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Abstract— Routing problems in mobile ad-hoc
networks (MANET) have been receiving increasing attention
in the last few years. Most of the proposed routing protocols
concentrate on finding and maintaining routes in the face of
changing topology caused by mobility or other environmental
changes. More recently, power-aware routing protocols and
topology control algorithms have been developed to address the
issue of limited energy reserve of the nodes in ad-hoc networks.
In this paper we consider the routing problem in MANET
with the goal of maximizing the life time of the network.
We propose a distributed routing algorithm that reaches the
optimal (centralized) solution to within an asymptotically small
relative error. Our approach is based on the formulation of
multicommodity flow, and it allows to consider different power
consumption models and bandwidth constraints. It works for
both static and slowly changing dynamic networks.

I. INTRODUCTION

The network model we consider is the wireless ad-hoc
network, consisting of a set of nodes connected by wireless
links. The topology of the network is not under our control,
but is determined purely by the current geographic location
of the nodes and other environmental conditions, and the
characteristics of the radio transcievers that the nodes possess.
The nodes wish to communicate among each other, and
we assume that they are willing to relay packets in order
to facilitate this communication. The problem is to design
effective routing protocols to meet a variety of performance
objectives.

Typical examples of ad-hoc networks are wireless sensor
networks, where the nodes are sensors that gather environ-
mental data and send the information to computational nodes
for further processing, or to base stations for relay to a
wired network. Such networks could be deployed in hazardous
locations, for example in disaster areas to aid rescue efforts,
for mineral or oil prospecting, in defense applications in the
battlefield etc.

Most of the previous routing protocols ( [1]–[5]) for wireless
ad-hoc networks concentrate on finding and maintaining routes
in the face of changing topology caused by mobility or other
environmental changes. Typical protocols use shortest path
algorithms based on hop count, geographic distance, or trans-
mission power. The first two are important in minimizing delay
and maximizing throughput. The third objective is peculiar to
wireless ad-hoc networks, and is important because typically
the nodes involved have a limited power supply, and radio
communication consumes a large fraction of this supply.

To address this issue, several power-aware routing protocols
and topology control algorithms have been developed ( [6]–
[10]). In most of these, the aim is to minimize the energy

consumed per packet in order to deliver it to the destina-
tion. The typical approach is to use a distributed shortest
path algorithm in which the edge costs are related to the
power required to transmit a packet between the two nodes
involved. The problem with this technique is that nodes on the
minimum-energy path are quickly drained of power, affecting
the network connectivity when they fail. Some of the more
sophisticated routing algorithms associate a cost with routing
through a node with low power reserves ( [6], [8]). But this
remains at best a heuristic solution.

In [11] and [12], a rigorous formulation using linear pro-
gramming is presented which attempts to capture the issue
of power consumption more precisely. The idea is to make
the goal of routing the maximization of the network lifetime,
which is the time to network partition because of node failures.
They give a heuristic algorithm to solve the linear program
approximately, but which can perform arbitrarily badly in the
worst case. In the later paper [13], a centralized algorithm to
determine the maximum lifetime is presented, based on the
Garg-Koenemann [14] algorithm for multicommodity flow.

In this paper, we explicitly formulate the problem as a
maximum concurrent flow problem. All routing problems
have analogous flow realizations, where the flow represents
the routes that packets take, and the demands represent the
rate at which packets are generated by various nodes. This
formulation allows one to apply the extensive literature of
maxflow algorithms to the problem of routing for maximum
network lifetime. Many of these algorithms are not well-
suited to distributed implementation as is necessary for a
routing protocol, or do not adapt well to changing network
topology. Moreover, they are typically better-suited to the
problem of wired network routing where the constraints are
link bandwidth (the number of packets that can be routed over
an edge in unit time) and node capacity (the number of packets
that can be forwarded by a node in unit time).

We adapt a distributed flow algorithm due to Awerbuch
and Leighton ( [15], [16]) to our situation. The algorithm
finds an approximation to a feasible flow if one exists. The
difference between the current paper and earlier heuristic
approaches is that the approximation factor is guaranteed, and
we theoretically analyze the algorithm, giving lower bounds on
its performance. The algorithm is applicable to various power
consumption models in static networks as well as dynamic
networks with slowly changing edge costs.

The advantage of this approach over that of [13] is that it
is a distributed, local-control approach and does not require
a central node with global knowledge of the network. This is
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also the reason why it works well with dynamic networks as
well.

The paper is organized as follows: in section II, a rigorous
problem formulation is presented. In section III, the flow algo-
rithm is presented and analyzed. In section IV, the feasibility
algorithm is extended to actually determine the optimal routing
that maximizes the network lifetime. In section V, some
implementation issues are addressed, and simulation results
are presented. Finally, in section VI, we discuss possible
extensions and make some concluding remarks.

II. PROBLEM FORMULATION

In this section, we will formulate the problem more pre-
cisely and give both a linear programming and a flow inter-
pretation.

The network is represented as a graph, with N nodes and M
edges, with the nodes representing wireless devices and the
edges the wireless links between them. Associated with each
node i is a quantity Ei, representing the initial energy reserve
of the device. Each edge ij has a cost eij , which is the
energy required to transmit one packet of data across the
corresponding link.

The routing problem consists of a set of K source and
destination pairs, which are pairs of nodes in the network. Each
pair has a throughput requirement Qc, the number of packets
per second that must be routed between source and destination
nodes. The routes are given by variables fc

ij , which represent
the rate at which packets are transmitted across link ij for
connection c.

A. Linear programming formulation

In [12], the problem is formulated as a linear program.
We give a slightly simplified description (their formulation
includes the possibility that a connection has multiple sources
and/or destinations).

The lifetime of the network is defined as the time at which
the first node failure occurs, that is, the time at which some
node’s energy reserve is reduced to zero. Our goal is to
route packets in such a manner that the lifetime is maximized
while the throughput requirements are satisfied. We denote
the lifetime by T . Define new variables f̂c

ij denoting the total
number of packets for connection c transmitted from node i
to node j over the lifetime of the network.

The total energy consumed at node i is given by∑
j,c

eij f̂
c
ij

where the sum is over all nodes adjacent to i and all connec-
tions c. At every node except the source and destination for a
particular connection c, the number of packets received must
equal the number of packets transmitted. At the source, the
number of packets transmitted equals QcT over the lifetime T
of the network.

Hence the linear program is

max T
s.t. f̂c

ij ≥ 0 ∀i, j, c

∑
j,c

eij f̂
c
ij ≤ Ei ∀i

∑
j

f̂c
ij −

∑
k

f̂c
ki =

{
QcT
0

∀i, c
i a source for c
otherwise

The second constraint is due to the finite power supplies at the
nodes, and the third represents the throughput requirements at
the sources and the conservation constraints at other nodes.

This formulation is not very useful directly, but serves to
show that the problem can theoretically be solved exactly in
polynomial time.

B. Multicommodity flow

Routing problems can generally be interpreted as flow
problems, and ours is no exception. The variables fc

ij can be
thought of as flow values of a commodity c. The requirement
that incoming packets arrive at the same rate as outgoing pack-
ets leave is equivalent to the flow conservation constraint that
at any intermediate node, the amount of incoming flow equals
the amount of outgoing flow. The sources and destinations
of the routing problem become sources and sinks in the flow
problem. The throughput requirements Qc represent the rate
at which flow is produced at the sources and consumed at the
sinks. So at each instant of time, the routing is represented as
a multicommodity flow satisfying demands Qc.

We will consider the time evolution of the network as
proceeding in a sequence of synchronous rounds, each lasting
for unit time. In each round, Qc packets are generated at each
source node. Packets may be transmitted between nodes, and
the energy reserve of each node is reduced by the total cost
of the packets it transmits. So, if fij is the number of packets
transmitted by node i to node j, the energy reserve of i is
reduced by

∑
j eijfij in this round. Since each node will

actually be forwarding packets for a number of connections,
the reduction in the energy is given by∑

j,c

eijf
c
ij

From the problem formulation, it might appear that a more
general version is to ask for how many rounds a feasible
multicommodity flow can be maintained, where the flow is
allowed to vary with time, and some intermediate nodes might
fail before the demands become infeasible. This does not lead
to any improvement in the lifetime achievable over a static
flow that lasts only till the first node failure, however, as can
be seen by the following argument: suppose the flow achieving
the maximum lifetime T is fc

ij(t) at time t, and satisfies the
demands at every instant. Replace this variable flow by its
time average

f̃c
ij =

1
T

∫ T

0

fc
ij(t) dt

This static flow will satisfy the same demands at every instant,
and now no node will fail before the lifetime T . Since the flow
is static, the energy consumed in any round at a node i cannot
exceed Ei/T .
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Thus it is enough to look for a multiflow satisfying all the
demands, and constrained by∑

j,c

eijf
c
ij ≤ Ei

T
for all i

to achieve a lifetime of T . We denote by L an upper bound on
the length of the longest flow path in the feasible flow fc

ij . An
approximation algorithm for this problem will be described in
the next section.

III. LOCAL-CONTROL FLOW ALGORITHM

The algorithm is expressed in terms of the flow interpreta-
tion. The goal is to determine whether a given value of the
lifetime T is feasible. That is, is it possible to route flow in
the network so that all the demands are satisfied, and no node
runs out of energy before T rounds have gone by.

We will assume that there exists a multiflow that satisfies
not just the demands Qc, but slightly more, namely the
demands (1 + ε)Qc, for some parameter ε > 0.

Theorem 1 If the demands (1+ ε)Qc are feasible, then there
exists a routing algorithm that will satisfy the demands (1 −
δ)Qc, for any δ > 0, after running for

8ML (K + ln(6K/ε))
εδ

rounds.

We will prove the theorem by actually describing such an
algorithm and giving a complete analysis of its performance.
The original algorithm in [15], [16] is for the case where there
are edge capacity constraints, such as for example bandwidth
limits. In our case, the constraints are on the nodes, since each
node must respect its energy budget Ei/T .

A. Description

Each node maintains K queues for each of its links. In each
round, the flow in a queue may be moved to the other end of
the link. Flow may also be redistributed among the queues at
a single node.

Denote by qc
ij the height of the queue for commodity c on

link ij at node i. The link has another queue at its other end,
denoted by qc

ji.
We define a potential function φ(q) associated with every

queue, where q is the queue height. The potential function will
be completely specified when we analyze the performance of
the algorithm, for now note that it will be a twice-differentiable
convex function. The algorithm will operate so as to minimize
the sum of the potential functions of all queues.

In each round of the algorithm the following phases are
performed:

• Inject flow. For each commodity c, add Qc flow at the
corresponding sources.

• Balance nodes. Equalize the queues at each node.
• Push flow. This step is the most complex and contains the

crux of the algorithm. Associate each pair of queues qc
ij

and qc
ji for an edge ij with the node where the queue

height is greater. To reduce the potential, we must move
packets from the higher queue to the lower (this follows
from the convexity of φ). So we minimize the function∑

j,c

φ(qc
ij − fc

ij) + φ(qc
ji + fc

ij)

where the sum is over edges ij associated with node i,
and the variables are the fc

ij subject to the constraint∑
j,c

eijf
c
ij ≤ Ei

T

The solution fc
ij is then used to move flow from node i

to node j.
• Drain flow. Absorb the flow for commodity c at its sink.

That is, set the height of all queues for c that are at the
sink to zero.

B. Analysis

We will show that the potential in the system remains
bounded as time goes on, which implies that most of the flow
injected into the network reaches the appropriate sink.

The idea will be to lower bound the decrease in potential in
a round by comparing what the algorithm does to what would
happen if we picked the flow values according to a feasible
multiflow instead. This will in turn imply an upper bound
on how large the potential can become as the algorithm is
repeatedly executed.

For simplicity in writing the expressions, we will assume
that the source nodes and the destination nodes both have unit
degree, and that all flows and queues are scaled so that the
demand for each commodity is unity.

The increase in potential after the first two phases will be
at most ∑

c

φ(sc) − φ(sc − 1) ≤
∑

c

φ′(sc)

where sc is the total amount of commodity c at the source
after flow injection.

The potential decreases when we push flow, and to estimate
the decrease in potential, we consider what happens if we use
a feasible flow fc

e satisfying the demands (1 + ε), instead of
the minimizing flow values we compute. The expression is∑

e,c

φ(qc
eh) + φ(qc

et) − φ(qc
eh + fc

e ) − φ(qc
et − fc

e )

where the summation extends over all edges in the network,
and qc

eh and qc
et denote the queue heights for commodity c

at the head and tail of the edge respectively. We apply the
extended mean value theorem to φ and simplify the expression
to∑

e,c

fc
e (φ′(qc

et) − φ′(qc
eh))

− 1
2
(fc

e )2(φ′′(qc
eh + ζc

ehfc
e ) + φ′′(qc

et − ζc
etf

c
e ))

where the ζet and ζeh are suitable constants between 0 and 1.
Note now that the first derivative terms will cancel out except
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at the source and sink, because in the node balancing phase,
all the queue heights for a given commodity at a given
node were made equal, and fc

e satisfies the flow conservation
property. We will pick our potential function so that the second
derivative terms make a very small contribution to the sum. In
particular, assume that their contribution is at most ε

2φ′(sc).
Hence the potential drop is at least∑

c

(1 + ε)
((

1 − ε

2

)
φ′(sc) − φ′(0)

)

So overall during the round, the potential drops by at least

∑
c

(
ε

2
− ε2

2

)
φ′(sc) − (1 + ε)Kφ′(0)

Note that if we ignore the flow values fc
e that move flow

from a lower height queue to a higher queue, we will only
improve the potential drop. Since our algorithm considers all
such feasible updates while minimizing, the potential drop it
finds will be better than the one we have just derived.

Let S be the value that satisfies the equation(
ε

2
− ε2

2

)
φ′(S) = (1 + ε)Kφ′(0)

So if sc ≥ S for any commodity, then the potential drop during
the round will be non-negative. We wish to bound the amount
of commodity c in the network by 2MS, by showing that no
queue can exceed S in height.

To do this we borrow from [16] the trick of using ‘overflow
buffers’ at each source node. The idea is that if the queue
at the source has reached S, then we put additional injected
flow in a special overflow buffer, which has potential bφ′(S)
if it has b amount of commodity. With this potential function,
the increase in potential when flow is injected remains upper
bounded by φ′(sc). The advantage of bounding the source
queue is that no other queue can exceed this bound. For it is
easy to see that given a particular value of queue height, S in
this case, the first queue to exceed this height must be at the
source.

Now we argue by induction on the number of rounds that
the potential must always be less than 2MKφ(S). For as long
as the overflow buffers are empty for all commodities, this
remains true. If, on the other hand, the flow injection phase
overflows some source queues, then we know that the potential
actually drops during this round.

Hence the maximum size of an overflow buffer
is 2MKφ(S)/φ′(S). This result will be needed in the
next section, so we restate it as a lemma.

Lemma 2 If S satisfies the equation(
ε

2
− ε2

2

)
φ′(S) = (1 + ε)Kφ′(0)

then the maximum size of an overflow buffer is

2MKφ(S)/φ′(S)

The maximum amount of commodity c within the edge
queues is 2MS, hence combining this with the upper bound
on the overflow buffers, we get an upper bound of 2M(S +
Kφ(S)/φ′(S)) on the total amount of commodity in the
system.

Now we set the potential function φ(q) = eαq , for α =
ε/4L. This gives, for ε small enough∑

e

1
2
(fc

e )2(φ′′(qc
eh + ζc

ehfc
e ) + φ′′(qc

et − ζc
etf

c
e ))

≤
∑

e

(fc
e )2α2eα(S+fc

e )

≤ (1 + ε)αeα(1+ε)
∑

e

fc
eφ′(S)

≤ (1 + ε)
ε

4L
eε(1+ε)/4LL(1 + ε)φ′(S)

≤ ε

2
φ′(S)

The equation for S gives S ≤
(

4L ln(6K/ε)
ε

)
. So the total

amount of a given commodity in the system is at most R =
8ML(K + ln(6K/ε))/ε.

Suppose that we run the algorithm continuously for R/δ
rounds. The amount of commodity c pumped into the network
is R/δ, and the amount remaining in the network is at most R.
Hence the average amount of commodity transported through
the network per round is 1 − δ. This proves theorem 1.

Another parameter of interest is the average delay a packet
experiences while being routed by our algorithm. Since the
amount of commodity in the system is bounded by R in the
long run, the average delay is also upper bounded by R, by
Little’s Law.

Lemma 3 The average delay of a packet is at most

8ML(K + ln(6K/ε))
ε

IV. MAXIMIZING LIFETIME

Now we describe how to use the algorithm to converge
to the routing appropriate to the maximum lifetime. We will
imagine for the moment that we have centralized control, and
can update information at all the nodes at the same time.

The node constraints will be set to Ei/T , and we will vary T
till it converges to the optimal value T ∗. The idea is that if T
is too large, then the node constraints are too tight to allow
for a feasible flow, hence the source queues will grow without
bound. Hence we start out T at some value that is smaller
than the true lifetime and increase it till we find that some
overflow buffer exceeds the bound 2MKφ(S)/φ′(S). Now
we know the optimal lifetime T ∗ to within a factor of two,
and can perform a bisection search to determine it exactly.

Let us flesh out the outline above. Suppose we want
to determine the optimum lifetime T ∗ to within a relative
error of ε. Initialize T to some suitable value T0, which
we assume to be less than the optimum T ∗. Let the al-
gorithm run for 2R rounds. If no overflow buffer exceeds
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the bound 2MKφ(S)/φ′(S), then we know that the average
fraction of commodity transported through the network is at
least one-half by theorem 1.

Notice that if demands λQc can be satisfied with con-
straints Ei/T , then scaling all the flow values by 1/λ shows
that demands Qc can be satisfied with constraints Ei/λT .
Hence if demands Qc/2 are being satisfied on average with
constraints Ei/T , then we know that demands Qc can be
satisfied with constraints 2Ei/T , and so T ∗ ≥ T/2. Double T
and run for another 2R rounds. We repeat this process until
some overflow buffer bumps up against the 2MKφ(S)/φ′(S)
upper bound, say when T = T1. At this point we know that

(1 + ε)T1 ≥ T ∗ ≥ T1

4
The upper bound is because if demands (1 + ε)Qc had been
feasible with constraints Ei/T1, then by lemma 2, the overflow
buffers cannot exceed 2MKφ(S)/φ′(S).

We stop the algorithm as soon as an overflow buffer hits
its bound, even if the full 2R rounds have not been executed.
Because of this, the maximum overshoot that can happen in
an individual buffer is one unit, corresponding to a potential
overshoot of φ′(S). To get the potential back under the
bound 2MKφ(S), we run a round of the algorithm without
injecting any new packets at the sources that overshot. Suppose
that K ′ of the source overflow buffers exceed their bounds.
Then the decrease in potential that this round produces will
be at least K ′φ′(S), hence will be sufficient to reduce the
potential below 2MKφ(S).

The power consumed at node i during this process of finding
an upper bound on T ∗ is at most

2EiR

(
1
T0

+
1

2T0
+ · · ·

)
≤ 4EiR

T0

Now that we have upper and lower bounds, we will perform
a search to determine the value of T ∗ more accurately. The
naı̈ve approach is to use a bisection search, running the algo-
rithm for R/ε rounds to cut the search interval approximately
in half. But a more intelligent technique cuts the search time
significantly. If Th and Tl are the current upper and lower
bounds (initially Th = T1 and Tl = T1/4), pick a test
value T = (2Th +Tl)/3, a third of the way from Th to Tl, and
run the algorithm for R/δ rounds, where δ = (Th − Tl)/3T .
The idea is that if no source overflow buffer exceeds its bound
within these many rounds, then by theorem 1 we have

(1 + ε)Th ≥ T ∗ ≥ T (1 − δ) =
Th + 2Tl

3
and if some buffer does exceed its bound, then

(1 + ε)T ≥ T ∗ ≥ Tl

In either case, the search interval is reduced by a factor of 2/3.
The excess power consumed at node i (over the ideal Ei/T ∗)
during these R/δ rounds is at most

R

δ

(
Ei

T
− Ei

T ∗

)
≤ 3EiR

T ∗

The number of rounds spent during this search process is
at most

R

�log2/3 ε/3�∑
i=1

(
4 ·
(

3
2

)i−1

+ 1

)
≤ 25R

ε

and the total excess power consumption at node i is at most

3EiR log3/2(3/ε)
T ∗

The total number of rounds spent to converge to an accurate
value of T ∗ is hence

R

(
2 log

4T ∗

T0
+

25
ε

)

During the remaining rounds, the power consumed per
round is at most Ei/(1 − ε)T ∗. Hence if

4EiR

T0
+

3EiR log3/2(3/ε)
T ∗ ≤ εEi

then the node will last for at least (1 − 2ε)T ∗ rounds. Hence
if we pick T0 = 8R/ε, and if

T ∗ ≥ 6R log3/2(3/ε)
ε

then the remaining life of the node is at least (1 − 2ε)T ∗.

Theorem 4 There exists a routing protocol that achieves a
lifetime of (1 − 2ε)T ∗, if

T ∗ ≥ 48ML log3/2(3/ε)(K + ln(6K/ε))
ε2

For a given value of T ∗, we should pick

ε = Θ
(

ML

T ∗

(
K + log

T ∗

ML

)) 1
2

to get the best possible bound. (Notation: f = Θ(g) means
that there exist constants c1 and c2 such that c1g ≤ f ≤ c2g.)

V. IMPLEMENTATION ISSUES

There are three issues with implementing the algorithm as
we have presented it so far: one is that thus far we have been
treating the flow as a continuous quantity. However, in routing,
we don’t want to split up packets. So we must discretize the
queues so that they contain an integral number of packets,
and we must route an entire packet at a time. The second is
computing the flow values that minimize the potential function
at a node. The third is how to converge to the maximum
lifetime in a distributed manner rather than in the centralized
fashion we have analyzed.

Another problem that occurs in practice is that traffic
does not arrive in the smooth, deterministic manner we have
assumed so far, but may be intermittent or bursty in nature.
To deal with this, we add a leaky bucket at every source to
smooth out the traffic.
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A. Discretizing flow

We modify the node rebalancing phase of the algorithm to
rebalance the queues while maintaining an integer number of
packets in each queue. This implies that the actual height of a
queue might differ by up to one packet from its ideal height.

This introduces an error term into the analysis of the
algorithm. While deriving the drop in potential by routing a
flow fc

e across an edge e, we obtained the expression∑
e,c

fc
e (φ′(qc

et) − φ′(qc
eh)) + second derivative terms

The first term might differ from its ideal value (when the q’s
are allowed to vary continuously) by∑

e,c

fc
e

Qc
(φ′′(qc

et + ηc
et/Qc) + φ′′(qc

eh + ηc
eh/Qc))

where ηc
et and ηc

eh are between −1 and 1. This sum is at most∑
e,c

fc
e

Qc
(2α2eαS) ≤ 2(1 + ε)L

ε

4L
φ′(S) ≤ εφ′(S)

So this does not significantly affect the analysis of the algo-
rithm.

B. Minimizing potential

The problem we have to solve at each node is

Minimize
∑
j,c

φ(qc
ij − fc

ij) + φ(qc
ji + fc

ij)

subject to ∑
j,c

eijf
c
ij ≤ Ei

T

Using the technique of Lagrange multipliers, the fc
ij satisfy

the system

φ′(qc
ij − fc

ij) − φ′(qc
ji + fc

ij) = λeij

So we compute the maximum of the quantities

φ′(qc
ij) − φ′(qc

ji)
eij

(which must be equal when we reach the minimum potential
solution) over the edges ij and connections c and route one
packet for that edge and connection. We update the queue
heights and repeat the process until we exhaust the energy
budget Ei/T .

C. Distributed implementation

The core of the algorithm (described in section III) is
easy to implement in a distributed manner. The difficult
part is defining a distributed protocol for doing the work of
maximizing the lifetime (section IV).

The idea will be that each source sends out a broadcast (for-
warded to each neighbour along with data packets) whenever
its overflow buffer hits the bound 2MKφ(S)/φ′(S). Each
node will receive the broadcast in at most N rounds.

In the initial phase, every 2R rounds, every node doubles
its local value of T . If during the next N rounds, it receives
a broadcast message from a source, it switches into the next
phase, and forwards the broadcast.

In the second phase, each node maintains the upper and
lower bounds Th and Tl, and computes the test value T =
(2Th + Tl)/3 to determine its local energy budget. If af-
ter R/δ+N rounds, no source broadcast is received, the value
of Tl is updated to (Th + 2Tl)/3. If a broadcast is received,
the value of Th is updated to T . This continues until the value
of T ∗ is determined (to within relative error ε).

The protocol executed at each node can be summarized as:

• Initialize Set T = T0.
• Determine Th Run core algorithm until 2R + N rounds

pass, a broadcast is received, or (if the node is a source)
the overflow buffer hits 2MKφ(S)/φ′(S). If 2R + N
rounds have gone by, double T and repeat this step,
otherwise move to the next one.

• Broadcast If a broadcast message was received, forward
it to our neighbours, else generate a new one.

• Search initialization Set Th = T and Tl = T/4.
• Search Compute T = (2Th + Tl)/3, δ = (Th − Tl)/3.

Run the core algorithm until R/δ + N rounds pass, a
broadcast is received, or (if the node is a source) the
overflow buffer hits 2MKφ(S)/φ′(S).

• Update If R/δ + N rounds have passed, set Tl = (Th +
2Tl)/3. Otherwise, set Th = (2Th + Tl)/3 and either
forward the broadcast or generate a new one. If (Th −
Tl)/Tl ≥ ε, go back to the Search step.

The analysis of this distributed protocol is similar to the
centralized one and will lead to the same bounds except for a
small constant factor, since N is small compared to R.

D. Leaky bucket

A leaky bucket is a controller used in network applications
to smooth out traffic flow. The idea is that ρ tokens are
generated per second, and tokens are dropped if there are
more than σ of them. Each packet transmission consumes one
token. If tokens are not available, the packets are buffered
till they become available. Such a controller limits the traffic
transmitted: the number of packets transmitted in a time
interval T can never exceed ρT + σ.

In our application, we use the special case where σ is zero,
so that the traffic is smoothed out completely.

E. Acceleration of the algorithm

There are some issues with the algorithm as described
above, principally that the delay can grow unexpectedly fast.
On a route of length L, the delay a packet faces will grow
as L2 because the queues decrease linearly from source to sink
(after convergence to the appropriate flow). To both reduce
this delay and to accelerate convergence, the algorithm can
be modified using ideas from [17] and [18]. The flow to be
sent on an edge is modified by using some history, that is, the
actual flow is computed as a linear combination of the flow
that the original algorithm (or the first-order method) chose,
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and the flow that was sent on the edge in the previous step. For
a suitable choice of the coefficients of the two components,
the convergence can be accelerated in this new second-order
method. If the coefficient of the flow in the previous step is
close to 1, then the final queue heights will be smaller than in
the first-order method, thus reducing delay.

The actual flow in the second-order method is thus calcu-
lated as

f = αf0 + βf ′

where f0 is the flow given by the first-order method, f ′ is
the flow sent in the previous step, and α and β are suitable
parameters. The convergence can be significantly accelerated
when α + β > 1. The closer β is to 1 and the larger the
value of α, the smaller the final queue heights and the faster
the convergence. However, if α is too large, the algorithm
becomes unstable.

An exact analysis can be done for the simple case of a path
graph, which shows that the second-order method is stable as
long as α < 1 + β.

This method may call for flow values that are greater than
the actual queue heights. There are two methods to deal with
this, one consisting of simply sending the maximum possible
when this happens, and ignoring the rest. Alternatively, the
excess flow called for can be remembered and sent during
subsequent time steps if possible.

F. Alternative implementation and simulation results

For the simulation, the graphs were generated by uniformly
generating points in a square area, 5 units by 5 units. Nodes
were given a random initial energy, uniformly distributed on
the interval [10000, 30000]. Transmission cost was set equal
to half the square of the distance, with a cut-off if the
square was larger than 10. The number of connections was
set to 1, with a demand of 1.0 for simplicity. Performance
was measured by first computing the maximum lifetime using
the algorithm from [13], running both the first- and the second-
order methods for the lifetime number of rounds and noting
how much flow actually reached the sink. In addition, we also
tested the algorithm with known lifetime (without the lifetime-
determining phase).

We actually implemented the algorithm in a simplified and
more practical form. Firstly, the potential function was taken
to be just the square of the queue heights rather than the
exponential function. This makes determining the flows that
minimize the potential function much simpler. With known
lifetime, the algorithm performs very well, usually delivering
over 97% of the flow.

Secondly, instead of using a distributed protocol to search
for the true lifetime, the potential function was modified by
adding a term proportional to the square of the cost of the
flow, i.e., (

α

Ei

∑
ec
ijf

c
ij

)2

This works reasonably well as long as the constant α is chosen
appropriately.

Fig. 1. Total flow reaching sink.

x-axis: α y-axis: Total flow

In figure 1, the total flow delivered in time equal to the
optimum lifetime is plotted against the value of α used. The
upper graph shows the second-order method with β = 0.95.
The lower graph is the first-order method. The graph was
generated on 20 nodes and the optimum lifetime of the
network was determined to be approximately 43, 000.

The simulation shows that choosing α appropriately is
largely a matter of making sure that it is not too small. Larger
values reduce the total flow delivered, but only slightly. Further
theoretical work is needed to determine how to choose both α
and β appropriately, or perhaps even vary them with time.

VI. EXTENSIONS

The algorithm actually works for a wide variety of different
constraints, either on the nodes or on the edges or even both.

From the proof of the core algorithm, it follows that it will
work for any combination of local constraints (both nodal as
well as edge capacity constraints) as long as there exists a
flow satisfying demands 1+ ε and meeting all the constraints.
These constraints need not even be linear, as long as we are
able to do the potential minimization.

A. Idle power

Typically, communication is not the only energy consumer
in a wireless node. The node would be doing some com-
putation or data collection which consumes power at a rate
independent of the number of packets it transmits. Also,
wireless interfaces consume power even when idle and not
receiving or transmitting any packets. To take these factors
into account, we can add a constant power consumption Ci to
the node energy constraint, which becomes

∑
j,c

eijf
c
ij ≤ Ei

T
− Ci
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The core algorithm is not affected at all by this change.
The only thing that we have to verify in order to show
that the lifetime maximization protocol will still work is the
scaling assumption that if demands λQc can be satisfied with
lifetime T , then demands Qc can be satisfied with lifetime λT .
This follows because if flow values fc

ij achieve demands λQc,
then the flow fc

ij/λ will satisfy Qc, and

∑
j,c

eij

fc
ij

λ
≤ Ei

λT
− Ci

λ
≤ Ei

λT
− Ci

provided λ ≤ 1, which is true whenever we apply this
result (λ = 1 − δ in section IV).

B. Periodic recharge

An interesting case is when some nodes are recharged
periodically, say every Ti seconds. In this case the right hand
side of the constraint for this node can be replaced with Ei/Ti,
since the node only has to survive till its next recharge. This
node does not participate in the lifetime-determining phase of
the protocol, except for forwarding control packets.

C. Edge constraints

One can also incorporate edge constraints, for example,
bandwidth constraints. At each node, in addition to the energy
constraint ∑

j,c

eijf
c
ij ≤ Ei

T

we would have additional constraints

fc
ij ≤ Bij

where Bij is the maximum possible rate at which packets can
be transmitted on link ij, perhaps due to signal-to-interference
ratio (SIR) requirements.

It may also be necessary to modify the energy constraint to
allow non-linear power dependences. For example, there may
be an initial startup cost associated with using the transmitter
or for setting up the wireless link with the node at the other
end, which may be a significant fraction of the total power
required.

These modifications make the potential minimization prob-
lem at the nodes more complicated, and more sophisticated
numerical algorithms may be required. Also, the lifetime max-
imization protocol needs to be re-analyzed for each particular
case, because the scaling assumption is no longer valid.

D. Receive power

So far we have ignored power required to receive packets
at a node. In real life, a transciever consumes power when
operated in receive mode as well as in transmit mode. If the
network is fairly static or slowly evolving, then this can be
taken into account by charging it when the packet is actually
forwarded instead of when it is received. Since all but a
bounded number of packets at any node will be forwarded,
we simply add the energy required to receive a packet to the

energy required to transmit it in the node constraint, which
takes the form ∑

j,c

(et
ij + er

ij)f
c
ij ≤ Ei

T

where et
ij is the energy per packet for transmission, and er

ij

is the energy per packet for reception and decoding.

E. Dynamic network

The core algorithm described in section III will work even if
the network is dynamic and edge costs are varying with time,
as long as it always true that there exists a multicommodity
flow satisfying the demands Qc.

However, because of the changing edge costs, it is possible
that the lifetime may change. If any source overflow buffer
hits its bound, then the current value of T is too high, and
a new search can be begun using the distributed protocol
with Th = T and Tl = 0. If the current value of T is
too low, this will not be detected unless we re-initiate the
entire lifetime maximization protocol. This can be done after at
least R/ε rounds have gone by, using for the starting value T0

the current value of T . Waiting for this many rounds ensures
that we transmit 1 − ε fraction of packets to the appropriate
destinations. So if the rate of change in the network is slower
than this, we will be able to track the lifetime as the network
evolves.

VII. CONCLUSION

In power-limited wireless ad-hoc networks, battery power
is an important consideration to take into account while
picking routes. In this paper, we have proposed and analyzed
a distributed routing algorithm for ad-hoc networks where
the goal is to maximize the network lifetime. We have been
able to establish a performance guarantee for this algorithm.
This is a significant theoretical improvement over the heuristic
algorithms previously proposed. We have shown that our
algorithm works for both static networks as well as networks
where the edge costs are varying slowly. The protocol can also
be modified to take into account different constraints, of which
some examples were discussed. It is also possible to handle
slowly changing dynamic ad-hoc networks.
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