
1

Understanding Processing Overheads of Network
Coding Based Content Distribution in VANETs

Uichin Lee, Seung-Hoon Lee, Kang-Won Lee†, Mario Gerla
University of California, Los Angeles IBM Thomas J. Watson Research Center†

{uclee,shlee,gerla}@cs.ucla.edu, kangwon@us.ibm.com†

Abstract—Content distribution in vehicular networks, such as
multimedia file sharing and software updates, poses a great
challenge due to network dynamics and high speed mobility.
In recent years, network coding has been shown to efficiently
support distribution of content in such dynamic environments,
thereby considerably enhancing the performance. However, the
related work in the literature has mostly focused on theoretic
or algorithmic aspects of network coding so far. In this paper,
we provide an in-depth analysis on the implementation issues
of network coding in wireless networks. In particular, we study
the impact of resource constraints (namely CPU, disk, memory,
and bandwidth) on the performance of network coding in the
content distribution application. The contribution of this paper
is two-fold. First, we develop an abstract model of a general
network coding process and evaluate the validity of the model
via several experiments on real systems. This model enables us
to find the key resource constraints that influence the network
coding strategy and thus to efficiently configure network coding
parameters in wireless networks. Second, we propose schemes
that considerably improve the performance of network coding
under resource constrained environments. We implement our
overhead model in the QualNet network simulator and evaluate
these schemes in a large scale vehicular network. Our results
show that the proposed schemes can significantly improve the
network coding performance by reducing the coding overhead.

Index Terms—Network coding, Content distribution, Coding
overhead analysis, VANETs

I. INTRODUCTION

Inter-vehicular communication has received a lot of atten-
tion recently due to safety concerns for drivers. Although the
main focus of inter-vehicular communication has clearly been
to improve the safety on the road, both industry and academia
have also been seeking novel applications, ranging from mo-
bile Internet to entertainment. In fact, the DSRC standard, a
key enabling technology of inter-vehicular communications,
has allocated several of its “service” channels specifically to
non-safety usage [17].

One of the key applications will be content distribution
among vehicles. We envision the distribution of shared multi-
media files to deliver road/traffic conditions, to patch software
installed in the vehicle (such as onboard satellite-navigation
systems), to advertise local establishments, etc. If the content
originates from an Internet server, vehicles passing by an
open Access Point (AP) can opportunistically download it
whenever they can establish a connection. Peer-to-Peer (P2P)
technologies can further help disseminate the content, over-
coming the constraint of the very short AP-vehicle contact
time at highway speeds. Internet P2P content distribution

schemes, however, cannot be directly applied to mobile ad
hoc networks (MANETs) because of rapid changing network
topology, and this has been a challenging issue of designing
efficient MANET file swarming protocols [20], [8], [28].

Gkantsidis et al. [13] recently proposed Avalanche, a con-
tent distribution protocol built on top of BitTorrent in the
wired Internet. In Avalanche, the original file is encoded
using random linear network coding at the source, and coded
“pieces” are exchanged and randomly mixed by intermediate
peers. The original file can be recovered when a peer collects
enough linearly independent coded pieces. Even with only a
local knowledge of the network, network coding improves the
performance of content distribution, because it increases the
chance for a peer to pull the last “missing” piece [13], [5].

Recently, content distribution based on network coding has
been introduced also in wireless networks [23], [31], [18], [4].
The major difference of this scenario compared to P2P Internet
file sharing is that in wireless networks, nodes naturally
communicate using multicast exploiting the broadcast nature
of the wireless medium; while the Internet does not support
network level multicast. Network coding in MANETs not only
enables peers to fully utilize the broadcast capacity [1]; with
proper redundancy, it also can effectively handle mobility,
interference, and unreliable channel characteristics – all at-
tributes common in VANETs [23], [31], [18].

While the benefits of network coding have been exten-
sively demonstrated in theory [1], [24] and for a number
of applications (though at a rather abstract level of protocol
operations) [7], [13], [23], [31], [4], the practical issues
of implementing and deploying network coding for content
distribution in MANETs have not been well established. In
this paper, we develop models that account for nodal resource
constraints such as CPU consumption, memory access, and
disk I/O. These factors are critical since network coding
introduces significant processing overhead at the intermediate
nodes. In our scenario, we assume that multiple applications
can run on each “embedded” mobile system (e.g., onboard
safety/navigation system, data access/entertainment systems,
etc.); thus, the file sharing application is resource limited. This
may create problems when users try to download large size
data such as high resolution maps. The most critical resource
in conventional file swarming is the communication capacity
(i.e., the upload/download bandwidth). However, when net-
work coding is used, other resources (i.e., CPU, memory, and
disk) also play an important role in the encoding/decoding at
intermediate peers.

2

The goal of this paper is to model and evaluate network cod-
ing resource consumption in content distribution applications.
To this end, we abstract the overall behavior of the application,
develop models for computation and disk I/O for a given
network coding configuration, and integrate these models into
an off-the-shelf discrete time network simulator. This allows
us to better understand the impact of limited resources in large
scale VANET scenarios. This paper extends our earlier work
in this area [22] and makes the following contributions:

• Overhead models that can accurately estimate at each
node the latency incurred by network coding. The models
clearly reflect the relationship between the computation
power and the coding rate. This is a major departure from
previous results mainly focused on reducing network
coding computation overhead [27], [26] or showing
network coding feasibility via experiments [12], [36],
[26]. Also, our disk I/O model takes the storage access
pattern into account, thus, precisely modeling the case
when all the necessary pieces have to be loaded back
into main memory before encoding. We validate the
accuracy of our models via extensive experiments in
various platforms (e.g., servers, laptops, and Internet
tablets). The model gives us a better insight into analyzing
the goodput of content pulling applications. It helps
identify the constraints that influence the choice of the
best network coding configuration.

• Methods for improving the performance of network cod-
ing using the extended simulation environment. More
specifically, (1) we propose a novel “remote buffer
aware” data pulling method that minimizes the disk I/O
overhead for local computation; and (2) we experiment
with recently published computationally efficient net-
work coding methods [26], [27]. We perform extensive
simulations to show the impact of overheads and the
effectiveness of these enhancements. These properties
are difficult to validate experimentally as they would
require large scale testbeds. Our results show that network
coding configuration has a great impact on the overall
performance, thus resource constraints must be carefully
considered to achieve the configuration that yields the
best performance. For given resource constraints, we
show that our proposed method significantly improves
the performance.

Our models are not limited to content distribution scenarios
– they can also be applied to other network coding based
protocols requiring the network coding configuration such as
an opportunistic routing protocol with network coding [4] and
network coding based message dissemination in delay tolerant
networks [37].

This paper significantly enhances our earlier work [22]
by including the study of resource constraints of embedded
systems in vehicles (Section II-B), extensive testbed experi-
ment results (Section V), and a complete set of simulation
results (Section VII). The rest of the paper is organized as
follows. In Section II-A, we review network coding based
content distribution in VANETs. In Section III, we formulate
the network coding configuration and discuss the importance

Gen#1 Gen#2

e1,1 p1,1 p1,2 p1,3

+
c1

ckp1,k

e1,2 e1,3

cke1,k

c2 c3

Network Coding Configuration: N=2, G=3

Encoding

p1,1 p1,2 p1,3 p2,1 p2,2 p2,3

Encoding
Vector

Fig. 1. An illustration of network coding: A file has six B KB pieces and
has configured for coding with the number of generations N = 2 (i.e., the
generation size G = 3). When GF(256) is used, the size of an encoding
vector is 3 bytes (i.e., G dimension vector). The bottom figure shows how an
encoded piece is created from the first generation.

of general resource constraints on the performance of network
coding applications. In Section IV, we propose disk I/O and
computation overhead models, and analyze the goodput of the
overall content pulling procedure. In Section V, we validate
our models via experiments. In Section VI, we investigate
performance enhancement features. In Section VII, we conduct
simulations to show the impact of resource constraints and the
effectiveness of enhancement features. Finally, we conclude
the paper in Section VIII.

II. BACKGROUND

A. Content Distribution using Network Coding in VANETs

In this section, we review CodeTorrent, a content dis-
tribution protocol using network coding in VANETs [23].
We extend the protocol to support “multi-generation” based
network coding for content distribution.

We assume that a file can be uniquely identified with an ID.
The original file is divided into N generations. Each genera-
tion i has G pieces (which represents the generation size) and
the piece size is fixed to B KB: i.e., pi,1, pi,2, · · · ,pi,G for
i = 1, · · · , N (see Figure 1). When distributing a file using
network coding, intermediate nodes exchange coded pieces
instead of original pieces. For the sake of consistency, we
assume that each original piece � has a unit vector e� in the
header which is called the encoding vector. The original piece
� of ith generation is then represented as p̃i,� = [e� pi,�]. For
each generation i, the server creates a coded piece via weighted
random linear combination of all the pieces:

∑G
k=1 ckp̃i,k.

Each coefficient ck is randomly drawn over a finite field, e.g.,
Galois Field (GF), where the entire operation takes place.
We use a 8-bit field, GF(256). Each piece contains a unit
vector at the source, thus the resulting encoding vector is
the same as [c1 · · · cG]. Each intermediate node checks the
received coded pieces for linear dependencies and only keeps
linearly independent pieces, which it proceeds to combine into
a new coded piece. If a received piece is linearly independent
of other pieces, we call the piece helpful or innovative and
similarly, the originator of the piece is considered helpful as
well. The total number of linearly independent coded pieces
is called rank. Note that each coded piece is marked with
the generation number. Only pieces belonging to the same
generation are used for encoding. For a given generation, after

3

Symbol Description

N Number of generations
B Piece size (KB)
G Generation size (or number of pieces per generation)

pi,j jth piece in generation i

pi,j,k kth symbol of jth piece in generation i

ck Random coefficient drawn over GF (256)
θ Avg. latency of reading a k-KB chunk from disk (s)

Rd Storage access rate for encoding (B/s)
δ Avg. latency of calculating a pair of GF mul/add (s)
Te Per symbol encoding time (s)
Re Per symbol encoding rate, 1/Te (B/s)
Rb Bandwidth share of a node in wireless networks (b/s)
Nr Number of requests per generation

TABLE I
DESCRIPTION OF SYMBOLS

collecting G coded pieces that are linearly independent of each
other, a node can recover the original data by solving a set of
linear equations. This process repeats until the node collects
all N generations. The list of symbols used in the paper is
summarized in Table I.

Each node periodically broadcasts or gossips its resource
availability to its 1-hop neighbors. One of the simplest ways
of representing the availability is to send an encoding vector
of each generation (i.e., as a result of random linear com-
bination of all the encoding vectors of the coded pieces in
the buffer). Given this, the receiver can realize whether the
originator has at least one linearly independent coded piece.
This method is, however, impractical since the size of a gossip
message increases with the file size. For instance, with 100
generations each containing 100 pieces, the size of a gossip
message as large as 10KB. To reduce the overhead, we use
a bit vector to represent the availability of each generation.
If a node inquires about a specific generation, the receiver
returns the corresponding encoding vector. This allows the
requester to determine whether the responding node would
be helpful. If so, the requester starts pulling data without
further negotiation. For generation selection, a node uses the
local rarest generation first policy similar to the rarest piece
first download policy in BitTorrent: a node chooses the least
available generation measured in terms of the number of nodes
having the generation (i.e., at least one piece).

For some mobile systems, it is possible that a peer is given
a limited buffer (memory) space and the buffer size is smaller
than the file size. If the system supports application-controlled
file caching where the kernel allocates physical pages to an
application, the applications can manage the pages using its
own buffer replacement policy [3]. As shown later, the disk
access pattern is per-generation basis, and thus, we assume that
the buffer replacement unit is a generation. The application
replaces the generation that is Least Recently Used (LRU).
A small fraction of space is reserved for keeping all the
encoding vectors (to check the linear dependency of a request
or coded piece) and receiving pieces from others (as receive
buffer). If application-controlled file caching is not supported,
we use the memory mapping for file access. Since we cannot

control the buffer management policy of an Operating System
(OS), we use the standard advisory function madvise() to
give OS hints about access patterns such as WILLNEED
and DONTNEED [25]. The application keeps track of the
popularity of each generation which is then used to enforce
the LRU policy. For instance, the application can evict part of
mapped pages with an option DONTNEED. Yet, the overall
memory reclamation depends on the OS’s reclamation policy.
Thus, the LRU policy will be loosely enforced.

We assume that every transmission is MAC/link layer
broadcasting, and a small random amount of wait time before
each transmission called broadcast jitter is enforced to reduce
collisions. Every node promiscuously listens to packets; i.e., a
node receives a specific packet even if it is not the designated
receiver, or the requester. If an overheard coded piece is
linearly independent of the coded pieces in its local memory,
then the node stores it. Our protocol can be configured
to pull content from neighbors at most k-hops away. The
resource advertisement is extended to k-hop. For data pulling,
we can either use existing routing protocols (e.g., AODV,
OLSR, etc.) or implement a customized routing protocol at
the application layer as in ORION [20] where k-hop limited
controlled flooding of resource availability can be used as a
route discovery request (e.g., RREQ in AODV) and a data pull
request as a route reply (e.g., RREP in AODV).

B. Resource Constraints of Embedded Systems in Vehicles

We now briefly review the system configuration of mobile
embedded systems in vehicles such as satellite navigation
(SatNav). Most mobile embedded systems use NAND flash
memory to store operating systems and map data [19]. They
typically use shadowing technique such that during system
booting time, the entire code image of an OS and applications
is copied from flash memory to DRAM for execution. SatNav
systems are typically equipped with 64MB or 128MB DRAM
and 1 or 2GB of NAND flash memory. For instance, Clarion
EZD580 has 64MB DRAM and 2GB NAND flash memory;
TomTom GO910 has 64MB DRAM and 1GB NAND flash
memory. Recently, vendors have released the second genera-
tion SatNav systems that support video displays; e.g., a SatNav
a user can plug in a USB memory stick to watch a movie.
Thinkware iNavi K2 has a Texas Instrument OMAP 2 multi-
media processor (ARM 1136, <528Mhz) [2], 256MB DRAM,
8GB of NAND flash memory, which even provides 3D map
navigation. Clarion NAX980HD also has a similar configu-
ration, but it has a 40GB HDD. Other portable multimedia
players have the similar configurations. For instance, Microsoft
Zune has a Freescale i.MX31L multimedia processor (ARM
1136, <528Mhz), 64MB DRAM, and 30GB of HDD [15].

In general, mobile embedded systems tend to keep the
DRAM size minimal. This is mainly because DRAM is power
hungry; i.e., each DRAM refresh cycle dissipates a few mili-
watts per MB [19]. Moreover, it is known that for a given
workload, there are some threshold values for DRAM and
flash memory sizes such that increasing the size beyond
those threshold values will not bring any further performance
gain [11]. For instance, smartphones and pocket PCs based

4

on Windows Mobile or Palm OS such as Dell Axim and
Palm Treo have about 64 or 128MB DRAM and 128MB or
more NAND flash memory. The trend is also true in recent
multimedia systems. For instance, Apple TV has a 1 GHz
Pentium M Crofton Processor, 256MB DRAM, and a 40G
HDD where GeForce Go 7300 video card uses 64MB of
DRAM space. Note that a large portion of DRAM is typically
used by an OS and the integrated video card; thus applications
have limited availability of memory.

Besides, mobile embedded systems typically use low-power
and -cost CPUs such as ARM and xScale whose clock speed is
less than 1Ghz, or low-power/cost multimedia processors such
as Texas Instruments OMAP 2/3 and RMI Alchemy Au series.
Although Intel recently released a high performance mobile
CPU called Atom (Silverthorne 1.6/8Ghz), its performance is
about the same as 900Mhz Celeron M [35].

In summary, we observe that SatNav and embedded sys-
tems are limited in terms of DRAM and CPU power, by
a few orders of magnitude, compared to standard desktop
machines or servers. The recent trend suggests that such a
computing/memory resource gap will continue exist between
embedded mobile systems and regular desktop machines in
the foreseeable future.

III. PROBLEM DEFINITION: NETWORK CODING

CONFIGURATION

The benefits of network coding based content distribution
in VANETs can be attributed to the following: (1) network
coding exploits the broadcast nature of the wireless medium;
(2) network coding mitigates the peer and piece selection
problem [5], which is extremely difficult to address in dynamic
VANETs; and (3) network coding can effectively handle the
random losses due to mobility and interference, which is
common in VANETs [31], [23]. One of the most important
performance factors in network coding is the “generation
size” (i.e., the number of pieces per generation). Real time
applications such as P2P streaming have a delay constraint
and before the data can be played an entire generation must
be received [31], [7]. Thus, the generation size must be small
enough to comply with such a constraint. However, content
distribution applications in general do not have a strict delay
constraint, and this case. we can have a larger generation size.

A. Impact of Generation Size

We first show that one must reduce the number of gen-
erations (i.e., increase the generation size) to improve the
network coding performance. Assuming that the bandwidth
is equally shared by M neighboring nodes over a long time,
a node can use a 1/M fraction of the channel for sending a
request for a piece that it wants to download. As the number of
neighbors increases, a node will spend more time overhearing
the channel than requesting for the pieces that are needed.
Assuming that the piece size is constant and a file has total
N pieces, we can consider two extreme scenarios: one that
uses a single generation and the other that uses N generations
(no coding). In the first scenario, an overheard piece is useful
if it is linearly independent of already received pieces. On

the other hand, in the N generation scenario the probability
that an overheard packet is useful depends on the number
of generations that a node has collected thus far. When a
node has collected k generations, the probability is given
as 1 − k/N , i.e., the probability decreases as we collect
more generations (the coupon collection problem). Given that
an overheard piece is useful with high probability [10], the
single generation scenario will take Θ(N) steps to complete
downloading. In contrast, the N generation scenario will take
Θ(N log N) steps. For a network coding configuration with
a number of generations between 1 and N , the number of
steps will fall somewhere inthe Θ(N) – Θ(N log N) range. In
this respect, we should choose a small number of generations
for better performance. However, it is not always possible to
have a few large generations because they adversely impact
the delay for downloads. We now investigate practical issues
of content distribution using network coding; namely we
consider the impact of communication, computation, and disk
I/O overheads.

Communication overhead: It is ideal scenario when the size
of a piece is the same as the size of a packet since a packet
loss (due to collision or channel errors) can be effectively
masked via network coding. However, packet-level network
coding becomes less efficient as the file size increases because
it increases the communication overhead. Recall that each
packet must contain a global encoding vector. For instance,
when distributing 100KB and 1000KB files using 1KB blocks,
we generate 100 and 1000 blocks, respectively. Assuming that
GF (256) is used (i.e., 8bit), the overhead is 100B (≈10%)
and 1000B (≈100%). In order to reduce overhead, we need to
create smaller size generations. In this case, however, packet-
level network coding will have many small size generations,
thus causing the coupon collection problem. To mitigate this
problem, the size of an individual piece may need to scale
proportionally to the file size, while considering various link-
level statistics [33].

Computation overhead: Random linear network coding
heavily relies on finite field operations. The computation
overhead is roughly proportional to the number of pieces
per generation, i.e. the generation size. Thus, using a small
number of large generations (to avoid the coupon collection
problem) may result in severe computational overhead that
may outweigh the savings in communication. In this case, the
encoding process may take more time than data transmission.

Disk I/O overhead: Since the main memory will be shared
by a number of applications and the OS, the memory space
that can be used for network coding may be limited. This
will causes disk I/O overhead, especially when mobile users
want to download large size data, e.g. multimedia files. For
network coding, it may be necessary to read all the pieces
belonging to the same generation from the storage device to
generate a coded piece. If the memory is full, some pieces may
have to be evicted to make room for the requested generation.
The delay incurred for disk I/O is huge compared to memory
access, and it is significant in VANETs because vehicles may
make only short contacts with APs and other vehicles. For
example, given a 250m (meter) wireless communication range,
vehicles driving in opposite lanes with 50miles/hour have only

5

11 seconds to communicate with each other. If we assume that
the size of a generation is 40MB. The nominal data transfer
rate of hard disks or flash memory based solid state disks is
about 40MB/s. If a miss happens (i.e., the requested generation
is not in the memory), it will take one second to make the
application ready for encoding, thus resulting in almost 10%
performance loss. Therefore, it is important to design the file
swarming algorithm so that disk access is minimized whenever
possible.

In this paper, we model the overheads incurred by CPU
and disk I/O, and use these overhead models to analyze
the performance of network coding and determine the main
constraints in the network coding performance.

B. Literature Review

Recent studies on the feasibility of network coding in real
testbeds [12], [26], [36] show that the measured performance
varies widely depending on the system characteristics. How-
ever, the fundamental reason for such performance variation
is not well understood. For instance, Gkantsidis et al. [12]
reported that their Avalanche scheme incurs little overhead
in terms of CPU and I/O using a large scale testbed. On
the other hand, it has been empirically observed that that
computation overhead degrades the performance, especially
when the generation size is large [36], [26]. Various per-
formance enhancement techniques have been proposed [9],
[26], [27], [34]. Cooper et al. proposed a sparse network
coding where each piece is selected for coding with a certain
probability, thus reducing the number of pieces involved in
the coding [9], [26]. Maymounkov et al. showed that one can
decrease the generation size, yet can still effectively handle
the coupon collection problem by using an erasure coding
at the generation level [27]. Shojania et al. [34] used CPU
acceleration techniques to improve the performance of Galois
field operations. However, the impact of CPU overhead and
disk I/O overhead was not studied in a unified framework to
understand their impact on the network coding performance,
especially in the context of VANET scenarios.

IV. DISK I/O AND COMPUTATION O/H MODELS

In this section, we present the request processing procedure
of a serving peer. We then model both disk I/O and compu-
tation O/H and analyze the goodput of the procedure. Finally,
we perform experiments to measure the model parameters.

A. Request service procedure

If a node receives a request, it first checks its memory buffer.
If the node has the data of the requested generation in the
buffer, it can start an encoding process. Otherwise, the node
must first read the generation from the disk before encoding.
After the data has been properly encoded, the node sends the
resulting coded piece to the requester. The overall procedure is
composed of reading a generation (R), encoding the data (E),
and sending the coded piece (S). Note that access to memory
by disks and network interface cards are typically done via
Direct Memory Access (DMA); therefore, we do not have

R
R E

S

req

E
S

(a) R/E/S pipeline

R
E
S

req

E
S

(b) E/S pipeline

R

E

req

SS

(c) No pipeline

Fig. 2. Possible parallelism scenarios with piece size B = 2KB

1 KB Pkt

Piece

SEND(PKT)

ENCODE(PKT)

READ(PKTS)

Fig. 3. Chunk-based reading example: G = 3 (generation size), B = 2KB
(piece size). A coded piece is composed of 2 independent 1-KB coded packet.
Each piece has a header composed of an encoding vector, generation number,
etc.

to worry about the interference between them. Thus we can
exploit thread-level parallelism to speed up the overall process.
Figure 2 shows three possible types of parallelism.

In Figure 3, we consider an example with R/E/S pipeline
when the generation size G = 3 and the piece size B = 2KB.
To generate a coded symbol, only 3 symbols (one from each
piece) are used; and the rest of the symbols are independent
of each other. Assuming that the unit of data transfer is 1KB,
the communication thread sends the newly encoded packet
as soon as it is ready. The server first checks its buffer to see
whether a requested generation is present in the working set. If
so, the encoding thread starts an encoding process (ENCODE);
otherwise, the disk I/O thread reads the necessary parts of the
generation from the disk (READ), then signals the encoding
thread. After the encoding is finished, a communication thread
sends the newly generated encoded packet out to the requesting
peer (SEND). In the case of E/S pipeline shown in Figure
2(b), all the pieces for a given generation are read at once and
then only E/S steps are pipelined. In the case of no pipeline
shown in Figure 2(c), all operations take place sequentially. We
assume that a unit of data transfer is 1KB, but to minimize
the overhead of system calls (or context switching time) and
efficient file access (e.g., the access unit is a page of size 4KB
in Linux) ,we can have a larger transfer unit.

B. Overhead models

We now present our disk I/O and computation O/H models,
and analyze the goodput of the request handling procedure.

1) Disk I/O overhead model: Disk access involves mechan-
ical motions and is inherently slow by orders of magnitude
compared to reading data from memory. Disk access delay
consists of three factors: seek time, rotational latency, and
transfer time. Seek time is the time to move disk heads to the

6

disk cylinder to be accessed. Rotational latency is the time to
get to a specific disk block in a cylinder. Transfer time is the
time to actually read disk blocks. The total average latency
for modern hard disks is in the range of 10-15msec and it
varies from vendor to vendor. Disks are typically optimized
for sequential access, and they can transfer large data files at an
aggregate of 40MB/s (for desktop-grade disks) or 80MB/s (for
enterprise server level disks). Recently, flash-based solid state
drives (SSDs) are becoming popular. The main difference is
that SSDs have much lower seek time and no rotational latency
compared to the conventional disks. The transfer rate is still
about the same as conventional disks. For instance, Transcend
TS32GSSD25-M has 0.1ms of seek time and the read/write
rates are 40MB/s and 32MB/s respectively.

Assuming that each generation is stored sequentially, we can
safely ignore the rotation latency of disks. Thus, we can use
the same model for mechanical disks and SSDs. To generate
a k-KB coded packet, we need to read all the corresponding
k-KB data per piece as in Figure 3. We call this “chunk-based
reading.” The access pattern will be a sequence of seek/read
pairs. Let θ denote the average latency to perform a pair of
seek/read operation. The overall time to read all the relevant
data takes Td = θ·G. The seek latency may be quite prohibitive
in the case of mechanical disks compared to SSDs, because the
latency is proportional to the generation size. As an alternative,
a node can sequentially read the entire piece at once (as in
E/S pipeline). In this case, the disk I/O latency is given as
GB
Rd

where B is the piece size and Rd seq is the sequential
data transfer access rate. Thus, the storage access rate Rd for
encoding can be summarized as follows:

Rd =

{
1

Td
= 1

θ · 1
G

GB
Rd seq

(1)

2) Computation overhead model: For a given generation
g, let p′g,k denote the kth code symbol in a coded piece, and
pg,i,k denote the kth symbol of the ith piece in the buffer. Let
ci for i = 1, · · · , G denote the ith encoding coefficient, which
is randomly chosen over a Galois Field of size 256 once at the
beginning of the entire procedure (i.e., symbol size is 8bit).
Each code symbol p′g,k is generated as follows:

p′g,k = c1 · pg,1,k + c2 · pg,2,k + · · · + cG · pg,G,k

For each symbol (pg,i,k) it requires a pair of multiplication
(i.e., ci · pg,i,k) and addition (p′g,k += ci · pg,i,k). The per-
symbol encoding time is proportional to the generation size
G, i.e., Te = G · δ where δ is the time of executing the pair
of operations. Let Re denote the per-symbol encoding rate
(byte/sec). Then, the rate is given as follows:

Re =
1
Te

=
1
δ
· 1
G

(2)

Equation 2 shows that the encoding rate is the function of δ
and G. The value δ is purely dependent on the Galois field
operation implementation and the processing power.

C. Goodput analysis

In wireless networks, the bandwidth is shared by multiple
nodes. When there are M nodes in a region, we assume
that the bandwidth is fairly shared by the M nodes. Let Rb

denote the bandwidth share. In the following, we show that
the goodput is mainly determined by the bandwidth share
Rb and the encoding rate Re. From the analysis, we show
that for given resource constraints, we can find the maximum
allowable generation size.

First we consider the goodput of the E/S pipeline. Assume
that there are total Nr requests of a specific generation. Recall
that G is the generation size, B is the piece size, Re is
encoding rate, and Rd is data transfer rate. When we have
Re ≥ Rb, the total amount of time to transfer Nr pieces is
GB/Rd + B/Re + NrB/Rb. The goodput is given as

Nr

G/Rd + 1/Re + Nr/Rb

. For large Nr, the goodput can be approximated to the
effective bandwidth Rb.1 When we have Re < Rb, the total
amount of time is GB/Rd + NrB/Re + B/Rb. Thus the
goodput is given as

Nr

G/Rd + Nr/Re + 1/Rb

. In this case, for large Nr, the goodput is approximated to
the encoding rate Re. In order to fully utilize the wireless
capacity, the key constraint is that the encoding rate Re should
be greater than the bandwidth share Rb, i.e., Re ≥ Rb. By
replacing Re with 1

δG , we have G ≤ 1
δRb

. Thus, this inequality
enables us to find the maximum generation size that satisfies
the condition. The above equations also show that the effect of
disk I/O disappears, as the number of requests per generation
increases. In Section VI, we propose a simple technique to
increase the number of requests per generation. Note that the
goodput of R/E/S pipeline is approximately the same as E/S
pipeline when the number of requests per generation is large.

V. MODEL VALIDATION VIA EXPERIMENTS

In this section, we validate our models via experiments
using a few representative systems.

A. Disk I/O overhead measurement

We investigate the impact of the pair-wise access patterns
(seek/read pairs) by measuring θ in real systems. We use two
sets of scenarios: (1) Maxtor 6Y120P0 ATA disk (120GB,
7200rpm, 8MB cache), Pentium 4 2.2Ghz, 1G DRAM (2)
Samsung OneNAND Flash SSD (256MB, 0.12μs), TI OMAP
2420, 128MB DRAM (Nokia N800). The measured maximum
sequential data access rate of a disk and a SSD is 55.73MB/s
(max data rate in spec: 133MB/s) and 14.69MB/s (max data
rate in spec: 27MB/s), respectively.

We consider generating a k-KB coded packet by selectively
reading all the corresponding k-KB data per piece, as shown

1Goodput is the application level throughput, i.e. the number of useful bits
per unit of time forwarded by the network from a certain source address to a
certain destination, excluding protocol overhead.

7

in Figure 3 (i.e., a sequence of seek/read pairs). Since the unit
of file access is a page whose size is 4KB in typical operating
systems such as Linux, k is a multiple of 4. We measure the
access latency of reading all the necessary pieces to generate
a k-KB coded piece with various k and piece sizes of 20KB
and 40KB. Our measurement program scans a 100MB file and
records the access time. For each run, we invalidate Linux
file buffer cache that keeps a set of pages of a file recently
accessed [21]. We report the average of 30 runs.

Figure 4 shows the average latency of reading k-KB chunk
from each piece. The results of a disk show that the average la-
tency of a 20KB scenario is much smaller than that of a 40KB
scenario, because the larger the piece size, the longer is the
seek time. Unlike a mechanical disk, flash memory has a very
small seek time, and the impact of piece size on the latency is
minimal. In fact, the access pattern of the chunk-based reading
is not completely random, and a disk can get the benefit of
pre-fetching (or read-ahead) that reads adjacent pages of data
of a regular file in advance before they are actually requested,
thus minimizing the access latency [38]. To validate this, we
turn off the pre-fetching option in our measurement program
using the file access advise interface, posix fadvise() with
POSIX FADV RANDOM option on. Figure 4 (with label
“No-Pf”) shows the difference between the cases with and
without pre-fetching and the partial sequential access can
exploit aggressive pre-fetching.

The figure also shows that the average latency increments
linearly with chunk size approximately. In our model, the
total reading latency is θ · G where G is generation size. For
instance, when the chunk size is 4KB, the overall latency of
a disk and a SSD with G = 100 and piece size of 20KB is
given as 13.4ms (298KB/s) and 47.8ms (84KB/s) respectively.
In contrast, reading all the necessary pieces into the memory
(full sequential access) will take 35ms (55.73MB/s) and 136ms
(14.69MB/s) respectively. If this rate is much faster than other
processes (encoding or sending), we need to consider using
the chunk-based reading. In general, we can decide which
disk access method and parameters to used depending on the
generation size and disk type.

B. Computation overhead measurement

We measure the per symbol encoding time (δ) in three dif-
ferent systems: a server (Intel Xeon Dual Core 5000 3.2GHz),
representing a high speed machine, a laptop (Intel Pentium 4
M 1.73GHz), representing a relatively powerful mobile device,
and a small mobile device (Nokia N800, 330 MHz TI OMAP
2420). We implement the Galois field operations based on
a table lookup with the optimization techniques proposed in
[16].2 We ignore the effect of cache misses since the lookup
table fits in the internal cache and the memory access pattern of
network coding operation is sequential. We use a Galois field
of size 256, and a 12MB file for this measurement. We increase
the generation size G from 10 to 50 in the step of 10 blocks.
We report the average of 1000 runs for each configuration.

2Shojania et al. showed that the Galois field operations can be further
improved by using hardware acceleration techniques such as SSE2 and AltiVec
SIMD vector instructions on x86 and PowerPC processors respectively [34].

Figure 5 presents the per-symbol encoding latency. The
figure shows that the encoding latency increases linearly as
shown in Equation 2. In fact, the plots fit well with the lines
with slope δ = 5.97ns, δ = 10.42ns, δ = 135ns for Xeon
(server), P4 (laptop), and TI (mobile) respectively. Thus, the
encoding rate equations are given as 166.9

G MB/s, 95.9
G MB/s,

and 7.77
G MB/s respectively. For a small generation size, e.g.

G = 10, the server machine could generate code packets at
the rate of 16.7MB/s, the laptop machine generates them at
the rate of 9.6MB/s, and the mobile machine generates them
at the rate of 777KB/s. For a relative large generation size,
say G = 100, these rates drop to 1.67MB/s, 960KB/s, and
77.7KB/s respectively. For laptop and mobile machines, we
see that the computation overhead can become the bottleneck
compared to the network bandwidth, e.g., 11Mbps 802.11b vs.
7.68Mbps (or 960KB/s) encoding rate.

C. Goodput measurement

We now show the impact of the wireless bandwidth on the
performance of network coding. Since the bandwidth share is
mainly determined by the total number of nodes sharing the
bandwidth (within their radio range), we vary the number of
nodes (NS=1 – 3) and measure the goodput of network coding
with different generation sizes (G=10, 50, 100). We setup a
server that receives all the blocks generated by other nodes.
For each experiment, a client node continues to generate/send
coded blocks to the server until it transfers 60MB of data.
We run each configuration 30 times and report the average
with the 95% confidence interval. Data transfers of clients
are initiated by the server via parallel SSH. We perform
the experiment in the early morning (2-6AM) to exclude
other WiFi interferences. We use the following experiment
environments.

• IBM Thinkpad R52 Laptop: Each laptop has Intel Pentium
4 M 1.73GHz and 512MB memory, and runs Fedora Core
5 with Linux Kernel v2.6.19. We use ORiNOCO 11b/g
PC Cards (8471-WD) and the MadWifi v0.9.3.3 Linux
Kernel device driver for the Atheros chipset to support
wireless networking in Linux. 802.11g is configured as
follows: ad hoc mode, no RTS threshold, and 54Mbps
(fixed).

• Nokia N800 Internet Tablet: Each tablet has a TI OMAP
2420 processor with 128MB DRAM, and runs OS 2007
with Linux Kernel v2.6.18. Nokia N800 has Conexant’s
CX3110X 802.11b/g chipset. Prism54 softmac driver is
used for wireless networking in Linux. In our tested
environments, however, 802.11g is not supported; thus we
use 802.11b for the measurements. 802.11b is configured
as follows: ad hoc mode, no RTS threshold, and 11Mbps
(fixed).

The measured goodput is reported in Figure 6. The figure
clearly shows that if the generation size is too large (NS=1,
G=50/100), a node cannot fully utilize its bandwidth. The
figure also shows that as the number of nodes increases, per
node bandwidth share decreases accordingly. Interestingly, this
allows a node to sustain a larger generation size; e.g., a node

8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 8 12 16 20 24 28 32 36 40

A
v
e
r
a
g
e

l
a
t
e
n
c
y

(
m
s
)

Chunk Size (KB)

Flash/40KB
Flash/20KB

Disk/No-Pf/40KB
Disk/No-Pf/20KB

Disk/40KB
Disk/20KB

Fig. 4. Average latency of reading k-KB chunk from each
piece

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50
 0

 1

 2

 3

 4

 5

 6

 7

 8

T
e
:

p
e
r

s
y
m
b
o
l

e
n
c
o
d
i
n
g

t
i
m
e

(
u
s
)

T
e

f
o
r

N
o
k
i
a

N
8
0
0

(
u
s
)

Generation size (G)

Nokia N800 330Mhz
0.12870*G

P4 M 1.73Ghz
0.01042*G

Xeon 5000 3.2Ghz
0.00597*G

Fig. 5. Per symbol coding latency as a function of generation
size G

0

5

10

15

20

N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00

1 Node 2 Nodes 3 Nodes

Av
er
ag
e
Go
od
pu
t
(M
bp
s)

N1 N1 N2 N1 N2 N3

(a) Thinkpad R52 (Pentium 4M 1.73Ghz, 802.11g)

0

1

2

3

4

N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00 N/
A

G1
0

G5
0

G1
00

1 Node 2 Nodes 3 Nodes

Av
er
ag
e
Go
od
pu
t
(M
bp
s)

N1 N1 N2 N1 N2 N3

(b) Nokia N800 (TI OMAP 2420, 802.11b)

Fig. 6. Goodput with different generation sizes and interfering nodes. The baseline goodput without network coding is denoted as “N/A”

can support G=50 in the two node scenario and G=100 in the
three node scenario.

When the generation size is large (i.e., piece size is small),
the measured goodput is quite close to the estimated coding
rate. For instance, the measured goodput of laptop and tablet
with G=100 is 7.2Mbps and 550kbps respectively. The results
are comparable to our model estimates for laptop, 7.68Mbps
(960KB/s) and tablet, 621kbps (77KB/s). However, the mea-
sured goodput deviates as the generation size increases. For
instance, the estimated goodput of Nokia N800 with G=10
is 6.21Mbps, whereas the measured goodput is about 3Mbps.
This results from the fact that although packet transmission
and coding processes can be parallelized, a piece must be
processed in the networking stack in the kernel. One of the
main causes is the MAC protocol overhead, because most
802.11 adapters implement part of the 802.11 MAC protocol
in the kernel to reduce the cost [30].

VI. PERFORMANCE ENHANCEMENT FEATURES

In this section, we present a novel algorithm called re-
mote buffer generation aware pulling to reduce disk access
frequency and present the techniques that reduce computation
overheads.

A. Remote Buffer Generation Aware Pulling

When a node uses a rarest generation first strategy, it
chooses the least available generation measured in terms of

the number of nodes. If the requested generation is in the
buffer, it can start generating a coded piece; otherwise, the
node has to read it from the disk. Many different nodes could
send requests, each of which is likely to ask for a different
generation because the topology keeps changing due to high
mobility. The problem is that these requests are competing for
the limited buffer space which may result in significant disk
I/O. Given the fact that the overhead is proportional to the
generation size, to circumvent this situation the serving peer
should have enough buffer space to handle all requests (i.e.,
the buffer size should be larger than the working set size): i.e.,
NR × G < Sb where NR is the expected number of distinct
generations requested, G is the generation size, and Sb is the
buffer size. The relationship shows that the generation size
should be limited to a certain threshold to avoid disk I/O.

We now propose the Remote Buffer Generation Aware
Pulling mechanism where a requester considers the buffer
status of a remote node (i.e., which generations are present
in the buffer). The scheme mitigates the disk I/O by reducing
the expected number of independent requests (a set of different
generations). To realize this, given N generations we represent
the buffer status of a node using an N -bit vector.3 The buffer
status of a node can be included in periodic “gossip” messages.

3As discussed in Section II-A, an application may not have a complete
control of memory management. In this case, it can still keep track of
generation usage statistics such as popularity of a generation. This information
can be gossiped to the neighbors.

9

Using the buffer status information of the neighbors, a node
can search for the generation with the lowest rank among all
the generations that are in the remote nodes’ buffers. If none
of the generations that are useful is present, the node simply
sends a request for the rarest generation, which will in turn
cause a disk access at a remote node.

B. Fast Network Coding

Sparse Coding: Since the computation overhead is propor-
tional to the generation size one can reduce the overhead
by decreasing the number of pieces used for coding. Sparse
random linear coding [9] has been proposed to achieve this:
each piece is selected with probability p ≥ (log G + d)/G
where G is the generation size and d is a non-negative
constant [9], [26]. This probabilistic approach, however, does
not consider the computation capacity of a node, which can
be measured by the maximum number of pieces that can
be encoded without degrading the performance (denoted by
γ). Since the number of pieces used for coding follows a
binomial distribution, the average number of pieces used for
coding is Gp, which is proportional to the generation size.
Even with this, if the generation size is too large, there is
a chance that the number of pieces may be greater than γ.
To deal with this problem, we approximate the behavior of
this probabilistic scheme by equating γ with the mean of the
distribution. As a result, we have the following condition:
γ ≥ log2 G + d. This means that one has to control the
generation size based on this condition, i.e., if G is too large,
we need to create more generations. One caveat is that data
dissemination occurs in a distributed fashion and the high
mobility in VANETs creates cycles of dissemination, and thus
it is hard to guarantee that encoded pieces from different peers
are linearly independent [23], [26].

Redundant Pre-Coding: The computation overhead can be
reduced by decreasing the generation size, yet this will result
in a large number of generations, leading to the coupon
collection problem. Maymounkov et al. [27] propose Chunked
Codes where they keep the generation size small to make
the network coding computationally efficient, and use erasure
coding at the generation level to circumvent the coupon
collection problem. As illustrated in Section III, this will not
fully utilize the benefit of broadcasting in wireless networks,
because the effectiveness of broadcasting decreases, as the
number of generation increases. In the following section, we
show this via extensive simulations.

VII. EVALUATION

In this section, we first describe the implementation details
of the protocols that we consider for evaluation, and simulation
setup in QualNet [32]. We then present the impact of disk I/O
and computation overheads and then evaluate the proposed
performance enhancement scheme.

A. Simulation setup

We use IEEE 802.11b PHY/MAC with 11Mbps data rate
and Real-Track (RT) mobility model [29]. RT permits to model

Fig. 7. Westwood area map used for the RT model

vehicle mobility in an urban environment more realistically
than other simpler and more widely used mobility models such
as Random Waypoint (RWP), by restricting the movement of
the nodes. The road map input to the RT model is shown in
Figure 7, a street map of 2,400m× 2,400m Westwood area in
the vicinity of the UCLA campus. A fraction of nodes (denoted
as popularity) in the network are interested in downloading the
same file. In the simulations, 200 nodes are populated, and
40% of the nodes are interested in downloading the file (i.e.,
total 80 nodes). The speeds of nodes are randomly selected
from [0, 20]m/sec. There are special nodes called Access
Points (APs), which possess the complete file at the beginning
of the simulation. Three static APs are randomly positioned on
the roadside in the area. To evaluate the impact of file size, we
use four different sizes of files, namely 5MB, 10MB, 25MB
and 50MB. Although the file size is relatively small compared
to multimedia files, we believe that they are large enough
to evaluate the performance of various schemes. The piece
size is set to 20KB. For the buffer replacement scheme, Least
Recently Used (LRU) is used to evict an entire generation
when the buffer is full. Buffer space size is represented using
the ratio of the memory buffer size to the file size. A gossip
message is sent to 1-hop neighbors in every 2 seconds. The
single hop pulling strategy is used to measure the performance
of content distribution while excluding the impact of routing
overheads.

We use the following H/W parameters to model disk I/O and
computation overheads: a nominal hard disk of Rd=40MB/s,
and a mobile device CPU of Re= 48

G MB/s (50% computing
power of Intel Pentium 4 M 1.7Ghz). We implement the
E/S pipeline scheme for multi-threading (see Figure 2(b)): a
missing generation is fully loaded into the buffer and then
encoding (E) and sending (S) processes are pipelined. We also
test the configuration of Nokia N800 whose Re= 7.77

G MB/s. For
this, we use the R/E/S pipeline for multi-threading due to its
fast random access capability of a SSD. We use two file sizes
(5MB and 10MB) for Nokia N800.

The disk and coding delays are scheduled based on the
disk I/O and computation models respectively. When a request
comes in, a node calculates the delay for which packet
transmission is delayed in the network queue. We define

10

the “download delay” as the elapsed time for a node to
finish downloading a file. How fast the overall downloading
process finishes measures the efficiency of a scheme. For each
configuration, we report the average value of 30 runs with the
95% confidence interval.

B. Simulation Results

Effects of Disk I/O and Computation O/H: We consider
scenarios with various numbers of generations: N=1, 5, 10,
50 and No Coding. Here, No Coding denotes the case where
network coding is not used (i.e., the generation size is 1). To
show the impact of overheads, we present the ideal case where
the overheads are not considered. We also vary the availability
of buffer space: 50% , 75%, and 100%. Note that we can see
the impact of “computational overhead” in the case of 100%
buffer space, because a node can keep the entire file in the
memory.

Figure 8 shows the results of the ideal case. The figure
shows that as the number of generations increases, the down-
load delay also increases. This confirms that the number of
generations must be kept as small as possible to achieve a
good performance. In Figure 9, we show the case of buffer
size = 100% to show the impact of computation overhead.
Unlike previous results, we notice that the single generation
scenarios perform worse than other scenarios, especially when
the file size is large (i.e., 50M and 25M). Yet it is still
better than the No Coding scenario where the generation size
is 2500 for a 50MB file and 1250 for a 25MB file, and
the corresponding encoding rates are 19.2KB/s and 38.4KB/s
respectively. This clearly shows that the encoding rate is a
bottleneck. As the number of generations increases, the effect
of computation overhead reduces. However, if the number of
generations is above a certain threshold, the download latency
begins to increase. The figure shows a “U” shape delay curve
for both 25MB and 50MB files. For example, consider the
plots of a 25MB file case; the delay decreases until N = 10,
and it increases thereafter. The figure also shows that the
processing capability is important; i.e., for a given file, Nokia
800 performs worse than Intel Pentium 4. For instance, for a
10MB file, it takes 561s and 1133s for Nokia N800 and Intel
Pentium 4 respectively. As the number of generation increases,
the impact of network coding overheads disappears, and thus,
the delay difference between these machines decreases.

Now consider the cases where the buffer size is smaller than
the file size (see Figures 10 and 11). The impacts of disk I/O
can be clearly seen by comparing Figures 10 and 11 with
Figure 9. Contrary to our common belief that network coding
improves the file swarming performance [23], the download
delay can be even worse than the conventional file swarming
(i.e., the No Coding scenario). The larger the generation size,
the higher the cost of loading a generation into the buffer;
thus, the impact of overheads decreases as the number of
generations increases, which is as expected.

Remote Buffer Generation-Aware Pulling (RBGAP): Fig-
ure 12 and Figure 13 show the download delay and the number
of pieces read from the disk with different buffer sizes, namely
100%, 75% and 50%. Note that the disk I/O overhead is

proportional to the number of pieces per generation, and the
probability that the requested generation is not in the buffer
is mainly determined by the buffer size. Thus, the impact of
finite buffer decreases with the number of generations. The
figure shows that RBGAP can effectively reduce unnecessary
disk I/Os, thereby reducing the total downloading delay.

Sparse Coding: To show the effectiveness of a sparse
random network coding, we vary the coding density (i.e.,
the fraction of the number of pieces used for encoding) with
25% increments. For instance, 25% and 50% coding density
on a 50MB file with N=1 show that the maximum number
of pieces used for encoding is 625 and 1250 out of total
2500 pieces respectively. We simulate the following cases:
a 50MB file with N = 1 (G=2500) and a 25MB file with
N = 1 (G=1250). We use the buffer size of 100% (i.e., no
buffer replacement overhead) to clearly see the benefits of
sparse coding. Figure 14 presents the results. As the coding
density decreases, the download delay also tends to decrease.
For instance, when we lower the coding density to 75%, we
observe a considerable delay reduction: from 2814s to 2599s
for a 50MB file and from 1349s to 1153s for a 25MB file.
However, if the coding density is too low, it is likely that a
linearly dependent coded piece is generated. As a result, a
node may not be able to fully utilize its bandwidth and thus,
the download delay increases.

Redundant Pre-Coding: The computation overhead can be
reduced by decreasing the generation size (i.e., increasing
the number of generations). However, our previous results
of the No Coding scenario show that a large number of
generations cause significant performance degradation. To
show this impact more clearly, we evaluate the pre-coding
mechanism as follows. We create N ′ = �(1+λ/2)N�. Nodes
can recover the original content by collecting any subset of the
generations, (1 + λ/4)N . We set λ = 1. For example, when
an original file is divided into 50 generations, we need 62 out
of 75 generations. Figure 15 shows the results of 50MB and
25MB files with the number of generations N = 1, 5, 10, 50.
The figure shows that pre-coding increases the average down-
load delay, mainly because the effectiveness of overhearing
decreases with the number of generations. Moreover, nodes
tend to download more number of generations than necessary,
thus wasting valuable resources. Hence, we conclude that the
generation level pre-coding is less efficient in our scenario.

VIII. CONCLUSION

The main focus of this paper has been to investigate the
impact of practical resource constraints of mobile devices
(namely disk I/O, computation overhead, memory constraints,
and wireless bandwidth) on the performance of content dis-
tribution using network coding in a highly dynamic wireless
network environment such as VANETs. We began our study
by modeling the impact of these resource constraints on the
network coding process and identified the key performance
parameters that will mainly determine the goodput of network
coding. We then validated our model by comparing them with
the performance numbers that we obtained from real systems,
including desktop machines, laptops, and handheld devices.

11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

50MB 25MB 10MB 5MB

A
v
g
.

d
o
w
n
l
o
a
d

d
e
l
a
y

(
S
)

#Gens:1
#Gens:5
#Gens:10
#Gens:50
No Coding

Fig. 8. Download delay without O/H

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

50MB 25MB 10MB 5MB 10MB:N 5MB:N

A
v
g
.

d
o
w
n
l
o
a
d

d
e
l
a
y

(
S
)

#Gens:1
#Gens:5
#Gens:10
#Gens:50
No Coding

Fig. 9. Download delay with O/H: Buffer 100% (10MB:N and
5MB:N show the results of Nokia N800 configuration)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

50MB 25MB 10MB 5MB

A
v
g
.

d
o
w
n
l
o
a
d

d
e
l
a
y

(
S
)

#Gens:1
#Gens:5
#Gens:10
#Gens:50
No Coding

Fig. 10. Download delay with O/H: Buffer 75%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

50MB 25MB 10MB 5MB

A
v
g
.

d
o
w
n
l
o
a
d

d
e
l
a
y

(
S
)

#Gens:1
#Gens:5
#Gens:10
#Gens:50
No Coding

Fig. 11. Download delay with O/H: Buffer 50%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

#Gens:5 #Gens:10 #Gens:50

A
v
g
.

d
o
w
n
l
o
a
d

d
e
l
a
y

(
S
)

Buffer100%
Buffer75%
Buffer75%+RBGAP
Buffer50%
Buffer50%+RBGAP

Fig. 12. Download delay with RBGAP (50MB file)

 20000

 40000

 60000

 80000

 100000

 120000

 140000

#Gens:5 #Gens:10 #Gens:50

N
u
m
.

P
i
e
c
e
s

r
e
a
d

f
r
o
m

t
h
e

d
i
s
k

Buffer75%
Buffer75%+RBGAP
Buffer50%
Buffer50%+RBGAP

Fig. 13. Total number of pieces read from the disk (50MB
file)

 500

 1000

 1500

 2000

 2500

 3000

50MB 25MB 10MB:N 5MB:N

A
v
g
.

d
o
w
n
l
o
a
d

d
e
l
a
y

(
S
)

Coding Rate 100%
Coding Rate 75%
Coding Rate 50%
Coding Rate 25%

Fig. 14. Impact of sparse coding

 500

 1000

 1500

 2000

 2500

 3000

50MB 25MB 10MB:N 5MB:N

A
v
g
.

d
o
w
n
l
o
a
d

d
e
l
a
y

(
S
)

#Gens:1
#Gens:5
#Gens:5+PC
#Gens:10
#Gens:10+PC
#Gens:50
#Gens:50+PC

Fig. 15. Impact of pre-coding

12

Based on the intuition that we gained from this modeling and
measurement exercise, we have designed a novel data pulling
strategy called, the remote buffer generation aware pulling
(RBGAP) that can significantly reduce disk I/O overhead at the
remote node, thereby can reduce the overall delay of content
distribution. To evaluate these ideas in a large scale network,
we have implemented our overhead model and the data pulling
scheme in the QualNet wireless network simulator. From the
simulation study, we have obtained several new insights that
will help improving the performance of applications based on
network coding. They include: (1) resource constraints have
a significant impact on the performance of network coding;
(2) data pulling that considers the resource constraints of
remote nodes can significantly improve the performance; (3)
the benefit of sparse random network coding is not always
obvious, and its parameter should be carefully chosen to
perform well; and (4) generation level pre-coding is not as
efficient in a highly dynamic environment as VANETs.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network Information
Flow. IEEE Transactions on Information Theory, 46(4):1204–16, Jul.
2000.

[2] Arm Architecture. http://en.wikipedia.org/wiki/ARM architecture.
[3] P. Cao, E. W. Felten, and K. Li. Application-Controlled File Caching

Policies. In USENIX’94, Boston, Massachusetts, Jun. 1994.
[4] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading Structure

for Randomness in Wireless Opportunistic Routing. In SIGCOMM’07,
Kyoto, Japan, Aug. 2007.

[5] D. M. Chiu, R. W. Yeung, J. Huang, and B. Fan. Can Network Coding
Help in P2P Networks? In NetCod’06, Boston, MA, Apr. 2006.

[6] S. Choi and K. Shin. A Class of Adaptive Hybrid ARQ Schemes for
Wireless Links. IEEE Transactions on Vehicular Technology, 50(3):777–
790, May 2001.

[7] P. A. Chou, Y. Wu, and K. Jain. Practical Network Coding. In
Allerton’03, Monticello, IL, Oct. 2005.

[8] M. Conti, E. Gregori, and G. Turi. A Cross-Layer Optimization of
Gnutella for Mobile Ad hoc Networks. In MobiHoc’05, Illinois, USA,
May 2005.

[9] C. Cooper. On the Distribution of Rank of a Random Matrix over a
Finite Field. Random Struct. Algorithms, 17(3-4):197–221, 2000.

[10] S. Deb, M. Médard, and C. Chout. Algebraic Gossip: A Network Coding
Approach to Optimal Multiple Rumor Mongering. In Allerton’04,
Allerton, IL, Sep. 2004.

[11] F. Douglis, R. Cáceres, B. Marsh, F. Kaashoek, K. Li, and J. Tauber.
Storage Alternatives for Mobile Computers. In USENIX’94, San Fran-
cisco, CA, Nov. 1994.

[12] C. Gkantsidis, J. Miller, and P. Rodriguez. Comprehensive View of a
Live Network Coding P2P System. In IMC’06, Brasil, Oct. 2006.

[13] C. Gkantsidis and P. Rodriguez. Network Coding for Large Scale
Content Distribution. In INFOCOM’05, Miami, FL, USA, Mar. 2005.

[14] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE
Transactions on Information Theory, 46(2), 2000.

[15] Inside Zune – the Hardware. http://happymac.ch/happyMacEN/News/
1C1515C1-A47C-4ADD-8A16-9B3A21C9AA5A.html.

[16] C. Huang and L. Xu. Fast Software Implementations of Finite Field
Operations. Technical report, Washington University in St. Louis, Dec.
2003.

[17] D. Jiang, V. Taliwal1, A. Meier, W. Holfelder, and R. Herrtwich.
Design of 5.9GHz DSRC-based Vehicular Safety Communication. IEEE
Wireless Communications, 13(5), Oct. 2006.

[18] M. Johnson, L. D. Nardis, and K. Ramchandran. Collaborative Content
Distribution for Vehicular Ad Hoc Networks. In Allerton’06, Monticello,
IL, Sep. 2006.

[19] M. G. Khatib, B.-J. van der Zwaag, P. H. Hartel, and G. J. M.
Smit. Interposing Flash between Disk and DRAM to Save Energy for
Streaming Workloads. In ESTIMedia’07, Salzburg, Austria, Oct. 2007.

[20] A. Klemm, C. Lindemann, and O. P. Waldhorst. A Special-Purpose
Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks . In
VTC’03, Orlando, FL, Oct. 2003.

[21] A. Lawrence. Invalidating The Linux Buffer Cache. In Linux Developer
News, Jan. 2007.

[22] S.-H. Lee, U. Lee, K.-W. Lee, and M. Gerla. Content Distribution in
VANETs using Network Coding: The Effect of Disk I/O and Processing
O/H. In SECON’08, San Francisco, CA, June 2008.

[23] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla. CodeTorrent: Content
Distribution using Network Coding in VANETs. In MobiShare’06, Los
Angeles, CA, Sep. 2006.

[24] J. Liu, D. Goeckel, and D. Towsley. Bounds on the Gain of Network
Coding and Broadcasting in Wireless Networks. In INFOCOM’07,
Anchorage, AK, May 2007.

[25] R. Love. Linux System Programming. O’Reilly, 2007.
[26] G. Ma, Y. Xu, M. Lin, and Y. Xuan. A Content Distribution System

based on Sparse Linear Network Coding. In NetCod’07, Miami, FL,
USA, Mar. 2007.

[27] P. Maymounkov, N. J. A. Harvey, and D. S. Lun. Methods for Efficient
Network Coding. In Allerton’06, Monticello, IL, Sep. 2006.

[28] A. Nandan, S. Das, M. Y. Sanadidi, and M. Gerla. Cooperative
Downloading in Vehicular Ad Hoc Wireless Networks. In WONS’05,
St. Moritz, SWITZERLAND, Jan. 2005.

[29] A. Nandan, S. Das, S. Tewari, M. Gerla, and L. Klienrock. AdTorrent:
Delivering Location Cognizant Advertisements to Car Networks. In
WONS’06, Les Menuires, France, Jan. 2006.

[30] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald. SoftMAC—
Flexible Wireless Research Platform. In HotNets-IV, College Park, MD,
Nov. 2005.

[31] J.-S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Médard. CodeCast:
a Network-Coding-Based Ad Hoc Multicast Protocol. IEEE Wireless
Communications, 13(5), Oct. 2006.

[32] Scalable Networks. http://www.scalable-networks.com.
[33] P. Samar and S. B. Wicker. On the Behavior of Communication Links

of a Node in a Multi-hop Mobile Environment. In MobiHoc’04, Tokyo,
Japan, May 2004.

[34] H. Shojania and B. Li. Parallelized Progressive Network Coding with
Hardware Acceleration. In IWQoS’07, Chicago, Illinois, Sep. 2007.

[35] Erster Benchmark von Intels Silverthorne. http://www.computerbase.de/
news/hardware/prozessoren/intel/2008/maerz/erster benchmark intels
silverthorne.

[36] M. Wang and B. Li. How Practical is Network Coding? In IWQoS’06,
New Haven, CT, Jun. 2006.

[37] J. Widmer and J.-Y. L. Boudec. Network Coding for Efficient
Communication in Extreme Networks. In CHANTS’05, Philadelphia,
Pennsylvania, Aug. 2005.

[38] F. Wu, H. Xi, J. Li, and N. Zou. Linux Readahead: Less Tricks for
More. In Linux Symposium’07, Ottawa, Ontario, June 2007.

