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Abstract

A method is presented to recover 3D scene structure and camera motion from
multiple images without the need for correspondence information. The problem
is framed as finding the maximum likelihood structure and motion given only
the 2D measurements, integrating over all possible assignments of 3D features to
2D measurements. This goal is achieved by means of an algorithm which itera-
tively refines a probability distribution over the set of all correspondence assign-
ments. At each iteration a new structure from motion problem is solved, using
as input a set of 'virtual measurements’ derived from this probability distribu-
tion. It is shown that the distribution needed can be efficiently obtained by Monte
Carlo Markov Chain sampling. The approach is cast within the framework of
Expectation-Maximization, which guarantees convergence to a local maximizer
of the likelihood. The algorithm works well in practice, as will be demonstrated
using results on several real image sequences.



1 Introduction

A primary objective of computer vision is to enable reconstructing 3D scene ge-
ometry and camera motion from a set of images of a static scene. The current state
of the art provides solutions that apply only under special conditions. Specifically,
existing techniques generally assume one or more of the following:

¢ Known correspondence: given a set of image feature trajectories over time,
solve for their 3D positions and camera motion. This classical formulation
has been studied in the context of structure from motion [25, 20, 18] and,
more recently, self-calibration [8, 21].

e Known cameras: given calibrated images from known camera viewpoints,
solve for 3D scene shape. Stereo correspondence [6] and volumetric meth-
ods [7, 14] fit within this category.

¢ Known shape: given one or more images and a 3D model of the scene,
determine the camera viewpoint corresponding to each image [12, 15].

The applicability of each of these methods is limited by the need for accurate cor-
respondence, camera calibration, or shape information as input. Reliable pixel
correspondence is difficult to obtain, especially over a long sequence of images.
Feature-tracking techniques often fail to produce correct matches due to large
motions, occlusions, or ambiguities. Furthermore, errors in one frame are likely
to propagate to all subsequent frames of the sequence. Outlier rejection tech-
niques [3, 27, 9] can ameliorate these problems, but at the cost of eliminating
valid features from the reconstruction, resulting in an incomplete model that does
not take into account all available image measurements. A priori knowledge of
camera parameters or epipolar geometry can simplify the correspondence prob-
lem [6]. However, obtaining accurate calibrated image sequences is difficult even
in controlled laboratory environments. While recent progress in self-calibration
techniques [8, 21] promises to ameliorate these difficulties, these techniques re-
quire point correspondence as input and therefore are sensitive to errors due to
incorrectly-tracked features. In short, existing shape recovery techniques are strong-
ly limited by their reliance on error-prone correspondence techniques.

In this paper, we address the structure from motion problem (Skith)
out prior knowledge of point correspondence or camera viewpoints. We frame
the problem as finding the maximum likelihood estimate of structure and motion



given only the measurements, integrating over all possible assignments of 3D fea-
tures to 2D measurements. While the full computation of this likelihood function
is generally intractable, we propose to use the Expectation-Maximization algo-
rithm (EM) [10, 5] as a practical method for finding its maxima. We will show
that EM has a simple and intuitive interpretation in this context.

The broad outline of our method is as follows: instead of solving for structure
and motion given the original image measurements, we solve a new SFM prob-
lem using newly synthesized 'virtual’ measurements, computed using our current
knowledge about the correspondences. This knowledge comes in the form of a
probability distribution, computed using the actual image data and an initial guess
for the structure and motion. By solving this new SFM problem we obtain a better
estimate for the structure and motion. This basic step is iterated until convergence.
The virtual measurements play the role of sufficient statistics, summarizing every-
thing we know from before about the correspondences. A key step in our method
is in computing the probability distribution over correspondences, which is hard
to obtain analytically. To circumvent this, we propose to use Monte Carlo Markov
Chain methods to sample from this distribution, which can be done efficiently.
In this respect, our approach resembles that of Forsyth et al. [9] who also ap-
plied MCMC for structure from motion, assuming known correspondence. A key
difference, however, is that we solve for correspondence, structure, and motion
simultaneously—a much more difficult problem.

The problem of computing structure and motion from a set of imagg®ut
correspondence information remains largely unaddressed in the literature. Several
authors considered the special case of correcinmaimpletecorrespondence, by
hallucinating occluded features [25, 2], or expanding a minimal correspondence
into a complete correspondence [22]. However, these approaches require that a
sufficient and non-degenerate set of initial correspondences be provided a priori
which is assumed to be correct. A few authors have proposed methods for us-
ing geometric constraints to facilitate the correspondence problem in uncalibrated
images. In particular, Irani [13] described how geometric rank constraints can
be used at a low level to facilitate optical flow computation over closely-spaced
views. Beardsley et al. [3] proposed a two-phase approach for robustly computing
feature correspondences in an image sequence by processing images triplets. In
the first phase, a minimal point correspondence is computed from a set of candi-
date matches using a RANSAC-based algorithm. The results from this phase are
used to compute the trifocal tensor which in turn constrain the search for other
feature correspondences. Although we adopt a very different approach and do not
require closely-spaced views, we follow their lead in coupling the estimation of
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Figure 1: An example with 4 features seen in 2 images. The 7 measuraments
are assigned to the individual featuresby means of the assignment variables

Jik-

correspondence and structure. Rather than consider a small set of images or fea-
tures at time, however, our strategy is to simultaneously optimize over all features
in all images.

The remainder of this paper is structured as follows: in Section 2 we state the
problem, introduce our notation, and sketch the outline of our approach. Section 3
provides the intuitive interpretation in terms of virtual measurements. In Section
4, we discuss the use of MCMC sampling to implement the E-step. Section 5
presents the results.

2 SFM without Correspondences

2.1 Problem Statement and Notation

Thestructure from motiofSFM) problem is this: given a set of images of a scene,
taken from different viewpoints, recover the 3D structure of the scene along with
the camera parameters. In the feature-based approach to SFM, we consider the
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situation in which a set of 3D features; is viewed by a set of: camerasn,. As
input data we are given the set of 2D measuremeptswherek € {1..K;} and
K; is the number of measurements in thth image. To model correspondence
information, we introduce for each measuremant the indicator variablg,,,
indicating thatu;; is a measurement of thg,-th featurer L Our notation is
illustrated in Figure 1. Z

The choice of feature type and camera model definesnggesurement func-
tion h(m;, x;), predicting the measuremeny;, givenm; andx;:

u;, = h(mi,ink) +n
wheren is the measurement noise. Without loss of generality, let us consider the
case in which the features are 3D points and the measurememtsare points
in the 2D image. In this case the measurement function can be written as a 3D
rigid displacement followed by a projection:
h(my, x; ) = IL[R (x5 — )] 1)

whereR; andt; are the rotation matrix and translation of théh camera, respec-
tively, andIl; : R® — R? is a projection operator which projects a point in 3D
to the 2D image plane. Various camera models can be defined by specifying the
action of this projection operator on a point= (z,y, z)* [19]. For example, the
projection operators for orthography and calibrated perspective are defined as:

me= (5 ). w57 )

2.2 SFM with Known Correspondences

To set the stage for the rest of the paper, it is convenient to view SFMresa
imum likelihood(ML) estimation problem. Let us denote the set of 3D points as
X, the set of cameras ad, the set of measurements ©s and a set of assign-

ments asl. Furthermore, defin® 2 (X, M). The maximum likelihood estimate
0* = (M~, X*) of structure and motion given the measuremd&nis given by

O* = argmax log L(0; U, J) (2)
S

where the likelihood.(0; U) of © givenU is defined as any function proportional
to P(U|0O) [24].



If we are given the correspondence informatiriog L(0; U, J) is easy to
evaluate. In the case that the noisen the measurements is i.i.d. zero-mean
Gaussian noise with standard deviatigrthe negative log-likelihood is simply a
sum of squared reprojection errors:

m K

1
—log L(6; U 3) = 775 > D llus = h(ms, xj, )| 3)

=1 k=1

In the case of orthographic, weak- and para-perspective camera models, we
find the estimaté®* that minimizes (3) using thiactorizationapproach. Using
this technique, affine structud&” and motionM*" are first obtained from the mea-
surementdJ by means of singular value decomposition. They are then upgraded
to Euclidean structure and motion by imposing metric constrainfglonThis is
a well developed technique, and the reader is referred to [25, 20, 18] for details
and additional references.

In the case of fully perspective cameras the measurement fulbgtion x; ) is
non-linear, and we resort to non-linear optimization to minimize the re-projection
error. This procedure is known in photogrammetry and computer visibaradie
adjustmentand details can be found in [23, 11, 4]. We use factorization to obtain
an initial estimate and then use the Levenberg-Marquardt optimization method to
find ©*. Sparse matrix techniques as discussed in [11] can be used to significantly
reduce the computational cost.

2.3 SFM without Correspondences

In the case that the correspondences are unknown, the maximum likelihood esti-
mate®* = (M~, X*) of structure and motion giveonly the measurements is
given by:

O* = argmax log L(0; U) (4)
0

Although this might seem counterintuitive at first, the above statesvénatin find
the ML structure and motion without explicitly reasoning about which correspon-
dence assignment might be corred¥e 'only’ need to maximize the likelihood
L(0;U), which does not depend @an

To gain a better understanding for what the functig®; U) looks like, con-
sider the example of Figure 2, where two featuxgsandx, are seen in a 1D
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Figure 2: Example where 2 featuresandx, are seen in one image. The features
are constrained to lie on the= 2 line. The associated likelihoods are shown in
Figure 3.



L(X:U,3) L(X:U,3,) L(X: U)

Figure 3: The joint likelihood ok; andx, from Figure 2 in the three cases: (left)
given U and the 'obvious’ assignmedt;, (middle) givenU and the ‘reverse’
assignmendl,, and (right) givenU only, which is their sum .

camera. In this case there are two measurementandu,,, and two possible
assignmentsJ; (shown ) assigns;; to x; andu;, to x,, and the opposite as-
signmentJ,. Suppose that the camena; is known, and that the features are
constrained to lie on the ling = 2, such that they have only one free parameter
each. To calculaté(0O; U), note that we can write it as a sum of likelihood terms
of the form (2), with one term for every possible correspondence assigrment

L(©;U)=> L(6;U,J)
J

The computation of . (©; U) for this example is illustrated in Figure 3: for each
of the two possible assignments the likelihood is a unimodal distribution, but the
total likelihood functionZ(©; U) is bimodal. This agrees with the intuition that
either one of the assignmers or J, is equally likely.

2.4 Maximizing the Likelihood Using EM

While the full computation of.(©; U) is generally intractable, the Expectation-
Maximization [10, 5] algorithm provides a practical method for finding its max-
ima. In general/.(0; U) is hard to obtain explicitly, as it involves summing over
a combinatorial number of possible assignments. However, it can be proven that
the EM algorithm converges to a local maximum/gP; U).

The idea of EM is to maximize thexpectedog likelihood function

Q'(0) = Epi{log L(©:U.J)}
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where the expectation is taken with respect to the posterior distrib;ﬂtio%
P(J|U, ©%) over all possible assignmenigiven the datdJ and a current guess
©' for structure and motion. The EM algorithm then iterates over [24]:

1. E-step: Calculate the expected log likelihogd (O ):
Q'(©)=) ['(I)log L(6;U,J) (5)
J

2. M-step: Find the ML estimat@®‘*! for structure and motion, by maximiz-
ing Q'(0):

Ot = argmax Q'(0)
C)

It is important to note thaf)?(©) is calculated in the E-step by evaluatifigJ)
using thecurrent guesg? for structure and motion (hence the supersct)pt
whereas in the M-step we are optimizi@gy(©) with respect to théree variable
O to obtain the new gues3'*!.

3 SFM with Virtual Measurements

In this section we show that the EM algorithm outlined above can be interpreted
in a simple and intuitive way. We show that the expected log-likelihood can be
rewritten such that the M-step amounts to solving a similar SFM problem, but
using as input a newly synthesized set of virtual measuremergated in the
E-step.

3.1 Virtual Measurements

In the context of SFM, we substitute the expression for the log likelihogd.)
from (3) in equation (5), and obtain the following expressiondéfo ):

m K

SOWED IR ®

=1 k=1

It is clear that a direct evaluation of (6) is infeasible, as the number of possible
assignments is combinatorial in An efficient implementation is nevertheless
possible.



To see this, let us first calculate the probabilfty that a measuremennt;
in image: is assigned to a featusg, regardless of how the other measurements
are assigned. In other wordg,, is themarginal posterior probabilityP(j;, =
7|U, ©), and it can be calculated by summifigJ) over all possible assignments
J wherej,;, = 5:

2 Plig = 710,00 =Y 8(i.4)/1(J) (7)
J

whered(., .) is the Kronecker delta function.
Equation (7) allows us to rewrite the expected log-likelihegdo) from (6)
in a form that only depends indirectly on the assignment varighles

m n K;

10) = 55 S0 Ayl — h(ms, ) ®)

=1 j=1 k=1

Now we state the main result in this section: it can be shown by simple alge-
braic manipulation that (8) can be written as the sum of a constant that does not
depend or®, and a new re-projection error offeatures inn images

=0+ ZZ Hv — h(m;, x;)|* (9)

where thevirtual measurements;; andvirtual measurement variande,)* are
defined as

IXl 2
: A ke Jku““ ty2 A g
vi. = I (0) = = (10)
Y E - zzk 7 N E - zék

Each virtual measurements, is simply a weighted average of the original mea-
surementsy;;, in thei-th image, and the weights are the marginal probabilffies

If there is no occlusion and all features are seen in all images Jien S =1
and the expressions further simplify.

3.2 Summary and Implementation Outline

Writing Q*(©) as a re-projection error with respect to virtual measurements as in
equation (9) provides an intuitive interpretation for the overall algorithm:
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1. E-step: Calculate the weightg’, from the distribution over assignments.
Then, in each of the: images calculate virtual measurements;;.

2. M-step: Find the structure and motion estimadét! that minimizes the
(weighted) re-projection error given the virtual measurements:

Ot = argmln Z Z

=1 j7=1

HV —h(m;, x;)||*

In other words, the E-step synthesizes new measurement dattheahtistep is

a conventional SFM problem of the same size as before. This means that we can
use any known SFM algorithm at our disposal asfiem straightforward ortho-
graphic factorization to the more recent algorithms that work with uncalibrated
images. What is left is to show how the E-step can be implemented.

4 Implementing the E-step

Since the M-step can be implemented using known SFM approaches, we need
only concern ourselves with the implementation of the E-step. In particular, we
need to calculate the marginal probabilitfgs = P(j;, = j|U, ©°).

4.1 Conditional Independence vs. the Mutual Exclusion Con-
straint
If we assume that the feature assignmgptare conditionally independent given

U and©?, we can write the probability of each assignm&mits the product of the
probabilities of the individual assignmerjts:

m K

P, 0" = [T I] Pl © (11)

=1 k=1

If this were an good approximation it would lead to an efficient implementation.
It can be shown that in that case the marginal probabilifiesnly depend on the
distance from the measurement to the projected feature point:

1
Sy = Ciyexp {—@Huik - h(mmxy‘)HQ} (12)
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with C, a normalization constant.

However,n reality the assignments are not independéird measurement;;
has been assigngd = 7, then no other measurement in the same image should be
assigned the same feature paint The probability of such a double assignment
is zero, which cannot be modeled by the expression above. In other words, it does
not take into account the important global constraint of mutual exclusion, which
is crucial in practice to obtain good results.

Imposing the mutual exclusion constraint, however, makes it difficult to an-
alytically express the weights;,. Conditional independence no longer holds,
while the simple expression (12) for the weiglits relies crucially on this as-
sumption. We know of no efficient closed form expression ffgr that allows
only permutations.

The solution we propose is to insteadmplefrom the posterior probability
distribution/f*(J) over valid assignments, to obtain approximate values for the
weightsf,. Formally this can be justified in the context oMonte Carlo EMor
MCEM, a version of the EM algorithm where the E-step is executed by a Monte-
Carlo process [24, 17]. The sample can be efficiently obtained using the Metropo-
lis algorithm, as will be described below.

4.2 Sampling the Correspondence Distribution

We would like to obtain a sample from the distributiinovervalid assignments

J. First, an important fact to note is that we can do this for each image individu-
ally, as the assignmedt within each image is conditionally independent of the
assignments in other images. This means thaan be factored as:

m

13 = [ pUiU, 0

=1

whereU; are the measurements in imageanly.

To sample fromP(J;|U;, ©) we use the Metropolis algorithm, an instance of
the Monte-Carlo Markov-Chain methods (abbreviated MCMC), which involve a
Markov chain in which a sequence of samples is generated [16, 9]. If we set up
the transition probabilities correctly, the equilibrium distribution of the Markov
chain will be equal to the posterior distribution we would like to sample from.
In our case, we would like to generate a sequence of sardplgem the poste-
rior P(J;|U;, ©%), and the Metropolis algorithm can be formulated in the current
context as follows (adapted from the general description in [16]):
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1. Start with a valid initial assignmedt .

2. Propose a new valid assignme¥jt which is probabilistically generated
fromJ:.

3. Compute the ratio

_ PV, O
- PEIUL )

a

(13)

4. If @ >=1then accepd’, i.e. we setfi*! = J..
Otherwise, acceptl; with probability«. If the proposal is rejected, then we
keep the previous sample, i.e. we 3&t' = J7.

To actually implement this scheme, we need to specify three elements: (a) define
what a 'valid’ assignment is, (b) a way to probabilistically perturb them, and (c)
an explicit expression fo#. Below we do this for the case when there is no
occlusion, no spurious features, and all features are seen in allimages. In this case,
the onlyvalid assignmentg;, are permutations of the feature indices:. The
proposal stegan be implemented by swapping the assignment varigblestwo
randomly chosen measurementg, which conserves the permutation property.
Finally, the posterior ratia can be evaluated very efficiently, as it can be shown to
depend only on the dot product of two vectors related to the swap (proof omitted):

a= exp(é(lh —uy)" (hy — hy))

whereu; andu, the measurements whose assignments will be swappedy;and
andh, are the projections of the features originally assigned to them .

To conclude the E-step and compute the virtual measurements in (10), the only
thing left to do is to compute the marginal probabilitigs from the sampleJ’ }.
Fortunately, this can be done without explicitly storing the samples by keeping
running counts of how many times each measuremgris assigned to featurg
and use that to compufg,. If we defineC’,, to be this count, we have:

1
z?k ~ R fjk (14)
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4.3 Implementation in Practice

The pseudo-code for the final algorithm is as follows:

1. Generate an initial structure and motion estintite

2. Given®' and the datdJ, run the Metropolis sampler in each image to obtain
approximate values for the weights,, using equation (14).

3. Calculate the virtual measurements with (10).

4. Find the new estimat@‘*! for structure and motion using the virtual mea-
surements’;; as data. This can be done using any SFM method compatible
with the projection model assumed.

5. If not converged, return to step 2.

To avoid getting stuck in local minima, it is important in practice to addealing

to this basic scheme. In annealing we artificially increase the noise paranfieter

the early iterations, gradually decreasing it to its correct value. This has two ben-
eficial consequences. First, the posterior distribufiowill be less peaked when

o is high, so that the Metropolis sampler will explore the space of assignments
more easily, and avoid getting stuck on islands of high probability. Second, the
expected log likelihood)?(©) is smoother and has less local maxima at higher
values foro. We use a logarithmically decreasing annealing scheme, but have
found that the algorithm is not sensitive to the exact scheme used.

5 Results

In this section we show the results obtained with three different sets of images.
For each set we highlight a particular property of our method. For all the results
we present, the input to the algorithm was a set of manually obtained image mea-
surements. To initialize , the 3D points were generated randomly in a normally
distributed cloud around a depth of 1, whereas the camerasere all initial-

ized at the origin. We ran the EM algorithm for 100 iterations each time, with
the annealing parameterdecreasing logarithmically from 25 pixels to 1 pixel.
For each EM iteration, we ran the sampler in each image for 10000 steps. For the
image sets below it takes about a minute to run 100 iterations on a standard PC.
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Figure 4: Three out of 1&ubeimages. Although the images were originally taken
as a sequence in time, the ordering of the images is irrelevant to our method.

t=1 0=25.1 t=3 0=23.5

t=10 0=18.7

Figure 5: The structure estimate a s initialized and at successive iteratbtie
algorithm.
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Figure 6: 4 out of 5 perspective images of a house.

In practice, the algorithm converges consistently and fast to an estimate for
the structure and motion where the correct correspondence is the most probable
one, and where most if not all assignments in the differentimages agree with each
other. We illustrate this using the image set shown in Figure 4, which was taken
under orthographic projection. The typical evolution of the algorithmis illustrated
in Figure 5, where we have shown a wireframe model of the recovered structure at
successive instants of time. There are two important points to notthg@yoss
structure is recovered in the very first iteration, starting from random initial struc-
ture, and (b) finer details of the structure are gradually resolved as the parameter
is decreased. The estimate for the structure after convergence is almost identical
to the one found by factorization when given the correct correspondence. Inciden-
tally, we found the algorithm converges less often when we replace the random
initialization by a 'good’ initial estimate where all the points in some image are
projected onto a plane of constant depth.

To illustrate the EM iterations, consider the set of images in Figure 6 taken
under perspective projection. In the perspective case, we implement the M-step
as para-perspective factorization followed by bundle adjustment. In this example
we do not show the recovered structure (which is good), but show the marginal
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Figure 7: The marginal probabilitig§, at an early and at a later iteration, respec-
tively. Each row corresponds to a measuremgptgrouped according to image
index, whereas the columns representstifeaturesx;. In this example: = 58
andm = 5. Black corresponds to a marginal probability of 1.
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Figure 8: 6 out of 8 images of a wireframe toy, taken from widely different view-
points.

probabilitiesf,. at two different times during the course of the algorithm, in Fig-
ure 7. In early iterationss is high and there is still a lot of ambiguity. Towards

the end, the distribution focuses in on one consistent assignment. If all the prob-
ability were concentrated in one consistent assignment over all images, the large
-, matrix would be a set of identical permutation matrices stacked one upon the
other.

The algorithm also deals with situations where the images are taken from
widely separate viewpoints, as is the case for the images in Figure 8. In this
sequence, the image features used were the colored beads on the wireframe toy
in the image, plus four points on the ground plane. Images were taken from both
sides of the object. Because of the 'see-through’ nature of the object, there is also a
lot of potential confusion between image measurements. Figure 9 shows the wire-
frame model obtained by our method, where each of the wires corresponds to one
of the wires on the toy. Although in the final iteration there is still disagreement

17



Figure 9: Recovered structure for wireframe toy reprojected in 2 images.

between images about the most likely feature assignment, the overall structure of
the model is recovered despite the arbitrary configuration of the cameras.

6 Conclusions and Future Directions

In this paper we have presented a novel tool, which enables us to solve the struc-
ture from motion problenwithout a priori correspondence information. In ad-
dition, it can cope with images given in arbitrary order and taken from widely
separate viewpoints.

Despite the space we have devoted to explaining the rationale behind it, the
final algorithm is simple and easy to implement. As summarized in Section 4.3,
at each iteration one only needs to obtain a sample of probable assignments, com-
pute the virtual measurements, and solve a synthetic SFM problem using known
methods. In addition, it is fast: the Metropolis sampler, which is the main com-
putational bottleneck, can be implemented very efficiently due to the incremental
computation of the posterior ratios, and the fact that we do not need to store the
samples.

However, there is plenty of opportunity for future work. Although the general
algorithm can in principle handle occlusions and spurious features, this needs to
be implemented and experimentally verified. Furthermore, this introduces the
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issue of how many features need to be instantiated, if this is not known a priori.
This issue of model selection has been addressed successfully before in [1, 26],
and it is hoped that the lessons learned there can equally apply in this context.
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