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Abstract

Stochastic resonance is the process by which noise added to a weak external stimulus can enhance
encoding efficiency in the sensory periphery and thence in the central nervous system. Stochastic syn-
chronization is the process by which noisy phase synchronization of two periodic (or aperiodic) signals can
occur. Together with a brief review of both concepts, we illustrate their applications to the encoding of
weak external hydrodynamic signals in the mechanosensory system of the crayfish.
! 2003 Elsevier Inc. All rights reserved.
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1. Introduction to stochastic resonance

Stochastic resonance (SR) is an ubiquitous phenomenon found in both natural and man-made
systems spanning a range of disciplines from physics and engineering to biology and medical
science [2,27,48,49,51,79]. Only three ingredients are necessary for SR: a threshold, a subthreshold
signal, and noise. Since these ingredients abound in nature and in man-made devices, it is no
wonder that SR is widely found. SR was originally thought to be exclusively a dynamical phe-
nomenon [27,33,34] and was frequently modeled as a particle moving in a one-dimensional, bi-
stable potential under the influence of a weak periodic modulation and noise, for example,
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where the signal amplitude B is smaller than the barrier height: B < 1
4
, and nðtÞ is the noise usu-

ally assumed to be Gaussian and delta-correlated. The motion is then given by a Langevin
equation,

_x ¼ x$ x3 þ B cosðxt þ /Þ þ nðtÞ: ð1:2Þ

This motion, xðtÞ, is a switching between potential wells (at hx0i ¼ (1) marked by barrier
crossings at random times, albeit times that correlate with the weak signal. (Note that we write
hx0i ¼ (1 rather than x0 ¼ (1. This is because the particle on average spends equal time in each
well. When there is noise, the well is tipped randomly back and forth, and the location of the exact
minimum varies slightly around +1 or around )1.) The result resembles a random telegraph signal
with noise. The barrier crossings were first identified with sensory neural encoding by comparison
with experimental data (on monkey auditory system and cat visual cortex with weak periodic
stimulations). These observations provided the first theoretical understanding of the phenomenon
of !skipping" frequently observed in sensory systems subject to weak periodic stimuli and internal
neural noise [38].

The signature of SR is an inverted U-shaped curve of some information measure versus the
noise intensity. That is, for a given barrier height and signal amplitude, there is an optimal noise
intensity that maximizes the information in the response time course, xðtÞ. The simplest and most
commonly used measure is simply the signal-to-noise ratio (SNR) of the response. The SNR is
usually obtained from the power spectrum of xðtÞ. Thus the SNR is a maximum when the noise is
at the optimal intensity. A complete statistical solution of Eq. (2) is only available in approxi-
mation, since it involves a time dependent Fokker–Planck equation (see for example [66]). An
early approximate solution has been obtained within the framework of linear response theory
[33,34].

An entirely new insight emerged from the development of the theory of non-dynamical SR by
Laszlo Kish and colleagues in 1995 [29,51]. In this view, SR is exclusively a statistical phe-
nomenon with the same three necessary ingredients: threshold, signal and noise. Fig. 1(A)
illustrates the statistical view. The paradigm is that no information regarding the subthreshold
signal (sine wave) can be transmitted if there is no crossing of the threshold, marked by the solid
line lying a distance D0 above the mean of the signal. Without noise, indicated by the irregular
gray tracing, there are no threshold crossings and hence no information. With noise added to the
signal (in this case Gaussian and band limited), threshold crossings appear. The upper trace
shows the temporal sequence of positive threshold crossings marked by a train of pulses of
standard shape. If we imagine all this to be taking place inside a black box, then the only
information we have about the subthreshold signal is contained in the train of marker pulses (the
box output).

This train contains a surprising amount of information about the subthreshold signal. For
example, the power spectrum of the pulse train, shown in Fig. 1(B), shows sharp peaks at the
fundamental signal frequency, f0, and its second harmonic. We wish to obtain the area enclosed
by the peak at f0 above the noise background and the area in a 1 Hz bandwidth bounded at the
top by the noise background. The SNR is defined as the ratio of the former to the latter. Changing
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the intensity of the noise added to the signal, as measured by its standard deviation, r, results in a
different SNR. As shown in Fig. 1(C) the SNR is small for small noise and again small for very
large noise. There is thus an optimal noise intensity that maximizes the SNR. This inverted
U-shaped curve is the signature of SR.

One can think of the noise as a sampling function. If the intensity is too small, there are too few
samples per cycle of the signal. If too large the output is randomized at the expense of information
regarding the signal. In both cases the information content in the train of marker pulses suffers. In
our case, however, the noise is a one-bit sampler. No information on the amplitude of the signal is
sampled, only the threshold crossing time. Early studies on random sampling and the recon-
struction of power spectra were published by [8,41,57].

Fig. 1. Scheme of the theory of non-dynamical or threshold stochastic resonance. (A) Subthreshold signal (sine
wave), threshold (dashed line) at D0 above the mean of the signal and added noise (shaded irregular trace). This is a
simulation in which the external, environmental noise emanates from a swarm of Daphnia, a freshwater zoo-
plankton. See [25,26]. The spike train that marks the positive going threshold crossings of the signal plus the noise is
shown above. (B) Power spectrum of the spike train. Each spike is converted to a delta function and the time
average power spectrum is computed. Note the strong 2nd harmonic that is a distinctive feature of threshold SR
and shows up in experiments as well. (C) The signal-to-noise ratio (SNR) computed from the power spectra mea-
sured at various noise intensities. The SNR passes through a maximum at an optimal noise intensity, the signature
of SR.
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2. Theory of non-dynamical SR

Our task is to calculate the SNR from the set-up shown in Fig. 1. Here we will only outline the
procedure as it has been expounded in detail elsewhere [51]. The essential element is to find the
mean threshold crossing rate, Æmæ. This quantity has been obtained for Gaussian band limited
noise [65],

hmi ¼ exp

!

$ D2

2r2

"
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0

f 2Sðf Þdf
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0
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" #1=2

; ð2:1Þ

where D is the threshold, r is the standard deviation of the (Gaussian) noise and Sðf Þ is its power
spectrum. We can simplify by assuming that Sðf Þ is a rectangular function with upper cut-off
frequency fn, whence,
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We now let the threshold become a slow function of time with D0 its mean,

DðtÞ ! D0 þ B sinð2pf0tÞ; ð2:3Þ

whence, hmi ! hmiðtÞ also becomes a slow function of time. Here !slow" means that f0 ) hmi, so
that the signal is adequately sampled by the noise during a cycle. This is in the spirit of rate coding
in neuroscience. The mean threshold crossing rate, hmiðtÞ, encodes the instantaneous amplitude of
the signal, B sinð2pf0tÞ in the spike train shown in Fig. 1(A).

Supposing that the amplitude of the marker pulses is A and their width s, then the mean
amplitude of the spike train is hV i ¼ AshmiðtÞ. The power spectra of the spike train and noise are
then
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Approximations used in deriving Eq. (2.4) are s ) hmi$1, B=r ) D0, and we have dropped all
harmonics higher than the second. For details see [51]. The SNR in units of decibels (dB) is then

SNR ¼ 10 log10
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and this function has been used to plot the graph in Fig. 1(C). It is the combination of the inverse
r4 in the prefactor and the inverse r2 in the exponent that result in the maximum at the optimal
noise intensity.

In this process, the addition of the noise is essential to the detection of the subthreshold signal
and for the transmission of information about the signal through the system. Moreover, we note
that the system outlined here and in Fig. 1 represents the simplest model for a single sensory
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neuron [28,35,43], and according to this view noise plays a constructive role in its operation.
Indeed, noise has always played a role in the neurosciences [1,45]. An informative and interesting
review has been provided by Segundo et al. [70]. Early studies on the effects of noise on sensory
detection and processing in amphibians were published by Narins and colleagues [89,90].

3. Some experiments on SR in sensory biology

SR was demonstrated experimentally first in an electronic circuit [24] and later in a ring laser
[42]. It was observed in sensory biology using the hydrodynamically sensitive mechanoreceptive
system of the crayfish [19] and soon after in the cercal system of the cricket [36]. Both animals
belong to the same phylum and thus have similar neural architectures. The crayfish Procambarus
clarkii is shown in Fig. 2 (upper panel) together with a diagram of its peripheral mechanosensory

Fig. 2. A red swamp crayfish, Procambarus clarkii (upper panel), the species used in the present experiments. A
schematic diagram of the crayfish mechanoreceptive system showing hairs, sensory afferents (the root receptors) that
synapse on the two caudal photoreceptor (CPR) neurons embedded in the 6th, or caudal, ganglion. The lower electrode
and amplifier record root responses while the upper electrode and amplifier record responses of the CPR. Light
impinging on sensitive areas (solid circles, approximate locations) mediated the transduction of hydrodynamic signals
from the root.
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system (lower panel). The tailfan and 5th and 6th ganglia were mounted in an apparatus for
producing motions relative to an immersion fluid [20,86]. The motions were calibrated with a laser
Doppler vibrometer. Both periodic and random motions in the range 10–500 nm were produced.
Recordings were made of the sensory neural spike trains from the root receptors as shown in the
lower panel of Fig. 2. Spike trains similar to the simulated ones of Fig. 1 were analyzed and the
SNRs computed. Example results are shown by the triangles in Fig. 3. The diamonds are
the result of a simulation of the crayfish sensory neuron using a FitzHugh–Nagumo model [50].
These data show the classical signature: an inverted U-shaped curve of SNR versus noise
intensity.

4. SR in human and animal perception

The crayfish and cricket experiments have been complemented by many demonstrations of SR
or stochastic resonance-like phenomena in various biological preparations including at the
molecular [7,9], cellular [3] and neural [4,5,11,12,15,39,61] levels. Applications to human sensory
neurons include proprioceptive neurons [17] and cochlear implants [31,47]. However, these
demonstrations of SR in peripheral neurons beg the question: can the animal perceive and make
use of this enhanced information? In order to address this question behavioral experiments with
animals and/or human psychophysics experiments are necessary. But before exploring this, a brief
digression on thresholds is called for.

The threshold represented by the dashed line in Fig. 1(A) is a !hard" threshold. The system
responds with a marker pulse (a spike) only when the threshold is crossed with probability one.

Fig. 3. SR data from recordings at the sensory afferents (root): crayfish data (open triangles); simulation by a Fitz-
Hugh–Nagumo neuron model (open diamonds). The horizontal axis represents the rms voltage input to an electro-
mechanical motion transducer that moves the tailfan preparation through the fluid. The actual displacements ranged
from 0 to 250 nm.
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But SR also obtains with a class of !soft" thresholds that can be statistical functions that describe
the threshold crossing probability. They are typically steeply rising functions of stimulus ampli-
tude and can represent perceptive thresholds in animals and humans. The conditions that can give
rise to SR in such systems have been analyzed by Ward et al. [83].

Indeed, SR has been demonstrated in animal behavior [30,69] engendering the term !behavioral
SR" [25,26]. It has also been demonstrated in human perception [16,71,72,80,82] and cognitive
tasks [62,76]. See also a discussion of SR in the excellent book on dynamical cognition [81].

Soft thresholds also abound in medical science so it is not surprising that SR has also found
applications in electromyography [13,14], rehabilitation [37,75], respiration [74], the cardiovas-
cular and baro-reflexive systems [32,87] and brain function [40,46,88].

5. Introduction to stochastic synchronization

Stochastic synchronization (SS) is a general topic that addresses the phenomenon of irregular
phase locking between two noisy non-linear oscillators or between a non-linear oscillator and an
external driving force. In neuroscience it is closely related to encoding schemes that depend on the
timing precision of neural spikes [60]. It is also closely related to SR [53] since the barrier crossings
in a driven oscillator with a bistable potential given, for example, by Eq. (1.1) will to some extent
be in phase synchronization with the weak driving signal, B cosðxtÞ. The Langevin Equation in
this case is

€x$ c _xþ x2
0x ¼ x$ x3 þ B cosðxtÞ þ nðtÞ; ð5:1Þ

where c is the damping. What is phase synchronization? An excellent book treats the general
subject [63]. When an oscillator such as the one described by Eq. (5.1) is driven by a periodic (or
non-periodic) function, the phase difference between the oscillator response and the driving
function tends to a constant. This is called !phase locking" and it must persist over a finite range of
system parameters. Phase synchronization can be of order n : m for which n cycles of the drive
(wðtÞ) match up in final phase with m cycles of the oscillator (/ðtÞ), and this phase difference,
Un;mðtÞ, will remain constant in time. The following serves as a definition of SS:

Un;m ¼ jn/ðtÞ $ mwðtÞj < const:;

x ¼ h _/i ¼ m
n
x0 ¼

m
n
h _wi;

ð5:2Þ

and the angular brackets indicate time averages of sufficient length to establish the indicated
quantities to within some determined statistical confidence level.

Of course, if there is noise in either the oscillator or the drive or both, the phase tends to lock
for some (random) time periods, called epochs, interspersed with periods when the phase differ-
ence drifts [54,67,68]. The phase difference, Un;m, can be represented as diffusing in a tilted periodic
potential and can be described by an effective diffusion constant [73]:

hU2
n;mðtÞi$ hUn;mðtÞi2 / Deffn;mt: ð5:3Þ
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The statistical quality of the synchronization is represented by the probability density of the phase
difference, P ðUn;mÞ. A single factor, the synchronization index, can be defined as the first Fourier
mode of this density:

c2n;m ¼ hcosðUn;mðtÞÞi2 þ hsinðUn;mðtÞÞi2: ð5:4Þ

This factor varies from 0 (no synchronization) to 1.0 (perfect synchronization, meaning no phase
diffusion).

But our special interest here is to describe the case of a noisy neural oscillator being driven by an
(external) periodic forcing function. The response of the neural oscillator is a spike train, and we
must define the phase of the spikes relative to the phase of the forcing function. SS between such a
neural oscillator and an external forcing was observed for the paddlefish electroreceptor system
[55,56], and the theory described in [56,63,68]. If a neural spike occurs at a time tk compared with
the upward zero crossing times of the driving function, si, then the phase difference is

/ðtkÞ ¼ 2p
tk $ si
siþ1 $ si

; ð5:5Þ

where si < tk < siþ1. This (discrete) phase difference can have values 0 < / < 2p. There is also a
definition of the continuous phase difference which spans the range $1 < / < 1:

/ðtÞ ¼ 2p
t $ si

siþ1 $ si
þ 2pi: ð5:6Þ

And in this case, also, the neuron may fire m times during n cycles. The phase locking condition is
defined as before, but now it applies only during the epochs of phase locking: jn/ðtÞ$
m/stimðtÞj < const:, where /stim ¼ 2pf0t is the phase of the drive (or stimulus). The phase difference
between the spike train and the drive is then

Un;mðtÞ ¼ 2p
t $ si

siþ1 $ si

$

þ 2pi
%

n$ 2pmf0t: ð5:7Þ

Again, the synchronization index given in Eq. (5.4) gives a statistical measure of the strength of
the synchronization.

In the following section we will show SS in the crayfish caudal photoreceptor neuron and
describe its relation to SR.

6. SS in the crayfish caudal photoreceptor neurons

A simplified wiring diagram of the crayfish mechanoreceptive system was shown in Fig. 1(B).
We focus on the upper recording amplifier attached to one of the caudal photoreceptor neurons
(CPR). Periodic, hydrodynamic stimuli are applied to the array of hairs on the tailfan with a
motion transducer. The motion of the liquid saline medium relative to the hairs was calibrated
with a laser Doppler vibrometer. Each hair is innervated by two sensory neurons that converge on
the interneurons of the 6th ganglion [77,78]. Two of these interneurons – the CPRs – are photo-
sensitive. Our experiment could be carried out in dark conditions such that the light intensity
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falling on the preparation was smaller than 5 nW/mm2. Alternatively, light with an incandescent
spectrum was applied by way of a fiber optic cable to the light sensitive regions near the CPR
neurons just under the carapace on the 6th ganglion [85]. Steady dim light falling on the sensitive
regions mediates the transduction efficiency of the hydrodynamic motion into neural spike trains
in the CPR. Indeed, dim light compared to dark conditions has been shown to result in better than
one order-of-magnitude in the SNR measured at the CPR [61]. This is shown by the two power
spectra of CPR spike train recordings displayed in Fig. 4, where the heavy dark trace applies to
dark conditions and the lighter trace to a light intensity of 22 lW/mm2 (approximately compa-
rable to dim room light). In both cases the amplitude of the hydrodynamic stimulus was 9.0 lm at
a frequency of 10.5 Hz. The sharp peaks at 10.5 Hz show the signatures of the periodic stimulus.
The SNR of the light trace (transduction mediated by the light) is approximately one order of
magnitude larger than the one for the heavy dark trace (dark conditions).

Significantly, the CPRs are oscillators, albeit noisy ones. The firing rate of this oscillator is
modulated by light [85]. In the dark, the oscillator fires around 5–7 Hz, but is so obscured by noisy
hydrodynamic input from the mechanorecptors that it may appear almost Poisson-like. Thus the
heavy trace in Fig. 4, minus the peak at 10.5 Hz, is nearly flat. In the light, the oscillator, now
firing much faster can become a more dominant part of the signal, though it is still extremely noisy
(see the broad peak around 17 Hz in the lighter trace in Fig. 4).

The calculation of the phase difference between the oscillator and the drive, and the compu-
tation of the synchronization index, Eq. (5.4), are extremely powerful tools for exposing the
nature of oscillatory phenomena even when they are largely obscured by noise, as is so often the
case in the messy world of biological systems. In Fig. 5, we show two synchrograms (left panels)
and their associated probability densities of phase differences (right panels) measured under dark
conditions. The synchrograms are time records of the instantaneous phase differences (Eq. (5.5))
between the stimulus function and the spike elicited at the CPR. In this case only one spike (on
average) is elicited per single stimulus cycle, so that the order is 1:1. The upper panel is for a
stimulus frequency of 10.5 Hz, amplitude 6 lm. It shows well-synchronized behavior as indicated
by the dark density of phases at around U * 1:7 radians on the synchrogram and the corre-
sponding pronounced peak in the density. We recall that the synchronization index, c, as defined
by Eq. (5.4) is the normalized first Fourier mode of the density. Thus it will be strongly sensitive to
the presence of such peaks. In contrast, the lower panel indicates the result for the same conditions
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Fig. 4. Power spectra of the CPR response to a 9 lm, 10.5 Hz, sinusoidal hydrodynamic signal in dark conditions (<5
nW/mm2) (trace at left) and in the light (22 lW/mm2) (trace at right). The peaks at 10.5 Hz are the signatures of the
stimulus. The peaks at around 17 Hz are due to the internal CPR oscillator.

S. Bahar, F. Moss / Mathematical Biosciences 188 (2004) 81–97 89



except now the forcing frequency is 20 Hz, which is near the outer limit of the CPR"s frequency
range. Here, the response is much noisier than in the top panels, and no clear peak is evident in the
phase difference histogram at the bottom right.

A distinct hallmark of stochastic synchronization is the (statistical) entrainment between the
oscillator and the drive over a range of frequencies. Fig. 6 shows five examples of synchronization
indices of differing orders measured as functions of the forcing frequency. Note the meaning of the
subscripts on the indices cn;m. The uppermost trace is c1;2 with 2 spikes (on average) per 1 stimulus
cycle. Note that this index peaks at the relatively low forcing frequency approximately 2 Hz. The
subsequent traces show sequential lockings for larger forcing frequencies. Note the vertical scales.
As expected, the fundamental locking c1;1 is the largest, indicating that at this forcing frequency
the phase locking epochs persist on average for longer times. Lockings up to the 4th order are
shown; in fact, the progressive sequence of maximum synchronization indices shows the system
passing through a series of Arnol"d tongues!

So what is the effect of light on the CPR? Evidently it is to push the CPR oscillators toward
larger natural frequencies. This is indicated by the sequence of lockings shown in Fig. 7 for orders
1:2< 1:1 < 2:1. The indices measured under dark conditions are shown by the solid circles, and
those measured in the light (22 lW/mm2) are indicated by the open squares. The pushing effect
is largest for the subharmonic 1:2 locking where the maximum or the index is pushed from about
3 Hz (dark) to about 10 Hz (light). The fundamental 1:1 locking and the 2:1 locking also
show significant increases of the natural frequencies in the light. To our knowledge, there is no
reason why higher-order lockings (such as 3:2, 5:2) are not, in principle, possible in this system.
Due to the noisiness of the system, however, observation of these lockings in practice is highly
unlikely.

Fig. 5. Synchrograms (left panels) and probability densities of phase differences (right panels) for the CPR forced at 6
lm in dark conditions. Upper panels, 10.5 Hz forcing frequency, lower panels, 20 Hz forcing frequency. The upper
panels indicate 1:1 synchronization.
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7. SS and SR in the crayfish caudal photoreceptor

As discussed in Section 5 above, SR and SS are closely related. This can be demonstrated in the
crayfish CPR by simultaneously measuring the power spectra (and hence the SNR) and the
synchronization indices. In classical SR, the control parameter is the noise intensity that is added
to the weak signal to enhance threshold crossings and hence detectability as shown in Fig. 1. In
the crayfish CPR however, the noise is internal. Indeed it is internal to the entire 6th ganglion,
since the interneurons are barraged by random noise arriving from the myriad sensory afferents
[19,59]. In the CPRs we speculate that the light intensity is related to this internal noise. If true,
light can enhance signal transduction by the mechanism of SR.

Moreover, if SR and SS are closely related there should be a relation between the synchroni-
zation index and the SNR [54]. Our simultaneous measurements of the power spectra and the 1:1
synchronization indices have revealed such a relation as shown in Fig. 8. The solid circles rep-
resent the SNR and the open circles represent the 1:1 index for a range of light levels. The two sets
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Fig. 6. Synchronization indices showing sequential phase lockings commencing with the subharmonic order, 1:2, and
proceeding through higher orders to 4:1.
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of data clearly follow the same trends, both showing maxima at approximately the same optimal
light (possibly noise) intensity. To our knowledge this experiment, first reported in Bahar et al. [4],

0.0
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Fig. 7. Effects of light on the synchronization indices at three orders for dark conditions (solid circles) (<5 nW/mm2)
and in the light (open squares) (22 lW/mm2). Note that light pushes the indices toward higher frequencies.

Fig. 8. SR and SS in the caudal photoreceptor. SNR (solid circles) and synchronization index (open circles) versus light
intensity, where light intensity is a surrogate for noise intensity.
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constitutes the first experimental demonstration of this relation, first predicted by Neiman et al.
[54], in a biological setting.

8. Discussion and conclusions

It is as yet unknown what, if anything, the phenomenon of phase locking may mean to
the animal and if it helps the crayfish avoid predation. However, the evidence is suggestive. The
tail-beat and fin-beat frequencies of many crayfish predators [6,10,21–23,84] are within the
photoreceptor/mechanoreceptor"s sensitivity range of 2–18 Hz. If the otherwise random (i.e.
unsynchronized) responses of many modalities are prompted to respond in phase synchrony by
the predator"s approach, then these responses arrive at centers in the higher nervous system within
smaller time windows. They thus result in larger instantaneous responses by summing modalities,
a process that is thought to form the basis of much sensory detection. However, this is not what
happens in the crayfish. The external stimulus can only be perceived by the animal through the
firing of the photoreceptor. This means that the crayfish itself has no way to compare its CPR
firing with the stimulus. In other words, calculations of synchronization indices are inaccessible to
the animal"s own nervous system. It is possible that some interpretation of the SNR from the
power spectrum, however, which is contained within the time series of spikes fired by the photo-
receptor, can be deciphered by upstream neurons receiving input from the CPR.

And why the light sensitivity? Crayfish are largely nocturnal creatures. But they do often
venture outside their burrows in daylight to forage for food. The light induced upward frequency
push at least for the 1:1 locking is accompanied by a much larger synchronization index. Thus the
spike timing precision (spikes per unit time arriving in a narrower time window) is increased in the
light. In this way, the crayfish may achieve a heightened awareness of hydrodynamic disturbances
that signal danger when foraging in the daylight and subject to the depredations of visual pre-
dators. A similar speculation was first advanced in [61].

The crayfish is possessed of an exquisitely sensitive mechanoreceptive system, being capable
of detecting water motions as small as a few tens of "Angstroms [19,64]. It thus joins other ani-
mals with notably sensitive receptors, for example seismic waves [52] or electric fields [69].
Moreover it is a primitive system dating from at least 225 million years ago [44,58]. The cray-
fish uses its caudal mechanoreceptive system for predator avoidance and it is evidently highly
effective, the animal having spread over the whole globe (except Africa and, presently, Antarctica)
in at least 590 species [18]. But the system is also inherently noisy [19,59]. How can such a
primitive and noisy system achieve such evolutionary success? We have not answered this question
in this paper, but hopefully we have introduced sensory biologists and biophysicists to some
suggestive processes associated with the animal"s stimulus-detecting and information-processing
capabilities.

We have reviewed the field of SR whereby noise can enhance both detectability and infor-
mation processing capabilities. Perhaps SR plays a fundamental role in the evolution of such
systems. As the science of noisy signal detection at the threshold of perception, SR may well have
influenced the detailed way in which such receptors have evolved. We have discussed SR in the
crayfish, outlining the development from the first observations of the phenomenon in biology to
the present studies of the effects of light and higher processing within the 6th ganglion. Finally, we
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have outlined the relatively new field of SS by demonstrating its application to the crayfish sensory
system.

We hope these studies will be suggestive and stimulating of further explorations of these two
phenomena in other sensory systems.
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