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Fabrice Guédy, and Nicolas Rasamimanana

Real Time Musical Interactions Team
IRCAM, CNRS - STMS

1, Place Igor Stravinsky, 75004 Paris, France
Frederic.Bevilacqua@ircam.fr

Abstract. We present a HMM based system for real-time gesture anal-
ysis. The system outputs continuously parameters relative to the ges-
ture time progression and its likelihood. These parameters are computed
by comparing the performed gesture with stored reference gestures. The
method relies on a detailed modeling of multidimensional temporal curves.
Compared to standard HMM systems, the learning procedure is simpli-
fied using prior knowledge allowing the system to use a single example for
each class. Several applications have been developed using this system
in the context of music education, music and dance performances and
interactive installation. Typically, the estimation of the time progression
allows for the synchronization of physical gestures to sound files by time
stretching/compressing audio buffers or videos.
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1 Introduction

Gesture recognition systems have been successively developed based on methods
such as Hidden Markov Models (HMM), finite state machines, template match-
ing or neural networks [1]. In most cases, gestures are considered as ”unbreak-
able units” that must be recognized once completed. Typically, on-line systems
output the recognition result at the end of each gesture. Motivated by the de-
velopment of interactive systems in performing arts, we present here a different
approach for online gesture analysis : the system updates ”continuously” (i.e. on
a fine temporal grain) parameters characterizing the performance of a gesture.
Precisely, these parameters are made available during the temporal unfolding of
the performed gesture.

We are first particularly interested in computing the time progression of the
performance, or in other words answering the question ”where are we within
the gesture ?”. We refer this as following the gesture. Second, we are interested
in computing likelihood values between a performed gesture and pre-recorded
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gestures stored in a database. This can be used to perform a recognition task, but
also to characterize gestures. As this will be illustrated by application examples,
these parameters are particularly useful to build systems enabling expressive
gestural control of sonic and/or visual media. Moreover, the estimation of both
the time progression and likelihood values enable another important feature of
such a system: the possibility to predict the evolution of the current gesture.

We assume here that gestures can be represented as multidimensional tempo-
ral curves. Importantly, our approach focuses on a detailed modeling of temporal
profiles. High resolution temporal modeling is indeed essential for the estima-
tion of the time progression of a gesture. This approach is thus especially suited
for cases where the gesture temporal evolution are intrinsically relevant, and
performed in a consistent manner. This is typically found in performing arts:
measurements of dancers or musicians gestures reveal very consistent temporal
profiles[2, 3].

Our system is essentially based on Hidden Markov Models, with a particu-
lar implementation guaranteeing precise temporal modeling of gesture profiles
and allowing for a simplified learning procedure. This latter point is essential
for making such a system workable in the context of performing arts. As a mat-
ter of fact, building general gesture databases can reveal to be unpractical, as
also discussed in Ref.[4], since gesture data are typically highly dependent on
the artistic contexts and idiosyncrasies of performers. For these reasons, we de-
veloped a particular learning scheme based on a single recorded example only,
using a priori knowledge. In this case, the learning phase is simple to operate and
can be easily achieved during the normal flow of rehearsals. This approach has
been iteratively designed through several specific cases[5–7] and implemented in
a software called the Gesture Follower.

This paper is structured as follows. After a short summary of related works,
we describe the algorithm, along with numerical simulations using synthetic data
assessing quantitatively the algorithm. Second, we present typical applications
of this system related to music and dance practices.

2 Related Works

The use of machine learning techniques for gesture recognition has been widely
covered. Hidden Markov Models represents one of the mostly used methods [8, 9,
1]. Taking notice that training Hidden Markov Models might represent a cumber-
some task, several authors proposed various approaches to facilitate the training
process. Bobick and Wilson have proposed a state-based approach using a single
prototype [10]. Using HMM they also later proposed an online adaptive algo-
rithm for learning gesture models [11]. Rajko et al. also proposed a HMM based
system, with the aim of reducing training requirements and allowing precise
temporal gesture modeling [12, 4, 13]. Artieres et al. [14] proposed a recognition
scheme based on segmental HMM that can be trained with very few examples.

Concerning realtime recognition Bloit and Rodet [15] developed a modified
Viterbi decoding, called short term Viterbi, that allows for low latency recogni-



tion. Mori et al. [16] proposed a system for early recognition and anticipation,
based on continuous dynamic programming.

These works are generally principally oriented towards recognition tasks.
The case of following a gesture in realtime, i.e. determining the time progression
of a gesture during a performance, is generally not explicitly covered with the
exception of score following systems for musical applications. Several authors
have proposed systems based on HMM (or Semi-Markov Models) [17, 18]. Nev-
ertheless, in such cases, the Markov structure is essentially built from a symbolic
representation given by the musical score, and not from continuous gesture data.

3 Gesture Modeling and Analysis Algorithm

As generally found in machine learning techniques, the system operation is sep-
arated into two procedures, learning and decoding. Our approach is based on
Hidden Markov Models but with a modified learning schema. The algorithm
fundamentally works with any type of regularly sampled multidimensional data
flow.

3.1 Learning

Our system has been developed with the constraint that only few examples will
be available. This constraint is incompatible with the use of statistical training
(for example using the Baum-Welch algorithm), as found in standard implemen-
tations of Hidden Markov Models (HMM) [8].

The learning procedure is illustrated in Figure 1. The recorded temporal
profile is used to create a left-to-right Hidden Markov Model. We build a model
that fits the recorded reference by directly associating each sampled points to a
state in a left-to-right Markov chain.

Each state i emits an observable O with a probability bi, following a normal
distribution (the vectorial case can be generalized in a straightforward way):

bi(O) =
1

σi

√
2π
exp[−(

O − µi

2σi
)2] (1)

µi is the ith sampled value of the recorded reference. The σi parameter can
be interpreted as the standard deviation of differences in x occurring between
performances. Obviously, σi cannot be estimated from a single example. There-
fore, it is either estimated for a given context based on prior experiments and/or
knowledge. The influence of this parameter will be further discussed in section
3.4

This HMM structure statistically models the recorded data sequence, consid-
ering additional assumptions on the transition probabilities. We define a limited
number of permitted transitions by setting the transition probabilities a0, a1,
a2 (self, next, skip transitions, see Figure1). These probabilities a0, a1, a2 must
satisfy the Equation 2.
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Fig. 1. Learning procedure: a left-to-right HMM is used to model the
recorded reference

a0 + a1 + a2 = 1 (2)

As for σi, these parameters cannot be precisely estimated from a single ex-
ample. Nevertheless, their values can be set based on prior knowledge or mea-
surements in specific applications. The following discussion clarifies the role of
these parameters.

1. a0 = a1 = a2 = 1/3 : this case corresponds to have equal probabilities slower
or faster performance of the gesture.

2. a0 < a1 and a2 < a1 this case corresponds to have lower probability for
speeding up or slowing down.

3. a0 < a2 this case corresponds to have lower probability for slowing down
than speeding up

4. a0 > a2 this case corresponds to have higher probability for slowing down
than speeding up.

Note that the relative maximum speed (between the performed and reference
gesture) is 2 in the example shown in Figure1. This value can higher by setting
additional transitions (for example a3 > 0).

Based on experiments (see section 4), we found that empirical values such
as a0 = a1 = a2 = 1/3 or a0 = a2 = 0.25 and a1 = 0.5 work for a large set of
applications. A similar discussion can be found in [4].

We also implemented a further simplified HMM structure. As described in [6],
a HMM structure with only two possible transitions, self and next transitions can
be used considering a0 = 1/n and a1 = 1−1/n, and downsampling the recorded
reference by a factor n. This configuration has been used for the assessments
described in section 3.4.



3.2 Decoding

As explained in the introduction, we are interested in two types of quantities:
time progression index and likelihood values, computed from the online compar-
ison between the gesture being performed and recorded references. Similarly to
score following algorithms [17], we base our decoding scheme on the standard
forward procedure in HMM [8].

Consider the partial observation sequence O1, O2, ...Ot. The forward proce-
dure requires the computation of the αi(t) variable which corresponds to the
probability distribution of the partial observation sequence until time t, and
state i . It is computed inductively as follows:

Initialisation

α1(i) = πibi(O1) 1 ≤ i ≤ N (3)

where π is the initial state distribution, and b is the observation probability
distribution.

Induction

αt+1(i) = [
N∑

i=1

αt(i)aij ]bi(Ot) 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (4)

where aij is the state transition probability distribution.

From the αi(t) variable we can compute two important quantities:

1. Time progression of the sequence, related to the recorded example

time progression index(t) = argmax[αt(i)] (5)

Note that this index can be alternatively estimated by the mean (expected
value) of the distribution αi(t)

2. Likelihood of the sequence.

likelihood(t) =
N∑

i=1

αt(i) (6)

This quantity can been used directly as a similarity measure between the
gesture being performed and the recorded reference. Other similarity mea-
sures could also be derived by combining the likelihood and the smoothness
of the time progression index.



3.3 Windowing Technique

A major limitation of the algorithm described above is the large number of states
of the HMM when dealing with long phrases, which can be an issue for real-time
computation. For example, with a data sampling rate of 100 Hz, the number of
states is typically 600 for an one minute phrase. Typically, a number of states
larger than 1000 might be too CPU intensive for our applications. To avoid this
problem, we developed a sliding window technique that uses a fixed number of
states, thus limiting the computation load, similarly to beam search techniques.
The method is illustrated in Figure 2.
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Fig. 2. Windowing technique used in the decoding scheme to reduce the
CPU load.

As explained earlier, the decoding procedure requires the computation of the
probability αi(t). In the basic algorithm, this probability distribution is com-
puted on the entire state structure. In the windowed version, this computation
is limited to a section of the state structure. Precisely, it is evaluated on a win-
dow centered around the arg max of the αi(t) distribution, i.e. around the time
progression index. At each new step of the evaluation, the window location is
moved. αi values that were not considered in the previous window are initialized
to zero in the new window.

This technique allows for the computation with a fixed number of states,
that is adjustable by the user. Thus the CPU load remains a constant value



independent of the length of the gesture data. Tests showed that this method
was effective.

Importantly, this technique can also be seen as adding constraints to the esti-
mation of the time progression index, since the range of possible values is reduced
at a given time. This procedure can make the estimation of the time progres-
sion index more robust to outlier data that could otherwise provoke unrealistic
jumps.

3.4 Assessments on Synthetic Data

Simulations were performed with Matlab using synthetic signals to evaluate
quantitatively the accuracy of the time progression index. As shown in Figure 3,
reference and test signals were created by concatenating truncated sine functions
and constant signals.
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Fig. 3. Synthetic signals used for the algorithm assessment

Precisely, the reference signal was obtained by concatenating the following
parts: constant zero signal (50 samples), one period of a sine signal (40 samples),
constant zero signal (50 samples), one period of a sine signal (40 samples), con-
stant zero signal (50 samples) (total length = 230 samples). The tests signals
were obtained from the reference signal by applying various transformations in
the amplitude, offset and noise level.

The algorithm was applied to these altered test signals, and average errors
obtained in the time progression index were computed. These error values can
be associated to a time jitter. For example, with a sampling rate of 200 Hz, an
error of one sample would correspond to a jitter of 5 ms.

The assessments reported here were performed in the case of the simplified
HMM state structure, where we retain only two types of possible transitions, self
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Fig. 4. (a) Error in the time progression index for various amplitude scaling
of the test signals. (b) Error in the time progression index for various offset
of the test signals. (c) Error in the time progression index for various noise
levels of the test signals. In all cases, value σi = 0.2, and the reference
signal were normalized between -1 and 1. In the cases of (a) and (b), a
fixed gaussian noise of 1% was also added



and next transitions (a0 = a1 = 0.5). As noted in section 3.1, a downsampling
of a factor 2 was thus applied to the reference signals. In this simplified case,
the standard deviation σi is the only parameter to be adjusted. We performed
a complete set of assessments varying the σi values.

Interestingly, we found that, as long as σi values lies in an given interval,
the results for the time progression index are weakly affected by the σi absolute
value. For example, considering reference signals normalized between -1 and 1,
we found that σi should lie approximately in the interval [0.1 0.5]. This result
confirmed us that our algorithm can operate in cases where the σi values are
known only approximately.

Figure 4 (a), (b) and (c) show the results for three different signal alterations:
scaling the amplitude, adding a constant offset and adding gaussian noise, re-
spectively. The value σi is = 0.2 in all cases. These results show that, as expected,
the accuracy in the estimation of the time progression index decreases while in-
creasing the alteration level. Nevertheless, it is important to note that the errors
remain at an acceptable level considering relatively large alterations. For ex-
ample, a test signal of amplitude twice the reference signal induces an average
error less than 2 samples, for a total signal length of 250 samples (see Figure 3).
Interestingly, the algorithm is more sensitive to a decrease than to an increase
of the test signal amplitude. These results indicate that theses limits can be
large enough to work with real data, which has been confirmed later during our
applications as described in section 4.

4 Implementation and Applications

The system described in this paper is implemented as a collection of modules in
the Max environnement1 called the Gesture Follower, taking advantage of the
data structures of the FTM library2 such as matrices and dictionaries[19, 20].
Recently, the core algorithm was developed as an independent C++ library and
can therefore be implemented in other environnements.

We applied the Gesture Follower to build interactive systems in music and
dance performances. The system was also applied to design experiments aimed
at studying gesture and movement sonification [21].

Most of the applications make use of the time progression index given by the
Gesture Follower. Particularly, this parameter allows for the design of applica-
tions based on a time synchronization paradigm: digital media and effects can be
synchronized to any particular moments of a given reference gesture. This refer-
ence gesture is set by the user by a simple recording. Thanks to the windowing
technique (section 3.3), there is no limitation other than the computer memory
for the gesture length. This opens interesting perspectives, such as following an
entire music performance. A particular interesting case is illustrated in Figure 5,
were the time progression index is used to synchronize the speed of the playback

1 http://www.cycling74.com
2 http://ftm.ircam.fr



of an audio recording. For example, audio time stretching/compressing can be
performed using phase vocoder techniques.

learning phase

time

sound

gesture

performance

time

sound

gesture

compression stretching

intensity

Fig. 5. Gesture synchronization to audio time stretching/compression

Specific cases of this paradigm were experimented in the context of music
pedagogy [22]. In particular, ”virtual” conducting was achieved using a wireless
sensor module transmitting hand gesture accelerations to the Gesture Follower
(Figure 6). With this system, students were able to control precisely the playing
speed of an orchestra recording.

A particular interesting feature of our system resides in the possibility to con-
tinuously compare the live performance with different interpretations previously
recorded. For example, the likelihood value can be therefore used to control the
sound intensity (see Figure 5) and further sound transformation.

Other applications were achieved in the fields of dance performance and inter-
active installations. Experiments showed that the system was able to distinguish
easily between fifteen short dance phrases, based on 3D accelerometers wore on a
dancer wrists. Since the likelihood parameters were continuously updated, it was
possible to recognize a gesture early, without waiting for its completion to oper-
ate a choice in the interaction process. Parallel to this recognition procedure, it
was possible to effectively synchronize video materials to the dancer movements
using the time progression index.

5 Conclusion and Future Work

We presented a HMM based system for real-time gesture analysis. The system
relies on a detailed temporal modeling and outputs continuously two main pa-
rameters: the time progression index and likelihood values which can be used
to estimate similarities between a gesture being performed and recorded refer-
ences. One advantage of this system resides in the simplified learning process.



wireless sensors

Fig. 6. ”Virtual” conducting using wireless motion sensors (accelerometers and gyrso-
copes and the gesture follower. The system synchronizes the gesture with the playback
of an orchestra recording

Various applications, mainly based on a following paradigm, were built with this
system, and proved the validity of our approach. Refinements of this system are
currently implemented and further applications are foreseen, especially taking
advantage of the prediction capabilities of this system.
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