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Abstract

It is hypothesized that the perception of an alternative
image in ambiguous figures would be manifested as an
increase in synchronization of EEG signals over multiple
scalp sites as “cognitive binding” occurs. A statistical time-
frequency analysis (STFA) approach is taken to detect cog-
nitive binding. The STFA approach consists of an analysis
filter bank that extracts useful components from the input
EEG signals and certain statistical parameters at the out-
put that characterize the synchronization patterns over mul-
tiple scalp sites. With the help of wavelet-packet filters and
wavelet coherence measures, cognitive binding is detected
over many frequency bands by statistical testing.

1. Introduction

Synchronized (or coherent) oscillatory patterns in multi-
ple electroencephalographic (EEG) signals have been found
in many studies as manifestation of different mental activ-
ities [1]–[4]. This research focuses on detecting possible
neural mechanisms of “cognitive binding”—a process by
which humans recognize spatially distributed elements of a
stimulus, detect salient relationships, and bind them into a
meaningful and coherent whole.

Ambiguous figures are considered as a convenient way
to induce cognitive binding. Ambiguous figures have two
different and mutually exclusive perceptions. The famil-
iar “Batman” logo, for example, is an ambiguous figure be-
cause it can be perceived either as the black representation
of a bat or as a set of white teeth. By Gestalt theory [5],
a subject looking at an ambiguous figure will preferentially
perceive a “default” image without particular mental effort,
and only with sustained thinking via cognitive binding does
the subject realize the existence of an alternative image. It is
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Figure 1. Schema of the STFA approach.

hypothesized in this research that the perception of an alter-
native image in ambiguous figures would be manifested as
an increase in synchronization of EEG signals over multiple
scalp sites as cognitive binding occurs.

2. The STFA Approach

To test the hypothesis, we employ a general time series
analysis approach called statistical time-frequency analysis
(STFA) [6]. As depicted in Fig. 1, STFA combines an anal-
ysis filter bank with simple summary statistics at the output
for time series analysis [6]. The role of the filter bank (or
parametric filter) is to extract useful components from the
input time series and suppress unwanted interference and
noise; the role of the summary statistics at the output is to
extract relevant statistical information from the output time
series for detection, estimation, and modeling.

In this research, the filter bank comprises the finite
impulse response (FIR) filters that produce the undeci-
mated wavelet-packets (WP) transform [7], and the sum-
mary statistics at the output are taken to be the ordinary
and partial correlation coefficients over multiple scalp sites,
which we refer to aswavelet coherenceandwavelet par-
tial coherence. Unlike the traditional spectral coherence
[4], [8], the wavelet coherence describes the correlation of



multiscalewavelet components rather than fixed-scale si-
nusoidal components of the EEG signals. Wavelet-based
methods have been proved effective in EEG signal process-
ing for transient detection and classification [9], [10]. It is
proved useful in this research for coherence analysis.

3. The EEG Data

The EEG data in this research were collected from17
subjects. Each subject was presented with10 ambiguous
figure trials. Two segments of EEG signals, each being 1.28
sec. long (256 samples at 200 Hz rate), were recorded si-
multaneously at 19 scalp sites. The first segment was ob-
tained at the beginning when the subject was just presented
with an ambiguous figure. It represents the brain activity
when the default image is perceived by the subject. The
second segment was recorded when the subject managed to
see the alternative image. It should capture the brain ac-
tivity as cognitive binding occurs. All the EEG data were
ensured to be free of artifacts by visual inspection. More
information about the data can be found in [11].

4. Wavelet Coherence

Let {Xit}n
t=1 denote a segment of (zero-mean) EEG sig-

nal obtained by theith electrode(i = 1, · · · , p), and let
W(·) denote a WP filtering operator. Then, the output sig-
nal can be expressed asYit := Yit(W) := W(Xit). We
define the wavelet coherence between theith andjth EEG
signals for the given filterW as

rij := rij(W) := Corr(Yit, Yjt), (1)

and define the wavelet partial coherence between theith and
jth EEG signals for the given filterW as

ρij := ρij(W) := Corr(Yit, Yjt | Ykt, ∀k 6= i, j). (2)

Assuming the EEG signals are multivariate normal random
variables,ρij can be computed recursively fromrij [12].
One can regardρij as the ordinary correlation coefficient
between the two residual time series obtained from the best
linear estimates ofYit andYjt, respectively, on the basis of
the remaining variables{Ykt, ∀k 6= i, j}.

Besides being a correlation coefficient, the wavelet co-
herence has at least three additional interpretations. First,
r2
ij is equal to the proportion of the variability ofYit that

can be accounted for by its linear association withYjt. Sec-
ond, under the multivariate normality assumption,ξij :=
arccos(rij)/π is equal to the expected zero-crossing rate
of the interleaved time series{Zt} defined byZ2t := Yit

andZ2t+1 := Yjt. Finally, under the normality assump-
tion, ηij := 1 − arccos(rij)/π = 1 − ξij is equal to the
probability ofYitYjt exceeding zero, i.e.,P (YitYjt > 0).

All these quantities measure the degree of synchroniza-
tion between two oscillatory signals from different aspects.
The second and third interpretations, in particular, give rise
to an alternative definition of wavelet coherence in terms of
zero-crossing rate or zero-exceeding probability, i.e.,

r∗ij := r∗ij(W) := cos(πξij) = cos(π − πηij). (3)

This definition is different from (1) when the normality is
invalid; it is equivalent to (1) when the normality holds.

Given {Yit}n
t=1 and{Yjt}n

t=1, one can estimaterij by
the sample correlation coefficientr̂ij :=

∑
(Yit− Ȳi)(Yjt−

Ȳj)/
√∑

(Yit − Ȳi)2
∑

(Yjt − Ȳj)2, whereȲi and Ȳj are
the sample mean ofYit and Yjt, respectively. Substitut-
ing rij by r̂ij in the recursive algorithm in [12] produces
ρ̂ij as an estimate ofρij . One can estimater∗ij by r̂∗ij :=
cos(πξ̂ij), whereξ̂ij := n−1

∑
I{(Yit−Ȳi)(Yjt−Ȳj) < 0}

with I(·) being the indicator function.
Wavelet coherence depends on the WP filters indexed by

a binary code of length̀. If fs is the sampling frequency,
then, for a given codem := (m1, · · · , m`), the WP filter
Wm has an effective passband in(f1m, f2m), wheref1m :=
δ`

∑`
i=1 mi2`−i, f2m := f1m + δ`, andδ` := 2−`−1fs.

5. Detection of Synchronized Patterns

Synchronized spatial patterns in the EEG signals can be
detected by statistical hypothesis testing procedures based
on the wavelet coherence measures of repeated trials. More
precisely, suppose that the EEG signals are available for
K := Ks × Kf independent trials fromKs subjects, each
presented withKf ambiguous figures. Let̂rijk be the
wavelet coherence from thekth trial. Under certain mix-
ing conditions, one can show thatẑijk := tanh−1(r̂ijk)
is asymptotically normal with meanzij := tanh−1(rij)
and variancen−1σ2

ij for someσ2
ij [8]. Therefore, one can

test for nonzero wavelet coherence by using the test statistic
tij :=

√
K z̄ij/sij , wherez̄ij is the sample mean ands2

ij is
the sample variance of{ẑijk}K

k=1. Under the null hypoth-
esis ofrij = 0, tij has an asymptoticT distribution with
K − 1 degrees of freedom. Therefore, aT test would be
able to detect significant coherence between the two sites.

Since ζ̂ijk := tanh−1(ρ̂ijk) has an asymptotic normal
distribution with meanζijk := tanh−1(ρijk), a similarT
test can be used to test for the hypothesis of nonzero wavelet
partial coherence (i.e,ρij = 0 vs.ρij 6= 0).

Fig. 2 shows some examples of wavelet coherence and
partial coherence maps. Almost all pairs of EEG signals
exhibit significant positive coherence in both segments and
multiple frequency bands. The significant partial coherence
reveals the synchronization patterns more clearly because
the interference from the other sites is removed.
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Figure 2. Wavelet coherence and partial coherence maps

of the ambiguous figure experiment. Left: plot of r̄1j :=
tanh(z̄1j). Right: plot of ρ̄1j := tanh(ζ̄1j). Top: ob-

tained by W000 (0–12.5 Hz). Bottom: obtained by W011

(37.5–50 Hz). Symbols outlined in black indicate signifi-

cant coherence at level 0.01.

6. Synchronization Change Detection

A pairedT test can be applied to each pair of electrodes
to test for the hypothesis of change in synchronization dur-
ing cognitive binding. The pairedT tests are performed on
the difference between the transformed wavelet coherence
of the two EEG segments. More precisely, letẑ

(a)
ijk andẑ

(b)
ijk

denote the transformed wavelet coherence of segment 1 (a
priori ) and segment 2 (binding), respectively. Then, the test
statistic can be expressed asτij :=

√
K z̄

(d)
ij /s

(d)
ij , where

z̄
(d)
ij ands

(d)
ij are the sample mean and the sample standard

deviation ofẑ(d)
ijk := ẑ

(b)
ijk−ẑ

(a)
ijk. TheT test is justified by the

asymptotic normality of the transformed wavelet coherence,
which ensures that, under the null hypothesis ofr

(a)
ij = r

(b)
ij

(i.e., no change in synchronization),τij has an asymptotic
T distribution withK − 1 degrees of freedom. We employ
the pairedT test instead of the two-sampleT test because
ẑ
(a)
ijk andẑ

(b)
ijk might be correlated as they are obtained from

the same subject.
Fig. 3 shows the change detection results from two WP

filters. As expected, significant increase in wavelet coher-
ence is found in both low and high frequency bands over
multiple scalp sites as cognitive binding occurs.

To further justify that the detected changes in synchro-
nization pattern can be attributed to cognitive binding, we
apply the same method to an attention control experiment,

in which each subject was presented with a slow sound-
pulse train of variable duration, and the first EEG segment
was taken immediately after the presentation and the second
segment was taken just before the subject realized that the
pulse train had stopped. Fig. 4 shows the change detection
results from the same two WP filters as used in Fig. 3. The
EEG synchronization patterns do not change significantly,
as expected, because the thought of the subjects was effec-
tive controlled (no cognitive binding) in this experiment.

7. Conclusions
In this research we have developed an STFA framework

for synchronization analysis and change detection of mul-
tiple EEG signals. Wavelet coherence and wavelet partial
coherence are proposed to quantify the pairwise synchro-
nization and are applied to an ambiguous figure experiment
to test for the hypothesis of cognitive binding. Significant
increase in synchronization is found during the cognitive
binding process in multiple frequency bands over multiple
scalp sites. More sophisticated relationships among multi-
ple scalp sites can be analyzed by using the multiple corre-
lation coefficients and the canonical correlation analysis of
the WP filtered EEG signals.
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Figure 3. Wavelet coherence maps for synchronization

change detection in the ambiguous figure experiment.

Top: plot of z̄
(d)
ij (W000). Bottom: plot of z̄

(d)
ij (W011).

Symbols outlined in black indicate significant coherence

change at level 0.01.
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Figure 4. Same as Fig. 3, but for the attention control

experiment.


