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The proper protection of data privacy is a complex task that requires a careful analysis
of what actually has to be kept private. Several definitions of privacy have been pro-
posed over the years, from traditional syntactic privacy definitions, which capture the
protection degree enjoyed by data respondents with a numerical value, to more recent
semantic privacy definitions, which take into consideration the mechanism chosen for
releasing the data.

In this paper, we illustrate the evolution of the definitions of privacy, and we survey

some data protection techniques devised for enforcing such definitions. We also illustrate
some well-known application scenarios in which the discussed data protection techniques
have been successfully used, and present some open issues.
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1. Introduction

Over the last 15 years, the advancements in the Information Technology have radi-

cally changed our lives. We can access a variety of services and information anywhere

anytime using our personal computers, mobile phones, tablets, or any device with

an Internet connection. Although this situation has clearly brought enormous ben-

efits to our society, the development of the Information Technology has also had

a significant impact on users’ privacy. As a matter of fact, more and more per-

sonal information is collected, processed, shared, and disseminated. This includes

demographic data, medical data, tweets, emails, photos, videos, as well as location

information. There are a variety of reasons for collecting, sharing, and disseminating

personal information. For instance, public, private, and governmental organizations

might disclose or share their data collections for research or statistical purposes,

for providing services more efficiently and effectively, or because forced by laws

and regulations. However, disseminating and sharing personal information may put

individuals’ privacy at risk: How should personal information be collected and pro-

cessed? How should privacy be defined and enforced?

The problem of ensuring proper protection to users’ privacy is far from trivial

since privacy is a multi-faced concept that may have different forms: certain (sen-

sitive) information about users should be kept private, the identity of users should
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be protected, or users’ actions should not be traceable. Another complicating factor

is the presence of different information sources whose analysis and correlation can

lead to improper leakage of information that was not intended for disclosure. A

well-known example is related to the online DVD delivery service Netflix, which in

2006 started a competition for improving its movie recommendation system based

on users’ previous ratings. To this purpose, Netflix released 100 million records

about movie ratings by 500,000 of its subscribers. The released records were de-

identified substituting subscribers’ personal identifying information (e.g., name and

IP address) with numerical user IDs. However, by linking the movie recommen-

dations available on the Internet Movie Database (IMDb) with the de-identified

Netflix dataset, it was possible to re-identify individuals, thus revealing potentially

sensitive information (e.g., a homosexual mother sought damages in a lawsuit for

being outed by Netflix released data).1

The research community has dedicated many efforts in developing appropriate

definitions of privacy along with data protection techniques specifically targeted to

efficiently enforce them. These privacy definitions (and corresponding data protec-

tion techniques) can be broadly classified in the following two main categories.

• Syntactic privacy definitions capture the protection degree enjoyed by data

respondents with a numerical value. Data protection techniques falling in

this category are aimed at satisfying a syntactic privacy requirement (e.g.,

each release of data must be indistinguishably related to no less than a

certain number of individuals in the population).

• Semantic privacy definitions are based on the satisfaction of a semantic

privacy requirement. Data protection techniques falling in this category

are aimed at satisfying a property that must be satisfied by the mechanism

chosen for releasing the data (e.g., the result of an analysis carried out on

a released dataset must be insensitive to the insertion or deletion of a tuple

in the dataset).

The objective of this paper is to provide an overview of the main techniques

proposed in the literature to protect users’ privacy in data publishing. We orga-

nize the discussion according to the above categorization of privacy definitions and

techniques. In the following, for the sake of readability, we refer to data protec-

tion techniques based on a syntactic (semantic, respectively) privacy definition as

syntactic (semantic, respectively) data protection techniques .

The remainder of this paper is organized as follows. Section 2 presents some con-

cepts and assumptions at the basis of the syntactic and semantic privacy definitions.

Section 3 illustrates the most well-known syntactic privacy definitions and data pro-

tection techniques. Section 4 discusses more recent semantic privacy definitions and

data protection techniques. Section 5 presents some examples of real-world applica-

tion scenarios where syntactic and semantic data protection techniques have been

concretely used. Section 6 discusses open issues that still need further investigation.

Finally, Section 7 gives our concluding remarks.
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2. Basic Concepts

We illustrate the basic concepts on which syntactic and semantic privacy definitions

and data protection techniques are based.

2.1. Syntactic data protection techniques

Data to be protected are typically released in the form of a table (microdata table)

defined on a set of attributes that can be classified as follows.

• Identifiers : attributes that uniquely identify a respondent (e.g., SSN).

• Quasi-identifiers (QI): attributes that, in combination, can be linked with

external information to re-identify (all or some of) the respondents to whom

information refers, or reduce the uncertainty over their identities (e.g., DoB,

Sex, and ZIP).

• Confidential attributes : attributes that represent sensitive information (e.g.,

Disease).

• Non-confidential attributes : attributes that are not considered sensitive by

the respondents and whose release is harmless (e.g., FavoriteColor).

Syntactic data protection techniques are based on the assumption that the re-

lease of a microdata table can put at risk only the privacy of those individuals con-

tributing to the data collection. The first step for protecting their privacy consists

in removing (or encrypting) explicit identifiers before releasing the table. However,

a de-identified microdata table does not provide any guarantee of anonymity, since

the quasi-identifier can still be linked to publicly available information to re-identify

respondents. A study performed on 2000 U.S. Census data showed that 63% of the

U.S. population can be uniquely identified combining their gender, ZIP code, and

complete date of birth.2 As an example, consider the de-identified table in Fig-

ure 1(a), including the medical information of a set of hospitalized patients, and

the list of teachers in Sacramento made available by the local schools in Figure 1(b).

Quasi-identifying attributes DoB, Sex, and ZIP can be exploited for linking the tuples

in the medical table with the teachers’ list, possibly re-identifying individuals and

revealing their illnesses. In this example, the de-identified medical data include only

one male patient, born on 1958/07/09 and living in 94232 area. This combination,

if unique in the external world as well, uniquely identifies the corresponding tuple

as pertaining to John Doe, 100 Park Ave., Sacramento, revealing that he suffers

from diabetes.

Syntactic approaches are commonly based on the assumption that quasi-

identifiers are the only attributes that can be exploited for linking sensitive data

with publicly available respondents’ identities. Therefore, these approaches protect

the privacy of the respondents by applying microdata protection techniques on the

quasi-identifier, typically guaranteeing data truthfulness,3 while not modifying the

sensitive attributes. Syntactic data protection techniques can be classified depend-

ing on whether they are aimed at protecting data against identity disclosure (i.e.,
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SSN Name DoB Sex ZIP Disease

* * 1970/09/02 M 94152 Hepatitis
* * 1970/09/20 F 94143 Cardiomyopathy
* * 1970/09/12 F 94148 Eczema
* * 1970/09/05 M 94155 Pneumonia
* * 1960/08/01 F 94154 Stroke
* * 1960/08/02 F 94153 Stroke
* * 1960/08/10 M 94140 Stroke
* * 1960/08/20 M 94141 Stroke
* * 1970/08/07 F 94141 High Cholesterol
* * 1970/08/05 F 94142 Erythema
* * 1958/07/09 M 94232 Diabetes
* * 1970/08/25 M 94153 High Cholesterol
* * 1970/08/30 M 94156 Angina Pectoris
* * 1960/09/02 M 94147 Hepatitis
* * 1960/09/05 M 94145 Flu
* * 1960/09/10 F 94158 Angina Pectoris
* * 1960/09/30 F 94159 Cardiomyopathy

(a) De-identified medical data

Name Address City ZIP DoB Sex Course School

. . . . . . . . . . . . . . . . . . . . . . . .
John Doe 100 Park Ave. Sacramento 94232 58/07/09 male Maths High School

. . . . . . . . . . . . . . . . . . . . . . . .

(b) Public list of teachers in Sacramento

Fig. 1: An example of de-identified microdata table (a) and of publicly available

non de-identified dataset (b)

they protect respondents’ identities) or against attribute disclosure (i.e., they pro-

tect respondents’ sensitive information).

2.2. Semantic data protection techniques

Semantic data protection techniques have recently been proposed to protect the

privacy of both data respondents and individuals who are not included in data

undergoing public release. To illustrate, consider the release of a dataset that can

be used to compute the average amount of taxes annually paid by the citizens of

Sacramento for each profession, and suppose that this information was not publicly

available before the release. Assume that Alice knows that the taxes paid by Bob are

1,000$ less than the average taxes paid by teachers living in Sacramento. Although

this piece of information alone does not permit Alice to gain any information about

the taxes paid by Bob, if combined with the released dataset, it allows Alice to

infer the taxes paid by Bob. Note that this information leakage does not depend on

whether Bob is represented in the released dataset or not.

Semantic techniques operate in the following two scenarios.

• Non-interactive scenario consists in the release of a data collection. Protec-

tion techniques are therefore used to compute a privacy-preserving dataset,

which is representative of the original data collection.
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• Interactive scenario consists in evaluating queries over a private data col-

lection managed by the data holder, without revealing to the requesting

recipient any information that is not intended for disclosure. Protection

techniques are used to guarantee that the query result (also when possi-

bly combined with other results collected by data recipients) cannot be

exploited to gain information that should be kept secret.

While syntactic techniques traditionally guarantee data protection preserving

the truthfulness of the released information, semantic techniques typically add noise

to the released data. Noise addition perturbs the original content of the dataset,

thus achieving privacy at the price of truthfulness.

3. Syntactic Approaches

We describe the k-anonymity proposal,4 one of the most popular syntactic privacy

definitions developed for protecting a released dataset against identity disclosure.

We then present solutions that protect released data against attribute disclosure,

and also briefly overview some enhancements to traditional syntactic techniques

introduced to remove assumptions that are at the basis of the original k-anonymity

proposal.

3.1. Protecting data against identity disclosure

k-Anonymity 4 enforces the well-known protection requirement, typically applied

by statistical agencies, demanding that any released information should be indis-

tinguishably related to no less than a certain number of respondents. Since re-

identification is assumed to occur exploiting quasi-identifying attributes only, this

general requirement has been translated into the k-anonymity requirement: Each

release of data must be such that every combination of values of quasi-identifiers can

be indistinctly matched to at least k respondents .4 As each respondent is assumed

to be represented by at most one tuple in the released table and vice-versa (i.e.

each tuple includes information related to one respondent only), a microdata table

satisfies the k-anonymity requirement if and only if: i) each tuple in the released

table cannot be related to less than k individuals in the population; and ii) each

individual in the population cannot be related to less than k tuples in the table.

To verify whether a microdata table satisfies the k-anonymity requirement, the

data holder should know in advance any possible external source of information that

an observer could exploit for re-identification. Since this assumption is unfeasible

in practice, the k-anonymity requirement is enforced by taking a safe approach and

requiring each respondent to be indistinguishable from at least k−1 respondents of

the table itself. A table is therefore said to be k-anonymous if each combination of

values of the quasi-identifier appears with either zero or at least k occurrences in the

released table. For instance, the table in Figure 1(a) is 1-anonymous if we assume the

quasi-identifier to be composed of DoB, Sex, and ZIP, since different combinations of
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values appear only once in the table. The definition of k-anonymous table represents

a sufficient (but not necessary) condition for the k-anonymity requirement. In fact,

since each combination of values of quasi-identifying attributes appears with at least

k occurrences: i) each respondent cannot be associated with less than k tuples in

the released table; and ii) each tuple in the released table cannot be related to less

than k respondents in the population.

k-Anonymity is typically achieved by applying generalization and suppression

over quasi-identifying attributes, while leaving sensitive and non-sensitive attributes

unchanged. Generalization substitutes the original values with more general values.

For instance, the date of birth can be generalized by removing the day, or the day

and the month of birth. Suppression consists in removing information from the mi-

crodata table. The combination of generalization and suppression has the advantage

of reducing the amount of generalization required to satisfy k-anonymity, thus re-

leasing more precise (although non-complete) information. Intuitively, if a limited

number of outliers (i.e., quasi-identifying values with less than k occurrences in the

table) would force a large amount of generalization to satisfy k-anonymity, these

outliers can be more conveniently removed from the table, improving the quality of

released data. For instance, consider the table in Figure 1(a) and assume that the

quasi-identifier is composed of attribute ZIP only. Since there is only one person

living in 94232 area (11th tuple), attribute ZIP should be generalized removing the

last three digits to guarantee 4-anonymity. However, if the 11th tuple in the table

is suppressed, 4-anonymity can be achieved by generalizing the ZIP code removing

only the last digit.

The approaches proposed in the literature to enforce k-anonymity can be classi-

fied on the basis of the granularity at which generalization and suppression operate.5

More precisely, generalization can be applied at the cell level (substituting the cell

value with a more general value) or at the attribute level (generalizing all the cells

in the column). Suppression can be applied at the cell , attribute, or tuple level (re-

moving a single cell, a column, or a row, respectively). Most of the solutions adopt

attribute generalization and tuple suppression.4,6,7 Figure 2 reports a 4-anonymous

version of the table in Figure 1(a), obtained adopting attribute-level generalization

(attributes DoB, Sex, and ZIP have been generalized by hiding the day of birth, the

sex, and the last two digits of the ZIP code, respectively) and tuple-level suppres-

sion (the 11th tuple related to John Doe has been removed). Note that symbol ∗

represents any value in the attribute domain. Solutions adopting cell generalization

have recently been investigated, since they cause a reduced information loss with

respect to attribute generalization.8 These approaches have however the drawback

of producing tables where the values in the cells of the same column may be het-

erogeneous (e.g., some tuples report the complete date of birth, while other tuples

only report the year of birth).

Regardless of the different level at which generalization and suppression are

applied to enforce k-anonymity, information loss is inevitable due to the reduction in

the details of the released data. To minimize the loss of information (and maximize



August 10, 2012 19:3 WSPC/INSTRUCTION FILE dfls-privacy

Data Privacy: Definitions and Techniques 7

SSN Name DoB Sex ZIP Disease

1970/09/** * 941** Hepatitis
1970/09/** * 941** Cardiomyopathy
1970/09/** * 941** Eczema
1970/09/** * 941** Pneumonia

1960/08/** * 941** Stroke
1960/08/** * 941** Stroke
1960/08/** * 941** Stroke
1960/08/** * 941** Stroke

1970/08/** * 941** High Cholesterol
1970/08/** * 941** Erythema
1970/08/** * 941** High Cholesterol
1970/08/** * 941** Angina Pectoris

1960/09/** * 941** Hepatitis
1960/09/** * 941** Flu
1960/09/** * 941** Angina Pectoris
1960/09/** * 941** Cardiomyopathy

Fig. 2: An example of 4-anonymous table

the utility of released data for final recipients), it is necessary to compute a k-

anonymous table that minimizes generalization and suppression. The computation

of an optimal k-anonymous table is however NP-hard. Therefore, both exact and

heuristic algorithms have been proposed.5

3.2. Protecting data against attribute disclosure

k-Anonymity represents an effective solution for protecting respondents’ identities

in microdata release. However, protection against identity disclosure does not im-

ply protection against attribute disclosure. As a consequence, a k-anonymous table

could be exploited to infer (or reduce uncertainty on) the sensitive attribute values

associated with respondents. The original definition of k-anonymity has been there-

fore extended to prevent attribute disclosure in k-anonymous tables. ℓ-Diversity and

t-closeness are two well-known extensions that we describe in the following.

ℓ-Diversity. Two attacks that may lead to attribute disclosure in a k-anonymous

table are the homogeneity attack 4,9 and the external knowledge attack .9

• Homogeneity attack . The homogeneity attack occurs when, in a k-

anonymous table, all the tuples in an equivalence class (i.e., all the tuples

with the same value for the quasi-identifier) assume also the same value

for the sensitive attribute. If a data recipient knows the quasi-identifier

value of an individual represented in the microdata table, she can identify

the equivalence class representing the target respondent, and then infer the

value of her sensitive attribute. For instance, consider the 4-anonymous ta-

ble in Figure 2 and suppose that Alice knows that her friend Gary is a male,

born on 1960/08/10 and living in 94140 area. Since all the tuples in the

equivalence class with quasi-identifier 〈1960/08/**,*,941**〉 have Stroke as
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SSN Name DoB Sex ZIP Disease

1970/**/** M 9415* High Cholesterol
1970/**/** M 9415* Angina Pectoris
1970/**/** M 9415* Hepatitis
1970/**/** M 9415* Pneumonia

1970/**/** F 9414* Cardiomyopathy
1970/**/** F 9414* Eczema
1970/**/** F 9414* High Cholesterol
1970/**/** F 9414* Erythema

1960/**/** F 9415* Stroke
1960/**/** F 9415* Stroke
1960/**/** F 9415* Angina Pectoris
1960/**/** F 9415* Cardiomyopathy

1960/**/** M 9414* Stroke
1960/**/** M 9414* Stroke
1960/**/** M 9414* Hepatitis
1960/**/** M 9414* Flu

Fig. 3: An example of 4-anonymous and 3-diverse table

a value for attribute Disease, Alice can infer that Gary had a stroke.

• External knowledge attack . The external knowledge attack occurs when the

data recipient can reduce her uncertainty about the value of the sensitive at-

tribute of a target respondent, exploiting some additional (external) knowl-

edge about the respondent. As an example, consider the 4-anonymous table

in Figure 2 and suppose that Alice knows that her friend Ilary is a female,

living in 94141 area and born on 1970/08/07. Observing the 4-anonymous

table, Alice can infer that Ilary suffers from either High Cholesterol , Ery-

thema, or Angina Pectoris . Suppose now that Alice sees Ilary running in

the park every day. Since a person suffering from Angina Pectoris does not

run every day, Alice can infer that Ilary suffers from High Cholesterol or

Erythema.

The definition of ℓ-diversity counteracts homogeneity and external knowledge

attacks by requiring the presence of at least ℓ well-represented values for the sensi-

tive attribute in each equivalence class.9 Several definitions for “well-represented”

values have been proposed. A straightforward approach is to consider ℓ values well-

represented if they are different. Therefore, the simplest formulation of ℓ-diversity

requires that each equivalence class be associated with at least ℓ different values for

the sensitive attribute. For instance, consider the 4-anonymous and 3-diverse table

in Figure 3 and suppose that Alice knows that her neighbor Ilary is a female, living

in 94141 area and born on 1970/08/07. Observing the table in Figure 3, Alice can

infer that Ilary suffers from either Cardiomyopathy, Eczema, High Cholesterol , or

Erythema. Since Alice knows that Ilary goes running every day, Alice can exclude

the fact that Ilary suffers from Cardiomyopathy, but she cannot precisely determine

whether Ilary suffers from Eczema, High Cholesterol , or Erythema.
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The problem of computing an ℓ-diverse table minimizing the loss of information

caused by generalization and suppression is computationally hard. It is interesting to

note that any algorithm proposed to compute a k-anonymous table that minimizes

loss of information can be adapted to guarantee also ℓ-diversity, controlling if the

condition on the diversity of the sensitive attribute values is satisfied by all the

equivalence classes.9

t-Closeness. Although ℓ-diversity represents a first step in counteracting attribute

disclosure, this solution may still produce a table that is vulnerable to privacy

breaches caused by skewness and similarity attacks .10

• Skewness attack . The skewness attack exploits the possible difference in

the frequency distribution of the sensitive attribute values within an equiv-

alence class, with respect to the frequency distribution of sensitive attribute

values in the population (or in the released microdata table). In fact, dif-

ferences in these distributions highlight changes in the probability with

which a respondent in the equivalence class is associated with a specific

sensitive value. As an example, consider the 3-diverse table in Figure 3 and

suppose that Alice knows that her friend Gary is a male living in 94140

area and born on 1960/08/10. In the equivalence class with quasi-identifier

〈1960/**/**,M,9414*〉, two out of four tuples have value Stroke for at-

tribute Disease. Alice can infer that Gary had a stroke with probability

50%, compared to a probability of 12.5% of the respondents of the released

table.

• Similarity attack . The similarity attack occurs when, in an ℓ-diverse ta-

ble, the values for the sensitive attribute associated with the tuples in

an equivalence class are semantically similar, although syntactically dif-

ferent. For instance, consider the 3-diverse table in Figure 3 and suppose

that Alice knows that her friend Olivia is a female, living in 94158 area,

and born on 1960/09/10. In the equivalence class with quasi-identifier

〈1960/**/**,F,9415*〉, attribute Disease assumes values Stroke, Angina

Pectoris , and Cardiomyopathy. As a consequence, Alice can discover that

Olivia suffers from a cardiovascular disease.

The definition of t-closeness has been proposed to counteract skewness and sim-

ilarity attacks,10 and requires that the frequency distribution of the sensitive values

in each equivalence class be close (i.e., with distance smaller than a fixed threshold

t) to that in the released microdata table. In this way, the skewness attack has no

effect since the knowledge of the quasi-identifier value for a target respondent does

not change the probability for a malicious recipient of correctly guessing the sensi-

tive value associated with the respondent. t-Closeness reduces also the effectiveness

of the similarity attack, because the presence of semantically similar values in an

equivalence class can only be due to the presence, with similar relative frequencies,

of the same values in the microdata table.
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Assumption Available techniques

multiple tuples (X,Y )-Privacy 12

per respondent km-anonymity 11

multiple tables
(X,Y )-Privacy 12

MultiR k-anonymity 13

microdata
m-Invariance

14

re-publication

data streams
correlation tracking 15

stream k-anonymity 16

ℓ-eligibility 17

personalized privacy (αi,βi)-Closeness 18

preferences Personalized Privacy 19

multiple
Butterfly

20

quasi-identifiers

non-predefined
km-anonymity

11

quasi-identifiers

external knowledge
Privacy Skyline 21

ǫ-Privacy 22

(c,k)-Safety 23

Fig. 4: Syntactic techniques removing traditional assumptions

The enforcement of t-closeness requires to evaluate the distance between the

frequency distribution of the sensitive attribute values in the released table and in

each equivalence class. Such distance can be computed adopting different metrics,

such as the Earth Mover Distance used by t-closeness.10

3.3. Extensions of the syntactic approaches

k-Anonymity, ℓ-diversity, and t-closeness are based on some assumptions that make

them not always suitable for specific scenarios. Figure 4 summarizes some solution

that extend the definitions of k-anonymity, ℓ-diversity, and t-closeness by removing

(some of) the assumptions briefly discussed in the following.

Multiple tuples per respondent. k-Anonymity assumes that, in a microdata

table, each respondent is represented by a single tuple. However, a single individual

might be associated with more than one tuple (e.g., in a medical dataset, each re-

spondent may be associated with a tuple for each disease she suffers from). In this

case, equivalence classes may contain tuples associated with the same respondent.

Therefore, data protection techniques must require that each equivalence class, re-

gardless of the number of tuples composing it, contains data related to at least k

different individuals (e.g., km-anonymity,11 (X ,Y )-Privacy 12).

Release of multiple tables. k-Anonymity assumes that all data to be released are

stored in a unique table. In many real-world scenarios, however, data are organized

in multiple relations, characterized by (functional) dependencies among them. In

this case, to properly protect respondents’ privacy, data protection techniques must
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guarantee that recipients cannot exploit dependencies or correlations among the

released tables to infer information not intended for disclosure (e.g., MultiR k-

anonymity,13 (X ,Y )-privacy 12).

Data republication. k-Anonymity assumes that, once released, data included in

a microdata table are not further modified. However, a microdata table can be

subject to frequent changes due to tuple insertions, deletions, or updates. As a

consequence, it may be required to periodically re-publish the data collection. A

malicious data recipient might then exploit subsequent releases to possibly correlate

tuples in the different versions of the table, and gain information about respondents.

For instance, assume that a value for the quasi-identifier appears in one of the

releases only. This value will probably refer to a respondent that has been meanwhile

removed. Data protection techniques then need to guarantee that the correlation

of subsequent releases does not permit a malicious recipient to precisely re-identify

data respondents (e.g., m-Invariance 14).

Continuous data release. Traditional syntactic data protection techniques as-

sume that all the data that need to be released are available to the data holder

before their release. This may not be true in real-life scenarios where data are con-

tinuously generated and need to be timely released, since data utility decreases as

time passes (e.g., credit card transactions). In this scenario, data protection tech-

niques permit the release of a tuple only if, when combined with tuples already

published, it does not violate respondents’ privacy.15,16,17

Personalized privacy preferences. Traditional syntactic data protection tech-

niques guarantee the same degree of privacy to all the respondents represented in

the released microdata table. In fact, they define a unique privacy threshold value

(e.g., the value k in k-anonymity) for the whole microdata table. Privacy require-

ments may however depend on respondents’ preferences (different respondents may

have different requirements about their own privacy), or on the sensitivity of the

released values (some values may be considered “more sensitive” than others). In

these scenarios, the released table must satisfy multiple privacy requirements, as the

adoption of a unique privacy protection threshold to the whole dataset may result in

over-protecting or under-protecting respondents/sensitive values (e.g., Personalized

privacy 19 and (αi, βi)-closeness
18).

Multiple quasi-identifiers. Traditional approaches assume that the released ta-

ble is characterized by a unique quasi-identifier. However, different data recipients

may be able to access different external data sources, which might be exploited for

attacks. To limit the excessive loss of information that would be caused by consid-

ering a unique quasi-identifier composed of all the attributes that may possibly be

externally available to at least a data recipient, privacy preserving techniques should

be adapted to take multiple quasi-identifiers into consideration (e.g., Butterfly 20).
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Non-predefined quasi-identifiers. Syntactic anonymization approaches rely on

the assumption that the attributes that can be exploited by data recipients for re-

identification are known in advance. However, it may happen that the information

exploited for re-identification cannot be determined a-priori and may not be rep-

resented by a set of attributes. For instance, in transactional data, a subset of the

items composing a transaction may represent a quasi-identifier (e.g., the case of Net-

flix illustrated in Section 1). As an example, km-anonymity 11 has been specifically

designed to protect transactional data.

External knowledge. Traditional syntactic approaches have been designed to

protect microdata release against adversaries that are assumed to have specific

types of knowledge. For instance, k-anonymity assumes that data recipients only

know, besides the released table, publicly available datasets associating the identity

of respondents with their quasi-identifier. However, data recipients may posses addi-

tional information (obtained, for example, from social networking sites) that could

be exploited to infer sensitive information associated with a target respondent. For

instance, consider the microdata table in Figure 3 and assume that Alice knows that

her neighbor John is a male born on 1970/09/05 and living in 94155 area. Assuming

that she does not have additional knowledge, Alice can infer from the table that

John suffers from either High Cholesterol , Angina Pectoris , Hepatitis , or Pneumo-

nia. Suppose that Alice knows that: i) Bob, who is in the same equivalence class as

John’s, suffers from High Cholesterol ; ii) the husband of her colleague Carol , whose

tuple is in the same equivalence class as John’s, suffers from Hepatitis , since Carol

took some days off to assist him; and iii) John’s wife does not suffer from Pneu-

monia. As a consequence, Alice can infer (with high probability) that John suffers

from Angina Pectoris . Taking external knowledge into consideration when releasing

a microdata table requires the definition of an adequate modeling of the external

knowledge of the recipient. This task is complicated by the fact that it is not real-

istic to assume data holders to have complete knowledge of all the data available

to recipients. Furthermore, information is collected and publicly released every day,

and the external information that could be exploited for re-identification purposes

changes continuously. Examples of attempts of modeling adversarial knowledge are

represented by Privacy Skyline 21, ǫ-Privacy 22, and (c,k)-Safety 23.

4. Semantic Approaches

We now discuss recently proposed data protection techniques aimed at providing

semantic privacy guarantees defined by the data holder prior to data publication.

We first describe the original definition of differential privacy.24 We then present

solutions relaxing this (strict) definition to provide flexibility in its enforcement,

and briefly overview solutions applying it to specific data release scenarios.
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4.1. Differential privacy

One of the first definitions of privacy states that anything that can be learned about

a respondent from the statistical database should be learnable without access to the

database.25 Although originally stated for statistical databases, this definition is

also well suited for the microdata publishing scenario. Unfortunately, only an empty

dataset can guarantee absolute protection against information leakage 24 since, be-

sides exposing the privacy of data respondents, the release of a microdata table may

also compromise the privacy of individuals who are not represented by a tuple in

the released table (see Section 2.2).

Differential privacy is a novel privacy definition aimed at guaranteeing that the

release of a microdata table does not disclose sensitive information about any in-

dividual who may or may not be represented by a tuple in the table.24 Differential

privacy aims at releasing a dataset that allows data recipients to learn properties

about the population as a whole, while protecting the privacy of single individuals.

The semantic privacy guarantee provided by differential privacy is that the probabil-

ity that a malicious recipient correctly infers the sensitive attribute value associated

with a target respondent is not affected by the presence/absence of the correspond-

ing tuple in the released table. Formally, given two datasets T and T ′ differing only

for one tuple, an arbitrary randomized function K (typically, the release function)

satisfies ǫ-differential privacy if and only if P (K(T ) ∈ S) ≤ exp(ǫ) · P (K(T ′) ∈ S),

where S is a subset of the possible outputs of function K and ǫ is a public privacy

parameter. Intuitively, the released dataset satisfies ǫ-differential privacy if the re-

moval (insertion, respectively) of one tuple from (into, respectively) the dataset does

not significantly affect the result of the evaluation of function K. As an example,

consider an insurance company that consults a medical dataset to decide whether

an individual is eligible for an insurance contract. If differential privacy is satisfied,

the presence or absence of the tuple representing the individual in the dataset does

not significantly affect the final decision taken by the insurance company. It is im-

portant to note that the external knowledge that an adversary may possess cannot

be exploited for breaching the privacy of individuals. In fact, the knowledge that

the recipient gains looking at the released dataset is bounded by the multiplicative

factor exp(ǫ), for any individual either represented or not in the released microdata

table. In other words, the probability of observing a result in S for the evaluation

of function K over T is close to the probability of observing a result in S for the

evaluation of function K over T ′ (i.e., the difference between P (K(T ) ∈ S) and

P (K(T ′) ∈ S) is negligible). Note that the definition of ǫ-differential privacy does

not depend on the computational resources of adversaries, and therefore it protects

a data release against computationally-unbounded adversaries.

The techniques proposed to enforce the ǫ-differential privacy definition tradi-

tionally add noise to the released data. The magnitude of the noise is computed

as a function of the difference that the insertion/removal of one respondent may

cause on the result of the evaluation of function K. Differential privacy can be
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Disease

Cardiovascular
Cancer

Neurological Cutaneous

County Diseases Diseases Conditions

A 35 12 25 10
B 27 20 12 20
C 0 16 10 75
D 10 40 90 15
E 38 88 22 31

Fig. 5: An example of frequency matrix representing, for each disease, the number

of citizens of a given county suffering from it

enforced in both the interactive and non-interactive scenarios (see Section 2.2),

possibly adopting different approaches for noise addition.24 In the interactive sce-

nario, ǫ-differential privacy is ensured by adding random noise to the query results

evaluated on the original dataset.26 The typical distribution considered for the ran-

dom noise is Laplace distribution Lap(∆(f)/ǫ) with probability density function

P (x) = exp(−|x|/b)/2b, where b = ∆(f)/ǫ and ∆(f) is the maximum difference be-

tween the query result evaluated over T and over T ′ (which, for example, is equal to 1

for count queries, since T and T ′ differ for at most one tuple). In the non-interactive

scenario, the data holder typically releases a frequency matrix , with a dimension

for each attribute and an entry in each dimension for each value in the attribute

domain. The value of a cell in the matrix is obtained counting the tuples in the

table that assume, for each attribute, the value represented by the entry associated

with the cell. Figure 5 illustrates an example of frequency matrix for a table with

values A, B, C, D, and E for attribute County, and values Cardiovascular Diseases ,

Cancer , Neurological Diseases , and Cutaneous Conditions for attribute Disease.

Since each cell in the frequency matrix is the result of the evaluation of a count

query on the original dataset, the techniques proposed to guarantee ǫ-differential

privacy in the interactive scenario can also be adopted to protect the entries of the

released frequency matrix (i.e., to protect the result of the count queries).

4.2. Relaxing differential privacy

The original definition of ǫ-differential privacy is strict and imposes very tight con-

straints on the data that can be released. However, there are different scenarios

where an increased flexibility, to be achieved at the price of a relaxed privacy re-

quirement, may be accepted by the data holder to provide data recipients with

information of higher interest. In the following, we briefly discuss some solutions

that relax the original definition of ǫ-differential privacy.

(ǫ,δ)-Differential privacy. (ǫ,δ)-Differential privacy relaxes the original defini-

tion of ǫ-differential privacy by introducing an additive factor δ in the difference

between P (K(T ) ∈ S) and P (K(T ′) ∈ S).27 More formally, given two datasets T
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and T ′ differing only for one tuple, an arbitrary randomized function K satisfies

(ǫ,δ)-differential privacy if and only if P (K(T ) ∈ S) ≤ exp(ǫ) · P (K(T ′) ∈ S) + δ,

where S is a subset of the possible outputs of function K, ǫ is a public privacy pa-

rameter, and δ is a negligible function in the size of the dataset (i.e., δ grows more

slowly than the inverse of any polynomial in the size of the released table). On one

hand, δ increases the threshold of the difference between the results computed over

T and T ′, thus possibly causing a higher privacy risk. On the other hand, δ reduces

noise addition and therefore permits to provide better accuracy in data release.

Computational differential privacy. The original definition of ǫ-differential pri-

vacy provides privacy guarantees against computationally unbounded adversaries.

However, this worst case assumption does not hold in real-life scenarios, where

adversaries have limited computational resources. The definition of ǫ-differential

privacy has then be relaxed to consider realistic adversaries (i.e., with polynomial

time computational bounds).28 This relaxed condition permits to achieve weaker

privacy guarantees, with the advantage of limiting noise addition. The solutions

that consider adversaries with polynomial computational bounds can be classified

in the following two categories.

• Indistinguishability-based approach. Given two datasets T and T ′ differing

only for one tuple, an arbitrary randomized function K satisfies differential

privacy if a realistic adversary is not able to distinguish (with non negligible

probability) the result of the evaluation of K over T from the result of the

evaluation of K over T ′.

• Simulation-based approach. This approach first simulates the view that an

adversary could gain by accessing a dataset through an arbitrary random-

ized function K′ that satisfies differential privacy. If the result computed by

the real releasing function K is computationally indistinguishable from the

result of K′, then K satisfies (computational) differential privacy. Indeed,

a computationally bounded adversary would not be able to distinguish the

result computed by K from the one computed by K′.

Both these definitions of (computational) differential privacy can also be adopted

to satisfy the relaxed requirement of (ǫ,δ)-differential privacy.28

4.3. Differential privacy for specific problems

The definition of differential privacy (and its relaxed formulations) can be adopted

in any data release scenario, independently from the function characterizing data

release. Figure 6 summarizes some of the recent refinements of differential privacy,

which have been proposed for managing the release of: the result of count queries,

synthetic data, and sparse frequency matrices. In the figure, the considered refine-

ments have been classified according to the scenario in which they operate (i.e.,

interactive, non-interactive, or both), and the goal they achieve in data release.
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Scenario

non

Solution Objective interactive interactive

matrix mechanism
29 minimize noise addition, ×

consistent query answers

Privlet
30 reduce error in the result of × ×

range-count queries

universal histogram
31 satisfy consistency constraints ×

in different query results

diff. private synthetic data
32 preserve statistical characteristics ×

of synthetic datasets

data summaries
33 reduce time in computing ×

frequency matrices

Fig. 6: Objective and scenarios of the semantic solutions described in Section 4.3

Count queries. Count queries are functions often used for analyzing data, and

can either be directly evaluated by data recipients on the published dataset or by

the data holder on her private data collection. These queries may possibly include

conditions restricting the subset of tuples of interest (e.g., “determine the num-

ber of U.S. male patients suffering from hypertension hospitalized in Sacramento”).

The original technique proposed to achieve differential privacy might fail to provide

useful results for count queries. In fact, differential privacy guarantees sufficient ac-

curacy in the evaluation of queries that involve a limited number of respondents.

Also, the addition of random noise drawn from a Laplace distribution does not take

into account correlated queries, that is, queries operating on overlapping subsets

of respondents. However, the results of correlated queries should not be in conflict

(e.g., two evaluations of the same query should provide the same result to avoid

unintended information leakage). Recently, some specific approaches have been de-

veloped to overcome the above limitations, such as the matrix mechanism 29 and

Privelet 30 to improve the quality of count query results, and universal histograms 31

to avoid conflicts in different query results.

Synthetic data. A traditional microdata protection technique consists in replac-

ing the original dataset with a synthetic data collection that preserves some (key)

statistical properties of the original microdata table.3 The release of synthetic data

does not put respondents’ privacy at risk, since their real data are not released.

Differential privacy has been recently used for computing a privacy-preserving syn-

thetic dataset.32

Sparse frequency matrix. A frequency matrix is sparse when the number of

non-zero entries represents a small fraction of the entries in the table. Traditional

techniques proposed to guarantee ǫ-differential privacy do not make differences be-

tween zero and non-zero entries in the frequency matrix, and might generate a vast

amount of dummy data. In fact, noise should be added to every cell, including those
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with zero counts. Since noise has a low probability of being zero, the resulting dif-

ferentially private matrix tends to become large and dense, and is computationally

expensive to generate. The idea of releasing only a summary (i.e., a subset) of the

original matrix has been put forward to the aim of providing differentially private

results at a limited computational cost.33

5. Application Scenarios of Data Protection Techniques

The problem of protecting the respondents’ privacy thought the application of ap-

propriate techniques has been considered in several scenarios (e.g., 4,9,10,34,35,36). In

particular, the definitions of privacy and the corresponding protection techniques

illustrated in previous sections have been adopted not only in a data publishing

scenario but also in scenarios where the collected dataset might not need to be

released. In the following, we illustrate how both syntactic and semantic privacy

definitions have been used in scenarios of data mining, location data, and social

networks.

5.1. Privacy-preserving data mining

Due to the growing amount of data being collected every day, data mining tech-

niques are becoming more and more important for assisting decision making pro-

cesses and extracting knowledge from huge data collections (e.g., frequent patterns,

association rules, item classifications). Information extracted through data mining

techniques, even if not explicitly including the original data, is built on them and

can put the privacy of data respondents at risk. Data mining can therefore be

adopted only with proper guarantees that the privacy of the underlying data is not

compromised. Privacy preserving data mining has been proposed to counteract this

privacy concern,37,38,39 and its main goal is to provide a trade-off between sharing

information for data mining analysis, on one side, and protecting information to

preserve the privacy of data respondents on the other side.

Privacy preserving data mining techniques can be based on either syntactic or

semantic privacy definitions, and can be classified in the following two categories.37

• Protect-and-Mine. These techniques first apply a privacy protection tech-

nique on the original dataset, and then perform mining on the obtained

privacy-preserving dataset. These approaches rely on the observation that

any computation performed on a dataset that preserves respondents’ pri-

vacy satisfy the same privacy definition. The advantage of these approaches

is that of decoupling data protection from mining, which can then be per-

formed by parties different from the data holders. The disadvantage is that

data mining algorithms do not operate on the original data, and then the

usefulness and significance of the mining results can be compromised. Spe-

cific Protect-and-Mine strategies have been proposed to satisfy either syn-

tactic or semantic privacy definitions. The basic idea of these solutions con-
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Fig. 7: Approaches for combining privacy-preserving techniques and data mining 37

sists in applying data mining algorithms on k-anonymized tables,40,41,42,43

or on differentially private datasets.44,45

• Mine-and-Protect . These techniques perform mining on the original dataset

and apply specific techniques to guarantee that the mined results are

privacy-preserving. This approach can be performed either executing the

two steps in sequence, or combining them in a unique algorithm. Syn-

tactic data protection techniques adopting the Mine-and-Protect approach

protect the results of data mining guaranteeing that a malicious recipient

cannot reconstruct (a portion of) the original dataset that violates the k-

anonymity requirement.46,47 Semantic approaches adopting the Mine-and-

Protect strategy typically provide differential privacy within the mining

process.48,49,50,51,52 It is interesting to note that, while Protect-and-Mine

strategy can only be adopted in the non-interactive scenario, Mine-and-

Protect approach is also suited for the interactive scenario.

Figure 7 graphically illustrates this classification. In the figure, boxes represent

data and edges represent processes producing data from data. The different data

boxes are: PT, representing the original data collection; PTpriv, a privacy-preserving

version of PT; MD, a result of a data mining process (without considering privacy

constraints); and MDpriv, the result of a data mining process that satisfies the

privacy constraints (e.g., the k-anonymity requirement) over PT. Dashed lines for

boxes and edges denote data and processes, respectively, reserved to the data holder,

while continuous lines denote data and processes that can be viewed and/or exe-

cuted by other parties (as their visibility and execution does not violate privacy for

the respondents of the original dataset).
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5.2. Protection of location data

The diffusion of computing devices with location capabilities makes the location

of users a new type of information, used by service providers to offer personalized

Location-Based Services (LBSs). The knowledge of the position of users may how-

ever put their privacy at risk. Indeed, this information can allow the service provider

to physically track users, and it could also be exploited for user re-identification (i.e.,

it can act as a quasi-identifier). For instance, suppose that Alice is hospitalized in a

clinic specialized in treatments for cardiovascular diseases, and that while being hos-

pitalized she uses a location-based service: the knowledge of her position can reveal

that she suffers from a heart-related problem. Fostered by the growing demand for

privacy protection in LBSs, in recent years the research community has addressed

this problem and proposed several solutions for guaranteeing proper protection of

users identities, locations, and personal information in the context of location data.

Anonymity-based solutions53 enforce syntactic privacy requirements when loca-

tion data can be exploited by a malicious data recipient as a quasi-identifier. These

techniques provide respondents’ privacy by enforcing (a possibly refined definition

of) the k-anonymity requirement (i.e., requiring the presence of at least k different

individuals in the same position).53,54,55,56,57,58 To protect users’ privacy when min-

ing location data, recent privacy-preserving techniques guarantee that the results

of the algorithm chosen for mining location data satisfy differential privacy.59

5.3. Private analysis of social networks

Social networks represent huge sources of (personal) information, as users share

with each other personal information about themselves (e.g., friends, interests, and

pictures). This huge amount of information is extremely valuable, as it is witnessed

by the arrival of Facebook at the U.S. Nasdaq Stock Market. Indeed, the analysis

of information collected by social networks can reveal (hidden) social patterns 60

that may put the privacy of the users at risk. The problem of protecting sensitive

data in social networks environments is then becoming more and more important.

A social network can be conveniently modeled as a graph, where nodes rep-

resent users and edges represent their relationships (possibly of different types).

The peculiarities of the graph representing the social network (e.g., the presence

of a node with a certain number of incident edges) may however be exploited to

re-identify users, since unique characteristics might make a user stand from others.

Both syntactic 60,61,62,63 and, more recently, semantic 64,65,66 approaches have been

proposed to protect the privacy of social network users.

6. Open Issues

The definition and the modeling of respondents’ privacy is far from being a trivial

task. The scientific community has provided several definitions of privacy, both in

the syntactic and semantic scenarios, and has devoted many efforts in the design of
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effective techniques to guarantee their satisfaction. Despite these efforts, protecting

data privacy is still an open issue, which deserves further study and analysis.

Syntactic solutions, while conveniently capturing with a numerical value the

protection degree enjoyed by data respondents, rely on restrictive assumptions that

make them not easily applicable in many real-world scenarios. As already noted,

these techniques assume that the external knowledge of a possible observer is known

in advance to the data holder and that such a knowledge is limited and falls in

predefined categories. As a consequence, syntactic solutions may fail in providing

an adequate privacy level when the adversarial external knowledge does not fit one

of the models proposed in the literature (see Section 3). Also, modeling any possible

source of information that could be exploited by an observer is a difficult (if not

impossible) task.

Semantic privacy definitions, first introduced to overcome the limitations of

syntactic techniques, suffer from other limitations. Indeed, semantic solutions are

aimed at providing a (semantic) privacy guarantee that prevents malicious observers

from drawing a specific kind of inference from the released data collection. However,

“one size does not fit all”, and the inference channel blocked by a semantic definition

of privacy may not be suited for all the possible data publishing scenarios. As a

consequence, even a dataset satisfying differential privacy is vulnerable to privacy

breaches, as briefly illustrated in the following.

• Since differential privacy does not make any assumption on how data have

been collected and generated, individuals cannot be protected against ma-

licious observers that are interested in determining whether an individual

took part in the data generation process. As a matter of fact, the removal

of a tuple from the released dataset does not hide all the traces that an

observer could exploit to infer whether the individual participated in the

computation of the released table. For instance, consider a social network

where users Alice and Carol do not know each other, but are both friends

with Bob, who is their unique common friend. Bob may introduce Alice

to Carol , who then become friends. Suppose now that Bob unsubscribes

from the social network before the list of users is publicly released: even

though Bob is not included in the list, the friendship between Alice and

Carol leaves a trace testifying the fact that he participated in the social

network.

• Differential privacy does not take into consideration precise query answers

on the original data that may have been disclosed prior to the privacy-

preserving publication of data. As an example, to periodically monitor the

risk of an epidemic disease, a hospital might need to release the exact

number of patients suffering from a rare disease, and this exact informa-

tion might be known to observers. Such deterministic statistics over a data

collection can possibly be exploited by a recipient to infer sensitive infor-

mation, since they can reduce (or even nullify) the noise added by the data
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holder to limit the risk of privacy breaches.

• Differential privacy techniques assume independence among the records of

the data collection to be released. Dependencies among tuples can therefore

put individuals’ privacy at risk. Even if an attacker neither knows nor can

infer that a respondent is represented in the released dataset, the knowledge

that she participated in the data generation process might leak sensitive

information about other individuals that are somewhat related to her (e.g.,

her relatives). As an example, suppose that a data recipient can infer that

Bob’s data has been used for the computation of the privacy-preserving

table representing individuals suffering from flu. Even if the observer does

not know whether Bob’s tuple belongs to the released table, she can easily

infer that (with high probability) her wife also suffers from flu.

Taking into consideration these issues, Kifer and Machanavajjhala propose a

novel definition of privacy, based on the concept of evidence of participation.67

This privacy notion considers the inferences that can be drawn from a differentially

private dataset exploiting the knowledge about the participation of an individual

in the generation of the dataset.67 Starting from this novel definition of privacy,

and acknowledging that there exists many different inference channels that can put

respondents’ privacy at risk, a novel privacy framework has been proposed.68 Goal

of this framework is to model inference risks in advance to provide a customized

definition of privacy, tailored for meeting the privacy needs of the data holder in

counteracting specific inference channels.

7. Conclusions

Privacy is a multi-faceted concept that has been the subject of several definitions

and refinements. Different data protection techniques have been proposed to meet

these privacy definitions, to ensure that no individuals’ identities or sensitive in-

formation be improperly disclosed. In this paper, we first illustrated traditional

techniques adopting a syntactic definition of privacy, designed for preventing iden-

tity and attribute disclosure in microdata publishing. We then discussed more recent

proposals adopting a semantic approach. We also presented an overview of some

applications of the data protection techniques discussed in the paper. Finally, we

highlighted open issues.
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