive move continue

that are respectively equal to drive o move eval, drive o move apply, and drive

o move continue:

99

fun drive_move_eval (LIT n, e, C)

= drive_move_continue (C, VAL_INT n)

| drive_move_eval (IDE x, e, C)

= (case Env.lookup (x, e)

of NONE

=> ERROR "undeclared identifier"

| (SOME v)

=> drive_move_continue (C, v))

| drive_move_eval (LAM (x, t), e, C)

= drive_move_continue (C, VAL_CLO (x, t, e))

| drive_move_eval (APP (t0, t1), e, C)

= drive_move_eval (t0, e, CONT_FUN (C, t1, e))

and drive_move_apply (VAL_SUCC, VAL_INT n, C)

= drive_move_continue (C, VAL_INT (n + 1))

| drive_move_apply (VAL_SUCC, v, C)

= ERROR "non-integer value"

| drive_move_apply (VAL_CLO (x, t, e), v, C)

= drive_move_eval (t, Env.extend (x, v, e), C)

| drive_move_apply (v0, v1, C)

= ERROR "non-applicable value"

and drive_move_continue (CONT_MT, v)

= VALUE v

| drive_move_continue (CONT_FUN (C, t1, e), v0)

= drive_move_eval (t1, e, CONT_ARG (v0, C))

| drive_move_continue (CONT_ARG (v0, C), v1)

= drive_move_apply (v0, v1, C)

fun interpret5 t

= drive_move_eval (t, e_init, CONT_MT)

Except for the function names (drive move eval instead of eval3, drive move apply

instead of apply3, and drive move continue instead of continue3), the fused defi-
nition coincides with the definition in Appendix E.

H Exercises
Exercise 71 Implement all the interpreters of this appendix in the programming lan-
guage of your choice, and verify that each of them maps n1024 (defined in Appendix A.2)
to VALUE (VAL INT 1024).

Exercise 72 In Appendices C and D, we closure-converted and then CPS-transformed
the interpreter of Appendix B. Do the converse, i.e., CPS-transform the interpreter of
Appendix B and then closure-convert it. The result should coincide with the interpreter
of Appendix D. You will need the following data type of values:

100

datatype value = VAL_INT of int

| VAL_FUN of value * (value -> value_or_error)

-> value_or_error

Naturally, your continuation-passing interpreter should not use exceptions. Since it is
purely functional and compositional, it can be seen as an implementation of a denotational
semantics [72].

Exercise 73 Fold the term and the environment, in either of the abstract machines of
Appendix E or F, into the following data type of ground closures:

datatype closure = CLO_GND of term * value Env.env

• the type of the eval transition function should read

closure * cont -> value_or_error

• the type of the move eval transition function should read

closure * cont -> state

In either case, the resulting interpreter is a CK abstract machine [40], i.e., an environment-
less machine that operates over ground closures. Conversely, unfolding these closures
into a simple pair and flattening the resulting configurations mechanically yields either
of the environment-based CEK machines of Appendix E or F.

I Mini project: call by name
Exercise 74 Write a few lambda-terms that would make a call-by-value evaluation func-
tion and a call-by-name evaluation function not yield the same result.

Exercise 75 Modify the code of the evaluation function of Appendix B to make it call by
name, using the following data type of values:

datatype value = VAL_INT of int

| VAL_FUN of thunk -> value

withtype thunk = unit -> value

Verify that the lambda-terms of Exercise 74 behave as expected.

Exercise 76 In continuation of Exercise 75, closure-convert your call-by-name evalua-
tion function, and verify that the lambda-terms of Exercise 74 behave as expected.

Exercise 77 In continuation of Exercise 76, CPS transform your closure-converted call-
by-name evaluation function, and verify that the lambda-terms of Exercise 74 behave as
expected.

101

Exercise 78 For the sake of comparison, CPS-transform first the call-by-name evalua-
tion function from Exercise 75, using the optimized data type

datatype value = VAL_INT of int

| VAL_FUN of thunk * (value -> value_or_error)

-> value_or_error

withtype thunk = (value -> value_or_error) -> value_or_error

(thunk would be unit * (value -> value or error) -> value or error in an unop-
timized version), and then closure-convert it. Do you obtain the same result as in Exer-
cise 77?
(Hint: You should.)

Exercise 79 Defunctionalize the closure-converted, CPS-transformed call-by-name eval-
uation function of Exercise 77, and compare the result with the Krivine machine [3, 25].

Exercise 80 Using the call-by-name CPS transformation [30, 64], CPS transform the
evaluation function of Appendix C. Do you obtain the same result as in Exercise 77?
(Hint: You should [45].)

Exercise 81 Again, using the call-by-name CPS transformation [30, 64], CPS trans-
form the evaluation function of Appendix B. Do you obtain the same interpreter as in
Exercise 78 before closure conversion?
(Hint: Again, you should [45].)

Exercise 82 Start from the call-by-name counterpart of Section 6 and, through refo-
cusing, move towards an abstract machine and compare this abstract machine with the
Krivine machine.
(Hint: See Section 3 of “A Concrete Framework for Environment Machines” [12].)

J Further projects
• The reader interested in other abstract machines is directed to “A Func-

tional Correspondence between Evaluators and Abstract Machines [3].

• For a call-by-need counterpart of Section 6, the reader is directed to “A
Functional Correspondence between Call-by-Need Evaluators and Lazy Ab-
stract Machines” [4] and to Section 7 of “A Syntactic Correspondence be-
tween Context-Sensitive Calculi and Abstract Machines” [12].

• The reader interested in computational effects is directed to “A Functional
Correspondence between Monadic Evaluators and Abstract Machines for
Languages with Computational Effects” [5] and “A Syntactic Correspon-
dence between Context-Sensitive Calculi and Abstract Machines” [12].

102

• The reader interested in the SECD machine is directed to “A Rational De-
construction of Landin’s SECD Machine” [23].

• The reader interested in the SECD machine and the J operator is directed to
“A Rational Deconstruction of Landin’s SECD Machine with the J Opera-
tor” [34].

• The reader interested in delimited continuations and the CPS hierarchy is
directed to “An Operational Foundation for Delimited Continuations in the
CPS Hierarchy” [11].

• The reader interested in Abadi and Cardelli’s untyped calculus of objects
[1] is directed to “Inter-deriving Semantic Artifacts for Object-Oriented Pro-
gramming” [31], the extended version of which also features negational
normalization for Boolean formulas.

• The reader interested in the semantics of the Scheme programming lan-
guage is directed to Parts I and II of “Towards Compatible and Interderiv-
able Semantic Specifications for the Scheme Programming Language” [14,
27].

References
[1] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Monographs in Com-

puter Science. Springer, 1996. {103}

[2] Mads Sig Ager. Partial Evaluation of String Matchers & Constructions of Ab-
stract Machines. PhD thesis, BRICS PhD School, Department of Computer
Science, Aarhus University, Aarhus, Denmark, January 2006. {6, 103}

[3] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A
functional correspondence between evaluators and abstract machines. In
Dale Miller, editor, Proceedings of the Fifth ACM-SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming (PPDP’03), pages
8–19, Uppsala, Sweden, August 2003. ACM Press. {4, 6, 18, 47, 102, 103}

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between call-by-need evaluators and lazy abstract machines. Informa-
tion Processing Letters, 90(5):223–232, 2004. Extended version available as the
research report BRICS RS-04-3. {4, 18, 47, 102, 103}

[5] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between monadic evaluators and abstract machines for languages
with computational effects. Theoretical Computer Science, 342(1):149–172,

103

2005. Extended version available as the research report BRICS RS-04-28.
{4, 6, 18, 47, 102, 103}

[6] Kenichi Asai. Binding-time analysis for both static and dynamic expres-
sions. New Generation Computing, 20(1):27–51, 2002. A preliminary version
is available in the proceedings of SAS 1999 (LNCS 1694). {64, 104}

[7] Vincent Balat and Olivier Danvy. Memoization in type-directed partial eval-
uation. In Don Batory, Charles Consel, and Walid Taha, editors, Proceed-
ings of the 2002 ACM SIGPLAN/SIGSOFT Conference on Generative Program-
ming and Component Engineering, GPCE 2002, number 2487 in Lecture Notes
in Computer Science, pages 78–92, Pittsburgh, Pennsylvania, October 2002.
Springer-Verlag. {85, 104}

[8] Yves Bertot. Coq in a hurry. CoRR, May 2006.
http://arxiv.org/abs/cs/0603118v2. {85, 104}

[9] Ilya Beylin and Peter Dybjer. Extracting a proof of coherence for monoidal
categories from a proof of normalization for monoids. In Stefano Berardi and
Mario Coppo, editors, Types for Proofs and Programs, International Workshop
TYPES’95, number 1158 in Lecture Notes in Computer Science, pages 47–61,
Torino, Italy, June 1995. Springer-Verlag. {85, 104}

[10] Małgorzata Biernacka. A Derivational Approach to the Operational Semantics of
Functional Languages. PhD thesis, BRICS PhD School, Department of Com-
puter Science, Aarhus University, Aarhus, Denmark, January 2006. {6, 104}

[11] Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An opera-
tional foundation for delimited continuations in the CPS hierarchy. Logical
Methods in Computer Science, 1(2:5):1–39, November 2005. A preliminary ver-
sion was presented at the Fourth ACM SIGPLAN Workshop on Continua-
tions (CW’04). {85, 103, 104}

[12] Małgorzata Biernacka and Olivier Danvy. A concrete framework for envi-
ronment machines. ACM Transactions on Computational Logic, 9(1):1–30, 2007.
Article #6. Extended version available as the research report BRICS RS-06-3.
{6, 35, 102, 104}

[13] Małgorzata Biernacka and Olivier Danvy. A syntactic correspondence be-
tween context-sensitive calculi and abstract machines. Theoretical Computer
Science, 375(1-3):76–108, 2007. Extended version available as the research
report BRICS RS-06-18. {6, 104}

[14] Małgorzata Biernacka and Olivier Danvy. Towards compatible and inter-
derivable semantic specifications for the Scheme programming language,

104

Part II: Reduction semantics and abstract machines. In Clinger [18]. {103,
104}

[15] Dariusz Biernacki. The Theory and Practice of Programming Languages with De-
limited Continuations. PhD thesis, BRICS PhD School, Department of Com-
puter Science, Aarhus University, Aarhus, Denmark, December 2005. {6,
104}

[16] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by de-
functionalization. In Maurice Bruynooghe, editor, Logic Based Program Syn-
thesis and Transformation, 13th International Symposium, LOPSTR 2003, num-
ber 3018 in Lecture Notes in Computer Science, pages 143–159, Uppsala,
Sweden, August 2003. Springer-Verlag. {4, 18, 47, 105}

[17] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941. {88, 105}

[18] Will Clinger, editor. 2008 ACM SIGPLAN Workshop on Scheme and Functional
Programming, Victoria, British Columbia, September 2008. {104–106}

[19] Pierre-Louis Curien. An abstract framework for environment machines.
Theoretical Computer Science, 82:389–402, 1991. {35, 105}

[20] Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183–195, 1994. A preliminary version was presented at the Fourth Eu-
ropean Symposium on Programming (ESOP 1992). {4, 5, 19, 33, 105}

[21] Olivier Danvy. From reduction-based to reduction-free normalization. In
Sergio Antoy and Yoshihito Toyama, editors, Proceedings of the Fourth In-
ternational Workshop on Reduction Strategies in Rewriting and Programming
(WRS’04), volume 124(2) of Electronic Notes in Theoretical Computer Science,
pages 79–100, Aachen, Germany, May 2004. Elsevier Science. Invited talk.
{6, 87, 105}

[22] Olivier Danvy. On evaluation contexts, continuations, and the rest of the
computation. In Hayo Thielecke, editor, Proceedings of the Fourth ACM SIG-
PLAN Workshop on Continuations (CW’04), Technical report CSR-04-1, De-
partment of Computer Science, Queen Mary’s College, pages 13–23, Venice,
Italy, January 2004. Invited talk. {6, 105}

[23] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In
Clemens Grelck, Frank Huch, Greg J. Michaelson, and Phil Trinder, edi-
tors, Implementation and Application of Functional Languages, 16th International
Workshop, IFL’04, number 3474 in Lecture Notes in Computer Science, pages
52–71, Lübeck, Germany, September 2004. Springer-Verlag. Recipient of the

105

2004 Peter Landin prize. Extended version available as the research report
BRICS RS-03-33. {4, 18, 47, 103, 105}

[24] Olivier Danvy. An Analytical Approach to Program as Data Objects. DSc the-
sis, Department of Computer Science, Aarhus University, Aarhus, Denmark,
October 2006. {6, 105}

[25] Olivier Danvy, editor. Special Issue on the Krivine Abstract Machine, part I,
volume 20, number 3 of Higher-Order and Symbolic Computation. Springer,
2007. {102, 105}

[26] Olivier Danvy. Defunctionalized interpreters for programming languages.
In Peter Thiemann, editor, Proceedings of the 2008 ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’08), SIGPLAN Notices,
Vol. 43, No. 9, pages 131–142, Victoria, British Columbia, September 2008.
ACM Press. Invited talk. {6, 8, 106}

[27] Olivier Danvy. Towards compatible and interderivable semantic specifica-
tions for the Scheme programming language, Part I: Denotational semantics,
natural semantics, and abstract machines. In Clinger [18]. {103, 106}

[28] Olivier Danvy and Peter Dybjer, editors. Proceedings of the 1998 APPSEM
Workshop on Normalization by Evaluation (NBE 1998), BRICS Note Series NS-
98-8, Gothenburg, Sweden, May 1998. BRICS, Department of Computer Sci-
ence, Aarhus University. Available online at <http://www.brics.dk/∼nbe98/

programme.html>. {87, 106}

[29] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand,
editor, Proceedings of the 1990 ACM Conference on Lisp and Functional Program-
ming, pages 151–160, Nice, France, June 1990. ACM Press. {13, 106}

[30] Olivier Danvy and Andrzej Filinski. Representing control, a study of the
CPS transformation. Mathematical Structures in Computer Science, 2(4):361–
391, 1992. {5, 19, 33, 102, 106}

[31] Olivier Danvy and Jacob Johannsen. Inter-deriving semantic artifacts for
object-oriented programming. In Wilfrid Hodges and Ruy de Queiroz, edi-
tors, Proceedings of the 15th Workshop on Logic, Language, Information and Com-
putation (WoLLIC 2008), number 5110 in Lecture Notes in Artificial Intelli-
gence, pages 1–16, Edinburgh, Scotland, July 2008. Springer-Verlag. {103,
106}

[32] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continu-
ations. In William Clinger, editor, Proceedings of the 1992 ACM Conference on
Lisp and Functional Programming, LISP Pointers, Vol. V, No. 1, pages 299–310,
San Francisco, California, June 1992. ACM Press. {4, 5, 61, 106}

106

[33] Olivier Danvy and Kevin Millikin. On the equivalence between small-step
and big-step abstract machines: a simple application of lightweight fusion.
Information Processing Letters, 106(3):100–109, 2008. {5, 16, 29, 106}

[34] Olivier Danvy and Kevin Millikin. A rational deconstruction of Landin’s
SECD machine with the J operator. Logical Methods in Computer Science,
4(4:12):1–67, November 2008. {103, 106}

[35] Olivier Danvy and Kevin Millikin. Refunctionalization at work. Science of
Computer Programming, 74(8):534–549, 2009. Extended version available as
the research report BRICS RS-08-04. {4, 5, 106}

[36] Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen. On one-pass CPS trans-
formations. Journal of Functional Programming, 17(6):793–812, 2007. {5, 16, 29,
107}

[37] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Har-
ald Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP’01),
pages 162–174, Firenze, Italy, September 2001. ACM Press. Extended ver-
sion available as the research report BRICS RS-01-23. {4, 5, 18, 47, 107}

[38] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Re-
search Report BRICS RS-04-26, Department of Computer Science, Aarhus
University, Aarhus, Denmark, November 2004. A preliminary version ap-
peared in the informal proceedings of the Second International Workshop
on Rule-Based Programming (RULE 2001), Electronic Notes in Theoretical
Computer Science, Vol. 59.4. {2, 5, 6, 14, 107}

[39] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Con-
trol and State in Imperative Higher-Order Programming Languages. PhD thesis,
Computer Science Department, Indiana University, Bloomington, Indiana,
August 1987. {4, 107}

[40] Matthias Felleisen and Matthew Flatt. Programming languages and lambda
calculi. Unpublished lecture notes available at <http://www.ccs.neu.edu/

home/matthias/3810-w02/readings.html> and last accessed in April 2008,
1989-2001. {1, 4, 5, 8, 38, 93, 101, 107}

[41] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD
machine, and the λ-calculus. In Martin Wirsing, editor, Formal Description
of Programming Concepts III, pages 193–217. Elsevier Science Publishers B.V.
(North-Holland), Amsterdam, 1986. {47, 94, 96, 107}

[42] Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages.
The MIT Press, third edition, 2008. {93, 107}

107

[43] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style.
In Peter Lee, editor, Proceedings of the 1999 ACM SIGPLAN International Con-
ference on Functional Programming, SIGPLAN Notices, Vol. 34, No. 9, pages
18–27, Paris, France, September 1999. ACM Press. {15, 107}

[44] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime sys-
tems within the lambda-sigma calculus. Journal of Functional Programming,
8(2):131–172, 1998. {16, 30, 45, 107}

[45] John Hatcliff and Olivier Danvy. Thunks and the λ-calculus. Journal of Func-
tional Programming, 7(3):303–319, 1997. {102, 107}

[46] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continua-
tions and coroutines. In Guy L. Steele Jr., editor, Conference Record of the 1984
ACM Symposium on Lisp and Functional Programming, pages 293–298, Austin,
Texas, August 1984. ACM Press. {61, 108}

[47] Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554,
1997. {8, 37, 108}

[48] Jacob Johannsen. An investigation of Abadi and Cardelli’s untyped calcu-
lus of objects. Master’s thesis, Department of Computer Science, Aarhus
University, Aarhus, Denmark, June 2008. BRICS research report RS-08-6. {6,
108}

[49] Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-
Naquet, and Martin Wirsing, editors, Proceedings of the 4th Annual Symposium
on Theoretical Aspects of Computer Science, number 247 in Lecture Notes in
Computer Science, pages 22–39, Passau, Germany, February 1987. Springer-
Verlag. {92, 108}

[50] Delia Kesner. The theory of calculi with explicit substitutions revisited. In
Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic,
21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL,
number 4646 in Lecture Notes in Computer Science, pages 238–252, Lau-
sanne, Switzerland, September 2007. Springer. {35, 108}

[51] Yoshiki Kinoshita. A bicategorical analysis of E-categories. Mathematica
Japonica, 47(1):157–169, 1998. {85, 108}

[52] Yves Lafont. Logiques, Catégories et Machines. PhD thesis, Université de Paris
VII, Paris, France, January 1988. {64, 108}

[53] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964. {6, 91, 108}

108

[54] Simon Marlow and Simon L. Peyton Jones. Making a fast curry: push/enter
vs. eval/apply for higher-order languages. Journal of Functional Program-
ming, 16(4-5):415–449, 2006. A preliminary version was presented at the
2004 ACM SIGPLAN International Conference on Functional Programming
(ICFP 2004). {18, 46, 108}

[55] Per Martin-Löf. About models for intuitionistic type theories and the notion
of definitional equality. In Proceedings of the Third Scandinavian Logic Sympo-
sium (1972), volume 82 of Studies in Logic and the Foundation of Mathematics,
pages 81–109. North-Holland, 1975. {87, 108}

[56] John McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part I. Communications of the ACM, 3(4):184–195, 1960.
{92, 108}

[57] Jan Midtgaard. Transformation, Analysis, and Interpretation of Higher-Order
Procedural Programs. PhD thesis, BRICS PhD School, Aarhus University,
Aarhus, Denmark, June 2007. {6, 109}

[58] Kevin Millikin. A Structured Approach to the Transformation, Normalization
and Execution of Computer Programs. PhD thesis, BRICS PhD School, Aarhus
University, Aarhus, Denmark, May 2007. {6, 109}

[59] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defi-
nition of Standard ML (Revised). The MIT Press, 1997. {5, 109}

[60] F. Lockwood Morris. The next 700 formal language descriptions. Lisp and
Symbolic Computation, 6(3/4):249–258, 1993. Reprinted from a manuscript
dated 1970. {93, 109}

[61] Johan Munk. A study of syntactic and semantic artifacts and its application
to lambda definability, strong normalization, and weak normalization in the
presence of state. Master’s thesis, Department of Computer Science, Aarhus
University, Aarhus, Denmark, May 2007. BRICS research report RS-08-3. {6,
109}

[62] Lasse R. Nielsen. A study of defunctionalization and continuation-passing style.
PhD thesis, BRICS PhD School, Department of Computer Science, Aarhus
University, Aarhus, Denmark, July 2001. BRICS DS-01-7. {6, 109}

[63] Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point promo-
tion. In Matthias Felleisen, editor, Proceedings of the Thirty-Fourth Annual
ACM Symposium on Principles of Programming Languages, SIGPLAN Notices,
Vol. 42, No. 1, pages 143–154, Nice, France, January 2007. ACM Press. {5, 16,
29, 96, 109}

109

[64] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoret-
ical Computer Science, 1:125–159, 1975. {1, 87, 102, 109}

[65] Gordon D. Plotkin. A structural approach to operational semantics. Tech-
nical Report FN-19, Department of Computer Science, Aarhus University,
Aarhus, Denmark, September 1981. Reprinted in the Journal of Logic and
Algebraic Programming 60-61:17-139, 2004, with a foreword [66]. {5, 16, 29,
96, 109}

[66] Gordon D. Plotkin. The origins of structural operational semantics. Journal
of Logic and Algebraic Programming, 60-61:3–15, 2004. {109}

[67] John C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of 25th ACM National Conference, pages 717–740,
Boston, Massachusetts, 1972. Reprinted in Higher-Order and Symbolic
Computation 11(4):363-397, 1998, with a foreword [68]. {5, 87, 109}

[68] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Sym-
bolic Computation, 11(4):355–361, 1998. {109}

[69] Guy L. Steele Jr. Lambda, the ultimate declarative. AI Memo 379, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, November 1976. {93, 110}

[70] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1978. Technical report AI-TR-474. {5, 110}

[71] Guy L. Steele Jr. and Gerald J. Sussman. Lambda, the ultimate imperative.
AI Memo 353, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, March 1976. {93, 110}

[72] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. The MIT Press, 1977. {101, 110}

[73] Yong Xiao, Amr Sabry, and Zena M. Ariola. From syntactic theories to in-
terpreters: Automating proofs of unique decomposition. Higher-Order and
Symbolic Computation, 14(4):387–409, 2001. {4, 110}

110

