
Feature-Based Face Recognition Using Mixture-DistanceIngemar J. Cox Joumana Ghosn Peter N. Yianilos�AbstractWe consider the problem of feature-based face recogni-tion in the setting where only a single example of each faceis available for training. The mixture-distance technique weintroduce achieves a recognition rate of 95% on a databaseof 685 people in which each face is represented by 30 mea-sured distances. This is currently the best recorded recog-nition rate for a feature-based system applied to a databaseof this size. By comparison, nearest neighbor search usingEuclidean distance yields 84%.In our work a novel distance function is constructedbased on local second order statistics as estimated by mod-eling the training data as a mixture of normal densities. Wereport on the results from mixtures of several sizes.We demonstrate that a at mixture of mixtures performsas well as the best model and therefore represents an e�ec-tive solution to the model selection problem. A mixtureperspective is also taken for individual Gaussians to choosebetween �rst order (variance) and second order (covariance)models. Here an approximation to at combination is pro-posed and seen to perform well in practice.Our results demonstrate that even in the absence of mul-tiple training examples for each class, it is sometimes pos-sible to infer from a statistical model of training data, asigni�cantly improved distance function for use in patternrecognition.Keywords | Face Recognition, Mixture Models, Statistical Pat-tern Recognition, Improved Distance Metrics.1 IntroductionResearch towards automatic face recognition began inthe late 19600s and divides roughly into two lines of inquiry:feature based approaches which rely on a feature set small incomparison to the number of image pixels, and direct imagemethods which involve no intermediate feature extractionstage. There are distinct advantages to both approachesand this is discussed further in Section 2 where previouswork is summarized.This paper's general motivation is to better understandwhat is limiting the performance of feature based systems.The structure of such systems varies widely but three majorcomponents may be identi�ed: the de�nition of a featureset, the extraction of these features from an image, andthe recognition algorithm. We focus on feature sets de-�The �rst and third authors are with NEC Research Institute, 4Independence Way, Princeton, NJ 08540. The second is with the Uni-versity of Montreal, Department of Computer Science. Direct Emailto the third author at pny@research.nj.nec.com. This manuscript wascompleted during October 1995.

rived from the location of anatomical features in frontal ornearly frontal views. Our particular feature set de�nitioninvolves 30 distances derived from 35 measured locations.Our main interest is in the recognition algorithm's e�ect onperformance, so these 35 locations were determined by hu-man operators and recorded in the database. That is, errorsassociated with feature extraction were kept to a minimumto highlight the errors due to the recognition algorithm,although, in principle, automated feature extraction is pos-sible. This is discussed in greater detail in Section 3 whereour experimental database and framework is described.If many images of each person are available, then eachindividual may be considered a pattern class, and one candirectly apply the methods of statistical pattern recognitionto build a model per person. A common approach modelseach class as a normal density, so for each person there is acorresponding mean feature vector and covariance matrix.The probability of an unknown pattern conditioned on eachmodel is then easily computed. Using a prior distributionon the individuals in the database (at for example) theclassi�cation task is completed in the standard Bayesianfashion by computing the a posteriori probability of eachperson, conditioned on observation of the query. If the com-putation is performed using log probabilities, it is slightlyless expensive computationally and the distance metric isthe well known Mahalanobis distance.Given a large number of images for each person this ap-proach would further illuminate the recognition capacity ofa given feature set. However in practice we do not alwayshave a large number of images of each individual. In fact, itis not uncommon to have only a single training example foreach person, and it is this data sparsity that distinguishesthe current work from the traditional class modeling frame-work. In this setting we assume that the recognition algo-rithm consists of nearest neighbor search using some dis-tance function between feature vectors. The key questionsare then how does the distance function a�ect recognitionrate, and what can be done to �nd an e�ective metric?Our experimental study uses a database of 685 individ-uals described further in Section 3. Duplicate images areavailable for 95 of these and form the queries we use to mea-sure performance. If standard Euclidean distance is used,84% of queries are correctly classi�ed. In statistical terms,Euclidean distance may be viewed as corresponding to theassumption that each pattern vector is a class generatorwith unit covariance and mean coinciding with the pattern.Despite the sparsity of data, it would be surprising indeed ifthere is nothing one can learn from the training data to im-



prove upon this assumption. To this end, we introduce theuse ofmixture-distance functions which are obtained by �rstmodeling the training data as a mixture of normal densities,and then using this model in a particular way to measuredistance. Our method increases recognition performance to95%, the highest recognition rate for a feature-based sys-tem applied to a database of this size. These functions arediscussed later in Section 4 and explored in greater detailin [21].The use of mixture-distances immediately presents twomodel selection problems: selection of the number of ele-ments in the mixture, and the more basic but sometimesignored problem of choosing between �rst and second orderstatistics for each component Gaussian. In both cases, weimplemented a very simple at prior approach which ourexperiments showed performs as well as the best individualmodel, as described in Section 5. The results of our experi-ments are covered in Section 6. Finally, Section 7 consists ofconcluding remarks and suggested areas for further study.2 Previous workWhile research in automatic face recognition began inthe late 19600s, progress has been slow. Recently therehas been renewed interest in the problem due in part toits numerous security applications ranging from identi�ca-tion of suspects in police databases to identity veri�cationat automatic teller machines. In this section, we brieydescribe related work. We coarsely categorize approachesas either feature based, relying on a feature set small incomparison to the number of image pixels, or direct imagemethods which involve no intermediate feature extractionstage. Of course, direct image methods may also extractfeatures but the distinction is that such features change sig-ni�cantly with variations in illumination. By contrast, thefeature based classi�cation is intended to categorize tech-niques that are robust to illumination conditions.Direct methods included template matching [1] and themore recent work of Turk and Pentland [17] on \eigenfaces".Template matching is only e�ective when the query andmodel images have the same scale, orientation and illumi-nation properties. This is a very restricted regime that isunlikely to be found in many operating environments. Al-though recently Brunelli and Poggio [2] compared a tem-plate matching scheme similar to Baron's [1]with a feature-based method on a database of 47 individuals and foundtheir template matching method to be superior, no gener-alization can be drawn from these results which are \clearlyspeci�c to our task and to our implementation".Turk and Pentland [17] have proposed a method of facerecognition based on principal component analysis. Eachimage of a face maps to a single point in a very high-dimensional space in which each dimension represents theintensity of an image pixel. They then use principal compo-nent analysis to �nd the low-dimensional projection of thisspace that best represents the data. Using simple nearestneighbor classi�cation in this space Pentland, Moghaddamand Starner [12] report accuracy of 95% on a data base con-

taining about 3000 di�erent faces. However, all images inthis test seem to be taken with little variation in viewpointand lighting, although with signi�cant variation in facialexpression. Since the method is similar to, although morecomputationally e�cient than correlation based on pixel in-tensities, these results are consistent with Moses et al's [10]conclusions that correlation methods are relatively insen-sitive to variations in facial expression. Moses has foundthat correlation methods are much more sensitive to light-ing and viewpoint variations, which raises questions aboutthe potential of the eigenfaces approach to extend to theseviewing conditions. However, see Pentland, Moghaddamand Starner for one approach to handling view variation.In principle, feature-based schemes can be made invari-ant to scale, rotation and/or illumination variations and itis for this reason that we are interested in them. Early workin this area was �rst reported by Goldstein et al [4] in whicha \face-feature questionnaire" was manually completed foreach face in the database. Human subjects were then askedto identify faces in databases ranging in size from 64 to255 using 22 features. Interestingly, only 50% accuracy wasobtained.Subsequent work addressed the problem of automaticallyextracting facial features. Kanade [7, 9] described a sys-tem which automatically extracted a set of facial features,computed a 16-dimensional feature vector based on ratiosof distances (and areas) between facial features, and com-pared two faces based on a sum of distances. On a databaseof 20 faces, Kanade achieved a recognition rate of between45 � 75% using automatically extracted facial features. Itis interesting to note that when our mixture contains justa single Gaussian, and only �rst order statistics are em-ployed (the o�-diagonal covariance entries are ignored), ourapproach reduces to Kanade's early work using Euclideandistance weighted inversely by the variance of each feature.Perhaps because it was perceived as di�cult to automat-ically extract 2-dimensional facial features, signi�cant e�orthas been directed towards using face pro�les [5, 6, 8]. Inthis case, the automatic extraction of features is a somewhatsimpler one-dimensional problem. Kaufman and Breedingreported a recognition rate of 90% using facial pro�les, butthis was on a database of only 10 individuals. Harmonet al reported a recognition rate of 84% on a 121 individ-ual database using a Euclidean distance metric. Recogni-tion rates of almost 100% are claimed using a classi�cationscheme based on set partitioning and Euclidean distance.However, these experiments did not maintain disjoint train-ing and test sets. Subsequent work by Harmon et al [5] didmaintain a separate test set and reported recognition accu-racies of 96% on a database of 112 individuals.Kaufman and Breeding [8] compared their results withhuman recognition of facial pro�les and found that humanperformance was not signi�cantly better. This comparisonhighlights an obvious problem: what is the classi�cationcapability of a set of features? This is clearly a fundamen-tal question, especially since it is unclear what features the
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Figure 1: Manually identi�ed facial features.human visual system uses. After all, no amount of sub-sequent processing can compensate for a feature set thatlacks discrimination ability. Perhaps because of this, mostprevious work has concentrated on investigating alterna-tive face representations while paying little attention to thesubsequent recognition algorithm. In fact, the role of therecognition algorithm has not been adequately addressedin the face recognition literature, especially for moderatelylarge databases (> 100). In this paper we begin to do so byexamining the recognition rate of a 30-dimensional featurevector on a database of 685 faces.3 Experimental DatabaseFigure (1) shows the 35 points that were manuallyextracted from each face and Table (1) lists the 30-dimensional feature vector computed from these facial fea-tures. We followed the point measurement system of [19]since the Japanese portion of our database consisted of mea-sured feature values only, i.e. the original intensity imageswere unavailable. All distances are normalized by the inter-iris distance to provide similarity invariance.Our model database of 685 images is an amalgam ofimages selected from several di�erent sources as describedbelow1: 1) 20 images from the UCSB database created byB.S. Manjunath of UCSB, 2) 24 images from Weizmann In-stitute database which was obtained from public domain ftpsite from Weizmann Institute, courtesy of Yael Moses, 3) 12images from the MIT database which was down-loaded fromthe public ftp site at MIT, 4) 533 images from the NECdatabase obtained from NEC, Japan, 5) 16 images fromthe database provided by Sandy Pentland of MIT MediaLab, 6) 80 images from the Feret Database, courtesy of theArmy Research Laboratory. The query database consistsof 95 images from the following sources: 1) 18 images fromUCSB database, 2) 23 images from the Weizmann Institutedatabase, 3) 11 images from the MIT database, 4) 43 im-1Selection was necessary only because many of the available imageswere not frontal views.

ages from the NEC, Japan database. Each element of thequery database represents a second frontal view of someonein the model database. Its size was severely limited by theavailability of such images.Feature Distance1 0.5 * ( (1,2) + (11,12) )2 0.5 * ( (5,6) + (15,16) )3 (3,13)4 (24,25)5 (29,30)6 (34,35)7 (26,34)8 (28,35)9 (26,28)10 (27,31)11 (27,32)12 (32,33)13 (23,31)14 (21,22)15 0.5 * ( (13,25) + (3,24) )16 0.5 * ( (25,30) + (24,29) )17 0.5 * ( (30,34) + (29,35) )18 0.5 * ( (1,22) + (11,21) )19 (10,19)20 0.5 * ( (2,9) + (12,20) )21 0.5 * ( (9,10) + (19,20) )22 0.5 * ( (11,19) + (1,10) )23 0.5 * ( (6,7) + (16,17) )24 0.5 * ( (7,8) + (17,18) )25 0.5 * ( (18,19) + (8,10) )26 0.5 * ( (18,20) + (8,9) )27 (11,23)28 (1,23)29 0.5 * ( (1,28) + (11,26) )30 0.5 * ( (12,13)+(2,3) )Table 1: The 30-dimensional feature vector.4 Mixture Distance FunctionsGiven a database of facial feature vectors Y = fyig, eachcorresponding to a di�erent person, and a query q consist-ing of a facial feature vector for some unidenti�ed personassumed to be represented in Y , our objective is to locatethe yi corresponding to q. In the absence of error, and as-suming no two people are exactly alike, we would have onlyto search Y for an exact match to q. But in practice q willnot match anything in Y perfectly because of many sourcesof error. These include feature extraction errors associatedwith the human or algorithm which constructed the featurevector from a photograph, variation in the subject's pose,unknown camera optical characteristics, and physical vari-ation in the subject itself (e.g. expression, aging, sickness,grooming, etc.) Clearly the nature of these error processesshould inuence the way in which we compare queries anddatabase elements. The di�culty lies in the fact that wecan't directly observe them given that only a single exampleof each person exists in Y .In this section we begin with a formal discussion butat a general level in order to establish a clear conceptualframework. Certain simplifying assumptions are then made



which lead to a practical approach to the problem of infer-ring something about the error processes at work in ourdata. The �nal result is then a simple formula for com-paring queries with database elements in the presence oferror.We imagine the observed feature vectors, whetherdatabase elements or queries, to be the result of a two-stagegenerative process. The �rst stage P generates platonic vec-tors p which are thought of as idealized representations ofeach pattern class { in our case the facial features of dis-tinct humans. The second stage is the observation processwhich generates the vectors we ultimately observe. The�rst stage corresponds to inter-class variation, i.e. betweenpeople, while the second stage captures intra-class varia-tion. The nature of the second process depends on p andwe therefore denote it as Op. We will further assume thateach Op is a zero mean process, which conceptually, addsobservation noise to the platonic vector at its center.The probability Pr(qjp) that a query q was generated bya particular platonic p, is then computed by forming thevector di�erence q � p and evaluating Op. This suggeststhe notation: Pr(qjp),Op(q � p). Similarly the probabilityPr(yijp) that a particular database element yi was gener-ated by p is Op(yi � p). Finally the probability Pr(p) ofp itself is just P(p). To judge how similar q and yi, theapproach taken in [21] is to focus on the probability of the3-way joint event consisting of the generation of p, followedby its observation as q, followed by a second independentobservation as yi. Integrating over p then gives the proba-bility that q and yi are independent observations of a singleplatonic form.Our �rst simplifying assumption is that the yi are consid-ered to be platonic. This eliminates the integral above andis actually the assumption implicit in most nearest neigh-bor pattern recognition methods. It amounts to imaginingthat the query is a an observation of the database element{ not of some third (mutual) platonic element. One hopesthat yi is not too far from its p, and that the distribution ofobservations about yi therefore approximates the distribu-tion about p. So now we focus on the matter of attributingto yi, an observation process Oi. Having done this we canthen compute Pr(qjyi) for each yi. We will classify q bychoosing the largest such probability. This is easily seen tobe the same as maximizing Pr(yijq) with a at prior on Y .The mixture-distance method we introduce may beviewed as a particular way, but by no means the only wayto arrive at an Oi for each yi. Perhaps the simplest such as-signment gives each yi an identical Oi consisting of a zeromean Gaussian process with unit covariance. Computingprobabilities as logarithms reveals that this is exactly thesame as the use of ordinary Euclidean distance and perform-ing a nearest neighbor search. It is helpful to visualize theseOi as hyper-spheres of identical dimension corresponding tothe unit distance (or equi-probability) surface arising fromthe process. In this simple case such a sphere is locatedabout every database element so that the nature of the dis-

tance function employed is the same everywhere in space {and in every dimension.In contrast to this simple assignment, we may also con-sider the ideal case in which each yi is associated with itstrue error process. Assuming these processes are zero meanGaussian, then the Oi may now be visualized as a hyper-ellipsoids of various sizes and shapes surrounding the yi.Unfortunately, as observed earlier, we don't have enoughdata to reconstruct this picture and must therefore turnto techniques which infer something about it from the fewdata points available. The mixture-distance technique issuch a method which makes its inference based only on thedistribution of Y .Suppose the observation process is extremely noisy { somuch so that most of the variation seen in Y is due to noisenot to actual di�erences in facial characteristics. In this ex-treme case, assuming for simplicity that the noise processis Gaussian, the sample covariance matrix of Y capturesmainly the characteristics of the observation process. Atthe other extreme, if little noise is present, then most of thevariation in Y is due to actual di�erences between individu-als. Here there is no reason to expect the sample covarianceof Y to tell us anything about the observation process.The main conceptual argument behind mixture-distanceis that if Y is decomposed into a mixture, where each com-ponent is thought of as covering some region of space, thenwithin each region, observation noise becomes the dominantcomponent of the empirical distribution. So as the numberof mixture components increases, one hopes that that thestatistics of each region capture an increasingly accurate es-timate of the observation process. The Oi assigned to eachyi is then determined by the region into which yi falls.Consider the data-rich limit in which Y contains manyobservations of each person, and the mixture contains asmany components as there are distinct individual's. Here,given a perfect unsupervised mixture density estimationprocedure, one would express Y as a mixture of densitieswhere each component corresponds exactly to the error pro-cess for a particular individual, and is centered at the meanfeature value for that individual. In this extreme case, at-tributing to yi the error process from its region of space,is exactly the right thing to do. In practice one employsmixtures with far fewer components and hopes that the re-sulting decomposition of space makes the observation pro-cess dominant or at least signi�cant. Said another way, onehopes that before reaching the data-rich case above, thedecompositions arrived at by unsupervised mixture densityestimation, begin to reveal useful information about the ob-servation processes at work in each region of space.So returning to our imagined hyper-ellipsoids surround-ing each yi, mixture-distance may be thought of as assigningOi based on the mixture component which contains yi. Asimpli�ed picture would show the yi in particular regionspace surrounded by hyper-ellipsoids selected for that re-gion. The imagery above is a simpli�cation of the truesituation because each yi belongs stochastically, not deter-



ministically, to a given region. The Oi assigned to it is thena mixture not a single Gaussian.Also, in the examples above, we assumed that the actualobservation processes were zero mean Gaussian. We remarkthat given even a single face and multiple observations aris-ing from di�erent feature extraction agents (whether hu-man operators or algorithms), a less restrictive assumptionis that the error process is itself a mixture of zero meanGaussians { one for each agent. We make this remark be-cause it is entirely possible that some of the componentsidenti�ed by unsupervised mixture density estimation, maycorrespond to di�erent feature extractors not to di�erentkinds of faces. In general the structure discovered mightsometimes correspond to semantic labels such as as gender,age, racial identity { but there is no reason to believe thatsuch a correspondence is necessary in order for the hiddenstructure to lead to an improved distance function.We now proceed to more formally derive our formula formixture-distance. A �nite mixture model M is a collectionof probability models M1; : : : ;Mn and non-negative mixingparameters c1; : : : ; cn summing to unity, such that: M(x) =Pnk=1 ck �Mk(x).Let N�;�(x) denote the multi-variate normal density(Gaussian) having covariance � and expectation �. Whenthe elements Mi of M are Gaussian, M is said to be aGaussian or Normal mixture. Given a �nite set of vectorsx1; : : : ; xm, the task of estimating the parameters of a nor-mal mixture model which explains the data well, has beenheavily studied. The well known expectation maximizationmethod (EM) [13] is perhaps that best known approach andwe adopt it for our experiments using k-means clustering toprovide a starting point.We now assume that an n-element normal mixture modelM has been built to model the database elements fyigand we refer to this as the empirical distribution. Eachmixture element Mk is a normal density N�k;�k and wenote by �Mk the zero mean density N�k;0. So Pr(xjMk) =Pr(x � �kj �Mk). The system's query to be classi�ed is de-noted q. Using the mixing probabilities Pr(Mk) obtainedfrom EM, we may then compute the a posteriori compo-nent probabilities Pr(Mkjx). These may be thought of asa stochastic indication of x's membership in each of themixture's components. We will attribute to each yi an Oiwhich is a mixture of the �Mk determined by these stochasticmembership values. This is explained best by the derivationwhich follows:Pr(qjy;M) = 1Pr(yjM) � Pr(q � yjM) (1)= 1Pr(yjM) � nXk=1Pr(q � yjMk) � Pr(Mk)= 1Pr(yjM) � nXk=1Pr(qjy;Mk) � Pr(yjMk) � Pr(Mk)= 1Pr(yjM) � nXk=1Pr(q � yj �Mk) � Pr(yjMk) � Pr(Mk)

= nXk=1Pr(q � yj �Mk) Pr(Mkjy)where Pr(qjy;Mk) = Pr(q � yj �Mk) andPr(Mkjy) = Pr(yjMk) Pr(Mk)Pni=1 Pr(yjMi) Pr(Mi)It is this formulation we use for all of our experiments.In [21] various more complicated expressions are given cor-responding to weaker or di�erent assumptions. Finally weobserve that in the case of one mixture element n = 1,mixture-distance reduces to the Mahalanobis distance fromthe query q to average face �.4.1 E�cient ComputationObserve �rst that the term Pr(Mkjy) does not depend onthe query and may therefore be pre-computed and recordedas part of the database. Next recall from the basic the-ory of multi-variate normal densities and quadratic forms,that for each mixture element Mk we may �nd a basis inwhich the density's covariance matrix is diagonal. This isof course accomplished via unitary matrix Ek whose rowsconsists of the eigenvectors of �k. If the vectors Ekyi are allrecorded in the database as well, and Ekq is computed be-fore the database search begins, then the computation timefor mixture distance becomes linear, not quadratic in thedimension of feature space. Note, however, that k vectorsmust be stored for each database element yi. This storagerequirement can be reduced by the \hard VQ" approxima-tion.4.1.1 The Hard VQ ApproximationFocusing again on Pr(Mkjy) we may make another simplify-ing assumption in order to further reduce computation andstorage space. Note thatPnk=1 Pr(Mkjy) = 1. The assump-tion which is typically referred to as Hard VQ (where VQstands for \vector quantization"), consists of replacing thisdiscrete probability function on fMkg by a simpler functionwhich assumes value 1 at a single point where the originalfunction is maximized, and zero elsewhere. Conceptuallythis corresponds to hard decision boundaries and we wouldexpect it to a�ect the resulting computation signi�cantlyonly when a point yi is near to a decision boundary. Wewill then refer to the original formulation as Soft VQ.Space savings result from the hard VQ assumption sincewe must now record in the database, each yi expressed inonly a single Eigenbasis corresponding to the distinguishedMk (which must also be identi�ed). This scheme is thena linear time and space prescription for mixture-distancecomputation.5 Model Selection TechniquesIn any statistical modeling approach in which the sizeand nature of the models (their con�guration) used may



vary, one faces the model selection problem.2 The objec-tive of model selection is, of course, not to better model thetraining data, but to ensure that the learned model will gen-eralize to unseen patterns. Many approaches to this funda-mental problem have been described in the literature. Thekey objective is always to prevent the model from becom-ing too complex, until enough data has been seen to justifyit. The simplest result one might hope for is to somehowselect a single con�guration which is appropriate for thedata and problem at hand. Another solution consists of�nding a probability function (or density) on con�gurationspace. Here \selection" becomes a soft process in which onemerely re-weights all of the possibilities. The �rst objectiveis clearly a special case of the second. In this paper wewill ultimately adopt a very simple selection strategy, but,as motivation, �rst discuss the problem at a more generallevel.Another subtlety associated with the term \selection" isthat it seems to imply that the �nal result is at most asgood as the best individual model. This is not the case. Ablended model can be better than any of its constituents asshown in the experimental results of Section 6. A simpleexample serves to illustrate this point. Suppose a timidweather-man A predicts rain and sun each day with equalprobability while a second sure-of-himself weather-man Balways issues certain predictions, i.e. 100% of rain or 100%chance of sun. Further assume that B is correct 2=3 ofthe time. If the objective is to maximize the probabilityassigned to long a series of trials, then it is easily veri�edthat one does best by blending their predictions, placingweight 2=3 on A and 1=3 on B.For simplicity we will assume a discrete setting in whichselection is from among M1; : : : ;Mm. We seek non-negative values d1; : : : ; dm summing to unity, such thatM = Pm̀=1 d`M l represents a good choice. Here M is ofcourse our �nal model and each M ` may themselves becomplex models such as Gaussian mixtures. One approachto model selection consists of Bayesian update in which thestarting point is a prior probability function on the con�gu-ration patterns, and after each training example is predictedby the model, a posterior distribution is computed.Our purpose in this paper is to explore the basic e�ec-tiveness of the mixture-distance approach so we have con-�ned ourselves a very simple form of model selection whichamounts to simply using a at initial prior and not both-ering to update it. That is, we assume all con�gurationshave equal probability and mix them (average) accordingly.Bayesian learning and other approaches may be evaluatedin future work.2Formally, the con�guration of a parameterized model is just anextension of its parameters.

5.1 Selecting between �rst and second or-der modelsA �rst order Gaussian model M1 has a diagonal covari-ance matrix containing estimates of the individual featurevariances and a mean vector consisting of an estimate ofthe distribution's expectation. The second order model M2matches M1 except that its o�-diagonal covariance entriesmay be non-zero and represent estimates of the feature'ssecond order statistics. The second order model has ofcourse many more parameters, so if limited data is avail-able one should worry about its ability to generalize. More-over, when forming Gaussian mixtures, the available dataare essentially parceled out to mixture elements { furtherexacerbating the problem.A mixture is just M = (1 � f) �M1 + f �M2; f 2 [0; 1].Consider this mixture generatively where one �rst choosesM1 with probability 1 � f or M2 with probability f , andthen draws a sample at random according to the selectedmodel. The covariance matrix of the resulting data vectorsis easily seen to be �1 + f � (�2 ��1). This is just �2 withit's o� diagonal elements multiplied by f .Now unfortunately M is not necessarily Normally dis-tributed despite the nature of M1 and M2, so we employthe known statistical expedient in which one approximatesa mixture with a single Gaussian. This leads to the follow-ing heuristic which we employ in the experiments to follow:The o�-diagonal elements of the sample covariance matrixare multiplied by f to form a single Gaussian model whichapproximately selects between �rst and second order statis-tics.This is of course exactly the ML estimate for the param-eters of a single Gaussian trained from the mixed distri-bution. The introduction of the f parameter has anotherpractical bene�t. It we require f 2 [0; 1) then the resultingcovariance matrix cannot be singular unless some featurehas exactly zero variance. Our experiments will focus onthree natural values: f = 0, f = 12 and f � 1.3 We alsopoint out that f is employed everywhere in the statisticalprocess including the maximization step of EM.5.2 Selecting the number of mixture com-ponentsIt is di�cult to know a priori how many mixture elementsshould be used to describe our database of facial features.Again there are many approaches to this problem but weadopt in some sense the simplest by �xing only the upperend of a range, and mixing all with equal probability.6 Experimental ResultsTo provide a baseline recognition rate to compare ourresults to, we applied to simple Euclidean distance metricto the database and obtained an 84% recognition level.For simplicity we adopt a at selection policy f = 12 todecide between �rst and second order models, i.e. between3We use f = 0:99.
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Figure 2: Recognition accuracy varies considerably withmixture complexity. Both \soft" and \hard" VQ versionsof mixture distance are presented.just the diagonal variance and the full covariance matrices.Table 2 illustrates how f can signi�cantly a�ect recogni-tion accuracy. Notice that when the mixture consists ofMixture Recog. Rate Recog. Rate Recog. RateElements f = 0 f = 0:5 f � 11 93% 91% 84%2 86% 94% 84%5 88% 94% 81%mixture of NA 95% NA1-10 mixturesTable 2: The f parameter which selects �rst vs. secondorder models has a potent e�ect on recognizer accuracy.a single Gaussian, a �rst order variance model (f = 0) isbest and the full second order covariance model (f � 1)is considerably worse. However, for mixture sizes 2 and 5,an o� diagonal weighting, f = 12 , is best while the full sec-ond order model with f =� 1 still a distant third. Thepoint of Table 2 is not that the at selection model can in-crease the recognition rate from 93% to 94% but rather thatthe recognition rate is consistently good using a at selec-tion, i.e. the recognition rate is both high and the variationacross mixture models is low. A at prior is therefore robustand eliminates the uncertainty associated with any choiceof �rst order variance or second order covariance models.When using a Gaussian mixture model, the number ofmixtures present is often unknown. This is a signi�cantproblem since the complexity of the Gaussian mixture alsoa�ects recognizer performance in a signi�cant and non-monotonic way. This is illustrated by the graphs of Fig-ure 2 in which models containing 1 through 10 Gaussianswere tested. The right graph shows the results using \soft-VQ" mixture distance, and the left graph corresponds to

\hard-VQ".Discussing the soft vector quantization method �rst, wenotice that the peak recognition rate is 94% but that therate varies considerably as the number of mixture elementschanges. Some of this variation might have been reducedif multiple EM starting points were used and the recog-nition results averaged. However, as in the case of the fparameter above, our experiments highlight the di�cultyof model selection. To alleviate this, we again propose aat stochastic selection scheme, i.e. we assume that eachmodel in the complexity range 1� 10 is equally likely andform a mixture of mixtures. The result is that 95% accu-racy is achieved and this exceeds the performance of anyindividual model. Once more though, the signi�cance ofthis results is not just the improvement in recognition ratebut also the fact that the best recognition rate is achievedwhile simultaneously removing the uncertainty associatedwith mixture selection.The Hard VQ version of mixture-distance is somewhatattractive if computational cost is an important issue, asdescribed in Section 4. The left graph of Figure 2 shows itsperformance which, like the soft VQ method, is highly vari-able with mixture complexity. The best performance 95% isattained for 5 mixture elements and exceeds the 94% max-imum level of Figure 2. However when a at mixture ofmixtures was formed as for the soft strategy, performanceof 94% resulted. Again, the conclusion to be drawn is thatmixtures of mixtures remove the uncertainty due to vari-ability of recognition rate with mixture complexity whilesimultaneously providing excellent performance.Finally we report that limited experiments on the e�ectof increasing database size suggest that performance de-clines signi�cantly when only a single mixture element isused, and is far more stable given larger mixtures.7 Concluding RemarksWe have demonstrated that the use of a simple form ofmixture-distance, along with a simple solution to the modelselection problem, increase performance on our face recog-nition problem from 84% using Euclidean distance to 95%.This provides strong motivation for careful considerationwhen choosing an appropriate metric. A less impressivebut still signi�cant increase from 93% to 95% was observedwhen we compare the results of a single �rst order Gaus-sian model, with the results using large mixtures of mix-tures. Just as importantly, the recognition rate is consis-tently good using a mixture of mixtures and at priors onboth the order and model selection. In contrast, it was ob-served that speci�c selection of a mixture model and orderstatistics can lead to considerable variations in the recog-nition rate. The mixture of mixtures is a robust techniquethat eliminates this uncertainty. Nevertheless, further ex-periments in the face recognition domain and others will benecessary to evaluate the signi�cance of the contributionmade by generalizing to second order models and mixtures.Given the small size of our query database, and ourlimited problem domain, it is not possible to conclu-



sively demonstrate the general e�ectiveness of the mixture-distance approach. Nevertheless, our results suggest that(1) it does lead to signi�cant improvements over simple Eu-clidean distance, (2) that at stochastic selection is an ef-fective solution to both model selection problems, (3) thatat stochastic selection signi�cantly reduces the otherwiseserious variability of recognition rate with model parame-ters and (4) that the hard-VQ algorithm compares well withthe computationally more expensive soft-VQ.It is also important to realize that the techniques of thispaper are quite independent of the particular feature setwe chose for experimentation. In fact, mixture-distancescan be applied to more direct forms of the image rangingfrom raw pixels, through frequency transformations and theresults of principal component and eigenface analyses.Preliminary work not reported in our experimental re-sults, included approaches to feature selection based on en-tropy measures. We discovered that subsets of our original30 features performed as well using single Gaussian models.An interesting area for future work consists of the integra-tion of a feature selection capability into the full mixture-distance framework.In this paper we focused on a very restricted settingin which only a single example of each face exists in thedatabase. If instead one assumes the availability of somenumber of image pairs corresponding to the same person,the task of estimating the parameters of our observationprocess may be approached more directly. For example, asqueries are processed and assuming the machine receivesfeedback as to whether or not its classi�cation is correct, itmight adapt its distance function and one might considerre-formulating the entire framework into a purely on-linesetting. A signi�cant message of this paper however is thateven in the absence of such feedback, improved distancefunctions can be found.Finally we remark that our feature set will most likelylimit future gains in accuracy. Variations, however smallin 3D pose, camera position and characteristics, and manyother sources of error are not explicitly modeled and shouldbe whenever possible. However, forming a conceptualframework towards this end is not nearly as di�cult as theassociated computational and optimization issues.AcknowledgmentsWe thank Johji Tajima and Shizuo Sakamoto of NECCentral Laboratories, Sandy Pentland of the MIT MediaLab, Yael Moses of the Weizmann Institute of Science, andJonathon Phillips of the Army Research Laboratory forproviding the databases we used. The authors acknowl-edge David W. Jacobs of NEC Research Institute, SunitaL. Hingorani of AT&T Bell Laboratories, and Santhana Kr-ishnamachari of the University of Maryland for their par-ticipation in this project's predecessor [3] where portions ofSections 2 and 3 �rst appeared.References[1] R. J. Baron. Mechanisms of human face recognition. Int. J. ofMan Machine Studies, 15:137{178, 1981.
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