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Virtual (database) screening (VS) is an
increasingly important component of the
computer-based search for novel lead com-
pounds. There are, fundamentally, two ap-
proaches to the general problem: ‘VS by
docking’, which requires knowledge of the
3D structure of the target protein binding site
to prioritize compounds by their likelihood
to bind to the protein; and ‘similarity-based
VS’, where no information on the protein is
necessary – instead, one or more compounds
that are known to bind to the protein are
used as a structural query. The screening
procedure extracts compounds from the
database according to an appropriate similar-
ity criterion. In order for the screening
procedure to be effective, this criterion
should regard molecules that bind tightly to
the same proteins as similar.

Docking has been the subject of several
recent reviews [1–7]. Here, we complement
these reviews with a summary on new devel-
opments in VS methods, based on molecular
similarity. Methods based on pharmacophore

generation and search (recently reviewed in
refs [8,9]) have been excluded from the review.
Here, we focus on methods that analyze the
structure of the complete ligand molecule.
In particular, we review methods that have
the potential to handle large sets of ligands
(thousands to millions).

Small-molecule alignment
The most accurate but also the most
comprehensive approach to ligand-based VS
is a detailed computational analysis of the
structures of the two molecules to be com-
pared. Take the docking paradigm as a starting
point: rather than placing the ligand into
the binding site, which, in this scenario, we
have no access to, a compound that is
known to bind to the target protein (such as
the natural substrate or another inhibitor)
is used as a ‘reference molecule’. During
screening, the molecules from the com-
pound database (here, called ‘test mol-
ecules’) are superposed onto the reference
molecule. In terms of the well-known lock-
and-key principle, we compare two flexible
keys here.

The superposition places chemically simi-
lar parts of the molecules on top of each
other with a preference on aligning groups
of the molecules that can participate in the
same kind of short-range interactions (such
as H-bonds). The ‘FlexS system’ [10] is based
on such an approach. As the name suggests,
the superposition method is a variant of the
sibling docking procedure, FlexX [11]. FlexS
keeps the reference molecule rigid and con-
siders the test molecule as flexible. It offers
several alternative superpositions for each
molecule pair and rank-orders them, accord-
ing to a similarity score. The software requires
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There are several methods for virtual screening of databases of small

organic compounds to find tight binders to a given protein target. Recent

reviews in Drug Discovery Today have concentrated on screening by

docking and by pharmacophore searching. Here, we complement these

reviews by focusing on virtual screening methods that are based

on analyzing ligand similarity on a structural level. Specifically, we

concentrate on methods that exploit structural properties of the complete

ligand molecules, as opposed to using just partial structural templates,

such as pharmacophores. The in silico procedure of virtual screening (VS)

and its relationship to the experimental procedure, HTS, is discussed, new

developments in the field are summarized and perspectives on future

research are offered.
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about 30 s for a superposition on a single CPU, and
returns a reasonably accurate superposition in approxi-
mately 70% of the cases on a benchmark dataset (Box 1
and Ref. [10]; for an example, see Figure 1). The generally
accepted standard of truth here (i.e. the molecular super-
position that we want to rediscover by the computational
method) is the superposition that the two molecules
attain inside the same binding site of the target protein
(available only for test cases). Enrichment factors of
between 10- and 55-fold have been reported using FlexS
[12,13].

Jones et al. have developed GASP, a molecular superposi-
tion procedure that is based on a genetic algorithm [14]. It
is slower than FlexS but has the advantage that it can han-
dle both the reference and the test molecule, flexibly. This
can be of help in cases where no conformational prefer-
ences can be assigned to either of the molecules. Wild et al.
optimized the alignment of molecular electrostatic potential
(MEP) fields describing the two molecules [15]. For this
they also used genetic algorithms.

In their programme MIMIC, Mestres et al. [16] follow a
relatively typical approach, in which molecules are repre-
sented as sets of Gaussian functions, modeling fields of
properties. The alignment is derived by gradient-based
optimization of a scoring function that assesses the overlap
of the respective fields. The most widely used functions for
this purpose are the Carbo- [17] and the Hodgkin-Indices
[18], respectively.

Other field-based approaches use a 3D grid around a
molecule and calculate certain location-specific properties
for each grid point. Peter Goodford’s GRID program [19] is
certainly the pioneering approach in this direction. It cal-
culates an interaction potential with a virtual probe atom
at the grid location. To perform a comparison, either the
fields of two molecules or the molecules themselves have
to be aligned in 3D space.

More recently, Krämer et al. and Pitman et al. reported on
fFlash, a method for 3D database screening that is based on
molecular superposition [20,21]. The approach is fragment-
based. Adjacent pairs of fragments in the two molecules to be
compared are conformationally sampled and the resulting
variety of presenting binding features is stored in a lookup
table. Virtual screening using a query compound then
constitutes an on-the-fly reassembly of the fragmented com-
pounds, using the wide-spread, graph-based procedure of
clique detection on the feature patterns in the lookup table.

Hahn et al. describe ligand-based virtual screening that
is performed purely on the basis of shape-filtering [22].
Similarly, a more recent approach by Putta et al. [23]
rapidly detects shape matches, using a rough alignment
that is derived from second-order moments of the conformer
shape, followed by a binary comparison of steric occu-
pancy on a grid. In the latest incarnation of this program,
partial shape matches can be found via a more elaborate
scheme of local moments and feature-type annotation of
the shapes [24]. More detailed recent reviews on small-
molecule alignment can be found elsewhere [25,26].

Descriptor-based screening: molecular topology as
an efficient descriptor
Ligand superposition is computer-intensive: a single mol-
ecular comparison takes at least several seconds. To facilitate
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Box 1. Benchmark datasets for virtual screening

The only publicly available source of a large dataset with
biological assay data are compiled by the National
Cancer Institute and available at: http://dtp.nci.nih.
gov/docs/3d_database/structural_information/structural_
data.html

FlexS-77 is a benchmark dataset for ligand-superpo-
sition methods, comprising 77 ligands that have been
selected from inhibitors of 14 proteins, such that the
protein–ligand complex is structurally resolved. The
dataset is available at: http://www.biosolveit.de/
software/flexs/html/dl-datasets.html

FlexX-200 is a benchmark dataset for protein–ligand
docking, comprising 200 protein–ligand complexes.
This dataset is available at: http://www.biosolveit.de/
software/flexx/html/dl-datasets.html

The Cambridge Crystallographic Data Centre and
Astex have provided another curated benchmark dataset
for protein–ligand docking, comprising 305 protein–
ligand complexes (http://www.ccdc.cam.ac.uk/prods/
validation_set/).

Figure 1. Superposition of methotrexate (MTX) and
dihydrofolate (DHF) inside the binding pocket of dihydrofolate
reductase. Green: MTX (crystal),Yellow: DHF (crystal) ,
Red: Superposition of DHF onto crystal MTX by FlexS.



searching through large chemical databases for molecules
that are similar to a given query molecule, representations
that allow for a much more time-efficient comparison (or
even indexing of the database) are of central importance.
The selection of molecular descriptors that are suitable for
this purpose can either be structured by the type of mol-
ecule information used (macroscopic, topological or 2D, or
3D) or by the structure of the final descriptor (scalar, linear
or non-linear). Owing to the wide application of quantitative
SAR (QSAR), an enormous number of different descriptors
are available.

Perhaps the oldest way of expressing similarity between
molecules is on the basis of values such as molecular
weight, log P and so on. The industry-wide success of
Lipinski’s ‘Rule of 5’ [27], using four whole-molecule prop-
erties (weight, log P, number of H-bond donors and H-bond
acceptors), is an impressive example of how useful whole
molecule descriptors can be in drug design.

A more detailed view of the molecular structure is cap-
tured by linear descriptors that encode many structural
properties of the molecule in a binary- or real-valued vec-
tor. Each position in the vector stands for a property, such
as the presence of some specific functional group or the
occurrence of two specific atoms a specific number of bonds
apart. (e.g. for binary descriptors, a 1 or a 0 at a particular
position of the vector signifies that the molecule either
does or does not have the corresponding property, respec-
tively). Frequently used descriptors, such as MACCS
structural keys (MAACS II, MDL Information Systems;
http://www.mdli.com), Daylight (DAYLIGHT Software
Manual, Daylight; http://www.daylight.com) or Unity
Fingerprints (UNITY, Chemical Information Software 4.0,
Tripos; http://www.tripos.com), are based on this concept.
Instead of binary descriptors, numerical properties, such as
the number of occurrences of an atom in a molecule,
might be used. Such numerical vectors are also called holo-
grams [28]. There are many such properties, leading to de-
scriptor vectors that have lengths of many thousands, even
millions, in the case of some pharmacophore descriptors
(e.g. Ref. [29]). Once a vector representation is created, the
similarity between two molecules can be expressed by
functions like the Tanimoto or cosine coefficient, or even
the Euclidean distance [30]. Owing to the simplicity of
these functions, only a few CPU cycles are necessary for a
similarity calculation.

Instead of considering topology only, the 3D properties
of a molecule can be encoded in a linear descriptor (such
as the distance between functional groups, see [31,32], or
elementary shape properties, like shortest and longest
distances along PCA axes [20]). 3D information usually
pertains to a fixed conformation. However, molecules are

generally flexible and the conformation that they adopt
in the binding site of the receptor protein might be quite
different from the one that was taken to compute the 3D
descriptor information. One approach to solving this
problem is to generate multiple conformations and com-
bine the 3D information [29]; however, this has its disad-
vantages, because the 3D features in a descriptor are
assumed to exist simultaneously – an erroneous assump-
tion, if they originate from different conformations. This
is one reason why 2D descriptors frequently outperform
3D descriptors [33–35].

One disadvantage of the 2D molecular descriptors that
have been described so far, is that they cannot adequately
gauge the molecular similarity of pairs of compounds
that are structurally different but behave alike in binding
to a protein [36]. Such a similarity measure is needed if
‘scaffold hopping’ (i.e. moving from a given compound
in one structural class to one that has similar binding
behaviour but is structurally significantly different) is to
be performed. Molecules with a different scaffold to the
query molecule are the typical starting point for a new
lead series. Therefore, scaffold hopping is a basic require-
ment for VS procedures, not least for circumventing
patent claims.

In the search for such a similarity measure, Rarey and
Dixon [37] developed a descriptor that, besides properties
of the 2D formula, also captures the relative arrangement
of functional groups in the molecule. Their ‘Feature Tree’
(FTree) descriptor constitutes a graph (tree) that captures
the overall topology of the molecule. In contrast to the
reduced graph approach, proposed earlier [38–40], FTrees
produce a more detailed description of physicochemical
properties and are combined with a matching procedure
that calculates optimal assignments at a higher resolution
[37]. The nodes of the tree represent functional groups of
the molecule; edges connect nodes as in the chemical
structure. Several physico-chemical properties, or features,
are associated with each node. The similarity of two mol-
ecules is determined by matching of the two corresponding
trees (Figure 2). A numerical similarity score quantifies
the quality of the matching, ranging from zero (com-
pletely dissimilar) to one (identical). The matching relates
the nodes in one tree onto nodes in the second tree,
preserving the topology of the trees and maximizing the
similarity score.

Tree mapping is computationally more difficult than
vector comparison; thus, the throughput of FTrees is two to
three orders of magnitude slower (a few hundred per
second) than that of conventional linear descriptors (tens
of thousands per second). However, the Feature Tree
descriptor is more accurate in describing properties that are
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relevant for binding and is consequently less dependent on
the molecular topology [41]. This increases the potential for
identifying new structural classes of active compounds.

Tree-like descriptors are not the only non-linear descrip-
tors. To describe the relative orientation of interacting
groups, field-based approaches are in use. The associated
alignment problem (as discussed previously) is certainly
the major obstacle for large-scale applications. To avoid
the alignment step, procedures are used to convert the
nonlinear descriptor back into a linear one; one possi-
bility is to extract characteristic features of the field
description [36,42].

In principle, any kind of measure can be used to create a
linear descriptor by using a reference panel of compounds
or target proteins. An interesting example of this technique
is affinity fingerprints, which can be either experimental
[43] or virtual [44]. Here, the affinity of a molecule to a ref-
erence set of proteins is measured or calculated, resulting in
an affinity vector. If the binding behaviour of the molecules
to the reference panel is similar, it can be expected that they
also behave similar in binding to an unknown protein.

From virtual screening to virtual searching:
exploring combinatorial chemistry spaces
Compound databases can have up to several millions of
compounds, however, they reflect only a tiny portion of the
universe of compounds that can be synthesized, in princi-
ple. One possible way of covering a broader range of com-
pounds is by definition of molecules, based on molecular

fragments and rules, describing how these
fragments can be combined to result in a
valid molecule. Owing to the combinator-
ial nature of such chemistry spaces, a few
thousand fragments, in combination with
a dozen linkage rules, are sufficient to
create a virtual compound space that con-
tains more than 1020 molecules – a trillion
times more than that currently contained
in the largest compound collections, such
as Beilstein (Crossfire Beilstein Database,
Beilstein Chemiedaten und Software
GmbH and MDL Information Systems;
http://www.beilstein.com). Although it is
difficult to predict whether a compound
can actually be synthesized, a careful se-
lection of fragments and linkage rules pro-
vides chemistry spaces that are reasonably
accessible via synthesis [45]. Several ap-
proaches, for example, focused or diverse
combinatorial library design, or structure-
based de novo design, explore such spaces.

To enable similarity searching in a chemistry space,
completely new algorithmic approaches were required, be-
cause the traditional method of enumeration and search
was not compatible. If, however, the problem is formu-
lated as a combinatorial optimization problem, tackling it
becomes feasible.

Schneider et al. [46] employ a genetic algorithm to con-
struct molecules from a given chemistry space, with high
similarity to a given query. Such a method is fast and can
be used in combination with arbitrary similarity measures.
However, it covers only a small portion of the search space
and gives no guarantee of arriving at the global optimum.
Another possibility involves calculating molecular proper-
ties at the fragment level and combining only those
fragments that show sufficient partial similarity to the
query. The ChemSpace approach [47] follows this idea. For
each fragment, so-called ‘topomeric’ shape descriptors are
generated that represent the shape of the fragment in a
standardized conformation. By splitting a single bond or a
pair of bonds, the query molecule is divided into two or
three pieces. Each piece is compared independently with
the fragments in the chemistry space. Well-fitting frag-
ments are combined to result in a molecule with high
shape similarity to the given query.

The Feature Tree descriptor (discussed previously) is
also well suited to chemistry space similarity searches
[48]. The descriptor represents building blocks of a mol-
ecule as the nodes of a tree, therefore, fragments can be
converted to small Feature Trees and then combined to
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Figure 2. (a) The molecules methotrexate and dihydrofolate superposed in the
binding pocket of dihydrofolate reductase. (b) the corresponding superposed FTrees.
Straight lines represent the mapping of corresponding features in both molecules and
FTrees, respectively.



form larger trees. A specially designed
algorithm, FTrees-FS, based on a dou-
ble-dynamic programming paradigm,
exploits this feature and enables effi-
cient searching in chemistry spaces.
The algorithm not only allows for an
arbitrary topology of connected frag-
ments, it also performs a complete
search with an optimality guarantee
within minutes. Furthermore, the
targeted level of similarity between
query and resulting molecules is
under the control of the user; setting
this level to, say, 0.9, instead of its
maximum value 1.0, enables effective
scaffold hopping. Figure 3 shows an
example of scaffold hopping between
two structural classes of cyclooxyge-
nase-2 (COX-2) inhibitors. A detailed
analysis of similarity levels and several
examples of scaffold hopping can be
found in [48].

Similarity-based analysis of high-
volume screening data
Similarity-based methods are now widely accepted as a
useful tool in the drug design process. Virtual screening
(VS), an in silico procedure, and HTS, an experimental pro-
cedure, are regarded as complementary approaches in
the lead identification process [49]. Owing to the rapid
progress in the field of combinatorial chemistry, large sets
of diverse structures are available. Therefore, the most fre-
quently applied virtual screening methods rely on fast 2D
descriptors. The identified screening hits are compared to
each other to generate a hypothesis on the underlying
lead structure. This can be accomplished by similarity-
based methods.

Similarity-based methods are used for identifying struc-
tural classes around the detected screening hits, by fast
clustering or partitioning algorithms. After such grouping
of similar ligands, SAR models can be generated that relate
biological activity to the presence or absence of substruc-
tures or functional groups. These models can be used to
prioritize molecules for further testing.

Two main approaches to the computer-aided detection
of active compounds are described in the literature: ‘itera-
tive screening’ and ‘one-shot screening’ (Figure 4). In itera-
tive (or sequential) screening, a medium-sized initial
sample of, say, several thousand compounds is proposed
for experimental testing. The measured activities are used
to construct a SAR model. By applying the model to

untested compounds, new molecules with a high probability
of being active, can be proposed for further experimental
testing. Iterative screening aims to reduce the amount of
compounds that have to be tested. Machine learning
approaches have been suggested that couple especially well
with the sequential screening strategy [50].

To follow are a few examples of similarity-based methods
that have been applied to extremely large datasets to find
lead candidates.

CerBeruS [51,52] is a method developed for iterative
screening. CerBeruS is based on Daylight fingerprints. First,
all compounds are grouped by their structural similarity.
An initial sample of compounds (e.g. cluster representa-
tives) is selected for iterative screening. Then, in each
round of screening, all members of ‘active’ clusters (i.e.
clusters that contain at least one active molecule) are se-
lected for retesting. CerBeruS proposes only highly similar
molecules for testing. This strategy results in a high hit rate
but is unlikely to identify new scaffolds or lead series.
Therefore, each active structural class has to be present in
the first random sample. As a point in case, in the example
originally reported [51], CerBeruS would have missed more
than half of the actives.

Whereas, in iterative screening experimental screens of
moderate size are performed successively, in one-shot
screening (Figure 4b), all accessible compounds are tested
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Figure 3. Scaffold hopping with fragment spaces: COX-2 inhibitors of class 1 (query 1)
detect class 2 inhibitors and vice versa when the search is performed on 90% similarity
level. At 100% similarity level, compounds of the same class are discovered.
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experimentally at once, and the iterative construction of a
model for an active compound is then carried out in the
computer, using computational learning techniques. Here,
the classical train-and-test paradigm is used.

The tools MCASE (Multi Computer Automated Structure
Evaluation) [53] and PGLT [54] (Phylogenetic-Like Tree
Algorithm) use recursive partitioning (RP) for the analysis
of one-shot screening data (RP is a statistical method for
the classification of large datasets). In each step, the statis-
tically best variable is used to split the dataset into smaller
and more homogenous subsets. MCASE is a QSAR expert
system that allows for binary activity classification by cor-
relation of substructure descriptors with biological activity.
MCASE is one of the earliest methods. Its main restriction,
which the field has since transcended, is that it only con-
siders the binary classification as active or inactive. PGLT
combines different data mining methods around the RP
paradigm. RP methods are particularly well suited for
problems where adequate information is available. In HTS
data analysis, only the first splits have sufficient statistical
support. Outliers, unbalanced and noisy data are not han-
dled well by RP methods.

As an alternative to RP, neural networks can be applied
to screening data. An example is 3D MIND (Mining

Information for Novel Discoveries) [55], which is based on
non-linear mapping. This method enables the grouping of
compounds in a high-dimensional space by projecting
them to 2D self-organizing maps (SOMs). 2D structural
keys are used as descriptors. Approximately 20 000 com-
pounds from the National Cancer Institute (NCI) tumor
cell panel were grouped by two different SOMs: one for
structural similarities and one for comparing biological
readouts of different cell lines. The analysis showed that
structurally similar compounds share the same cellular
activity [55].

Predefined structural families can be used to group
similar compounds of a HTS screen. An example is
LeadScope™ [56], which uses a predefined database of hi-
erarchically ordered substructures. The ligands of the test
set are grouped into structurally homogeneous classes,
according to this template database of ~27 000 substruc-
tures. For each subset, a so-called p-value is computed,
describing the probability that the molecules show a given
average activity. Because of the predefined hierarchy of
structural classes, LeadScope™ has no computationally
expensive training phase. Thus, it can be applied to ex-
tremely large screening sets, but will not find previously
unknown structural motifs.
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Figure 4. (a) Iterative screening: starting with a small set of compounds, in each experimental screening step, an SAR model is constructed,
which is then used to select new compounds for testing. (b) One-shot HTS screening: in each virtual screening step, an SAR model is
constructed from a training set, which is then validated on the test set.
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The only publicly available source of a large dataset with
biological assay data is compiled by the NCI (Developmental
Therapeutics Program, National Cancer Institute;
http://dtp.nci.nih.gov/docs/3d_database/structural_
information/structural_data.html). Most of the described
methods have been validated on one of the NCI datasets:
HIV or cancer. To some extent, previously described struc-
tural motifs could be identified, for example, a collection
of nucleosides by PGLT and topoisomerase inhibitors by
LeadScope . A thorough comparison of the results and an
example of a real test case is missing for all algorithms.
However, for MCASE only, an experiment using ten
compounds of unknown activity is reported. This method
was able to predict five out of seven active molecules as
active and identified all three inactives. There are further
publications providing an analysis of the NCI HIV or cancer
data [57–60].

VS and HTS techniques have been applied successfully
in the drug design process but they are just beginning to
be used in combination. Further progression in this direc-
tion seems to be promising. Specifically, VS can be used to
analyze the growing number of noisy data points from HTS
experiments, and HTS can be used to validate virtual
screening results.

Perspectives
Owing to the involvement of ever-increasing numbers of
compounds in today’s drug design projects, there is a high
demand for efficient computational screening tools. Clearly,
progress has been made in the quality and speed of VS meth-
ods; however, there is still a much room for improvement.

Descriptors need to be developed that incorporate 3D
features but are conformation-independent. De novo design
or other methods that navigate through virtual compound
spaces must begin to take synthesizability into account.
Scoring functions need to be refined. The ability of relating
biologically similar but chemically diverse compounds
requires further improvement. These are merely a few areas
of intensive current research.

An example is the extension of the fuzzy FTrees descriptor,
called HTSview, for the analysis of HTS data, by means of
multiple FTree alignments. By combining the information
of remotely related actives and inactives into a single super
tree, efficient database searches with molecule ensembles
are possible. Multiple FTree models capture local and
global properties of the compounds and give statistics with
only a minor loss of quality compared to the much more
labor- and compute-intensive 3D comparative molecular
field analysis (COMFA) models [61].

A general observable trend is the increasing use of
algorithmic technology in improving the quality and

throughput of VS. Several goals might still be out of reach
in the short- or medium- term: as computational screening
procedures go beyond lead identification and incorporate
secondary drug properties, such as ADME/Tox, we have to
deal with several tens or hundreds of putative targets.
Furthermore transport processes and side effects are hard
to capture, statistically, and are difficult to model. Much
effort must be invested in understanding the functional
mechanisms of cells before ADME/Tox can go beyond
quantitative structure–property relationship predictions.
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