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Abstract

We consider the problem of feature-based face recogni-
tion in the setting where only a single example of each face
is available for training. The mixture-distance technique we
introduce achieves a recognition rate of 95% on a database
of 685 people in which each face is represented by 30 mea-
sured distances. This is currently the best recorded recog-
nition rate for a feature-based system applied to a database
of this size. By comparison, nearest neighbor search using
Euclidean distance yields 84%.

In our work a novel distance function is constructed
based on local second order statistics as estimated by mod-
eling the training data as a mixture of normal densities. We
report on the results from mixtures of several sizes.

We demonstrate that a flat mizture of miztures performs
as well as the best model and therefore represents an effec-
tive solution to the model selection problem. A mixture
perspective is also taken for individual Gaussians to choose
between first order (variance) and second order (covariance)
models. Here an approximation to flat combination is pro-
posed and seen to perform well in practice.

Our results demonstrate that even in the absence of mul-
tiple training examples for each class, it is sometimes pos-
sible to infer from a statistical model of training data, a
significantly improved distance function for use in pattern
recognition.

Keywords — Face Recognition, Mixture Models, Statistical Pat-
tern Recognition, Improved Distance Metrics.

1 Introduction

Research towards automatic face recognition began in
the late 1960's and divides roughly into two lines of inquiry:
feature based approaches which rely on a feature set small in
comparison to the number of image pixels, and direct image
methods which involve no intermediate feature extraction
stage. There are distinct advantages to both approaches
and this is discussed further in Section 2 where previous
work is summarized.

This paper’s general motivation is to better understand
what is limiting the performance of feature based systems.
The structure of such systems varies widely but three major
components may be identified: the definition of a feature
set, the extraction of these features from an image, and
the recognition algorithm. We focus on feature sets de-
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rived from the location of anatomical features in frontal or
nearly frontal views. Our particular feature set definition
involves 30 distances derived from 35 measured locations.
Our main interest is in the recognition algorithm’s effect on
performance, so these 35 locations were determined by hu-
man operators and recorded in the database. That is, errors
associated with feature extraction were kept to a minimum
to highlight the errors due to the recognition algorithm,
although, in principle, automated feature extraction is pos-
sible. This is discussed in greater detail in Section 3 where
our experimental database and framework is described.

If many images of each person are available, then each
individual may be considered a pattern class, and one can
directly apply the methods of statistical pattern recognition
to build a model per person. A common approach models
each class as a normal density, so for each person there is a
corresponding mean feature vector and covariance matrix.
The probability of an unknown pattern conditioned on each
model is then easily computed. Using a prior distribution
on the individuals in the database (flat for example) the
classification task is completed in the standard Bayesian
fashion by computing the a posteriori probability of each
person, conditioned on observation of the query. If the com-
putation is performed using log probabilities, it is slightly
less expensive computationally and the distance metric is
the well known Mahalanobis distance.

Given a large number of images for each person this ap-
proach would further illuminate the recognition capacity of
a given feature set. However in practice we do not always
have a large number of images of each individual. In fact, it
is not uncommon to have only a single training example for
each person, and it is this data sparsity that distinguishes
the current work from the traditional class modeling frame-
work. In this setting we assume that the recognition algo-
rithm consists of nearest neighbor search using some dis-
tance function between feature vectors. The key questions
are then how does the distance function affect recognition
rate, and what can be done to find an effective metric?

Our experimental study uses a database of 685 individ-
uals described further in Section 3. Duplicate images are
available for 95 of these and form the queries we use to mea-
sure performance. If standard Euclidean distance is used,
84% of queries are correctly classified. In statistical terms,
Euclidean distance may be viewed as corresponding to the
assumption that each pattern vector is a class generator
with unit covariance and mean coinciding with the pattern.
Despite the sparsity of data, it would be surprising indeed if
there is nothing one can learn from the training data to im-



prove upon this assumption. To this end, we introduce the
use of mizture-distance functions which are obtained by first
modeling the training data as a mixture of normal densities,
and then using this model in a particular way to measure
distance. Our method increases recognition performance to
95%, the highest recognition rate for a feature-based sys-
tem applied to a database of this size. These functions are
discussed later in Section 4 and explored in greater detail
in [21].

The use of mixture-distances immediately presents two
model selection problems: selection of the number of ele-
ments in the mixture, and the more basic but sometimes
ignored problem of choosing between first and second order
statistics for each component Gaussian. In both cases, we
implemented a very simple flat prior approach which our
experiments showed performs as well as the best individual
model, as described in Section 5. The results of our experi-
ments are covered in Section 6. Finally, Section 7 consists of
concluding remarks and suggested areas for further study.

2 Previous work

While research in automatic face recognition began in
the late 1960's, progress has been slow. Recently there
has been renewed interest in the problem due in part to
its numerous security applications ranging from identifica-
tion of suspects in police databases to identity verification
at automatic teller machines. In this section, we briefly
describe related work. We coarsely categorize approaches
as either feature based, relying on a feature set small in
comparison to the number of image pixels, or direct image
methods which involve no intermediate feature extraction
stage. Of course, direct image methods may also extract
features but the distinction is that such features change sig-
nificantly with variations in illumination. By contrast, the
feature based classification is intended to categorize tech-
niques that are robust to illumination conditions.

Direct methods included template matching [1] and the
more recent work of Turk and Pentland [17] on “eigenfaces”.
Template matching is only effective when the query and
model images have the same scale, orientation and illumi-
nation properties. This is a very restricted regime that is
unlikely to be found in many operating environments. Al-
though recently Brunelli and Poggio [2] compared a tem-
plate matching scheme similar to Baron’s [1]with a feature-
based method on a database of 47 individuals and found
their template matching method to be superior, no gener-
alization can be drawn from these results which are “clearly
specific to our task and to our implementation”.

Turk and Pentland [17] have proposed a method of face
recognition based on principal component analysis. Each
image of a face maps to a single point in a very high-
dimensional space in which each dimension represents the
intensity of an image pixel. They then use principal compo-
nent analysis to find the low-dimensional projection of this
space that best represents the data. Using simple nearest
neighbor classification in this space Pentland, Moghaddam
and Starner [12] report accuracy of 95% on a data base con-

taining about 3000 different faces. However, all images in
this test seem to be taken with little variation in viewpoint
and lighting, although with significant variation in facial
expression. Since the method is similar to, although more
computationally efficient than correlation based on pixel in-
tensities, these results are consistent with Moses et al’s [10]
conclusions that correlation methods are relatively insen-
sitive to variations in facial expression. Moses has found
that correlation methods are much more sensitive to light-
ing and viewpoint variations, which raises questions about
the potential of the eigenfaces approach to extend to these
viewing conditions. However, see Pentland, Moghaddam
and Starner for one approach to handling view variation.

In principle, feature-based schemes can be made invari-
ant to scale, rotation and/or illumination variations and it
is for this reason that we are interested in them. Early work
in this area was first reported by Goldstein et al [4] in which
a “face-feature questionnaire” was manually completed for
each face in the database. Human subjects were then asked
to identify faces in databases ranging in size from 64 to
255 using 22 features. Interestingly, only 50% accuracy was
obtained.

Subsequent work addressed the problem of automatically
extracting facial features. Kanade [7, 9] described a sys-
tem which automatically extracted a set of facial features,
computed a 16-dimensional feature vector based on ratios
of distances (and areas) between facial features, and com-
pared two faces based on a sum of distances. On a database
of 20 faces, Kanade achieved a recognition rate of between
45 — 75% using automatically extracted facial features. It
is interesting to note that when our mixture contains just
a single Gaussian, and only first order statistics are em-
ployed (the off-diagonal covariance entries are ignored), our
approach reduces to Kanade’s early work using Euclidean
distance weighted inversely by the variance of each feature.

Perhaps because it was perceived as difficult to automat-
ically extract 2-dimensional facial features, significant effort
has been directed towards using face profiles [5, 6, 8]. In
this case, the automatic extraction of features is a somewhat
simpler one-dimensional problem. Kaufman and Breeding
reported a recognition rate of 90% using facial profiles, but
this was on a database of only 10 individuals. Harmon
et al reported a recognition rate of 84% on a 121 individ-
ual database using a Euclidean distance metric. Recogni-
tion rates of almost 100% are claimed using a classification
scheme based on set partitioning and Euclidean distance.
However, these experiments did not maintain disjoint train-
ing and test sets. Subsequent work by Harmon et al [5] did
maintain a separate test set and reported recognition accu-
racies of 96% on a database of 112 individuals.

Kaufman and Breeding [8] compared their results with
human recognition of facial profiles and found that human
performance was not significantly better. This comparison
highlights an obvious problem: what is the classification
capability of a set of features? This is clearly a fundamen-
tal question, especially since it is unclear what features the



Figure 1: Manually identified facial features.

human visual system uses. After all, no amount of sub-
sequent processing can compensate for a feature set that
lacks discrimination ability. Perhaps because of this, most
previous work has concentrated on investigating alterna-
tive face representations while paying little attention to the
subsequent recognition algorithm. In fact, the role of the
recognition algorithm has not been adequately addressed
in the face recognition literature, especially for moderately
large databases (> 100). In this paper we begin to do so by
examining the recognition rate of a 30-dimensional feature
vector on a database of 685 faces.

3 Experimental Database

Figure (1) shows the 35 points that were manually
extracted from each face and Table (1) lists the 30-
dimensional feature vector computed from these facial fea-
tures. We followed the point measurement system of [19]
since the Japanese portion of our database consisted of mea-
sured feature values only, i.e. the original intensity images
were unavailable. All distances are normalized by the inter-
iris distance to provide similarity invariance.

Our model database of 685 images is an amalgam of
images selected from several different sources as described
below': 1) 20 images from the UCSB database created by
B.S. Manjunath of UCSB, 2) 24 images from Weizmann In-
stitute database which was obtained from public domain ftp
site from Weizmann Institute, courtesy of Yael Moses, 3) 12
images from the MIT database which was down-loaded from
the public ftp site at MIT, 4) 533 images from the NEC
database obtained from NEC, Japan, 5) 16 images from
the database provided by Sandy Pentland of MIT Media
Lab, 6) 80 images from the Feret Database, courtesy of the
Army Research Laboratory. The query database consists
of 95 images from the following sources: 1) 18 images from
UCSB database, 2) 23 images from the Weizmann Institute
database, 3) 11 images from the MIT database, 4) 43 im-

Selection was necessary only because many of the available images
were not frontal views.

ages from the NEC, Japan database. Each element of the
query database represents a second frontal view of someone
in the model database. Tts size was severely limited by the
availability of such images.

Feature Distance
1 0.5 * ((1,2) + (11,12))
2 0.5 * ( (5,6) + (15,16) )
3 (3,13)
4 (24,25)
5 (29,30)
6 (34,35)
7 (26,34)
8 (28,35)
9 (26,28)
10 (27,31)
11 (27,32)
12 (32,33)
13 (23,31)
14 (21,22)
15 0.5 * (1(13,25) + (3,24) )
16 0.5 * (1(25,30) + (24,29) )
17 0.5 * (1(30,34) + (29,35) )
18 0.5* ((1,22) 4+ (11,21) )
19 (10,19)
20 0.5 * ((2,9) + (12,20) )
21 0.5 * (1(9,10) + (19,20) )
22 0.5 * ((11,19) + (1,10) )
23 0.5 * ((6,7) + (16,17) )
24 0.5* ((7,8) + (17,18) )
25 0.5 * ((18,19) + (8,10) )
26 0.5 * ( (18,20) + (8,9) )
27 (11,23)
28 (1,23)
29 0.5 * (1(1,28) 4+ (11,26) )
30 0.5 * (1(12,13)+(2,3) )

Table 1: The 30-dimensional feature vector.

4 Mixture Distance Functions

Given a database of facial feature vectors Y = {y;}, each
corresponding to a different person, and a query ¢ consist-
ing of a facial feature vector for some unidentified person
assumed to be represented in Y, our objective is to locate
the y; corresponding to ¢. In the absence of error, and as-
suming no two people are ezactly alike, we would have only
to search Y for an exact match to ¢. But in practice g will
not match anything in Y perfectly because of many sources
of error. These include feature extraction errors associated
with the human or algorithm which constructed the feature
vector from a photograph, variation in the subject’s pose,
unknown camera optical characteristics, and physical vari-
ation in the subject itself (e.g. expression, aging, sickness,
grooming, etc.) Clearly the nature of these error processes
should influence the way in which we compare queries and
database elements. The difficulty lies in the fact that we
can’t directly observe them given that only a single example
of each person exists in Y.

In this section we begin with a formal discussion but
at a general level in order to establish a clear conceptual
framework. Certain simplifying assumptions are then made



which lead to a practical approach to the problem of infer-
ring something about the error processes at work in our
data. The final result is then a simple formula for com-
paring queries with database elements in the presence of
error.

We imagine the observed feature vectors, whether
database elements or queries, to be the result of a two-stage
generative process. The first stage P generates platonic vec-
tors p which are thought of as idealized representations of
each pattern class in our case the facial features of dis-
tinct humans. The second stage is the observation process
which generates the vectors we ultimately observe. The
first stage corresponds to inter-class variation, i.e. between
people, while the second stage captures intra-class varia-
tion. The nature of the second process depends on p and
we therefore denote it as Op. We will further assume that
each O is a zero mean process, which conceptually, adds
observation noise to the platonic vector at its center.

The probability Pr(g|p) that a query ¢ was generated by
a particular platonic p, is then computed by forming the
vector difference ¢ — p and evaluating ©,. This suggests
the notation: Pr(g|p)20,(q — p). Similarly the probability
Pr(y;|p) that a particular database element y; was gener-
ated by p is Op(y; — p). Finally the probability Pr(p) of
p itself is just P(p). To judge how similar ¢ and y;, the
approach taken in [21] is to focus on the probability of the
3-way joint event consisting of the generation of p, followed
by its observation as ¢, followed by a second independent
observation as y;. Integrating over p then gives the proba-
bility that g and y; are independent observations of a single
platonic form.

Our first simplifying assumption is that the y; are consid-
ered to be platonic. This eliminates the integral above and
is actually the assumption implicit in most nearest neigh-
bor pattern recognition methods. It amounts to imagining
that the query is a an observation of the database element
— not of some third (mutual) platonic element. One hopes
that y; is not too far from its p, and that the distribution of
observations about g; therefore approximates the distribu-
tion about p. So now we focus on the matter of attributing
to y;, an observation process O;. Having done this we can
then compute Pr(g|y;) for each y;. We will classify ¢ by
choosing the largest such probability. This is easily seen to
be the same as maximizing Pr(y;|q) with a flat prior on Y.

The mizture-distance method we introduce may be
viewed as a particular way, but by no means the only way
to arrive at an O; for each y;. Perhaps the simplest such as-
signment gives each y; an identical O; consisting of a zero
mean Gaussian process with unit covariance. Computing
probabilities as logarithms reveals that this is exactly the
same as the use of ordinary Euclidean distance and perform-
ing a nearest neighbor search. It is helpful to visualize these
O; as hyper-spheres of identical dimension corresponding to
the unit distance (or equi-probability) surface arising from
the process. In this simple case such a sphere is located
about every database element so that the nature of the dis-

tance function employed is the same everywhere in space —
and in every dimension.

In contrast to this simple assignment, we may also con-
sider the ideal case in which each y; is associated with its
true error process. Assuming these processes are zero mean
Gaussian, then the O; may now be visualized as a hyper-
ellipsoids of various sizes and shapes surrounding the ;.
Unfortunately, as observed earlier, we don’t have enough
data to reconstruct this picture and must therefore turn
to techniques which infer something about it from the few
data points available. The mizture-distance technique is
such a method which makes its inference based only on the
distribution of Y.

Suppose the observation process is extremely noisy so
much so that most of the variation seen in Y is due to noise
not to actual differences in facial characteristics. In this ex-
treme case, assuming for simplicity that the noise process
is Gaussian, the sample covariance matrix of Y captures
mainly the characteristics of the observation process. At
the other extreme, if little noise is present, then most of the
variation in Y is due to actual differences between individu-
als. Here there is no reason to expect the sample covariance
of Y to tell us anything about the observation process.

The main conceptual argument behind mixture-distance
is that if Y is decomposed into a mixture, where each com-
ponent is thought of as covering some region of space, then
within each region, observation noise becomes the dominant
component of the empirical distribution. So as the number
of mixture components increases, one hopes that that the
statistics of each region capture an increasingly accurate es-
timate of the observation process. The O; assigned to each
y; is then determined by the region into which y; falls.

Consider the data-rich limit in which ¥ contains many
observations of each person, and the mixture contains as
many components as there are distinct individual’s. Here,
given a perfect unsupervised mixture density estimation
procedure, one would express Y as a mixture of densities
where each component corresponds exactly to the error pro-
cess for a particular individual, and is centered at the mean
feature value for that individual. In this extreme case, at-
tributing to y; the error process from its region of space,
is exactly the right thing to do. In practice one employs
mixtures with far fewer components and hopes that the re-
sulting decomposition of space makes the observation pro-
cess dominant or at least significant. Said another way, one
hopes that before reaching the data-rich case above, the
decompositions arrived at by unsupervised mixture density
estimation, begin to reveal useful information about the ob-
servation processes at work in each region of space.

So returning to our imagined hyper-ellipsoids surround-
ing each y;, mixture-distance may be thought of as assigning
O; based on the mixture component which contains y;. A
simplified picture would show the y; in particular region
space surrounded by hyper-ellipsoids selected for that re-
gion. The imagery above is a simplification of the true
situation because each y; belongs stochastically, not deter-



ministically, to a given region. The O; assigned to it is then
a mixture not a single Gaussian.

Also, in the examples above, we assumed that the actual
observation processes were zero mean Gaussian. We remark
that given even a single face and multiple observations aris-
ing from different feature extraction agents (whether hu-
man operators or algorithms), a less restrictive assumption
is that the error process is itself a mixture of zero mean
Gaussians — one for each agent. We make this remark be-
cause it is entirely possible that some of the components
identified by unsupervised mixture density estimation, may
correspond to different feature extractors not to different
kinds of faces. In general the structure discovered might
sometimes correspond to semantic labels such as as gender,
age, racial identity but there is no reason to believe that
such a correspondence is necessary in order for the hidden
structure to lead to an improved distance function.

We now proceed to more formally derive our formula for
mixture-distance. A finite mixture model M is a collection
of probability models M, .. ., M,, and non-negative mixing

parameters cy, . .., ¢, summing to unity, such that: M(z) =

ZZ:I Cp - Mk (T)

Let Ny ,(z) denote the multi-variate normal density
(Gaussian) having covariance ¥ and expectation p. When
the elements M; of M are Gaussian, M is said to be a
Gaussian or Normal mixture. Given a finite set of vectors
Z1,...,2Tm, the task of estimating the parameters of a nor-
mal mixture model which explains the data well, has been
heavily studied. The well known expectation maximization
method (EM) [13] is perhaps that best known approach and
we adopt it for our experiments using k-means clustering to
provide a starting point.

We now assume that an n-element normal mixture model
M has been built to model the database elements {y;}
and we refer to this as the empirical distribution. Each
mixture element M} is a normal density Ny, ,, and we
note by M, the zero mean density Ny, 0. So Pr(z|M;) =
Pr(z — pr|My). The system’s query to be classified is de-
noted ¢. Using the mixing probabilities Pr(M}) obtained
from EM, we may then compute the a posteriori compo-
nent probabilities Pr(My|z). These may be thought of as
a stochastic indication of z’s membership in each of the
mixture’s components. We will attribute to each y; an O;
which is a mixture of the M, determined by these stochastic
membership values. This is explained best by the derivation
which follows:

Pr(qly, M) = W-Pr(q-ylm (1)
1 n
T Pr(yM) ;Pr(q “y|My) - Pr(My)
1 n
= gy 2 Pl M) PriMe) - Pr(M)
1 S _
- W ' ZPr(q —y|My) - Pr(y|My) - Pr(My)

k=1

= Z Pr(q — y|My) Pr(My|y)
k=1

where Pr(qly, My) = Pr(q — y|M;) and

Pr(y|My) Pr(My)
Yoy Pr(y|M;) Pr(M;)

Pr(Mly) =

It is this formulation we use for all of our experiments.
In [21] various more complicated expressions are given cor-
responding to weaker or different assumptions. Finally we
observe that in the case of one mixture element n = 1,
mixture-distance reduces to the Mahalanobis distance from
the query ¢ to average face pu.

4.1 Efficient Computation

Observe first that the term Pr(My|y) does not depend on
the query and may therefore be pre-computed and recorded
as part of the database. Next recall from the basic the-
ory of multi-variate normal densities and quadratic forms,
that for each mixture element M} we may find a basis in
which the density’s covariance matrix is diagonal. This is
of course accomplished via unitary matrix Ej whose rows
consists of the eigenvectors of Xj,. If the vectors Eyy; are all
recorded in the database as well, and Ejq is computed be-
fore the database search begins, then the computation time
for mixture distance becomes linear, not quadratic in the
dimension of feature space. Note, however, that k vectors
must be stored for each database element y;. This storage
requirement can be reduced by the “hard VQ” approxima-
tion.

4.1.1 The Hard V@ Approximation

Focusing again on Pr(Mj|y) we may make another simplify-
ing assumption in order to further reduce computation and
storage space. Note that >, Pr(My|y) = 1. The assump-
tion which is typically referred to as Hard VQ (where VQ
stands for “vector quantization”), consists of replacing this
discrete probability function on {M}} by a simpler function
which assumes value 1 at a single point where the original
function is maximized, and zero elsewhere. Conceptually
this corresponds to hard decision boundaries and we would
expect it to affect the resulting computation significantly
only when a point y; is near to a decision boundary. We
will then refer to the original formulation as Soft VQ.

Space savings result from the hard VQ assumption since
we must now record in the database, each y; expressed in
only a single Eigenbasis corresponding to the distinguished
M}, (which must also be identified). This scheme is then
a linear time and space prescription for mixture-distance
computation.

5 Model Selection Techniques

In any statistical modeling approach in which the size
and nature of the models (their configuration) used may



vary, one faces the model selection problem.? The objec-
tive of model selection is, of course, not to better model the
training data, but to ensure that the learned model will gen-
eralize to unseen patterns. Many approaches to this funda-
mental problem have been described in the literature. The
key objective is always to prevent the model from becom-
ing too complex, until enough data has been seen to justify
it. The simplest result one might hope for is to somehow
select a single configuration which is appropriate for the
data and problem at hand. Another solution consists of
finding a probability function (or density) on configuration
space. Here “selection” becomes a soft process in which one
merely re-weights all of the possibilities. The first objective
is clearly a special case of the second. In this paper we
will ultimately adopt a very simple selection strategy, but,
as motivation, first discuss the problem at a more general
level.

Another subtlety associated with the term “selection” is
that it seems to imply that the final result is at most as
good as the best individual model. This is not the case. A
blended model can be better than any of its constituents as
shown in the experimental results of Section 6. A simple
example serves to illustrate this point. Suppose a timid
weather-man A predicts rain and sun each day with equal
probability while a second sure-of-himself weather-man B
always issues certain predictions, i.e. 100% of rain or 100%
chance of sun. Further assume that B is correct 2/3 of
the time. If the objective is to maximize the probability
assigned to long a series of trials, then it is easily verified
that one does best by blending their predictions, placing
weight 2/3 on A and 1/3 on B.

For simplicity we will assume a discrete setting in which
selection is from among M?' ..., M™. We seek non-
negative values di,...,d, summing to unity, such that
M = Y]", d¢M' represents a good choice. Here M is of
course our final model and each M’ may themselves be
complex models such as Gaussian mixtures. One approach
to model selection consists of Bayesian update in which the
starting point is a prior probability function on the configu-
ration patterns, and after each training example is predicted
by the model, a posterior distribution is computed.

Our purpose in this paper is to explore the basic effec-
tiveness of the mixture-distance approach so we have con-
fined ourselves a very simple form of model selection which
amounts to simply using a flat initial prior and not both-
ering to update it. That is, we assume all configurations
have equal probability and mix them (average) accordingly.
Bayesian learning and other approaches may be evaluated
in future work.

2Formally, the configuration of a parameterized model is just an
extension of its parameters.

5.1 Selecting between first and second or-

der models

A first order Gaussian model M; has a diagonal covari-
ance matrix containing estimates of the individual feature
variances and a mean vector consisting of an estimate of
the distribution’s expectation. The second order model M,
matches M, except that its off-diagonal covariance entries
may be non-zero and represent estimates of the feature’s
second order statistics. The second order model has of
course many more parameters, so if limited data is avail-
able one should worry about its ability to generalize. More-
over, when forming Gaussian mixtures, the available data
are essentially parceled out to mixture elements further
exacerbating the problem.

A mixture is just M = (1 — f)- My + f- M, f € [0,1].
Consider this mixture generatively where one first chooses
M, with probability 1 — f or My with probability f, and
then draws a sample at random according to the selected
model. The covariance matrix of the resulting data vectors
is easily seen to be X1 + f - (X2 — X1). This is just Xy with
it’s off diagonal elements multiplied by f.

Now unfortunately M is not necessarily Normally dis-
tributed despite the nature of M; and M,, so we employ
the known statistical expedient in which one approximates
a mixture with a single Gaussian. This leads to the follow-
ing heuristic which we employ in the experiments to follow:
The off-diagonal elements of the sample covariance matrix
are multiplied by f to form a single Gaussian model which
approzimately selects between first and second order statis-
tics.

This is of course exactly the ML estimate for the param-
eters of a single Gaussian trained from the mixed distri-
bution. The introduction of the f parameter has another
practical benefit. It we require f € [0,1) then the resulting
covariance matrix cannot be singular unless some feature
has exactly zero variance. Our experiments will focus on
three natural values: f =0, f = % and f ~ 1.2 We also
point out that f is employed everywhere in the statistical
process including the maximization step of EM.

5.2 Selecting the number of mixture com-
ponents

It is difficult to know a priori how many mixture elements
should be used to describe our database of facial features.
Again there are many approaches to this problem but we
adopt in some sense the simplest by fixing only the upper
end of a range, and mixing all with equal probability.

6 Experimental Results
To provide a baseline recognition rate to compare our
results to, we applied to simple Euclidean distance metric
to the database and obtained an 84% recognition level.
For simplicity we adopt a flat selection policy f = % to
decide between first and second order models, i.e. between

3We use f = 0.99.
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Figure 2: Recognition accuracy varies considerably with
mixture complexity. Both “soft” and “hard” VQ versions
of mixture distance are presented.

just the diagonal variance and the full covariance matrices.
Table 2 illustrates how f can significantly affect recogni-
tion accuracy. Notice that when the mixture consists of

Mixture Recog. Rate | Recog. Rate | Recog. Rate
Elements f=0 f=05 f~1
1 93% 91% 84%
2 86% 94% 84%
5 88% 94% 81%
mixture of NA 95% NA
1-10 mixtures

Table 2: The f parameter which selects first vs. second
order models has a potent effect on recognizer accuracy.

a single Gaussian, a first order variance model (f = 0) is
best and the full second order covariance model (f ~ 1)
is considerably worse. However, for mixture sizes 2 and 5,
an off diagonal weighting, f = % is best while the full sec-
ond order model with f == 1 still a distant third. The
point of Table 2 is not that the flat selection model can in-
crease the recognition rate from 93% to 94% but rather that
the recognition rate is consistently good using a flat selec-
tion, i.e. the recognition rate is both high and the variation
across mixture models is low. A flat prior is therefore robust
and eliminates the uncertainty associated with any choice
of first order variance or second order covariance models.
When using a Gaussian mixture model, the number of
mixtures present is often unknown. This is a significant
problem since the complexity of the Gaussian mixture also
affects recognizer performance in a significant and non-
monotonic way. This is illustrated by the graphs of Fig-
ure 2 in which models containing 1 through 10 Gaussians
were tested. The right graph shows the results using “soft-
VQ” mixture distance, and the left graph corresponds to

“hard-VQ”.

Discussing the soft vector quantization method first, we
notice that the peak recognition rate is 94% but that the
rate varies considerably as the number of mixture elements
changes. Some of this variation might have been reduced
if multiple EM starting points were used and the recog-
nition results averaged. However, as in the case of the f
parameter above, our experiments highlight the difficulty
of model selection. To alleviate this, we again propose a
flat stochastic selection scheme, i.e. we assume that each
model in the complexity range 1 — 10 is equally likely and
form a mixture of mixtures. The result is that 95% accu-
racy is achieved and this exceeds the performance of any
individual model. Once more though, the significance of
this results is not just the improvement in recognition rate
but also the fact that the best recognition rate is achieved
while simultaneously removing the uncertainty associated
with mixture selection.

The Hard V(@) version of mixture-distance is somewhat
attractive if computational cost is an important issue, as
described in Section 4. The left graph of Figure 2 shows its
performance which, like the soft VQ method, is highly vari-
able with mixture complexity. The best performance 95% is
attained for 5 mixture elements and exceeds the 94% max-
imum level of Figure 2. However when a flat mixture of
mixtures was formed as for the soft strategy, performance
of 94% resulted. Again, the conclusion to be drawn is that
mixtures of mixtures remove the uncertainty due to vari-
ability of recognition rate with mixture complexity while
simultaneously providing excellent performance.

Finally we report that limited experiments on the effect
of increasing database size suggest that performance de-
clines significantly when only a single mixture element is
used, and is far more stable given larger mixtures.

7 Concluding Remarks

We have demonstrated that the use of a simple form of
mixture-distance, along with a simple solution to the model
selection problem, increase performance on our face recog-
nition problem from 84% using Euclidean distance to 95%.
This provides strong motivation for careful consideration
when choosing an appropriate metric. A less impressive
but still significant increase from 93% to 95% was observed
when we compare the results of a single first order Gaus-
sian model, with the results using large mixtures of mix-
tures. Just as importantly, the recognition rate is consis-
tently good using a mixture of mixtures and flat priors on
both the order and model selection. In contrast, it was ob-
served that specific selection of a mixture model and order
statistics can lead to considerable variations in the recog-
nition rate. The mixture of mixtures is a robust technique
that eliminates this uncertainty. Nevertheless, further ex-
periments in the face recognition domain and others will be
necessary to evaluate the significance of the contribution
made by generalizing to second order models and mixtures.

Given the small size of our query database, and our
limited problem domain, it is not possible to conclu-



sively demonstrate the general effectiveness of the mixture-
distance approach. Nevertheless, our results suggest that
(1) it does lead to significant improvements over simple Eu-
clidean distance, (2) that flat stochastic selection is an ef-
fective solution to both model selection problems, (3) that
flat stochastic selection significantly reduces the otherwise
serious variability of recognition rate with model parame-
ters and (4) that the hard-VQ algorithm compares well with
the computationally more expensive soft-VQ.

It is also important to realize that the techniques of this
paper are quite independent of the particular feature set
we chose for experimentation. In fact, mixture-distances
can be applied to more direct forms of the image ranging
from raw pixels, through frequency transformations and the
results of principal component and eigenface analyses.

Preliminary work not reported in our experimental re-
sults, included approaches to feature selection based on en-
tropy measures. We discovered that subsets of our original
30 features performed as well using single Gaussian models.
An interesting area for future work consists of the integra-
tion of a feature selection capability into the full mixture-
distance framework.

In this paper we focused on a very restricted setting
in which only a single example of each face exists in the
database. If instead one assumes the availability of some
number of image pairs corresponding to the same person,
the task of estimating the parameters of our observation
process may be approached more directly. For example, as
queries are processed and assuming the machine receives
feedback as to whether or not its classification is correct, it
might adapt its distance function and one might consider
re-formulating the entire framework into a purely on-line
setting. A significant message of this paper however is that
even in the absence of such feedback, improved distance
functions can be found.

Finally we remark that our feature set will most likely
limit future gains in accuracy. Variations, however small
in 3D pose, camera position and characteristics, and many
other sources of error are not explicitly modeled and should
be whenever possible. However, forming a conceptual
framework towards this end is not nearly as difficult as the
associated computational and optimization issues.
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