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Abstract

An optimization method for uncertain structures is suggested based on convex model and a satisfaction degree of interval. In the
investigated problem, the uncertainty only exists in constraints. Convex model is used to describe the uncertainty in which the intervals
of the uncertain parameters are only needed, not necessarily to know the precise probability distributions. A satisfaction degree of inter-
val which represents the possibility that one interval is smaller than another is employed to deal with the uncertain constraints. Based on
a predetermined satisfaction degree level, the uncertain constraints are transformed to deterministic ones, and the transformed optimi-
zation problem can be solved by traditional optimization methods. For complex structural problems that the optimization model cannot
be expressed in an explicit form, the interval analysis method is adopted to calculate the intervals of the constraints efficiently, and
whereby eliminate the optimization nesting. Two numerical examples have been presented to demonstrate the efficiency of the suggested
method.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Uncertainty in material properties, geometric dimen-
sions, loads and other parameters are always unavoidable
in engineering structural problems. To obtain a reliable
design, the effects of the various uncertain factors should
be considered. The probability models are widely used to
describe the uncertainty and whereby many probability
optimization methods have been developed. The reference
[1] may be the first one to use probability optimization,
and this work has been followed by numerous other appli-
cations. However, the amount of the information available
for the uncertain parameters is often not enough to accu-
rately define the probability distributions. In addition,
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Ben-Haim and Elishakoff [2] have indicated that even small
deviations from the real probability distributions may
cause large errors in the reliability analysis.

In recent years, another method named convex model [2]
is developed to deal with the uncertainty in terms of the
convex domains, which range from one-dimensional uni-
formly bounded lines to multi-dimensional boxes or ellip-
soids. Convex model forms a convex set of functions or
vectors, and each element of the set represents a possible
realization of an uncertain event. The size of the convex
set reflects the variability of the events and is described
by a particular shape, i.e. multi-dimensional box or ellip-
soid, and thus the clustering of the uncertain events is
defined [3]. The algebraic definition of the convexity should
be satisfied for convex sets. Using convex model, only the
knowledge of the bounds of the uncertain parameters is
required, instead of the precise probability distributions.
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Thus the uncertainty analysis will become more convenient
and economical. Detailed theory on convex model can refer
to the references e.g. [2,4]. Ben-Haim [5] gave a comparison
of the probability method and convex model. Elishakoff
[6,7] employed an ‘‘uncertain triangle’’ to represent the
three methods used to describe uncertainty, namely proba-
bility method, fuzzy sets and convex model. Furthermore,
convex model has been applied to many aspects of engi-
neering mechanics, such as non-linear buckling of a column
with uncertain initial imperfections [8], stability analysis of
the elastic bars on uncertain foundations [9], bound analy-
sis of a beam [10] and uncertain analysis in structural num-
ber determination in flexible pavement design [11] etc.

Applying convex model to the optimization of uncertain
structures has not been widely studied. Elishakoff et al. [12]
optimized a truss with uncertain but bounded loads. Con-
vex model is implemented on the uncertain constraints
through an anti-optimization process, which seeks for the
worst condition of the constraints caused by the uncertain
loads. The anti-optimization technique based on convex
model was further developed by Lombardi et al. [13] for
the study of composite materials and Barbieri et al. [14]
for the shape and size optimization of trusses. Lombardi
[15] proposed a two step optimization method, where the
anti-optimization was solved only once for all constraints
before starting the optimization and it took a great compu-
tational saving. Ganzerli and Pantelides [16] proposed a
superposition method of convex model to eliminate the
anti-optimization process, and thus the optimization effi-
ciency was improved greatly. Au et al. [17] proposed a
novel method of robust design using convex model. Gurav
et al. [18] provided an enhanced anti-optimization tech-
nique, which incorporated design sensitivities with data-
base technique and was further modified to use parallel
computing in order to promote the computational effi-
ciency. In these mentioned methods (being termed as
‘‘worst-case method’’ in the following text), the uncertain
optimization can be divided into two processes, namely
the main optimization and the anti-optimization. In anti-
optimization, a worst condition case of the constraints will
be searched in the domain of the uncertain parameters, and
based on it the constraints are judged whether they are sat-
isfied or not. The worst-case method gives an approach to
deal with the uncertain constraints, however, it requires the
constraints to be satisfied for all of the possible values of
the uncertain parameters. Thus it is a relatively conserva-
tive method, and will make the treatment of the uncertain
constraints excessively strict and hence often lead to an
unexpected design objective. In probability optimization,
we generally expect the constraints to be satisfied with a
predetermined confidence level [19]. Through changing
the confidence level, the satisfying extent of the constraints
under the uncertain parameters can be adjusted. Here this
concept of the satisfying extent of constraints may be
extended into the structural optimization using convex
model, and develop a more general approach based on
the expected constraint satisfying level instead of the worst
condition. Thus the restricting degree of the uncertain con-
straints can be relaxed at certain extent according to the
practical problem, and whereby the design objective can
be always improved.

In this paper, an optimization method is suggested to
deal with the uncertain structures. Only the uncertain con-
straints are considered in this method. The uncertainty in
structures is modeled by convex model in which the inter-
vals of the uncertain parameters are only required. The sat-
isfaction degree of interval is extended to the structural
optimization with uncertainty, and it is used to compare
the interval of a constraint caused by the uncertainty with
the allowable value. Based on a satisfaction degree level,
the uncertain constraint is changed to a deterministic
one. Through adjusting the satisfaction degree level, the
feasible field of the design vector can be changed. The
worst-case method is just a special case of the constraint
satisfaction degree method. The penalty function method
is adopted to deal with the transformed deterministic con-
straints, and the intergeneration projection genetic algo-
rithm (IP-GA) [20,21] is employed as optimization
operator. The interval analysis method is used to obtain
the bounds of the constraints at each optimization iterate
efficiently for complex structural problems, thus the opti-
mization nesting can be avoided. The presented method
is applied to two numerical examples, namely a 10-bar
truss and a 25-bar truss, and it is proven effective.
2. Formulation of the algorithm

A general structural optimization problem can be for-
mulated as follows:

min
X

f ðXÞ

subject to

giðXÞ 6 bi; i ¼ 1; 2; . . . ; l;

X 2 Xn;
ð1Þ

where f is the objective function and X is an n-dimensional
design vector. gi is the ith constraint function and l is the
number of the constraints. bi is an allowable value of the
ith constraint. In practical structural problems, f and g

may depend on some parameters with uncertainty. In our
study, the uncertainty is limited in the constraints and
Eq. (1) becomes:

min
X

f ðXÞ

subject to

giðX;UÞ 6 bi; i ¼ 1; 2; . . . ; l;

X 2 Xn;
ð2Þ

where U is an m-dimensional uncertain vector. Using con-
vex model to describe the uncertainty, the intervals of the
uncertain parameters are only needed. Then the convex do-
main cU of the uncertainty can be expressed as follows:
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cU ¼ UI ¼ UI
i ¼ fU L

i 6 Ui 6 U R
i g; i ¼ 1; 2; . . . ;m: ð3Þ

The superscripts I, L and R denote interval, lower and
upper bounds of interval, respectively. The convex domain
is a bounded set which limits the variation of the uncertain
parameters. Thus for each optimization iterate of X, the
possible values of the constraint gi will form an interval
provided that gi is a continuous function of U. In the fol-
lowing sections, a satisfaction degree of interval will be
introduced and subsequently used to deal with the uncer-
tain constraints.

2.1. Satisfaction degree of interval

The satisfaction degree of interval represents the possi-
bility that one interval is larger or smaller than another,
and it is used to compare intervals. For intervals A and
B, the reference [22] gives a definition of the satisfaction
degree p(A 6 B) as follows:

pðA 6 BÞ ¼ maxð0; lenðAÞ þ lenðBÞ �maxð0;AR � BLÞÞ
lenðAÞ þ lenðBÞ ;

ð4Þ

where ‘len’ denotes the length of an interval:

lenðAÞ ¼ AR � AL; lenðBÞ ¼ BR � BL: ð5Þ

p(A 6 B) is actually a fuzzy definition of the possibility that
interval A is smaller than interval B (or B is larger than A).
For intervals A and B, there are a total of six positional
cases as shown in Fig. 1, and based on these Eq. (4) can
be rewritten as follows:

pðA 6 BÞ ¼
0; Case 1;

BR�AL

lenðAÞþlenðBÞ ; Cases 2; 3; 4 and 5;

1; Case 6:

8><
>: ð6Þ

It can be found that p(A 6 B) is equal to 0 for case 1 as A is
always larger than B. For case 6, p(A 6 B) is equal to 1 as
A
B

LA RA
RBLB

A
B

LA RARB
LB

A

B

LA RA
RBLB

A
B

LA RBLB RA

A

B

LB RALA
RB

B
A

LB RB
RALA

Case 1 Case 2 

Case 3 Case 4 

Case 5 Case 6 

Fig. 1. Six positional relations between intervals A and B.
A is always smaller than B. For cases 2–5, under the fixed
len(A) and len(B), the value of p(A 6 B) will become larger
with the increasing of BR or decreasing of AL. It is because
that interval B will move toward the right side of the coor-
dinate axis as a whole or A toward the left side under the
fixed lengths, and intuitively A has a larger possibility to
be smaller than B and hence p(A 6 B) becomes larger. As
a result, p(A 6 B) has the following properties:

1. 0 6 p(A 6 B) 6 1.
2. If p(A 6 B) = p(B 6 A), then pðA 6 BÞ ¼ pðB 6 AÞ ¼ 1

2

and A = B.
3. If AR

6 BL, then p(A 6 B) = 1, and it represents that A

is absolutely less than B.
4. If AL P BR, then p(A 6 B) = 0, and it represents that A

is absolutely larger than B.
5. If p(A 6 B) = q, then p(A P B) = 1 � q.

When the interval B is degenerated into a real number b,
the satisfaction degree p(A 6 b) has the following form:

pðA 6 bÞ ¼ maxð0; lenðAÞ �maxð0;AR � bÞÞ
lenðAÞ : ð7Þ

Fig. 2 is a geometrical description of Eq. (7). If AR
6 b and

AL P b, p(A 6 b) = 1 and p(A 6 b) = 0, respectively; if
AL
6 b 6 AR, p(A 6 b) behaves a linear relation with re-

spect to b.
2.2. Treatment of the uncertain constraints

In probability optimization, generally the constraints
are made to be satisfied with a certain predetermined con-
fidence level and the uncertain constraints are transformed
to the deterministic constraints [19]. Similarly, we can make
the constraints in Eq. (2) satisfied with certain satisfaction
degree level:

pðCi 6 biÞP ki; i ¼ 1; 2; . . . ; l; ð8Þ
Ci ¼ ½gL

i ðXÞ; gR
i ðXÞ�; ð9Þ

where ki is a predetermined satisfaction degree level of the
ith constraint. Ci is an interval of the ith constraint at X

which is caused by the uncertainty, and gL
i ðXÞ and gR

i ðXÞ
are the lower and upper bounds of this interval,
respectively:

gL
i ðXÞ ¼ min

U2cu

giðX;UÞ; gR
i ðXÞ ¼ max

U2cU

giðX;UÞ: ð10Þ
( )p A b≤

LA RA

b0

1

Fig. 2. Satisfaction degree p(A 6 b).
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The satisfaction degree p(Ci 6 bi) can be calculated by Eq.
(7). Through Eq. (10), the uncertain vector U is eliminated,
and the transformed constraints Eq. (8) become determin-
istic. ki can be adjusted to control the feasible field of X.
When ki is larger, the inequality constraints Eq. (8) will
be restricted more strictly and the feasible field of X will be-
come smaller. When ki reaches 1.0, the treatment of the
uncertain constraints is most conservative. It requires the
constraints to be satisfied for all of the possible combina-
tions of the uncertain parameters, and this is actually the
worst-case method adopted by the current publications
[12–17]. When ki is 0, Eq. (8) is absolutely satisfied and it
is actually a non-constraint treatment. Thus the present
method gives a more general form to deal with the uncer-
tain constraints in Eq. (2), and the worst-case method is
just its special case.

Through the above treatment, the uncertain optimiza-
tion problem Eq. (2) can be formulated as a deterministic
optimization problem:

min
X

f ðXÞ

subject to

pðCi 6 biÞP ki; i ¼ 1; 2; . . . ; l;

Ci ¼ ½gL
i ðXÞ; gR

i ðXÞ� ¼ min
U2cu

giðX;UÞ;max
U2cu

giðX;UÞ
� �

;

X 2 Xn: ð11Þ

Obviously, Eq. (11) can be solved in traditional determin-
istic way.
IP-GA 

Trial design
vector

Search range 

Calculating the 

objective function

Calculating the constraint
satisfaction degrees

Calcul

penalty

Calculating the intervals of

the uncertain constraint

Fig. 3. Optimization flowc
2.3. Computational procedure

Using the penalty function method [23], Eq. (11) can be
changed as a non-constraint optimization problem in terms
of a penalty function ~f :

min
X

~f ¼ f ðXÞ þ r
Xl

i¼1

uðpðCi 6 biÞ � kiÞ; ð12Þ

where r is a penalty factor which is usually specified as a
large value, and u is a function which has the following
form:

uðpðCi 6 biÞ � kiÞ ¼ ðmaxð0;�ðpðCi 6 biÞ � kiÞÞÞ2: ð13Þ

In this paper, the intergeneration projection genetic algo-
rithm (IP-GA) is adopted as optimization operator. IP-
GA combines the micro GA with the intergeneration
projection operator, and has a fine global convergence per-
formance [20,21]. The optimization flowchart is shown in
Fig. 3. In the optimization process, many trial design vec-
tors are generated, and for each one the objective function
and the intervals of the uncertain constraints are calcu-
lated. Then the constraint satisfaction degrees and the pen-
alty function are also obtained. The generation number is
employed as stopping criterion, and the optimization circle
is repeated until the stopping criterion is satisfied. GA is a
kind of global optimization method, and it needs only the
information of functional values and hence the derivative
information is not required. GA is also a robust method
as its solutions can be ensured to be better and better with
the generations. Generally, the number of iterative genera-
tions is used as stopping criterion for GA. In theory, GA
Stopping criterion 
ating the 

 function

Optimal design

vector

N

Y

hart based on IP-GA.
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can search an enough accurate global optimum as long as it
is given an enough number of generations. However, exces-
sive generations sometimes will lead to unacceptable com-
putation cost. Thus an appropriate generation number
needs to be specified according to the practical engineering
problem when using GA.

If the optimization model can be expressed in an explicit
form of the uncertain parameters and furthermore it is lin-
ear, the intervals of the uncertain constraints can be
obtained explicitly at each iterate. The optimization pro-
cess in this case will be analyzed in the following numerical
example of 10-bar truss. For many practical complex struc-
tures, the optimization model is always based on finite ele-
ment method (FEM) and hence implicit. If two
optimization processes defined by Eq. (10) are employed
to calculate the bounds of each constraint, the optimization
nesting will be caused inevitably and the optimization effi-
ciency will be very low. In this paper, the interval analysis
method [24,25] will be adopted to calculate the intervals of
the constraints at each iterate very quickly, and whereby a
much higher efficiency can be achieved than the nesting
optimization. The optimization process in this case will
be analyzed in the following numerical example of 25-truss.
3. Numerical examples and discussion

3.1. 10-bar aluminium truss

A well-known 10-bar aluminium truss [12,15–17] as
shown in Fig. 4 is investigated. The cross-sectional areas
Aj, j = 1,2, . . . , 10 of the bars are optimized to obtain a
minimum weight subject to the stress and displacement
constraints. The length L of the horizontal and vertical
bars is 9.144 m. The Young’s modulus E of the truss is
68,948 MPa and the density q is 2768 kg/m3. The maxi-
mum allowable stress of bar 9 in tension or compression
is 517.11 MPa. The other bars have a same allowable stress
in tension or compression which is 172.37 MPa. A maxi-
mum vertical displacement constraint with 0.1270 m is
applied on joint 2. Joint 4 is subjected to a vertical load
F1, and joint 2 is subjected to a horizontal load F3 and a
Fig. 4. A 10-bar aluminium truss [12].
vertical load F2. In this numerical example, only the loads
are uncertain and the uncertainty domain is

cU ¼ F L
1 6 F 1 6 F R

1 ; F
L
2 6 F 2 6 F R

2 ; F
L
3 6 F 3 6 F R

3

� �
:

ð14Þ

The nominal values of the loads are: F1 = F2 = 444.8 kN,
F3 = 1779.2 kN.

According to the equilibrium and compatibility equa-
tions, the axial forces Nj, j = 1,2, . . . , 10 in the bars can
be achieved explicitly [17]:

N 1 ¼ F 2 �
ffiffiffi
2
p

2
N 8; N 2 ¼ �

ffiffiffi
2
p

2
N 10 ð15Þ

N 3 ¼ �F 1 � 2F 2 þ F 3 �
ffiffiffi
2
p

2
N 8;

N 4 ¼ �F 2 þ F 3 �
ffiffiffi
2
p

2
N 10; ð16Þ

N 5 ¼ �F 2 �
ffiffiffi
2
p

2
N 8 �

ffiffiffi
2
p

2
N 10; N 6 ¼ �

ffiffiffi
2
p

2
N 10; ð17Þ

N 7 ¼
ffiffiffi
2
p
ðF 1 þ F 2Þ þ N 8; N 8 ¼

a22b1 � a12b2

a11a22 � a12a21

; ð18Þ

N 9 ¼
ffiffiffi
2
p

F 2 þ N 10; N 10 ¼
a11b2 � a21b1

a11a22 � a12a21

; ð19Þ

a11 ¼
1

A1

þ 1

A3

þ 1

A5

þ 2
ffiffiffi
2
p

A7

þ 2
ffiffiffi
2
p

A8

 !
L

2E
; ð20Þ

a12 ¼ a21 ¼
L

2A5E
; ð21Þ

a22 ¼
1

A2

þ 1

A4

þ 1

A6

þ 2
ffiffiffi
2
p

A9

þ 2
ffiffiffi
2
p

A10

 !
L

2E
; ð22Þ

b1 ¼
F 2

A1

� F 1 þ 2F 2 � F 3

A3

� F 2

A5

� 2
ffiffiffi
2
p
ðF 1 þ F 2Þ

A7

 ! ffiffiffi
2
p

L
2E

;

ð23Þ

b2 ¼
ffiffiffi
2
p
ðF 3 � F 2Þ

A4

�
ffiffiffi
2
p

F 2

A5

� 4F 2

A9

 !
L

2E
: ð24Þ

The vertical displacement d2 of joint 2 can be calculated
through the following equation:

d2 ¼
X6

i¼1

N 0
i N i

Ai
þ

ffiffiffi
2
p X10

i¼7

N 0
i N i

Ai

 !
L
E
; ð25Þ

where N 0
i can be obtained from Eqs. (15)–(19) with a sub-

stitution F1 = F3 = 0 and F2 = 1.
The optimization model can be formulated as follows

according to Eq. (11):

min
A

W ðAÞ ¼
X10

i¼1

ðqLiAiÞ ¼ qL
X6

i¼1

Ai þ
ffiffiffi
2
p X10

i¼7

Ai

 !

subject to

pðrI
i ðAÞ 6 ri;allowÞP ki; i ¼ 1; 2; . . . ; 10;

pðdI
2ðAÞ 6 d2;allowÞP k11; A 2 X10;

ð26Þ



Table 2
Optimization results under the satisfaction degree level 0.8 (10-bar)

Bar no. Area (cm2) Stress interval (MPa) Satisfaction degree

1 29.08 [141.37, 179.05] 0.82
2 1.92 [112.27, 156.56] 1.00
3 38.73 [42.56, 198.03] 0.84
4 86.72 [131.69, 182.03] 0.81
5 24.65 [143.29, 179.61] 0.80
6 2.09 [103.17, 143.87] 1.00
7 75.82 [145.82, 178.22] 0.82
8 2.91 [52.29, 152.70] 1.00
9 21.11 [252.62, 308.75] 1.00

10 2.37 [128.63, 179.39] 0.86

Interval of the displacement d2 is [6.52 cm, 14.24 cm], satisfaction degree is
0.80.
Weight of the truss is 829.18 kg.

Table 3
Optimization results under the satisfaction degree level 0.6 (10-bar)

Bar no. Area (cm2) Stress interval (MPa) Satisfaction degree

1 29.04 [138.39, 171.07] 1.00
2 0.65 [121.53, 170.87] 1.00
3 32.27 [43.68, 234.82] 0.67
4 80.66 [139.24, 193.99] 0.61
5 29.04 [133.04, 163.67] 1.00
6 0.65 [121.53, 170.87] 1.00
7 74.08 [152.08, 185.88] 0.60
8 0.67 [33.26, 159.07] 1.00
9 19.36 [286.32, 349.95] 1.00

10 0.82 [135.33, 190.27] 0.67

Interval of the displacement d2 is [6.33 cm, 15.41 cm], satisfaction degree is
0.70.
Weight of the truss is 775.88 kg.

Table 4
Optimization results under the satisfaction degree level 0.4 (10-bar)

Bar no. Area (cm2) Stress interval (MPa) Satisfaction degree

1 25.49 [156.96, 194.87] 0.41
2 0.65 [135.57, 191.03] 0.66
3 22.58 [62.33, 334.70] 0.40
4 76.62 [146.74, 204.33] 0.45
5 24.50 [157.58, 194.08] 0.41
6 0.62 [135.57, 191.03] 0.66
7 71.38 [158.02, 193.13] 0.41
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where

rI
i ðAÞ ¼ rL

i ðAÞ; rR
i ðAÞ

� �
; dI

2ðAÞ ¼ dL
2 ðAÞ; d

R
2 ðAÞ

� �
; ð27Þ

where W denotes the weight of the truss. The bounds of the
stress interval rI

i ðAÞ and the displacement interval dI
2ðAÞ

for a specific design vector A can be obtained:

rL
i ðAÞ ¼ min

F2cU

jNiðF;AÞj
Ai

; rR
i ðAÞ ¼ max

F2cU

jNiðF;AÞj
Ai

;

i ¼ 1; 2; . . . ; 10; ð28Þ
dL

2 ðAÞ ¼ min
F2cU

d2ðF;AÞ; dR
2 ðAÞ ¼ max

F2cU

d2ðF;AÞ: ð29Þ

Because Ni and d2 are both linear functions of the load vec-
tor F, their extreme points can be found at the vertices of
the convex set cU [2]. Thus the bounds of Ni and d2 can
be achieved only through comparing the eight combina-
tions of the bounds of the uncertain loads. Therefore
Eqs. (28) and (29) can be rewritten as follows:

rL
i ðAÞ ¼ min jNiðF;AÞj

Ai
; rR

i ðAÞ ¼ max jNiðF;AÞj
Ai

dL
2 ðAÞ ¼ min dðF;AÞ; dR

2 ðAÞ ¼ max dðF;AÞ

)
F j ¼ F L

j ; F
R
j ;

i ¼ 1; 2; . . . ; 10; j ¼ 1; 2; 3: ð30Þ

Thus only through eight evaluations of the constraint func-
tion, the interval of each constraint can be obtained at a
specific design vector.

The stopping criterion is set as 1000 generations for IP-
GA. The uncertainty level is 10% off from the nominal val-
ues of the loads. The search range X10 is specified as
{0.645 cm2

6 Ai 6 96.8 cm2, i = 1,2, . . . , 10}. All of the
constraints are set as the same satisfaction degree level.
The optimization results under the satisfaction degree lev-
els 1.0, 0.8, 0.6, 0.4 and 0.2 are listed in Tables 1–5, respec-
tively. It is found that the minimum weight of the truss
decreases with decreasing of the satisfaction degree level.
The relation between the minimum weight and the satisfac-
tion degree level is shown in Fig. 5, and it can be seen that
they behave an approximate linear relation. For satisfac-
tion degree level 1.0, the design weight of the truss has a
maximum value 886.19 kg, and this is the most conserva-
tive and costly design. For satisfaction degree level 0.2, it
Table 1
Optimization results under the satisfaction degree level 1.0 (10-bar)

Bar no. Area (cm2) Stress interval (MPa) Satisfaction degree

1 29.08 [138.57, 170.81] 1.00
2 0.65 [72.12, 105.75] 1.00
3 44.08 [31.95, 172.16] 1.00
4 90.75 [123.29,172.07] 1.00
5 29.04 [134.11, 164.83] 1.00
6 0.65 [72.12, 105.75] 1.00
7 79.85 [141.01, 172.34] 1.00
8 0.69 [53.66, 152.42] 1.00
9 29.04 [192.43, 235.20] 1.00

10 0.65 [102.00, 150.00] 1.00

Interval of the displacement d2 is [5.56 cm, 12.64 cm], satisfaction degree is
1.00.
Weight of the truss is 886.19 kg.

8 0.65 [7.15, 159.69] 1.00
9 19.39 [285.03, 348.37] 1.00

10 0.97 [127.48, 179.62] 0.86

Interval of the displacement d2 is [4.25 cm, 15.67 cm], satisfaction degree is
0.74.
Weight of the truss is 711.59 kg.
reaches a minimum value 678.17 kg. Thus from the view
point of the manufacturing cost, the small satisfaction
degree level is expected. However, small satisfaction degree
level means large possibility of violating the constraints.
For satisfaction degree level 0.0, the possibility is largest
as it has degenerated into a non-constraint optimization
problem. From Tables 1–5, it also can be found that the
satisfaction degrees of the constraints at the optimum also
decrease with decreasing of the satisfaction degree level,



Table 5
Optimization results under the satisfaction degree level 0.2 (10-bar)

Bar no. Area (cm2) Stress interval (MPa) Satisfaction degree

1 24.35 [163.85, 203.94] 0.21
2 0.65 [108.65, 154.47] 1.00
3 19.36 [72.71, 390.00] 0.31
4 72.59 [154.57, 215.45] 0.29
5 24.20 [160.44, 197.75] 0.32
6 0.65 [108.21, 153.85] 1.00
7 68.55 [164.63, 201.21] 0.21
8 0.65 [9.84, 159.60] 1.00
9 19.36 [286.94, 350.70] 1.00

10 0.65 [152.43, 216.71] 0.31

Interval of the displacement d2 is [2.99 cm, 15.72 cm], satisfaction degree is
0.76.
Weight of the truss is 678.17 kg.
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Fig. 5. Relation of the satisfaction degree level and the minimum weight
of the truss.

C. Jiang et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 4791–4800 4797
and their minimums are 1.00, 0.80, 0.60, 0.40 and 0.21,
respectively. Thus a tradeoff between the design objective
and the risk of violating the constraints should be made
through adjusting the satisfaction degree level of the
constraints.

3.2. 25-bar steel truss

A 25-bar steel truss as shown in Fig. 6 is studied. The
cross-sectional areas of the bars are optimized to achieve
(1) (2)

(7)(6)(5)

(11) (13)(12)
(16)

(17)

(18)

(19)

(20)

(

(

1 2 3 

91011
12

1F 2F

4F

6x15.24m=9

Fig. 6. A 25-bar s
the minimum volume of the truss subject to several dis-
placement constraints. The Young’s modulus of the truss
is 199949.2 MPa and the Poisson’s ratio is 0.3. The length
L of each horizontal or vertical bar is 15.24 m. Joint 12 is
hinge-supported, and joints 6, 8 and 10 are roller-sup-
ported. Joints 7, 9 and 10 are subjected to the vertical loads
F3, F2 and F1, respectively. Joint 1 is subjected to a horizon-
tal load F4. The bars (1)–(4) have a same cross-sectional
area denoted by A1; the bars (16)–(25) have a same cross-
sectional area denoted by A2; the bars (11)–(15) have a
same cross-sectional area denoted by A3, and the bars
(5)–(10) denoted by A4. The horizontal displacement of
joint 6 is denoted by d1 and its allowable maximum is
23 mm. The vertical displacements of joints 7, 9 and 11
are denoted by d2, d3 and d4, and their allowable maxi-
mums are 47 mm, 40 mm and 48 mm, respectively. Only
the four loads denoted by a vector F are uncertain, and
their nominal values are: F1 = F3 = 1779.2 kN,
F2 = 2224 kN and F4 = 1334.4 kN. The convex set of the
uncertainty can be expressed as follows:

cU ¼ FI ¼ F L
1 6 F 1 6 F R

1 ; F
L
2 6 F 2 6 F R

2 ; F
L
3 6 F 3 6 F R

3 ;
�

F L
4 6 F 4 6 F R

4

�
: ð31Þ

An optimization model can be formulated based on Eq.
(11):

min
A

V ðAÞ ¼
X25

i¼1

ðLiAiÞ ¼ Lð4A1 þ 10
ffiffiffi
2
p

A2 þ 5A3 þ 6A4Þ

subject to

pðdI
i ðAÞ 6 di;allowÞP ki; i ¼ 1; 2; 3; 4; A 2 X4; ð32Þ

where V is the volume of truss. For a specific A, the values
of di(A,F) form an interval dI

i ðAÞ as F is uncertain, and its
bounds can be written:

dL
i ðAÞ ¼ min

F2cU

diðA;FÞ; dR
i ðAÞ ¼ max

F2cU

diðA;FÞ;

i ¼ 1; 2; 3; 4: ð33Þ

Following is the interval analysis method [24–26] which is
used to solve Eq. (33) with high efficiency.

Based on the interval mathematics [27], the interval vec-
tor FI can be rewritten in the following form:
(3) (4)

(10)(9)(8)

(14) (15)

21)

22)

(23)

(24)

(25)

4 5

6

78

3F

15
.2

4m

1.44m 

teel truss [17].



Table 6
Optimization results under the satisfaction degree level 1.0 (25-bar)

Optimal areas (mm2) Displacement intervals (mm) Satisfaction degree

A1: 719.4 d1: [17.82, 22.39] 1.00
A2: 6293.5 d2: [34.40, 44.76] 1.00
A3: 5374.2 d3: [28.78, 39.46] 1.00
A4: 8848.4 d4: [35.66, 46.26] 1.00

Volume of the truss is 2.58 m3.

Table 7
Optimization results under the satisfaction degree level 0.8 (25-bar)

Optimal areas (mm2) Displacement intervals (mm) Satisfaction degree

A1: 409.7 d1: [18.83, 23.91] 0.82
A2: 5064.5 d2: [36.49, 48.36] 0.89
A3: 6293.5 d3: [29.49, 42.04] 0.84
A4: 8316.1 d4: [38.18, 50.41] 0.80

Volume of the truss is 2.32 m3.

Table 8
Optimization results under the satisfaction degree level 0.6 (25-bar)

Optimal areas (mm2) Displacement intervals (mm) Satisfaction degree

A1: 487.1 d1: [19.70, 24.89] 0.64
A2: 5122.6 d2: [38.90, 51.12] 0.66
A3: 5248.4 d3: [32.06, 44.85] 0.62
A4: 7996.8 d4: [40.46, 52.99] 0.60

Volume of the truss is 2.23 m3.
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FI ¼ ½FL;FR� ¼ ½Fc � Fw;Fc þ Fw�
¼ Fc þ ½�1; 1�Fw; i ¼ 1; 2; 3; 4; ð34Þ

where Fc and Fw denote the midpoint vector and the radius
vector of FI, respectively:

Fc ¼ FL þ FR

2
; F c

i ¼
F L

i þ F R
i

2
; i ¼ 1; 2; 3; 4; ð35Þ

Fw ¼ FR � FL

2
; F w

i ¼
F R

i � F L
i

2
; i ¼ 1; 2; 3; 4: ð36Þ

Based on Eq. (34), the uncertain vector F can be rewritten
in the following form:

F ¼ Fc þ dF; ð37Þ

where

dF 2 ½�1; 1�Fw; dF i 2 ½�1; 1�F w
i ; i ¼ 1; 2; 3; 4: ð38Þ

The constraint functions can be expanded at Fc through the
first-order Taylor expansion:

diðA;FÞ ¼ diðA;Fc þ dFÞ � diðA;FcÞ þ
X4

j¼1

odiðA;FcÞ
oF j

dF j;

i ¼ 1; 2; 3; 4: ð39Þ

Because dF belongs to an interval vector defined by Eq.
(38), the interval of di caused by the uncertainty can be ob-
tained through the natural interval extension [24]:

dI
i ðAÞ ¼ diðA;FcÞ þ

X4

j¼1

odiðA;FcÞ
oF j

½�1; 1�F w
j ;

i ¼ 1; 2; 3; 4: ð40Þ

Thus the bounds of di can be obtained through the follow-
ing explicit expressions:

dL
i ðAÞ ¼ diðA;FcÞ �

X4

j¼1

odiðA;FcÞ
oF j

				
				F w

j ; i¼ 1;2;3;4; ð41Þ

dR
i ðAÞ ¼ diðA;FcÞ þ

X4

j¼1

odiðA;FcÞ
oF j

				
				F w

j ; i¼ 1;2;3;4: ð42Þ

Here, FEM is used to calculate the structural displacement
responses. The truss element is employed to create the
FEM mesh. Each bar is an element and there are a total
of 25 elements. Assembling all of the elemental stiffness ma-
trixes, the FEM governing equation of the truss can be
achieved as follows:

KðAÞdgðA;FÞ ¼ FgðFÞ; ð43Þ

where K, dg and Fg are global stiffness matrix, displacement
vector and load vector, respectively. dg and Fg are used to
distinguish from aforementioned d and F as d and F are
just some components of dg and Fg. Differentiating both
sides of Eq. (43) with respect to the uncertain parameter
at Fc yields:

KðAÞ odgðA;FcÞ
oF j

¼ oFgðFcÞ
oF j

; j ¼ 1; 2; 3; 4: ð44Þ
Through one FEM computation, dg(A,Fc) can be obtained
for a specific A. Then through four FEM computations
formulated by Eq. (44), the derivatives
odgðA;FcÞ

oF j
; j ¼ 1; 2; 3; 4 can be also obtained. As a result,

the bounds of the constraints at A can be calculated only
through five FEM computations based on Eqs. (41) and
(42). Thus the time-consuming optimization processes
minF2cU

diðA;FÞ and maxF2cU
diðA;FÞ in Eq. (33) can be

avoided, and the optimization efficiency will be improved
greatly.

A generation number 300 is used as stopping criterion
for IP-GA. An uncertainty level of 10% off from the nom-
inal values of the uncertain loads is considered. The search
range X4 is specified as {1 cm2

6 Ai 6 100 cm2,
i = 1,2,3,4}. All of the constraints are set as the same sat-
isfaction degree level, and the optimization results under
the satisfaction degree levels 1.0, 0.8, 0.6, 0.4 and 0.2 are
listed in Tables 6–10. It is found that the design volumes
of the truss are 2.58 mm3, 2.32 mm3, 2.23 mm3, 2.14 mm3

and 2.13 mm3 with these five cases, respectively. For satis-
faction degree level 1.0, the design volume is largest and
hence most costly. With decreasing of the satisfaction
degree level, the design volume and the satisfaction degrees
of the constraints at the optimum also decrease. For exam-
ple, the intervals of the displacement constraints at the
optimum are [19.70, 24.89], [38.90, 51.12], [32.06,44.85],
and [40.46,52.99], respectively, when the satisfaction
degree level is 0.6. They all have the possibilities to vio-
late the allowable maximum displacements 23 mm,
47 mm, 40 mm and 48 mm, respectively. Furthermore with



Table 9
Optimization results under the satisfaction degree level 0.4 (25-bar)

Optimal areas (mm2) Displacement intervals (mm) Satisfaction degree

A1: 196.8 d1: [20.48, 26.27] 0.44
A2: 5054.8 d2: [39.69, 53.53] 0.53
A3: 5054.8 d3: [30.37, 45.44] 0.64
A4: 7532.3 d4: [42.23, 56.63] 0.40

Volume of the truss is 2.14 m3.

Table 10
Optimization results under the satisfaction degree level 0.2 (25-bar)

Optimal areas (mm2) Displacement intervals (mm) Satisfaction degree

A1: 100.0 d1: [20.36, 26.29] 0.45
A2: 5054.8 d2: [39.59, 54.12] 0.51
A3: 5054.8 d3: [29.10, 45.26] 0.68
A4: 7532.3 d4: [42.55, 57.72] 0.36

Volume of the truss is 2.13 m3.
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decreasing of the satisfaction degree level, these possibili-
ties will become larger. Here the design objective and the
risk are also contradictive, namely a fine design objective
is usually at the price of a big risk that the constraints have
the possibility to be violated.

In this numerical example, the maximum generations of
IP-GA are 300 and each generation contains 5 individuals,
thus a total of 1500 individuals are needed. Additionally, cal-
culating each individual requires 5 FEM computations, thus
the total number of the FEM computations for optimization
based on the interval analysis method is 7500. On the other
hand, if we also use IP-GA with the maximum generations
300 and population size 5 to solve Eq. (33), the optimization
nesting will be caused inevitably. For each optimization iter-
ate of A, 8 times of IP-GA optimization processes will be
called. For the whole uncertain optimization, the total num-
ber of the FEM computations will reach 1.8 · 107. As a
result, applying the interval analysis method to the uncertain
structural optimization can improve the optimization effi-
ciency exponentially, and it can make it possible to analyze
many complex structural problems.

Generally, the determination of satisfaction degree level
is concerned with two factors: the optimization problem
and the attitude of the decision maker. For some practical
engineering problems which care for the design objective
more than the other factors, a relatively small satisfaction
degree level can be selected; for some problems in which
the reliability and security are most important, then a rela-
tively large satisfaction degree level should be specified. In
addition, the attitude of the decision maker also influences
the selection of satisfaction degree level. An optimistic deci-
sion maker usually uses a small satisfaction degree level,
while a pessimistic decision maker intends to use a rela-
tively large one.

4. Conclusion

This paper suggests a new uncertain structural optimiza-
tion method based on convex model and constraint satis-
faction degree. For many practical engineering problems
which lack of information of the uncertain parameters,
convex model method is a convenient and effective selec-
tion for the uncertainty description. Satisfaction degree of
interval provides a general way to deal with the uncertain
constraints, and the prevailed worst-case method is just a
special case of this method. The worst-case method is a rel-
atively conservative approach that requires the constraints
satisfied for all of the possible combinations of the uncer-
tain parameters. However, the presented method allows
the constraints to have certain possibility to be violated,
and whereby improve the objective function. The optimiza-
tion results of two numerical examples indicate that the
design objective of a structure is always at the price of a
constraint risk. The decision maker can make a tradeoff
between the design objective and risk according to the
actual problem and his own experience. Thus the presented
method is a more flexible approach, and it leaves the engi-
neer a larger decision space through adjusting the satisfac-
tion degree level. In addition, the interval analysis method
is employed to calculate the bounds of the uncertain con-
straints based on FEM very efficiently, and the optimiza-
tion nesting can be eliminated. Combining convex model,
constraint satisfaction degree with the interval analysis
method will construct a strong uncertain optimization tool,
and this will make it possible to deal with many complex
structures with uncertainty. On the other hand, it should
be noticed that the intervals of the uncertain parameters
should be relatively small when using the interval analysis
method, as the first-order Taylor approximation will be
acceptable only in the near neighborhood of the expansion
point. Fortunately, this condition can be often satisfied as
the uncertainty always behaves a small disturbance around
the nominal values of the parameters in practical structural
problems.

The presented method can be also easily extended to the
problems with uncertain objective function. The uncertain
objective function can be expected to be smaller or larger
than a specific value or interval which can be determined
according to our requirement to the practical structure.
Then using the satisfaction degree of interval, the uncertain
objective function can be also transferred into a determin-
istic objective function which can be solved by traditional
optimization methods.
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