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Abstract

The presented work is motivated by the problem of restoring severely degraded historic
video material via an optical flow-based interpolation. In order to increase the robustness
as well as the accuracy of discontinuity preserving variational optical flow models, we
propose two extensions. First, we will discuss the deficiencies of an isotropic Total
Variation regularization and introduce an anisotropic (i.e. image-driven) regularization
based on the robust Huber norm. Second, to cope with the gross outliers contained
in historic video material, we propose a novel spatio-temporal regularization approach.
Instead of assuming gradual flow changes over time, we impose a symmetry constraint
with respect to a central frame. The benefit of the suggested enhancements is illustrated
qualitatively on historic video material and quantitatively on the Middlebury optical flow
benchmark.

1 Introduction
The estimation of the optical flow between two images, usually taken in close temporal
succession, is one of the key problems in low-level vision. Ignited by the two seminal works
of Lucas & Kanade [9] and Horn & Schunck [7], a diverse range of optical flow estimation
techniques have been developed and we refer to the surveys [3, 6, 18] for a detailed review
of the vast amount of related literature.

In order to compare the accuracy of these flow estimation techniques and, even more im-
portantly, to illustrate where they still fail, challenging benchmark sequences with a reliable
ground truth are required. The so-called Middlebury dataset [2] is the most recent effort in
this direction and we will use these sequences throughout this work. On the corresponding
evaluation site at http://vision.middlebury.edu/flow/, discontinuity preserv-
ing variational models based on Total Variation (TV) regularization and L1 data terms are
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(a) Isotropic TV-L1 (b) Anisotropic Huber-L1 (c) Isotropic TV-L1 (d) Anisotropic Huber-L1

Figure 1: Comparison of isotropic and anisotropic Huber regularization on (a), (b) the
Dumptruck and (c), (d) the RubberWhale sequence (AAE = 4.06◦ → 2.93◦, AEPE =
0.13→ 0.09). Please note the hole in the semicircle-shaped element and the more distinct
lattice-edges in the anisotropic case

among the most accurate flow estimation techniques, but there is still room for improvement.
While Papenberg et al. [11] mainly focused on improving the data conservation constraints,
we will take a closer look at the deficiencies of isotropic TV regularization and propose an
improved regularizer in Section 2.

Total Variation regularization is an L1 penalization of the flow gradient magnitudes, and
due to the tendency of the L1 norm to favor sparse solutions (i.e. lots of ‘zeros’), the fill-in
effect caused by the regularizer leads to piecewise constant solutions in weakly textured ar-
eas. This effect, known as ‘staircasing’ in a 1D setting, can be reduced significantly by using
a quadratic penalization for small gradient magnitudes while sticking to linear penalization
for larger magnitudes to maintain the discontinuity preserving properties known from TV.
Huber [8] proposed such a function as an alternative to quadratic penalization in the field
of robust statistics, and Shulman and Hervé were the first to apply it in the context of flow
estimation [15].

Based on the two observations that motion discontinuities often occur along object bound-
aries and that in turn object boundaries often coincide with large image gradients, Nagel and
Enkelmann [10] proposed to adapt the regularization to the local image structure. Even for
the quadratic regularizers used at that time, their anisotropic (image-driven) regularization
decreased the well-known oversmoothing effects of the Horn & Schunck model [7] by im-
peding smoothing across image edges. Therefore, we propose to replace the isotropic TV
regularization, e.g. used in [11, 19], with an anisotropic (image-driven) Huber regularization
term.

A second contribution of this paper is motivated by an application: the restoration of his-
toric video material via flow-based video interpolation. To cope with the gross outliers con-
tained in the historic video material (cf . Figs. 4 and 5), we propose a novel spatio-temporal
regularization approach in Section 3 and compare it against the well-known spatio-temporal
regularization proposed in [17]. After a short discussion of implementation details in Sec-
tion 4 and an evaluation of the presented models on the Middlebury dataset in Section 5, we
conclude with a few final remarks in Section 6.

To facilitate further development and to simplify comparisons to alternative flow estima-
tion methods, the Matlab source of the presented flow estimation algorithm can be down-
loaded from http://www.gpu4vision.org. In addition, we offer a GPU-based high-
performance implementation in binary form to encourage the use of state-of-the-art flow
estimation techniques in higher-level vision applications.
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2 Anisotropic Huber-L1 Optical Flow
To make this paper self-contained, we briefly discuss the starting point for our extensions
– a disparity preserving, spatially continuous formulation of the optical flow problem based
on an L1 data term and isotropic TV regularization [11, 19]. For two input images I0 and I1
defined on a rectangular domain Ω ∈ IR2, the model can be stated as

min
~u

{∫
Ω

2∑
d=1

|∇ud |+λ |I1 (~x+~u(x))− I0 (~x)| d~x
}

, (1)

where ~u(~x) = (u1(~x),u2(~x))T, ud : Ω→ IR and the free parameter λ is used to balance the
relative weight of data and regularization term. In contrast to [11], we linearize the data term,
which yields a convex optimization problem

min
~u

{∫
Ω

2∑
d=1

|∇ud |+λ |ρ(~u(~x))| d~x
}

, (2)

where ρ(~u(~x)) =~u(~x)T∇I1(~x)+ I1(~x)− I0(~x) is the well-known optical flow constraint equa-
tion. In order to accommodate large displacements, this linearized model has to be embedded
in a coarse-to-fine/warping scheme [6]. Nevertheless, to streamline the presentation we will
only consider the linearized model from now on.

The functional (2) is hard to minimize in this setting, so to simplify the optimization
procedure we introduce an auxiliary variable~v and a coupling term to ensure that~v is a close
approximation of ~u

min
~u,~v

{∫
Ω

2∑
d=1

[
|∇ud |+

1
2θ

(ud− vd)
2
]

+λ |ρ(~v(~x))| d~x
}

, (3)

where θ is a small positive constant [1].
To introduce the anisotropic Huber regularization, we start with a simple manipulation

of a discontinuity preserving, image-driven regularization term∫
Ω

2∑
d=1

Ψε

{
(∇ud)TD∇ud

}
d~x =

∫
Ω

2∑
d=1

Ψε

{(
D1/2

∇ud

)T(
D1/2

∇ud

)}
d~x , (4)

where D is a symmetric, positive definite diffusion tensor and Ψε(s2) a (robust) penalty func-
tion. Replacing the isotropic TV regularization in (3) with such an image-driven regularizer
leads to

min
~u,~v

{∫
Ω

2∑
d=1

[
|~qd |ε +

1
2θ

(ud− vd)
2
]

+λ |ρ(~v(~x))| d~x

}
, with (5)

|~qd |ε =

{
|~qd |2

2ε
|~qd | ≤ ε

|~qd |− ε

2 else
, (6)

where ~qd = D1/2∇ud for brevity. A reasonable choice for the diffusion tensor is D1/2 =
exp
(
−α |∇I|β

)
~n~nT +~n⊥~n⊥T, where~n = ∇I

|∇I| , and~n⊥ denotes a vector normal to~n.
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Chambolle proposed a projected gradient descent algorithm to minimize the ROF model,
which is based on a dual formulation of the TV [5]. In order to obtain a similar algorithm to
minimize (5), we need the Legendre-Fenchel (LF) dual [13] of the anisotropic Huber norm
fH (~qd) = |~qd |ε , which is given as

f ∗H (~pd) = sup
~qd

{
~qd ·~pd− fH (~qd)

}
= I{|~pd |≤1}+ ε

|~pd |2

2
, (7)

where ∗ denotes the LF transform, ~p is the dual variable, and the so-called indicator function
IΣ(~x) is 0 if ~x ∈ Σ and ∞ otherwise. The biconjugate of fH can be obtained by applying the
LF transform to the conjugate f ∗H (~pd):

f ∗∗H (~qd) = sup
~pd

{
~pd ·~qd− f ∗H (~pd)

}
= sup
|~pd |≤1

{
~pd ·~qd− ε

|~pd |2

2

}
. (8)

The LF transform is self-inversive due to fH (~qd) being convex and lower semi-continuous in
~qd . Therefore, the biconjugate is equivalent to the initial anisotropic Huber norm f ∗∗H (~qd) =
fH (~qd). Incorporating this equality in (5) yields

min
~u,~v

sup
|~pd |≤1

{∫
Ω

2∑
d=1

[(
D1/2

∇ud

)
·~pd− ε

|~pd |2

2
+

1
2θ

(ud− vd)
2

]
+λ |ρ(~v(~x))| d~x

}
. (9)

This convex minimization problem in ~u and ~v can be solved iteratively by an alternating
minimization procedure:

1. For fixed~v, solve:

min
~u

sup
|~pd |≤1

{∫
Ω

2∑
d=1

[(
D1/2

∇ud

)
·~pd− ε

|~pd |2

2
+

1
2θ

(ud− vd)
2

]
d~x

}
(10)

This optimization problem is similar to the well-known ROF model [14] and can be
solved using a variant of the projected gradient descent algorithm proposed in [5].
Applying the divergence theorem on (10) and using D1/2 =

[
D1/2

]>
we get

min
~u

sup
|~pd |≤1

{∫
Ω

2∑
d=1

[
−ud div

(
D1/2 ~pd

)
− ε
|~pd |2

2
+

1
2θ

(ud− vd)
2

]
d~x

}
, (11)

which is now a pointwise problem in ~u, and hence

∂

∂ud
: − div

(
D1/2~pd

)
+

1
θ

(ud− vd) = 0 → ud = vd +θ div
(

D1/2~pd

)
(12)

The functional derivative of (10) w.r.t. ~pd is given by

∂

∂~pd
: D1/2

∇ud− ε~pd = D1/2
∇

(
vd +θ div

(
D1/2~pd

))
− ε~pd (13)
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Embedding this into a projected gradient descent update scheme, leads to the iterative
scheme

un+1
d = vn

d +θ div
(

D1/2~pn+1
d

)
, (14)

~pn+1
d =

~pn
d + τ

(
D1/2∇un+1

d − ε~pn
d

)
max

{
1,
∣∣~pn

d + τ
(
D1/2∇un+1

d − ε~pn
d

)∣∣} , (15)

where the step-width is given by τ = 1/(4+ ε).

2. For fixed ~u, solve for the auxiliary variable~v:

min
~v

{∫
Ω

1
2θ

2∑
d=1

(ud− vd)
2 +λ |ρ(~v(~x))| d~x

}
(16)

Here a simple thresholding step with three different cases yields a direct solution [19]:

~vn+1 =~un+1 +


λθ∇I1 if ρ

(
~un+1

)
<−λθ |∇I1|2

−λθ∇I1 if ρ
(
~un+1

)
> λθ |∇I1|2

−ρ
(
~un+1

)
∇I1
|∇I1|2

else
(17)

The difference between an isotropic TV and an isotropic Huber regularization is illus-
trated in Fig. 2, showing a rendering of u1 from the Dimetrodon sequence (cf . Fig. 7(a)).
The color coded flow is superimposed as texture. While the TV regularization causes the
characteristic piecewise constant levels (cf . Fig. 2(a), AAE = 3.03◦, AEPE = 0.16), the
Huber regularization (cf . 2(b), ε = 0.01, AAE = 2.77◦, AEPE = 0.14) yields a significantly
smoother result. In Fig. 2(c) the influence of the threshold ε , which defines the location of the
transition from a quadratic to a linear penalty, on the average angular error (AAE, cf . [2]) and
the average end-point error (AEPE, cf . [2]) is shown on the Dimetrodon dataset. Please
note that the Huber norm approaches the TV as ε→ 0. The benefits of integrating directional
information are depicted in Fig. 1.
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Figure 2: Comparing (a) the staircasing afflicted TV regularization and (b) the Huber regu-
larization on the Dimetrodon dataset; (c) average angular and average end-point error as
a function of the Huber norm parameter ε
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3 A Temporal Symmetry Constraint
A majority of optical flow estimation methods impose only spatial continuity constraints
to solve the aperture problem. Widely cited extensions to a spatio-temporal continuity in-
clude [4] for a causal method, [17] for a method that is symmetric w.r.t. ‘past’ and ‘fu-
ture’ in the image sequence and therefore only suitable for offline processing and [12] for a
patch-based variant. Here we will only consider the spatio-temporal regularization presented
in [17], which is based on the assumption that the flow field changes gradually over time.
This assumption has been used successfully on the well-known Yosemite benchmark se-
quence (with clouds), where the average angular error could be reduced from 2.44◦ to 1.78◦

by including a temporal continuity constraint [11]. Considering the quoted improvements,
it is surprising that not a single one out of 27 flow estimation methods currently listed on
the Middlebury benchmark site employs such a spatio-temporal continuity constraint. Upon
closer inspection, however, it turns out that the properties of the Yosemite sequence (steady
camera motion through a distant, static scene combined with relatively small displacements)
are perfectly suitable for temporal smoothing, whereas the Middlebury benchmark sequences
contain more complex motions as well as significantly larger displacements, so using the
spatio-temporal regularization proposed in [17] has adverse effects on the estimated flows.

Instead of assuming gradual flow changes through time, we propose a 3-frame method
that ‘mirrors’ the flow symmetric w.r.t. the central frame by extending the anisotropic flow (5)
with one additional data fidelity term

min
~u,~v

{∫
Ω

2∑
d=1

[
|~qd |ε +

1
2θ

(ud− vd)
2
]

+λ |ρ1c (~v(~x))|+λ |ρ3c (~v(~x))| d~x

}
, (18)

where ρ1c and ρ3c denote the linearized brightness constancy constraints between the first
and the central frame and between the third and the central frame, respectively:

ρ1c(~v(~x)) =−~v(~x)T
∇I1(~x)+ I1(~x)− Ic(~x) (19)

ρ3c(~v(~x)) =~v(~x)T
∇I3(~x)+ I3(~x)− Ic(~x) . (20)

[16] shows how to extend the thresholding scheme (17) using a second data fidelity term.
Conceptually, this model implies – independently for every pixel – a linear motion from

the first to the third frame, which is obviously constrained to be symmetric to the central

(a) (b) (c)

Figure 3: Comparison of: (a) ground truth; (b) spatio-temporal TV regularization
(AAE=11.70◦, AEPE=1.75); (c) anisotropic Huber-L1 flow with symmetry constraint
(AAE=6.32◦, AEPE=0.70) on the Urban3 sequence. For the result without symmetry con-
straint we refer to Fig. 7(h)
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frame. The key difference to [17] is that the frames one and three are both warped towards
the central frame, so this model is applicable to a wider class of motions. We illustrate
this difference using the Urban3 sequence of the Middlebury database. The color-coded
ground truth flow is depicted in Fig. 3(a), the result of a spatio-temporal TV regularization
(AAE=11.70◦, AEPE=1.75) can be observed in Fig. 3(b), and the result of the proposed
model (AAE=6.32◦, AEPE=0.70) is depicted in Fig. 3(c). The simultaneous presence of
outliers (red and green blobs) and heavy oversmoothing in Fig. 3(b) indicates that the as-

(a) Frame 47 (b) Frame 48 (c) Frame 49

(d) Spatio-temporal TV (e) Anisotropic Huber-L1 (f) Aniso. Huber-L1 + sym. cstr.

Figure 4: ‘Krems’ sequence

(a) Frame 58 (b) Frame 59 (c) Frame 60

(d) Spatio-temporal TV (e) Anisotropic Huber-L1 (f) Aniso. Huber-L1 + sym. cstr.

Figure 5: Sequence ’Car Ride in the Pyrenees’, 1910
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sumption of a gradual flow field change over time is invalid for this sequence.

The proposed symmetry constraint is specifically targeted at video restoration applica-
tions, where single frames are degraded, e.g. with blobs and scratches, and trades some
flexibility for robustness. Hence, compared to a purely spatial regularization, the accuracy
is slightly inferior on the clean Middlebury data (cf . Fig. 7(h) and Table 1). However, the
comparison on the sequences shown in Figs. 4 and 5, where the central frames are severely
degraded, illustrates that the imposed symmetry of the flow increases the robustness of the
estimate in the presence of gross outliers, compared to both spatio-temporal TV regulariza-
tion [11] as well as the anisotropic (two-frame) flow proposed in Section 2.

4 Implementation

As stated in Section 2, the proposed algorithm is based on a linearized data term and therefore
has to be embedded in a coarse-to-fine/warping scheme. For all experiments in this paper, the
image pyramid was constructed using a scale factor of 0.8. In a slight departure from [11],
we additionally decomposed every image in the pyramid into a ‘structure’ and a ‘texture’
part via ROF denoising [14] (λ = 10). The actual input to the flow algorithm was a linear
combination of these two parts with the relative weights structure:texture = 1:4 to reduce the
impact of illumination changes.

The derivative operators were discretized as forward differences with reflecting (Neu-
mann) boundary conditions. Hence, the divergence operator is based on backward differ-
ences with Dirichlet boundary conditions. The iterative solution procedure starts with ~u = 0
on the coarsest scale of the pyramid and since we aim for high-accuracy, we repeatedly warp
the ‘moving’ image [6] with a median-filtered version of the current solution. This 3x3
median filter is also applied when prolonging the flow to the next finer level in the image
pyramid, because it helps to get rid of outliers.

We implemented our proposed optical flow approach using Matlab and in addition we
have a GPU-accelerated C++ implementation, using the Nvidia CUDA framework. The par-
allelization capabilities of modern GPUs are well suited to optimize such variational prob-
lems.

Figure 6: Screenshots of the Middlebury benchmark results; More details and the given
references are available at http://vision.middlebury.edu/flow/.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Anisotropic Huber-L1 flow results on the training sequences of the Middlebury
benchmark dataset. The second row in Table 1 lists the respective average end-point errors

5 Evaluation

To quantify the improvements of the proposed anisotropic Huber regularization over TV reg-
ularization and to compare it to other state-of-the-art algorithms, we evaluated our algorithm
on the Middlebury benchmark sequences [2]. As required, the parameters were held con-
stant for all sequences and, in fact, for all the other experiments presented in this paper as
well. We used a scale factor of 0.8 for the image pyramid and set λ = 40, θ = 0.1, ε = 0.01,
α = 5.0 and β = 0.5. At the time of submission, the proposed method was ranked within the
top four results for almost all error measures listed on http://vision.middlebury.
edu/flow/, cf . Fig. 6 for the average end-point error and the angular error (both ranked
third). While the anisotropic Huber-L1 model yields accurate results on most sequences,
there are some notable outliers: Mequon, Schefflera, and Yosemite. On the Mequon
sequence, the university logo on the T-shirt causes strong edges in the image, thereby induc-
ing a large anisotropy in the regularization. At the same time, the T-shirt is only weakly
shaded, hence the regions close to the motion discontinuity around the two figures are han-
dled incorrectly. The fragmented occlusion caused by the Schefflera leaf in the right/top
corner of the aptly named sequence is hard to get right for local optimization approaches,
let alone the repetitive texture and the illumination changes. On the noisy Yosemite se-
quence, the accuracy could easily be improved by pre-smoothing or a significantly lower
λ . For completeness, we also give an overview of the results on the Middlebury training
dataset in Fig. 7. The corresponding average end-point errors are shown in the second row
of Table 1. In the first row of Table 1, the results of an isotropic TV regularization can be
seen and the last row lists the results obtained when imposing the symmetry constraint we
proposed in Section 3. As discussed previously, this modeling constraint is too restrictive
for the complex motions contained in the Middlebury sequences. However, for the degraded
historic sequences in Figs. 4 and 5 the qualitative improvement is evident, although we do
not have ground truth data to back this up quantitatively.

Our C++/CUDA implementation of the proposed algorithm is highly configurable and
the user can either emphasize performance or accuracy. Using the ‘high-accuracy’ settings
mentioned above with 10 warps and 50 iterations per warp, the flow estimation takes 1.13
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Algorithm Dimetrodon Hydrangea RubberWhale Venus Grove2 Grove3 Urban2 Urban3

I-TV-L1 0.16 0.16 0.12 0.37 0.14 0.64 0.41 0.91
A-Huber-L1 0.14 0.16 0.09 0.34 0.14 0.55 0.40 0.48
A-Hub.-L1 SY n.a. 0.33 0.13 n.a. 0.14 0.61 0.77 0.70

Table 1: The average end-point error (AEPE) on the Middlebury training sequences for
isotropic TV-L1 (I-TV-L1), anisotropic Huber-L1 (A-Huber-L1), and anisotropic Huber-L1

with symmetry constraint (A-Hub.-L1 SY)

seconds on the Urban sequence (640x480) on a recent 64bit Linux system, equipped with
an Intel Core 2 Quad at 2.66 GHz and an Nvidia GTX 280 GPU. Enabling the symmetry
condition increases the amount of data to be processed, hence the calculation time increases
to 1.23 seconds on Urban.

6 Conclusion and Future Work
In this paper we illustrated the benefits of an image-driven, discontinuity preserving regular-
ization term over the widely used isotropic TV regularization. Moreover, we demonstrated
that the staircasing effect in weakly textured areas can be reduced substantially by using the
Huber norm instead of the TV. We also demonstrated in which situations the spatio-temporal
regularization approach introduced in [17] fails and proposed a more robust alternative. Due
to the promising results so far, we plan to extend this spatio-temporal regularization from the
current ‘linear parametric’ model to higher-order polynomials.
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