
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999 101

Automatic Synthesis of Extended Burst-Mode
Circuits: Part I (Specification and

Hazard-Free Implementations)
Kenneth Y. Yun,Member, IEEE, and David L. Dill, Member, IEEE

Abstract—We introduce a new design style calledextended
burst-mode. The extended burst-mode design style covers a wide
spectrum of sequential circuits ranging from delay-insensitive
to synchronous. We can synthesize multiple-input change asyn-
chronous finite state machines and many circuits that fall in
the gray area (hard to classify as synchronous or asynchronous)
which are difficult or impossible to synthesize automatically
using existing methods. Our implementation of extended burst-
mode machines uses standard CMOS logic, generates low-latency
outputs, and guarantees freedom from hazards at the gate level.
In Part I, we formally define the extended burst-mode spec-
ification, provide an overview of the synthesis methods, and
describe the hazard-free synthesis requirements for two different
next-state logic synthesis methods: two-level sums-of-products
implementation and generalized C-elements implementation. We
also present an extension to existing theories for hazard-free
combinational synthesis to handlenonmonotonicinput changes.

Index Terms—Asynchronous controller, extended burst-mode,
generalized C-element, hazard-free synthesis.

I. INTRODUCTION

TODAY’S system components typically employ the syn-
chronous paradigm primarily because of the availability

of the rich set of design tools and algorithms and, perhaps,
because of the designers’ perception of “ease of design” and
the lack of alternatives. Even so, the interfaces among the
system components do not strictly adhere to the synchronous
paradigm because of the cost benefit of mixing modules oper-
ating at different clock rates and modules with asynchronous
interfaces. There is little doubt that today’sheterogeneous
system concept at the board level will carry over to tomorrow’s
systems-on-a-chip, because miniaturization does not make
global synchronization any simpler. This paper addresses the
problem of how to synthesize asynchronous controllers operat-
ing in a heterogeneous environment, i.e., in a system composed
of components using different synchronization mechanisms.

In this paper, we are mainly concerned with designing
correct and efficient asynchronous controllers. There are three
factors that affect the quality of the final design and the

Manuscript received October 1, 1997; revised October 9, 1998. This
work was supported in part by a gift from Intel Corporation and by a
National Science Foundation CAREER Award MIP-9625034. This paper was
recommended by Associate Editor M. C. Papaefthymiou.

K. Y. Yun is with the Department of Electrical and Computer Engineering,
University of California, San Diego, La Jolla, CA 92093-0407 USA (e-mail:
kyy@ucsd.edu).

D. L. Dill is with the Computer Science Department, Stanford University,
Stanford, CA 94305 USA (e-mail: dill@cs.stanford.edu).

Publisher Item Identifier S 0278-0070(99)01008-8.

scope of its applications:specification method, target im-
plementation, and synthesis method. The design styleis a
general term which refers to a combination of all of these.
Our goal is to develop a design style that attains a good
combination of expressiveness and implementability, which
are conflicting goals. We will briefly survey existing design
styles and zero in on a design style calledextended burst-
mode, which has a reasonable combination of expressiveness
and implementability.

Translation Methods

Several design styles use high-level languages of concur-
rency as their user-level specification formalisms. Martin’s
method [1] is based on Hoare’sCSP; Brunvand [2] uses
occam; Ebergen’s method [3] is derived fromtrace theory. The
synthesis procedures typically involve syntax-driven transla-
tion [4] or algebraic transformation [5] of the specifications
into delay-insensitive(DI) or speed-independent(SI) circuits.

An advantage of the compilation methods over other meth-
ods is that complex concurrent systems can be described
elegantly and concisely in high-level constructs without low-
level timing concerns, which makes it easier to modify and
verify the system behavior. However, because it is difficult to
utilize global optimization techniques during the translation
process, the automated synthesis often produces inefficient
results. In general, the circuits generated using the compilation
methods tend to incur considerably more area than those syn-
thesized by other methods. Recently, some efforts have been
made to address the optimization problems. Gopalakrishnanet
al. [6] usepeephole optimization: i.e., translate a group of DI
modules intoburst-modespecifications and resynthesize using
the 3D tool described in this paper.

There has been a concerted effort to synthesize commercial-
scale circuits to demonstrate the practicality of these methods,
such as the DCC error corrector chip developed at Philips Re-
search Laboratories by van Berkelet al. [7] using a synthesis
tool calledTangramcompiler.

Graph-Based Methods

Almost all of the graph-based methods use the Petri net
or a restricted form of the Petri net as the specification
formalism. A Petri net is a graph model used for describing
concurrent systems. Chu [8] introduced a restricted form
of the Petri net calledSignal Transitions Graph(STG) to
specify asynchronous circuits. Chu’s initial definition of STG

0278–0070/99$10.00 1999 IEEE

102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

(interpreted free-choice Petri net), however, allowed only a
limited mechanism to select alternative responses of the circuit.
Meng [9] extended Chu’s work and developed an automatic
synthesis tool. More recent works in STG-based synthesis
include methods of Lavagno [10], Vanbekbergen [11], and
Ykman-Couvreuret al. [12].

In general, the strong suit of the STG is its ability to
express concurrency. Its main weakness is the awkwardness
in specifying input choices. That is, the mechanisms to guide
the responses of the machine are limited. In a free-choice
STG specification, the machine selects the course of its future
behavior solely based on input transitions. The machine cannot
handle choices based on inputlevels. Vanbekbergen [11]
introduced thegeneralizedSTG which allows input choices
based on signal levels. However, his synthesis method cannot
guarantee the generatation of hazard-free circuits. Cortadella
et al. [13] extended the STG to handle internal conflicts, i.e.,
arbitration. Some graph-based methods, such as Varshavsky’s
[14], Beerel’s [15], and Kondratyevet al.’s [16], use state
graphsto avoid syntactic problems associated with STG’s.

Although most graph-based synthesis methods generate SI
circuits, some methods usebounded wire delay model, a
circuit model in which the delay of each gate and wire has
a lower and an upper bound. Lavagno’s method inserts fixed
delay elements to avoid internal hazards, though it makes no
assumptions about the circuit’s environment. Myers’s method
[17] uses an STG-like specification formalism calledEvent-
Rule Systems[4]. His tool, ATACS, synthesizes very compact
area-efficientgeneralized C-elementcircuits by exploiting all
known delays, both internal and external.

Asynchronous Finite State Machines

Asynchronous finite state machines (AFSM’s) have been
around for the past 30 years. The work on AFSM’s was
pioneered by Huffman and others. Early AFSM’s [18], [19]
assumed that the environment operates in fundamental mode,
that is, the environment generates a single input change and
waits for the machine to stabilize before it generates the next
input change. Recent work in AFSM’s allows the multiple-
input change fundamental mode operations. We focus on
a recently introduced multiple-input change machine called
burst-modemachine. Burst-mode asynchronous finite state
machines were first introduced by Daviset al. [23] and for-
malized by Nowick and Dill [21], [22]. Burst-mode machines
have been implemented using a method developed at HP
Laboratories calledMEAT [23], the locally clockedmethod
[22], the 3D method [22], and theUCLOCK method [25].

A burst-modespecification is a variation of a Mealy ma-
chine that allows multiple-input changes in a burst fashion—in
a given state, when all of a specified set of input edges
appear, the machine generates a set of output changes and
moves to a new state. The specified input edges can appear
in arbitrary order, thus allowing input concurrency, and the
outputs are generated concurrently. The advantages of a burst-
mode specification over STG specifications are that it is similar
to the synchronous Mealy machine with which designers are
familiar, that the input choice is more flexible than that of

the STG, and that the state encoding is more flexible in the
implementations. Its main practical disadvantage is that it does
not allow input changes to be concurrent with output changes.
The input choice mechanism is more flexible than the STG but
still primitive. For example, it cannot handle choices between
two sets of concurrent events if one set is a subset of the other.

The extended burst-mode design style described in this
paper is a superset of burst-mode with two new features1:
directed don’t caresand conditionals. Directed don’t cares
allow an input signal to change concurrently with output
signals, and conditionals allow control flow to depend on
the input signal levels, in the same way synchronous state
machines regulate control flow. Thus this design style not
only supports burst-mode multiple-input change asynchronous
designs with added input/output concurrency, it also allows
the automatic synthesis ofany synchronous Moore machine, in
which the synchronous inputs are represented as conditional
signals, and the clock is the only nonconditional signal.
Moreover, this design style covers a wide range of circuits
between burst-mode and fully synchronous.

We summarize the main contributions of the paper below.
Extended Burst-Mode Design Style:The extended burst-

mode design style covers a wide spectrum of sequential
circuits, which ranges from delay-insensitive to synchronous.
It is significanttheoreticallybecause it is the first asynchronous
design style that subsumes fully synchronous designs. It
is significant practically because a wide range of practical
circuits can be specified in a common specification language
and synthesized using a single synthesis tool. For example,
it can synthesize multiple-input change asynchronous finite
state machines, including all burst-mode machines, and
many circuits that fall in the gray area (hard to classify
as synchronous or asynchronous) which are difficult or
impossible to synthesize automatically. These include circuits
that require clocking with multiple clocks, circuits that require
clocking on both edges of a clock signal, and circuits that
require selective clocking.

Hazard-Free Next-State Logic Synthesis Requirements:This
paper presents two different hazard-free next-state logic syn-
thesis methods: hazard-free two-level sums-of-products im-
plementation and hazard-free generalized C-elements imple-
mentation. Existing theories for hazard-free combinational
synthesis are extended to handlenonmonotonicinput changes.

3D Automatic Synthesis Algorithm:This paper describes a
complete set of automated sequential synthesis algorithms:
hazard-free state assignment, hazard-free state minimization,
and critical-race-free state encoding. Experimental data from a
large set of examples are presented and compared to competing
methods whenever possible.

Finally, the 3D synthesis tool described in this paper was
used to design a significant portion of control circuitry for
Intel’s Asynchronous Instruction Length Decoder chip, a high-
performance differential equation solver chip [27], a high-
performance small computer systems interface (SCSI) con-

1Although thedirected don’t carewas not a part of the formal burst-mode
specification introduced in [21], a semantically equivalent feature called “long
arc” was used in Postoffice controllers [26] and a part of the MEAT synthesis
tool [23] developed at HP Laboratories.

YUN AND DILL: AUTOMATIC SYNTHESIS OF EXTENDED BURST-MODE CIRCUITS: PART I 103

troller [28], and a low-power infrared communication chip
[29]. All the 3D controllers in the fabricated chips worked
correctly in first silicon.

This paper is divided into two parts. Part I describes the
specification formalism and the hazard-free implementations,
and Part II presents automatic synthesis and experimental
results. Section II of Part I describes a user-level specification
formalism, calledextended burst-mode. Section III describes
a target implementation style, called3D, and an overview of
how an asynchronous controller specified in extended burst-
mode is transformed into a correct implementation. Section IV
precisely characterizes every possible hazard that can arise
in the 3D implementation of extended burst-mode machines.
For every type of hazard, a necessary and sufficient condition
or at least a sufficient condition for freedom from hazards
is stated and proved.2 This section presents the notion of
generalized transition which is used for functional synthesis
and for analysis of function hazards. This section also presents
two different next-state logic synthesis methods: two-level
sums-of-products implementation and generalized C-element
implementation.

Automatic synthesis procedure and algorithms are presented
in Part II. Part II describes the hazard-free state assignment
algorithm and proves the existence of a hazard-free imple-
mentation for every legal extended burst-mode specification. It
presents a state minimization heuristic and describes a critical-
race-free state encoding algorithm. Finally, it reports the ex-
perimental results, after describing how the 3D synthesis uses
Nowick and Dill’s hazard-free combinational logic synthesis.

II. SPECIFICATION

This section describes a user-level specification formalism,
extended burst-mode, using an example, followed by a formal
definition. The extended burst-mode is a powerful user inter-
face for specifying a large class of controllers. It is intended for
designing asynchronous state machines and the machines that
fall in the gray area between asynchronous and synchronous,
although it is theoretically possible to specify any synchronous
Moore machine [30] and practically feasible to design small-
to medium-size synchronous Moore machines.

We start by introducing the burst-mode specification. The
first usage of “burst-mode” state machines can be traced back
to a packet routing chip calledPostofficedesigned by Davis,
Stevens, and Coates at HP Laboratories [26]. State machines
in Postoffice were synthesized by an automatic synthesis
tool called MEAT [23], [31]. However, the implementations
were not guaranteed hazard-free: a verifier was used to
detect any hazards, and if they occurred, resynthesis was
performed. Nowick and Dill at Stanford later restricted and
formalized the specification format used at HP Laboratories
(and coined the term “burst-mode”) and developed a set of
synthesis tools and algorithms to guarantee a hazard-free
implementation [21], [22].

2Note that not all hazard conditions are eliminated by the machine im-
plementation. In our method, some sequential hazards are removed by
constraining the response of the machine’s environment, i.e., by imposing
fundamental mode constraints.

Fig. 1. A burst-mode specification.

A. Controller Specification

1) Burst-Mode Specification:The burst-modeis a speci-
fication formalism [21], [22] for asynchronous finite state
machines allowing multiple-input changes. A burst-mode state
machine is specified by a state diagram that contains a finite set
of states, a number of labeled arcs connecting pairs of states,
and a start state. Arcs are labeled with possible transitions
from one state to another. Each state transition consists of a
nonemptyset of input edges (aninput burst) and a set of output
edges (anoutput burst). Every input burst must be nonempty; if
no inputs change, the machine remains in the same state. Fig. 1
shows a burst-mode specification with three inputs, ,
two outputs, , and state 0 as the start state. and
signify rising and falling edges of, respectively. A slash
is used to delimit each input burst. Thus means that
output burst is enabled by input burst .

In a given state, when all the inputs in some input burst
have changed value, the machine generates the corresponding
output burst and moves to a new state. Only the specified
input changes may occur, but the order of arrivals may be
arbitrary. In addition, there are two restrictions to the burst-
mode specification introduced by Nowick and Dill, i.e., every
legal burst-mode specification must adhere to the following
properties.

a) Maximal set property:to prevent nondeterministic
state transitions. No input burst in a given state
can be a subset of another in the same state. If,
for example, the specified input burst for transition
from state 1 to 3 is instead of and the
machine’s environment lowers first in state 1,
then the machine would need to make an arbitrary
decision on whether to proceed to state 3 or to
wait for . The specification in Fig. 1 satisfies the
maximal set property because
and .

b) Unique entry condition:to simplify hazard-free syn-
thesis. Every state must have a unique entry point.
For example, the entry point to state 0 is

whether the transition is from state 2 or from
state 3.

2) Extended Burst-Mode Specification:Fig. 2 describes an
extended burst-mode specification (biu-fifo2dma) with four
inputs (ok, cntgt1, fain, dackn) and two outputs (frout, dreq).
Signals not enclosed in angle brackets and ending withor

are terminating edge signals. The signals enclosed in angle
brackets areconditionals, which are level signals whose values
are sampled when all of the terminating edges associated

104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

Fig. 2. Extended burst-mode specification (biu-fifo2dma).

with them have occurred. A conditional can be read
“if is high” and can be read “if is low.” A state
transition occurs only if all of the conditions are met and all
the terminating edges have appeared. A signal ending with an
asterisk is adirected don’t care. If is a directed don’t care,
there must be a sequence of state transitions in the machine
labeled with . If a state transition is labeled with , the
following state transitions in the machine must be labeled with

or with or (the terminating edge for the directed
don’t care). Consider the state transitions out of state 2. The
behavior of the machine at this point is: “ifcntgt1 is low
whendackn falls, then lower the outputdreq and change the
current state from 2 to 5; ifcntgt1 is high whendackn falls,
then lowerdreq and change the state from 2 to 3.”

A directed don’t care may change at most once during
a sequence of state transitions it labels, i.e., directed don’t
cares aremonotonicsignals, and, if it does not change during
this sequence, it must change during the state transition
its terminating edge labels. A terminating edge which is
not immediately preceded by a directed don’t care is called
compulsory, since itmustappear during the state transition it
labels. In Fig. 2,fain is high when the machine enters state
2. It can fall at any point as the machine moves through state
3 or through state 5, depending on the level ofcntgt1, but it
must have fallen by the time the machine moves to states 4 or
0, because the terminating edgefain appears between states
3 and 4 and between 5 and 0.

The input signals are globally partitioned into level signals
(conditionals), which can never be used as edge signals, and
edge signals (terminating or directed don’t care), which can
never be used as level signals. If a level signal is not mentioned
on a particular state transition, it may change freely. If an edge
signal is not mentioned, it is not allowed to change.

The following are some examples of labels on state tran-
sitions.

• means “if and
when rises, then the machine raisesand lowers .”

• means “the machine raiseswhen rises
and falls.”

Summary

An extended burst-mode asynchronous finite state machine
[32] is specified by a state diagram which consists of a finite

number of states, a set of labeled state transitions connecting
pairs of states, and a start state. Each state transition is labeled
with a set of conditional signal levels and two sets of signal
edges: an input burst and an output burst. Anoutput burstis
a set of output edges, and aninput burstis a nonempty set of
input edges (terminating or directed don’t care), at least one
of which must becompulsory.

In a given state, when all the specified conditional signals
have stabilized and all the specified terminating edges in the
input burst have appeared, the machine asserts the specified
output changes and moves to a new state. Specified edges in
the input burst may appear in arbitrary temporal order. Each
signal specified as a directed don’t care may change its value
monotonically at any time, even while outputs are changing,
unless it is already at the level specified by the next terminating
edge. Output changes may be generated in any order.

The conditional signals must stabilize to correct levels
before any compulsory edge in the input burst appears and
must hold their values until after all of the terminating edges
appear. The minimum delay from the conditional stabilizing
to the first compulsory edge is called thesetup time. Similarly,
the minimum delay from the last terminating edge to the
conditional change is called thehold time. Actual values of
setup and hold times of conditional signals with respect to the
first compulsory edge and the last terminating edge depend
on the implementation. The period starting at the specified
setup time before the first compulsory edge and ending at the
specified hold time after the last terminating edge is called the
sampling period. Conditional signal levels need not be stable
outside of the specified sampling periods.

The next set of compulsory edges from the next input
burst may not appear until the machine has stabilized. This
requirement—the environment must wait until the circuit sta-
bilizes before generating the next set of compulsory edges—is
a variation of themultiple-input change fundamental-mode
environmental constraint.

Restrictions

There is an additional restriction to extended burst-mode
specifications (as to burst-mode), calleddistinguishability con-
straint, which prevents ambiguity among multiple input bursts
emanating from a single state: For every pair of input bursts
and from the same state, either the conditions are mutually
exclusive or the set of compulsory edges inis not a
subset of the set of all possible input transitions in. The
second condition stipulates that the minimum set of input
transitions in must not be a subset of the maximum set of
input transitions allowed in (by the extended burst-mode
semantics), which includes transitions on both directed don’t
cares and terminating signals.

For instance, the input bursts from state 0 in Fig. 3(a) are
legal because and are mutually exclusive. However,
the input bursts from state 0 in Fig. 3(c) are illegal because the
conditions arenot mutually exclusiveand .
Moreover, the input bursts from state 0 in Fig. 3(b) violate
the distinguishability constraint because the set of all possible
edges for the input burst is and

.

YUN AND DILL: AUTOMATIC SYNTHESIS OF EXTENDED BURST-MODE CIRCUITS: PART I 105

Fig. 3. Distinguishability constraints.

Fig. 4. Unique entry condition. (a) No unique entry. (b) Unique entry.

To simplify hazard-free synthesis, we assume that theunique
entry conditionis satisfied, again as in burst-mode. The set
of possibleentry pointsinto a state (input and output values
entering a state) from every predecessor state must be identical.
This is a simplifying assumption that does not constrain the
range of permissible behaviors since an extended burst-mode
specification can always be transformed into an equivalent
specification satisfying the unique entry condition by dupli-
cating some states.

For example, the set of valid entry points to state 1 from
state 0 in Fig. 4(a) is {01011, 01111}, but from state 3 to state
1 it is {01011}. Thus the unique entry condition is not met in
this specification. A specification satisfying the unique entry
condition is shown in Fig. 4(b).

B. Formal Definition of Extended Burst-Mode

The following formal definition of the extended burst-mode
specification is adapted from the definition of the burst-mode
specification in [22]. An extended burst-mode specification is
a directed graph, cond, in, out , where

is a finite set of states; is the set of state
transitions; is the set of conditional inputs;

is the set of edge inputs;
is the set of outputs; is the unique start state;cond
labels each state transition with a set of conditional inputs;
in and out are labeling functions used to define the unique
entry cube of each state. The functioncond:
defines the values of the conditional inputs. The functionin:

defines the values of the edge inputs, and
the function out: defines the values of the
outputs upon entry to each state. Note that , i.e.,
conditional inputs remain level signals throughoutand edge
inputs remain edge signals throughoutas well.

Labeling functionstrans andtrans are derived from
graph . trans : defines the set of edge input
changes andtrans : defines the set of output

changes. (and denote the power set of inputs and
the power set of outputs, respectively.) Given a state transition,

, trans iff in in in .
That is, is in the input burst iffin in

is in the input burst iffin in , and
is in the input burst iff in . Similarly,

trans iff out out . That is, is in the
output burst iffout out is in the output
burst iff out out . Finally, ctrans defines
the set of compulsory edge input changes:ctrans

trans in in .
The unique entry condition is satisfied by the above def-

initions. The remaining requirements to ensure well-formed
specifications are as follows.

• Every input burst must contain a compulsory edge. That
is, for every state transition , there exists
trans such thatin in .

• Every pair of state transitions emanating from the same
state must satisfy the distinguishability constraint. That
is, for every pair, ctrans
trans implies that either or cond
and cond are mutually exclusive, that is, there
exists such that cond cond
cond cond .

• For every sequence of state transitions,
, with and in in , there

exists such thatin . That is, a
sequence of directed don’t cares must be terminated with
an edge that enables the signal to toggle.

III. I MPLEMENTATION OVERVIEW

In all sequential machines, the machine output depends not
only on the inputs but also on the state of the machine, which
keeps track of the history of input changes. All sequential
machines use feedback to store the state of the machine.
In Huffman-mode state machines [18], [19], the state of the
machine is stored only in internal state variables—primary
outputs do not store any state information. In our 3D machines,
however, primary outputs are used to store the state of the
machine whenever possible in order to minimize the number
of internal state variables.

A 3D asynchronous finite state machine is formally defined
as a 4-tuple where

• is a nonempty set of primary input symbols;
• is a nonempty set of primary output symbols;
• is a (possibly empty) set of internal state variable

symbols;
• is a next-state function.

The hardware implementation of a 3D state machine (see
Fig. 5) is a hazard-free network which implements the next-
state function, with the outputs of the network fed back as
inputs to the network. A 3D implementation of an extended
burst-mode specification is obtained from thenext-state table,
a three-dimensional tabular representation of. The next state
of every reachablestate must be specified in the next-state
table; the remaining entries are don’t cares.

106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

Fig. 5. 3D asynchronous state machine.

Fig. 6. A generalized C-element with a sustainer:fset and freset are
mutually exclusive butfset 6= freset.

Hazard-Free Network Implementations

Each output of the next-state function can be implemented in
on-set logic or in set/reset logic. The on-set logic can be two-
level sums of products (SOP’s), two-level products of sums
(POS’s), or multilevel logic. The set and reset functions of
the set/reset logic can be SOP, POS, or multilevel logic as
well. Both on-set and set/reset logic can be implemented using
basic gates or complex gates. In this paper, we describe two
ways of implementing the next-state function: two-level SOP
and generalized C-element (an efficient form of set/reset logic
implemented as a pseudostatic asymmetric complex gate, as
depicted in Fig. 6) [33], [4], [17], [34]. The underlying theory
for hazard-free implementations is first developed for the two-
level SOP and then applied to the generalized C-element.

A. Example I

A simple example is used to illustrate the synthesis and
operation of a 3D machine (see Fig. 7). We describe the
desired machine behavior according to an extended burst-mode
specification and the next-state table entries needed to make
the machine behavior conform to the specification. From a
completed next-state table, we can extract the logic equations
directly, because next-state tables describe the next values of
outputs and state variables for every combination of inputs,
outputs, and state variables.

In (the initial state), the machine waits for an input
transition . Once rises, the machine raises output.
Because is an unspecified level signal, its value is undefined
in ; hence, the output change does not depend on it.
Thus the next values of for sadRE x and for
sadRE xx are specified to be 00 and 10, respectively.
When stabilizes to 1, the machine is in .

In , the machine waits for . If when rises,
then the machine lowersand transitions to . Thus the next

is specified to be 00 forsadRE x . Once the machine

(a)

(b)

Fig. 7. Example I. (a) Specification and (b) conflict during state table
construction.

Fig. 8. Example I (next-state table before layer encoding).

stabilizes after falls (when), i.e., after the hold time
requirement for is met, the machine is in .

After the machine enters , the environment is allowed to
change . Thus the next should be 00 before falls, i.e., for
both sadRE and . When falls, the machine
raises . Thus the next for sadRE xx should be 10,
which had been specified for .

Now we are ready to specify the next values of for
. Since the machine is to lower and raise

and transitions to , if when rises, the next
should be 01 forsadRE xx. This is to insure that the
outputs change monotonically regardless of the order of fed-
back variable changes . However, the next for
sadRE had been specified to be 01 during to .

Such conflicts can be avoided by adding state variables,
which can be viewed as transitioning betweenlayers of the
next-state table (see Fig. 8). Conflicting entries can be placed
in different layers. Our strategy, in this case, is to back
up to the state following the input burst before the conflict
sadRE and change the internal state variable before

making output changes. Thus, after the input burst in
, the machine transitions to layer before changing and

. Therefore, the next for sadRE is specified to
be 10, i.e., no change, in layer. In layer , the next for
sadRE xx is 01.

YUN AND DILL: AUTOMATIC SYNTHESIS OF EXTENDED BURST-MODE CIRCUITS: PART I 107

Fig. 9. Example I (next-state table after layer encoding).

Fig. 10. Example I (Karnaugh map fore): e = sZ + aZ; eset = sZ;

ereset = �s �a.

When the output burst is complete, the machine is
in . Once in , the machine awaits the input burst .
During this input burst, changes from 11 to 00 via 10 or
01; the unspecified level signal may change anytime. The
next values of for sadRE x x , and x are
specified to be 01, so that the outputs remain unchanged
until both and have fallen. After both and fall, the
machine concurrently lowersand transitions to layer . Thus
the next for sadRE x x is specified to be 00 on both
layers and .

The resulting table (in Fig. 8) has two layers. Thus, just one
state bit is needed to encode the layers. The code value of 0
is assigned to layer and 1 to layer . We can complete
the construction of the next-state table by adding the resulting
state bits to the next-state entries as shown in Fig. 9. At this
point, all reachable entries of the next-state table are specified;
next states of the remaining entries aredon’t cares.

We can then synthesize the logic directly from the next-
state table. Each output of the next-state function can be
implemented as a two-levelAND-OR, which can be mapped
to a hazard-free multilevel circuit [35], [36]. For example, the
two-levelAND-OR implementation in Fig. 11(a)
is derived from a Karnaugh map of shown in Fig. 10. Of
course, care must be taken to avoid hazards in the logic when
translating a Karnaugh map to logic.

Each output of the next-state function can also be im-
plemented3 as a generalized C-element. Fig. 11(b) shows a
generalized C-element implementation of, in which the

3Many alternative implementations for burst-mode circuits have been
proposed elsewhere [37], [38].

Fig. 11. (a)e in two-level AND-OR and (b)e in generalized C-element.

switch functions of and stacks are set and

reset , respectively.

B. 3D Machine Operation

There are three types of machine cycles in a 3D state
machine.

Type I) an input burst followed by a concurrent output
and state burst.

Type II) an input burst followed by an output burst fol-
lowed by a state burst.

Type III) an input burst followed by a state burst followed
by an output burst.

The selection of a machine cycle depends on the required
level of concurrency and the next-state logic synthesis method
used. Normally, Type I or II is selected. Type III is only used
to avoid dynamic hazards that may be present in two-level
AND-OR due to undirected don’t cares (undefined conditionals)
and should be used in lieu of Type I or II in those cases,
which will be discussed in detail in Section IV of Part II.
Both Type I and Type II offer shorter latencies (input to output
delay) than Type III. The circuits implemented for Type II, in
general, have smaller area but longer cycle times (input to
circuit stabilization delay) than the circuits implemented for
Type I.

At power-up4 or after completion of the previous machine
cycle, the machine waits for an input burst to arrive. In a
Type I machine cycle, when the machine detects that all
of the terminating edges of the input burst have appeared,
it generates a concurrent output/state burst (which may be
empty), completing a two-phase machine cycle. In a Type
II machine cycle, when the machine detects that all of the
terminating edges of the input burst have occurred, it generates
an output burst (which may be empty). A state burst (which
may also be empty) immediately follows the output burst,
completing the three-phase cycle. Note that an output burst
enables a state burst in the “burst-mode fashion”—the state
variable changes are enabled only after all the changes of the
output burst have fed back. In a Type III machine cycle, a
state burst is enabled by the input burst and an output burst
is enabled by the state burst. Note that the state assignment
scheme in Example I produced two types of machine cycles:
Type III for the transition from to and Type I for the
transition from to . However, state assignment schemes
that generate a different combination of machine cycles can
be used just as well.

4An explicit reset signal is used, when necessary, to ensure that all primary
outputs and state variables are initialized to correct values.

108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

Fig. 12. 3D machine cycles (Types I and III).

Fig. 12 illustrates examples of two machine cycles (Type I
and Type III). The first machine cycle begins with input burst
(phase 1) . The conditional signal stabilizes to 1
before fires. The directed don’t care signalmay remain
at 0 or change to 1. In the Type I machine cycle, this input
burst enables a concurrent output/state burst (phase 2) .
In the Type III machine cycle, this input burst enables the
state burst (phase 2) , which, in turn, enables the output
burst (phase 3), . In the second machine cycle, an input
burst enables an output burst , and no state burst is
required. Thus, for machine cycles not requiring state variable
transitions, Type I and Type III are indistinguishable.

IV. HAZARD-FREE IMPLEMENTATIONS

There are many implementation styles that can be used
to synthesize asynchronous controllers—each has advantages
and disadvantages. This paper describes one particular imple-
mentation style called 3D, which is suitable for implementing
extended burst-mode machines. It is similar to Huffman-mode
machines [18], [19] in structure and similar to Mealy machines
[30] in functionality.

The main problem in ensuring the correctness of asyn-
chronous circuits is avoiding the possibility of hazards. A
hazard is broadly construed as a potential for malfunction
of the implementation. We review precise characterization of
various kinds of hazards and describe how each is avoided. We
show that the 3D machine synthesis problem reduces to one of
synthesizing hazard-free next-state circuits and then show how
the various sources of hazards are systematically eliminated.

Fig. 13 illustrates how the 3D machine can be viewed as a
next-state logic function during each phase (Type II machine
cycle is used in this example). Assume that no fed-back output
change arrives at the network input until all of the specified
changes of the output burst have appeared at the network
output. The same assumption applies to the fed-back state
variable changes and the state burst. These conditions will
be met by inserting delays in the feedback paths as necessary.
The machine then can be viewed as a next-state logic function

Fig. 13. Combinational view of the 3D state machine.

1) excited by the input changes during the input bursts
(phase 1);

2) excited by the fed-back output changes during the output
bursts (phase 2);

3) excited by the fed-back state variable changes during
the state bursts (phase 3).

Note that the machine is stable at the beginning of each phase.
Therefore, the 3D machine synthesis procedure follows

these steps:

1) specify a function-hazard-free next-state function that
can be transformed into a hazard-free circuit;

2) implement a hazard-free circuit from the specified next-
state function;

3) ensure that the sequential circuit created by connecting
feedback paths are free of hazards.

The first step of the synthesis procedure is to correctly
specify a next-state function that conforms to the specification.
This step must ensure that the specified function is free of
function hazards, that is, for every set of input changes and
feedback signal changes with all the signals not specified to
change set to correct values, both the static and dynamic
behavior of every output is exactly as specified. In addition,
this functional synthesis step must take measures to ensure
that a hazard-free circuit exists for the specified function.

The second step of the synthesis procedure is to correctly
implement a next-state circuit from the next-state function
specified in the previous step. That is, this step must implement
a circuit free of logic hazards.

The last step of the synthesis procedure is to complete the
circuit construction by connecting outputs of the next-state
network to the inputs, that is, creating feedback paths. This step
must ensure that the circuit created by connecting feedback
paths is free ofsequential hazards, that is, the circuit behaves
as specified as a sequential machine.

In the remainder of this section, we examine the sources
of hazards (sequential hazards, function hazards, and logic
hazards) in detail and provide remedies for each. The synthesis
procedure itself and the algorithms are presented in Part II.

A. Sequential Hazard

The correct operation of the 3D machine relies on the
assumption that all of the specified changes of the outputs
of the next-state network excited by a set of changes at
the network inputs are completed before the next set of
changes arrives at the network inputs. A violation of this
assumption may result in asequential hazard, the hazard that

YUN AND DILL: AUTOMATIC SYNTHESIS OF EXTENDED BURST-MODE CIRCUITS: PART I 109

Fig. 14. Essential hazard in two-levelAND-OR.

exists regardless of the correctness of the underlying next-state
circuit. Both the timing characteristics of the circuit itself and
the environment of the circuit can cause sequential hazards.

A comprehensive treatment of this topic can be found
in [39]. In this paper, only a sufficient condition to ensure
freedom from sequential hazards is stated. A solution to
synthesize practical circuits which are guaranteed to be free
of sequential hazards under a bounded delay assumption can
be found in [39].

1) Essential Hazard:We examine how the internal timing
of the circuits can introduce sequential hazards. It has been
assumed up to now that no change at the network output is
fed back to the input of the next-state network until all the
changes at the network outputs that are concurrently enabled
have taken place. However, this assumption may be violated if
feedback delays are short compared to the difference between
the maximum and minimum feedforward delays. The hazard
that arises due to the race between the arrivals of input edges
and one or more fed-back output edges, enabled by the same
input changes, at the network input is calledessential hazard
[19].

The possibility of an essential hazard during a
transition of an output in a burst-mode two-levelAND-OR

circuit is illustrated in Fig. 14. During the input/output burst
is specified to remain 0. However, if is

fed back to the network input beforegoes low, then a 0-1-0
glitch may propagate to output. Thus, we need to make sure
that the feedback delay is sufficiently large to avoid
essential hazards.

The possibility of an essential hazard during a
transition of an output in an extended burst-mode gC circuit is
shown in Fig. 15. During the state transition from state 2 to 1,

and are to rise and fall, respectively, triggered by .
However, if falls too fast and enables the fed-back output

to fall before the internal node is pulled sufficiently
low, then the gC gate may switch very slowly or may not
even switch at all.

Essential hazards, in general, can be avoided simply by
inserting sufficient delaysin the feedback paths. However,
the delays in the feedback paths increase the delay constraint
between last output change and next compulsory input change
that must be obeyed by the environment of the circuit. Hence,
it is desirable to minimize feedback delays to improve sys-

Fig. 15. Essential hazard in gC implementation offifocellctrl.

Fig. 16. Timing requirements for minimum feedback delay.

tem performance. Sometimes, it is possible to find tighter
constraints, i.e., reduce feedback delays, if the details of the
implementation technology are known [39].

Sufficient Conditions for Freedom from Essential Hazards

If 3D machines are implemented in two-levelAND-OR, a
set of simple one-sided timing constraints can be used to
characterize the minimum required feedback delay. We show
below a set of timing constraints for Type II machine cycles.

denotes the minimum delay from a transition of type
to a transition of type , while denotes the maximum
delay (see Fig. 16).

a) in out out outf in lit;
b) in out out outf outf prod in prod;
c) outf sv sv svf outf lit;
d) outf sv sv svf svf prod outf prod.

Usually, these inequalities are satisfied without adding de-
lays, as should be clear by comparing the lengths of the
paths followed on each side of the inequalities. Note that the
requirements for a Type I machine cycle are simpler, because
state variable changes are concurrent with output changes: only
the first two inequalities are needed.

If the 3D machines are implemented in gC, the one-sided
timing constraint shown below can be used to determine the

110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

minimum required feedback delay

in out out outf in out

whereout represents the internal node of the gC circuit. We
can, of course, perform a detailed post-synthesis timing analy-
sis [39] to determine tighter bounds. However, for gC circuits
in very high performance applications, even further reduction
in feedback delay may be desirable. We, therefore, introduce a
simple remedy, which works for most gC circuits, to eliminate
feedback delay requirement altogether in Section IV.C.2.

2) Environmental Constraints:An inherent feature of the
3D implementation is that parts of the circuit may still be
unstable after a change at the network output has taken place.
In some sense, this feature can help improve the performance
of the system by effectively making the stabilization of the
circuit and the reaction of the environment concurrent [27],
provided that the environment is slow to react to the changes
in the circuit outputs. However, if the environment reacts so
fast that the circuit detects the new input arrivals before the
arrival of feedback variable changes, then the circuit may
malfunction. Therefore, we must have the environment delay
generating certain changes. This is called thefundamental-
mode environmental constraint. In practice, this is usually
not a problem, because of the delays in wires between the
circuit and the environment and the time for the environment
to react are generally longer than it takes for the circuits to
stabilize. In addition, not all the input signals have to meet
this constraint, because some signals are specified as don’t
cares in the extended burst-mode. Note that feedback signals
cause all the primary outputs and state variables to “latch”
their values, regardless of changes in don’t care signals. Thus
the fundamental-mode constraint under the presence of don’t
cares is with respect to this “latching” time.

Other forms of the environmental constraint required by
the extended burst-mode 3D machine are thesetup timeand
hold time requirements: all conditional signals specified to
stabilize must stabilize for some interval before any compul-
sory (sampling) edge appears and must remain stable until
the output/state burst has been completed. This requirement is
similar to the setup and hold requirements on data signals with
respect to clock of synchronous flip-flops.

3) Summary:The following are the timing requirements
imposed by the synthesis method to guarantee correctness of
the implementation.

a) Feedback delay requirement: feedback variable
changes are not fed back untilall enabledoutput and
state variable changes have been completed.

b) Fundamental-mode environmental constraint: no com-
pulsory edges of the next input burst may arrive until
the machine has been stabilized.

c) Setup and hold time requirements: all conditional sig-
nals specified to be stable must be stabilized before any
compulsory (sampling) edge appears and must remain
stable until the output/state burst has been completed.

Assuming these timing constraints are met, we need only
analyze the hazards in the next-state circuit that result from
cutting feedback paths. Note that the next-state function is a

combinationalfunction, although it may be implemented with
sequential circuit elements, such as generalized C-elements.

B. Function Hazard

A function hazardis a nonmonotonic change, i.e., more than
one change, of a combinational function during a multiple-
input change [40], [19]. Function hazards are problematic
because they are present inevery gate-level implementation
of the function, if inputs to functions have arbitrary delay.
Consequently, function hazards must be prevented before
combinational synthesis. We consider function hazards during
multiple-input changes in which some inputs are nonmono-
tonic, i.e., change more than once. We examine the implica-
tions of allowing certain input changes to be nonmonotonic,
define what a function hazard is in this setting, and explain
how function hazards are avoided in the 3D implementations.

1) Definitions: We summarize some definitions and con-
cepts from [41]–[44] that are used in the following subsections.

A logic function is a mapping from to .
A mintermof is an -tuple where , the
value of the th input of , is 0 or 1.

The on-setof is the set of minterms for which is one;
the off-setof is the set of minterms for which is zero; the
dc-setof is the set of minterms for which is .

A cube , written as , is a vector in .
A minterm is a cube such that for every

.
A cube is said to contain another cube

iff, for all in or .
A cube is said to intersect another cube

iff, for all in or
or .

A literal is a variable or its complement. Aproduct term
is a boolean product of literals, and asum of productsis a
boolean sum of product terms. We consider only product terms
satisfying the restriction thatno product term can have both
a variable and its complement as inputs. With this restriction,
there is a one-to-one correspondence between product terms
and cubes, so we use the termscube and product term
interchangeably. Thus a product term is equivalent
to a cube .

An implicant of is a product term which contains no
off-set minterms of .

A cover of a logic function is a set of implicants of
such that every on-set minterm of is contained in some

cube of but no off-set minterm. A cover is isomorphic to a
sum-of-products implementation of.

If and , the
transition cube is determined so that, for

if , and if .
The transition cube , denoted as , is the smallest cube
that contains both and .

A trajectory in is a vector of minterms contained in
, denoted as , such that, for every

in , the minterms and differ in just one
bit position.

A combinational function has a function hazard if it changes
more than once during a specified multiple-input change.

YUN AND DILL: AUTOMATIC SYNTHESIS OF EXTENDED BURST-MODE CIRCUITS: PART I 111

Assume, for now, that all input changes are monotonic (we will
generalize it so that some input changes can be nonmonotonic
in the following subsection). There is a corresponding transi-
tion cube for every multiple-input change. The transition cube
contains all of the minterms in every possible trajectory of the
specified input changes. If the function changes its value more
than once along a certain trajectory, then there is a function
hazard. The following “classical” definition of function hazard
adapted from [42] captures this notion precisely.

Definition 1: A combinational function contains afunc-
tion hazard during a multiple-input change from to iff
there exists a pair of minterms and in (
and) such that

1) and and
2) and .

If , it is a static function hazard, that is, a 1-0-1
or 0-1-0 function hazard. Otherwise, it is adynamic function
hazard, that is, a 1-0-1-0 or 0-1-0-1 function hazard.

2) Generalized Transition:If some inputs are allowed to
change nonmonotonically during multiple-input changes, the
classical definition of function hazard is inadequate. We de-
velop a notion of generalized transition to remedy this defi-
ciency and to provide a vehicle to discuss functional synthesis
in analytical terms in Part II.

A generalized transition defines a set of alllegal
trajectories in , where is astart cube, is anend cube,
and is a mapping from a set of input signals to a set ofinput
types. There are three types of inputs:rising-edge, falling-edge,
and level. Edge inputs must change monotonically; therefore,
edge inputs change at most once in a legal trajectory. Level
inputs must be a constant (0 or 1) or a don’t care, which
implies that each level input must hold the same value in both

and or be undefined in both and . Level inputs, if
they are don’t cares, may change nonmonotonically.

A generalized transition cube is the smallest cube that
contains the start and end cubesand . Not all combinations
of and are legal. For example, if inputis 0 in but
1 in , then can neither be a level type nor a falling-edge
type. In summary:

1) if the value of is the same in both and , i.e., both
0, both 1, or both , then can be of any type;

2) if in and or in , then must be a rising-edge
type;

3) if in and or in , then must be a
falling-edge type.

Open generalized transition cubes,
, and , respectively.

Note that , if . The start subcube is a
maximal subcube of such that:

1) the value of every rising-edge inputin is 0, if it
is in ;

2) the value of every falling-edge input in is 1, if it
is in .

The end subcube is a maximal subcube of such that:

1) the value of every rising-edge inputin is 1, if it
is in ;

2) the value of every falling-edge input in is 0, if it
is in .

Intuitively, if edge signals have weight 1 and level signals have
weight 0, the trajectories from to are the maximum-
weight trajectories. If every don’t care input is an edge signal
in and and reduce to
minterms.

Lemma 1: For every minterm in , all of the min-
terms in every legal trajectory from to is contained in

.
Proof: We prove by contradiction. Assume that there

exists a legal trajectory such that one of the minterms in the
trajectory is outside of .

1)
contains all of the minterms in every trajectory

from to , which contradicts the assumption.
2)

Then there exists contained in such
that can be reached from legally. Let

, and
. For every in or

. Since is not contained in , there exists
an edge signal such that .

implies that . This means that
has already reached the final value at point, by the
definition of . Therefore, cannot be reached legally
from , which is a contradiction.

During a generalized transition , each output signal
is assumed to change its value at most once. Furthermore, no
output change is allowed in and . If not, a function hazard
is said to be present. Below is the new definition of function
hazard adapted for generalized transitions.

Definition 2: A combinational function contains afunc-
tion hazard in iff

1) there exists a pair of minterms in such that
, or

2) there exists a pair of minterms in such that
, or

3) there exists a pair in such that
(or, equivalently,) and and

.

The last criterion states that there is a function hazard if there
exist two minterms and in a legal trajectory from to

such that and .
A generalized transition is a static transition for
iff ; it is a dynamic transition for iff

. No change in level inputs can enable output
changes directly, that is, at least one edge input must change
from 0 to 1 or from 1 to 0 in a generalized dynamic transition.

Examples of generalized transitions are shown in Fig. 17.
Fig 17(a), (b), and (c) shows rising-edge signals, and
is a level signal. Fig. 17(a) and (c) shows function-hazard-
free static and dynamic transitions, respectively. Fig. 17(b)
illustrates a 1-0-1 static function hazard, and Fig. 17(d) does
a 0-1-0-1 dynamic function hazard on the trajectory,

.

112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

Fig. 17. Hazards in generalized transitions.s is a level signal;a, b, andc
are rising-edge signals.

Fig. 18. (a) Generalized transition but not extended burst-mode transition:
there existsX; Y in A [[A;B) such thatf(X) 6= f(Y); (b) extended
burst-mode (generalized) transition.

3) Extended Burst-Mode Transition:An extended burst-
mode transition is a generalized transition with the following
requirements.

a) For every pair of minterms and in
.

b) For every pair of minterms and in
.

Theorem 1: Every extended burst-mode transition is
function-hazard-free.

Proof: Consider during an extended burst-mode tran-
sition from to . Since , for every pair
of minterms and in by requirement
1 of the definition of extended burst-mode transition. This
contradicts criterion 1 of Definition 2. For every pair of
minterms and in by requirement 2,
which contradicts criterion 2 of Definition 2. Finally, for all
in by requirement 1, which contradicts
criterion 3 of Definition 2. Therefore, is free of function
hazards.

A (hazard-free) generalized transition (but not an extended
burst-mode transition) and an extended burst-mode transition
are shown in Fig. 18.

An edge signal that changes from 0 orto 1 or from 1 or
to 0 during an extended burst-mode transition fromto is

Fig. 19. Critical race during a Type III machine cycle.

a terminatingsignal in . An edge signal whose value
is in is a directed don’t carein . A level signal
whose value is in is anundirected don’t care. In a
dynamic extended burst-mode transition, the output is enabled
to change only after all of the terminating edges appear.

Another way of describing terminating signals and don’t
cares is as follows: Let minterms and

, where and are the values of in
and . is a terminating signal iff implies .
is a don’t care (directed or undirected) iff
or, equivalently, .

A 3D machine cycle that requires no conditional signals to
stabilize has transitions corresponding to an input burst and
a concurrent output/state burst, if it is of Type I, or an input
burst, an output burst, and a state burst, if it is of Type II or
III. A 3D machine cycle that requires conditional signals to
stabilize has an additional transition for setting up conditional
signals. Each of these transitions by itself is free of function
hazards, since these are all extended burst-mode transitions.
However, as we have seen in Example I in Section III-A, a
function-hazard-free next-state assignment requirement for one
transition may conflict with another transition. The 3D state
assignment algorithm avoids this type of conflict by adding
state variables when necessary, as described in Part II.

4) Critical Race: If a transition between layers requires
multiple state bit changes (see Fig. 19), the machine traverses
intermediate layers (or) before reaching the final state ()
of the transition. In traditional asynchronous state machines
[18], [19], a critical race is said to be present if reaching the
final state depends on the order in which the state bits change.
In 3D machines,a critical race is said to be present if the
transient states during a layer transition have different next
values of outputs and state variables from those of the start-
state of the transition. Hence, in 3D machines, a critical race
is simply a manifestation of a function hazard during a state
burst. We insure that the machine is free of critical races by
encoding layers so that the next states of the transient states
during layer transitions are the same as those of the start-state
of the transition.

C. Logic Hazards

Hazards in next-state circuits can also be introduced by
the delay variations of physical gates and wires, even if the
next-state functions are completely and correctly specified,
i.e., function-hazard-free. In this section, we present two

YUN AND DILL: AUTOMATIC SYNTHESIS OF EXTENDED BURST-MODE CIRCUITS: PART I 113

Fig. 20. Delay models.

Fig. 21. Delay model used in 3D combinational synthesis.

different methods to implement hazard-free next-state logic:
the two-levelAND-OR implementation [43] and the generalized
C-element implementation [34].

The existence of hazards depends on the delay assumptions
in the circuit model used and on the models of the delay
itself. Many delay models have been proposed [19], [45], [46].
Fig. 20 shows two commonly used examples: theinertial delay
model which assumes that no input pulse of duration shorter
than the gate delay is transported to the output of the gate,
and thepure delay model which assumes that a pulse of any
duration computed by the logic function of the gate is asserted
on the gate output.

Our combinationalsynthesis method works forall delay
models, because we use a strategy to avoid multiple input
changes to a delay before output, as shown in Fig. 21, for all
primary outputs of next-state circuits. In addition, we assume
that both the gates and the wires connecting gates in the
next-state network have finite but arbitrary delays.

1) Two-LevelAND-ORImplementation:First, we consider
the implementation of the next-state functions in two-level
AND-OR logic. We develop a set of hazard-free covering
requirements for the two-levelAND-OR implementation of
a logic function during an extended burst-mode transition.
The hazard-free combinational logic synthesis for multiple
monotonicinput changes is described in [40]–[43] and [47].
The new results presented here are simple extensions of the
theory in [43] to account for nonmonotonic input changes.
We apply these results to the 3D machine combinational logic
synthesis.

The following definitions of logic hazards are from [42]
and [43].

Definition 3: A combinational network contains astatic
logic hazard during a function-hazard-free input change from

to iff

1) ;
2) a momentary pulse may be present during the input

change from to .

Definition 4: A combinational network contains adynamic
logic hazard during a function-hazard-free input change from

to iff

1) ;

2) a momentary 0 and a momentary 1 output may appear
during the input change from to .

Below, we state and prove necessary and sufficient condi-
tions for hazard freedom for a two-levelAND-OR circuit during
an extended burst-mode transition. Note that theproduct term
refers to anon-setcube for the remainder of this section.

Lemma 2: A product term that does not intersect the gen-
eralized transition cube remains 0 during a function-
hazard-free transition .

Proof: Every product term that does not intersect
has a literal whose value remains 0 during the input change.
Thus a product term not intersecting remains 0.

Lemma 3: A product term that contains (or) changes
monotonically during an extended burst-mode transition

.
Proof: First, consider the case in which a product term

contains both and the start-point of a trajectory in the
transition . The initial values of all the literals of
are 1. Level signals are either constants or don’t cares in.
If a level signal is a don’t care in , then it is a don’t care
in the cube that contains ; therefore, it does not appear as
a literal in the corresponding product term. Since all other
input changes are monotonic, values of the literals change
monotonically from 1 to 1 or from 1 to 0. Thus the output
of changes monotonically.

Now consider the case in which the product termcontains
but not the start-point. By the definition of , at least

one monotonic change of an edge signal is needed to traverse
from to a start-point in ; no additional change of
the same signal occurs in . The value of the literal in
which corresponds to this input signal falls during a transition
from to the start-point and remains 0. Thus the output of

remains 0 in if the start-point of the trajectory is not
contained in .

Thus the output of a product term that containschanges
monotonically (, , or).

Using the same argument, the output of a product term that
contains also changes monotonically (, , or

).
Theorem 2: The output of a two-levelAND-OR circuit is

hazard-free during a extended burst-mode transition.
Proof: No product term intersects the transition cube

since the transition is function-hazard-free. Thus all the prod-
uct terms in the network remain 0 during the transition by
Lemma 2.

Theorem 3: The output of a two-levelAND-OR circuit is
hazard-free during a extended burst-mode transition
iff the circuit contains a product term which contains the
transition cube .

Proof: Assume that the circuit does not contain a
product term that contains . In order for the transition to
be function-hazard-free, is covered by more than one
product term. During a transition from to , one or more
product terms rise, one or more product terms fall, and the
rest remain 0. If a falling edge of a product term precedes all
rising edges, the output of the circuit may change from 1 to 0
to 1, which is a hazard, contradicting the hypothesis.

114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

The output of a product term that contains
remains 1 during a transition from any point in to any
point in , because there is no literal in this product term that
can change in . Hence, the sum of products remains 1
throughout the trajectory.

Theorem 4: The output of a two-levelAND-OR circuit is
hazard-free during a extended burst-mode transition iff
every product term intersecting the transition cube also
contains the start subcube .

Proof: Assume that there exists a product term
that intersects but does not contain . Consider a
trajectory from a point in not contained in to any point in

. The initial value of is 0 since does not contain the start-
point. The final value of is 0 because the final value of the
output of the network must be 0. Becauseintersects

changes from 0 to 1 to 0 on some trajectories fromto .
All other product terms that contain fall during a transition
from to . Since the wire delay on can be arbitrary,
the output of the network may undergo a
transition. Thus the circuit is not hazard-free, which contradicts
the hypothesis.

The final values of all the product terms are 0,
because the final value of the output of the network must be
0. By Lemma 3, the product terms that contain change
monotonically during a transition from to . Thus the
product terms that intersect fall monotonically. The
product terms that do not intersect remain 0, by Lemma
2. Thus the output of the network changes monotonically, i.e.,
hazard free.

Theorem 5: The output of a two-levelAND-OR circuit is
hazard-free during a extended burst-mode transition iff
no product term intersects the transition cube unless it
also contains the end subcube.

Proof: Exchange 0 and 1 and reverse trajectories in proof
of Theorem 4.

The hazard-free covering requirements for two-levelAND-

OR logic for extended burst-mode transitions can be summa-
rized as below.

a) For every transition:
There exists a product term that contains .

b) For every transition:
Every product term that intersects must also
contain .

Each maximal subcube of needed to satisfy the
covering requirements above is called arequired cubeof

[43], [22]. Just one cube is required for a
or transition, whereas cubes are required for a

transition enabled by terminating input edges.
Fig. 22 illustrates the hazard-free covering requirements for
the example in Fig. 15.

Suppose a generalized transition cube for a
extended burst-mode transition is intersected by a required
cube (required for another transition). If does not
contain and cannot be expanded (by assigning 1 to don’t
care entries) to contain , then the implementation has a
dynamic logic hazard. Fig. 23 illustrates four examples of
illegal intersections of transition cubes. In each of these cases,

Fig. 22. Required cubes for two-level SOP implementation ofro.

Fig. 23. Illegal intersection of privileged cube.

a dynamic logic hazard is present in the implementation of.
For instance, in Fig. 23(b), the output of may glitch (0-1-0)
if rises momentarily before rises but the output of is
slow to change, and this glitch may propagate to the output.
This observation leads to the notion of privileged cube.

A generalized transition cube for a extended
burst-mode transition is said to be aprivileged cube[43],
[22] iff contains more than one minterm. Likewise, a
generalized transition cube for a extended burst-
mode transition is said to be aprivileged cubeiff contains
more than one minterm. A cube that intersects a privileged

transition cube must also contain the start subcube, and
a cube that intersects a privileged transition cube must
also contain the end subcube. Otherwise, the cube is said to
intersect the privileged cubeillegally.

To summarize, a cover of a logic function that
implements an output or a state variable of the 3D machine is
free of logic hazards iff it includes all of the required cubes
and no cube in intersects a privileged cube illegally.

2) Generalized C-Element Implementation:The synthesis
method produces two-levelAND-OR circuits for both set
logic set and reset logic reset . The stack of the
generalized C-element in Fig. 6 is simply thestack of a fully
complementary complexAND-OR-NOT gate that implements

YUN AND DILL: AUTOMATIC SYNTHESIS OF EXTENDED BURST-MODE CIRCUITS: PART I 115

Fig. 24. Dynamic hazard in generalized C-elements.

set; the stack of the generalized C-element is the
stack of a full complementary complexAND-OR-NOT gate that
implements reset. For example, a gC implementation of
for set and reset is shown in Fig. 11(b).

The hazard avoidance techniques used for two-levelAND-

OR apply directly here, because of the way pull-down and
pull-up stacks are implemented. As described below, the only
difference is that no special precautions are necessary to make
static transitions hazard-free. A similar technique was used to
optimize complex CMOS gates in [38]. A detailed comparison
to [38] can be found in [34].

Extended burst-mode circuits implemented with generalized
C-elements as described above are hazard-free during
and transitions. The output of a two-levelAND-OR

circuit is hazard-free during a extended burst-mode
transition, as shown in Theorem 2. Thus, whenundergoes
a transition, reset remains low, keeping the stack
turned off. The stack, in the meantime, may be turned on or
off, but the sustainer maintains the old value of the gC output.
Likewise, is hazard-free during transitions. Note that
static hazards are possible in fully complementary MOS gates
if the N and P stacks are duals of each other: i.e., when the N
stack is turned off, the P stack is on and vice versa.

On the other hand, special steps must be taken to avoid
dynamic hazards. As in two-levelAND-OR circuits, for a

transition to be hazard-free, all on-set minterms in
each trajectory of the transition must be covered by a single
cube, and every cube that intersects the trajectory must also
include the endpoint of the trajectory, as shown in Theorem
5. Consider a transition (and
initially), in which is supposed to rise monotonically when

rises, regardless of the behavior of. Suppose that and
change as shown in Fig. 24.starts to discharge whileand
are both high, stops whenfalls, and starts again when Nis
fully turned on (after theAND output rises). Although it is very
unlikely that complex gates exhibit glitches as illustrated in
Fig. 24, it may be worthwhile to avoid any such possibilities.
The synthesis algorithm described in Part II removes any
possibilities of dynamic hazards.

To summarize, for the output of a generalized C-element
to be hazard-free for a set of extended burst-mode transitions,
the following requirements must be met.

a) There are noreachablestates in which both P and N
stacks are on.

Fig. 25. (a) K-map forfifocellctrl example in Fig. 15. (b) Required cubes
for gC implementation ofro.

b) N stack is hazard-free for all specified transitions;
P stack is hazard-free for all specified transitions.

Requirement 1 is met by ensuring that the on-set ofset
reset is devoid of off-set (on-set) minterms of. To satisfy

requirement 2, we must ensure that, for every
transition of , every product term of set reset that
intersects must also contain . Hazard-free logic
minimization in conjunction with the state assignment step
ensures that requirement 2 is met.

As in two-level synthesis, each maximal subcube of
needed to satisfy the covering requirement (requirement 2)
is called arequired cubeof . Fig. 25(b) illustrates the
hazard-free covering requirements for gC implementation of

from the fifocellctrl example in Fig. 15. Note the absence
of required cubes for transitions of set

reset . This is because the sustainers maintain the logic
level once the logic is set (or reset). Note also the overlapping
of set and reset. The overlapping region corresponds to
unreachable states.

Removing Feedback Delay Requirement

As discussed in Section IV-A-1, it may be necessary to con-
struct robust circuits without the aid of feedback delays. Unlike
two-level AND-OR circuits, the essential hazard occurs only
during dynamic transitions involving multiple output changes
in gC circuits. For example, consider the state transition from
state 2 to 1 in Fig. 15, during which is to rise and is
to fall. In order to enable (the fed-back) must be
high. However, if switches too fast, may fall before
has switched. To prevent this, the product term to enable
must not include as one of its literals.

A sufficient condition to guarantee this is to include the
transition cubes associated with the output bursts as required
cubes of set, if is enabled to rise in the corresponding input
bursts, and as required cubes ofreset, if is enabled to fall in
the corresponding input bursts. For example, thenewrequired
cubes for and the corresponding circuit implementation are
shown in Fig. 26.

This requirement—robust covering requirement for feedback
delay removal in gC—reduces the don’t care space for logic
minimization. The resulting circuit implementation may be less
compact and may have longer latency but shorter cycle time.

116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

Fig. 26. (a) Required cubes for gC implementation ofro which removes the
feedback delay requirement. (b) The corresponding circuit implementation.

We modified the required cube generation part of the synthesis
tool to study the impacts of this new covering requirement. We
report the experimental results in Part II. Also note that this
requirement makes state minimization less flexible in some
rare cases, which is also discussed in Part II.

Signal Placement and Decomposition of Series Stacks

In extended burst-mode circuits, the order of signal arrivals
is largely predetermined, so the signal placement can be
optimized for performance. In our synthesis method, primary
input signals that enable an output to change, i.e.,terminating
signals, are placed at thetop of the stack (farthest from

DD/Ground). Fed-back outputs and state variables are placed
at the bottom of the stack (nearest toDD/Ground), because
feedback signals do not enable outputs to change.

Although somewhat longer series stacks can be tolerated
in extended burst-mode circuits than in conventional combi-
national circuits, as demonstrated in actual fabricated chips
[27], larger circuits and deep submicron designs require a
capability to decompose long stacks. The most straightforward
way to decompose a long stack is to partition the signals and
map every partition with more than one signal to a static
AND/NAND followed by a transistor. This decomposition is
hazard-free because each series stack corresponds to anAND

gate in theAND-OR network that implementsset or reset
and decomposingAND gates recursively is hazard-free [19].
However, arbitrary partitioning is not allowed because it can
lead to dc-path problems during dynamic transitions. The
details of legal decomposition of gC burst-mode circuits can
be found in [48].

3) Logic Minimization: For both static two-levelAND-OR

and pseudostatic gC implementations, we use exact algorithms
for hazard-free logic, implemented in an automated logic
minimizer [49], for hazard-free logic minimization.

V. CONCLUSION

We formally defined the extended burst-mode specification,
presented an overview of the 3D synthesis, and discussed
hazard elimination strategies. Because the most difficult prob-
lem in asynchronous circuit synthesis is avoiding hazards,
we reviewed precise characterization of various kinds of

hazards and described how each is avoided in the 3D machine
implementation. We showed that the 3D machine synthesis
problem reduces down to one of synthesizing hazard-free next-
state logic and presented two approaches for next-state logic
synthesis: two-levelAND-OR implementation and generalized
C-element implementation. We also presented an extension
to existing theories for hazard-free combinational synthesis to
handle nonmonotonic inputs. We showed that these methods
require different constraints to guarantee that implementations
are hazard-free. In Part II of the paper, we will show how
the selection of the next-state logic synthesis method affects
the state assignment. We will present an extensive set of
experimental results and compare our results to competing
methods whenever possible.

ACKNOWLEDGMENT

The authors would like to thank S. Nowick of Columbia
University for insightful comments on hazard-free covering
requirements and for many helpful discussions and the an-
nonymous reviewers for their helpful suggestions.

REFERENCES

[1] A. J. Martin, “Compiling communicating processes into delay-
insensitive VLSI circuits,” Distributed Comput., vol. 1, no. 4, pp.
226–234, 1986.

[2] E. Brunvand, “Translating concurrent communicating programs into
asynchronous circuits,” Ph.D. dissertation, Carnegie Mellon Univ., Pitts-
burgh, PA, 1991.

[3] J. C. Ebergen, “A formal approach to designing delay-insensitive
circuits,” Distributed Comput., vol. 5, no. 3, pp. 107–119, 1991.

[4] S. M. Burns, “Performance analysis and optimization of asynchronous
circuits,” Ph.D. dissertation, California Inst. Technol., Pasadena, CA,
1991.

[5] M. B. Josephs and J. T. Udding, “An overview of DI algebra,” inProc.
Hawaii Int. Conf. System Sciences, Jan. 1993, vol. I, pp. 329–338.

[6] G. Gopalakrishnan, P. Kudva, and E. Brunvand, “Peephole optimization
of asynchronous macromodule networks,” inProc. Int. Conf. Computer
Design (ICCD), Oct. 1994, pp. 442–446.

[7] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and F.
Schalij, “A fully-asynchronous low-power error corrector for the DCC
player,” IEEE J. Solid-State Circuits, vol. 29, pp. 1429–1439, Dec. 1994.

[8] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications,” Ph.D. dissertation, MIT Laboratory for Computer Sci-
ence, Cambridge, MA, June 1987.

[9] T. H.-Y. Meng, R. W. Brodersen, and D. G. Messerschmitt, “Automatic
synthesis of asynchronous circuits from high-level specifications,”IEEE
Trans. Computer-Aided Design, vol. 8, pp. 1185–1205, Nov. 1989.

[10] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, “Synthesis
of hazard-free asynchronous circuits with bounded wire delays,”IEEE
Trans. Computer-Aided Design, vol. 14, pp. 61–86, Jan. 1995.

[11] P. Vanbekbergen, “Synthesis of asynchronous control circuits from
graph-theoretic specifications,” Ph.D. dissertation, Catholic Univ. Leu-
ven, Belgium, Sept. 1993.

[12] C. Ykman-Couvreur, B. Lin, and H. de Man, “Assassin: A synthesis
system for asynchronous control circuits,” Tech. Rep., IMEC, User and
Tutorial manual, Sept. 1994.

[13] J. Cortadella, A Yakovlev, L. Lavagano, and P. Vanbekbergen, “Design-
ing asynchronous circuits from behavioral specifications with internal
conflicts,” in Proc. Int. Symp. Advanced Research in Asynchronous
Circuits and Systems, Nov. 1994, pp. 106–115.

[14] V. I. Varshavsky, Ed.,Self-Timed Control of Concurrent Processes: The
Design of Aperiodic Logical Circuits in Computers and Discrete Systems.
Dordrecht, The Netherlands: Kluwer, 1990.

[15] P. A. Beerel, “CAD tools for the synthesis, verification, and testability
of robust asynchronous circuits,” Ph.D. dissertation, Stanford Univ.,
Stanford, CA, 1994.

[16] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A.
Yakovlev, “Basic gate implementation of speed-independent circuits,”
in Proc. ACM/IEEE Design Automation Conf., June 1994, pp. 56–62.

YUN AND DILL: AUTOMATIC SYNTHESIS OF EXTENDED BURST-MODE CIRCUITS: PART I 117

[17] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous
circuits,” IEEE Trans. VLSI Syst., vol. 1, pp. 106–119, June 1993.

[18] D. A. Huffman, “The synthesis of sequential switching circuits,” in
Sequential Machines: Selected Papers, E. F. Moore, Ed. Reading, MA:
Addison-Wesley, 1964.

[19] S. H. Unger,Asynchronous Sequential Switching Circuits. New York,
Wiley-Interscience, 1969.

[20] B. Coates, A. Davis, and K. Stevens, “The post office experience:
Designing a large asynchronous chip,”Integration, VLSI J., vol. 15,
no. 3, pp. 341–366, Oct. 1993.

[21] S. M. Nowick and D. L. Dill, “Synthesis of asynchronous state machines
using a local clock,” inProc. Int. Conf. Computer Design (ICCD), Oct.
1991, pp. 192–197.

[22] S. M. Nowick, “Automatic synthesis of burst-mode asynchronous con-
trollers,” Ph.D. dissertation, Stanford Univ., Dept. Comput. Sci., Stan-
ford, CA, 1993.

[23] A. Davis, B. Coates, and K. Stevens, “Automatic synthesis of fast com-
pact asynchronous control circuits,” inAsynchronous Design Method-
ologies, S. Furber and M. Edwards. Eds. Elsevier Science Publishers,
vol. A-28 of IFIP Transactions, pp. 193–207, 1993.

[24] K. Y. Yun, “Synthesis of asynchronous controllers for heterogeneous
systems,” Ph.D. dissertation, Stanford Univ., Stanford, CA, Aug. 1994.

[25] S. M. Nowick and B. Coates, “UCLOCK: Automated design of high-
performance asynchronous state machines,” inProc. Int. Conf. Computer
Design (ICCD), Oct. 1994, pp. 434–441.

[26] B. Coates, A. Davis, and K. Stevens, “The Post Office experience:
Designing a large asynchronous chip,”Integration, VLSI J., vol. 15,
no. 3, pp. 341–366, Oct. 1993.

[27] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply, and J. Arceo, “The
design and verification of a high-performance low-control-overhead
asynchronous differential equation solver,”IEEE Trans. VLSI Syst., vol.
6, pp. 643–655, Dec. 1998.

[28] K. Y. Yun and D. L. Dill, “A high-performance asynchronous SCSI
controller,” in Proc. Int. Conf. Computer Design (ICCD), 1995, pp.
44–49.

[29] A. Marshall, B. Coates, and P. Siegel, “Designing an asynchronous
communications chip,”IEEE Design, Test Comput., vol. 11, no. 2, pp.
8–21, 1994.

[30] E. J. McCluskey,Logic Design Principles with Emphasis on Testable
Semicustom Circuits. Englewood Cliffs, NJ: Prentice-Hall, 1986.

[31] K. S. Stevens, “Practical verification and synthesis of low latency
asynchronous systems,” Ph.D. dissertation, Dept. Comput. Sci., Univ.
Calgary, Canada, Sept. 1994.

[32] K. Y. Yun and D. L. Dill, “Unifying synchronous/asynchronous state
machine synthesis,” inProc. Int. Conf. Computer-Aided Design (IC-
CAD), Nov. 1993, pp. 255–260.

[33] A. J. Martin, “Synthesis of asynchronous VLSI circuits,” inFormal
Methods of VLSI Design, J. Straunstrup, Ed. Amsterdam, The Nether-
lands: North Holland, 1990, ch. 6, pp. 237–283.

[34] K. Y. Yun, “Automatic synthesis of extended burst-mode circuits using
generalized C-elements,” inProc. European Design Automation Conf.
(EURO-DAC), Sept. 1996, pp. 290–295.

[35] P. S. K. Siegel, “Automatic technology mapping for asynchronous
designs,” Ph.D. dissertation, Stanford Univ., Stanford, CA, Feb. 1995.

[36] P. A. Beerel, K. Y. Yun, and W. C. Chou, “Optimizing average-case
delay in technology mapping of burst-mode circuits,” inProc. Int. Symp.
Advanced Research in Asynchronous Circuits and Systems, Mar. 1996,
pp. 244–260.

[37] K. Y. Yun, B. Lin, D. L. Dill, and S. Devadas, “Performance-driven
synthesis of asynchronous controllers,” inProc. Int. Conf. Computer-
Aided Design (ICCAD), Nov. 1994, pp. 550–557.

[38] P. Kudva, G. Gopalakrishnan, H. Jacobson, and S. M. Nowick, “Syn-
thesis of hazard-free customized CMOS complex-gate networks under
multiple-input changes,” inProc. ACM/IEEE Design Automation Conf.,
1996, pp. 77–82.

[39] S. Chakraborty, D. L. Dill, K. Y. Yun, and K. Chang, “Timing
analysis for extended burst-mode circuits,” inProc. Int. Symp. Advanced
Research in Asynchronous Circuits and Systems, Apr. 1997, pp. 101–111.

[40] E. B. Eichelberger, “Hazard detection in combinational and sequential
switching circuits,”IBM J. Res. Develop., vol. 9, pp. 90–99, Mar. 1965.

[41] J. Bredeson and P. Hulina, “Elimination of static and dynamic hazards
for multiple input changes in combinational switching circuits,”Inform.
Contr., vol. 20, no. 2, pp. 114–124, Mar. 1972.

[42] J. Bredeson, “Synthesis of multiple input change hazard-free combina-
tional switching circuits without feedback,”Int. J. Electron. (GB), vol.
39, no. 6, pp. 615–624, Dec. 1975.

[43] S. M. Nowick and D. L. Dill, “Exact two-level minimization of hazard-
free logic with multiple-input changes,”IEEE Trans. Computer-Aided
Design, vol. 14, pp. 986–997, Aug. 1995.

[44] R. Rudell, “Logic synthesis for VLSI design,” Tech. Rep. Memo.
UCB/ERL M89/49, Univ. California, Berkeley, 1989.

[45] C.-J. Seger, “Models and algorithms for race analysis in asynchronous
circuits,” Research Report, Ph.D. dissertation, CS-88-22, Univ. Water-
loo, Comput. Sci. Dept., Canada, May 1988.

[46] J. R. Burch, “Delay models for verifying speed-dependent asynchronous
circuits,” in Proc. Int. Conf. Computer Design (ICCD), Oct. 1992, pp.
270–274.

[47] J. Beister, “A unified approach to combinational hazards,”IEEE Trans.
Comput., vol. C-23, pp. 566–575, June 1974.

[48] K. W. James and K. Y. Yun, “Average-case optimized transistor-level
technology mapping of extended burst-mode circuits,” inProc. Int.
Symp. Advanced Research in Asynchronous Circuits and Systems, 1998,
pp. 70–79.

[49] R. M. Fuhrer, B. Lin, and S. M. Nowick, “Symbolic hazard-free
minimization and encoding of asynchronous finite state machines,” in
Proc. Int. Conf. Computer-Aided Design (ICCAD), 1995, pp. 604–611.

Kenneth Y. Yun (S’92–M’95) received the S.M. degree in electrical engi-
neering and computer science from the Massachusetts Institute of Technology,
Cambridge, and the Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA.

He is currently an Assistant Professor in the Department of Electrical
and Computer Engineering at University of California, San Diego. He
had held design engineering positions at TRW and Hitachi for six years.
His current research interests include the design, synthesis, analysis, and
verification of mixed-timed VLSI circuits and systems: in particular, interface
design methodologies and tools to facilitate ultra-high-speed communications
between synchronous/asynchronous modules. He has been working with Intel
Corp. as a primary consultant on the Asynchronous Instruction Decoder
Project. He has organized ASYNC’98 as a program co-chair.

Dr. Yun is the recipient of a National Science Foundation CAREER award
and a Hellman Faculty Fellowship. He has received the Charles E. Molnar
Award for a paper that best bridges theory and practice of asynchronous
circuits and systems at ASYNC’97 and a Best Paper Award at ICCD’98.

David L. Dill (M’90) received the S.B. degree in electrical engineering and
computer science from the Massachusetts Institute of Technology (MIT),
Cambridge, in 1979 and the M.S. and Ph.D. degrees from Carnegie-Mellon
University, Pittsburgh, PA, in 1982 and 1987.

He is Associate Professor of Computer Science and, by courtesy, Electrical
Engineering at Stanford University, Stanford, CA, where he has been on the
faculty since 1987. His primary research interests relate to the theory and
application of formal verification techniques to system designs, including
hardware, protocols, and software. From July 1996 to September 1997 he
was Chief Scientist of 0-In Design Automation.

Dr. Dill’s Ph.D. dissertation, “Trace Theory for Automatic Hierarchical
Verification of Speed Independent Circuits” was named as a Distinguished
Dissertation by ACM and published as such by M.I.T. Press in 1988. He
was the recipient of an Presidential Young Investigator Award from the
National Science Foundation in 1988, and a Young Investigator Award from
the Office of Naval Research in 1991. He has received Best Paper Awards
at the International Conference on Computer Design in 1991 and the Design
Automation Conference in 1993 and 1998.

