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Abstract . ,
( Input Time Series )
Y

It is hypothesized that the perception of an alternative ‘

image in ambiguous figures would be manifested as an STFA Filter Bank ‘

increase in synchronization of EEG signals over multiple Y

scalp sites as “cognitive binding” occurs. A statistical time- | Simple Summary Statistics |
frequency analysis (STFA) approach is taken to detect cog- ¥

nitive binding. The STFA approach consists of an analysis ‘ Estimation/Detection/Modeling ‘
filter bank that extracts useful components from the input ¥

EEG signals and certain statistical parameters at the out- ( Desired Information )

put that characterize the synchronization patterns over mul-
tiple scalp sites. With the help of wavelet-packet filters and
wavelet coherence measures, cognitive binding is detected
over many frequency bands by statistical testing.

Figure 1. Schema of the STFA approach.

hypothesized in this research that the perception of an alter-
native image in ambiguous figures would be manifested as
an increase in synchronization of EEG signals over multiple

1. Introduction scalp sites as cognitive binding occurs.

Synchronized (or coherent) oscillatory patterns in multi-
ple electroencephalographic (EEG) signals have been found. The STFA Approach
in many studies as manifestation of different mental activ-
ities [1]-[4]. This research focuses on detecting possible
neural mechanisms of “cognitive binding"—a process by
which humans recognize spatially distributed elements of a
stimulus, detect salient relationships, and bind them into a
meaningful and coherent whole.

Ambiguous figures are considered as a convenient way

To test the hypothesis, we employ a general time series
analysis approach called statistical time-frequency analysis
(STFA) [6]. As depicted in Fig. 1, STFA combines an anal-
ysis filter bank with simple summary statistics at the output
for time series analysis [6]. The role of the filter bank (or
parametric filter) is to extract useful components from the
X L S . . input time series and suppress unwanted interference and
fo induce cognitive binding. Ambiguous figures have two noise; the role of the summary statistics at the output is to

ﬂf?éi\?:nzzgI(r)guotuf?yllyesgrﬂglselv?s %ir;?ﬁs% szu;—fri]geu:?gg- extract relevant §tatistic.al in_formation from.the output time
cause it can be pérceived eithér as the black representatioﬁerles fqr detection, estlma}tlon, and modelmg. -

: In this research, the filter bank comprises the finite
of a pat oras a set of Wh't? teeth._ By Ge_stalt theory_ [5], impulse response (FIR) filters that produce the undeci-
a SUbJ.eCt Io“oklng at an amb|guous flgu.re will preferentially mated wavelet-packets (WP) transform [7], and the sum-
perceive a “default” image without particular mental effort, mary statistics at the output are taken to be the ordinary

and only with sustained thinking via cognitive binding does and partial correlation coefficients over multiple scalp sites,

the subject realize the existence of an alternative image. It ISyhich we refer to asvavelet coherencand wavelet par-

*Now with Department of Mathematical Sciences, IBM T. J. Watson tial coherence Unlike the traditional spectral coherence
Research Center, Yorktown Heights, NY 10598 (thi@watson.ibm.com).  [4], [8], the wavelet coherence describes the correlation of




multiscalewavelet components rather than fixed-scale si-  All these quantities measure the degree of synchroniza-
nusoidal components of the EEG signals. Wavelet-basedtion between two oscillatory signals from different aspects.

methods have been proved effective in EEG signal processThe second and third interpretations, in particular, give rise
ing for transient detection and classification [9], [10]. Itis to an alternative definition of wavelet coherence in terms of

proved useful in this research for coherence analysis. zero-crossing rate or zero-exceeding probability, i.e.,

*

3. The EEG Data r;‘j =Ty (W) := cos(m&;;) = cos(m — ;). 3)

The EEG data in this research were collected friin  This definition is different from (1) when the normality is
subjects. Each subject was presented withambiguous invalid; it is equivalent to (1) when the normality holds.
figure trials. Two segments of EEG signals, each being 1.28 ~ Given {Y;;}7_, and{Yj,}},, one can estimate;; by
sec. long 256 samples at 200 Hz rate), were recorded si- the sample correlation coefficient := > (V; _g)(yj _
multaneously at 19 scalp sites. The first segment was obyj)/\/z(yﬁ Y25 (Y;, — Y;)%, whereY; andY; are
tained at the beginning when the subject was just presenteqne sample mean of;, and Y, respectively. Substitut-

with an ambiguou_s figurg. It rep_resents the brai_n activity ing r;; by #;; in the recursive algorithm in [12] produces

when the default image is perceived by the subject. Thef_j as an estimate of;;. One can estimate;; by 7, :=

second segment was recorded when the subject managed to” , - . o

gmer. e ) 298 Cos(néiy), where€y; == n=1 Y0 I{(YVa—Y3) (Yii—Y;) < 0}

see the alternative image. It should capture the brain ac- ih 1(*) being the indicator function

tivity as cognitive binding occurs. All the EEG data were Wavel gh q q h WP i indexed b

ensured to be free of artifacts by visual inspection. More avelet coherence depends on the Tilters indexed by

information about the data can be found in [11]. a binary code of length. I f, is the sampling frequency,
then, for a given coden := (mq,---,my), the WP filter

4. Wavelet Coh 'W,, has an eﬁective passbandifi.., fom ), wherefi,, :=

. avele onerence 5@ Zf=1 miZK*Z, f2m = flm 4 5@1 and(Sg = 27671‘]('8_

Let{X,: }}_, denote a segment of (zero-mean) EEG sig-

'W(-) denote a WP filtering operator. Then, the output sig-

nal can be expressed &% := Y;(W) := W(X;,). We Synchronized spatial patterns in the EEG signals can be
define the wavelet coherence betweenitheandjth EEG  detected by statistical hypothesis testing procedures based
signals for the given filteW as on the wavelet coherence measures of repeated trials. More

precisely, suppose that the EEG signals are available for

K = K, x Ky independent trials fronk’; subjects, each

presented with/; ambiguous figures. Let;;; be the

wavelet coherence from thigh trial. Under certain mix-

ing conditions, one can show thag;, := tanh‘l(fijk)

is asymptotically normal with mean;; := tanh‘l(rij)

and variance:~'o7; for someo?; [8]. Therefore, one can

Assuming the EEG signals are multivariate normal random test for nonzero wavelet coherence by using the test ;tatistic

variables,p;; can be computed recursively from; [12]. tij := VK Z;/si;, wherez;; is the sample mean and, is

One can regarg;; as the ordinary correlation coefficient the sample variance df;;,};,. Under the null hypoth-

between the two residual time series obtained from the besg€sis ofr;; = 0, ¢;; has an asymptotig’ distribution with

linear estimates of;; andYj, respectively, on the basis of K — 1 degrees of freedom. Thereforeatest would be

the remaining variable§Y;, Vk # i, j}. able to dgtect significant coherence between the two sites.
Besides being a correlation coefficient, the wavelet co- ~ Since(;;x = tanh™'(j;;x) has an asymptotic normal

herence has at least three additional interpretations. Firstdistribution with mearg;;; := tanh™'(p;;x), a similarT

7»22], is equal to the proportion of the variability af, that test can be used to test for the hypothesis of nonzero wavelet

Tij 1= Tij (W) = COl’l’(Y;t, Y—jt); (1)

and define the wavelet partial coherence betweeittiend
jth EEG signals for the given filtéWv as

pij = pij(W) := Corr(Ys, Yji | Yie, Vk # 4, 7). (2

can be accounted for by its linear association Wwith Sec-  partial coherence (i.g;; = 0 vs. p;; # 0).

ond, under the multivariate normality assumptigy, := Fig. 2 shows some examples of wavelet coherence and
arccos(r;;)/7 is equal to the expected zero-crossing rate partial coherence maps. Almost all pairs of EEG signals
of the interleaved time seriesZ;} defined byZs, := Y exhibit significant positive coherence in both segments and
and Zy 41 = Yj:. Finally, under the normality assump- multiple frequency bands. The significant partial coherence

tion, n;; := 1 — arccos(ry;)/m = 1 — &;; is equal to the  reveals the synchronization patterns more clearly because
probability ofY;;Y;; exceeding zero, i.eR(Y;;Y;: > 0). the interference from the other sites is removed.
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Figure 2. Wavelet coherence and partial coherence maps

of the ambiguous figure experiment. Left: plot of 15 =
tanh(z1,). Right: plotof p1; := tanh((1;). Top: ob-
tained by Wooo (0-12.5 Hz). Bottom: obtained by W11
(37.5-50 Hz). Symbols outlined in black indicate signifi-
cant coherence at level 0.01.

6. Synchronization Change Detection

A pairedT test can be applied to each pair of electrodes
to test for the hypothesis of change in synchronization dur-
ing cognitive binding. The paired tests are performed on

the difference between the transformed wavelet coherence

of the two EEG segments. More precisely,ﬁg‘gz and,%i(jl.’,)C
denote the transformed wavelet coherence of segmeamt 1 (
priori) and segment {nding), respectively. Then, the test

statistic can be expressed ag == VK z.\ /s, where

22.(]‘?) andsl(;l) are the sample mean and the sample standard

deviation oféz.(fi,z = zf]b,)c - Z(a,z TheT testis justified by the

asymptotic normality of the transformed wavelet coherence,
which ensures that, under the null hypothesis%ﬁ = rg.’)

(i.e., no change in synchronization); has an asymptotic

T distribution with X' — 1 degrees of freedom. We employ
the pairedI” test instead of the two-samplétest because

zf]“,z and,%i(jl.’,)C might be correlated as they are obtained from
the same subject.

Fig. 3 shows the change detection results from two WP
filters. As expected, significant increase in wavelet coher-
ence is found in both low and high frequency bands over
multiple scalp sites as cognitive binding occurs.

To further justify that the detected changes in synchro-
nization pattern can be attributed to cognitive binding, we

apply the same method to an attention control experiment,

in which each subject was presented with a slow sound-
pulse train of variable duration, and the first EEG segment
was taken immediately after the presentation and the second
segment was taken just before the subject realized that the
pulse train had stopped. Fig. 4 shows the change detection
results from the same two WP filters as used in Fig. 3. The
EEG synchronization patterns do not change significantly,
as expected, because the thought of the subjects was effec-
tive controlled (no cognitive binding) in this experiment.

7. Conclusions

In this research we have developed an STFA framework
for synchronization analysis and change detection of mul-
tiple EEG signals. Wavelet coherence and wavelet partial
coherence are proposed to quantify the pairwise synchro-
nization and are applied to an ambiguous figure experiment
to test for the hypothesis of cognitive binding. Significant
increase in synchronization is found during the cognitive
binding process in multiple frequency bands over multiple
scalp sites. More sophisticated relationships among multi-
ple scalp sites can be analyzed by using the multiple corre-
lation coefficients and the canonical correlation analysis of
the WP filtered EEG signals.
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Figure 3. Wavelet coherence maps for synchronization
change detection in the ambiguous figure experiment.
Top: plot of Zﬁj)(wooo). Bottom: plot of Zﬁj)(Wou).
Symbols outlined in black indicate significant coherence
change at level 0.01.

Figure 4. Same as Fig. 3,
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