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The pricing equations derived from uncertain volatility models in finance are often cast
in the form of nonlinear partial differential equations. Implicit timestepping leads to a set
of nonlinear algebraic equations which must be solved at each timestep. To solve these
equations, an iterative approach is employed. In this paper, we prove the convergence
of a particular iterative scheme for one factor uncertain volatility models. We also
demonstrate how non-monotone discretization schemes (such as standard Crank–Nicolson
timestepping) can converge to incorrect solutions, or lead to instability. Numerical
examples are provided.

Keywords: nonlinear PDE; option pricing; convergence; viscosity solution; uncertain
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1. Introduction

An option is a financial contract entered into by two parties, a buyer and a seller. The buyer
of the contract obtains the right to trade an underlying asset, such as a stock, for a specified
price, called the strike price, on or before a maturity date. Options which provide the right
to buy the underlying asset are known as calls, whereas options conferring the right to sell
the underlying asset are referred to as puts. When the option contract is entered into, the
option buyer pays a price to the seller. In return for this price, the seller agrees to meet any
obligations arising from the contract. For example, the seller of a call option agrees to sell
the underlying asset to the buyer of that option for the strike price should the buyer exercise
their right to purchase. Option buyers are said to have long positions, while option sellers
have short positions.

There are many varieties of options. European options may only be exercised on
the maturity date. American options may be exercised any time up to and including the
maturity date. Path-dependent options have payoffs which depend on the history of the
underlying asset, such as the average price (an Asian option) or the maximum price (a
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242 D. POOLEY ET AL.

lookback option) over some period of time. Barrier options have payoffs that depend on
whether or not the price of the underlying asset reaches specified levels during the contract.

Regardless of the type of option, the seller of the contract is faced with two decisions:
what price to charge for the contract, and how to hedge the resulting risk exposure. It turns
out that in many situations it is possible (at least in theory) to find hedging strategies which
completely eliminate this risk. By the no-arbitrage principle, the fair price to charge for the
contract is then simply the cost of this hedge. The principal source of risk is the price of
the underlying asset. The seller of a call option is faced with the possibility of having to
sell the underlying asset for a much lower price than its prevailing market price should the
price of the underlying asset rise dramatically before the option matures. The probability
of large movements in the underlying asset price depends on its volatility.

Several models for volatility have been proposed in the option pricing literature.
The simplest model assumes constant volatility. This was the approach taken by Black
& Scholes (1973) and Merton (1973) in the work which laid the foundations for the
modern analysis of options and is still the industry standard. However, it is generally
agreed that constant volatility cannot explain observed market prices for options. More
complicated models assume volatility surfaces across underlying asset prices and time
(see, e.g., Andersen & Brotherton-Ratcliffe, 1998; Colemanet al., 1999, and references
therein). These surfaces are often constructed by the implied volatilities under the Black
& Scholes model for a variety of currently traded contracts. A third modelling approach
uses stochastic volatility, in which the volatility is assumed to follow some random process
(Heston, 1993). A downside of stochastic volatility for numerical pricing methods is an
increase in the number of state variables that need to be considered.

Another approach, and the one that will be studied in this paper, is uncertain
volatility. The uncertain volatility model was independently developed by Lyons (1995)
and Avellanedaet al. (1995). In this case, volatility is assumed to lie within a range of
values. As such, prices obtained under a no-arbitrage analysis are no longer unique. All
that can be computed are the best-case and worst-case prices, for a specified long or short
position. By assuming the worst case, an investor can hedge his/her position and obtain a
non-negative balance in the hedging portfolio, regardless of the actual volatility movement,
provided that the volatility remains within the specified range.

Several studies have already considered uncertain volatility for one factor problems
(see, e.g., Lyons, 1995; Avellanedaet al., 1995; Dokuchaev & Savkin, 1998; Lyons
& Smith, 1999; Forsyth & Vetzal, 2001). These studies show that pricing in uncertain
volatility models involves nonlinear partial differential equations (PDEs). For simple
options with convex payoffs, the solution reduces to that of a constant volatility problem
with one of the extreme volatility values. Most authors therefore choose to study more
exotic options with non-convex payoff functions. Barrier options seem to be the most
popular. The nonlinearity of the problem also means that portfolio evaluation is more
difficult (Avellaneda & Buff, 1999).

When solving a nonlinear PDE, there is always the question of the uniqueness of
the solution. For example, it is well known that nonlinear conservation law hyperbolic
PDEs do not have unique solutions once shocks form. In this case, the physically correct
solution satisfies the E-condition (LeVeque, 1990). In financial applications, the relevant
solution is the viscosity solution (Fleming & Sonar, 1993). Provided that the nonlinear PDE
satisfies certain technical conditions (the strong comparison principle (Barles, 1997)), it is
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CONVERGENCE WITH UNCERTAIN VOLATILITY 243

known that a stable, consistent and monotone discretization of financial (non-conservative)
PDEs converges to the viscosity solution (Barles, 1997). We provide a brief introduction
to viscosity solutions in the Appendix of this paper.

The use of an implicit discretization method results in a set of nonlinear algebraic
equations which must be solved at each timestep. We show that the iterative scheme
developed in this paper is globally convergent. We also derive conditions which ensure that
the discrete scheme is monotone and hence converges to the financially relevant solution.
Wethen show, by means of numerical examples, that non-monotone (but implicit) schemes
can lead to incorrect solutions, or to instability.

The organization of this paper is as follows. In Section 2, we review the basics of the
uncertain volatility model. In Section 3, we discuss some theoretical convergence issues for
one-factor problems. In particular, we show how the nonlinear iteration at each timestep
is globally convergent, and we discuss monotonicity properties of the numerical scheme
(which are important for convergence to the desired viscosity solution). We then proceed
to give some numerical examples in Section 4. Finally, we provide some conclusions in
Section 5.

2. Basic background

Following standard arguments, the PDE for the fair price of a contingent claim on one asset
in the Black–Scholes model with uncertain volatility is given by

Uτ = σ(Γ )2

2
S2USS + r SUS − rU, (2.1)

whereS represents the underlying asset price,T is the maturity time of the option,τ =
T − t is time in the backwards direction,Γ = USS , σ(Γ ) is the uncertain volatility (more
details below), andr is the risk-free interest rate. AtS = 0, we have the boundary condition

Uτ = −rU, (2.2)

while at S → ∞, we have a Dirichlet condition

U � A(τ )S + B(τ ), (2.3)

where A and B can be determined by financial reasoning. In practice, we use a finite
computational domain so that condition (2.3) is applied at a finite valueSmax.

The volatility is assumed to lie within the range

σmin � σ(Γ ) � σmax.

In the following, it is assumed thatσmin > 0, r > 0. With a range of possible
volatility values, (2.1) is nonlinear and does not possess a unique solution. Nevertheless,
the best/worst case values are expected to be unique. These values are found by either
maximizing or minimizing the diffusion term by selectingσ according to the value of
Γ = USS . Hence, we have writtenσ(Γ ) in (2.1) to denote the explicit dependence of
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244 D. POOLEY ET AL.

volatility on the value of gamma. Specifically, if we consider the worst case for an investor
with a long position in the option, then

σ(Γ )2 =
{

σ 2
max if Γ � 0

σ 2
min if Γ > 0.

(2.4)

On the other hand, the best case for an investor with a long position is determined by

σ(Γ )2 =
{

σ 2
max if Γ > 0

σ 2
min if Γ � 0.

(2.5)

Prices for investors with short positions are given by the negative of the solutions
when applying (2.4) and (2.5). Note that the Leland (1985) model of transaction costs
can be formulated as a nonlinear PDE which is mathematically identical to (2.1) with
nonlinearities of the form (2.4)–(2.5) (see Wilmott, 1998, for details).

To solve the nonlinear PDE (2.1) numerically, we must select an appropriate
discretization scheme. If an implicit method is used, then an iterative approach (such as
Newton’s method) must be used at each timestep to solve the discrete equations. The
convergence of a particular iterative scheme will be addressed in the next section.

3. Numerical convergence issues

3.1 A finite difference discretization

Assuming a European-style option, (2.1) can be discretized by a standard finite difference
method with variable timeweighting to give

U n+1
i − U n

i = (1 − θ)
[
(−αn+1

i − βn+1
i − r∆τ)U n+1

i + αn+1
i U n+1

i−1 + βn+1
i U n+1

i+1

]
+ θ

[
(−αn

i − βn
i − r∆τ)U n

i + αn
i U n

i−1 + βn
i U n

i+1

]
. (3.1)

Fully implicit and Crank–Nicolson discretizations correspond to cases ofθ = 0 andθ =
1/2 respectively. The form ofαi andβi depends on the choice of finite-difference stencil.
Discretizing the first derivative term of (2.1) with central differences leads to

αn
i,central=

[
σ(Γ n

i )2S2
i

(Si − Si−1)(Si+1 − Si−1)
− r Si

Si+1 − Si−1

]
∆τ

βn
i,central=

[
σ(Γ n

i )2S2
i

(Si+1 − Si )(Si+1 − Si−1)
+ r Si

Si+1 − Si−1

]
∆τ . (3.2)

If αi,central is negative, oscillations may appear in the solution (βi,central is always
positive). The oscillations can be avoided by using forward differences at the problem
nodes, leading to

αn
i,forward = σ(Γ n

i )2S2
i

(Si − Si−1)(Si+1 − Si−1)
∆τ

βn
i,forward =

[
σ(Γ n

i )2S2
i

(Si+1 − Si )(Si+1 − Si−1)
+ r Si

Si+1 − Si

]
∆τ . (3.3)
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CONVERGENCE WITH UNCERTAIN VOLATILITY 245

Algorithmically, we decide between a central or forward discretization at each node for
(3.1) as follows:

If

[
σ 2

minS2
i

(Si − Si−1)(Si+1 − Si−1)
− r Si

Si+1 − Si−1

]
� 0 then

αi = αi,central

βi = βi,central

Else

αi = αi,forward

βi = βi,forward

EndIf

(3.4)

Note that the use ofσmin in the test condition guarantees thatαi and βi are always
positive, regardless of the choice ofσ(Γ ). For the second derivative term, and also for
the approximation ofΓ n

i = (USS)n
i , we use

(Uss)
n
i = Γ n

i =
∑
j∈ηi

2(U n
j − U n

i )

(Si+1 − Si−1)|S j − Si | , (3.5)

whereηi = {i + 1, i − 1}.
Note that a finite volume approach as in Zvanet al. (2001) would lead to the same

form of discretization as (3.1). Wherever forward differencing is used, a finite volume
approach would use upstream weighting.† One advantage of finite volume methods is the
potential for higher order flux limiters. For typical values ofσ, r and grid spacing, forward
differencing is rarely required for single factor options. However, for multi-factor options, a
flux limiter can be highly beneficial (Zvanet al., 2001). Consequently, for ease of notation
in our single factor analysis, we have used a finite difference discretization. Note again that
forward differencing is only used at nodes whereαi,central< 0. In practice, since this occurs
at only a small number of nodes remote from the region of interest, the limited use of a
low-order scheme does not result in poor convergence as the mesh is refined. As we shall
see, requiring that allαi andβi are non-negative has important theoretical ramifications.

The set of algebraic equations (3.1) is non-smooth due to the form of (2.4)–(2.5). The
non-smoothness can be made clear by re-writing the discrete equations at each node as

gi = −U n+1
i + U n

i + (1 − θ)

[∑
j∈ηi

∆τγi j (U
n+1
j − U n+1

i ) − r∆τU n+1
i

]

+ θ

[∑
j∈ηi

∆τγi j (U
n
j − U n

i ) − r∆τU n
i

]
+ (1 − θ)∆τ

σ (Γ n+1
i )2S2

i

2
Γ n+1

i

+ θ∆τ
σ (Γ n

i )2S2
i

2
Γ n

i = 0, (3.6)

†On a uniform grid in one space dimension, the finite volume method and finite difference method give
identical discretizations. On non-uniform grids, upstream weighting and forward differencing give slight
differences, although the form of the discretizations remains identical.
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246 D. POOLEY ET AL.

where

γi j =




r Si/(Si+1 − Si−1) if j = i + 1 and central differences

r Si/(Si+1 − Si ) if j = i + 1 and forward differences

−r Si/(Si+1 − Si−1) if j = i − 1 and central differences

0 if j = i − 1 and forward differences.

(3.7)

For future reference, note that if we defineαi andβi as in algorithm (3.4), then

γi j + σ 2
minS2

i

(Si+1 − Si−1)|S j − Si | � 0. (3.8)

Consider now a long investment. The nonlinear component of (3.6) can be written as

σ(Γ )2Γ =
{

max(σ2
minΓ , 0)+ min(σ2

maxΓ , 0) ; worst-case long

max(σ2
maxΓ , 0)+ min(σ2

minΓ , 0) ; best-case long.
(3.9)

In order to apply Newton iteration to the non-smooth equations (3.6), we must specify
the element of the generalized Jacobian that will be used in the Newton iteration (Qi & Sun,
1993; Pang & Qi, 1993; Sun & Han, 1997). We will define the derivatives for best-case long
as

∂σ(Γ )2Γ
∂Γ

=
{

σ 2
max if Γ > 0

σ 2
min if Γ � 0,

(3.10)

and for worst-case long as

∂σ(Γ )2Γ
∂Γ

=
{

σ 2
min if Γ > 0

σ 2
max if Γ � 0.

(3.11)

For further ease of analysis, we can also write the discrete equations (3.1) in matrix
form. LetU n+1 = [U n+1

1 , U n+1
2 , . . . , U n+1

imax]′, U n = [U n
1 , U n

2 , . . . , U n
imax]′ and[

M̂nU n
]

i
= − [

(−αn
i − βn

i − r∆τ)U n
i + αn

i U n
i−1 + βn

i U n
i+1

]
. (3.12)

The first and last rows ofM̂ are modified as needed to handle the boundary conditions.
In our case, the boundary conditions (2.2) and (2.3) are of Dirichlet type. The boundary
condition atS = 0 is enforced by settingαi = βi = 0 at i = 1. We approximate the
infinite computational domainS ∈ [0,∞] by the finite domainS ∈ [0, Smax]. Denote the
node corresponding toSi = Smax as Si = Simax. To avoid algebraic complication in the
following, we will assume that the Dirichlet condition atS = Simax is time independent,
so that

U (τ, Smax) = Uimax = Const.

The boundary condition ati = imax is enforced by settingU0
imax = Uimax, and setting the

last row of M̂ to be identically zero. With a slight abuse of notation, we denote this last
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CONVERGENCE WITH UNCERTAIN VOLATILITY 247

row as(M̂)imax ≡ 0. In the following, it will be understood that equations of type (3.12)
hold only fori < imax, with(M̂)imax ≡ 0.

The discrete equations (3.1) can then be written in a compact matrix form:[
I + (1 − θ)M̂n+1

]
U n+1 =

[
I − θ M̂n

]
U n . (3.13)

By using forward differencing to ensure thatαn
i and βn

i are positive, matrix[
I + (1 − θ)M̂n+1

]
is an M-matrix—a diagonally dominant matrix with positive

diagonals and non-positive off-diagonals. Note that all of the elements of the inverse of
an M-matrix are non-negative.

In the analysis of the following sections, we alternate between the discrete equation
representation (3.6) and the matrix representation (3.13) as appropriate. Generally
speaking, the matrix form is useful when discussing properties of the algorithm (e.g.
convergence of the Newton iteration), while the discrete equation form is suitable for
determining properties of the equation (e.g. showing monotonicity).

3.2 Convergence of the uncertain volatility iteration

Because of the simple (although non-smooth) form of the Jacobian, we can analyse the
Newton iteration in detail. Let(U n+1)k be thekth estimate forU n+1. The Newton iteration
at each timestep is then determined by the following scheme:

Let (U n+1)0 = U n

For k = 0,1,2, . . . until convergence

Solve
[

I + (1 − θ)M̂((U n+1)k)
]
(U n+1)k+1 =

[
I − θ M̂(U n)

]
U n

If max
i

|(U n+1
i )k+1 − (U n+1

i )k |
max(1,|(U n+1

i )k+1|) < tolerance then quit

EndFor

(3.14)

For notational convenience, define

M̂k ≡ M̂((U n+1)k)

Ū k ≡ (U n+1)k,

so that the basic algorithm (3.14) can be written as[
I + (1 − θ)M̂k

]
Ū k+1 =

[
I − θ M̂n

]
U n . (3.15)

Our main result in this section can be summarized in the following theorem.

THEOREM 3.1 (Convergence of the nonlinear iterations) If the matrix[
I + (1 − θ)M̂k

]
in (3.15) is anM-matrix, then the nonlinear iteration (3.14) converges to

the unique solution to (3.13), given any initial iterateŪ0. Moreover, the iterates converge
monotonically. ForŪ k sufficiently close to the solution, convergence is quadratic.
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248 D. POOLEY ET AL.

Proof. We will first prove that this algorithm is globally convergent by showing that the
iterates form non-increasing (non-decreasing) sequences which are bounded from below
(above). Writing (3.15) for iterationk gives[

I + (1 − θ)M̂k−1
]

Ū k =
[

I − θ M̂n
]

U n,

which can also be expressed as[
I + (1 − θ)M̂k

]
Ū k + (1 − θ)

[
M̂k−1 − M̂k

]
Ū k =

[
I − θ M̂n

]
U n . (3.16)

Subtracting (3.16) from (3.15) gives[
I + (1 − θ)M̂k

]
(Ū k+1 − Ū k) = (1 − θ)

[
M̂k−1 − M̂k

]
Ū k . (3.17)

We wish to show that the iterates form a bounded non-increasing or non-decreasing
sequence. Expanding the right-hand side of (3.17) using definition (3.12) for nodei leads
to

(1 − θ)
([

M̂k−1 − M̂k
]

Ū k
)

i

= (1−θ)
[
(−αk

i + αk−1
i − βk

i + βk−1
i )U k

i + (αk
i − αk−1

i )U k
i−1 + (βk

i − βk−1
i )U k

i+1

]
.

(3.18)

This expression can be simplified using definitions (3.2)–(3.5) to obtain

(1 − θ)
([

M̂k−1 − M̂k
]

Ū k
)

i
= (1 − θ)∆τ

S2
i

[
(σ k

i )2 − (σ k−1
i )2

]
2

Γ k
i ; k � 1. (3.19)

For clarity, we will examine the sign of the right-hand side of (3.19) in different cases. In

particular, we must determine the sign of
[
(σ k

i )2 − (σ k−1
i )2

]
Γ k

i , as all other factors are

clearly positive. Consider first a worst-case long position in the option, so that definition
(2.4) applies for the values ofσ(Γ ). Then

Case 1. Γ k
i � 0 implies that(σ k

i )2 = σ 2
max. Then we have

[
(σmax)

2 − (σ k−1
i )2

]
Γ k

i � 0.

Case 2. Γ k
i > 0 implies that(σ k

i )2 = σ 2
min. Then we have

[
(σmin)

2 − (σ k−1
i )2

]
Γ k

i � 0.

Thus, in either case, and for anyi , expression (3.19) is less than or equal to zero. By

expression (3.17), and the fact that
[

I + (1 − θ)M̂k
]

is anM-matrix, it follows that

Ū k+1 − Ū k � 0 ; k � 1, (3.20)

and hence the iterates form a non-increasing sequence.
Consider now a best-case long position so that definition (2.5) applies for the values of

σ(Γ ). Then
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CONVERGENCE WITH UNCERTAIN VOLATILITY 249

Case 3. Γ k
i � 0 implies that(σ k

i )2 = σ 2
min. Then we have

[
(σmin)

2 − (σ k−1
i )2

]
Γ k

i � 0.

Case 4. Γ k
i > 0 implies that(σ k

i )2 = σ 2
max. Then we have

[
(σmax)

2 − (σ k−1
i )2

]
Γ k

i � 0.

In these cases, for anyi , expression (3.19) is greater than or equal to zero. By expression

(3.17), and the fact that
[

I + (1 − θ)M̂k
]

is anM-matrix, it follows that

Ū k+1 − Ū k � 0 ; k � 1, (3.21)

and hence the iterates form a non-decreasing sequence, for all iterationsafter the first
iteration (k� 1) at each timestep. A similar analysis can be done for short positions.

Now that we have shown the iterates to be non-increasing or non-decreasing, we need
to show that they are bounded. To do this, letb = [I − θ M̂n]U n . For a fixed mesh,‖b‖∞
is bounded. Now, by (3.12) and (3.15), we have[

I + (1 − θ)M̂k
]

Ū k+1 = b[
1 + (1 − θ)(αk

i + βk
i + r∆τ)

]
Ū k+1

i = (1 − θ)αk
i Ū k+1

i−1 + (1 − θ)βk
i Ū k+1

i+1 + bi .

(3.22)

Now let Umax = maxi (Ū
k+1
i ), Umin = mini (Ū

k+1
i ), bmax = maxi (bi ) and bmin =

mini (bi ). Note that(M̂k)imax ≡ 0 and thatbimax = Uimax. Then since all coefficients
of theU terms are positive, we have[

1 + (1 − θ)(αk
i + βk

i + r∆τ)
]

Ū k+1
i � (1 − θ)αk

i Umax + (1 − θ)βk
i Umax + bmax;

i < imax

Umax � max

(
bmax

1 + (1 − θ)r∆τ
, bmax

)
· (3.23)

Similarly,

Umin � min

(
bmin

1 + (1 − θ)r∆τ
, bmin

)
. (3.24)

Thus‖U k+1
i ‖∞ � ‖b‖∞, independent ofk. Consequently, since the iterates are either non-

increasing or non-decreasing, and‖U k+1
i ‖∞ is bounded independent ofk, the iteration

(3.15) converges. (Note that if̄U k+1 = Ū k , then the residual of the nonlinear equations is
identically zero, and̄U k+1 is an exact solution of (3.13)).

As for uniqueness, suppose we have two solutions to (3.15),U1 andU2, such that[
I + (1 − θ)M̂1

]
U1 =

[
I − θ M̂n

]
U n (3.25)[

I + (1 − θ)M̂2

]
U2 =

[
I − θ M̂n

]
U n, (3.26)
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whereM̂1 = M̂(U1), M̂2 = M̂(U2). We can rewrite (3.25) as

[
I + (1 − θ)M̂2

]
U1 + (1 − θ)

[
M̂1 − M̂2

]
U1 =

[
I − θ M̂n

]
U n . (3.27)

Subtracting (3.26) from (3.27) gives

[
I + (1 − θ)M̂2

]
(U1 − U2) = (1 − θ)

[
M̂2 − M̂1

]
U1. (3.28)

In component form (note the analogy to (3.19)), this becomes

([
I + (1 − θ)M̂2

]
(U1 − U2)

)
i
= (1 − θ)∆τ

S2
i ((σ (Γ1)

2)i − (σ (Γ2)
2)i )

2
(Γ1)i . (3.29)

Consider a best-case long position. In this situation, the right-hand side of (3.29) is always
non-negative, so that we haveU1 � U2. Interchanging subscripts givesU2 � U1, and
henceU1 = U2. Similar arguments can be used for best-case short positions, and worst-
case positions.

Note that sinceΓ n
i as defined by (3.5) is a simple linear function ofU n

i andU n
j , the

non-smooth equations (3.6) are strongly semi-smooth (Qi & Zhou, 2000). This means that
convergence will be quadratic in a sufficiently small neighbourhood of the solution (Qi &
Sun, 1993). �

Thus, we have shown that iteration (3.14) will converge to a unique solution at each
timestep. However, this says nothing about convergence to the viscosity solution of the
PDE as the timestep and mesh size are reduced. This topic will be discussed in the next
section.

3.3 Convergence to the viscosity solution

In the previous section, global convergence of the Newton iteration for the nonlinear
algebraic equations at each timestep was proven. However, since the PDE is nonlinear,
questions remain about convergence to the financially correct solution as∆S,∆τ → 0. In
a financial context, we would like to ensure convergence to theviscosity solution (Crandall
et al., 1992). A brief discussion of viscosity solutions is provided in the Appendix. From
the work of Barles (1997), we know that a stable, consistent, and monotone discretization
will converge to the viscosity solution. To this end, it is helpful to review the concept of a
monotone discretization.

The set of discrete equations (3.6) can be written as

gi (U
n+1
i , U n+1

j , U n
i , U n

j ) = 0 ∀i ; j ∈ ηi . (3.30)

With a monotone discretization, a positive perturbation to any of{U n+1
j , U n

i , U n
j } produces
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a positive perturbation ofU n+1
i . If gi is differentiable, then this is equivalent to stating that

∂U n+1
i

∂U n
i

= − ∂gi/∂U n
i

∂gi/∂U n+1
i

� 0

∂U n+1
i

∂U n+1
j

= −∂gi/∂U n+1
j

∂gi/∂U n+1
i

� 0

∂U n+1
i

∂U n
j

= − ∂gi/∂U n
j

∂gi/∂U n+1
i

� 0. (3.31)

In the case of nondifferentiablegi , which is the case for the uncertain volatility
discretization, we will use the following definition of monotonicity.

DEFINITION 1 (Monotone discretizations) A discretization of the form (3.30) is mono-
tone if either

gi (U
n+1
i , U n+1

j + ρn+1
j , U n

i + ρn
i , U n

j + ρn
j ) � gi (U

n+1
i , U n+1

j , U n
i , U n

j ) ∀i ; j ∈ ηi

∀ρn
i � 0, ∀ρn+1

j � 0, ∀ρn
j � 0

gi (U
n+1
i + ρn+1

i , U n+1
j , U n

i , U n
j ) � gi (U

n+1
i , U n+1

j , U n
i , U n

j ) ∀i ; j ∈ ηi

∀ρn+1
i � 0 (3.32)

or

gi (U
n+1
i , U n+1

j + ρn+1
j , U n

i + ρn
i , U n

j + ρn
j ) � gi (U

n+1
i , U n+1

j , U n
i , U n

j ) ∀i ; j ∈ ηi

∀ρn
i � 0, ∀ρn+1

j � 0, ∀ρn
j � 0

gi (U
n+1
i + ρn+1

i , U n+1
j , U n

i , U n
j ) � gi (U

n+1
i , U n+1

j , U n
i , U n

j ) ∀i ; j ∈ ηi

∀ρn+1
i � 0 (3.33)

This somewhat longwinded definition, with either condition (3.32) or (3.33), avoids having
to definegi (. . . ) with a standard sign convention.

The difficulty in verifying these relations for the discrete equations (3.6) comes from
the nonlinear term. However, note that

Γ n
i (U n

i , U n
j + ρn

j ) = Γ n
i (U n

i , U n
j ) + ρn

j
2

(Si+1 − Si−1)|S j − Si | ; ∀ρn
j � 0

Γ n
i (U n

i + ρn
i , U n

j ) = Γ n
i (U n

i , U n
j ) − ρn

i

∑
j∈ηi

2

(Si+1 − Si−1)|S j − Si | ; ∀ρn
i � 0.

(3.34)

 at Serial R
ecord on M

ay 17, 2016
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


252 D. POOLEY ET AL.

Further, regardless of whetherσ(Γ ) is defined for best or worst case, it follows from (2.4)–
(2.5) that

σ(Γ )2Γ + σ 2
max∆Γ � σ(Γ + ∆Γ )2(Γ + ∆Γ )� σ(Γ )2Γ + σ 2

min∆Γ ; ∀∆Γ � 0

σ(Γ )2Γ − σ 2
max∆Γ � σ(Γ − ∆Γ )2(Γ − ∆Γ )� σ(Γ )2Γ − σ 2

min∆Γ ; ∀∆Γ � 0.
(3.35)

We are now in a position to test (3.6) for monotonicity, and hence determine the
conditions under which convergence to the viscosity solution is guaranteed. This will be
done separately for the fully implicit and Crank–Nicolson cases.

3.3.1 Fully implicit discretization. For a fully implicit discretization, we setθ = 0 in
(3.6) to obtain (fori < imax)

gi = −U n+1
i + U n

i +
[∑

j∈ηi

∆τγi j (U
n+1
j − U n+1

i ) − r∆τU n+1
i

]

+∆τ
σ (Γ n+1

i )2S2
i

2
Γ n+1

i = 0, (3.36)

and fori = imax

gimax = −U n+1
imax + U n

imax = 0.

In order to show convergence to the viscosity solution of this discretization, we will use
the following lemmas.

LEMMA 3.1 (Monotonicity of the fully implicit discretization) The fully implicit dis-
cretization (3.36) is monotonic, independent of any choice of∆τ and grid spacing.

Proof. Note that allU n
j terms have disappeared in (3.36). Consider perturbingU n+1

j by an
amountε > 0. In this case, using relations (3.34), (3.35), and (3.36) gives

gi (U
n+1
i , U n+1

j + ε, U n
i ) � gi (U

n+1
i , U n+1

j , U n
i ) + ∆τε

(
σ 2

minS2
i

(Si+1 − Si−1)|S j − Si | + γi j

)

� gi (U
n+1
i , U n+1

j , U n
i ), (3.37)

where the last line follows from relation (3.8). Continuing in the same manner, we perturb
U n+1

i by ε > 0 to get

gi (U
n+1
i + ε, U n+1

j , U n
i ) � gi (U

n+1
i , U n+1

j , U n
i ) − ε

− ∆τε
∑
j∈ηi

(
σ 2

minS2
i

(Si+1 − Si−1)|S j − Si | + γi j

)
− ∆τεr

� gi (U
n+1
i , U n+1

j , U n
i ). (3.38)
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Again, the factor in the summation is guaranteed to be positive by relation (3.8). It is
obvious from (3.36) that

gi (U
n+1
i , U n+1

j , U n
i + ε) � gi (U

n+1
i , U n+1

j , U n
i ). (3.39)

The monotonicity of (3.36) now follows directly from definition (3.32). �

LEMMA 3.2 (Stability of the fully implicit discretization) The fully implicit discretiza-
tion (3.36) is unconditionally stable, in the sense that

‖U n+1‖∞ � ‖U n‖∞

independent of the timestep and mesh spacing.

Proof. Define

U n
max = max

i
U n

i

U n
min = min

i
U n

i . (3.40)

From Lemma 3.1 we have that a fully implicit discretization is unconditionally monotone.
It follows that

U n+1
max � max

i
(U∗

max)i

U n+1
min � min

i
(U∗

min)i , (3.41)

where(U∗
max)i , (U∗

min)i are given from the solutions to

gi ((U
∗
max)i , (U

∗
max)i , U n

max) = 0

gi ((U
∗
min)i , (U

∗
min)i , U n

min) = 0. (3.42)

Hence, from (3.36) and (3.42), we see that

max(U n
max,

U n
max

1 + r∆τ
) � U n+1

i � min(U n
min,

U n
min

1 + r∆τ
); ∀i . (3.43)

Consequently, we have that‖U n+1‖∞ � ‖U n‖∞. �

Let ∆S = maxi (Si+1 − Si ). Our main result concerning convergence of the fully
implicit discretization is the following.

THEOREM 3.2 (Convergence of the fully implicit discretization) The fully implicit dis-
cretization (3.36) converges unconditionally to the viscosity solution of the nonlinear PDE
(2.1), as∆τ,∆S → 0.

Proof. In Barles (1997) it is shown that a consistent, stable, monotone discretization
converges to the viscosity solution. Since (3.36) is a consistent discretization, Theorem
3.2 follows directly from the results of Barles (1997), and Lemmas 3.1–3.2. �
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3.3.2 Crank–Nicolson discretization. For a Crank–Nicolson discretization, we setθ =
1/2 in (3.6) to obtain (fori < imax)

gi = −U n+1
i + U n

i + 1

2

[ ∑
j∈i+1,i−1

∆τγi j (U
n+1
j − U n+1

i ) − r∆τU n+1
i

]

+ 1

2

[∑
j∈ηi

∆τγi j (U
n
j − U n

i ) − r∆τU n
i

]
+ 1

2
∆τ

σ (Γ n+1
i )2S2

i

2
Γ n+1

i

+ 1

2
∆τ

σ (Γ n
i )2S2

i

2
Γ n

i = 0, (3.44)

and fori = imax

gi = −U n+1
i + U n

i = 0.

As with the fully implicit discretization, we will first determine the conditions for
monotonicity.

LEMMA 3.3 (Monotonicity of the Crank–Nicolson discretization) The Crank–Nicolson
discretization (3.44) is monotone if the timestep is selected such that

∆τ < 2 min
i

(
r +

∑
j∈ηi

[
σ 2

maxS
2
i

(Si+1 − Si−1)|S j − Si | + γi j

])−1

. (3.45)

Proof. Following the fully implicit analysis above, we immediately obtain in the Crank–
Nicolson case (forε > 0)

gi (U
n+1
i , U n+1

j + ε, U n
i , U n

j ) � gi (U
n+1
i , U n+1

j , U n
i , U n

j )

gi (U
n+1
i , U n+1

j , U n
i , U n

j + ε) � gi (U
n+1
i , U n+1

j , U n
i , U n

j )

gi (U
n+1
i + ε, U n+1

j , U n
i , U n

j ) � gi (U
n+1
i , U n+1

j , U n
i , U n

j ).

Using relations (3.34), (3.35), and (3.44) gives (ε >0)

gi (U
n+1
i , U n+1

j , U n
i + ε, U n

j ) � gi (U
n+1
i , U n+1

j , U n
i , U n

j ) + ε

(
1 − r∆τ

2

)

− ∆τε

2

∑
j∈ηi

(
σ 2

maxS
2
i

(Si+1 − Si−1)|S j − Si | + γi j

)
. (3.46)

Sinceσmax � σmin, it follows from (3.8) that

γi j + σ 2
maxS

2
i

(Si+1 − Si−1)|S j − Si | � 0. (3.47)
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Consequently, for the perturbation (ε >0) to produce a positive change, we require

0 < ε

[
1 − r∆τ

2
− ∆τ

2

∑
j∈ηi

(
σ 2

maxS
2
i

(Si+1 − Si−1)|S j − Si | + γi j

)]
∀i . (3.48)

To ensure that the timestep condition is satisfied for alli , the worst case is

∆τ < 2 min
i

(
r +

∑
j∈ηi

[
σ 2

maxS
2
i

(Si+1 − Si−1)|S j − Si | + γi j

])−1

, (3.49)

which completes the proof. �
Note that condition (3.45) implies that a Crank–Nicolson scheme will be monotone

only if the timestep size is less than twice the maximum stable explicit timestep size.

LEMMA 3.4 (Stability of the Crank–Nicolson Discretization) If condition (3.45) is satis-
fied, then the Crank–Nicolson discretization is stable, in the sense that

‖U n+1‖∞ � ‖U n‖∞ ·

Proof. If condition (3.45) is satisfied, then by Lemma 3.3, the Crank–Nicolson
discretization is monotone, and stability of the discrete equations follows by bounding
theUi values as was done in the fully implicit case (see Lemma 3.2). �

Combining these results allows us to state the following theorem.

THEOREM 3.3 (Convergence of the Crank–Nicolson discretization) If condition (3.45) is
satisfied, then the Crank–Nicolson discretization (3.44) converges to the viscosity solution
of the nonlinear PDE (2.1) as∆τ,∆S → 0.

Proof. Again, this follows directly from Lemmas 3.3 and 3.4 and the results of Barles
(1997) since the condition of the theorem ensures a monotone, stable, and consistent
discretization. �

If condition (3.45) is not satisfied, then forθ = 1/2 (Crank–Nicolson) in (3.13), we
have [

I + M̂n+1

2

]
U n+1 =

[
I − M̂n

2

]
U n, (3.50)

or

U n+1 =
[

I + M̂n+1

2

]−1 [
I − M̂n

2

]
U n

=
[

I + M̂n+1

2

]−1 [
I − M̂n

2

] [
I + M̂n

2

]−1 [
I − M̂n−1

2

] [
I + M̂n−1

2

]−1

× . . .

[
I − M̂0

2

]
U0. (3.51)
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Assuming thatr > 0, all rows of M̂n are diagonally dominant, with positive diagonal
entries, except for the last row which is identically zero. It follows that all eigenvalues of
M̂n have non-negative real parts, and hence the eigenvalues of each term[

I − M̂k

2

] [
I + M̂k

2

]−1

are less than or equal to one in magnitude, with only one eigenvalue having magnitude
one. However, stability does not necessarily follow, since theM̂k are not normal matrices.
In fact, as we shall see, Crank–Nicolson timestepping appears to be unstable with
discontinuous payoffs when condition (3.45) is violated.

4. Numerical examples

4.1 Butterfly spread

To illustrate the results of Section 3, we begin by examining the uncertain volatility model
on a ‘butterfly spread’. This is a combination of options with three different strike prices. It
can be formed using either call options or put options. Our test problem uses call options,
so the payoff can be written as

U (S, τ = 0) = max(S − K1, 0)− 2 max(S − (K1 + K2)/2,0)+ max(S − K2, 0).
(4.1)

This corresponds to a long position in two calls at strikesK1, K2, and a short position in
two calls at strike(K1 + K2)/2. Recall thatτ = T − t , so that the payoff is the value of the
option at expiryt = T , or the initial condition of the PDE atτ = 0. Figure 1 provides
a diagram of a sample payoff function. A complete specification of our test problem,
including the PDE parameters, is given in Table 1. Note that unless the problem has a
non-convex payoff/solution, the sign of gamma (USS) will not change during the solution
process. In these cases the nonlinearity disappears, andσ will always take on one of the
extreme volatility values.

Solutions were computed on a sequence of uniformly refined grids, starting with 61
non-uniform points. At each grid refinement, the timestep was halved. The convergence
tolerance for nonlinear iteration (3.14) was 10−6. Convergence results using fully implicit
and Crank–Nicolson timestepping are given in Table 2. The timestep was selected so that
condition (3.45) was violated. We can see that a fully implicit method converges at a linear
rate, as we would expect. From Theorem 3.2, we know that this solution is the viscosity
solution. However, the Crank–Nicolson method is either converging to a non-viscosity
solution, or has a slowly growing instability. Timestepping and nonlinear iteration data
are given in Table 3. Note that in the fully implicit case, the average number of nonlinear
iterations per step is close to two. For a linear problem, the number of nonlinear iterations
at each step would be exactly two (of course, iteration would be unnecessary in this case).

To understand the difficulty with Crank–Nicolson timestepping, consider plots of the
solution values, deltas (US) and gammas (USS), as shown in Fig. 2 for both fully implicit
and Crank–Nicolson timestepping.† We see that all implicit plots are smooth, as would be

†Note that risk hedging strategies typically involve delta and gamma, so it is important to accurately compute
not only the option value but also its first and second derivatives with respect to the price of the underlying asset.
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FIG. 1. Sample payoff function for a butterfly spread. Parameters for (4.1) are taken from Table 1.

TABLE 1 Model parameters for the butterfly spread
test problem

Type: Butterfly spread (using call options)
Scenario: Worst case long

Time to expiry: 0.25 years
r : 0.1

K1: 90
K2: 110

σmax: 0.25
σmin: 0.15

TABLE 2 Convergence results for an at-the-money (S = 100)butterfly
spread with uncertain volatility. Parameters are provided in Table 1. The
timestep is halved at each grid refinement. ‘Difference’ is the absolute
value of the change in the solution as the grid is refined. ‘Ratio’ is the
ratio of successive differences. Timestepping data are given in Table 3

Fully implicit Crank–Nicolson
Nodes Value Difference Ratio Value Difference Ratio

61 2.3501 1.7246
121 2.3250 0.0251 1.5713 0.1533
241 2.3116 0.0134 1.87 1.4622 0.1091 1.41
481 2.3047 0.0069 1.95 1.3806 0.0816 1.34
961 2.3012 0.0035 1.97 1.3264 0.0542 1.51

expected. However, a small ‘kink’ in the Crank–Nicolson solution atS = 100 leads to a
discontinuity in the solution delta (US), and to major oscillations in the solution gamma
(USS) values. Since the uncertain volatility model has a crucial dependence on the sign of
gamma, we expect problems.

To further isolate the source of Crank–Nicolson timestepping difficulties, consider
the solution after one timestep. In Fig. 3(a), we see that implicit timestepping leads to

 at Serial R
ecord on M

ay 17, 2016
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


258 D. POOLEY ET AL.

TABLE 3 Timestepping information for an at-the-money (S = 100)butterfly
spread with uncertain volatility. Parameters are provided in Table 1. ‘No of
iterations’ is the total number of nonlinear iterations used during the solution
process. ‘Average no of iterations’ is the number of iterations divided by the
number of timesteps. The number of nodes is doubled each time the timestep
is halved. The convergence tolerance was 10−6 (3.14). Convergence data are
given in Table 2

Fully implicit Crank–Nicolson
No of ∆τ No of Average no No of Average no

timesteps iterations of iterations iterations of iterations
25 0.01 58 2.32 87 3.48
50 0.005 116 2.32 204 4.08

100 0.002 5 236 2.36 432 4.32
200 0.001 25 461 2.31 886 4.43
400 0.000 625 868 2.17 1858 4.65

a smooth curve. On the other hand, Fig. 3(b) reveals that Crank–Nicolson timestepping has
introduced a cusp at the strike price of 100 (other problems atS = 90 andS = 110 are
not shown). For linear problems, such oscillations would eventually be damped out, since
Crank–Nicolson is a stable method.

However, for the present problem, the oscillations have caused the computed values
of gamma at all nodes where the initial payoff has a discontinuity in delta to have the
wrong sign. This is shown in Fig. 4. Consequently, different values ofσ will be used at
the second timestep at the nodes where oscillations occurred. In this case, since we have
the convergence results from a monotone scheme, which is guaranteed to converge to the
viscosity solution, we can see that the Crank–Nicolson solution is incorrect.

The oscillations also have an effect on how strongly nonlinear the problem becomes.
In Table 3, we see that using implicit timestepping leads to just over two nonlinear Newton
iterations per timestep, indicating fairly mild nonlinearity. On the other hand, the average
number of nonlinear iterations per timestep for Crank–Nicolson timestepping starts at 3.48
for the the coarsest grid, and increases as the grids are refined. Clearly, the non-monotone
discretization amplifies the nonlinear properties of the problem.

Unfortunately, we would like to use Crank–Nicolson timestepping for the potential
of second-order convergence. Since the difficulty appears to be oscillations at the first
timestep, it makes sense to start with fully implicit timestepping, and then switch to Crank–
Nicolson timestepping. Such a method was discussed in Rannacher (1984), and will be
called Rannacher timestepping below. Since only a finite number of fully implicit steps
are taken, the overall convergence rate can be shown to be quadratic for linear problems
(Rannacher, 1984). Results using this method with two and four initial implicit steps are
given in Table 4. Both approaches give (nearly) quadratic convergence, although taking
four steps appears to converge at a slightly higher rate. More importantly, even though
Rannacher timestepping is not unconditionally monotone (strictly speaking), both methods
appear to converge to the correct solution, with no evidence of instability. Assuming
a linear rate of convergence, the extrapolated solution using fully implicit timestepping
(Table 2) is 2.2977, in excellent agreement with the results in Table 4. Further, as shown
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(a) Value, fully implicit timestepping.
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(b) Value, Crank–Nicolson timestepping.
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(c) Delta, fully implicit timestepping.
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(d) Delta, Crank–Nicolson timestepping.
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(e) Gamma, fully implicit timestepping.
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FIG. 2. Butterfly spread solution value(U ), delta(US), and gamma(USS) for both fully implicit and Crank–
Nicolson timestepping. Parameters are provided in Table 1.
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FIG. 3. Butterfly spread solution value (U ) after the first timestep.
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(a) Fully implicit timestepping.
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FIG. 4. Butterfly spread solution gamma (USS ) after the first timestep. Note that the sign of gamma is different
at the strike prices of 90, 100, and 110 where the delta is discontinuous.

in Table 5, Rannacher timestepping reduces the average number of nonlinear iterations per
timestep to approximately the same levels as for implicit timestepping.

It is interesting to observe that difficulties normally arise in nonlinear financial PDEs
when the PDE degenerates to a nonlinear hyperbolic problem. In our case, no degeneracy
occurs. However, the payoff has a discontinuous first derivative, which seems to be enough
to cause difficulty. The use of a few fully implicit steps at the start smooths the solution,
curing the problem.

An obvious approach which avoids having to solve a set of nonlinear algebraic
equations at each step is to evaluate the uncertain volatility explicitly. More precisely,
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TABLE 4 Convergence results for an at-the-money (S = 100) butterfly spread
with uncertain volatility and Rannacher timestepping. Parameters are provided in
Table 1. The timestep is halved at each grid refinement. ‘Difference’ is the absolute
value of the change in the solution as the grid is refined. ‘Ratio’ is the ratio of
successive differences. Timestepping data are given in Table 5

Rannacher (2 steps) Rannacher (4 steps)
Nodes Value Difference Ratio Value Difference Ratio

61 2.298 5785 2.304 0657
121 2.298 0535 0.000 5250 2.299 6153 0.004 4504
241 2.297 7860 0.000 2675 1.96 2.298 1945 0.001 4208 3.13
481 2.297 7116 0.000 0744 3.60 2.297 8172 0.000 3773 3.77
961 2.297 6910 0.000 0206 3.61 2.297 7178 0.000 0994 3.80

TABLE 5 Timestepping information for an at-the-money (S = 100)butterfly
spread with uncertain volatility and Rannacher timestepping. Parameters are
provided in Table 1. ‘No of iterations’ is the total number of nonlinear iterations
used during the solution process. ‘Average no of iterations’ is the number of
iterations divided by the number of timesteps. The number of nodes is doubled
as the timestep sized is halved. The convergence tolerance was 10−6 (3.14).
Convergence data are given in Table 4

Rannacher (2 steps) Rannacher (4 steps)
No of ∆τ No of Average no No of Average no

timesteps iterations of iterations iterations of iterations
25 0.01 59 2.36 59 2.36
50 0.005 116 2.32 118 2.36

100 0.002 5 235 2.35 235 2.35
200 0.001 25 459 2.30 456 2.28
400 0.000 625 847 2.12 847 2.12

(3.13) becomes [
I + (1 − θ)M̂n

]
U n+1 =

[
I − θ M̂n

]
U n . (4.2)

Note that this is equivalent to forcing one nonlinear iteration per timestep. Since[
I + (1 − θ)M̂n

]
is a diagonally dominantM-matrix, algorithm (4.2) withθ = 0 is

a positive coefficient discretization (Jameson, 1995). Consequently, algorithm (4.2) with
θ = 0 is unconditionally stable, but not monotone. As a result, convergence to the viscosity
solution is not guaranteed.

Results using this approach are given in Table 6. Algorithm (4.2) withθ = 0 leads
to linear convergence, and apparently converges to the viscosity solution. Algorithm (4.2)
with θ = 1/2 leads to values away from the correct solution, with perhaps some instability.
Settingθ = 1/2 in algorithm (4.2) and using Rannacher timestepping (with four initial
steps usingθ = 0) leads to linear convergence. The potential for quadratic convergence
is lost by only taking one nonlinear iteration per timestep. However, if high accuracy is
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TABLE 6 Convergence results for an at-the-money (S = 100) butterfly spread with uncertain
volatility, solved by forcing one nonlinear iteration per timestep (as per (4.2)). Parameters are
provided in Table 1. ‘Difference’ is the change in the solution as the grid is refined. ‘Ratio’ is the
ratio of successive differences. The timestep is halved as the grid is refined

Algorithm (4.2) (θ = 0) Algorithm (4.2) (θ= 1/2) Algorithm (4.2) (θ= 1/2)
and Rannacher (4 steps)

Nodes Value Difference Ratio Value Difference Ratio Value Difference Ratio
61 2.423 4699 3.210 0384 2.376 6897

121 2.367 6732 0.055 80 3.259 3402 0.049 30 2.341 9918 0.034 70
241 2.334 7374 0.032 94 1.69 3.312 7764 0.053 44 0.92 2.321 2272 0.020 76 1.67
481 2.316 9350 0.017 80 1.85 3.317 6336 0.004 86 11.0 2.309 9994 0.011 22 1.85
961 2.307 5759 0.009 36 1.90 3.314 1664 -0.003 46 -1.40 2.304 0654 0.005 93 1.89

not required, the simplicity and speed of using fully implicit timestepping with the linear
approximation (explicit evaluation of the volatility) may be advantageous.

4.2 Digital call options

We have seen how a non-smooth payoff condition can cause problems for non-monotone
schemes. This situation will be even more problematic for discontinuous payoffs. A digital
call option has the payoff

U (S, τ = 0) =
{

1 if S � K

0 if S < K .
(4.3)

(Recall thatτ = T − t , so that the payoff is the value of the option at expiryt = T .)
Previous research has shown that when solving PDEs with discontinuous initial conditions,
it is beneficial to smooth the initial conditions (Pooleyet al., 2002). The most theoretically
sound method for doing this is projecting the initial conditions onto the set of basis
functions used to discretize the equations (Wahlbin, 1980). We have used projection onto
the space of linear basis functions in the following digital option tests (note that such a
projection would have no effect on the butterfly payoff above, and strictly speaking, is not
required for implicit timestepping).

The digital option problem is solved on the same set of grids as for the butterfly spread.
At each refinement stage, the number of nodes is doubled and the timestep is halved.
The convergence tolerance for the nonlinear iteration was 10−6 (3.14). The remaining
parameters are given in Table 7.

Results for fully implicit, Crank–Nicolson, and Rannacher timestepping (four implicit
steps) are given in Table 8. Implicit timestepping leads to consistent linear convergence.
The Crank–Nicolson values appear to be unstable, having gone negative and approximately
doubling in magnitude at each refinement. This indicates that the timestep restriction (3.45)
is of practical importance. Using Rannacher timestepping with four implicit steps restores
convergence, but only at a linear rate. Similar observations apply to the average number of
nonlinear iterations per timestep, as shown in Table 9. Both fully implicit and Rannacher
timestepping take an average of just over two nonlinear iterations, while Crank–Nicolson
requires over four iterations on average.
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TABLE 7 Model parameters for
the digital call option test problem

Type: Digital call
Scenario: Worst case long

Time to expiry: 0.25 years
r : 0.1

K : 100
σmax: 0.25
σmin: 0.15

TABLE 8 Convergence results for an at-the-money (S = 100) digital call option with uncertain
volatility. ‘Difference’ is the absolute value of the change in the solution as the grid is refined. ‘Ratio’
is the ratio of successive differences. The timestep is halved at each grid refinement. Timestepping
data are given in Table 9

Fully Implicit Crank–Nicolson Rannacher (4 steps)
Nodes Value Difference Ratio Value Difference Ratio Value Difference Ratio

61 0.443 1338 -0.255 73486 0.443 2821
121 0.442 5493 0.000 5845 -1.299 4648 1.044 0.442 6167 0.000 6654
241 0.442 2251 0.000 3242 1.80 -3.437 9189 2.138 0.488 0.442 2552 0.000 3615 1.84
481 0.442 0542 0.000 1709 1.90 -7.766 4872 4.329 0.494 0.442 0673 0.000 1878 1.92
961 0.441 9641 0.000 0901 1.90 -16.644 796 8.878 0.488 0.441 9698 0.000 0975 1.93

TABLE 9 Timestepping information for an at-the-money (S = 100) digital call option with
uncertain volatility. ‘No of iterations’ is the total number of nonlinear iterations used during the
solution process. ‘Average no of iterations’ is the number of iterations divided by the number of
timesteps. The number of nodes is doubled as the timestep is halved. The convergence tolerance
was 10−6 (3.14). Convergence data are given in Table 8

Fully implicit Crank–Nicolson Rannacher (4 steps)
No of ∆τ No of Average no No of Average no No of Average no

timesteps iterations of iterations iterations of iterations iterations of iterations
25 0.01 55 2.20 105 4.20 55 2.20
50 0.005 110 2.20 212 4.24 109 2.18

100 0.002 5 212 2.12 442 4.42 208 2.08
200 0.001 25 407 2.04 877 4.39 406 2.03
400 0.000 625 805 2.01 1797 4.49 803 2.01

Given the lack of quadratic convergence (even for Rannacher timestepping), one may
think that the simplicity of linearizing the problem as per equation (4.2) is even more
advantageous for digital options. However, as shown by the values in Table 10, this is not
necessarily true. The results for algorithm (4.2) (θ= 0) and algorithm (4.2) (θ= 1/2) with
Rannacher timestepping (first four steps useθ = 0 in (4.2), andθ = 1/2 thereafter) appear
to be convergent, but only at a sub-linear rate. Values for algorithm (4.2) usingθ = 1/2
at all steps are again unstable. Unless very low accuracy is desired, solving the nonlinear
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TABLE 10 Convergence results for an at-the-money (S = 100)digital call option with uncertain
volatility, solved by forcing one nonlinear iteration per timestep (as per (4.2)). Parameters are
provided in Table 7. ‘Difference’ is the absolute value of the change in the solution as the grid is
refined. ‘Ratio’ is the ratio of successive differences. The timestep is halved at each grid refinement

Algorithm (4.2) (θ = 0) Algorithm (4.2) (θ= 1/2) Algorithm (4.2) (θ= 1/2)
and Rannacher (4 steps)

Nodes Value Difference Ratio Value Difference Ratio Value Difference Ratio
61 0.459 603 0.933 258 0.459 550

121 0.456 200 0.003 40 1.374 314 0.441 0.456 176 0.003 37
241 0.452 571 0.003 63 0.94 2.172 795 0.798 0.552 0.452 566 0.003 61 0.93
481 0.449 795 0.002 78 1.31 3.746 378 1.57 0.507 0.449 796 0.002 77 1.30
961 0.447 641 0.002 16 1.29 6.941 466 3.20 0.493 0.447 642 0.002 15 1.29

equations with fully implicit timestepping may be the best choice for digital options with
uncertain volatility.

5. Conclusions

If an implicit method is used to discretize the nonlinear PDE for pricing options with
uncertain volatility, then we are faced with having to solve a set of nonlinear algebraic
equations. Provided that the discretization satisfies certain conditions, we have shown that
a non-smooth Newton iteration scheme is globally convergent, with quadratic convergence
near the solution. For either the fully implicit method or Crank–Nicolson with Rannacher
timestepping, we observed convergence occurring in just over two iterations per timestep,
on average.

Wehave proven that a fully implicit discretization is monotone, and hence converges to
the viscosity solution of the PDE. On the other hand, Crank–Nicolson is only conditionally
monotone. Numerical examples show that Crank–Nicolson can generate incorrect (i.e. not
viscosity) solutions to the PDE, or even unstable results, if a timestep is used which results
in a non-monotone discretization.

Numerical experiments further show that, for Crank–Nicolson timestepping, we can
converge to the viscosity solution if we take a small number (2–4) of fully implicit steps at
the beginning, followed by Crank–Nicolson thereafter. For continuous, but non-smooth
payoffs, numerical experiments indicate convergence at a quadratic rate, which is an
improvement over the linear convergence of a fully implicit method.

Unfortunately, quadratic convergence (using Rannacher timestepping) could not be
achieved for discontinuous payoffs (e.g. digital options). In this case, fully implicit
timestepping should be used, since convergence to the viscosity solution is guaranteed.

Evaluating the nonlinear term explicitly avoids the need to solve nonlinear equations
at each step, but this approach appears to converge at a slower rate than implicit methods.
This method is also not guaranteed to converge to the viscosity solution, although we have
not seen this occur in our numerical tests.
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Appendix. Viscosity solutions

The concept of a viscosity solution is closely related to the entropy condition (E-condition)
of weak solutions to conservation law problems (LeVeque, 1990). First introduced in
Crandall & Lions (1983), a full description of the theory is given in Crandallet al. (1992).
Wegive here a brief overview of the concept of a viscosity solution.

To understand the notion of a viscosity solution, consider the general form of a second-
order parabolic PDE:

∂V

∂t
+ F(x, V, Vx , Vxx ) = 0. (A.1)

Weassume thatF satisfies the ellipticity condition

F(x, V, Vx , Vxx + ε) � F(x, V, Vx , Vxx ) if ε � 0. (A.2)

(Note the sign convention forF as given in (A.1), which is standard in the literature.) This
property is crucial for the definition of the viscosity solution. For discrete equations, the
concept of ellipticity is replaced by monotonicity. This is why a monotone discretization is
required (at least in theory) to guarantee convergence to the viscosity solution.

To motivate the definition, consider functionsv(t, x) ∈ C2 and V (t, x) ∈ C2. Let
(t0, x0) be a local maximum ofV − v. From basic calculus, we know that∂V/∂t =
∂v/∂t, Vx = vx , andvxx � Vxx near(t0, x0). Using these relations and the ellipticity
property (A.2) gives

∂V

∂t
(t0, x0) + F(x0, V (t0, x0), vx (t0, x0), vxx (t0, x0)) � 0. (A.3)

If (A.3) holds for allv ∈ C2, thenV is said to be aviscosity subsolution of (A.1). In a sense,
we have used the functionsv to provide an upper bound to possible solutions. Similarly,
V (t, x) is aviscosity supersolution of (A.1) if ∀v ∈ C2, and if (t0, x0) is a local minimum
point of V − v, then

∂V

∂t
(t0, x0) + F(x0, V (t0, x0), vx (t0, x0), vxx (t0, x0)) � 0. (A.4)
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A viscosity solution of (A.1) is a solution that is both a viscosity subsolution and a
viscosity supersolution. Note that a classical solution to equation (A.1) is also a viscosity
solution (this can be verified by lettingv = V ).

However, we can still use the definitions (A.3)–(A.4) in the case thatV is not smooth,
since we do not require the existence of the first and second derivatives ofV . In this case,
we can define non-smooth solutions to (A.1). This definition essentially sandwiches the
desired non-smooth viscosity solution between smooth solutions that are ‘above the PDE’
or ‘below the PDE’, in the sense of definitions (A.3)–(A.4).

It is shown in Fleming & Sonar (1993) that the viscosity solution of a nonlinear
parabolic option pricing equation is the desirable solution in financial applications. Further,
Barles (1997) proves that a stable, consistent and monotone discretization of option pricing
problems must converge to the desired viscosity solution.

 at Serial R
ecord on M

ay 17, 2016
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/

