
International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014), pp.173-188

http://dx.doi.org/10.14257/ijseia.2014.8.2.17

ISSN: 1738-9984 IJSEIA
Copyright ⓒ 2014 SERSC

A Complete and Comprehensive Metrics Suite for Object-Oriented

Design Quality Assessment

K.P. Srinivasan
1
 and Dr. T.Devi

2

1
Associate Professor of Computer Science

C.B.M. College, Kovaipudur, Coimbatore – 641 042, India
2
Head, Department of Computer Applications

School of Computer Science and Engineering

Bharathiar University, Coimbatore – 641 046, India
1
kpsriznivasanmail@gmail.com, tdevi5@gmail.com

Abstract

In software engineering, almost for the past three and a half decades, software

measurements and metrics have been the subject of a variety of criticisms and many software

metrics are proposed and given with inadequate methods for implementation and verification

of results. All the engineering systems except software engineering have used the measure

and measurement systems in day to day activities for the production of their product. In order

to measure process efficiency and product effectiveness in software engineering, this research

paper introduces the procedure based metrics system for software measurement and proposes

complete and comprehensive object-oriented design metrics for measuring the quality of the

design. The proposed set has been formulated drawing upon the more significant properties

and attributes. The proposed six metrics set will be more comprehensive and complete than

that of any one of the previous sets. The set of design quality attributes measured by the suite

of metrics are functionality, understandability, effectiveness, flexibility, extendibility and

reusability. The set of design properties measured using the metrics are encapsulation,

inheritance, coupling, cohesion and complexity. Each proposed metric has a range of 0 to 1

and desired values for measuring the design and hence, this is result-oriented metrics. The

computation formulae for design metrics have been proposed. The proposed metrics set and

methodology is complete since it is a result based metrics set. When compared with

previously defined metrics set, this metrics introduces improvements in methodology of

execution and gives the solution for the usage of metrics in software engineering.

Keywords: Software Quality Assessment, Software Measurement Procedure, Software

Quality Attributes, Result Based Software Metrics, Object-Oriented Metrics, Software Metrics

1. Introduction

The software metrics is an important research topic in software engineering [7, 10, 11, 15].

The software measurement and metrics gives better results for software development but, this

research faces difficulties and criticisms due to hardship in proving the work and

methodology [18, 22]. It is time to propose new software metric for software development

process and product. Presently, in software development, object-oriented software

development is mostly used and to assess the Object-Oriented Design (OOD) during design

phase, a new set of object-oriented metrics for quality attributes of object-oriented design has

been proposed here. The object-oriented design metrics and software measurement have been

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

174 Copyright ⓒ 2014 SERSC

discussed in Section 2. In Section 3, a comprehensive set of object-oriented metrics for design

quality attributes has been proposed. The proposed metrics suite will allow calculating the

metrics values in an easy manner when applied in object-oriented design. These proposed

metrics suites are formulated drawing upon the most significant characteristics of object-

orientation and it will be more comprehensive and complete than that of any of the software

metrics sets already proposed by researchers. In Section 4, the procedure based metric system

is discussed in detailed and introduced for the execution of proposed set of object-oriented

design metrics suite, quality attributes, design properties, range and desired values for object-

oriented design for easy evaluation. In Section 5, the analysis of empirical study and results of

proposed metrics in three different projects are discussed. In Section 6, the proposed metrics

are compared with metrics set proposed by eminent researchers in object-oriented software

metrics and Section 7 concludes with the merits of comprehensive metrics set.

2. Object-Oriented Metrics and Software Measurement

The metrics proposed by eminent researchers are called C-K metrics [5, 15, 19],

MOOD metrics [1, 9, 15, 21], L-K metrics [13, 15], QMOOD metrics [3] for object-

oriented design, Halstead metrics [8] and McCabe’s metrics [14] for traditional

software. The difficulties faced by metrics researchers are after software crisis period

and mostly aim on proving their soundness of software metrics in software engineering

and further, researchers are trying to move towards applied software metrics in software

industry applications and to prove the usefulness of software metrics in software

industry. A vast literature review has been conducted for this research [1-24] and it is

identified that software metrics research faced more difficulties towards proving

usefulness in industry, theoretical validity, empirical validity, defining precise metrics,

understanding, methodology of execution, execution time is more to find the metrics

values, metrics are executed only by experts, and accuracy on results.
The software measurement is a mechanism for characterizing, evaluating, and

predicting various software processes and products. The only way to improve any

software process is to measure specific attributes of the process and develop a set of

metrics based on quality attributes and then use the metrics to provide indicators that

will lead to strategy for improvement. Software measurement plays an important role in

understanding and controlling software development processes and products in software

engineering. A software organization establishes a software measurement program for

many reasons. Those include collecting good management information for guiding

software development and developing innovative and advanced techniques. In general,

many of the failures are caused by the inherent complexity of the software development

process, for which there often is no sound explanation. The problems can be

ameliorated however, by applying software metrics. This requires both the development

of improved software metrics and improved utilization of such metrics. Unfortunately,

the current state of software metrics poses many questions and difficulties in the states

of their “usefulness, application methodology, easy understanding and result oriented”

[22]. This research paper identifies the concepts to improve the software metrics for

object-oriented design in software engineering.

3. Comprehensive Object-Oriented Design Metrics Suite

At present, object-oriented design metrics (OOD Metrics) play a role in object-

oriented software development particularly in design phase because design determines

the structure of the software and finishing product. In general, in software development

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 175

cycle, once the design has been completed, it is a difficult task to change the design and

modifying the design from used design is time consuming and expensive. Hence, high

quality of design based on metrics evaluated design gives accurate final product and

reduces software cost in software development. It does not only cause the cost of its

own creation, but it also influences the cost of the following phases on coding, testing,

and maintenance phases [2, 4]. During the software development cycle, early well

software design is good for trying to make changes and extensions in the maintenance

phase. In order to create a quality of object-oriented design, a quantity of quality

assessment attribute is required in design phase. In past research, a strong correlation

between design metrics and maintainability of systems has been identified. In order to

improve software design in design phase, design measurement based on software

metrics is important and vital in software development. At present, improving quality

of software product, performance and productivity has become a primary goal of almost

every software industry and organization. The process of developing software,

maintaining and modification of developed systems has in many cases have been poorly

implemented, resulting in time and cost overruns [3, 10] Based on the above view, in

order to measure the design, this research paper proposes a comprehensive and

complete set of metrics for object-oriented design based on research study, experience

and discussions with the software experts [6, 18-23]. The proposed set of object-

oriented design metrics is shown in Figure 1. The proposed OOD metrics are explained

below with important viewpoints.

3.1. Metric 1: Methods-Per-Class Factor (MPCF)

The Method-Per-Class Factor (MPCF) is defined as the ratio of the Number of Public

Methods (NPM) to the sum of the Number of Public Methods (NPM) and Number of Non

Public Methods (NNPM) in the class. Method-Per-Class Factor excludes inherited methods.

Since influence of the inherited methods is taken into account later in the MIF metric (Metric

3), they are not included in the count for MPCF. A large value of MPCF shows that  the

class may have too much functionality,  the reusability of the class will increase, and 

implementation of methods is good.

NNPMNPM

NPM
MPCF




3.2. Metric 2: Attributes-Per-Class Factor (APCF)

The Attribute-Per-Class Factor (APCF) is defined as the ratio of the Number of Private

(Protected) Attributes (NPA) to the sum of the Number of Private Attributes (NPA) and

Number of Non Private Attributes (NNPA) in the class. Attribute-Per-Class Factor excludes

inherited attributes. Since influence of the inherited attributes is taken into account later in the

AIF metric (Metric 4), they are not included in the count for APCF. A large value of APCF

indicates that  the object has more properties in it,  the high potential impact on children,

and  the time and effort of the construction of a class.

NNPANPA

NPA
APCF




International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

176 Copyright ⓒ 2014 SERSC

Figure 1. Comprehensive Set of Object-Oriented Design Software Metrics Suite

3.3. Metric 3: Method Inheritance Factor (MIF)

The Method Inheritance Factor (MIF) is defined as the ratio of the Number of Inherited

Methods (NIM) to the sum of the Number of Inherited Methods (NIM) and the Number of

Defined Methods (NDM) in the class. A large value of MIF indicates that  more difficult to

predict the behavior of the class,  violated the abstraction implied by the super class, and 

generally formed a designing difficulty.

NDMNIM

NIM
MIF




3.4. Metric 4: Attribute Inheritance Factor (AIF)

The Attribute Inheritance Factor (AIF) is defined as the ratio of the Number of

Inherited Attributes (NIA) to the sum of Number of Inherited Attributes (NIA) and the

Number of Defined Attributes (NDA) in the class. A large value of AIF indicates that

the  subclass have design problem,  the subclass abstraction is not of high quality,

and  the testing will be difficult.

NDANIA

NIA
AIF




3.5. Metric 5: Coupling Factor (CF)

NAC is the Number of Actual Couplings with other classes and NPC is the Number of

Possible Couplings of this class with other classes of the system. Clearly, the number of

possible couplings of a class with other classes of the system is one less than the

number of classes. Coupling Factor for a class is defined as Number of other classes to

which coupled / (Number of classes – 1). Since, inheritance is already considered in

MIF (Metric 3) and AIF (Metric 4) metrics, inheritance is excluded in determining the

couplings. A large value of CF indicates that  the testing will be difficult, 

maintenance will be difficult and will lead to higher defects, and  it is not easier to

reuse the class in another application.

A New Set of
Object-Oriented
Design Metrics

Metric 6: Lack-of-Cohesion Factor (LCF)

Metric 5: Coupling Factor (CF)

Metric 2: Attribute-Per-Class Factor (APCF)

Metric 3: Method Inheritance Factor (MIF)

Metric 1: Methods-Per-Class Factor (MPCF)

Metric 4: Attribute Inheritance Factor (AIF)

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 177

3.6. Metric 6: Lack-of-Cohesion Factor (LCF)

NDMP is the Number of Dissimilar Method Pairs in the class and NPMP is the Number of

Possible Method Pairs in the class. If two methods access one or more common attributes,

then these two methods are similar. And if two methods have no commonly accessed

attribute, then these two methods are dissimilar. When there are many similar method pairs in

a class, then there is a good cohesion in the class. Lack-of-Cohesion is defined as if m is the

number of methods in the class, then the number of possible method pair is m (m-1)/2. A

large value of LCF indicates that  a class is not desirable,  classes should probably be

split into more sub classes, and  increases complexity of the development process.

4. New Procedure for Comprehensive Object-Oriented Metrics

A procedure based metrics system for object-oriented design metrics has been

proposed with simple steps and clear methodology. The design experts of a particular

domain can design a formal object-oriented design for the betterment of quality of the

software and it is very difficult to measure the object-oriented design quality. The

software metrics proposed by previous researchers were without any procedure for

execution of the metrics. Hence, it creates problem in understanding and execution. If

executed, it creates ambiguity on execution of software metrics. In order to avoid the

main criticism, this research paper proposes a procedural based approach [18, 20, 22]

for object-oriented design metrics. This procedure adopts and proposes the quality

attributes, design properties and desired values of the object-oriented design. The

procedure based metrics system is used to find the effectiveness of the object -oriented

design based on design properties such as quality attributes relationships of the design.

Figure 2 gives the procedure for the execution of object-oriented design metrics. This

procedure yields metric values of each class and finds the design properties. Each of the

execution steps is explained in a detailed manner.

NPMP

NDMP
LCF 

NPC

NAC
CF 

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

178 Copyright ⓒ 2014 SERSC

Step 1: Select the object-oriented design to measure the quality and

effectiveness.

Step 2: Select the quality attributes of the object-oriented design to measure

the particular domain.

Step 3: Identify the design properties of an object-oriented design for

identifying and related to the quality attributes selected in step 2.

Step 4: Form the related object-oriented design metrics and desired values to

quantify the design properties of step 3 and find design metrics-quality

attribute relationship.

Step 5: Calculate the metric value of each metric and tabulate their values for

each class of the entire system for easy operations and find effectiveness of the

design.

Step 6: Find the design attribute effectiveness using the metric values obtained

from step5 and further using computation formula. Analyze and check the

design attributes using the desired values and design properties weights.

Step 7: Closely examine the design attributes from computation formula for

quality attributes of class and metrics values, modify the individual classes if

necessary.

Figure 2. Procedure Based Metrics System for Design Metrics Suite

Execution of Step 1: Select the formal object-oriented design for measuring the

quality effectiveness. In this step, selected object-oriented designs are measured using

the quality attributes of final product that is object-oriented design.

Execution of Step 2: Select the quality attributes of the object-oriented design to

measure the particular domain. The set of design quality attributes measured by the

proposed suite of metrics of the Section 3 are: Functionality, Understandability,

Effectiveness, Flexibility, Extendibility and Reusability .

Figure 3 shows the design quality attributes related to object-oriented design and

these attributes are measurable easily using proposed metrics set of section 3. The

definitions of the object-oriented design quality attributes illustrated in Figure 3 are

given below:

Functionality: The operations carried and assigned to the classes of a design.

Understandability: This attribute enable to find the degree of understanding of the

design work.

Effectiveness: This refers to a designer’s ability to achieve the desired requirements.

Flexibility: This attribute refers to characteristics of the incorporation of changes in the

design.

Extendibility: This attribute refers to the incorporation of new requirements in the

existing design.

Reusability: This refers to the characteristics of reuse of the already available design.

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 179

Figure 3. Object-Oriented Design Quality Attributes

Execution of Step 3: Identify the design properties of an object-oriented design and

relate to the quality attributes of the design selected in step 2. This step forms the

design properties for measuring quality of an object-oriented design. The set of design

properties measured using the proposed metrics are: Encapsulation, Inheritance,

Coupling, Cohesion and Complexity. Figure 4 shows the design properties of object-

oriented design and these properties are measurable easily using proposed metrics set.

The definitions of the object-oriented design properties given in Figure 4 are:

Encapsulation: This refers to the enclosing of data and method within a single

construct.

Inheritance: This refers to relationship related to the level of nesting of classes.

Coupling: This refers to interdependency of the object on another object.

Cohesion: This refers to assess the relatedness of methods and attributes of the class.

Complexity: This refers to degree of difficulty of designing the design.

Execution of Step 4: Form the object-oriented design metrics and their desired range

values to quantify the properties for the step 3 and find design metrics -quality attribute

relationship. This step uses the proposed object-oriented design metrics given in section

3. Table 1 gives the relationships to design properties selected in step 3 and selected

object-oriented design metrics of step 4. The Table 2 shows the proposed range of

values and desired values of object-oriented design metrics and Table 3 gives the design

metrics – quality attributes relationships. In order to identify the design properties that

would yield a particular quality attribute, a detailed study and extensive analysis have

been carried out from research work of S.R.Chidamber and C.F. Kemerer (1994), B.

Kitchenham, S.L. Pfleeger and N. Fenton (1995), V.R. Basili, L.C. Briand and W.L.

Melo (1996), J. Bansiya and C.G. Davis (2002), N.E. Fenton and Pfleeger (2004), Kan,

S.H(2006), K.P. Srinivasan and T. Devi (2009, 2011, 2014) and R. Vir and P.S. Mann

(2013) [3- 5, 7, 12, 18, 20, 22-24]. Table 3 gives the identification of each of the design

properties on the quality attributes and a multiplication symbol mark X indicates that

the design property has weight on the quality attribute.

Object-Oriented Design
Quality Attributes

Reusability

Extendibility

Understandability

Effectiveness

Functionality

Flexibility

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

180 Copyright ⓒ 2014 SERSC

Figure 4. Object-Oriented Design Properties

Execution of Step 5: Calculate the object-oriented design metric values of each metric

and tabulate the values for each class of the entire system for easy usage and find

quality effectiveness of the design. Apply the metrics on the object-oriented design for

quality measurement and get the values from the design and tabulate the values received

from the measurement. Based on the metric values, the next step 6 calculates the design

attributes quality effectiveness of the design.

Execution of Step 6: Find the quality of the design using the metric values and check

the desired values and range of values and based on metric values, find the quality of

the design metrics – quality relationships. A good system design will result in a value

closer to desired value for each of the metric values of class and if a class has a closer

desired value then the design needs not to be revised and improved. This step evaluates

the quality of design using the desired values which are defined by the design experts

for a particular domain environment and application. The desired values given in Table

2 are acceptably good.

Table 1. Design Metrics for Design Properties of the Design

Table 2. Ranges and Desired Value for Design Metrics

Design Metric Range of Metric Desired Value

MPCF 0 to 1 1

APCF 0 to 1 1

MIF 0 to 1 0

AIF 0 to 1 0

CF 0 to 1 0

LCF 0 to 1 0

Design Property Design Metrics

Complexity MPCF

Encapsulation APCF

Inheritance, Abstraction MIF

Inheritance, Abstraction AIF

Coupling CF

Cohesion LCF

Object-Oriented Design
Properties

Complexity

Inheritance

Coupling

Encapsulation

Cohesion

Abstraction

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 181

Table 3. Design Metrics – Quality Attributes Weighted Relationships

The design metric to quality attribute relationship shows the relative significance of design

properties that influence a quality attribute of the design. Table 2 shows the desired and range

values of each metric. The Tables 4 and 5 show the computation formula for quality attributes

and desired values of computation formula for quality attributes respectively. The

computation formula for quality attribute and the corresponding desired value will help in

identifying the quality of attributes.

Execution of Step 7: Closely examine the quality of the design of class based on

desired value and computed formulas values and modify the individual classes if

necessary. After checking the design with desired values of each class, it must be

improved if any class is if unacceptable desired values. Then those classes are closely

examined and improved if possible for better design.

Table 4. Computation Formula for Quality Attributes

Table 5. Quality Attributes, Range and Desired Values of Computation Formula

Design

Metric F
u

n
c
ti

o
n

a
li

ty

 U
n

d
e
r
st

a
n

d
a

b
il

it
y

 E
ff

e
c
ti

v
e
n

e
ss

 F
le

x
ib

il
it

y

 E
x

te
n

d
ib

il
it

y

 R
e
u

sa
b

il
it

y

MPCF
X X

APCF X X X

MIF X X

AIF X X

CF X X X X

LCF X X X

Quality Attribute Computation Formula

Functionality (MPCF+(1-CF))/2

Understandability (APCF+(1-CF)+(1-LCF))/3

Effectiveness (APCF+(1-MIF)+(1-AIF)/3

Flexibility (APCF+(1-CF))/2

Extendibility ((1-MIF)+(1-AIF))/2

Reusability (MPCF+(1-CF)+(1-LCF))/3

Quality Attributes Range of Attribute Desired Value

Functionality 0 to 1 1

Understandability 0 to 1 1

Effectiveness 0 to 1 1

Flexibility 0 to 1 1

Extendibility 0 to 1 1

Reusability 0 to 1 1

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

182 Copyright ⓒ 2014 SERSC

This section proposes the procedure for execution of proposed metrics in order to

measure the effectiveness of design. This section also proposes the quality attributes,

design properties, range and desired values of each metric and relationships of design

metrics-quality attributes. Any object-oriented designer or metrics expert can check

their designs for better development of software. This section gives the strong and

unambiguous execution steps and methodology of execution on software measurement

field for improvement of usage of software metrics in software industry and

organization. Next section explains the empirical study, analysis and results of

proposed metrics.

5. Empirical Study, Analysis and Results

The implementation of empirical studies is conducted for three different projects for

object-oriented design metrics. Project 1 is software that assists Air Gourmet in deciding

whether to continue supplying special meals to passengers who request them. The product

will allow the client to enter a reservation, and generate the information needed to administer

the special meal program. Project 2 is a software that assists a company named Martha

Stockton Greengage Foundation in making decisions whether to give loan to a couple by

keeping property on mortgage [16, 17]. Project 3 is an object-oriented system called Trader

System. The projects are referred here as Project 1, Project 2 and Project 3. The descriptive

statistics such as Minimum (Min), Maximum (Max), Mean, Median and Standard Deviation

[6] are calculated for object-oriented design metrics. The computation formula for quality

attributes of project 1, project 2, and project 3 are calculated. The following observations are

made from applying the metrics on project 1. The Table 6 provides common descriptive

statistics for the metric distributions of Project 1. Figure 5 shows the distributions of analyzed

object-oriented design metrics for project 1. The MPCF and APCF values are medium in the

project 1. This shows that attributes and methods of a class are at medium level and

functionality, reusability are a minimum and properties of the classes on impact of class

through inheritance is medium. The MIF and AIF values are medium in project 1. This shows

that inheritance used in all the classes of project1 are medium level and abstraction of the

classes is maintained and testing time is normal. The MIF value is average for project 1 is

observed and that shows that there are very less methods in a super class. The MIF and AIF

measures can provide a measure of information hiding incorporated by software designers.

The value of AIF is medium suggesting medium use of inheritance. The CF measures the

complexity of the software by counting the number of classes and coupling of the classes to

other classes and CF value is less in project 1, hence classes are easy to understand and

maintain. CF has minimum level indicating that classes are declared without other class’s

accesses. The LCF values are maximum level because the number of dissimilar pairs of

methods having access to common attributes is more than the number of pairs of method

having common attributes. It implies that classes are less cohesive.

Table 6. Descriptive Statistics of Project 1 Design Metrics

Metric Min Max Mean Median Standard

Deviation

MPCF 0.3 1.0 0.5 0.4 0.2

APCF 0 1.0 0.5 0.9 0.5

MIF 0 0.8 0.4 0.3 0.4

AIF 0 1.0 0.5 0.6 0.4

CF 0.1 0.5 0.2 0.2 0.2

LCF 0.7 1.0 0.9 0.9 0.1

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 183

The Table 7 provides the descriptive statistics of computation formula of Project 1. The

Figure 6 shows the distributions of analyzed computation formula result of project 1

compared with project 2 and project 3. The understandability, effectiveness, extendibility and

reusability values are average in the project 1 attributes. This shows that declared attributes

and methods of the classes are of medium level. The functionality and flexibility is good and

maximum compared to all other attributes of project 1. The computation formula of attributes

and design metrics of project 1 are average values that reflect that project 1 is normal in

object-oriented design. The Table 8 provides descriptive statistics for the metric distributions

of Project 2 and Figure 5 shows the distributions of analyzed object-oriented design metrics

for all projects.

Table 7. Descriptive Statistics of Project 1 Computation Formula

Table 8. Descriptive Statistics of Project 2 Design Metrics

The MPCF value is high and APCF, LCF values are medium for project 2. This shows that

methods of a class are high and functionality and reusability are maximum. The MIF, AIF,

and CF values are low in value for project 2. This shows that minimum level of inheritance is

used in all the classes of the project 2. As the MIF value is low for project 2 there are very

few methods in a super class. The MIF and AIF measures can provide the amount of

information hiding incorporated by software designers. The low AIF value indicates a

medium use of attribute inheritance. The CF measures the coupling of the classes to other

classes and CF value is low in project 2, hence classes are easy to understand and maintain.

The LCF values are of medium level because the number of dissimilar pairs of methods

having access to common attributes is more than the number of pairs of methods having

common attributes. It implies that classes are less cohesive. Table 9 provides the descriptive

statistics of computation formula of Project 2 and Figure 6 shows the distributions of

analyzed computation formula result of project 2 compared with project 1 and project 3. The

understandability, effectiveness, and reusability values are medium in the project 2. The

functionality and flexibility is medium and extendibility is maximum value in project 2. The

F
u

n
c
ti

o
n

a
li

ty

U
n

d
e
r
st

a
n

d
a

b
il

it
y

E
ff

e
c
ti

v
e
n

e
ss

F
le

x
ib

il
it

y

E
x

te
n

d
ib

il
it

y

R
e
u

sa
b

il
it

y

MIN 0.4 0.1 0.1 0.2 0.1 0.3

MAX 1.0 0.7 0.9 0.9 1.0 0.9

MEAN 0.7 0.5 0.6 0.7 0.6 0.5

MEDIAN 0.6 0.6 0.7 0.9 0.5 0.5

STD. 0.2 0.3 0.3 0.3 0.4 0.2

Metric Min Max Mean Median Standard Deviation
MPCF 0.8 1.0 1.0 1.0 0.1
APCF 0 1.0 0.6 1.0 0.5
MIF 0 0.4 0.1 0.3 0.2
AIF 0 0.4 0.2 0.4 0.2
CF 0 0.8 0.3 0.3 0.3

LCF 0 1.0 0.6 0.7 0.3

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

184 Copyright ⓒ 2014 SERSC

results of computation formula of attributes of project 2 design reflect that project 2 is normal

in object-oriented design. Table 10 provides common descriptive statistics for the design

metric distributions of Project 3 and Figure 5 shows the distributions of analyzed mean values

of object-oriented design metrics for project 3. The APCF value is maximum for project 3.

This shows that the properties of the classes and impact of class through inheritance are high.

Table 9. Descriptive Statistics of Project 2 Computation Formula

Table 10. Descriptive Statistics of Project 3 Design Metrics

The MPCF, MIF and AIF values are above average value for project 3. This shows that

inheritance used in the classes of project 3 are of average and medium level. MIF value of

Project 3 is above average and it shows that there are a good number of methods in a super

class. The MIF and AIF measures can indicate the amount of information hiding. The value

of AIF being medium suggests that there is medium use of attribute inheritance. For project 3,

CF measures are low compared to all other metrics values. CF value is less in project 3, hence

classes are easy to understand and reuse. Low LCF value indicates that classes are cohesive in

Project 3. The Table 11 provides the descriptive statistics of computation formula of Project 3

and Figure 6 shows the distributions of analyzed mean values for project 3. The

understandability, flexibility, and reusability values of Project 3 are high and these attributes

indicate that the design is good. The functionality and effectiveness are medium for Project 3.

The extendibility is low value in Project 3 compared to all other attributes of the project 3.

The design attributes values of project 3 reflect that the project 3 is good in object-oriented

design. The summary statistics of mean values of design metrics for Project 1 to Project 3 are

shown in Figure 5. It shows all the corresponding metric values of the projects. In Figure 5,

the metrics value of classes is on Y-axis and the defined metrics MPCF, APCF, MIF, AIF,

CF, and LCF are given in X-axis.

F

u
n

c
ti

o
n

a
li

ty

U
n

d
e
r
st

a
n

d
a

b
il

it
y

E
ff

e
c
ti

v
e
n

e
ss

F
le

x
ib

il
it

y

E
x

te
n

d
ib

il
it

y

R
e
u

sa
b

il
it

y

MIN 0.6 0.1 0.7 0.5 0.6 0.4

MAX 1.0 0.8 1.0 1.0 1.0 1.0

MEAN 0.8 0.6 0.8 0.7 0.9 0.7

MEDIAN 0.9 0.7 0.7 0.5 1.0 0.7

STD. 0.1 0.3 0.1 0.3 0.2 0.2

Metric Min Max Mean Median Standard

Deviation

MPCF 0.3 1.0 0.8 1.0 0.3

APCF 0.7 1.0 0.9 0.9 0.1

MIF 0.4 1.0 0.7 0.8 0.3

AIF 0 0.9 0.7 0.8 0.3

CF 0 0.8 0.2 0.1 0.3

LCF 0 1.0 0.3 0.7 0.4

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 185

Table 11. Descriptive Statistics of Project 3 Computation Formula

0

0.2

0.4

0.6

0.8

1

MPCF APCF MIF AIF CF LCF

Project 1

Project 2

Project 3

Figure 5. Analyzed Design Metrics of Project 1, Project 2 and Project 3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Project 1

Project 2

Project 3

Figure 6. Metric Values of Project 1, 2 and 3 Attributes

F
u

n
c
ti

o
n

a
li

ty

U
n

d
e
r
st

a
n

d
a

b
il

it
y

E
ff

e
c
ti

v
e
n

e
ss

F
le

x
ib

il
it

y

E
x

te
n

d
ib

il
it

y

R
e
u

sa
b

il
it

y

MIN 0.5 0.6 0.3 0.9 0.1 0.6

MAX 1.00 1.0 0.7 1.0 1.0 1.0

MEAN 0.8 0.9 0.5 0.9 0.4 0.9

MEDIAN 0.9 0.9 0.5 0.9 0.3 0.8

STD. 0.2 0.1 0.1 0.1 0.3 0.1

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

186 Copyright ⓒ 2014 SERSC

6. Comparison and Achievements of Comprehensive Metrics Suite

The comparison of proposed metrics for object-oriented design with C-K metrics [5, 15,

19], MOOD metrics [1, 9, 21], L-K metrics [14, 15] and QMOOD metrics [3] are shown in

Table 12. As, it can be seen from Table 12, that the proposed metrics are better than the

existing metrics in characteristics such as level of understanding and quantifiability of results.

Table 12. Comparison of Comprehensive Object-Oriented Design Metrics

The proposed procedure based object-oriented design metrics system has the following

achievements and improvements over previous metrics available in literature: The complete

metrics set having the range and desired values for measuring the design. The range value

for each metric is between 0 and 1 hence result oriented.The computation formula values

between 0 and 1 hence result oriented. The quality attributes of design are given for quality

assessment of the design. These metrics viewpoints are given for assessment. These

metrics can be used for small, medium and large designs. The procedure followed is

simple, clear, understandable, unambiguous and consistent. The procedural approach is

given for execution of software metrics in easy manner. The metric set is more

comprehensive and complete hence major properties such as abstraction, encapsulation,

inheritance, complexity, coupling and cohesion are analyzed. The metrics values are easily

obtainable hence student can check their design.

7. Conclusion

This research paper proposes a comprehensive set of six object-oriented design

metrics for measuring design and it also proposes the design attributes, design

properties, desired metric values, and range of metrics values for object-oriented

design. These proposed metric set will be more comprehensive, complete and quickly

measure the properties of object- oriented design. This paper has introduced a

procedure based metrics system for execution of proposed comprehensive object-

oriented metrics and the achievements of proposed design metrics in comparison with

the existing metrics have been clearly brought out.

Description C-K

Metrics

MOOD

Metrics

L-K

Metrics

QMOOD

Metrics

Comprehensive

Metrics

Level of

Understanding

Moderate Moderate Moderate Moderate Easy

Procedure for

Calculation

No No No No Yes

Quantifiability

of Results

Partial Partial Partial Partial High

Computation

Formula

No No No Yes Yes

Range Values

Proposed

No Available Partially

Available

Partially

Proposed

Completely

Proposed

Desired Value

Proposed

Not

Mentioned

Available Partially

Available

Partially

Proposed

Completely

Proposed

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

Copyright ⓒ 2014 SERSC 187

References

[1] F. B. Abreu and W. Melo, “Evaluating the Impact of Object-Oriented Design on Software Quality,”

Proceedings of the 3rd International Software Metrics Symposium, IEEE, Berlin, Germany, (1996).

[2] R. K. Bandi, V. K. Vaishnavi and D. E. Turk, “Predicting Maintenance Performance Using Object-Oriented

Design Complexity Metrics,” IEEE Transactions on Software Engineering, vol. 29, no. 1, (2003) January,

pp. 77-87.

[3] J. Bansiya and C. G. Davis, “Hierarchical Model for Object-Oriented Design Quality Development”, IEEE

Transactions on Software Engineering, vol. 28, no. 1, (2002), pp. 4-17.

[4] V. R. Basili, L. C. Briand and W. L. Melo, “A Validation of Object-Oriented Design Metrics as Quality

Indicators”, IEEE Transactions on Software Engineering, vol. 22, no. 10, (1996) October, pp. 751-761.

[5] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-Oriented Design”, IEEE Transactions on

Software Engineering, vol. 20, no. 6, (1994) June, pp. 476-493.

[6] T. Devi and K. P. Srinivasan, “Statistical Techniques in Software Quality Measurement and Metrics”,

Proceeding of UGC Funded National Conference on Recent Advances in Statistics and Computer

Applications, Bharathiar University, Coimbatore, (2010) December.

[7] N. E. Fenton and S. L. Pfleeger, “Software Metrics: A Rigorous and Practical Approach”, Thomson Asia,

(2004).

[8] M. H. Halstead, “Elements of Software Science”, Elsevier, (1977).

[9] R. Harrison, S. J. Counsel and R. V. Nithi, “An Evaluation of the MOOD Set of Object-Oriented Software

Metrics”, IEEE Transactions on Software Engg., vol. 24, no. 6, (1998), pp. 491-496.

[10] C. Jones, “Applied Software Measurement: Global Analysis of Productivity and Quality”, Tata McGraw-Hill

Edition, India, (2008).

[11] S. H. Kan, “Metrics and Models in Software Quality Engineering”, Pearson Education, India, (2006).

[12] B. Kitchenham, S. L. Pfleeger and N. Fenton, “Towards a Framework for Software Measurement

Validation”, IEEE Transactions on Software Engineering, vol. 21, no. 12, (1995), pp. 929-943.

[13] M. Lorenz and J. Kidd, “Object-Oriented Software Metrics”, Prentice Hall, (1994).

[14] T. J. McCabe, “A Complexity Measure”, IEEE Transactions on Software Engineering, vol. se-2, no. 4,

(1976) December, pp. 308-320.

[15] R. S. Pressman, “Software Engineering A Practitioner’s Approach”, 5th Ed, Mc-Graw Hill, (2001).

[16] S. R. Schach, “Software Engineering with Java”, Tata McGraw-Hill Edition, India, (1998).

[17] S. R. Schach, “Object-Oriented and Classical Software Engineering”, Tata MGHill Ed, India, (2002).

[18] K. P. Srinivasan and T. Devi, “Procedure for Selection of an Efficient Object-Orientated Design”,

Proceeding of UGC Funded National Conference on Recent trends in Software Engineering, Sullamussalam

Science College, Mallapuram, Kerala, (Best Paper of the Conference), (2009).

[19] K .P. Srinivasan, T. Devi and V. Thiagarasu, “Analysis of Chidamber - Kemerer Metrics for Object-

Orientated Design”, Proceeding of National Conference on Emerging trends in Computer Science,

Avinasilingam University, Coimbatore, (2009).

[20] K. P. Srinivasan and T. Devi, “Design and Development of a Procedure to Test the Effectiveness of the

Object-Oriented Design”, International Journal of Engineering Research and Industrial Applications, vol. 2,

no. VI, (2009).

[21] K. P. Srinivasan and T. Devi, “A Case Study Approach for Application of MOOD Metrics in Object-

Oriented Design”, Proceedings of the International Conference on Global Computing and Communication,

Hindustan University, Chennai, (2009) December.

[22] K. P. Srinivasan and T. Devi, “Design and Development of a Procedure for new Object Oriented Design

Metrics”, International Journal of Computer Applications, vol. 24, no. 8, (2011), pp. 30-35.

[23] K. P. Srinivasan and T. Devi, “A Novel Software Metrics and Software Coding Measurement in Software

Engineering”, International Journal of Advanced Research in Computer Science and Software Engineering,

vol. 4, no. 1, (2014) January.

[24] R. Vir and P. S. Mann, “A Hybrid Approach for the Prediction of Fault Proneness in Object Oriented Design

Using Fuzzy Logic”, Journal Academic Industrial Research, vol. 1, no. 11, (2013) April, pp. 661-666.

International Journal of Software Engineering and Its Applications
Vol.8, No.2 (2014)

188 Copyright ⓒ 2014 SERSC

Authors

K. P. Srinivasan received his Master of Computer Applications

degree from Bharathiar University, Coimbatore, India in 1993 and

M.Phil degree in Computer Science from the Bharathiar University,

Coimbatore, India in 2001. Presently, he is working as an Associate

Professor of Computer Science in C.B.M. College, Kovaipudur,

Coimbatore under Bharathiar University, Coimbatore, India since 1997.

He is doing his research work in Software Engineering. He has published

five conference papers and five journal papers. His current research

interests are in the areas of Software Engineering and Object-Oriented

Systems.

Dr T. Devi received Master of Computer Applications Degree from

P.S.G. College of Technology, Coimbatore, India in 1987 and the Ph.D.

degree from the University of Warwick, United Kingdom in 1998.

Presently, she is working as an Associate Professor and Head of the

Department of Computer Applications, School of Computer Science

Engineering, Bharathiar University, Coimbatore, India. Prior to joining

Bharathiar University, she was an Associate Professor in Indian Institute

of Foreign Trade, New Delhi, India. She has contributed more than 140

papers in various Journals and Conferences. Her current research

interests are in the areas of Software Engineering and Concurrent

Engineering.

