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In 1994, Langford and Hellman [28] showed that both kinds of cryptanalysiscan be combined together by a technique called di�erential-linear cryptanalysis,in which the di�erential is used to obtain a linear approximation (between twoencryptions) with bias 1/2. The technique was improved in [8, 27], allowing theusage of di�erentials with probability lower than 1, thus making the techniqueapplicable to a larger set of block ciphers.The di�erential-linear technique was applied to analyze several (reduced ver-sions of) block ciphers, such as: DES [32] (attacked in [28,8]), IDEA [26] (at-tacked in [13, 20]), Serpent [1] (attacked in [9]), and COCONUT98 [35] (attackedin [8]). Some of the attacks are the best known attacks against the respectiveversions of the ciphers. It was also shown that the ciphertext-only extensions ofdi�erential and linear cryptanalysis work with di�erential-linear cryptanalysisas well [10].Langford and Hellman's technique is an example for devising the distin-guisher (to be used in the attack) as a combination of two much simpler parts.In this case, a combination of a di�erential and a linear approximation. Suchcombinations were later used in other cryptanalytic techniques, e.g., cryptanal-ysis using impossible di�erentials [6,7] (miss in the middle), and boomerangattacks [36], both using combinations of di�erentials.In this paper we present several new combinations of the di�erential, thehigher-order di�erential, the boomerang, the linear, and the bilinear techniques.All of these combinations treat the distinguished part of the cipher as a cascadeof two (or even three) sub-ciphers.First, we show how to combine the di�erential cryptanalysis with the bilinearcryptanalysis [14]. Bilinear cryptanalysis is a generalization of linear cryptanal-ysis specially designed for Feistel block ciphers. In bilinear cryptanalysis theattacker studies relations between bilinear functions of the bits of the plaintextand bilinear functions of the bits of the ciphertext. Usually, the results of bi-linear cryptanalysis are comparable with those of ordinary linear cryptanalysis.However, there are ciphers that are relatively strong against linear cryptanalysisbut are vulnerable to bilinear cryptanalysis. For example, s5DES [21] is strongerthan DES against linear cryptanalysis while the best 3-round bilinear approxi-mation of s5DES has a bias of 1/4, which is much larger than the correspondinglinear approximation for DES.We show that bilinear approximations can be combined with di�erentialsessentially in the same way as ordinary linear approximations are combined.However, there are some di�erences between a regular di�erential-linear attackand a di�erential-bilinear attack. We explore the similarities and the di�erencesbetween the two attacks, and apply the di�erential-bilinear technique to attack8-round s5DES.The next combination we discuss is the higher order di�erential-linear attack.Higher-order di�erential cryptanalysis [2, 22, 25] is a generalization of di�erentialcryptanalysis that uses di�erentials of more than two plaintexts. In the higher-order di�erential attack the attacker analyses the development of the XOR ofthe intermediate data during the encryption of a set of plaintexts satisfying2



some conditions. Attacks which resemble higher-order di�erential attack, suchas SQUARE-like attacks [12,18, 24, 29], can also be combined with linear crypt-analysis.We show that higher-order di�erentials (and SQUARE-like properties) canalso be used as a building block in a two-phase attack. In higher-order di�erential-linear cryptanalysis, the attacker examines sets of plaintexts that have the inputdi�erence of the higher-order di�erential. The higher-order di�erential predictsthe XOR value of all the intermediate encryption value after the higher-orderdi�erential. Then, the linear approximation can be applied to the entire set topredict the parity of a subset of the ciphertext bits (of all the ciphertexts).The data complexity of the higher-order di�erential-linear attack is propor-tional to 22m=p2q2m, where p is the probability of the higher-order di�erential,q is the bias of the linear approximation, and m is the number of plaintexts ineach set. Therefore, the attack can be used only if either the structure is smallenough or the linear approximation is very good (e.g., with bias 1/2). Suchinstances can occur in block ciphers, especially in weak key classes for whichvery strong and unexpected properties hold. For example, in the linear weak keyclass of IDEA [17], a specially built approximation has a bias of 1/2. We showthat in the case of IDEA the size of the linear weak key class is increased from223 keys in the class of a regular linear attack to 232 keys using a higher-orderdi�erential-linear attack.The last combination we discuss in this paper is the di�erential-linearboomerang technique. The boomerang attack [36] treats the cipher as a cas-cade of two sub-ciphers, and exploits two di�erentials, one for each sub-cipher,in order to obtain some information on the di�erences using an adaptive chosenplaintext and ciphertext process. In a di�erential-linear boomerang attack, theattacker constructs a pair of encryptions whose di�erence in the intermediateencryption value is known by means of the boomerang technique. This pair canthen be analyzed by means similar to those of the di�erential-linear cryptanal-ysis. Moreover, it appears that the linear boomerang is a special case of a moregeneral attack. By decomposing the �rst sub-cipher into two sub-sub-ciphers(and the cipher into three sub-ciphers in total), we can apply the di�erential-linear (or the di�erential-bilinear) attack to the cipher.One interesting feature of the (di�erential-)(bi)linear boomerang attack isthat this is the �rst attack that treats the cipher as a cascade of three sub-ciphers successfully, while all previous works treat the cipher as a cascade of atmost two sub-ciphers.The paper is organized as follows: In Section 2 we shortly sketch the ba-sic di�erential-linear attack. In Section 3 we present di�erential-bilinear crypt-analysis and apply it to DES and s5DES. In Section 4 we discuss higher-orderdi�erential-linear cryptanalysis and present several applications of the attack,including increasing the linear weak class of IDEA. In Section 5 we introduce(di�erential-)(bi)linear boomerang attacks. This set of attacks are combinationsof the boomerang technique with the (di�erential-)(bi)linear attack. We concen-trate on the di�erential-bilinear boomerang attack, as this attack is the most3



general one (while the other variants can be treated as special cases of thisattack). Finally, Section 6 concludes this paper.2 Preliminaries2.1 NotationsWe use notations based on [3, 5] for di�erential and linear cryptanalysis, respec-tively. In our notations 
P , 
T are the input and the output di�erences of thedi�erential, and �P , �C are the input and the output subsets (denoted by bitmasks) of the linear approximation. We also use �T to denote the input subsetin some cases.Let E = E1 � E0 be a block cipher, i.e., C = Ek(P ) = E1k(E0k(P )). Forexample, if E is DES, then E0 can be the �rst eight rounds of DES, while E1are the last eight rounds. For sake of simplicity, we omit the key, as it is clearthat encryption is done using a secret key. We denote the partial encryption ofP (and the partial decryption of C) by T , i.e., T = E0(P ) = E�11 (C).The last notation is the scalar product of two strings x and y and is denotedby x � y.2.2 Di�erential-Linear CryptanalysisLangford and Hellman [28] show that a concatenation of a di�erential and alinear approximation is feasible. The main idea in the combination is to encryptpairs of plaintexts, and check whether the corresponding ciphertext pairs havethe same parity of the output mask or not.Let 
P ! 
T be a di�erential of E0 with probability 1. Let �T ! �C be alinear approximation of E1 with bias �q. We start with a pair of plaintexts P1and P2 = P1 � 
P . After the partial encryption through E0, the intermediateencryption values are T1 and T2 = T1 � 
T , respectively. For any intermediateencryption value T and its corresponding ciphertext C, �T � T = �C � C withprobability 1=2 + q. Therefore, each of the relations �C � C1 = �T � T1 and�C �C2 = �T �T2 = �T �T1��T �
T is satis�ed with probability 1=2� q. Hence,with probability 1=2 + 2q2 the relation �C �C1 = �C �C2 � �T �
T holds.We note that �T and 
T are known, and thus, we have constructed a con-dition on C1 and C2 which has probability 1=2 + 2q2, while for a random pairof ciphertexts, this condition is satis�ed with probability 1/2. This fact can beused in distinguishers and in key recovery attacks. Hellman and Langford alsonoted that it is possible to use truncated di�erentials [22] as long as �T �
T ispredictable.As both di�erence and parity are linear operations, the two linear approxi-mations in E1 in both encryptions can be combined into an approximation of Eof the form E11{di�erential{E12;4



where the lower subscript denotes whether the sub-cipher is in the �rst encryp-tion or in the second, and \di�erential" refers to the di�erential combiner thatensures that the parities of the data before transition from E0 to E1 in bothencryptions are always equal (or always di�er).This led to the introduction of a di�erential-linear approximation for 6-roundDES which was composed of a 3-round di�erential and a 3-round linear approx-imation. The di�erential-linear approximation was then used to attack 8-roundDES. The attack requires 768 chosen plaintexts, and has the lowest data require-ments between all attacks on 8-round DES.Later research [8, 27] showed that it is possible to have �T �
T unknown but�xed. Also, it was shown that when the di�erential-linear technique is applicablewhen the di�erential has probability p 6= 1. In that case the probability that�T � T1 = �T � T2 � �T � 
T is 1=2 + p0, where p0 = p=2, and thus the event�C �C1 = �C �C2 � �T �
T holds with probability 1=2 + 4p0q2 = 1=2 + 2pq2.As we demonstrate later, in some of the attacks that we present this propertydoes not hold. That is, the attacker has to know the exact value of the di�erence
T , and in some cases, only certain values of the di�erence 
T can be used inthe combined attack.Moreover, even if 
T ��P is unknown to the attacker but constant for a givenkey, the attack still succeeds. In that case we know that the value �C �C1��C �C2is either 0 or 1, with a bias of 2q2. This case is similar to the case in linearcryptanalysis, when �K �K is unknown, and can be either 0 or 1.3 Di�erential-Bilinear Attack3.1 Bilinear CryptanalysisThe bilinear attack [14] is a generalization of linear cryptanalysis aimed at Feistelciphers. The attack considers approximations involving bilinear terms of theinput, the output, and the key. The reason this attack aims at Feistel ciphers isthat it is easier to �nd such bilinear approximations for Feistel ciphers.For the description of the bilinear approximations we adopt the notationsused in [14]. We also put aside the probabilistic nature of some of the steps forsake of clarity (of course, when we use the approximations we take the probabil-ities back into account). Let the input value of the r-th round in a Feistel cipherbe (Lr [0; 1; :::; n� 1]; Rr[0; 1; :::; n� 1]), where L stands for the left half of thedata and R stands for the right half (note that R0 and L0 compose the plain-text). Furthermore, we denote the input and the output values of the F -functionin the r-th round by Ir[0; 1; :::; n� 1], and Or[0; 1; :::; n� 1], respectively. Due tothe structure of a Feistel cipher Ir = Rr, Rr+1 = Lr �Or, and Lr+1 = Rr.Let � be a subset of f0; 1; :::; n � 1g, then Lr[�] = �fLr [s]js 2 �g =�s2�Lr [s], i.e., Lr [�] is the parity of all bits in the left half masked by �. Simi-larly Rr[�] is the parity all bits in the right half masked by �.According to the Feistel round, for any mask �; � and any round r:Lr+1[�] �Rr+1[�]�Rr[�] � Lr [�] = Ir[�] �Or[�]:5



Such 1-round bilinear approximations can be concatenated to obtain bilinearapproximations of several rounds. Concatenation requires some additional con-ditions, and also introduces some probability to the whole approximation. Wenote that in some cases the relations involve key bits in bilinear terms as well,e.g., Lr[12] �Kr[15]. One-round approximations can also be extended such thatthey include linear terms in addition to the bilinear ones. In this case, the con-catenation is more complex and can be achieved only if the linear terms ful�llsome additional requirements. The full description of bilinear approximations isgiven in [14]. The general form of the obtained bilinear approximation isL0[�0] �R0[�0]�R0[0]� L0[�0]� Ln[�n] �Rn[�n]�Rn[n]� Ln[�n] =L0[�0] �K[�1]�R0[�0] �K[�1]� Ln[�0] �K[�1]�Rn[�0] �K[�1]�K[�1] (1)where K is the key (or more precisely, the list of subkeys), and all Greek lettersrepresent some mask.Given the above approximation, the bilinear attack resembles the linear at-tack. Many plaintext/ciphertext pairs are gathered, and for any guess of K[�1],K[�1], K[�1], K[�1], and K[�1], the attacker counts how many pairs satisfy theapproximation. The guess for which the above approximation holds with theexpected probability of 1=2 + q is assumed to be the right guess.We note that in a bilinear approximation there might be bilinear expressionsinvolving the subkey. This fact has implications on the di�erential-bilinear attackwhich we explore later.3.2 Di�erential-Bilinear CryptanalysisRoughly speaking, the di�erential-bilinear attack encrypts many pairs of plain-texts, and examines Whether the obtained pair of ciphertexts satisfy some bi-linear approximation or not. This is very similar to the way that di�erential andlinear cryptanalysis are combined.We shall assume, without loss of generality, that the bilinear approximationhas the form presented in Equation (1), and that the probability of the approx-imation is 1=2 + q. We note that it is possible to have several bilinear terms inthe approximation, but this fact does not change our analysis. We denote thedi�erential to be concatenated by 
P ! 
T , and assume that the di�erentialhas probability p.The attacker chooses pairs of plaintexts P1 and P2 = P1 � 
P . With prob-ability p the the intermediate encryption values T1 and T2, respectively, have adi�erence that satis�es the equalityT1L[�0] �T1R[�0]�T1L[0]�T1R[�0] = T2L[�0] �T2R[�0]�T1L[0]�T2R[�0]; (2)where TiL is the left half of Ti, and similarly TiR is the right half of Ti. We notethat under the random distribution1 assumption, in the (1�p) of the cases where1 We note that whether this assumption holds for a given cipher needs to be throughlyinvestigated, and if possible veri�ed as done in [9].6



the di�erential does not hold, Equation (2) holds in half of the times. Thus, theprobability that Equation (2) holds is p+ (1� p)=2 = 1=2+ p=2, and the bias isp0 = p=2.Then, similarly to the di�erential-linear case, the pair of ciphertexts C1 andC2 satis�es the following equationC1L[�n]�C1L[�n]�C1L[n]�C1R[�n] = C2L[�n]�C2R[�n]�C2L[n]�C2R[�n] (3)with probability 1=2 + 4p0q2 = 1=2 + 2pq2.However, unlike di�erential-linear cryptanalysis where any di�erential can beused for the combined attack, in the bilinear case the situation is more compli-cated. This is due to the fact that bilinear approximations require more knowl-edge about the data than linear approximations. In some cases, the requiredinformation is not given by the di�erential.It appears that the knowledge of the di�erence LT1 [�0]�LT2 [�0] and RT1[�0]�RT2[�0] in the two encryptions does not imply the knowledge of the di�erencebetween the LT [�0] �RT [�0] values. Thus, the attacker is restricted to the caseswhere the knowledge suggested by the di�erence 
T su�ces to know the di�er-ence of the LT [�0] � RT [�0] values. This is clearly the case when � � 
TL = � �
TR = 0, i.e., if the parity of the di�erences in the bits masked by � and � is zero.Another example is when there are six active bits in the output of the di�erentiala; b; c; d; e and f , and the bilinear approximation is a�b+c�d+e�f+a�f+c�b+e�d.For an arbitrary bilinear relationP�;� LTi [�] �RTi[�], where � and � are masks,the di�erence between the two sums can be predicted (to be zero) whenever thefollowing two conditions hold simultaneously: (1) Each LTi [�] appears an evennumber of times in products with RTi [�]'s whose di�erence is 1, and (2) EachRTi[�] appears an even number of times in products with LTi [�]'s whose di�er-ence is 1.We note that the linear terms of the approximation behave in the same wayas in di�erential-linear cryptanalysis. This is due to the way the attack works |the attacker examines the di�erence in the output mask of two encryptions, andas long as the linear terms do not a�ect the bias of the di�erence in the outputmask, the linear terms do not change the attack.A more formal way to describe a di�erential-bilinear approximation is: As-sume that the cipher E can be decomposed to two sub-ciphers E = E1 � E0,where the di�erential 
P ! 
T (and probability p) is used in E0, and a bilinearapproximation is used for E1. Also assume that the bits predicted in 
T aresu�cient to know the di�erence in the LT [�0] �RT [�0] values with bias p=2. Letb1 and b2 denote the outputs of the bilinear approximation in the �rst and thesecond encryptions, respectively. The combination between the di�erential andthe bilinear approximation can be represented by the following extended bilinearapproximation: b1{di�erential{b2;where \di�erential" refers to the di�erential combiner. A distinguishing attackor a key recovery attack based on the di�erential-bilinear property is similar to7



an ordinary di�erential-linear attack | the attacker encrypts many plaintextpairs, and checks in how many of the pairs satisfy Equation (3).The probability that a pair of ciphertexts (C1; C2), originating from a pair ofplaintexts (P1; P2 = P1�
T ), to satisfy Equation (3) is 1=2+4p0q2 = 1=2+2pq2.An interesting fact that will be demonstrated in the bilinear approximation ofDES is that the subkey may be a part of the bilinear approximation. While in alinear approximation the linear factors of the key are independent of the plaintext(or the ciphertext), and can be treated like such, in a bilinear approximation thekey may have a bilinear term involving the plaintext (or the ciphertext). Thus,Equation (3) might involve unknown key terms. When the equation involvesunknown key terms, the attacker has to try all possible combinations for thesekey terms in the attack.3.3 Applying Di�erential-Bilinear Cryptanalysis to DES and tos5DESIn [14] a 3-round bilinear approximation of DES is presented. The approximationhas a bias of q = 1:66 � 2�3 which is slightly better than the best 3-round linearapproximation (that has a bias of 1:56 � 2�3). The bilinear approximation is asfollows: L0[3; 8; 14; 25]� R0[17]� L0[3] �R0[16; 17; 20]�L3[3; 8; 14; 25]� R3[17]� L3[3] �R3[16; 17; 20]= K[sth]� L0[3] �K[sth0]� L3[3] �K[sth00];where (L0; R0) is the plaintext (or in our case the intermediate encryption value),(L3; R3) is the ciphertext, and K[sth];K[sth0]; and K[sth00] are subsets of thekey bits.We can concatenate the above bilinear approximation to a di�erential thatpredicts a zero di�erence in L0[3] � R0[16; 17; 20]. The best 3-round di�erentialthat satis�es the requirements for concatenating the di�erential and the bilinearparts is presented in Figure 1. It has probability 46=64, and has the followingstructure: The �rst round has a zero input di�erence. The second round has aninput di�erence with one active S-box| S3. The input di�erence of 4x to S3 maycause an output di�erence whose bit 2 (of S3) is inactive with probability 28=64.If this is the case, then the masked bits of the input of the bilinear approximationare guaranteed to have a zero di�erence after the third round. Otherwise (withprobability 36/64), bit 2 of the output of S3 is active. This bit enters S4 inthe third round, and with probability 1/2 the output di�erence of S4 does nota�ect the bits masked by the input mask of the bilinear approximation, andthus, with probability 28=64 + 1=2 � 36=64 = 46=64 a pair with input di�erence
P = (0x; 00 20 00 00x) has a zero di�erence in 
T in the bits masked by thebilinear approximation.According to the previous analysis, the bias of the 6-round di�erential-bilinearapproximation that starts with the above input di�erence is2pq2 = 24664(1:662�3)2 = 1:98 � 2�5:8




P = 00 20 00 00 00 00 00 00xA0 = 0 a0 = 0B0 = 0X 00 NZ 0Yx b0 = 00 20 00 00x= P (00 V 0 00 00x)C 0 =?? ?M R? ??x c0 = 0X 00 NZ 0Yx= P (0? 0F ?? ??x)
T =?? ?M R? ?? 0X 00 0Z 0Yx
F

F

F(where X;Y 2 f0; 4g, Z 2 f0; 1g, M 2 f0; 2; 4; : : : ; Exg, R 2 f2; 4; 6g, F 2f0; 1; 2; 3; 8; 9;Ax;Bxg, N 2 f0; 8g, V 2 f3; 5; 6; 7; 9;Ax;Bx; Cx;Dx; Ex; Fxg and where? is any arbitrary value.)Fig. 1. A 3-Round Di�erential of DES with Probability 46=64This bias is slightly lower than the bias of the best 6-round di�erential-linearapproximation (that equals to 2:43�2�5), and thus, the di�erential-bilinear attackon 8-round DES requires more data than the corresponding di�erential-linearattack.An example that illustrates the advantages of the di�erential-bilinear crypt-analysis over a regular di�erential-linear attack is s5DES [21]. In [15] the follow-ing bilinear approximation with bias q = 1=4 is presented:L0[17; 23; 31]� R0[1; 5]� L0[9] �R0[5]�L3[17; 23; 31]� R3[1; 5]� L3[9] �R3[5] = K[sth];where K[sth] is a subset of the key bits. This bilinear approximation can beconcatenated to the 3-round di�erential with probability 1 presented in Figure 2.The di�erential assures that the di�erence in the input bits of the bilinear termof the bilinear approximation is zero with probability 1. Thus, the bias of the9




P = 20 00 00 00 00 00 00 00xA0 = 0 a0 = 0B0 = 00 W0 XY 0Zx b0 = 20 00 00 00x= P (V 0 00 00 00x)C 0 =?? ?? M? ??x c0 = 00 W0 XY 0Zx= P (0? ?? ?? 0?x)
T =?? ?? M? ?? 00 W0 XY 0Zx
F

F

F(where V 2 f1; : : : ; Fxg, W 2 f0; 8g, X 2 f0; 8g, Y 2 f0; 2g, Z 2 f0; 2g, M 2f0; : : : ; 7g, and ? is any arbitrary value)Fig. 2. A 3-Round Di�erential of s5DES with Probability 1di�erential-bilinear approximation is:2pq2 = 2(1=4)2 = 1=8This di�erential-bilinear approximation can be used to attack 8-round s5DESusing 384 chosen plaintexts and time complexity of 220:2 encryptions. The attack�nds about 90 suggestions for 16 bits of the key, where the right value is amongthe suggested values with probability of 65.5%.4 Combining Higher-Order Di�erential and LinearAttacks4.1 Higher-Order Di�erential Cryptanalysis and SQUARE-likeAttacksHigher-order di�erential cryptanalysis [2, 22, 25] is a generalization of di�erentialcryptanalysis that exploits the algebraic structure of the cipher. In a higher-order di�erential attack the attacker asks for the encryption of a structured set10



of chosen plaintexts and analyses the XOR value (or some other function) of theciphertexts. The motivation of the attack is the fact that while it is well knownthat linear relations between sets of bits during encryption should be avoided,in some instances higher-order relations between sets of bits can be found.Ordinary di�erential cryptanalysis resembles an examination of the deriva-tive of the nonlinear function of the cipher. It seeks cases with high enoughprobability in which the nonlinear function can be approximated by a linearfunction. Similarly, higher-order di�erential cryptanalysis looks at the higher-order derivatives of the nonlinear function and seeks cases where the derivativescan be predicted with high probability.A close relative of the higher-order di�erential attack is the class of theSQUARE-like attacks [12, 18, 24, 29]. These attacks are aimed against ciphers inwhich small portions of the bits are interleaved by a strong nonlinear functionwhile the main interleaving stage is linear. This is the case in many of the SPnetworks being in use today, and in particular in the AES. In this kind of attacks,the attacker examines a set of plaintexts, chosen such that the input to one ofthe non-linear part gets all the possible values. Thus, the attacker knows thatthe set contain all the intermediate values (after the nonlinear stage), but shedoes not know which value has originated from which plaintext. In this case,the attacker does not look for the XOR of the ciphertexts, but rather for morecomplicated functions, such as whether each of the possible values appears onlyonce or not. SP networks with only a few rounds are especially vulnerable, asvery e�cient attacks can be devised, no matter what the non-linear functionis [12].Both higher-order di�erential cryptanalysis and SQUARE-like attacks, startwith a set of specially chosen plaintexts, and look for some special structure inthe obtained set of ciphertexts. The di�erence between the two attacks is theform of the special structure we expect/look for in the ciphertexts set.4.2 The Higher-Order Di�erential-Linear AttackThe combination of higher-order di�erentials with linear approximations is sim-ilar to ordinary di�erential-linear cryptanalysis. The attacker uses the higher-order di�erential (or the SQUARE property) to predict the XOR value of thesets of masked bits in all of the elements of the structure, and then uses the linearapproximation to compare this value with the XOR of the masked ciphertextbits in all of the encryptions.Let Set be a set of plaintexts fP1; P2; : : : ; Pmg such that the higher-orderdi�erential predicts (with some probability p) the value�mi=1Ti where the Ti's arethe intermediate encryption values. Under standard independence assumptions,this means that the parity of any subset of bits taken over all intermediateencryption values is biased with a bias of p0 = p=2. We also assume that there isa linear approximation that predicts the value of �T �T ��C �C with probability1=2 + q. 11



Lemma 1. Let the event I beI = f�P � (T1 � :::� Tm) = �C � (C1 � :::� Cm)g :Then (under standard independence assumptions) Pr[I] = 1=2 + 2m�1qm.Before the proof we note that I is actually the event that the XOR of the inputmask, taken over all intermediate encryption values, is equal to the XOR of theoutput mask, taken over all ciphertexts.Proof. The proof of the lemma is by induction on m, and is very similar tothe proof of Matsui's Piling-up Lemma [30]. If m = 1, there is only one ap-proximation and thus the probability equals to 1=2 + q. Assume that the claimholds for structures of size k and consider a structure of size k + 1. We dividethe structure into two structures, one consisting of k ciphertexts, and the otherconsisting of one ciphertext. The division into two structures can be done atrandom. Consider the probabilities of the events I in the two structures, i.e.,consider each structure as an independent structure and consider the probabil-ity of the events I corresponding to these new structures. Clearly, the event Ioccurs for the whole structure if and only if the corresponding events I1; Ik occureither for both structures or for none of them. By the induction hypothesis, theprobability of such an event equals to:(1=2 + 2k�1qk)(1=2 + q) + (1=2� 2k�1qk)(1=2� q) =1=4 + 2k�2qk + 2k�1qk+1 + q=2 + 1=4� 2k�2qk + 2k�1qk+1 � q=2 = 1=2 + 2kqk+1Thus, by induction, the lemma is proven. Q.E.D.Lemma 2. Given a set of plaintexts with the input requirements of the higher-order di�erential, the bias of the event that the XOR of the output mask in allthe ciphertexts equal to the value predicted by the linear approximation isb̂ = 2m�1pqm (4).Proof. The proof is a combination of the result of the previous lemma with theprobability of the higher-order di�erential. Let Z1; Z2 be the boolean variablesde�ned as Z1 = �P � (T1 � ::: � Tm), and Z2 = �C � (C1 � ::: � Cm). We areinterested in the probability P (Z2 = 0). If this probability di�ers from 1/2, thenwe can use this property for the attack. Combining the higher-order di�erentialwith the results on the linear approximation obtained above, we get that P (Z1 =0) = 1=2 + p=2 and P (Z1 = Z2) = 1=2 + 2m�1qm. Therefore,P (Z2 = 0) = P (Z1 = 0) �P (Z2 = Z1) + P (Z1 = 1) � P (Z2 6= Z1) =(1=2 + p=2)(1=2 + 2m�1qm) + (1=2� p=2)(1=2� 2m�1qm) = 1=2 + 2m�1pqm:Q.E.D.Note that di�erential-linear cryptanalysis can be considered as a special caseof higher-order di�erential-linear cryptanalysis, where the size of the structureis 2. Using Formula (4), the bias of the approximation is b̂ = 2pq2.12



4.3 Applications of Higher-Order Di�erential-Linear CryptanalysisOur �rst application of the higher-order di�erential-linear cryptanalysis is ageneric attack. Let E be a Feistel block cipher with a bijective round func-tion F . Denote the block size of E by 2n. Assume that E has an r-round linearapproximation with bias 1=2. We combine this r-round linear approximationwith a 3-round higher-order di�erential that exists with probability 1 for allsuch ciphers.Let a word that is constant for all plaintexts in the structure be denoted byC.Let a word that assumes all possible values (a permutation) for a given structurebe denoted by P , and let a word in which the XOR value of all the plaintextsin the structure is zero be denoted by B. For example (P; P ) is a structure of2n plaintexts, where every possible value of the left half appears once, as well asevery possible value of the right half (and we assume no relation between theseinstances). Another example is (B;C) | a structure of 2n plaintexts where theright half is �xed in all the plaintexts, and the XOR of all the values in the lefthalf is zero.For the Feistel cipher described above, the following 3-round higher-orderdi�erential holds with probability 1:(P;C) F! (C;P ) F! (P; P ) F! (P;B):(This kind of property was �rst used in [4] with di�erent attack methods). Ascan be seen from the higher-order di�erential, the attacker knows for certainthat the XOR of the texts in the structure at the end of round 3 is 0, and thesame is true for the XOR value in any speci�c bit as well. The 3-round higher-order di�erential can be combined with the linear approximation to devise a(k + 3)-round higher-order di�erential-linear approximation of the cipher. Theoverall bias of the approximation is 1=2, and thus the approximation requiresseveral structures of 2n chosen plaintexts to distinguish between the cipher anda random permutation.This generic attack can be applied to FEAL [33]. FEAL is a 64-bit Feistelblock cipher, with a bijective round function. There exists a linear approximationfor three rounds of the cipher with bias 1=2 (see [31] for details). We can combinethis linear approximation with the 3-round higher-order di�erential to devisea 6-round higher-order di�erential-linear approximation with bias 1=2 (and aset size of 232 plaintexts), and use it to distinguish between FEAL-6 and arandom permutation. This distinguisher can be used in a key recovery attackson FEAL-7 and FEAL-8. Even though these attacks are far from being the bestknown attacks, they demonstrate the feasibility of higher-order di�erential-linearcryptanalysis.Another application of this technique is a weak key class of the block cipherIDEA [26]. IDEA has a 64-bit block size and it consists of 8.5 rounds. It is basedon operations on four words of 16-bit each.There is a weak key class of 232 keys, each having zero in 96 positions, thatcan be detected using a higher-order di�erential-linear attack. The underlying13



linear approximation is the one used in the linear weak key class of IDEA of 223keys in [17]. The approximation has bias 1/2, and it propagates through IDEAby exploiting the fact that for the weak key class the multiplication operationcan be approximated with bias 1/2.Our weak key class uses a 3-round higher-order di�erential that starts withsets of the form (P;C; P;C), for which after three rounds the XOR of the leastsigni�cant bits of the �rst and the second words are zero. The linear approxi-mation is used in the remaining 5.5 rounds, and it has a bias of 1/2. Thus, forthis weak key class, the output mask of all ciphertexts in a given set is the same.We can use this fact and about 100 sets to identify whether the key used in theencryption is in the weak key class.We conclude that our new weak key class contains 232 keys, 512 times morekeys than the original linear weak key class. The membership tests requires about223 chosen plaintexts with a negligible amount of computation time.We conclude that the higher-order di�erential-linear attack is feasible, andthat in some cases it can be used to improve existing attacks and to devisenew attacks. At this stage we have not found a published cipher for which ournew technique yields the best attack, even though it is clear that one can easily\engineer" a dedicated cipher with this property.4.4 Related WorkWe �rst note that the higher-order di�erential-linear attack was developed inde-pendently in [34] under the name square-nonlinear attack. The attack combines aSQUARE property with a nonlinear approximation whose input is linear. Thus,the analysis can be reproduced, and despite the non-linear nature of the attack,the biases behave in the same way. The square-nonlinear attack was used toattack reduced round version of SHACAL-2.Another related work is the chosen plaintext linear attack [23]. In the chosenplaintext linear attack, the attacker encrypts structures of plaintexts, chosen suchthat the input mask is the same for all values in the structure. An alternativedescription would say that the set is chosen such that the di�erence of theintermediate encryption values is 0 in the bits considered by the approximation.In such a case the attacker can examine only the output parities. This methodcan be used to either eliminate rounds from the approximation, or to reducethe number of candidate subkeys (as rounds before the approximation no longerplay an active role in determining whether the approximation holds or not).While there are similarities between the chosen plaintext linear attack andour higher-order di�erential-linear attack, there are also major di�erences. Ourproposed technique looks for the XOR of all ciphertexts in the set, while thechosen plaintext linear attack examines the approximation in each ciphertextseparately.Actually, chosen plaintext linear attack will usually lead to a better attack, asit takes into consideration each plaintext/ciphertext pair, rather than performsan operation that \cancels" the information conveyed in 216 (or even more) plain-text/ciphertext pairs. On the other hand, the chosen plaintext linear attack �xes14



bits of the plaintext, leading to a smaller number of possible plaintext/ciphertextvalues. Another advantage of our attack is its ability to \correct" wrong struc-tures, i.e., assume that the input mask is biased with some probability (ratherthan �xed).5 Combining the Boomerang Attack with Linear andBilinear Techniques5.1 The Boomerang AttackThe main idea behind the boomerang attack [36] is to use two short di�erentialswith relatively high probabilities instead of one long di�erential with very lowprobability. The attack treats the block cipher E : f0; 1gn�f0; 1gk!f0; 1gn asa cascade E = E1 � E0, such that for E0 there exists a di�erential � ! � withprobability p0, and for E1 there exists a di�erential  ! � with probability p1.The distinguisher performs the following boomerang process:{ Ask for the encryption of a pair of plaintexts (P1; P2), such that P1�P2 = �,and denote the corresponding ciphertexts by (C1; C2).{ Calculate C3 = C1 � � and C4 = C2 � �, and ask for the decryption of thepair (C3; C4). Denote the corresponding plaintexts by (P3; P4).{ Check whether P3 � P4 = �.We denote the intermediate encryption value of Pi (or the intermediate de-cryption value of Ci) between E0 and E1 by Xi, i.e., Xi = E0(Pi) = E�11 (Ci). If(P1; P2) is a right pair with respect to the �rst di�erential, then X1�X2 = �. Ifboth pairs (C1; C3) and (C2; C4) are right pairs with respect to the second dif-ferential, then X1�X3 =  = X2�X4. If all these conditions are satis�ed thenX3 �X4 = �. The boomerang attack uses the obtained � value by decryptingthe pair (X3; X4), which with probability p0 leads to P3 � P4 = �. The overallprobability of such a quartet is p20p21.The attack can be mounted for all possible �'s and 's simultaneously (aslong as � 6= ). Thus, a right quartet for E is encountered with probability noless than (p̂0p̂1)2, where:p̂0 =sX� Pr 2[�! �]; and p̂1 =sX Pr 2[ ! �]:The complete analysis is given in [36]. In particular it is possible to show thatfor a speci�c value of �, and the corresponding probability p0 and all 's si-multaneously, the probability for X3 �X4 = � is p0p̂12. We shall use this factlater.5.2 Di�erential-Bilinear-Boomerang Attack (and Relatives)We �rst note that linear, di�erential-linear, and bilinear approximations, arespecial cases of di�erential-bilinear approximations (up to whether we consider15



pairs of plaintexts or plaintext/ciphertext pairs). Hence, if we can combine thedi�erential-bilinear attack with some other attack, we can actually combine anyof the linear, the di�erential-linear, or the bilinear attacks as well.Our newly proposed attacks exploit the � di�erence between the intermediatedecryption valuesX3 andX4 of the encryptions whose ciphertexts are C3 and C4.If there is a di�erential-bilinear approximation for E�10 (the decryption throughE0), then the pair (X3; X4) has the required input di�erence, and thus, there issome bilinear relation between X3 and X4 whose probability (or bias) is non-trivial.More formally, let (X3; X4) (generated by the partial decryption of C3 andC4 during the boomerang process) be with di�erence �. Assume that thereexists a di�erential-bilinear approximation with bias 2pq2 for E�10 with inputdi�erence �. Thus, it is possible to analyze the corresponding plaintexts as inthe di�erential-bilinear attack, just like as suggested in Section 3.However, the pair (X3; X4) does not always have the required di�erence �,which occurs with probability p0p̂21. By performing the analysis of the di�erential-bilinear attack again, and taking into consideration the probability that the �di�erence occurs, we conclude that the di�erential-bilinear relation has a bias of2p̂21p0pq2.Actually, we treat the �rst sub-cipher E0 as a cascade of two sub-sub-ciphers,i.e, E0 = E01 �E00. The di�erential is used in the the �rst part of the backwarddirection, i.e., in E�101 , while the bilinear approximation is used in the second parof E�100 (also in the backward direction).The di�erential-bilinear boomerang attack tries to obtain a di�erence be-tween two intermediate encryption values in the transition between the �rstsub-sub-cipher and the second sub-sub-cipher (both are parts of the �rst sub-cipher). This is a somewhat \asymmetric" boomerang, where for the �rst pair(P1; P2) we have a di�erent number of rounds in the �rst sub-cipher than for thepair (P3; P4).As the bias of the di�erential-bilinear boomerang is very low, it might seemthat using other techniques based on decomposing the cipher into sub-cipher isalways better than this attack. Even though currently we have no example wherethis attack is better than other combinations, we believe such cases exist.We start with showing that there are cases where the proposed attack canbe better than the boomerang attack. At a �rst glance, even if we assume thatthe bias of the di�erential-bilinear approximation of E0 is 1/2, then the biasof the whole di�erential-bilinear boomerang approximation is p̂21p0. Thus, thedata complexity of the di�erential-bilinear boomerang attack is expected to beat least O(p̂�41 p�20 ), while a regular boomerang attack requires a usually smallerdata complexity of O(p̂�20 p̂�21 ). However, this is true only for a boomerang attackthat uses regular di�erentials. In such case, the probability of the di�erential inthe decryption direction is equal to the probability in the encryption direction.But in some boomerang attacks, truncated di�erential are used, and for thesekind of di�erentials the probability depends on the direction. Thus, it might leadto an attack which is better than the boomerang attack, if for example, there is16



a truncated di�erential that is used in the forward direction of E0, but cannotbe used in the backward direction due to low probability.Another attack that can be used instead of the di�erential-bilinear boomerangis the di�erential-(bi)linear attack. As mentioned before, there is a good di�er-ential in the backward direction, and a good bilinear approximation. The reasonwhy this process might yield a better attack is that the di�erence predicted bythe di�erential after the partial decryption may not be suitable for concatena-tion with a bilinear approximation. In this case, the boomerang process is usedto change the di�erence to a more \friendly" one.For linear (or di�erential-linear) cryptanalysis, where the exact di�erencehas a much smaller e�ect, the answer is di�erent. Usually, it is assumed thatthe approximation has an independent random behavior for any two plaintexts,even if there is some constant di�erence between them. The chosen ciphertextlinear cryptanalysis [23] has shown that this is not the case, and that the actualvalues encrypted can alter the probabilities related to the approximation.Hence,the bias of the linear approximation may increase if there is a speci�c di�erence,instead of some random di�erence. Such an increase would lead to an higherbiases, which in turn would mean better attacks.6 SummaryIn this paper we presented several new combined attacks. Each of these combina-tions has scenarios where it yields an attack that may be better than di�erential-linear attacks, di�erential attacks, or linear attacks for some ciphers.The di�erential-bilinear attack, the higher-order di�erential-linear attack,and the (di�erential-)(bi)linear boomerang attack, are examples of attacks basedon treating the cipher as a cascade of sub-ciphers. This kind of treatment allowsus to present a a di�erential-bilinear approximation for 6-round s5DES with abias of 1/8. The decomposition into sub-ciphers can be used to enlarge the linearweak-key class of IDEA by a factor of 512.We conclude that new designs have to take into consideration combined at-tacks, including the well-known ones such as di�erential-linear and boomerangattacks, as well as the new ones presented in this paper.7 AcknowledgmentsWe would like to thank Nicolas Courtois for the information he provided to us,that helped us a lot during the work on this paper, and the anonymous refereesfor suggesting valuable ideas and improvements.References1. Ross Anderson, Eli Biham, Lars R. Knudsen, Serpent: A Proposal for the AdvancedEncryption Standard, NIST AES Proposal, 1998.17
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