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Abstract  

 

Cytochrome P4503A4 (CYP3A4) is the most important enzyme in drug metabolism and since it 

is the most frequent target for pharmacokinetic drug-drug interactions (DDI) it is highly 

desirable to be able to predict CYP3A4-based DDI from in vitro data.  In this study, the 

prediction of clinical DDI for 30 drugs on the pharmacokinetics of midazolam, a probe substrate 

for CYP3A4, was done using in vitro inhibition, inactivation, and induction data.  Two DDI 

prediction approaches were employed which account for effects at both the liver and intestine.  

The first was a model which simultaneously combines reversible inhibition, time-dependent 

inactivation, and induction data with static estimates of relevant in vivo concentrations of the 

precipitant drug to provide point estimates of the average magnitude change in midazolam 

exposure.  This model yielded a success rate of 88% in discerning DDI with a mean fold error of 

1.74.  The second model employed was a computational physiologically-based pharmacokinetic 

model that uses dynamic estimates of in vivo concentrations of the precipitant drug as well as 

accounts for interindividual variability among the population (SimcypTM).  This model yielded 

success rates of 88% and 90% (for ‘steady-state’ and ‘time-based’ approaches, respectively) and 

mean fold errors of 1.59 and 1.47.  From these findings it can be concluded that in vivo DDI for 

CYP3A4 can be predicted from in vitro data, even when more than one biochemical 

phenomenon occurs simultaneously. 
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Introduction 

A major focus of the pharmaceutical industry is directed towards early prediction of the 

likelihood and the magnitude of drug-drug interactions.  DDI's involving CYP3A4 are 

particularly important, as mibefradil, terfenadine, astemizole, cisapride and cerivastatin were all 

removed from the US market in recent years due, at least in part, to safety issues exacerbated by 

CYP3A4 DDI.  An understanding of the risk for DDI associated with a new chemical entity is a 

key component of both the drug discovery and development processes. The earlier that risks for 

DDIs can be identified for new chemical entities under consideration as potential drugs, the 

greater the probability that this risk can be removed via drug design efforts.   

For compounds already in clinical development, in vitro DDI projections can be utilized to 

prioritize and optimize the design of the appropriate clinical DDI studies.  Evaluations of the 

impact of a new chemical entity (Palmer et al., 2001) on a specific enzyme pathway utilizing 

probe substrates may be extrapolated to other drugs whose clearances are via the same pathway 

and to situations where several pathways may be impacted simultaneously.  Alternatively, NCEs 

may be evaluated for DDI via interactions with drugs determined to have potential for co-

medication and, in this situation, the impacts on multiple pathways may need to be considered 

for study design optimization.  Evaluations built using in vitro probe substrate data and simulated 

patient populations also enable the scientist to predict the range of magnitude of DDI in 

individual subjects who may have reduced metabolic capacity. 

Numerous methods of predicting these interactions (Galetin et al., 2008), (Ohno et al., 2008), 

(Brown et al., 2006), (Blanchard et al., 2004), (Ito et al., 2004), (Kanamitsu et al., 2000a) have 

utilized variety of mathematical models that require static values of precipitant concentrations in 

the intestine and liver for the prediction of DDI.  However, at present, there is no consensus on 
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the in vivo precipitant concentration that should be used.  For instance, unbound systemic 

concentration has been widely used for predicting DDI caused by induction and time-dependent 

inhibition while estimated unbound portal concentration has been the preferred value for 

reversible inhibition. 

One of the difficulties when conducting a DDI risk assessment is how to integrate data from in 

vitro interaction experiments, such as reversible inhibition studies, time-dependent inhibition 

studies, and induction studies, into an overarching evaluation of the impact of the co-

administration of one compound with another.  An example of this is the herbal agent St. John’s 

Wort, where it was demonstrated to be a potent in vitro inhibitor of CYP3A4 (Obach et al., 

2000).  However, in vivo it was shown to be an inducer of CYP3A4, and this was also seen in in-

vitro induction studies (Moore et al., 2000).  Projecting potential clinical DDIs from in vitro data 

has progressed from specific endpoint analysis based on the relationship between the projected 

therapeutic concentration of the drug and its reversible binding affinity for the particular enzyme 

of interest (I/Ki) (Kanamitsu et al., 2000a), (Tucker et al., 2001), (Bachmann and Lewis, 2005), 

(Blanchard et al., 2004) to a comprehensive analysis including the simultaneous evaluation of the 

potential impact of reversible inhibition, time-dependent inhibition, and induction (Fahmi et al., 

2008b).    

The idea of a mathematical model for drug-drug interactions, developed from in vitro data, offers 

a quantitative approach to improving decision making in drug development and discovery.   With 

the Simcyp approach, the combined knowledge of in vitro DDI data, and clinical 

pharmacokinetics of the drug can be used to simulate various clinical DDI trial scenarios (Einolf 

et al., 2007), (Jamei et al., 2009), to identify an efficient and effective clinical DDI study 
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strategy.  This eliminates the need for numerous unnecessary clinical DDI studies and accelerates 

the availability of therapy to patients.  

In this study, we have compared two models for predicting DDIs.  We have utilized a 

mathematical model which simultaneously incorporates reversible inhibition, time-dependent 

inhibition, and induction for both impact on liver and intestines for CYP3A4-based DDI.  In 

addition, we have utilized the Mechanistic Dynamic Model from a population based ADME 

simulator (Simcyp®).  

Methods 

Data Source 

Clinical midazolam DDI data were collected from the University of Washington Metabolism and 

Transport drug interaction database (http://www.druginteractioninfo.org/).  Thirty drugs 

involving 50 clinical DDI studies were chosen for this study, based on available data from 

clinical studies with midazolam.  In vitro data reflecting competitive inhibition, time-dependent 

inhibition and induction of CYP3A4 were collected from the scientific literature (Table 2).   In 

vitro competitive inhibition data as well as time-dependent inhibition data used in this study were 

from enzyme kinetic data gathered using human liver microsomes.  In vitro induction data used 

were from human cryopreserved hepatocytes system.  Of the 30 drugs used in this study, 13 

drugs exhibited competitive inhibition with an IC50 of less than 10 µM, 12 drugs exhibited time-

dependent inactivation, and 11 compounds exhibited induction.  Five drugs exhibited all three 

interaction mechanisms in vitro (troleandomycin, fluoxetine, mibefradil, saquinavir and 

verapamil).    
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CYP3A4 Prediction Mathematical Equation 

The equation used to predict the magnitude of DDI (expressed as AUC’/AUC) was previously 

reported and is shown below, expressed as the ratio of area under the exposure – time curve in 

the presence (AUC’po) and absence (AUCpo) of a pharmacokinetic drug-drug interaction (Fahmi 

et al., 2008b).  This combined mathematical model is based on calculating the net effect of 

competitive inhibition, inactivation and induction in both the intestine and liver. 
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[I]G and [I]H represent concentrations of inhibitor relevant for the intestine and liver, 

respectively.  For the intestine, an estimate for [I]G was made using the equation described by 

(Rostami-Hodjegan et al., 2004) for all calculations.  For liver, free systemic Cmax was used for 
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the inactivation (term A) and induction (term B) portions of the expression, while free portal 

Cmax was used for the reversible inhibition portion of the expression (term C).   The true 

numerical value for CYP3A4 enzyme degradation rate kdeg can make a huge impact on the 

prediction but it cannot be directly measured in humans in vivo.  A wide variety of values of kdeg 

have been published (Thummel and Wilkinson, 1998), (Venkatakrishnan et al., 2003), 

(McGinnity et al., 2006), (Riley et al., 2007), (Yang et al., 2008), (Galetin et al., 2008).  In 

previous reports, the value used for kdeg were derived from modeling the time course of reversal 

of DDIs caused by induction or inactivation of P450 enzymes in human study subjects.  The 

current most used values for the degradation rates for CYP3A4 (kdeg) are 0.00032 min-1 based on 

t1/2 = 36 hr and 0.00048 min-1 based on t1/2 = 24 hr, for the liver and intestine, respectively 

(Obach et al., 2005; Obach et al., 2007; Fahmi et al., 2008b).   Emax, EC50 and “d” represent the 

maximum fold induction observed in cultured human hepatocytes, the concentration of inducer 

associated with half-maximum induction, and a calibration factor “d” (0.3), as described 

previously (Fahmi et al., 2008b).  

FG has been estimated by several approaches and is well described by Galetin et al., 2008, where 

the reported value of FG for midazolam ranges between 0.4 to 0.79 (Ito et al., 2004), (Brown et 

al., 2006), (Chien et al., 2006).  In this study, the value used for fraction of midazolam evading 

first pass intestinal metabolism (FG) was 0.57 (Obach et al., 2007), which is closer to the default 

midazolam value embedded in Simcyp (0.5). 

In this study, the value used for the fractional contribution of CYP3A4 to the metabolism of 

midazolam in the liver (fm) was 0.93 (Obach et al., 2007) and the value embedded in Simcyp is 

0.99.     
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Simcyp 

Simcyp® Population-Based ADME Simulator (version 7.1) was used to perform time-based and 

steady-state simulations of clinical drug-drug interaction studies according to the referenced 

publications, or from Pfizer internal clinical study reports.  A northern European Caucasian 

population was used for the demographics data as provided in the software, and specific study 

designs were replicated with respect to age range, gender ratio, and number of subjects.  Model 

input parameters for midazolam were used as supplied in the software.  Model input parameters 

for the following precipitant drugs were used as defined in the software; fluconazole, 

ketoconazole, terbinafine, fluvoxamine, diltiazem, erythromycin, fluoxetine, saquinavir, 

verapamil and itraconazole.  For the other precipitant drugs (roxithromycin, gatifloxicin, 

simvastatin, azithromycin, clarithromycin, cimetidine, atomoxatine, chlorzoxazone, ranitidine, 

mibefradil, troleoandomycin, nefazodone, paracoxib, valdecoxib, atorvastatin, carbamazepine, 

rifampin and conivaptan), input parameters were obtained from various literature sources or 

estimated (Table 1).  The predicted effects of co-administration of the various CYP3A4 

precipitants on midazolam exposure were determined using Simcyp, where simulations were 

carried out using two different approaches, time-based and steady-state. Each drug was simulated 

with 10 trials and 10 subjects which led to a total of 100 simulations for each combination. 

Comparisons of model predictability 

The bias of the prediction models was assessed from the geometric mean-fold error (GMFE), 

which equally weighs over- and under-predictions and the root-mean-square error (RMSE) was 

calculated to provide a measure of the precision for the predictions:      

( )
sprediction ofnumber 

DDI observed - DDI predicted
  RMSE

2
∑=  
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Results 

The in vivo drug-drug interaction data gathered from the University of Washington database and 

utilized in this study are summarized in Table 1.  Thirty drugs involving 50 midazolam clinical 

DDI studies were included in this study.  In eight of the clinical studies, midazolam was 

administered intravenously (flumazenil, parecoxib, atorvastatin, fluconazole, gatifloxicin, 

ketoconazole, nitrendipine and saquinavir).  Two precipitant drugs flumazenil and parecoxib 

were administered intravenously.  Based on clinical outcome, inhibitors were classified based on 

their magnitude of the interaction according to the FDA Draft Guidance published in September 

2006 (Guidance for Industry: Drug interaction studies: study design, data analysis and 

implications for dosing and labeling http://www.fda.gov/cder/guidance/6695dft.pdf).  Two 

precipitant drugs namely; carbamazepine and rifampin were classified as strong inducers, which 

precipitated a significant AUC decrease in midazolam exposure.  Eight precipitant drugs namely; 

clarithromycin, conivaptan, itraconazole, ketoconazole, mibefradil, nefazadone, saquinavir and 

troleandomycin were classified as strong inhibitors, which precipitated an AUC increase in 

midazolam exposure more than 5-fold.  Seven precipitant drugs namely; clarithromycin, 

conivaptan, diltiazem, erythromycin, fluconazole, saquinavir and troleandomycin were classified 

as moderate CYP3A4 inhibitors, which precipitated an increase in midazolam AUC of ≥ 2 but 

<5-fold.  Twenty two clinical studies showed weak to no drug-drug interaction, where AUC 

ratios were 0.8 to 2 in the presence of precipitant drug.  Dependent on precipitant dose, as in the 

cases of clarithromycin and conivaptan, increased dose lead to an increase of the magnitude of 

clinical DDI, as expected.   Also, fluconazole, ketoconazole and saquinavir dosed yielded a 
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reduced increase in midazolam exposure when midazolam was dosed intravenously compared to 

orally due to the elimination of first pass intestinal metabolism. 

 

In vitro data reflecting competitive inhibition, time-dependent inactivation and induction of 

CYP3A4 were collected from the scientific literature (Table 2).   Of the 30 drugs used in this 

study, 13 drugs exhibited competitive inhibition with an IC50 of less than 10 µM, 12 drugs 

exhibited time-dependent inactivation, and 11 compounds exhibited induction.  Five drugs 

exhibited all three interaction mechanisms in vitro (troleandomycin, fluoxetine, mibefradil, 

saquinavir and verapamil).   

 

To account for all known mechanisms affecting CYP3A4 activity, data from the three possible 

mechanisms: induction, inactivation, and competitive inhibition were used simultaneously, to 

make a prediction on the AUC ratio change.  Table 3 shows the AUC ratio predictions, by 

applying the combined model (Fahmi et al., 2008b), as well as the two models of Simcyp.   

 
Although DDI was predicted in all cases with a varying degree of accuracy (Figure 1 and Tables 

3&4), no false positive cases were observed.  However, a few examples of significant over 

prediction of the magnitude of DDI were observed with fluoxetine and ketoconazole based on all 

models, roxithromycin and mibefradil based on Simcyp models, and fluconazole based on the 

mathematical model.   Also a few examples of significant under prediction of DDI were 

observed with conivaptan (Simcyp) and troleandomycin (mathematical model).   The most 

significant overprediction (138 vs 9) was noted with mibefradil when Simcyp was used under 

steady state conditions. The clinical pharmacokinetics for midazolam in the clinical midazolam-

mibefradil DDI  (Veronese et al., 2003) show a different pattern to that predicted by Simcyp in 
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that the midazolam concentrations 24 hours post dose are significantly higher using Simcyp 

prediction than were observed clinically.  In contrast, the midazolam levels were still high at 24 

hour in the Simcyp time-based simulation.  Thus, although the time-based DDI simulation looks 

superior to that of steady-state, the Simcyp midazolam profile in the presence of mibefradil does 

not match the clinical profiles.   In summary, there are a number of factors which could be 

contributing to overprediction of the DDI by Simcyp.  

The combined mathematical model, steady state and time-bound Simcyp approaches 

predicted a ‘correct’ DDI result (interaction or no interaction, defined as a 2-fold change in 

exposure) in 44, 44, and 45 of the 50 trials, respectively.  The corresponding GMFE values were 

calculated as 1.74, 1.59 and 1.47, for the combined mathematical model, steady-state and time-

bound approaches, respectively, as shown in Table 4.  Of the trials that had a clinical DDI effect 

greater than or equal to two fold (n=27), the increase in AUC was predicted within 50% of the 

actual value in 21, 21, and 24 of the trials for the combined mathematical model, steady-state and 

time-based approaches, respectively. The corresponding GMFE values were calculated as 1.88, 

1.64 and 1.51, for the combined model, steady-state and time-based approaches, respectively.  

Overall, the combined mathematical model and Simcyp yielded comparable performance in 

predicting in vivo DDI from in vitro data.    

Discussion  

Drug-drug interaction caused by the effect of one drug on the clearance of a second is an 

important consideration in clinical practice.  The use of concomitant medications for multiple 

indications in individual patients is commonplace, especially in elderly patients who have 

multiple medical problems.  In other indications, more than one drug may be indicated to treat 

multiple inter-related symptoms of a single disease (e.g. psychiatric disorders, cardiovascular 
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disease, cancer, etc.).  In others, multiple drugs may be needed to treat challenging infections 

(e.g. HIV, bacterial infections).  CYP3A4 is the single most important drug metabolizing 

enzyme, and is involved in the clearance of over half of clinically used drugs.  Effects on 

CYP3A4 activity are the most frequent mechanisms of DDI, and the pharmacopeia is rife with 

examples of drugs that inhibit, inactivate, and induce this enzyme.  Thus, in the research and 

development of new pharmacotherapies, the prediction of pharmacokinetic DDI is important, 

and in vitro approaches for prediction are valuable since they can be used in drug design as well 

as in selection of candidate compounds for further development with a reduced propensity for 

causing DDI.    

Over the past few years, considerable progress has been made in the development of approaches 

to predict DDI from in vitro data.  For the phenomena of reversible inhibition, irreversible 

inactivation, and induction, approaches to predict DDI from in vitro data have been developed, 

but these different mechanisms have been approached separately.  For irreversible inactivation, 

the pioneering work of Hall and colleagues defined relationships between inactivation 

parameters measured in vitro (kinact and KI) and in vivo parameters (plasma concentrations, kdeg) 

to predict the magnitude of CYP3A4 DDI, including impact on activities in both liver and 

intestine (Mayhew et al., 2000; Wang et al., 2004).  These concepts were extended to include 

other P450 enzyme targets (Obach et al., 2007).  For reversible inhibition, demonstration of 

correlation between in vivo DDI and in vitro inhibition potency (Ki) was also demonstrated 

across a broad panel of P450 inhibitors, importantly showing that estimated portal vein Cmax was 

a more accurate parameter to use for [I] in vivo than systemic concentrations (Kanamitsu et al., 

2000b), (Obach et al., 2006)).  Prediction of the magnitude of DDI caused by enzyme inducers is 

even more challenging since the molecular mechanism is indirect (i.e. the inducer is not binding 
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with the enzyme itself but acting upon proteins involved in regulation of enzyme transcription).  

For CYP3A4 inducers, prediction of the magnitude of DDI has been accomplished using a 

correlative approach using in vitro parameters Emax and EC50, (Sinz et al., 2006, Fahmi et al., 

2008a).  However, in some instances, a compound can affect the activity of a given P450 enzyme 

by two or three of these mechanisms simultaneously.  For example, ritonavir has been 

demonstrated to be a potent inhibitor and mechanism-based inactivator of CYP3A4 as well as a 

PXR activator (Zhou, 2008).  Prediction of DDI for such an agent is challenging as it is difficult 

to ascertain which of the phenomena will dominate in the in vivo response, and would require a 

clinical DDI study to determine what the effect will be.  To that end, a “combined model” was 

proposed for CYP3A4-based DDI for those compounds that exhibit reversible inhibition, 

inactivation, and induction (Fahmi, et al., 2008b), and it was demonstrated to perform well in the 

prediction of DDI.   

However, most mathematical models provide point estimates of the average DDI, assuming one 

precipitant concentration and the same in vitro inhibition kinetic parameters effectively assuming 

the same CYP3A4 enzyme level across the population.  Clearly, there is a degree of uncertainty 

associated with using such data in that the risk to individuals is not evaluated.  Although 

CYP3A4 is the most abundant P450 subfamily in human liver, its level of expression can vary 

enormously (>10-fold) among individuals.  Therefore, using inter individual variability and 

having the ability to input details of study design in relation to exposure time during interaction 

studies are important factors in simulating a clinical study.  This is where computer simulated 

program can have an advantage since the concentration used in the model is dynamic and 

changes with time along with the ability to choose a specific population (poor metabolizer, 

impaired renal function, etc.) as well as using multiple subjects in the simulation representing 
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their variable content of their drug metabolizing enzymes.  The approach involves the 

combination of the concepts used in these aforementioned prediction methods with population 

pharmacokinetic modeling to provide not only point estimates of DDI magnitudes but also 

simulation of DDI across different individuals and groups (Einolf et al., 2007); (Rostami-

Hodjegan and Tucker, 2007).   

The Simcyp steady state approach can potentially show the effect of population variability in 

DDI and allow direct comparison to the combined mathematical model without accounting for 

trial design. The Simcyp time-based approach simulations permit concentration changes over 

time, mimicking actual trials design.  Although there is no marked improvement using the time-

based Simcyp approach, there is some trend towards better predictions in the parameters shown 

in Table 4 (vs both the combined model and the steady-state Simcyp model).  Indeed, in some 

instances, this is because of differences in the [I] concentrations used and also in the nature of the 

input values to the Simcyp models.  However, there are differences in the way that the two 

models handle both reversible and time dependent inhibitors.  Einolf (2007) utilized the steady 

state Simcyp model (referred to as “mechanistic static models” which consider important 

mechanistic factors such as fractional metabolism (fm) and the nature of interaction.  However, 

since these models fix the concentrations of substrate at lower level than Km and fix the level of 

interacting drug (precipitant) for the a given dose, they cannot account for any trial elements 

apart from the dose of inhibitor.  Thus, dose staggering, variable absorption rate for precipitant 

drugs, and the effect of volume of distribution on elimination rate and interaction cannot be 

investigated.   The time-based approach “referred to as mechanistic dynamic model" by Einolf et 

al (2007) assesses the concentration changes over time; facilitating mimicking actual trials 

design.  While the second model assesses the time- and concentration-dependent  enzyme 
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inhibition using unbound systemic plasma concentrations that the liver encounters (i.e. portal 

vein concentration), the steady state model uses two different "fixed"  values of inhibitor 

concentrations for inhibiting the metabolism during first-pass and subsequent passes; namely 

highest portal vein concentration following the oral dose of the inhibitor and average steady state 

concentrations in plasma following multiple oral doses at set intervals.  The multiple differences 

between the model assumptions and their sensitivity (or lack of it) to certain parameters (volume 

of distribution, accumulation, dosing interval, absorption rate, etc) makes it difficult to expect a 

uniform pattern regarding the predicted level of DDI when comparing the results from steady 

state and time-based approach.   However, a higher degree of confidence in the model can be 

obtained by visualisation of the pharmacokinetic profile afforded by the time-based output and 

comparison with clinical data.   

 

The objective of the present study was to determine the performance of the combined model and 

the population/simulation model (Simcyp) in the prediction of DDI using midazolam DDI 

studies reported in the scientific literature as a test set.  The population model can be useful in 

the identification of subgroups at greater risk for clinically relevant interactions. For instance, 

there is considerable variability in the expression of CYP3A4 and CYP3A5.  Those individuals 

with high expression of CYP3A4 will likely have a greater fraction of clearance of the victim 

drug via that pathway and thus inhibition may have greater magnitude in these individuals.  A 

total of 50 clinical DDI studies in which midazolam was the affected drug were gathered from 

the literature with 30 drugs tested as precipitants of these interactions.  The interactions ranged 

from a 16-fold increase caused by ketoconazole to a 96% decrease caused by carbamazepine, 

with several drugs causing no interaction.  The combined model yielded a good success rate for 
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predicting these DDI, with a mean-fold error of 1.74 and a rate of success (i.e. correctly 

categorizing a DDI based on a boundary of 2-fold) of 88% (44 of 50 correct) (Table 4).  Simcyp 

V 7.1 offers two simulation approaches referred to as “Steady State” and “Time-Based.”  From 

this dataset, it appeared that the time-based approach performed somewhat better, with a mean-

fold error of 1.47 vs 1.59 fold.  However, the steady-state approach results were skewed by a 

single outlier prediction (Table 4).  Success rates for categorizing DDI as less than or greater 

than 2-fold was over 88% for both models.  The performance of Simcyp in this study was similar 

to that described by (Einolf et al., 2007) for a different set of DDI studies.  Overall, both the 

combined mathematical model and the Simcyp models performed well in the estimation of 

CYP3A4-based midazolam DDI from in vitro data, and these would be useful in prospective 

prediction of CYP3A4 DDI for new compounds.  

In the combined model, it was found that the reversible inhibition portion performed the best 

when the unbound portal vein concentration was used for [I] in vivo, while for irreversible 

inactivation and induction, unbound systemic concentration was best (unpublished results).  

While on the surface this may seem inconsistent, from a physiological perspective it can be 

rationalized.  For reversible inhibition, it is more common for the interaction to be exhibited by 

an increase in Cmax (and hence AUC) but not an effect on t1/2, particularly, with higher clearance 

drugs.  This indicates that much of the interaction occurs during absorption and hepatic first-

pass.  After first-pass is complete, the concentrations of inhibitor are diluted to values below 

these needed to exhibit reversible interaction.  The use of estimated unbound portal vein 

concentrations were also demonstrated to be the most appropriate concentrations in previous 

work (Obach et al., 2006).  For inactivation and induction, systemic concentrations were most 

appropriate.  This also makes sense in that the DDI caused by inactivators and inducers occur on 
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Cmax, AUC, and t1/2 of the affected drug indicating that the biochemical effect continues to occur 

after first-pass exposure of the intestine and liver is over.  In previous methods in which different 

values for [I] in vivo were considered for inactivation, the free systemic concentration provided the 

most accurate predictions (Obach et al., 2007) and for induction this was also the case in some 

investigations (Fahmi et al., 2008a), (Shou et al., 2008) but not others (Sinz et al., 2006).  In the 

Simcyp models, the precise values used for [I] in vivo are embedded within the software and the 

sophistication of the software permits the value for [I]in vivo to be dynamic, which is 

physiologically more realistic.   

It should be noted that some of the parameters used by Simcyp and the combined model differ, 

such as the values for fm (CYP3A) in the liver.   Therefore, some of the performance difference, 

albeit small, could be due to these different parameters.   For example, the combined 

mathematical model utilizes a hepatic fm value of 0.93 for midazolam metabolism while Simcyp 

has an embedded value of 0.99.  The sensitivity of prediction of DDI to the fm parameter, 

particularly when that value exceeds 0.9, is well-established.  In the comparison we have made 

between Simcyp and the combined mathematical model, our intent was to compare Simcyp as an 

out-of-the-box application using the parameters embedded in the program.  We do not have an 

explanation for the observation that fm 0.93 worked with the combined model and 0.99 worked in 

Simcyp. 

Overall, our conclusions are that both the combined mathematical model and computer 

simulation approaches successfully predict the magnitude of CYP3A4 based DDI, even when the 

precipitant drug has multiple simultaneous actions (inhibition, inactivation, and/or induction).  

When the precipitant drug has just one mechanism of action, other more simple approaches can 

be used, and in these cases the combined model simplifies to algorithms possessing just one of 
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the interaction terms.  Ongoing efforts include the application of this model to DDI for other 

CYP3A4 cleared drugs besides midazolam as well as application to other P450 enzymes 

(although in the latter case the number of examples of in vivo DDI caused by multiple 

mechanisms are far fewer).  Results of these investigations will be reported in due course.   
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Legends for Figures 

Figure 1: Predicted versus observed AUC ratios, assuming interaction in the liver and the 
intestine where prediction is based on the combined mathematical model (A), along with 
prediction using Simcyp (V7.1) Steady State approach (B) and Time-based approach (C).  Solid 
circles represent compounds showing reversible inhibition in vitro, open circles represent 
compounds showing reversible inhibition and inactivation in vitro, solid triangle represent 
compounds showing inhibition and induction, open triangle represent compounds showing all 
three mechanisms in vitro, open squares represent compounds showing induction only in vitro.. 
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Table 1: Summary of the 48 in vivo clinical studies used in prediction (*observed DDI = ratio of 
Midazolam AUC in the presence and absence of precipitant 

Precipitant Precipitant Dose 
Precipitant 

Dose 
Interval 

Dose 
Type [I]=Csys fu 

Midazolam 
Dose 

Dose 
Type 

*Obser
ved 
DDI 

References 

Atomoxetine 60 mg (12 d) bid PO 10.6 0.020 5 mg Oral 1.2 (Sauer et al., 2004) 

Atorvastatin  10-40 mg (10 d)) qd PO 0.023 0.020 0.15 mg/Kg  IV 1.41 (Mc Donnell et al., 2003) 

Azithromycin 500 mg (3 d) qd PO 0.270 0.120 15 mg Oral 1.27 (Zimmermann et al., 1996) 

Carbamazepine 600-800 mg bid PO 34 0.26 15 mg Oral 0.04 (Backman et al., 1996} 

Chlorzoxazone  250 mg qd PO 23.6 0.019 5 mg Oral 1.68 (Palmer et al., 2001) 

Cimetidine  400 mg single dose PO 3.27 0.790 15 mg Oral 1.37 (Fee et al., 1987) 

Cimetidine  400 mg (1.5 d) bid PO 9.92 0.790 15 mg Oral 1.35 (Salonen et al., 1986) 

Cimetidine  800 mg single dose PO 9.92 0.790 7.5 mg Oral 1.50 (Martinez et al., 1999) 

Cimetidine  200 mg+400 mg (1.5 d) qid PO 3.27 0.790 15 mg Oral 2.02 (Elliott et al., 1984) 

Clarithromycin 250 mg (5 d) bid PO 2.40 0.300 15 mg Oral 3.57 (Yeates et al., 1996) 

Clarithromycin 500 mg (7 d) bid PO 3.00 0.300 8 mg Oral 8.40 (Gurley et al., 2006) 

Conivaptan 20 mg (5 d) bid PO 0.159 0.015 2 mg Oral 3.49 NDA # 021697 

Conivaptan 40 mg (5 d) bid PO 0.433 0.016 2 mg Oral 5.76 NDA # 021697 

diltiazem 60 mg (2 d) tid  PO 0.140 0.220 15 mg Oral 3.75 (Backman et al., 1994) 

Erythromycin  500 mg (5 d) tid PO 0.950 0.160 15 mg Oral 3.81 (Zimmermann, et al. 1996) 

Erythromycin  500 mg (7 d) tid PO 0.950 0.160 15 mg Oral 4.42 (Olkkola et al., 1993) 

Fluconazole 400 mg single dose PO 29.4 0.890 1 mg IV 1.94 (Kharasch et al., 2005) 

Fluconazole  400 mg, 200 mg (5 d) qd PO 29.4 0.890 7.5 mg Oral 3.60 (Olkkola et al., 1996) 

Flumazenil 1.75 mg single dose  IV 0.001 0.600 0.35 mg  IV 0.97 (Rogers et al., 2002) 

Fluoxetine 60 mg (5 d) 20 mg (7 d) qd PO 0.353 0.050 10 mg Oral 0.87 (Lam et al., 2003) 

Fluvoxamine 50-100 mg (12 d) bid  PO 0.342 0.230 10 mg Oral 1.66 (Lam et al., 2003) 

Gatifloxicin 400 mg (5 d) qd PO 3.82 0.800 1mg IV 1.08 (Grasela et al., 2000) 

Itraconazole  200 mg (4 d) qd PO 0.270 0.002 7.5 mg Oral 10.8 (Olkkola et al., 1994) 

Itraconazole  100 mg (4 d) qd PO 0.128 0.002 7.5 mg Oral 5.74 (Ahonen et al., 1995) 
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Table 1: Summary of the 48 in vivo clinical studies used in prediction (Continued) 

Precipitant  Precipitant Dose 
Precipitant 

Dose 
Interval 

Dose 
Type [I]=Csys fu Midazolam 

Dose 
Dose 
Type 

*Observed 
DDI References 

Itraconazole  200 mg (6 d) qd PO 0.270 0.002 7.5 mg Oral 6.64 Olkkola et al., 1996 

Itraconazole  200 mg (4 d) qd PO 0.270 0.002 7.5 mg Oral 6.16 (Backman et al., 1998) 

Ketoconazole 200 mg (1.5 d) bid  PO 5.42 0.010 2 mg IV 5.0 (Tsunoda et al., 1999) 

Ketoconazole  200 mg (1.5 d) bid  PO 5.42 0.010 6 mg Oral 13.6 Tsunoda et al., 1999) 

Ketoconazole 200 mg (5 d) single dose  PO 1.87 0.010 2 mg Oral 5.2 (McCrea et al., 1999) 

Ketoconazole  200 mg (5 d) single dose  PO 1.87 0.010 2 mg Oral 6.5 (McCrea, Prueksaritanont et al. 1999

Ketoconazole  200 mg (12 d) qd PO 1.88 0.010 10 mg Oral 8.7 (Lam et al., 2003) 

Ketoconazole  200 mg (4 d) bid PO 4.76 0.010 75 ug Oral 6.5 (Eap et al., 2004) 

Ketoconazole  400 mg (10 d) qd PO 2.82 0.010 5.5 mg Oral 9.5 (Chung et al., 2006) 

Ketoconazole  400 mg (4 d) qd PO 2.82 0.010 7.5 mg Oral 15.9 (Olkkola et al., 1994) 

Mibefradil 100 mg single dose  PO 1.24 0.005 2 mg Oral 8.9 (Veronese et al., 2003) 

Nefazodone 100-200 mg (12 d) bid  PO 1.73 0.009 10 mg Oral 5.4 (Lam, Alfaro et al. 2003) 

Nitrendipine 20 mg (4 d) qd PO 0.041 0.016 20 mg IV 0.9 (Handel et al., 1988) 

Parecoxib 40 mg single dose  IV 2.53 0.020 0.07 mg/kg IV 1.1 (Ibrahim et al., 2002) 

Ranitidine  150 mg (1.5 d) bid  PO 1.47 0.850 15 mg Oral 1.2 (Fee, Collier et al. 1987) 

Ranitidine  300 mg single dose  PO 1.47 0.850 7.5 mg Oral 1.3 (Martinez et al., 1999) 

Ranitidine  150 mg (1.5 d) bid  PO 1.15 0.850 15 mg Oral 1.7 (Elliott et al., 1984) 

Rifampin 600 mg (5 d) qd PO 12.50 0.250 8 mg Oral 0.1 (Backman et al., 1996) 

Roxithomycin 300 mg (6 d) qd PO 5.13 0.140 15 mg Oral 1.5 (Backman et al., 1994) 

Saquinavir  1200 mg  (5 d) tid PO 0.430 0.020 7.5 mg Oral 5.2 (Palkama et al., 1999) 

Saquinavir 1200 mg (5 d) tid PO 0.430 0.020 0.05 mg/kg IV 2.5 Palkama et al., 1999 

Simvastatin 80 mg (7 d) qd PO 0.026 0.060 2 mg Oral 1.1 (Prueksaritanont et al., 2000) 

Terbinafine 250 mg (4 d) qd PO 2.13 0.010 7.5 mg Oral 0.76 (Ahonen, Olkkola et al. 1995) 

Troleandomycin 500 mg (2 d) bid PO 1.76 0.038 10 mg Oral 14.8 (Kharasch et al., 2004) 

Valdecoxib 40 mg bid PO 2.90 0.020 10 mg Oral 1.1 Unpublished data 
verapamil 80 mg (2 d) tid  PO 0.480 0.100 15 mg Oral 2.9 (Backman, Olkkola et al. 1994) 
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Table 2:  CYP3A4 in-vitro determined kinetic parameters 

  

Competitive 
Inhibition 

Time-Dependent 
Inhibition 

Induction  References by order of the in vitro tool 
 

Compound Ki (uM)   KI (uM) kinact (min-1) EC50 (uM) Emax   

Atomoxetine 17         Sauer et al., 2004 
Atorvastatin 8         Obach et al., 2006 
Azithromycin 150 410 0.029     Obach et al., 2006, Venkatakrishnan et al., 2007 
carbamazepine 100     55.8 34.3 Fahmi et al., 2008a 
Chlorzoxazone  700         Berthou et al., 1995 
Cimetidine  115         Obach et al., 2006 
Clarithromycin 50 18.9 0.053     Obach et al., 2006, Venkatakrishnan et al., 2007 
Conivaptan 0.017 8.06 0.073     NDA # 021697 and unpublished data 
diltiazem 30 1.15 0.027     Obach et al., 2006, Venkatakrishnan et al., 2007 
Erythromycin  9 13.5 0.041     Obach et al., 2006, Venkatakrishnam et al., 2007 
Fluconazole  3.4         Obach et al., 2006 
Flumazenil 7.5         Unpublished data 
Fluoxetine 8 0.606 0.015 0.54 2.1 Obach et al., 2006, Venkatakrishnan et al., 2007, Fahmi et al., 2008b 
Fluvoxamine 21.5         Galetin et al., 2007 
Gatifloxicin 150         Obach et al., 2005 
Itraconazole  0.005         Obach et al., 2006 
Ketoconazole 0.006         Obach et al., 2006 
Mibefradil 0.10 2.3 0.400 4.1 6.5 Prueksaritanont et al., 1999, Obach et al., 2006, Fahmi et al., 2008a 
Nefazodone 0.45 6.23 0.037     Obach et al., 2007, Unpublished data 
Nitrendipine  17     18.2 17.4 Unpublished data 
Parecoxib 1000         Unpublished data 
Ranitidine  150         Obach et al., 2007 
Rifampin 100     0.57 33 Fahmi et al., 2008 
Roxithromycin 34 72 0.023     Obach et al., 2007, Polasek et al., 2006 
Saquinavir  0.41 0.65 0.260 0.9 34.6 Obach et al., 2007, Ernest et al., 2005, Fahmi et al., 2008 
Simvastatin 0.39     25 4 Obach et al., 2007 
Terbinafine 150     25 2.3 Obach et al., 2007 
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Troleandomycin 1.3 2.4 0.032 0.27 15.9 Obach et al., 2007, Fahmi et al., 2008a 
Valdecoxib 68     10 2.2 Unpublished data 
verapamil 11.50 0.58 0.07 0.16 16.4 Obach et al., 2007, Venkatakrishnam et al., 2007, Fahmi et al., 2008a 
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Table 3: Summary of CYP3A4 DDI predictions based on the different 

models 

      Combined 
Model 

Simcyp Steady 
State Model  

Simcyp Time Based Model  

Precipitant 
Dose of 

Precipitant 
(mg) 

Observed 
DDI 

Predicted 
DDI 

magnitude 

Predicted DDI 
magnitude 

Predicted 
DDI 

magnitude 

Upper 
Percentile 

Lower 
Percentile

Drugs Demonstrating Only Reversible Inhibition In Vitro 
Atomoxetine 120 1.0 1.4 1.0 1.0 1.0 1.0 

Atorvastatin  25* 1.4 1.0 1.0 1.0 1.0 1.0 

Chlorzoxazone  250 1.7 1.1 1.1 1.0 1.0 1.0 

Cimetidine  400 1.4 1.7 1.2 1.0 1.0 1.0 

Cimetidine  800 1.4 1.7 1.3 1.1 1.1 1.0 

Cimetidine  800 1.5 2.2 1.5 1.2 1.4 1.1 

Cimetidine  1200 2.0 1.5 1.4 1.1 1.1 1.0 

Fluconazole 400* 1.9 7.3 2.5 1.6 2.1 1.2 

Fluconazole  200 3.6 11 9.2 2.9 4.4 2.0 

Flumazenil 1.75*,** 0.97 1.0 1.0 1.0 1.0 1.0 

Fluvoxamine 200 1.7 1.2 1.1 1.0 1.1 1.0 

Gatifloxicin 400* 1.1 1.1 1.0 1.1 1.1 1.0 

Itraconazole  200 11 3.2 8.2 8.0 18 3.3 

Itraconazole  100 5.7 2.5 5.9 4.9 9.5 2.8 

Itraconazole  200 6.6 3.2 8.0 3.1 5.8 1.8 

Itraconazole  200 6.2 3.2 8.6 7.0 17 2.8 

Ketoconazole 400* 5.0 9.2 5.2 3.6 5.6 2.3 

Ketoconazole 200 5.2 16 20 13 24 5.8 

Ketoconazole  400 14 16 12 8.1 17 3.8 

Ketoconazole  200 6.5 16 13 12 22 7.1 

Ketoconazole  200 8.7 16 12 10 23 4.8 

Ketoconazole  400 6.5 16 20 7.2 13 3.9 

Ketoconazole  400 9.5 16 22 8.5 24 3.8 

Ketoconazole  400 16 16 21 21 37 9.2 

Parecoxib 40*,** 1.1 1.0 1.0 0.90 1.0 0.80 

Ranitidine  300 1.2 1.1 1.1 1.1 1.1 1.0 

Ranitidine  300 1.3 1.2 1.1 1.0 1.0 1.0 

Ranitidine  300 1.7 1.1 1.1 1.0 1.0 1.0 

Drugs Demonstrating Reversible Inhibition and Irreversible Inactivation In Vitro 

Azithromycin 500 1.3 1.7 1.7 1.3 1.6 1.2 

Clarithromycin 500 3.6 9.0 2.7 4.6 12 2.3 

Clarithromycin 1000 8.4 10 4.1 6.2 13 2.5 

Conivaptan 40 3.5 2.5 1.9 1.8 2.4 1.4 

Conivaptan 80 5.8 3.6 3.1 3.3 6.8 2.1 

Diltiazem 180 3.8 4.9 1.6 3.7 7.8 2.1 

Erythromycin  1500 3.8 4.0 3.3 5.4 14 2.5 
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Erythromycin  1500 4.4 4.0 2.5 3.9 9.6 2.0 

Nefazodone 400 5.4 2.4 12 8.7 22 3.0 

Roxithromycin 300 1.5 3.0 22 10 27 3.4 

Drugs Demonstrating Induction In Vitro 

Carbamazepine 600-800 0.04 0.04 0.02 0.04 0.13 0.01 

Rifampin 600 0.05 0.01 0.01 0.03 0.08 0.01 

Drugs Demonstrating Reversible Inhibition and Induction In Vitro 

Nitrendipine 20* 0.93 1.00 1.0 1.0 1.0 1.0 

Simvastatin 80 1.1 2.1 1.0 1.0 1.1 1.0 

Terbinafine 250 0.76 0.89 1.0 1.0 1.0 1.0 

Valdecoxib 80 1.1 0.89 1.0 1.0 1.0 1.0 

Drugs Demonstrating Reversible Inhibition, Irreversible Inactivation, and Induction In Vitro 

Fluoxetine 40 0.87 3.5 3.2 3.8 9.1 2.1 

Mibefradil 100 8.9 8.2 139 14 44 2.5 

Saquinavir 3600 2.5 10 3.7 3.9 8.3 1.6 

Saquinavir  3600* 5.2 18 13 12 38 3.1 

Troleandomycin 1000 15 3.0 15 6.0 10 1.5 

Verapamil 240 2.9 7.5 3.1 7.0 16 3.5 

 

 

*Denotes cases in which midazolam was administered intravenously 

**Denotes cases in which the precipitant was administered intravenously 
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Table 4.  Accuracy of the Combined Mathematical Model and the two Simcyp 
Models. 
 

 Combined Model Simcyp Steady-State Model Simcyp Time-Based Model 

All DDI    

GMFE 1.74 1.59* 1.47 

RMSE 4.58 5.07* 3.03 

Success Rate 88 88 90 

    

DDI > 2X    

GMFE 1.88 1.64** 1.51 

RMSE 5.68 5.65** 3.60 

 
*Including one outlier prediction value (mibefradil) yields values for GMFE and RMSE of 1.66 
and 19.1, respectively.   
 
**Including one outlier prediction value (mibefradil) yields values for GMFE and RMSE of 1.78 
and 25.6, respectively.   
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