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Abstract

In this paper, we address the issues of stability in
ATM networks. A network s stable if and only if all
the packets have a bounded delay. We first consider
ATM networks with FCFS scheduling policy. We then
study networks with priority driven scheduling policy.
For each network, we develop criteria for testing the
stability of an ATM network and methods of deriving
delay bounds in a stable network.

In previous work, the Cruz-Gallager-Parekh ring
has been a “benchmark” architecture to study the sta-
bility problem. For example, Gallager and Parekh
clatmed that the ring with size no more than four
switches is stable when the total utilization of the links
is less than 100% [10]. We validated this result. Fur-
thermore, we find that a ring with large number of
switches is stable if the total utilization of the links s

less than or equal to 73%.

1 Introduction

In this paper, we address the issue of stability in
communication networks. A network is said to be sta-
ble if all the data packets experience bounded delays
within the network. Obviously, unbounded packet de-
lays will have a detrimental impact on the performance
of any distributed application communicating via the
network. Therefore, ensuring stability within the net-
work has been a pivotal issue in the design and man-
agement of communication networks. Network sta-
bility has been a research problem studied by many
researchers. For example, it was established that for
satellite packet switching using the ALOHA protocol
if the network throughput is pushed much above 36%
then the network can be potentially unstable [7].

We choose ATM to address the issue of stability.
ATM networks are expected to provide guaranteed
quality of services (QoS). With the proliferation of
multimedia applications, bounded delay has become
an important quality of service requirement. Hence,
it is more important to ensure stability in ATM net-
works.
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The objectives of this paper are to first develop cri-
teria for testing the stability of an ATM network and
then once network stability is established, to deter-
mine the delay bounds of all the connections in the
network.

We first consider an ATM network in which first
come first service (FCFS) is the scheduling policy em-
ployed at the multiplexors, (for example the output
link schedulers of an ATM switch). We consider the
FCFS scheduling policy because it is widely available
in practical networks. For networks with arbitrary
topology, we develop the stability criteria and an it-
erative method to derive the delay bounds in a stable
network. We show that for a stable network the it-
eration procedure converges. Further, we also show
that the criteria for stability in a FCFS based ATM
network also applies to a network using any work con-
serving scheduling policy.

The stability problem for ATM networks has been
addressed by several researchers in the context of
a specialized ring topology (called Cruz-Gallager-
Parekh ring)[1, 10]. This network presents (in some
sense) the worst case scenario and becomes a “bench-
mark” to compare the techniques and results in the
study of stability. By applying theorems from fixed
point theory and by utilizing the link transmission
constraints we found that Cruz-Gallager-Parekh rings
with large ring size are stable if the total utilization
of the links is less than or equal to 73%. Our result
also validates Parekh’s claim that for Cruz-Gallager-
Parekh ring’s with ring size less than or equal to four
the system is stable when the total utilization of the

links is less than 100%[10].

We also addressed the stability problem for a net-
work with multiplexors employing a priority driven
scheduling mechanism. The stability of such networks
depends on the priority assignment mechanism em-
ployed at the different servers within the network. We
found that one class of priority assignment mechanism,
namely a static, fixed, and globally distinct priority
assignment, will guarantee the stability as long as the
utilization of the individual links is less than 100%.



2 Previous Work

Considerable progress has been made recently to-
wards solving the stability problem in ATM net-
works. The key factor which causes instability in
practical ATM networks is the presence of cyclic
inter-dependencies between the cell traffic of differ-
ent connections. There have been several approaches
to solve the problem. The first approach considers
ATM networks with specialized mechanism’s (both
hardware and software) so as to prevent cyclic inter-
dependencies between connections. Much of the pre-
vious studies using this approach have concentrated
on designing specialized scheduling policies for ATM
switches [5, 10, 15]. In [5, 15], non-work conserv-
ing systems were studied where traffic regulation and
restoration are used to ensure the network stability.
In [10], system stability was ensured by considering a
specialized weight assignment for the PGPS schedul-
ing policy in order to restore the connections traffic at
the output of a sever.

The other approaches deal with the problem us-
ing information on network topology or application
semantics. For example, [1, 10] considered ATM net-
works with the specialized ring topology. In [12], a
CAC algorithm for real-time applications was devel-
oped. The CAC algorithm addresses the traffic depen-
dence issue and determines if all the deadlines of real-
time messages can be met. In this paper, we consider
general ATM networks and establish stability criteria
for the networks with arbitrary topology and without
deadline specifications.

3 Problem Definition

In this section, we formally introduce the problem
of stability in ATM networks. First we present the
preliminary concepts and techniques which we employ
for studying the problem. We will also introduce some
of the notations and terminologies we use in the rest
of this paper.

First, we develop an abstraction of the system.
In an ATM network, hosts are connected to ATM
switches and ATM switches are connected to each
other using physical links. As an example, consider
the 4 switche ATM network shown in Figure 1. Al-
though this example may not be representative of a
typical ATM network, it is used to illustrate impor-
tant concepts discussed in this paper. As shown in
Figure 1, the switch itself consists of input ports, a
switching fabric, and output ports. An ATM cell ar-
rives at an input port of a switch, is transported by
the switching fabric to an output port, and is trans-
mitted along the physical link associated with the out-
put port. We model the ATM network as a collection
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Figure 1: An example of a four switch ATM network.

of servers. A server is an abstraction of a network
component that is traversed by a connection’s cells.
Therefore, the input ports, the switching fabric, the
output ports, and the physical links can be modeled
as servers serving ATM connections.

The servers are classified into two categories: con-
stant servers and wariable servers[l, 12, 13]. A con-
stant server 1s the one that offers a constant delay to
each cell that uses it and does not by itself change
the traffic flow characteristics of a connection. For
example, physical links and the switching fabric are
constant delay line servers. The function of an input
port is to demultiplex the arriving cells based on the
information in the cell header. This is achieved in con-
stant time by the hardware associated with the input
port. Thus, we can also model the input port of an
ATM switch as a constant demultiplexor server. The
functionality of an output port of a switch is more
complex. An output port may simultaneously receive
cells belonging to different connections competing for
transmission on the link associated with the output
port. Thus, cells may be buffered at an output port
and transmitted in an order that is determined by
the scheduling discipline employed by the switch hard-
ware. Note that an multiplexor server must be con-
sidered as a variable server since the delay suffered by
a cell in this server varies depending upon the queue
length in the buffer. Consequently, the traffic charac-
teristics of a connection at the output of this server
may differ from that at the input.

Figure 2 shows the same network modeled as a col-
lection of servers serving four connections M1, My, M3,
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Figure 2: Server representation of ATM network.

and M.

Consider the connection M7 from Host 1 to Host 4
shown in Figure 2. M; traverses 9 delay line servers
(5 physical links and 4 switching fabrics) and 4 de-
multiplexor servers (input ports of 4 switches) all of
which are constant servers. M; also traverses 4 multi-
plexor servers (output ports of 4 switches) which are
variable servers. Recall that the constant servers serv-
ing M only add a fixed amount of delay to M;’s cells
and do not change M7 ’s traffic characteristics. Hence,
their impact on M; can be accounted for by simply
subtracting the total delay suffered by M; at these
servers from M;’s delay requirement. The same holds
for other connections. In the rest of the paper, we as-
sume that the delay requirements of connections are
modified in such a way. Consequently, we eliminate
all the constant servers from further consideration and
focus only on the variable servers in the remainder of
the paper. Hence, now we can view a connection as
being served by a sequence of variable servers only.
We will often omit the prefix ‘variable’ when referring
to variable servers to avoid repetitiousness. Further,
we assume that each of these servers is given a unique
identity which is an integer.

We use the above abstraction to construct a
connection-server graph. A connection-server graph
is constructed as a labeled, directed graph with the
servers as its nodes. A directed edge is introduced
from server m to server n if there is a connection that
is served by server m followed by server n. The edge
is labeled by the connection that uses the servers in
immediate sequence. Figure 3 shows the connection-
server graph corresponding to the system shown in
Figure 2. The sources and destinations of connections
are also shown in the connection-server graph. The
connection-server graph is used to facilitate the dis-
cussion of network stability later.
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Figure 3: Connection-server graph representation.

We will use the following notations concerning the
set of connections in the connection-server graph.

e N is the total number of connections in the sys-
tem.

e M; is the i*? connection in the system, where 1 <
i< N.

o M is the set of N connections competing for re-
sources within the ATM network. That is,

MI{Ml,MQ,...,MZ',...,MN}. (1)

e K is the total number of servers in the system.

e [; is the number of links which enter server j.
We assume that a link into server j is uniquely
identified by an integer in the range [1, L;].

o Fy ;(I) is the maximum number of cells that can
arrive at server j over its k' input link in any
interval of length 1.

e m; ;1 denotes the membership of connection M;
in the k'" link into server j. That is,

1, if the connection M; enters
server s; by the kP link,
Mgk =
0, otherwise.

(2)

e 5(i,j) denotes the identity of the j!* server in the
path of connection M;.

e 5; is the total number of servers serving connec-
tion M;.

e H; 1s the sequence of servers serving connection
M;.

Hy = <s(4,1),...,8(4,5),...,8(4,8) > . (3)



® X;pn,; defines the precedence relation for the
servers in M;’s path.

1, if in the connection M;’s path
server h precedes server j,
Xi,h,j
0, otherwise.

o G, ; is the set of servers traversed by a cell of M;
before arriving at server j.

o F; ;(I) is the maximum number of M;’s cells that
can arrive at server j in any interval of length 7.

e d; ; is the worst case delay experienced by a cell
from connection M; at server j.

e d; is the worst case end-to-end cell delay expe-
rienced by a cell of connection M; and is given

by

di = disi)Fdisio) o+ dissy- (4)

For many applications deployed over ATM net-
works end-to-end cell delay is an important QoS pa-
rameter. Therefore, determination of bounds on end-
to-end cell delay i1s a pivotal issue in ATM network
analysis. To efficiently analyze the end-to-end delays
in ATM networks two important issues must be ad-
dressed.

1. System Stability: An ATM network 1s stable if
and only if for every connection M;, M; € M

d; < D, (5)

where D is a non-negative real number. ATM
networks with arbitrary topology can have cycles
in their connection server graphs. The presence
of cycles in the connection server graph may lead
to feedback dependency loops in the system. Due
to the presence of these loops the system may
be potentially unstable, i.e., connections in such
a system can have unbounded cell delays. Ob-
viously, 1t is not a fruitful exercise to determine
delay bounds in a potentially unstable system.
Therefore, determination of system stability is a
critical step in the determination of bounds for
connection’s cell delay.

2. End-to-end cell delay bounds: This addresses the
issue of deriving the end-to-end delays experi-
enced by cells of every connection in a stable net-
work. Since, we represent the connection as a
sequence of servers, the end-to-end cell delay of

a connection is the sum of the worst case delay
it suffers at every server along its route. There-
fore, in order to derive the end-to-end cell delay
of a connection we should derive the delay upper
bound at the servers.

Our goals are to first develop the criteria of stability
in an ATM network and then to derive delay bounds
at every server in the stable system. We analyze the
system of servers represented by the connection-server
graph. However, such an analysis requires

1. an uniform characterization of the traffic at the
input of every server, and

2. a systematic study of the scheduling policies em-
ployed at the servers.

In this paper, we assume that the connection M;’s cell
traffic at the input of any server is characterized by
F; ;(I). F; ;(I) specifies the maximum number of cells
that can arrive at server j in any interval of length 7.
We further assume that the cell traffic at the input of
connection M; is characterized by the piecewise linear
model with parameters 3;, and p;[1]. Hence, for any
connection M;, we have

Fi siy(1) = min(1, B; + pi * I). (6)

The cell traffic of many applications can be charac-
terized by the linear model. Nevertheless, in a later
section we are going to extend our results to encom-
pass applications with any other reasonable traffic de-
scription. The following theorem gives F; ;(I), M;’s
traffic characterization at the input of server j, when
the source traffic of M; is specified by (6).

Theorem 1 For any connection M;, if Fy o 1)(I) =
min(l, 3 + p; x 1) and j € Hy, j # s(i,1), then

I, I<dGij,
Fii(D Bitpi*Yyeq,, dig @)
+pi * 1, Gj < I
where
G = Bit+pi*Ygeq,, di,g. ®)

L—pi

The proof of the theorem is given in [8].

Theorem 1 implies that if the traffic entering the
network is constrained by a continuous piecewise lin-
ear function, so is the traffic flowing inside the net-
work.



Since in an ATM network, cells from different con-
nections are multiplexed at the multiplexor and trans-
mitted over its output link, it 1s useful to character-
ize the aggregate cell traffic over a single link. The
description of the aggregate cell traffic over a link is
given by the following theorem.

Theorem 2 The aggregate cell traffic over the k"
link at server j is given by

I I <njpx,
Fri(l) = N 9
i (1) 2oiz1 Mgk * (B +pi * 2 eq, di,(g )
+pi * 1), ik < 1.
where

N
Doim1 ik * [Bi + pi* deG“j di 4]
ik = iy . (10)
L= 37,0 mijk * pi

The proof of the theorem is given in [8].

The results of Theorems 1 and 2 are important in
analyzing the delays at the servers in the network.
We make use of Theorems 1 and 2 to derive the main
results developed in this paper.

The scheduling policy at a server determines the or-
der in which cells from a connection are transmitted at
the output of the server. Hence, the server scheduling
policy has a direct impact on the delays experienced
by a connection’s cell at a server as well as on the dis-
tortion of the connections traffic within the network,
i.e., the connection’s traffic may become more bursty.
The increase in burstiness may perturb the traffic flow
of other connections in the network, resulting in an in-
crease in the cell delays and traffic burstiness of those
connections. This scenario may be aggravated if the
connection-server graphs contains feedback loops, and
may lead the system to an unstable state in which the
delays of the connections become unbounded. In the
rest of the paper, we study two popular scheduling
policies: First come first serve (FCFS) and priority
driven scheduling. We develop criteria to ensure sys-
tem stability and give expressions for the delay bounds
with the above scheduling policies.

4 FIFO DRIVEN Scheduling

In this section, we establish the stability criteria
and delay bounds for an FCFS based ATM network.
Due to their implementation efficiency and cost, ATM
networks with FCFS servers are widely prevalent in
the market. An FCFS server transmits cells on its
output link in the order they arrive at its input. There-
fore, the worst case delay experienced by any cell at
the server is the same for any connection traversing it.

We need some notations and definitions which will
be used in this section. For an FCFS based ATM
network let d. ; be the worst case cell delay at server
j. Let JFCFS be the delay vector for all servers in the
system, 1.e.,

drers = (dity dizy oy di K ) foxr - (11)

For any

vector ¥ of size K, i.e., & = (21, %3, ..., TK)kx1
we define

7| = ;|- 12

o0l = _mas e (12)

Let g be the maximum of average link utilizations in
the network. For a system of N connections whose
input traffic is described by the piecewise linear func-
tion, we have

Li N
o= mjaXZZmiyjyk * p;. (13)
k=1i=1

At server 7, let Z]'(CTFCFS) be a function of d_’FCFS
such that

s=K
Zi(dpers) = Coj+ Y Cijxdes, (14)
s=1,s#7

where

L]‘ N L]‘ N
Coj = DY mije*Bit [ DD mijrxrpi—1

k=1i=1 k=11i=1

N
% Zi:l miijlj * 62 (15)
N )
=3 i Mg, * pi

and

L]‘ N Lj N
Coj = D> mijrxpit | > mijr*pi—1

k=1i=1 k=11i=1

N
o 2oi=t L R PR X (16)

N
L=2 s Ma g1, * pi

In (15) and (19) ;, 1 < l; < L;, is the index of a link
at server j such that

anj,Lj)a (17)

where 7; ; is given by (10). Furthermore, we define

i1, = max(n;,1,7;,2, - ..

N
£ .= min {Zi:1 My 5,0 * Pi* Xiys,j
53 k=1L N
=heeki =30 Mgk pi

5o (18)



and
L]‘ N Lj N

Csj = Yomigrrkpi [ YD migupi—1
k=1i=1 k=1i=1
*557]’. (19)

4.1 Networks with Arbitrary Topology

In this subsection, we consider an FCFS based
ATM network with arbitrary topology. Due to the ar-
bitrariness of the topology, a connection-server graph
can contain cycles even if the individual connection
paths are acyclic. These cycles may cause cyclic de-
pendencies among the traffic of different connections,
which may lead the system to be unstable. The main
result is given in the following theorems.

Theorem 3 For an ATM network with arbitrary
topology and FCFS based servers if

p< 1, (20)
and
s=K B
v = max( 5) < 1, (21)
J s=1,s#7
then

e the system is stable, and

° JFCFS satisfies the following equation

drcrs = Z(dpers), (22)

where
Z(JFCFS) = (Zl(CTFCFS)a ceey ZK(CTFCFS))}—(xy
(23)

o Furthermore, JFCFS 1s bounded by

||CTFCFS|| <

N
Lliilfi . (24)

The proof of the theorem is given in [8]. Theorem 3
gives the criteria for stability and an equation for the
worst case delay in an FCFS based ATM network with
arbitrary topology. Equation (22) can be solved by us-

ing a simple iterative procedure. Let cZES]CFS represent
a vector at the beginning of the first iteration, and let
J[}L]CFS the vector at the end of the n'? iteration. Be-

fore the first iteration, vector d—ffg]CFS is initialized as
follows.

0
CZ{F]CFS:(L I, ... 1)1T(><1~ (25)

In the n*? iteration, J[}L]CFS is computed as follows.
n 2/ 3in—1
CZEF]CFS = Z(CZ[FCF]S)' (26)

]

The question remaining is if LZESCFS converges to
JFCFS~ In order to demonstrate the convergence of
the procedure we need to determine the error between
JFCFS and J[}l]CFS, the vector at the end of the n*?
connection. That is, for server j we need to establish
the difference between the value of d. ; computed at
the end of the nt? iteration and the real value of dy ;.
For the iteration procedure to converge, this difference
must become zero for large value of n.

The next theorem gives an estimation of JFCFS at
the end of the n'” iteration.

Theorem 4 For an FCFS based ATM network in
which p < 1 and v < 1, if the iterative procedure
defined by (25) and (26) is used to solve (22) then at
the end of the n'* iteration

Ok
—1-v

1 0
* ||CZEF]CFS - d—tF]CFS Il (27)

ldrers —dpcrsll
The proof of the theorem is given in [8].
Note in (27)

I/Tl

lim
n—oQ 1 — UV

—0. (28)

Therefore, as n — oo, the right hand side of (27) tends
to 0. Hence, the iterative procedure converges.

4.2 Cruz-Gallager-Parekh Ring

In this subsection, we study ATM networks with
a specialized ring topology. This topology has been
used as an representative benchmark by Cruz, Gal-
lager, and Parekh to study the problem of stability
in ATM networks [1, 10]. Henceforth, we shall refer
to this topology as the Cruz-Gallager-Parekh (C-G-P)
ring.

The architecture of the C-G-P ring is described as
follows. The system consists of K 2 x 2 switches and
K connections, My, Ms, ..., M;,..., Mg. Each server
has a distinct 1dentity ¢d, where ¢d = 1,2,..., 2% K and
every connection has an acyclic path which traverses
K servers. For connection M;, s(i,1) =7 and

14+(i+j—2)mod K, 1<j<K-1,
S(i, _]) =

K471, j=K.

(29)
Figure 1 shows an example of a C-G-P ring with 4
switches.
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Figure 4: Plot of the upper bound of p given by (29).

The source traffic in the C-G-P ring is constrained
by a piecewise linear function. For connection M; in
the C-G-P ring, the traffic at the source is given by

Fi o)1) = min(1, B; + p x I), (30)

where 3; and p are positive real-numbers. Note that
the value of p is the same for all the connections.

The following theorem gives the criteria for stability
in an FCFS based ATM network with a C-G-P ring
topology.

Theorem 5 A C-G-P ring with FCFS servers is sta-
ble if

1, if2 < K <4,

(K1
/1_1_(7_2)_1’
(31)

The proof of the theorem is given in [8]. Figure 4
shows the plot of the upper bound of y given by (31).
We observe that as K is increased the upper bound of
i decreases. Further, for large values of K| the upper
bound of p converges to /3 — 1. This observation is
formalized in the following corollary.

p<
if K > 5.

Corollary 1 An ATM network with the C-G-P topol-
ogy and FCFS servers is stable if

< V3—1m0.732. (32)

The formal proof of the corollary is given in [8].

The results of Corollary 1 means that any ATM
network with the C-G-P ring topology is stable if the
maximum link utilization in the network is less than
73.2%. This is an efficient criteria to determine sta-
bility.

5 Priority Driven Scheduling

In this section, we study the stability problem in
ATM networks with priority driven scheduling for the
servers. We also establish delay bounds in such net-
works. In some ATM networks servers with priority
driven scheduling policies are used to provide different
levels of services. In priority driven scheduling, every
connection traversing a server is assigned a priority.
The server transmits the cells waiting in its queue in
an order given by the priority of the connections asso-
ciated with the cells. For example, if connection M;
has a higher priority than connection M5, then M;’s
cell will always be transmitted before connection My’s
cell. Thus, the worst case cell delay of a connection at
the server depends only on the traffic of the connec-
tions with a higher priority.

We first present the following notations which will
help in the analysis of priority based ATM networks.
Let P;; be the priority assigned to connection M; at
server j. If F;; is independent of time ¢, then the pri-
ority assignment is said to be a static one. A priority
assignment is said to be fized if for j # j',

Pz’,j = Pi,j’~ (33)

In this paper, we assume a static and fized priority as-
signment. Given that the priority assignment 1s fixed,
let P; be the priority for M; at all the servers. P is
the priority assignment vector for the set of N con-
nections. P is given by

—

P=(P, Py, ..., P, ..., PN)hw1-  (34)

We further assume that the priority assigned to
each connection is globally distinct, i.e., for i # '

F; 75 P (35)

It must be noted that if the connection priorities in a
static fixed system are not distinct then in the worst
case the performance of the static fixed priority based
system can reduce to that of a system using FCFS
servers. In that case, the results presented in Sec-
tion 4 are directly applicable. Without loss of gener-
ality, we assume that in the system of N connections,
My, Ms, ..., M;,..., My, we have

Pr>Py>...>P>...>Py. (36)

The following theorem, gives the criteria for stabil-
ity and the end-to-end delay in ATM network with
static, fixed, and globally distinct priority assignment

(SFGDP).

Theorem 6 For an ATM network with arbitrary
topology and SFGDP based servers, if u < 1, then



e the system is stable and

o the delay of M; at server s(i,j), for M; € M and
1<j<8;, is given by

L ; i—1
s(1,5) ¢ .
di sig) = Y ohei k=1 ks (i), % [
i,8(¢,j) — T ; i1
s(4,7) 4 .
=500 k=1"k,5(i,5),h * Pk

j-1
Jr—1 ﬁ,+m*z 1 %is(iyg)
ok * 30y0) dis(,g) + Pk * = ]

The proof of Theorem 6 are not given here due to
space limitations. An interested reader is referred to
[8].

Theorem 6 establishes the criteria for stability and
gives the expression for the worst case delay expe-
rienced by a connection in an ATM network with
SFGDP servers. Because of our assumption (36), the
delay of connection M; at its j** server given by equa-
tion (37) is dependent only on the delays experienced
by connections My, ..., M;_; and the delays experi-
enced at previous servers. Therefore, equation (37)
can be solved in a sequential order for ¢ = 1 then
¢t = 2 and so on. For a given value of ¢, the delays
at the servers are also computed in a sequential order,
l.e., j = 1 then 5 = 2 and so on.

6 Extensions

Recall that the stability criteria established in the
previous sections were based on the following two as-
sumptions.

1. The source traffic description function of all the
connections in the system is piecewise linear.

2. The scheduling policy used in the servers within
the network is either FCFS or SFGDP.

In this section, we relax the above two assumptions
and establish the stability criteria for a general ATM
network. Specifically we extend our results to encom-
pass systems in which the source traffic description
function 1s not piecewise linear. We also extend our
results to ATM networks with servers employing work
conserving scheduling policies other than FCFS and
SFGDP. The proofs are not given in this paper due to
space limitation. An interested reader is referred to
[8].
6.1 General Source Trafflic

Recall that in Theorems 3, 5, and 6 we assumed
that the source traffic of the connections were con-
strained by the piecewise linear traffic description
function. Although the source traffic of many con-
nections can be characterized by such piecewise linear

.(37)

functions, it is useful to establish the criteria for stabil-
ity in a system without this constrain. The following
theorem establishes the stability criteria for a general
source traffic description function.

Theorem 7 The criteria for stability given in The-
orems 3 and & hold if the source traffic satisfies the
following condition: Vi, M; € M, there are positive
real numbers p;, and T such that for I > T,

Fi/,s(iyl)(j) < pis (38)

where Fz'/,s i1 (I) is the derivative of F; s 1)(1) above
the variabge f

This theorem says that as long as the long term av-
erage rate of the source traffic is bounded, all the re-
sults for stability established using the piecewise lin-
ear function are also applicable for the general source
traffic function.
6.2 Work Conserving Scheduling

Here, we consider an ATM network which consists
of servers using any work conserving scheduling pol-
icy. A server employing a work conserving scheduling
policy always transmits a cell if its buffer is not empty.
The FCFS and priority driven scheduling policies are
examples of work conserving scheduling policy. In the
following theorem we establish the stability criteria
for an ATM network with servers employing a work
conserving scheduling policy.

Theorem 8 The criteria for stability given in Theo-
rems 3 and 5 hold if the scheduling policy at the servers
are work conserving.

This theorem can be easily proved by observing that
for a given source traffic the length of the maximum
busy interval for any work conserving server is the
same. Now if the system using FCFS servers is stable
then the length of the maximum busy interval at the
FCFS servers is bounded. Therefore, the length of the
maximum busy interval at the servers is also bounded
if the system were to have used some other work con-
serving scheduling policy at its servers. Further, since
for any work conserving server the maximum queue
length at the server is no more than the length of its
maximum busy interval, the queue length at the work
conserving servers is bounded when the length of its
maximum busy interval is bounded. Therefore, when
the system with FCFS servers is stable then the sys-
tem with any other work conserving servers is also
stable. Hence the criteria for stability given in The-
orems 3, 5, and 6 hold if the scheduling policy at
the servers are work conserving. Theorems 5 and 8



together generalize the claim made by Gallager and
Parekh [10] that that any C-G-P ring of 4 switches
with work conserving servers is stable when p < 1.
Our result indicates that when the ring size is large
(> 5), the network with any work conserving schedul-
ing policy is stable if u < /3 — 1.

7 Summary and Conclusions

In this paper we addressed the stability problem in
ATM networks. We have focused on the development
of criteria for testing the stability of an ATM network
and the determination of the delay bounds in a stable
network. The problem of stability in ATM networks
was studied by many researchers [1, 10, 12] However,
our work differs from the previous work by making the
following contributions:

We introduced two important results to analyze
ATM networks. The first result, presented in The-
orem 1, allowed us to express a connection’s traffic at
the input of the server in terms of the source traffic
of the connection as well as the delays suffered in the
previous servers. The second result, presented in The-
orem 2, allowed us to cahracterize the aggregate cell
traffic over an ATM link, and utilize it to accurately
analyze the input traffic at the servers.

For FCFS based networks with arbitrary topology,
we develop the criteria for network stability and an it-
erative method to derive the delay bounds in a stable
network. We show that for a stable network the it-
eration procedure converges. We also generalized the
result of stability in an FCFS based ATM network to
the one using any work conserving scheduling policy.

In previous work, the Cruz-Gallager-Parekh ring
has been a “benchmark” architecture to study the
stability problem. For example, Gallager and Parekh
claimed a C-G-P ring is stable if the total number of
switches is no more than 4 [10]. We validated this re-
sult. Furthermore, we found that a large size ring is
stable if the total utilization of the links is less than
or equal to 73%.

For ATM networks with priority driven scheduling
policies we found that one class of priority assignment
mechanism, namely a static fixed globally distinct pri-
ority assignment, will guarantee the stability as long
as the utilization of the individual links is less than
100%.

We also showed that the main results on stability
holds not only for piecewise linear source traffic model
(as assumed in most previous work) but also for gen-
eral source traffic as long its long term average rate
exists.

This work can be extended in several ways. It
would be ineteresting to consider the stability prob-

lem in connection based heterogeneous networks. To
establish the criteria of stability in such networks it
will be necessary to investigate characterizations of
the traffic within the network. Utilizing a consistent
traffic characterization function over a series of net-
work segments is a key step in this process.
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