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Abstract Conventional cache memories act to bridge the gap in speeds between the pro-
cessor and main memory. However, typical cache hardware takes no account
of the characteristics of specific programs and may incur a performance penalty
because of such an approach. We propose an architecture which gives the com-
piler control of a cache that can be split into protected partitions. In this paper
we discuss how such a device can be used in an object oriented environment to
eliminate cache interference and maximise performance. These features are es-
pecially useful in the field of real-time programming, where cache determinism
is a limiting factor in performance. Additionally, the small size and resulting
low thermal and power profiles of the cache are valuable in embedded devices
such as smart-cards and PDA systems.
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1. Introduction

Many computer architectures rely heavily on the use of cache memory to
enable their processing units to operate at high speed. However, conventional
cache hardware takes no account of the characteristics of specific programs
and may incur a performance penalty by optimising for the average case. Fur-
thermore, the introduction of various hardware devices [23, 11, 22] that seek
to improve overall performance has decreased both the determinism and pre-
dictability of modern cache systems.

Object oriented systems may react badly to these features of cache mem-
ory since their memory access patterns are often atypical when compared to
those used to empirically guide cache design. Although specific architec-
tures [26] have addressed the problem of performance, they may still pay a
penalty through a lack of flexibility and do little to ease the lack of cache de-
terminism and predictability. The resulting situation is that embedded [24] and
real-time [4] object oriented systems may not perform as expecting when using
conventionally designed, modern cache technology.

To address these issues, we propose to replace the conventional cache ar-
chitecture with a partitioned cache [18, 12]. A partitioned cache is a direct-
mapped-like cache that can be dynamically partitioned into protected regions
through the use of specialised cache management instructions. The configu-
ration of the cache and mechanism to determine which partition is used for a
given memory-related instruction is achieved by alteration and addition to the
instruction set architecture [16] (ISA). Unlike conventional caches, the par-
titioned cache is therefore visible to software running on the host processor.
This allows the compiler and operating system (OS) to utilise the cache man-
agement instructions and load/store mechanism and allocate partitions of the
cache to specific data objects and streams of instructions. This in turn offers
control of data and instruction persistence to the compiler or OS and eliminates
interference which may lead to non-deterministic behaviour. This can be done
on a per-application basis thus eliminating the average case optimisation found
in conventional systems.

Figure 1.1. Sequential caches filter memory references.

An interesting way of describing what the partitioned cache is trying to
achieve is to use the concept, proposed by McKee et al. [2%5]ptidal filters
as a metaphor for how caches work. Each level of a conventional cache hierar-
chy acts as a filter that translates an input stream of memory references into an
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Figure 1.2. A partitioned acts to defract the reference stream.

output stream dependent on the properties of the cache at that level. The hope
is to combine the filters so that they remove as many references as possible,
reducing the load on slower parts of the memory hierarchy and maximising
performance. In this context, a partitioned cache actsdefraction lensy
separating the stream of input references into a number of sub-streams. These
sub-streams are passed through partitions in the cache which are configured to
address the specific features of the associated stream of references.

Research with non-object oriented, C style languages [18, 16] shows that
by performing suitable analysis at compile time, the process of partition allo-
cation and management can be automated and produce increased performance
and determinism, often with a decrease in required cache size. This paper
demonstrates how an object oriented language such as Java can benefit from a
similar approach and presents some ideas as to how such an approach may be
realised in future research.

2. Java

Object oriented environments relate well to the methodology employed by
a partitioned cache. Encapsulating instructions and data into classes and pro-
tected objects is mirrored well by the segregation of accesses to those objects
using cache patrtitions. It is therefore a natural step to move our research from
a C style language to an object oriented alternative. Java is a suitable language
to study for a number of reasons:

= Java’s rich class format lends itself well to holding additional semantic
information such as partition identifiers. By holding the partition re-
quirements of each class as fields of that class, a hardware based Java
Virtual Machine (JVM) can manage the configuration of the cache as
objects are created and destroyed or via the class loading mechanism.



m The feasibility of real-time and embedded Java systems is a problem.
The use of a partitioned cache enhances cache determinism and pre-
dictability and reduces cache footprint, resulting in lower power con-
sumption, which will improve the chances of such systems succeeding.

= HotSpot [2] related technologies have already demonstrated that the JVM
lends its self well to adapting the run-time environment to suit applica-
tion behaviour - a technique fundamental to the dynamic management
of a partitioned cache.

» The lack of pointers, and associated pointer arithmetic, in Java eases
some of the data partitioning problems introduced by object aliasing [29].
With no such aliasing problems, any reference to an object will always
use the partitioning information held by that object and not via a ref-
erence to the object. This removes the problem of inconsistencies in a
view of the data.

Although we have concentrated on a JVM style environment, many of the ideas
apply equally as well to situations where code may be altered by for example
just-in-time (JIT) compilation. This sort of native code will exhibit similar
memory access patterns as interpreted code any will benefit in similar ways
from the segregation imposed by cache partitioning.

3. Data Cache Partitioning

Previous work [18, 16] has demonstrated techniques for dealing with scalar
and vector data, as well as accesses to the stack, in such a way that interference
between objects is eliminated and performance is maximised. We expect many
of the same ideas to be applicable to an object oriented environment. Several
possibilities exist for harnessing the flexibility of a partitioned cache to store
data objects:

m Ultilise current segregation strategies [21] to allocate data objects to cache
partitions based on their reference behaviour and usage lifetime.

= With the average object typically being around 10 words in size, and
there being more small objects than large ones, it may prove worthwhile
partitioning the cache on a per-object basis. This would ensure that no
object could ever interfere with any other. Another approach would be
to partition accesses based on the class of the object. This would re-
sult in less of an impact on cache resources at the cost of an increase in
interference. Itis important to note that both these strategies are comple-
mentary to other data placement [5] optimisations and object grouping
techniques at other levels of the memory hierarchy [27].
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= For environments in which generational garbage collection is employed,
it would be feasible to partition the cache according to the number of
generations [9] and steps within each generation as well as the allocation
space for large objects. This effectively produces a configurable degree
of associativity which has been shown [28, 31] to be effective in re-
ducing conflicts between different generations of objects. Furthermore,
this method of partition allocation is complementary to other optimisa-
tions [6] that deal with cache consciousness.

Other uses of cache partitions, provided that the analysis is possible, include
eliminating heap usage for transient objects by allocating them in cache par-
titions. Current compilers use registers for temporary values but can not fit
larger objects into this type of fast storage and thus revert to storing them in
main memory. By moving the storage of transient objects one level up the
memory hierarchy into the cache, we can potentially reduce cache pollution
introduced by these objects and significantly decrease the number of accesses
to heap memory. In turn, this would speed the process of garbage collection by
culling a great deal of objects from the search space. By eliminating the need
to allocate backing memory for the transient cache partition, we also reduce
need for costly cache flushes to main memory. The drawbacks of this tech-
nique are the requirement for complex cache management systems that could
impact on cache performance. Specifically, with partitions being allocated and
reused quickly, the problem of fragmentation, which is not considered here,
needs to be dealt with in a cost effective manner.

To illustrate how the more simple of these schemes might work, consider the
implementation of thelaxpykernel, from the Linpack [7] benchmark suite,
shown in Figure 1.3. The diagram in Figure 1.4a shows how the cache may
look having been partitioned on a per-object basis by the partitioning informa-
tion from the data objects in theaxpykernel. The access to objects through
correct partitions could be achieved by arranging for the memory management
mechanism to honour the partition identifiers of each object. We can see that
partitions have been allocated fergs, dz anddy which will act to prevent
interference between the objects. Prefetching can be performed for each ob-
ject safe in the knowledge that prefetched data has a high probability of being
used before eviction. The partitions can be sized according to the persistence
requirements of each object. In this case, we are simply streaming through the
arraysdx anddy and so single line partitions would suffice. Partitions have
also been allocated for scalar objeatsi andda which can be packed into a
partition sized to hold them all. Finally, a dedicated stack partition has been al-
located so that intermediate calculations which use the stack will not interfere
with other data objects.

Figure 1.4b shows how the cache may look having been partitioned for data
objects using a per-class strategy. In this case, the class loading mechanism
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public class daxpy

{

public static void main( String[] args )

{
double[] dx = new double[ 64 ];
double[] dy = new double[ 64 ];
int n = 64;
double da = 0.6;
daxpy( dx, dy, da, n );

}

public static void daxpy( double[] dx, double[] dy, double da, int n )
{

for(int i = 0; i < n; i++ )
{

dy[ i ] +=da * dx[ i ];
}

}
}

Figure 1.3. An example implementation of trdaxpykernel.
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Figure 1.4. Per-object and per-class partitioning ftaxpy

is altered to configure the cache according to the partitioning information in-
serted into each class by the compiler analysis phases. We can see that the
dz anddy will be accessed through the same partition because they are of the
same type. Although thimayre-introduce interference between the objects
as described above, we have reduced the resource requirements even for this
small program. As program size and complexity increases the number of ob-
jects will also increase but this per-class strategy will still manage to cull the
large number of partitions required by per-object partitioning.

It is intuitively clear that neither of these techniques alone will yield re-
sults which compare favourably with those from compiler directed techniques.
Knowledge about the usage patterns of the objects and classes, which can only
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be extracted from the application source code, will always be an advantage in
the allocation of cache partitions. In conclusion, it would appear that a com-
bination of partitioning techniques would be suitable to cache data objects.
It is easy to envisage a system whereby large objects are allocated their own
partitions, smaller objects are partitioned on a generational basis and stack ac-
cesses are routed through another partition. The flexibility of the partitioned
cache allows this level of segregation that, provided suitable compiler analysis
is conducted on the types of usage for each object, will result in more pre-
dictable cache behaviour, better cache utilisation and potentially higher perfor-
mance. However, a compromise in the overhead, in terms of processor cycles,
introduced by complex cache management verses performance gains must be
reached for such a scheme to be feasible.

4. Instruction Cache Partitioning

In general, instructions that are not resident in the cache of a Java processor
will result in a performance penalty by forcing an access to main memory. In
an object oriented environment, the large number of classes and methods can
reduce the locality of instruction references and introduce interference that in
turn may defeat conventional caching strategies. Multi-threading may be used
to hide this latency to some extent but can act to further pollute the instruction
cache by introducing inter-thread interference.

Java classes, especially those influenced by the JavaBean style of program-
ming, tend to be made up of small methods. Studies [15] demonstrate that
there are on average six methods in each class and that a class is made up from
an average of thirty bytecodes. With this in mind it would be easy to place
the bytecodes in memory without consideration for the impact on cache per-
formance. For example, with a large number of classes resident in memory,
the class loading mechanism may place the bytecodes for different methods so
that they map to the same space in the cache. With method calls within Java
being measured as often as every four bytecodes, it is easy to envisage a sit-
uation where methods are constantly evicting each other, effectively thrashing
the cache.

Techniques already exist to reorganise a process image [8, 19] in order to
improve the performance of an instruction cache. However, these methods are
reliant on profiling and are constrained in that they need to consider the whole
application at once. In a dynamic environment such as that provided by Java,
new and potentially unseen code can be loaded and linked at run-time which
would render this system less effective.

We propose to use the partitioned cache to access the bytecode instruction
streams for different classes and, in some cases, methods, through separate par-
titions. By introducing separation of the overall instruction stream, we can en-
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Figure 1.5. Trace translation and execution tools.

sure that inter-class and inter-method interference is eliminated in cases where
it would be most costly. Studies have shown that average size of a Java class is
roughly 3000 bytes. For classes smaller than this, it would be feasible to allo-
cate a partition to each class sized to accommodate the whole class. For other
classes, it would be more productive to identify individual methods as being
suitable for their own partitions so as to limit the overall cache resources used.
As an alternative to both strategies, it is also possible to allow the programmer
to mark critical, or real-time, sections of source code so that the compiler can
more easily infer the correct partitioning strategy.

5. Results

In order to obtain some idea as to the effectiveness of these techniques,
we constructed tool, shown in Figure 1.5, which reverse engineer a stream of
partitioned memaory references from a trace generated by the Tracing JVM [30]
(TIVM).

The first stage of processing is to filter the trace so that only events relevant
to the program under investigation remain. For example, it may be valuable to
exclude the events generated by the boot sequence of the TIVM so that only the
application or kernel under investigation is considered. By excluding events of
this type, we are effectively assuming that the JVMviarmed upbefore the
application starts and that no other background operations are required.

After filtering has been conducted, the translator passes over the trace to
extract all the object, class and stack information. This information is used to
guide the creation of partitions, to deal with accesses to data objects and the
stack, and to create a memory map of the objects in use. Objects are assigned
addresses in virtual memory in the order that they are created, without regard
for garbage collection, with the stack starting after the last object. With the
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partitioning and layout information in place, a second pass of the trace trans-
lates relevant trace events into memory accesses to the virtual memory. At this
point, the translator also injects instructions required to manage the cache so
it is suitably configured for the memory access trace. The resulting stream of
cache access and management instructions is then fed to our existing mem-
ory hierarchy simulation tools to measure the effectiveness of the partitioning
strategies under investigation.

Although this technique is far from ideal, it allows us to demonstrate the ef-
fectiveness of the idea without the need for the implementation of a partitioned
cache aware Java compiler and run-time environment. The development of
such a system was beyond the scope of our project in terms of the time and
resources required. Not using a more complete system will inevitably yield
worse results than the compiler-directed equivalent discussed elsewhere but we
were able to produce interesting results even when constrained by two major
caveats:

= We ignore events generated by accesses to the stack which can be effec-
tively and easily cached using a small buffer [3] or private cache parti-
tion. The absence of these events allows a clearer picture of the other
activities under investigation.

= The tools are currently only able to analyse the requirements for caching
data objects due to a lack of support for bytecode related events in the
TJIVM. All results therefore relate only to the caching of data objects in
the benchmarks under investigation.

By using the discussed partitioning system, tlexpy kernel shown in Fig-
ure 1.3 performs better on a partitioned cache than similar sized conventional
caches. When a per-object partitioning strategy is employed, we create five
small partitions totalling eight cache lines. This partitioning results in halving
the number of cache misses, as shown in Figure 1.6, when compared to similar
sized direct-mapped caches. Only when the direct-mapped cache is allowed
enough space to contain the working set does it attain equivalent performance.
Obviously daxpyis a trivial example and bears little relation to real world
situations. To more rigorously test the effectiveness of a partitioned cache
under more varied partitioning schemes, we employed the trace translation
system on a number of more substantial sequential benchmark programs. We
re-programmed simple multi-media algorithms from our own benchmarks in
Java and added other, more numerically oriented codes from the Linpack [7],
SciMark [20] and Java Grande [14] suites. These benchmarks provide a good
mix of non-object oriented programming written in an object oriented language
and true object oriented applications which reflect the diverse way in which
Java is used.
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Figure 1.6. Cache performance during execution of taxpykernel.

In addition to this we examined the Richards kernel, a reasonably sized
benchmark program which simulates the task dispatcher in the kernel of an op-
erating system. The fact that it simulates a real-world, performance sensitive
problem makes it an interesting example to test with our partitioning mecha-
nisms. Two different translations of the kernel, from Jonathan Gibbons and L.
Peter Deutsch, are used. The Gibbons translation utilises less object-oriented
features of the Java language than the Deutsch version which has been shown
to produce noticeably different performance profiles.

5.1 Single-threaded Benchmarks

The first stage of testing treats each benchmark as the only thread running
on the JVM. This effectively rules out inter-thread interference and instead
measures the levels of intra-thread or self interference. Comparisons between
results for a partitioned cache, after performing per-object and per-class par-
titioning, and conventional set-associative caches are shown in Figures 1.7
and 1.8. These graphs show the number of cache misses that occur during
the run-time of the benchmark against the size of the cache.

These benchmarks reveal a number of trends that run throughout the results.
The major point of note is that the partitioned caches rarely perform better than
similar sized conventional caches due to several factors :

m Allocating even small partitions on a per-object basis is costly, in terms
of the resources required, without some sort of partition reuse strategy.
This is most strongly highlighted in the Richards benchmarks where
the number of objects and patrtitions is very high even though the par-
tition allocated to one object can often be reused by another with a non-
overlapping lifespan. This technique is not available to us using the cur-
rent tool-chain and the partitioned caches are therefore often much larger
than they need to be. In addition to this, partitions allocated for objects
often have some slack space as a result of the requirement that parti-
tions be a power-of-two in size. With the average size of a Java object at
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Figure 1.7. Per-object and per-class partitioning compared to conventional caches for a vari-
ety of single-threaded benchmarks (1).

around 10 words, this can result in a large amount of redundant space,
in relation to the used space, when considering the entire benchmark.

Using a per-class strategy for partition allocation is effective in reduc-
ing the resources used by each benchmark but suffers from poor perfor-
mance. Furthermore, per-class partitioning re-introduces much of the
unpredictability of conventional cache systems by allowing objects to
interfere with each other depending on their class.

The lack of compiler directed, source language analysis results in an
absence of a number of partitioning features that would otherwise help
to improve performance. Two of these features are the ability to cor-
rectly configure the stride parameter of a partition, hence increasing the
amount of useful data in the partition, and the ability to assign more than
one partition per data object. Both of these features require that anal-
ysis is performed on the source language to specialise the cache to the
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Figure 1.8. Per-object and per-class partitioning compared to conventional caches for a vari-
ety of single-threaded benchmarks (2).

application requirements. The lack of the ability in our trace driven par-
titioning system underlines the value of such analysis in improving the
overall performance of a partitioned cache.

m The small cache size required to hold the working data set of some
benchmarks is an example of optimisation for the average case. In, for
example, the Richards benchmarks, a conventional cache of only 256
lines in size is enough to attain near optimal performance. However,
modern processors regularly contain caches which are many times this
size, wasting resources that may be better spent elsewhere.

One interesting feature of the results from the Richards benchmarks are that the
more object-oriented version, the Deutsch benchmark, performs significantly
better when a per-object partitioning strategy is used than the Gibbons bench-
mark which makes less use of object-oriented design. Additionally, the con-
ventional set-associative caches perform worse on the object-oriented Deutsch
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benchmark than the Gibbons version. This is perhaps a hint at the amount of
inter-object interference that exists in the benchmark and how using a parti-
tioning strategy can help to prevent it.

5.1.1 Partition Reuse. To demonstrate the advantage that reusing
partitions can offer, we constructed an experiment where the partitioning was
implemented by hand. We chose the Linpack [7] benchmark in which a large
number of array objects are created and used. By examining the source code
for the benchmark in the same way a compiler might, we were easily able to
deduce that the vast proportion of the arrays did not overlap in terms of lifes-
pan and could therefore share partitions. This kind of operation may also be
performed in conjunction with garbage collection whereby the partition for an
object that has been collected may be reused by subsequently allocated objects.

It is interesting to note that the graphs of performance in Figures 1.7 and 1.8,
show it is generally much harder to improve the partitioned cache by sav-
ing size than it is improving performance. The size of the partitioned cache
needs to reduced by many times, moving the performance point to the left on
the graph, in order to gain an advantage over the conventional caches while
improving performance, moving the point down on the graph, quickly yields
better comparisons. However, reducing the total cache size used is easier in
our system than improving performance. This is because better understanding
of the application reference behaviour needed to improve performance is not
possible due to the lack of compiler based source code analysis.

By implementing a suitable partition configurations in the benchmark trace,
we produced the results in Figure 1.9 which show a comparison between the
cache performance with and without partition reuse. When partition reuse is
introduced, it has no effect on the performance of the cache. This is expected
as the shared partitions are used in a mutually exclusive manner by the array
accesses and hence produce the same number of misses as if they were housed
in different partitions. However, the reuse strategy reduces the number of par-
titions used from 209 to 10 and the number of lines used from 523 to 29. This
represents a massive saving in resources and results in the partitioned cache
comparing more favourably to similar sized conventional caches.

By considering the fact that the same scheme could be applied to all the
benchmarks in our original experiments with differing degrees of resource
saving, the originally disappointing results start to look more encouraging. It
should also be noted that partition reuse does not affect the predictability of
the cache in any way and that it could easily be implemented in a Java based
environment by a combination of the compiler and elements of the virtual ma-
chine.



14

1e+07
1e+06
100000
10000
1000

1 Way Set Associative Cache
100 2 Way Set Associative Cache ---------
4 Way Set Associative Cache -
10 Per-object Partitioned Cache Without Reuse ~ +

Number of Misses

. ) ‘PET-OPJECI E’anmpned ‘Cache‘Wlth‘Reuse‘ x ,
1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Cache Size

Figure 1.9. A comparison of how partition reuse effects cache performance.

5.1.2 Determinism and Predictability. It is important to
remember that performance is not the only factor that needs to be considered.
While the performance of the partitioned cache may not have seen great ben-
efits when compared to conventional caches, the increased determinism of the
cache is undeniable.

The performance of the conventional caches is a product of the layout of
objects in memory and the configuration of the cache. The scheme used to
layout objects in memory is simplistic and produces the same layout each time
it is used on the same TJVM trace but this is not always the case in real life
situations. The address at which each object is placed by the layout mechanism
in areal JVM is affected by a number of factors such as the heap location in real
memory and the operation of the garbage collector. If each time the application
is run the objects are placed at a different addresses, it could be the case that a
conventional cache will have a different and unpredictable performance profile.
Because of the segregation imposed by the partitioned cache, the movement of
objects in memory between runs does not affect the cache in the same way.

We were able to prove this fact by altering the way objects are allocated on
the heap between benchmarking runs of the MPEG player. Figure 1.10 shows
the results of calculating the standard deviation of the set of allocations for a
variety of cache types thus hinting at how the performance of the benchmark
set varies on each cache. These results show that while the partitioned cache
performs slightly worse in most cases than conventional caches, it is far more
deterministic over changes of the allocation strategy while the variation in con-
ventional caches is significantly larger. This difference is a direct result of the
protection from interference offered by the partitioned cache. With no inter-
ference, the movement in memory of an object can never influence the cache
space allocated to another object so changing the allocation strategy has no
impact on the performance of each partition.

By considering the fact that the object allocation strategy can have dramatic
effects on the performance of conventional caches, the results from our original
experiments should be more encouraging. In all cases of allocation strategy,
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Figure 1.10. MPEG Video Player performance variation, measured using standard deviation,
as a result of differing object allocation.

the partitioned caches will perform the same way, their deviation being zero in
all cases and hence not visible on the graphs. In situations such as real-time
environments this is as valuable a property as average case performance.

5.2 Multi-threaded Benchmarks

To complement the experiments from Section 5.1 in which each benchmark
was treated as the only running thread, we devised some tests in which com-
binations of benchmarks are run at the same time to create composite, multi-
threaded benchmarks.

Each thread in a multi-threaded benchmark is one of either Fast Fourier
Transform, Jacobi Successive Over-Relaxation, Sparse Matrix Multiply or Dense
LU Matrix Factorization which are taken from the SciMark [20] benchmark
suite and have comparable run-times. These kernels are added, in round-robin
order, to produce successively more multi-threaded situations which are al-
lowed to run under the normal thread-scheduling system present in the host
JVM. The context switching between threads acts to introduce inter-thread in-
terference into the cache access profile for each benchmark.

By looking at the performance graphs of per-object partitioned caches against
conventional set-associative caches shown in Figure 1.11, we can see that the
impact of running the benchmarks in a multi-threaded style is minimal. Most
obviously, there isn’t the dramatic decrease in performance we found from pre-
vious work [17]. This is due to two reasons. Firstly, it is clear by looking at
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Figure 1.11. Per-object partitioning compared to conventional caches for a variety of course-
grain multi-threaded benchmarks.

the traces that Java thread scheduling mechanism doesn'’t create enough fine-
grained parallelism to create the types of interference seen previously. More
specifically, the time quantum for each thread is long enough so the cost of re-
populating the cache with useful data on a context switch is small compared to
the cost of long spells of cache use from a given thread. Secondly, because of
the simplistic object allocation mechanism used in this example, it is possible
that the objects are aligned in the cache in a manner which prevents them inter-
fering with each other as much as could be possible. This is the same situation
as was demonstrated with single-threaded benchmarks in the previous section.

5.2.1 Scheduling Strategy. To better simulate a more fine-
grained form of thread switching, such as that found in picoJava [1] based
hardware thread systems, we performed a further phase of translation to each
benchmark trace. This phase of translation takes instructions from all threads
and produces a resultant trace in which the threads are switched between far
more often than in a software based threading system. The resultant trace more
closely mimics the kinds of behaviour of a multi-threaded architecture [13] as
it uses hardware based thread contexts to mask memory access latency. The
results from these fine-grained versions of the multi-threaded benchmarks are
shown in Figure 1.12.

Although the performance of conventional caches is slightly decreased by
the introduction of a fine-grained scheduling strategy, the performance of the
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Figure 1.12. Per-object partitioning compared to conventional caches for a variety of fine-
grain multi-threaded benchmarks.

partitioned cache remains the same. The amount of impact that changing the
scheduling strategy has on the performance of the set-associative caches is dis-
appointingly small, it further underlines the value of the determinism demon-
strated by the partitioned cache.

6. Conclusions

In this paper we have worked at performing object-oriented cache patrtition-
ing without the use of compiler based source code analysis. This has forced
the investigation of not only aspects of object-oriented programs but how a run-
time system can implement some level of cache partitioning without compiler
support. In this respect it is closely related to work on adaptive caches [10].

The results of this work have been underwhelming and highlight the need
for, and value of, good compiler based analysis to guide the configuration of a
partitioned cache. It is imperative to note that many of the problems in the re-
sults from Sections 5.1 and 5.2 are as a direct result of the lack of this compiler
analysis which doesn't allows us to realise the improvements in performance
which might be intuitively expected. Furthermore, the lack of any source code
analysis forces us to accept a compromise between a cache configuration spe-
cialised to the application and a configuration for the average case application
we were trying to avoid. Additional penalties to our results arise from the ef-
fects of class-loading and other background activities which, without further
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development of the TIVM and our own tools, act to cloud the understanding
of the benchmarks under investigation.

However, the results from experimentation in this differing environment
have yielded some positive ideas. Firstly, it is clear that the concepts of an
object-based memory hierarchy and a partitioned cache fit very well together.
The scope for further work to exploit this relationship is considerable and we
expect the results to be encouraging. Secondly, the results which compare two
differing implementations of the Richards kernel hint that there is some per-
formance advantage in using a partitioned cache on object-oriented programs.
Conventional caches perform worse in this sort of environment than when us-
ing the non-object-oriented application which is sure to impact more signifi-
cantly as program size and complexity increases. Both these results, coupled
with the improved determinism and predictability qualities of the cache, mean
that real-time and embedded Java products can be more easily realised. Specif-
ically, by using suitable compiler based tools designers can know at compile
time what the cache requirements of their application is and be sure that the
performance of the cache will not be influenced by other software running on
the same processor.

In terms of the partitioned strategy used, it is clear that there must be some
compromise between the per-object, full object protection style and the per-
class, resource use minimisation style. While using more complex benchmark
applications, such as SpecJVM98, may be able to suggest a suitable technique,
the idea of a garbage collector generation [28, 31] partitioning is attractive.
This system would tightly couple the memaory hierarchy into a cohesive entity
capable of performing the kind of transient object allocation discussed in Sec-
tion 3 and reaping massive rewards from doing so. The implementation of this
kind of multi-layered partitioning approach is the subject of current research
which we expect to yield very positive results.

References

[1] picoJava Il Processor Core Description. Technical Report 805-4634-01,
Sun Microsystems, April 1999.

[2] The Java Hotspot Performance Engine Architecture. Technical report,
Javasoft, April 1999.

[3] C. Bailey. Optimisation Techniques for Stack-Based Process&kD
thesis, Department of Electrical and Electronic Engineering, University
of Teesside, July 1996.

[4] Gregory Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve
Furr, and Mark TurnbullThe Real-Time Specification for Javaddison-
Wesley, January 2000.



REFERENCES 19

[5] B. Calder, C. Krintz, S. John, and T. Austin. Cache-Conscious Data
Placement. Ii8th International Conference on Architectural Support for
Programming Languages and Operating Systedttober 1998.

[6] T.M. Chilimbi and J.R. Larus. Using Generational Garbage Collection To
Implement Cache-Conscious Data Placemeninternation Symposium
on Memory ManagemenDctober 1998.

[7] J.J. Dongarra. Performance of Various Computers Using Standard Lin-
ear Equation Software. Technical Report CS-89-85, Department of Com-
puter Science, University of Tennessee, June 2000.

[8] N. Gloy, T. Blockwell, M.D. Smith, and B. Calder. Procedure Placement
Using Temporal Ordering Information. BOth International Symposium
on Microarchitecture December 1997.

[9] E.G. Hallnor and S.K. Reinhardt. A Fully Associative Software-Managed
Cache Design. 127th International Symposium on Computer Architec-
ture, June 2000.

[10] T.L.Johnson and W.W. Hwu. Run-time Adaptive Cache Heirarchy Man-
agement via Reference Analysis. 2dth International Symposium on
Computer Architecturgpages 315—-326, June 1997.

[11] N.P.Jouppi. Improving Direct-Mapped Cache Performance by the Addi-
tion of a Small Fully-Associative Cache and Prefetch BufferlTth In-
ternational Symposium on Computer Architecfyrages 364—-373, June
1990.

[12] T.Juan, D. Royo, and J.J. Navarro. Dynamic Cache Splittidgh Inter-
national Conference of the Chilean Computational So¢citd@5.

[13] J.S. Kowalik. Parallel MIMD Computation: The HEP Supercomputer
and its ApplicationsMIT Press, 1985.

[14] J.A. Mathew, P.D. Coddington, and K.A. Hawick. Analysis and Develop-
ment of Java Grande Benchmarks.RArocedings of the ACM 1999 Java
Grande Conferengelune 1999.

[15] Markus Mohnen. Private communications regarding results of the JOPT
Java optimisation project.

[16] D. Page.Effective Use of Partitioned Cache Memori¢2hD thesis, De-
partment of Computer Science, University of Bristol, 2001.

[17] D. Page, J. Irwin, H.L. Muller, and D. May. Effective Caching for Mul-
tithreaded Processors. [Dommunicating Process Architectures 2000
pages 145-154. 10S Press, September 2000.

[18] D. Page, D. May, J. Irwin, and H.L. Muller. Microcaches. @th In-

ternational Conference On High Performance Computjpages 21-27.
Springer-Verlag, December 1999.



20

[19] K. Pettis and R.C. Hansen. Profile Guided Code PositioningAGiv
SIGPLAN Conference on Programming Language Design and Implemen-
tation, June 1990.

[20] R. Pozo and B. Miller. SciMark 2.0.http://math.nist.gov/
scimark2/

[21] M.L. Seidl and B.G. Zorn. Segregating Heap Objects by Reference Be-
haviour and Lifetime. Ir8th International Conference on Architectural
Support for Programming Languages and Operating Systé&utober
1998.

[22] A. Seznec and F. Bodin. Skewed-Associative Cache®atallel Archi-
tectures and Languages Eurgpeages 305-316. Springer Verlag, July
1993.

[23] A.J. Smith. A Comparative Study of Set Associative Memory Mapping
Algorithms and Their Use for Cache and Main MemadfyEE Transac-
tions on Software Engineerinylarch 1978.

[24] Sun Microsystems.  Technical Overview of EmbeddedJava Tech-
nology. http://java.sun.com/products/embeddedjava/
overview.html , August 2000.

[25] D.A.B. Weikle, S.A. McKee, and W.A. Wulf. Caches As Filters: A New
Approach to Cache Analysi$th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
1998.

[26] I. Williams and M. Wolczko. An Object-Based Memory Architecture. In
4th International Workshop on Persistent Object Systdr@g1.

[27] I. Williams, M. Wolczko, and T. Hopkins. Dynamic Grouping in an Ob-
ject Oriented Virtual Memory Heirarchy. |Buropean Conference on
Object-Oriented Programmingpages 79-88. Springer-Verlag, 1987.

[28] P.R. Wilson, M.S. Lam, and T.G. Moher. Caching Considerations for
Generational Garbage Collection. ACM Conference on Lisp and Func-
tional Programming pages 32—42, June 1992.

[29] R.P. Wilson. Efficient Context-Sensitive Pointer Analysis For C Pro-

grams PhD thesis, Computer Systems Laboratory, Stanford University,
1997.

[30] M. Wolczko. Using a Tracing Java Virtual Machine to Gather Data on
the Behaviour of Java Programs. Technical report, Sun Microsystems,
March 1999.

[31] B. Zorn. The Effect of Garbage Collection on Cache Performance. Tech-
nical Report CU-CS-528-91, University of Colorado, May 1991.



