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A New Insertion-based Construction Heuristic for Solving the Pickup and Delivery 

Problem with Time Windows 

 

Abstract 
 

In this paper we present a new insertion-based construction heuristic to solve the multi-

vehicle pickup and delivery problem with time windows.    The new heuristic does not 

only consider the classical incremental distance measure in the insertion evaluation 

criteria but also the cost of reducing the time window slack due to the insertion.   We also 

present a non-standard measure, Crossing Length Percentage, in the insertion evaluation 

criteria to quantify the visual attractiveness of the solution.  We compared our heuristic 

with a sequential and a parallel insertion heuristic on different benchmarking problems, 

and the computational results show that the proposed heuristic performs better with 

respect to both the standard and non-standard measures.  
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1. Introduction 

Many core problems arising in logistics and public transit can be modeled as a pickup 

and delivery problem with time windows (Savelsbergh and Sol, 1995).   In the pickup and 

delivery problem with time windows (PDPTW), each transportation request has a pickup 

and delivery point and the completion of servicing these points must be performed within 

a given time window.  Since exact approaches can only solve relatively small sized 

problems due to the problem being NP-hard, researchers have resorted to heuristic 

algorithms to solve the larger sized problems (Savelsbergh and Sol, 1995; Lu and 

Dessouky, 2004).   

Insertion heuristics construct feasible schedules by iteratively inserting undetermined 

nodes into existing routes.  A new route is created if no undetermined node can be 

inserted into any existing route.  Two decisions need to be made by any insertion 

heuristic:  the selection of the next insertion node and the selection of the next insertion 

spot.  Most insertion heuristics use some criteria function, typically based on the 

incremental of distance or cost, as a selection rule. By applying different selection rules, 

variant insertion heuristics may be generated.  Insertion-based procedures are used to 

create initial/final solutions in most heuristics for PDPTW because they are fast and still 

can produce a quality solution. Hunsaker and Savelsbergh (2002) and Campbell and 

Savelsbergh (2004) outline the importance of developing efficient insertion heuristics for 

routing and scheduling problems.  As stated above, they are the preferred method for 

deriving an initial solution in improvement heuristics or meta-heuristics.  Furthermore, 

because of their computational efficiency and ability to operate in real-time, many of the 

commercial routing and scheduling software packages use an insertion-based heuristic for 

their solution approach (Palmer et al., 2004).    

The focus of this paper is to derive a new insertion-based heuristic for the PDPTW.  Our 

procedure differs from the classical insertion methods in two aspects.  First, the classical 

insertion methods typically choose the next insertion by selecting a feasible insertion that 

has the minimal increase in travel distance or time, with respect to both the time window 

and capacity constraints. They do not directly take into consideration the degree of 
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feasibility when determining which node and location to insert next.  This myopic 

characteristic prevents the insertion-based heuristic from constructing higher quality 

solutions, especially when more restricted feasibility constraints are considered such as 

time window constraints.  To overcome this myopic characteristic, in this paper, we 

propose a new insertion evaluation function, which takes into consideration the increase 

of travel time as well as the reduction in the slack in the time window due to the insertion 

operation.  We refer to the time difference between the time window and the service time 

as the slack in the time window.  For example, instead of always choosing the node and 

location with the lowest cost as the next insertion, it may be better to select an insertion, 

which does not use much of the available slack so that more opportunities are left for 

future insertions.  

Second, in practice, operational planners tend to prefer more visually attractive solutions. 

This has been observed and confirmed by researchers who have implemented commercial 

routing software for industry. For example, see Poot et al. (2002), Rahimi and Dessouky 

(2001), and Sahoo et al. (2005). On the other hand, an investigation of human 

performance on the Traveling Salesman Problem (TSP) made by MacGregor and 

Ormerod (1996) reports that untrained adults, solving “by eye,” are able to find solutions 

that are as good as, or even better than, those produced by a number of well-known 

heuristics, not subject to individual differences.  Their work reveals that more visually 

attractive solutions tend to have less total length of distance.  We believe that this may 

also be true for more restrictive problems, such as the PDP and PDPTW.  To account for 

this effect, we develop a non-standard measure to evaluate the visual attractiveness for 

the existing routes, called Crossing Length Percentage (CLP), to evaluate the visual 

attractiveness.  A crossing is defined as a point where two routes intersect each other.  

Our proposed insertion heuristic incorporates this non-standard measure to create more 

visually acceptable solutions.   

The reminder of this paper is organized as follows.  The literature on the PDPTW is 

reviewed in Section 2.  In Section 3, we give the formal definition of the problem studied 

in this paper. The whole procedure of the proposed insertion heuristic, including the non-
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standard quality measure, CLP, is given in Section 4.  The computational results are 

provided in Section 5.  Finally, some concluding comments are made in Section 6. 

 

2. Literature Review 

Jaw et al. (1986) adapt the traditional insertion algorithm to the multiple-vehicle dial-a-

ride problem with time windows.  The heuristic selects the customers in the order of the 

increase of the earliest pickup time, inserts the selected customer into the cheapest 

feasible position in the existing routes, or adds an unused vehicle to the problem if no 

feasible position is found.   Madsen et al. (1996) develop an alternative insertion 

algorithm for the dial-a-ride problem. 

For the single-vehicle PDPTW, Van der Bruggen et al. (1993) develop a two-phase local 

search heuristic algorithm.  The construction phase starts with an initial route obtained by 

visiting the locations in order of increasing centers of their time window, taking prior and 

capacity constraints into account. The initial route may be time infeasible. Then, the 

initial route is made feasible by interactively applying an objective function that penalizes 

the violation of time windows.  The feasible routes obtained in the construction phase are 

continually improved in the improvement phase.  Both phases use a variable-depth search 

built up out of seven basic types of arc-exchange procedures.  The method has been 

tested on problem instances with up to 50 clients.   

Ioachim et al. (1995) propose an approximation algorithm for the multiple-vehicle 

PDPTW.  The algorithm first creates a set of clusters by solving a reduced multiple-

vehicle PDPTW problem exactly using column generation.  Each cluster is a small trip 

that visits a set of customers.   Finally, a multiple traveling salesman problem is solved to 

sequence the clusters into the final routes.  The proposed approach is tested on a problem 

set with up to 250 customers. 

Toth and Vigo (1997) describe a fast and effective parallel insertion heuristic to 

determine the schedule of transporting handicapped persons using a fleet of 

heterogeneous vehicles.  The problem can be considered as a multiple-vehicle PDPTW 

with additional real-life operational constraints.  They also present a tabu procedure to 
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improve the solution obtained by the insertion algorithm.  The proposed approach has 

been applied in a DSS (Decision Support System) to plan the vehicle service schedule for 

the city of Bologna, Italy. 

Savelsbergh and Sol (1998) propose three approximation algorithms derived from their 

branch-and-price based optimal algorithm.  They use the approximation algorithms to 

generate columns for the linear programming relaxation.  They observe that creating a 

good set of columns in the root is the key issue in finding good solutions.  Their 

approximation algorithms are tested on problem sets with up to 50 customers. 

Nanry and Barnes (2000) present a reactive tabu search approach to solve the multiple-

vehicle PDPTW.  The initial routes are created through a greedy insertion method.  Then, 

a reactive tabu search method with three proposed neighborhoods is used to improve the 

initial route.  The approach is tested on instances with sizes of 25, 50 and 100 customers, 

which were constructed from Solomon’s C1 benchmark problems.   

Landrieu et al. (2001) present a probabilistic tabu search to solve the single-vehicle 

PDPTW.  The algorithm was tested on a class of randomly generated instances.   

Li and Lim (2001) propose a metaheuristic for the multiple-vehicle PDPTW.  First, a 

local optimal is found based on three defined neighborhoods.  Then, a simulated 

annealing like multiple-restart strategy is applied to escape from the local optimal and a 

tabu-list is used to avoid cycling in the search process.  The algorithm is tested on the 

modifications of each of Solomon’s benchmark problem for VRPTW (56 instances).  

Lao and Liang (2002) present a two-phase method for the multiple-vehicle PDPTW.  In 

the first phase, a new hybrid heuristic that is based on a standard insertion procedure and 

sweep procedure is applied to construct the initial solution.  In the second phase, a tabu 

search method is proposed to improve the solution.  The algorithm is also tested on the 

instances generated from Solomon’s benchmark problems.  

Cordeau and Laporte (2003) describe a tabu search heuristic for the multiple-vehicle dial-

a-ride problem with time windows.  They propose a new neighborhood evaluation 
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procedure and give extensive computational results based on randomly generated data 

sets.  

Dessouky, Rahimi, and Weidner (2003) add an environmental component to the criteria 

function of an insertion algorithm for the PDPTW problem in addition to the standard 

cost component.  Simulation results show that adding the environment component to the 

insertion criteria component significantly improves the environmental effect of the 

schedule without significantly degrading the cost component.  

Diana and Dessouky (2004) present a parallel regret insertion heuristic to solve a large-

scale dial-a-ride problem with time windows.  The proposed algorithm is tested on data 

sets of 500 and 1000 requests built from data of paratransit service in the Los Angeles 

County. 

 

3. Problem Definition 

We consider the multiple-vehicle PDPTW as follows.  We have n customers that need to 

be served, each with a pickup location vi and a delivery location vi+n, i = 1, 2, …, n.  The 

pickup and delivery requests from a customer must be served by the same vehicle, which 

we refer to as the pairing constraint.  Each customer’s pickup request must be served 

before its delivery request, which we refer to as the prior constraint.  There are m 

identical vehicles available in the fleet.  The capacity of each vehicle is Q, and at any 

time the total load in a vehicle cannot exceed Q, which is the capacity constraint.   

A time window (Ei, Li) is specified for each location vi, i = 1, 2, …, 2n, where Ei denotes 

the earliest time a service can take place and Li denotes the latest time a service can start.  

All vehicles must start from a central facility with location v0 and return to location v2n+1 

during a common time interval.  Location v0 and v2n+1 may be physically the same.  

Assume E0 is the common earliest time that all vehicles are ready to depart from depot v0 

and L0 is the latest time that a vehicle can leave depot v0.  The departure time window for 

a vehicle from depot v0 is [E0, L0] and the return time window for a vehicle at depot v2n+1 

is [E2n+1, L2n+1], where E2n+1= L2n+1= L0. We assume that waiting at any location vi before 
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Ei is allowed but starting the service after time Li is not allowed.  That is, the time window 

constraint is violated if the arrival time at any location vi is later than Li.    

To summarize, the problem we consider has the above four types of constraints: pairing, 

prior, capacity, and time window.  The objective is to minimize the total cost, which 

includes the fixed vehicle cost and travel cost that is proportional to the travel distance. 

In reality, the application of the pickup and delivery problems often involves other 

service related constraints, especially when they are applied to transport people. The 

common service related constraints include the maximum total duration of the route, the 

maximum wait time at a stop, and the maximum ride time that limits the time between 

pickup and delivery.  Notice that the problem defined above has implicitly taken into 

account the maximum total duration of the routes, because by enforcing that a vehicle 

cannot leave depot v0 earlier than the time instant E0 and a vehicle has to return to depot 

v2n+1 no later than time instant L0, the total duration of any route is no more than L0 - E0.   

The maximum ride time constraint is indirectly accounted for by having time windows 

for both the pickup and delivery points.  

 

4.  Construction Heuristic 

Consider the problem defined in Section 3.  Assume the travel time between any pair of 

locations vi and vj is ti,j,  i = 0, 1, 2, …, 2n, 2n+1.   We denote by Ai the earliest arrival 

time of a vehicle at location vi and Di the earliest departure time of a vehicle at location 

vi, where Di = max (Ei, Ai) + di and di is the vehicle’s service time at location vi.  Note 

that Ai and Di are not constants for customer i, and they are relative to the solution under 

construction. The time window constraint is violated if Ai > Li at any location vi. We 

maintain two quantities for each assigned location vi: waiting time, Wi, Wi = max (0, Ai–

Ei) and the maximal postponed time interval, Yi, where Wi+Yi indicates the maximal 

additional time that can be induced by feasibly inserting other locations before vi in the 

current route.  Assume all k locations in a route R in sequence are 
1r

v , 
2r

v , … , 
kr

v , we 
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compute 
jrY at each location 

jrv , j=1,2,…, k as follows.  Figure 1 illustrates different W 

and Y values in a route with four locations.  
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From the definition of Yi, we know that if vi and vj are two adjacent locations in a route 

and location vi precedes location vj, then we have Yi ≤ Yj + Wj.   

Next, we give the feasibility checking functions including variables Yi and Wi at each 

location vi.  Assume that location vi and vj are two adjacent locations in an existing route.  

Define '
kA  as the earliest arrival time at location vk if inserting it into the current route 

between locations vi and vj, '
kA = max (Ai, Ei) +di+ ti,k. 

Checking whether it is feasible to insert location vk between location vi and vj amounts to 

verifying the following two equations: '
kA  ≤ Lk, and max( '

kA , Ek) + dk + tk,j  ≤ Aj + Wj +Yj. 

 

4.1. Initial Route Selection 

E0 (D0) L0 

E1 L1

L2

E3 L3A3

A2 

D1 A1 

W3=0 and Y3=L3-max(A3, E3) = L3- A3 

W2= E2-A2 and Y2=min(L2-E2, Y3)= L2-E2

W1=0 and Y1=min(L1-A1, W2+Y2) = L2-A2

W0=0 and Y0=min(L0-E0, W1+Y1) = L0-E0

Figure 1.  An Example of Different Y and W values in a route with four locations 

E2 (D2)
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The m-PDPTW is generally a highly constrained problem, because of the existence of 

additional constraints such as pairing constraints, prior constraints, and time window 

constraints.  In a highly constrained problem, each route can contain only a limited 

number of customers.  There exist pairs of customers such that the customers in each pair 

cannot be in the same route even if the route includes only these two customers. 

Some researchers have shown the importance of obtaining the right initial routes (e.g. Liu 

and Shen, 1999).  A set of “right” initial routes can help to obtain a better assignment for 

the remaining customers.  When the fleet includes homogeneous vehicles and all the 

vehicles are based at a common depot, we create the initial routes by finding a maximal 

set of customers, where it is impossible to serve any two customers in this set with a 

single vehicle.   

To compute the maximal set, we first generate a graph G(GN, GA), where GN is the node 

set and GA is the arc set.  Each node in GN represents a customer to be served, |GN | = n.  

An undirected arc connects the nodes representing customer c1 and c2 in graph G, if and 

only if no vehicle can serve customers c1 and c2 in a single route.  Then, the problem of 

finding a maximal set of exclusive customers equals the problem of finding a maximum 

size clique in G, a clique being a subset of the nodes such that each node is connected to 

all other nodes of the subset.  The Max-Clique problem is a well-known NP-Complete 

problem (Brelaz, 1979).  We use a simple greedy algorithm to find the largest clique as 

follows. 

Algorithm 4.1. 

Step 1. If all nodes in GN are marked, stop and GN is the largest clique.  Otherwise, 

arbitrarily select an unmarked node i, i∈GN, which has the highest number of 

edges incident with it and set node i as marked.   

Step 2. Remove all the nodes from set GN, where there is no edge linking node i and these 

nodes directly.  Remove all the edges from set GA that are incident with the 

removed nodes.  Go to step 1. 
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Figure 2 gives an example of finding the maximal clique using Algorithm 4.1.  The 

original problem is shown in Figure 2(a).   First, we select node 1, set it as marked, and 

remove node 5 as well as the two arcs incident with node 5.  The resulting graph G is 

shown in Figure 2(b).   Next, we select and mark node 3, remove node 6 as well as the 

arc incident with node 6, and the result is shown in Figure 2(c).  Finally, we select and 

mark nodes 2 and 4 in sequence and get the graph consisting of node 1, node 2, node 3, 

and node 4, and they are all marked.  Therefore, nodes 1, 2, 3, and 4 are the maximal 

clique in the original graph.   

 

 

 

 

 

 

The computational complexity of Algorithm 4.1 is O(n2).  Since Algorithm 4.1 is fast, we 

run Algorithm 4.1 n times with choosing the first marked node as each node belonging to 

GN and we select the maximal clique in these n obtained cliques as the final result.  

Finally, a set of initial routes is created with each route containing one customer, whose 

corresponding node in graph G is in the maximal clique found by Algorithm 4.1. 

 

4.2.  Computation of the Insertion Cost 

Our objective is to minimize the total travel distance as well as the number of used 

vehicles, while obeying the pairing, prior, vehicle capacity and time window constraints.  

Hence, we need to take into account both the spatial and temporal aspects of the problem.  

The amount of the insertion cost should reflect both the increment of the distance as well 

Figure 2.  An Example of Using Algorithm 4.1 to Get the Largest Clique 

5 3 4 

6 2 

(a) 

1 

3*4 

2 

(c) 

1*

3 4 

6 2 

(b) 

1*

3*4* 

2* 

(d) 

1*
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as the amount of the reduced slack in the time windows.   From our knowledge, there has 

been no work that considers including in the insertion cost the reduction of the time 

window slack due to the insertion.  In this section, we propose a new methodology to 

compute the insertion cost for the routing problems with hard time window constraints.  

Recall that two quantities, the waiting time (W) and the maximal postponed time (Y), are 

associated with each location in a route.  Inserting a new location in a route may affect 

the W and Y values of the locations before and after the insertion position in the route.  

For example, Figure 3(a) gives the W and Y values for each location in a route, which we 

refer it as the W-Y graph of the route.  Figure 3(b) shows the W-Y graph after inserting a 

new location between the third and fourth location in the route.  We can conclude the 

following three observations from Figure 3.  

1. Inserting a new location may decrease the Y value of the locations before the insertion 

but not change the W value of the locations before the insertion.   

2. The increase of the travel time caused by the insertion is offset by the waiting time at 

the locations after the insertion or the maximal postponed time at the last location in 

the route. 

3. If there is waiting time at the new inserted location, the waiting time can be 

considered as being moved from some waiting time after the insertion or the maximal 

postponed time from the last location in the route. 

 

 

 

 

 

 

New 4 

Figure 3.  An Example Showing the W-Y Graphs for the Routes before and 
after the Insertion 

3 2 1 6 5 

(a) 
(b) 

Waiting Time 
Maximal Postponed Time 

4 3 2 1 6 5 
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Next, we describe how to evaluate the insertion cost.  Assume that a route R contains k 

locations: 
1r

v , 
2r

v , …, 
kr

v .  And it is feasible to insert location 
jrv between location 

1−ir
v  

and 
ir

v  in route R.   Let '
jrA be the vehicle’s earliest arrival time at location 

jrv after 

inserting location 
jrv into route R, ='

jrA  ),max(
11 −− ii rr EA +di-1+ti-1,j.    Let ='

jrW  

),0max( '
jj rr AE −  and ='

jrY min { −
jrL ),max( '

jj rr EA , ∆−+
ii rr YW }, where =∆ ti-1,j + tj,i - 

ti-1,i + dj + '
jrW .   Let the cost of this insertion operation be C.  Then, we have C = c1 + c2 + 

c3, where c1 represents the decrease of the time window slack of locations 
1r

v , 
2r

v , …, 

1−ir
v , after inserting location 

jrv after location 
1−ir

v  in route R, c2 represents the decrease of 

the time window slack of 
jrv  itself after the insertion, and c3 represents the decrease of 

the time window slack of locations 
ir

v , 
1+ir

v , …, 
kr

v , after inserting location 
jrv before 

location 
ir

v in route R.  To compute c1, we use the following algorithm.  

Algorithm 4.2. 

Step 0.  Let β = '
jrW + '

jrY , c1 = 0, and k = i –1. 

Step 1.  If β ≥ 
krY or k = 1, return c1 and stop the algorithm.   

Step 2.  If k = i –1, let c1 = 
krY – β and go to step 4.  Otherwise, go to step 3. 

Step 3.  If
1+krW > 0, let c1 = c1 + min(

krY – β, 
1+krW ).   

Step 4.  Let β = 
krW + β and k = k –1.  Go to step 1.   

We illustrate Algorithm 4.2 with the example shown in Figure 4.  Figure 4(a) gives the 

W-Y graph of a route with six locations.  The W-Y graph after inserting a new location 

between locations 5 and 6 is shown in Figure 4(b). 

 

bn 

New 4 3 2 1 6 5 

(a) 
(b) 

Waiting Time 
Maximal Postponed Time 

4 3 2 1 6 5 

b5b4

b3b2 b6 
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Inserting a new location in Figure 4(b) reduces Y5 by b5, Y4 by b4 and Y3 by b3. But we 

only count b5 in c1, because reducing Y4 by b4 causes Y5 to decrease by b4 and reducing Y3 

by b3 causes both Y4 and Y5 to decrease by b3.  Thus, we use b5 to represent the reduction 

of the time window slack at locations 3, 4 and 5.  Furthermore, the insertion also reduces 

Y2 by b2.  If Y2 is reduced by b2, this b2 amount of time will be offset by W3 and will not 

affect Y3, Y4 and Y5.  Therefore, b2 should be considered as an additional lost of slack and 

we have c1 = b2 + b5.    

Next, we compute the cost of c2 using the following equations. Remember that ='
jrW  

),0max( '
jj rr AE −  and ='

jrY min { −
jrL  ),max( '

jj rr EA , ∆−+
ii rr YW }, where =∆ ti-1,j + tj,i 

- ti-1,i + dj + '
jrW  and ='

jrA  ),max(
11 −− ii rr EA +di-1+ ti-1,j.  Define c2 = −

jrL −),max( '
jj rr EA  

'
jrY .  The cost of c2 measures the reduction of the time window slack for location vj due to 

the small slack in the succeeding locations after the insertion.  

Finally, the value of c3 represents the increment of the insertion distance.  If the vehicle’s 

velocity is constant, the travel distance is proportional to the travel time.  Therefore, we 

unify the units of all the costs, c1, c2 and c3, to be time here. Formally, we define c3 = ti-1,j 

+ tj,i - ti-1,i.  In the example in Figure 4, we have c3 = b6. 

A large value of c1 implies that from the time windows point of view, it is better to insert 

vj at some position before location vi-1, because inserting location vj after location vi-1 

makes the arrival time at location vj so close to the time window Lj that the Y values of 

some locations before location vi-1 are diminished.  On the contrary, a large value of c2 

implies that from the time windows point of view, it is better to insert vj at some position 

after location vi, because the insertion of vj before vi wastes the significant slack at vj, 

−jL ),max( '
jj EA , due to a small slack in the succeeding nodes. Therefore, we have the 
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following property for c1 and c2.  If both c1 > 0 and c2 > 0, it implies that the insertion of 

vj between vi-1 and vi has significantly increased the travel time that both the Y values at 

vi-1 and vi are diminished.  We illustrate the above three different cases in Figure 5 (a), (b) 

and (c), respectively.  Assume that a new location will be inserted between the third and 

fourth locations in the route. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Consideration of the Measure for Visual Attractiveness 

In this section, we describe how to embed the non-standard quality criteria, CLP, into our 

proposed construction heuristic to improve the quality of the solution.   

Figure 5.  Three Different Cases for Computing the Insertion Cost 

New 4 3 2 1 6 5 

 (a) c1 = b3 > 0, c2 = 0, and c3 = b4. 

5 3 2 1 6 4 

b4

b1
b2

b5 
b6 

b3

bn

New 4 3 2 1 6 5 

 (b) c1 = 0, c2 = bn > 0, and c3 = b4. 

5 3 2 1 6 4 

b4 
b5 

b6 

New 4 3 2 1 6 5 

 (a) c1 = b3 > 0, c2 = bn, and c3 = b4. 

5 3 2 1 6 4 

b4 
b1

b2

b5 
b6 

b3
bn
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Poot et al. (2002), based on their experience on developing the SHORTEREC 

Distriplanner® a commercial vehicle routing software for industry, point out that visually 

attractive plans seem to be more logical to the operational planners and closer to those 

plans created by the human dispatcher.  Therefore, producing such plans not only 

generates more reasonable solutions for practical routing problems but also helps to 

create trust among the planners and drivers in a route planning system, which leads to fast 

acceptance of the system.   

We can evaluate the visual attractiveness of a solution from two aspects: the visual 

attractiveness of each single route and the visual attractiveness of different routes’ 

geographical relationship.  The experiments made by MacGregor and Ormerod (1996) 

suggest that visual attractiveness of a single route implicitly reflects the route’s length.  

However, no research supports that such a relationship also exists between the 

geographical relationship of different routes and the total distance of the solution.  For 

example, it is visually more attractive to have less requests served by one route contained 

in the convex hull of another route, but there is no evidence that indicates that solutions 

with less overlap of the convex hulls from different routes are more probable to have less 

total distance. An instance of a solution with less overlap from different routes’ convex 

hulls having longer total distance can be found in Sahoo et al. (2005).  Thus, we only 

consider measuring the visual attractiveness of each individual route.   

MacGregor and Ormerod (1996) propose the convex-hull hypothesis, which advocates 

the use of the convex hull as part of a strategy to create a TSP tour, to explain why a high 

quality TSP solution can be found by trying to obtain a visual attractive solution.  Rooij 

et al. (2003) try to justify the same phenomenon with the hypothesis that people achieve 

this by trying to avoid crossings.   Namely, the convex-hull hypothesis and the crossings-

avoidance hypothesis are not mutually exclusive.  We can always find a more visually 

attractive TSP solution by removing the crossings from a non-crossing-free TSP solution. 

Comparing two crossing-free solutions for the same TSP, the one closer to the convex 

hull is more visually attractive and more probable to have shorter total distance.   
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Next, we propose a measure Crossing Length Percentage (CLP) to evaluate the degree of 

crossings with a single trip.  Note that the number of crossings alone is not a proper 

quantity measure to evaluate the crossing level of a trip, since the crossing level also 

depends on how deep the crossings are and whether the multiple crossings entangle each 

other.  The CLP of a trip is defined as the sum of the crossed length of all the crossings 

divided by the total length of the trip.  The crossed length of a crossing equals the 

minimum total length of the crossing.   The CLP value of a trip can be calculated using 

the following Algorithm 4.3. 

Algorithm 4.3. 

Step 1. Assume the total length of a trip is λ.  Compute all the n crossing points in the 

trip. Let them be cs1, cs2, …, csn.   

Step 2.   For each crossing point csi, i = 1,2, … n.  Calculate the distance βi, where βi 

equals the route’s length of the portion within crossing point csi. 

Step 3. The CLP value of the trip can be computed as λβλβ /),min(
1

i

n

i
i∑

=

− . 

Next, we illustrate how to apply Algorithm 4.3 to compute the CLP value for the two 

trips shown in Figure 6, where we depict each segment’s length next to the segment.   
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Figure 6.  Examples of Computing Crossing Length Percentage 
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The trip in Figure 6(a) contains only one crossing.  The CLP value of the trip in Figure 

6(a) is min {4+4+2, 1+1+1}/13 = 0.23.   The trip in Figure 6(b) contains multiple 

crossings.  The crossed lengths for the three crossings at points B, C and E in Figure 6(b) 

equal BC+CD+DE+EF+FB, CD+DE+EF+FB+BG+GC, and EF+FB+BG+GC+CE, 

respectively. And, the sum of the crossed lengths for all these three crossings is 

BC+2*CD+2*DE+3*EF+3*FB +2*BG+2*GC+CE = 7.3.  Note that the lengths of 

segments CD, DE, EF, FB, BG and GC are counted more than once to represent the 

entanglement of the crossings.  For instance, the length of segments EF and FB are 

counted three times because they are contained in all three crossings.  The CLP value of 

the trip in Figure 6(b) is 7.3/13 = 0.56.   

The CLP value measures the visual attractiveness of a single route with crossings.  

Maintaining routes with lower CLP at each iteration in an insertion heuristic can avoid 

the acceptance of unattractive insertions in the earlier stage of creating interim routes.  

Not only does the CLP value indicate whether a trip is visually attractive or not, but it 

also indicates the most entangled portion in a visually unattractive trip.  A portion in a 

trip, which comprises of segments counted the highest number of times in the 

computation of the CLP, is more likely to have entanglements.  Therefore, to improve a 

trip, instead of randomly exchanging the visiting sequence of all the customers in the 

entire trip, we need to focus on adjusting the customers’ sequence within the most 

entangled portion of the trip.  This makes the behavior of each improvement step more 

reasonable and closer to what human dispatchers will do. 

Next, we discuss in detail how to incorporate the CLP to guide the insertion process.  As 

pointed out before, crossing avoidance is a common logic behind the human dispatcher 

while creating routes.  It is easy to find locations to insert without causing any crossings 

at the beginning of the insertion because each route contains only a few locations and 

many locations are available to be added.  As more and more locations are assigned and 

the routes become more and more complicated, the dispatching logic changes from 
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emphasizing the visual attractiveness to utilizing the capacities of the existing routes (e.g. 

assigning as many locations as possible to the existing routes).   

We use the following strategy to represent the above logic.  First, determine a set Π = 

{(p1, q1), (p2, q2), …, (ph, qh)}, where h is a predetermined constant, pi represents the CLP 

threshold value at level i, and qi is the percentage of the assigned locations among the 

total locations at level i.  Assume the current percentage of the assigned locations among 

all the locations is q' and qi-1 ≤ q' < qi.  Then, we consider only feasible insertion 

positions that will have CLP values smaller than pi after the insertion is made.  For 

example, if we set Π = {(5%, 40%), (30%, 60%), (∞, 100%)} and currently only 12 of 

the 100 customers have been assigned to the routes.  We consider only feasible insertion 

positions that will not lead the CLP value of the routes greater than 5%, since q' = 0.12 < 

0.40.    

 

4.4. Overall Approach 

In this section, we describe the entire construction heuristic algorithm for the m-PDPTW 

problem based on the discussions in Sections 4.1 to 4.3.  The flowchart for the algorithm 

is shown in Figure 7.  

First, we compute the initial routes using Algorithm 4.1. Next, we find a location v and a 

route r, where inserting v to r is feasible and has the minimal incremental cost C = c1 + c2 

+ c3.  Furthermore, inserting v to r will not make the CLP value of route r greater than the 

threshold value pk at Π, where k represents the current level in set Π.  We build an 

incremental cost table in which the rows represent the unassigned customers and the 

columns the used routes.  Each cell (i, j) represents the best incremental cost of inserting 

customer i to route j.  Each cell is associated with four values, c1, c2, c3 and p, the CLP 

value of route j after inserting customer i.   

If cell (i, j) has the minimal value of c1 + c2 + c3 and the value of p of cell (i, j) is less than 

the current pk in set Π, we insert customer i into route j at the computed position.  If the p 

value of any cell in the incremental cost table is greater than pk, we increase the level k in 
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set Π by 1 and reselect the cell with the minimal incremental cost.  This strategy ensures 

that in selecting the next insertion customer and route pair the CLP value criteria does not 

dominate the incremental insertion cost. If there exists a customer that cannot be inserted 

into any existing route, assign an unused vehicle for this customer.  The above steps are 

iterated until there are no unassigned customers or there are still some unassigned 

customers but all the vehicles in the fleet have been used.  In the latter case, the problem 

is infeasible.   

Assume there are n customers and m vehicles.  The construction heuristic requires 

checking all the insertion positions for each unassigned customer in each existing route.  

The computational complexity of the common insertion heuristic for the pickup and 

delivery problem is O(n3) on the condition that the computational complexity to compute 

the insertion cost is a constant, O(1).  However, in our insertion heuristic the 

computational complexity of computing the costs is O(n), where computing the cost 

includes computing c1, c2, c3 and p.  To compute c1, we use Algorithm 4.2 whose 

complexity is O(n).  The complexities to compute c2 and c3 both are O(1).  The 

complexity to compute the new CLP value after inserting two locations is O(n).  

Therefore, the complexity of computing the cost for each customer at each location in 

each route is O(n) and the total computational complexity for the construction heuristic is 

O(n4). 
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5. Computational Results 

Our algorithm was coded in C++ with Standard Template Library and executed on a 

personal computer using Pentium III 1.2G processor.  We set Π = {(5%, 40%), (15%, 

60%), (50%, 80%), (∞, 100%)}.   We tested the proposed construction heuristic on the 

benchmark problem instances provided by Li and Lim (2001).  They generated the data 

sets from Solomon’s (1987) vehicle routing benchmark problems consisting of 56 

instances by randomly pairing up the customer locations.  Li and Lim solved these new 

created pickup and delivery instances using a tabu-embedded simulated annealing 

algorithm.  Since our objective is to develop a new insertion heuristic that can efficiently 

construct solutions quickly, we are not trying to beat their results for the following two 

reasons. First, their algorithm is much more complex than ours (e.g. their average 

computational time is 730 seconds, but ours is 13 seconds). Secondly, their algorithm is 

not bounded and sensitive to the data set, but our proposed heuristic is computationally 

bounded  (their computational time varies from 33 seconds to 4106 seconds, but our 

computational time varies from 10 seconds to 23 seconds).   

We compared our algorithm with a sequential insertion heuristic algorithm and a parallel 

insertion heuristic. The sequential insertion algorithm starts with an initial route, which 

consists of only one customer that is closest to the vehicle’s depot.   It then searches for 

all feasible insertions of the unassigned customers and finds the insertion that results in 

the minimum increase of the objective function value. If such an insertion is found, the 

customer will be added to the route at the position with the minimal additional cost.  If 

there exists any customer that is infeasible to insert into any existing routes, create a new 

route for this customer.   The parallel insertion differs from the sequential insertion 

algorithm only at the initial routes generation stage.  From our knowledge, there is no 

good strategy in the literature on how to choose pivot customers to create the initial 

routes for the m-PDPTW.  Toth and Vigo (1997) develop a parallel insertion procedure 

for the m-PDPTW, in which the number of initial routes is calculated as the minimum 

number of vehicles needed to serve 60% of all the requests.   However, this strategy is 

not suitable for our test data.  Therefore, we still use Algorithm 4.1 to select the pivot 
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customers for the initial routes.  Notice that for the m-PDPTW, multiple routes are 

primarily created because of the time window constraints.   

The computational results are shown in Tables 1 and 3.  We compared and listed three 

measures of the solution quality obtained by the sequential insertion, parallel insertion, 

and our proposed construction heuristic: number of used vehicles, total travel time and 

average crossing length percentage (CLP) value.  We also listed the number of vehicles 

and total travel time of the results reported by Li and Lim (2001).  We cannot compute 

the CLP value from the Li and Lim results since they did not present the complete final 

solution (routes) in their paper.   Table 1 shows the results on the 19 clustered instances 

generated from the C1 and C2 data sets in Solomon’s benchmarking problem.  Each 

instance in Solomon’s problem has 100 locations, but some instances here have more 

than 100 locations because some dummy nodes are added for pairing purposes. 

 

Sequential Insertion Parallel Insertion Proposed Algorithm Li&Lim’s 
Tabu Search 

 

 

Prob  
# of 
Veh. 

 
Travel 
Time 

 
Avg. 
CLP 

 
# of 
Veh. 

 
Travel 
Time 

 
Avg. 
CLP 

 
# of 
Veh. 

 
Travel 
Time 

 
Avg. 
CLP 

 
# of 
Veh. 

 
Travel 
Time 

LC101 11 867.3 0.00 10 828.9 0.00 10 828.9 0.00 10 828.9 
LC102 13 1129.1 0.11 12 1001.9 0.08 11 912.0 0.01 10 828.9 
LC103 12 1172.1 0.16 12 1205.5 0.14 11 882.5 0.00 10 827.8 
LC104 11 966.1 0.06 11 915.5 0.01 9 861.9 0.01 9 861.9 
LC105 12 1037.6 0.07 11 828.9 0.00 10 828.9 0.00 10 828.9 
LC106 13 1139.6 0.16 13 1035.6 0.15 10 931.5 0.03 10 828.9 
LC107 11 924.8 0.00 11 899.8 0.01 10 828.9 0.00 10 828.9 
LC108 12 1247.5 0.33 11 1251.9 0.33 11 1063.5 0.00 10 826.4 
LC109 11 1293.8 0.05 11 1273.8 0.05 11 924.5 0.00 10 827.8 
LC201 3 591.5 0.03 3 591.5 0.03 3 591.5 0.03 3 591.5 
LC202 5 972.3 0.13 4 759.9 0.05 3 663.5 0.02 3 591.5 
LC203 4 849.5 0.06 4 822.2 0.06 4 753.5 0.01 3 585.5 
LC204 4 954.9 0.02 4 954.9 0.02 3 591.2 0.00 3 591.2 
LC205 4 792.0 0.00 4 688.9 0.01 3 592.4 0.00 3 588.9 
LC206 4 867.9 0.09 4 841.9 0.07 4 618.3 0.00 3 588.5 
LC207 4 709.3 0.00 4 684.5 0.01 3 588.3 0.00 3 588.3 
LC208 4 761.5 0.00 4 719.9 0.00 3 629.4 0.00 3 588.3 

 

 
Table 1.  Computational Results of the Four Heuristics on the Clustered 

Problems. 
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From Table 1, our proposed heuristic outperforms the sequential heuristic and parallel 

heuristic in all the LC100 and LC200 problem instances on each performance measure: 

number of used vehicles, total travel time and average CLP values.   We summarize the 

results in Table 2.  The difference of the LC100 and LC200 problems is that the LC100 

problems have a shorter scheduling horizon while the LC200 problems have a longer 

scheduling horizon (larger time windows).   Comparing with the sequential insertion in 

the LC100 problems, our proposed heuristic reduced the total travel time by 17%, and the 

total CLP value by 94%.  Comparing with the parallel insertion in the LC100 problems, 

our proposed heuristic reduced the total travel time by 12%, and the total CLP value by 

71%. Comparing with the sequential insertion in the L200 problems, our proposed 

heuristic reduced the total travel time by 22%, and the total CLP value by 81%. 

Comparing with the parallel insertion in the L200 problems, our proposed heuristic 

reduced the total travel time by 15%, and the total CLP value by 60%.   Therefore, our 

heuristic gave a significant improvement for the LC problems regarding the visual 

attractiveness measurement, the CLP value.   Note that the sequential insertion method 

gave better CLP values for the LC200 problems than the LC100 problems because the 

sequential insertion heuristic does not take into account the time windows while 

performing insertions.  Therefore, it performed worse and generated more crossings for 

the data sets with tighter time windows (e.g. LC100).   Since our insertion procedure 

directly accounts for the time windows, the CLP values do not deteriorate with tighter 

time windows. 

 

Sequential Insertion Parallel Insertion Proposed Algorithm Li&Lim’s 
Tabu Search 
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 LC100 11.8 1086.4 0.11 11.3 1026.9 0.085 10.3 895.8 0.005 9.9 832.0 

 LC200 4 812.3 0.04 3.88 757.9 0.031 3.3 628.5 0.007 3 589.2 

 

 

Table 2.  Summary of the Computational Results of the Three Heuristics on 
the Clustered Problems. 
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We also compared our solutions with the solutions reported by Li and Lim (2001).  Since 

they did not report the CLP value, we only compared the number of used vehicles and the 

total travel time.  Li and Lim’s heuristic is a tabu-based metaheuristic and their 

computational time is sensitive to the data of the problem.  For example, their 

computational time varies from 33 seconds to 4106 seconds and the average 

computational time is about 730 seconds.  On the contrary, our proposed heuristic is very 

quick and computationally bounded. The longest computational time is only 23 seconds 

and the average computational time is around 13 seconds.  Furthermore, comparing with 

the Li and Lim’s results in the L200 problems, our proposed heuristic’s results are within 

8% regarding the total travel time.  Comparing the results in the L200 problems, our 

proposed heuristic’s results are within 6% regarding the total travel time.  Therefore, our 

proposed heuristic gave very close results to the Tabu search on the cluster problems with 

both loose and tight time window constraints.  

In the following Table 3, we provide the computational results of using the three 

algorithms in solving the LR100 and LR200 problems.  The LR type problems are 

randomly distributed problems.  Similar as before, the LR100 problems have short 

scheduling horizon while the LR200 problems have a longer scheduling horizon. 

 

Sequential Insertion Parallel Insertion Proposed Algorithm Li&Lim’s 
Tabu Search 
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Travel 
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LR101 21 1818.4 0.16 19 1767.4 0.05 19 1749.3 0.05 19 1650.8 
LR102 19 1725.9 0.12 19 1602.2 0.03 19 1561.0 0.03 17 1487.6 
LR103 16 1683.6 0.36 14 1552.2 0.31 13 1333.2 0.01 13 1292.7 
LR104 12 1316.4 0.08 12 1166.8 0.05 11 1109.5 0.02 9 1013.4 
LR105 19 1697.0 0.25 16 1449.2 0.04 16 1427.3 0.04 14 1377.1 
LR106 17 1619.6 0.39 16 1547.2 0.28 13 1298.1 0.04 12 1252.6 
LR107 13 1344.1 0.06 11 1193.6 0.06 10 1111.3 0.00 10 1111.3 
LR108 12 1339.5 0.05 12 1306.6 0.05 10 1037.4 0.01 9 968.9 
LR109 14 1390.2 0.03 12 1376.6 0.02 12 1263.4 0.00 11 1239.9 
LR110 15 1463.9 0.07 12 1227.1 0.07 10 1170.4 0.02 10 1159.3 
LR111 13 1306.8 0.09 12 1282.6 0.06 12 1184.7 0.02 10 1108.9 
LR112 13 1265.6 0.03 11 1237.4 0.03 10 1058.4 0.01 9 1003.7 
LR201 7 1571.5 0.43 6 1492.4 0.28 4 1298.8 0.01 4 1263.8 
LR202 7 1611.2 0.58 6 1581.4 0.52 5 1351.4 0.00 3 1197.6 
LR203 6 1404.7 0.11 6 1372.5 0.10 4 1067.7 0.00 3 949.4 
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LR204 5 1314.9 0.09 4 1186.8 0.04 2 849.0 0.01 2 849.0 
LR205 5 1566.6 0.39 4 1417.7 0.06 4 1210.4 0.02 3 1054.0 
LR206 4 1465.0 0.08 4 1524.5 0.07 4 1098.8 0.00 3 931.6 
LR207 4 1493.7 0.09 4 1461.7 0.09 4 1135.6 0.03 2 903.0 
LR208 4 1437.4 0.00 4 1353.1 0.01 3 908.1 0.01 2 734.8 
LR209 4 1378.2 0.31 3 1008.2 0.11 3 937.0 0.00 3 937.0 
LR210 5 1532.5 0.44 4 1381.6 0.35 4 1106.4 0.05 3 964.2 
LR211 4 1151.4 0.07 4 1162.9 0.07 3 1107.0 0.01 2 907.8 

 

 

 

From Table 3, we can conclude that our proposed heuristic outperforms the sequential 

heuristic and parallel heuristic in all the LR100 and LR200 problem instances.  The 

summary of the computational results in Table 3 is shown in Table 4.    From Table 4, we 

can conclude that comparing with the sequential and parallel insertion algorithm our 

proposed heuristic significantly reduces the average CLP values for both the LR100 and 

LR200 problem sets.  It also reduced the average travel time by 14% and 24% for the 

LR100 and LR200 problem sets comparing with the sequential insertion, respectively.  

Comparing with the parallel insertion, it reduced the average travel time by 7% and 18% 

for the LR100 and LR200 problem, respectively. Comparing with the Li and Lim’s meta-

heuristic, our proposed heuristic’s results are within 4.3% regarding the total travel time 

for the LR100 problem sets and are within 12% regarding the total travel time for the 

LR200 problem sets.   
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 LR100 15.3 1497.6 0.14 13.8 1392.4 0.09 12.9 1275.3 0.02 11.9 1222.1 

 LR200 5 1447.9 0.23 4.5 1358.4 0.16 3.63 1097.2 0.03 2.72 972.0 

 

 

 

Table 3. Computational Results of the Three Heuristics on the Randomly 
Distributed Problems 

Table 4.  Summary of the Computational Results of  the Three Heuristics on 
the Randomly Distributed Problems 
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6. Conclusion 

We proposed a new insertion-based construction heuristic for solving the m-PDP with 

time windows.  Our objective was to design a computationally bounded heuristic that 

generates high quality solutions in a short time.  Furthermore, we investigated how to 

quantitatively measure the visual attractiveness of the generated solutions. Visual 

attractiveness is a key logic behind the strategy of a dispatcher and a visual attractive 

solution can improve the trust between the routing software and planners. A measure, 

Crossing Length Percentage, was presented to quantify the visual attractiveness of the 

solution.  This measure was incorporated in the proposed heuristic to improve the quality 

of the solution.   

The new heuristic considered the insertion cost that not only includes the classical 

incremental distance but also the cost of the reduction of the time window slack due to 

the insertions.  We compared our heuristic with a insertion heuristic and a parallel 

heuristic on different benchmarking problems, and the computational results showed that 

the proposed heuristic performed better with respect to both the standard and non-

standard measures.  We also compared our heuristic’s results with the results obtained 

from a tabu search by Li and Lim (2001).  The number of used vehicles and the total 

travel time of our heuristic were both close to the best solutions from their tabu search in 

both cluster and randomly generated instances. 
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