A New One-Pass Tableau Calculus for PLTL

Stefan Schwendimann

Institut fiur Informatik und
angewandte Mathematik
University of Berne
Neubriickstr.10
CH-3012 Bern
E-mail: schwendi@iam.unibe.ch
Phone: +41 31 6313317

Abstract. The paper presents a one-pass tableau calculus PLTLz for
the propositional linear time logic PLTL. The calculus is correct and
complete and unlike in previous decision methods, there is no second
phase that checks for the fulfillment of the so-called eventuality formu-
lae. This second phase is performed locally and is incorporated into the
rules of the calculus. Derivations in PLTL7 are cyclic trees rather than
cyclic graphs. When used as a basis for a decision procedure, it has the
advantage that only one branch needs to be kept in memory at any one
time. It may thus be a suitable starting point for the development of a
parallel decision method for PLTL.

1 Introduction

Temporal logic has proved to be a useful formalism for reasoning about execution
sequences of programs. It can be employed to formulate and verify properties of
concurrent programs, protocols and hardware (see for instance [1], [13], [14]). A
prominent variant is the propositional linear time logic PLTL where the decision
problem is known to be PSPACE-complete [15]. In most of the previous publi-
cations the decision algorithm itself has been presented as a 2-phase procedure:

1. A tableau procedure that creates a graph.
2. A procedure that checks whether the graph fulfills all eventuality formulae.

The second phase usually leads to an analysis of the strongly connected com-
ponents (SCC) of the graph (see e.g. [16]). Typical descriptions of this 2-phase
method can be found in [17] and [9] where, in both cases, the second phase is
not treated formally.

The tableau method presented in [12] is claimed to be incremental, where
‘incremental’ means that only reachable nodes are created (this is also true for
[17] and [9]). However, it is essentially still a 2-phase procedure. The focus there is
on providing a refined method for linear temporal logic with past time operators.

The above methods can treat the verification problem directly as a logical
implication ‘spec — prop’, where spec is the PLTL formula representing a speci-
fication and prop the formula representing a property to be verified. The essence
of the problem is to show the validity of this implication in PLTL.

An alternative approach uses state-based methods (also referred to as ‘model
checking’). One possibility is to translate both the specification (e.g. of a proto-
col) and the negation of the property into labeled generalized Biichi automata,
where the property automaton is also generated by a tableau-like procedure. A
second phase then checks whether the language accepted by the synchronous
product of the two automata is empty. Once again, in general, this involves an
SCC analysis. In [7] it is claimed that the check for emptiness can be done ‘on-
the-fly’ during the generation of the product: the tableau-like procedure builds
the property graph in a depth-first manner choosing only successors that ‘match’
the current state of the protocol. Validity can also be checked using this method.
However, it is not clear from the description whether the procedure remains ‘on-
the-fly’ when there is no protocol to ‘match’. In [2] it is shown how a generalized
Biichi automaton can be transformed into a classical Biichi automaton for which
the emptiness check reduces to a simple cycle detection scheme. So in the area
of state-based methods similar attempts have been made to intermix the two
phases and to avoid a standard SCC analysis.

Here we present a one-pass tableau calculus which checks locally, on-the-fly,
for the fulfillment of eventuality formulae on a branch-by-branch basis. No second
phase is required. It can also be used for an incremental depth-first search where
only reachable states are created. Derivations in this calculus result in (cyclic)
tree-like structures rather than general graphs. Thus, the analysis of strongly
connected components reduces to the detection of ‘isolated subtrees’, a task
which is very simple and which can therefore be incorporated easily into the
calculus. The new aspects basically consist of:

1. A branch-based loop check that ensures termination.
2. A part that synthesizes the essential information gleaned from expanding
the subtrees of a node.

The 2-phase methods require the creation of a fully expanded tableau, which is
often exponential in the size of the initial formula. Since our method involves only
one pass and is complete, we can stop as soon as a (counter-) model is detected,
thus, (sometimes) avoiding a fully expanded tableau. A further advantage is
that only one branch of the derivation tree needs to be considered at any stage.
Therefore, the calculus PLTL is a natural analogue of the tableau and Gentzen-
style sequent calculi for various modal logics, for instance K, KT and S4 (see e.g.
[6], [8], [3]), where derivations are also trees, where it is always sufficient to
consider one branch at any one time and where a check for loops is sometimes
required to guarantee termination (see e.g. [11]).

While the two phases of the previous methods are an obstacle for paralleliza-
tion, the branch-by-branch treatment offers natural possibilities for concurrent
search. Of course, at the end, the resultant parts would need to be combined, but

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

until then the processors could work independently on different subtrees without,
extra-communication.

There is of course a caveat. Since a naive derivation in PLTLz essentially
unfolds a graph into a tree, the run-time may be significantly higher, especially
for examples where the graphs have (relatively) few nodes and many edges.
Clearly, the calculus must be applied in combination with suitable pruning and
caching techniques. Algorithmic aspects, however, are beyond the scope of this
paper. We will focus on the new definitions and the key lemmata and theorems.
Simpler observations are stated as propositions without proofs.

2 Syntax

In the following we deal with an extension £ of the language for classical proposi-
tional logic. It comprises: 1. Countably many propositional variables pg, p1, 2.
The propositional constants true and false. 3. The connectives =, A, V, X (neXt
time), F (sometime), G (generally), U (until), and B (before). As auxiliary
symbols we have parentheses and commas. The formulae of £ are inductively
defined: 1. The propositional variables and constants are formulae. 2. If A and
C' are formulae, then (=A), (XA), (FA), (GA), (AANC), (Av(C), (AUC), and
(ABC) are formulae.

The set of propositional variables is denoted by Var and the set of all for-
mulae by Fml. As metavariables for propositional variables we use P, (), and as
metavariables for formulae A, C, D, possibly with subscripts. Propositional vari-
ables are also called positive literals; if P is a propositional variable then =P is
a negative literal. As metavariable for positive literals we use P and as metavari-
able for literals M, possibly with subscripts. In order to increase readability, we
omit, outer parentheses and define the unary connectives to take precedence over
all binary connectives. For example, we write F (p; U p1) A (po B—=Xpy) for the

formula ((F (p7 U p1)) A (po B(=(Xp1))))-

3 Semantics

Definition 1. A PLTL-model is a pair (S, L), where S is an infinite sequence
of states (si)ien = So81... and L : S — Pow(Var) is a function which assigns
to each state a set of propositional variables. L is called a ‘labeling’.

Definition 2. Let M = (S,L) be a PLTL-model, s; € S, and A € L. The

relation ‘M satisfies A at state s;’, formally M, s; = A, is inductively defined:
1. M, s; = true and M, s; | false.

2. M,s; =P iff Pe L(s;).

3. M,S,j ‘: —-A 7ﬂ M,Si I# A.

4. M, si EANC iff M,s;E A and M, s; |=C.

5 M,si =AVC iff M,s;|=A or M,s; |=C.

6. M,si = XA iff M,sit1 [A.

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

7. M,s;i EGA iff M,sij = A forall j > 0.
8. M,s; =FA iff there exists a j > 0 such that M, s;1; = A.
9. M,s; = AUC iff there exists a j > 0 such that M, s;1; = C and
M, sivr = A forall 0 < k < j.
10. M,s; = ABC iff for all j >0 with M, s;y; = C there exists a 0 < k < j

with M, s = A.

If M, s; = A forall s; € S, we write M |= A. A formula A is PLTL-satisfiable iff
there exists a PLTL-model M = (S, L) and a state s; € S such that M, s; = A.
A formula A is PLTL-valid iff M = A for all PLTL-models M = (S, L). Then
we write PLTL |= A.

Formulae which contain the symbol — only immediately before positive lit-
erals are called formulae in negation normal form. The PLTL-valid equivalences
(=X A & X=4), (-GA & F=A), (~(AUC) & (mAB(C)), and (-(ABC) <
(mAUC)) allow us to push the negation inwards and to obtain for any for-
mula an equivalent formula in negation normal form. In the following we restrict
ourselves to formulae in negation normal form.

Definition 3. The complement A of a formula A in negation normal form is
inductively defined as follows. 1. true := false and false := true. 2. P := P

and =P := P. 8. ANC := (AVC) and AVC := (ANC). 4. GA:=F A and
FA:=GA. 5 ABC:=A4AUC and AUC :=ABC.

Definition 4. We classify the formulae in negation normal form: 1. Proposi-
tional constants, literals and formulae of the form X A are called elementary.
2. All other formulae are called non-elementary and can be represented either
as a-formulae (conjunctions) or as (-formulae (disjunctions) according to the
following tables:

[ofl]] [B8] B
ANC|A c [Av[4 C
GA| A XG A FD||D XF D

ABC|T|AVX(ABC)| |cuD|D|CAX(CUD)

B-formulae of the form FD and CU D are also called eventuality formulae or
eventualities for short; in order for these formulae to hold at a certain state in
a model, there must be a future state where D ‘eventually’ holds.

In the following we use a, ay, as to denote an a-formula and its conjuncts
and 3, (1, B2 to denote a (-formula and its disjuncts. Moreover, we assume for
the rest of the paper that there are no formulae of the form F D; they can be
written as trueld D.

Definition 5. We define the closure cl(A) for any formula A in negation nor-
mal form: 1. A is in cl(A). 2. If =P is in cl(A), then P is in cl(A). 3. If X B is
in cl(A), then B is in cl(A). 4. If a is in cl(A), then ay and as are in cl(A).
5. If B is in cl(A), then By and B2 is in cl(A).

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

The closure of a formula is essentially the set of all subformulae augmented
with the as and 35 parts of the temporal connectives. It is also called the Fischer-
Ladner closure [5]. Before we turn to Hintikka structures for PLTL, we define
some properties for more general ‘labeling’ functions which assign to states sets
of formulae rather than sets of variables.

Definition 6. Let S be a (possibly finite) sequence of states so s1 ..., L a func-
tion L : S — Pow(Fml), and s; € S.

1. Propositional consistency properties:
(PCO) false is not in L(s;).
(PC1) If a literal M is in L(s;), then its complement M is not in L(s;).
(PC2) If a is in L(s;), then ay and ay are in L(s;).
(PC3) If B is in L(s;), then B1 or Bs is in L(s;).

2. Local consistency property:
(LC) If X A isin L(s;) and s; is not the last state if S is finite, then A is
mn L(Si+]).

We say that L fulfills one of the above properties if the respective condition
is satisfied for all states s; of the sequence S.

In the next definition we describe the set of eventualities that are not ‘satis-
fied’ in a sequence of states.

Definition 7. Let S be a (possibly finite) sequence of states sq sy ... and L :
S — Pow(Fml) a labeling. Then the set open(S, L) of eventualities is defined as:

open(S,L) :=={CUD |Ji(CUD € L(s;)) and Vj > i (D & L(s;))}.

The following definition of a (pre-)Hintikka structure can be found in the
literature (e.g. [4]).

Definition 8. A pre-Hintikka structure H is a pair (S, L), where S is a sequence
of states (s;)ien = S0 81... and L : S — Pow(Fml) is a labeling function that
fulfills the properties (PC0-3) and (LC).

By restricting the labeling function L to variables, we can associate with each
pre-Hintikka structure H = (S, L) a model My := (S, L[Var).

Definition 9. We say that a pre-Hintikka structure H = (S, L) is a Hintikka
structure if open(S, L) = 0, that is, if we have for any state s; and any eventuality
CUD: IfCUD € L(s;), then there exists a j > i with D € L(s;).

H is said to be a (pre-)Hintikka structure for a formula A if A € L(sg). We
say that H is a complete (pre-)Hintikka structure for A if for all i: L(s;) =
{C| C € cl(A) and My, s; |= C}.

Note that any Hintikka structure for A can be made into a complete Hintikka
structure for A by adding to L(s;) all formulae of the closure that are satisfied at
s;. The following standard theorem relates the existence of Hintikka structures
to the existence of models.

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

Theorem 10. A formula A in negation normal form is PLTL-satisfiable iff there
exists a Hintikka structure for A.

Proof. See for instance [9].

In the following we deal with a set W of words over an alphabet S. We write
ws for the concatenation of a word w and a single element s € S. Similarly,
we write ww' for the concatenation of the two words w and w'. w and w' may
also be the empty word. Now we introduce a new type of structures which are
essentially trees with loops on their branches.

Definition 11. A loop tree is a tuple T = (W, S, L, R) where:

1. S is a finite set.
2. W is a finite set of finite words over S where:
(a) If w=sgs1...5, € W, then s; # sj for all 0 <i < j <k.
3. R is a binary relation on W with the following properties:
(a) (w,ws) € R for all w,ws € W.
(b) If w € W and ws ¢ W for all s € S, then there exists a word w' € W
such that w' is a prefir of w and (w,w') € R.
(c) If (w,w") € R, then either w' is of the form ws or w' is a prefix of w.
4. L : W — Pow(Fml) is a labeling function with the property: L(ws) =
L(w's) for all ws,w's € W.

The set S can be viewed as a set
of nodes and the words W as direc-
tions how to reach these nodes. The
conditions say that a word should con-

o
tain a node only once, and that words / \\

which cannot be extended are related o
to a prefix. This means that we ba- / ('/\
o o

o
sically have a tree-like structure with \
loops back on the branches where at ©
the end of each branch we have at least / \‘ U
one loop back. The arrows in Fig. 1 o
correspond to the relation R. The la- U
beling is controlled by the last node
of a word. A word is essentially the
last node plus the information how it is
reached. Therefore words will also be
called states.

Fig. 1. Example of a loop tree.

Definition 12. Let T = (W, S, L, R) be a loop tree.

1. If ws € W and w ¢ W, then ws is called a root of T.
2. A path through T is a finite or infinite R-sequence of states wy, ..., w;,

Wit ..., where (w;, w;11) € R for all w; of the sequence (except the last
one if the sequence is finite).

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

3. Aloop branch of T is a finite path wg, w1, ..., wy, wiy1 through T where wy
is a root and for all i < k w1 = w;s; for some s; € S. The last state w1
is identical to a previous state, i.e. wyy1 = w; for a j <k, and it is called
the loop state of the branch. The suffix path wj, wji1,..., W, Wiy 15 called
the loop of the branch. We say that a path w visits the loop branch or simply
the loop if wg,wr11 occurs in 7 (as a pair of consecutive states).

4. If T =wo,...,wj,Wjt1,..., Wk, Wit is a loop branch, the set open;,;(m, L)
is defined as:

open; ¢(m, L) :={CUD | CUD € open(n, L)
and ¥i,(j <i<k= D ¢ L(w;))}.

5. The function depthy : W — N is defined as follows: 1. depth(w) := 0 for
any root w of T. 2. depth(ws) := depth(w) + 1 for any w, ws € W.

Remarks: 1. Note that a loop tree may contain several roots and may there-
fore represent several tree-like structures. 2. A loop branch is defined to con-
tain the backward loop. Therefore a ‘physical branch’ can contain several loop
branches that share a common prefix path (see Fig. 1). In particular, loops may
also start at non-leaf nodes. 3. Obviously, open;,¢(m, L) is a subset of open(w, L).
It denotes the eventualities of 7 which are not satisfied on the loop itself even if
it is visited infinitely many times.

Proposition 13. If wj,wji1,..., Wk, Wkt1 S a loop (wr41 = wj) and a path ©
visits it repeatedly (i.e. multiple occurrences of wy, w41 on), then obviously all
other states of the loop wji1,...,wy_1 must occur in m between two occurrences

of wy,wgy1, although not necessarily in a row.

Definition 14. Let T = (W, S, L, R) be a loop tree. The subtree of T at w € W
is a structure T' = (W', S" L', R") defined as follows: 1. S" := S. 2. W' :=
{ww" | ww' € W}. 3. R := {(ww',ww") | (ww',ww") € R}. 4. L' := LIW".
We say that T' is an isolated subtree of T if (w',v) ¢ R for any w' € W' and
veW\W'.

An isolated subtree is obviously a loop tree. Whether or not a subtree is
isolated can be determined easily by checking the loop states of the loop branches
that pass through the subtree’s root.

Lemma 15. Let T = (W, S, L, R) be a loop tree and T' = (W', S", L', R') the
subtree at w € W. Then we have: T' is isolated iff

depths(w) < min({depth(w') | w'is a loop state of a
loop branch of T containing w}).

Proof. Tf T is isolated, then no loop branch of 7 containing w can have a loop
state outside 7. Since w is the root of 7', the depth of a loop state must be
greater or equal than the depth of w.

Conversely, if the depth of a loop state is greater or equal than the depth
of w, then it must belong to 7' since a branch may only loop back on itself.
Therefore 7' must be isolated.

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

Definition 16.

1. A pre-Hintikka-tree is a loop tree T = (W, S, L, R) where L fulfills the prop-
erties (PC0-3) and (LC) for all paths through T .

2. A Hintikka-tree for a formula A is a pre-Hintikka-tree T = (W, S, L, R)
with the additional property that there exists an infinite path m = wg, w1, . . .
through T with A € L(wg) and open(w, L) = (.

Proposition 17. Let 7 = wj,wj41,.. ., Wk, Wkt be the loop (wr41 = w;) of a
pre-Hintikka-tree T = (W, S, L, R). Then we have: If an eventuality CU D is in
open;,e(w, L), then CU D and X (CU D) are in L(w;) for all i with j <i < k.

1

The following lemma states that the open eventualities of a path depend in
a simple way on the unfulfilled eventualities of single loop branches.

Lemma 18. Let © be an infinite path through the pre-Hintikka-tree T =
(W,S,L,R) and m,...,7m be the loops of T that are visited infinitely many
times by w. Then we have:

open(m,L) = ﬂ open; ¢ (i, L).
i=1...m

Proof. D:Let CUD bein (,_; ,, openi,;(m;, L). There is a point in time after

1
which only the loops 7y, ..., mm and, therefore, only states from mq,..., 7, are

visited. If CU D € open; ¢(m;, L), then D is not in any state of m;, and by
Proposition 17 we know that C'U/ D is in each state of 7;. Therefore C'Y/ D must
be in open(m, L).

C: Let CU D be in open(m,L). Then there is a state s in 7 such that for
any future state s’ the formula D is not in L(s") but X (CU D) is in L(s") . This
implies that for any state s’ from 7, ..., 7y, the formula D is not in L(s") and
X(CUD) is in L(s") since by Proposition 13 all these states are visited by 7

after s. Therefore CU D is in open;,¢(m;, L) for all m; (i = 1...m).

Theorem 19. There is a Hintikka structure for a formula A iff there exists a
Hintikka-tree for A.

Proof. The direction from right to left is obvious. If 7 = (W,S,L,R) is a
Hintikka-tree for A then simply choose a path 7 = wqw; ... through 7 with
A € L(wp) and open(w, L) = (. (m, L) is then a Hintikka structure for A.

For the direction from left to right assume that H = (S, L) is a Hintikka
structure for A with S = s¢s1...8;8i41 First, we introduce an equivalence
relation ~ on the elements of S: s; ~ s; iff L(s;) N cl(A) = L(s;) N cl(A).
The equivalence class of s; is denoted by [s;]. We construct a Hintikka-tree
T = (W,S'",L',R) for A in the following way (w,w’,w" may be the empty
word):

1. §":=85/~.
2. W and R are defined inductively:

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

(a) [so] is an element of W.
(b) If w[s;] is an element of W, then we distinguish two cases:
i. If w[s;] contains a state equivalent to s;11, that is, if w[s;] = w'[s;]w"
and s; ~ s;41, then (w[s;], w'[s;]) is in R (a loop).
ii. Otherwise w[s;][si+1] belongs to W and (w[s;], w[s;][si+1]) is in R.
3. The labeling L' is defined as L'(w]s;]) := L(s;) N cl(A).

The structure 7 is obviously a loop tree. S’ is finite since cl(A) is finite,
L' satisfies (PC0-3) and (L.C), and by the construction there is a path 7 =
wp, wr, ... through 7 (corresponding to sgsi...) with wy = [sg], A € L'(wyp)
and open(mw, L') = (). Therefore T is a Hintikka-tree for A.

4 The Calculus PLTLy

We present, a Tableau-like calculus for PLTL that is complete and correct with
respect to the PLTL semantics. It operates on so-called prestates which contain
the full information needed to decide satisfiability of formulae in negation normal
form.

In the following we use I" and X for finite sets of formulae in negation normal
form, and A for sets of literals (and possibly constants). We also write A, I" for
the set {A} U I, and I, X for the union I' U ¥, and X1 is used for the set
{XA]AeTl}.

For lists we have the following conventions: We use * for the concatenation
of lists and [] for the empty list. If M is a list, then we write len(M) for the
length of M and M{[i] for the i*" element of M (1 < i < len(M)). If M is a list of
tuples, then we write M[i]; to denote the projection to the j'™" element of M][i].

Definition 20. A prestate is a triple (I, Save, Res), also written as I | Save
| Res where:

1. T is a finite set of formulae in negation normal form.

2. Save is a structure to store history information. It is a pair (Fv, Br), also
written as Ev; Br, where Ev is a set of formulae in negation normal form
representing the currently satisfied eventualities, Br is a list of pairs (I'', Ev')
representing the current branch, and I'' and Ev' correspond to the I' and Fv
parts of previous prestates.

3. Res is a structure to store partial result information. It is a pair (n,uev),
where n is a natural number indicating the ‘earliest’ prestate reachable by
the current one, and uev is a set of eventuality formulae in negation normal
form. It represents the unfulfilled eventualities of the current branch.

A prestate is said to be a state if ' is of the form A, XX, that is, if I" consists
only of elementary formulae.

According to the above definition, I" | Ev ; Br | (n, uev) is the extended notion
for an abstract prestate. To focus on the locally relevant parts of a prestate, we
use ‘..." for the ‘unimportant’ parts (e.g. I'| ... | ...). If ... appears at the
same position in the numerator and the denominator(s) of a rule, then we mean

that the corresponding parts are the same.

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

Definition 21. The Tableau calculus PLTLy is defined as follows:
a) Terminal rules:
false, I''| Ev; Br | (len(Br), {false}) (false)
P,—P,I'| Ev; Br|(len(Br), {false}) (contr)
A, XY | Ev; Br|(k,uev) (loop)

where in (loop) there exists an i, 1 <1i < len(Br), such that:

1. A, XX = Br[i],.

2. k=i-1anduev = {CUD|CUD € $ and D ¢ (V"7 Br(jl,UEv)}.
b) a-rules:

a, ' ...] ...
a
CM17CM2,F| ‘ ()
AV B,I'| ...; Br|(n,uev)
¢) B-rules: - - (V)
A, T'|...; Br|(ny,uevy) B, I'| ...; Br|(nz, uevs)

CUD,I'|Ev; Br|(n,uev) (u
D, I'|EvU{D}; Br|(ni,uevy) C,X(CUD),I'| Ev; Br|(na, uevs)

where in (V) and (U) :
1. n = min(ny,ny).

2. (m:=len(Br) —1).
(0

if uevy = 0 or uevy = 0,
{false} if n1 > m and ny > m (and uevy # 0, uevs # 0),
uev if n1 < m and ny > m (and uevy # (),
uev = or if uevy = {false},
uevy if n1 >m and ny < m (and uev, # (),
or if uev, = {false},
| wevi Nuevs otherwise.

d) Nexttime rule:
A XY |Ev; Br| ... (X)
X0 Brx ((A,XX), Ev)| ...

In order to ensure termination, the a- and (B-rules and the nexttime rule are
restricted to prestates that are not instances of a terminal rule. We call a in
(@), AVB in (V), and CUD in (U) the decomposed formula of the respective
rule.

Remark 22.

— The main difference to a modal calculus is the result part which is synthesized
bottom-up (from children to parents). It is needed because a single branch
need not be ‘open’ or ‘closed’; it may be ‘open’ in connection with some
other branches.

— (loop): The sequence Br[i]y,..., Br[len(Br)];, (A, X X) corresponds to the
loop of a branch. uev is defined to be the set open;.¢(.,.) of eventualities
that are not satisfied on this loop branch (see proposition 17).

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

— (B-rules): A fB-rule corresponds to a branching of the tree. n is set to the
minimum depth of the states to which branches of the two subtrees can loop
back. uev is the minimal set of eventualities that are left open by any infinite
path visiting only loops of the subtree below this 8 node.

— (Nexttime rule): The current state and the eventualities that are satisfied by
the current state are appended to the branch Br.

— Note that the sets I, A, and X may be empty. For instance, if X' is empty in
the numerator of (X), we obtain the following fragment of a tableau which
ends in a basically empty instance of (loop). On the right the corresponding
model is shown.

A|Ev; Br| ...) M)
0|0; Br* (A, Ev)| ... “ @_>O
0|0; Br* (A, Ev) * (0,0)] (len(Br) + 1,0) 0

(loop)

Definition 23. A tableau for a prestate ps is a tree of prestates with root ps
and where the sons of a node (prestate) correspond to an application of a PLTLy
rule to the node. We say that the tableau is expanded, if each leaf node is an
instance of a terminal rule.

Let A be a formula and n the number of subformulae of A. Then it is clear
that any tableau for A| ... | ... 1is finite. There are 2°(") many subsets of ¢/(A)U
cl(A). Each I' of a prestate I'| ... | ... is such a subset, and since the terminal
rules must be applied whenever they can be applied, the number of different
prestates on each branch is finite. Therefore, the total number of prestates in

any tableau for A| ... | ...1is finite and any expansion will eventually terminate.

Proposition 24.

a) For every formula A there is an n € N and a set uev C Fml such that there
is an expanded tableau for A|(; Br|(n, uev).

b) If in a tableau the set uev of a prestate is empty , then the set uev of the root
of the tableau is also empty.

Ezample 25. We show the essential branch of a tableau for the satisfiable prop-
erty GF pAGF —p (recall that F p can be written as trueld p). The a- and [-rules
are applied until we reach a state with only elementary formulae. The currently
decomposed formula is in parentheses. It is left to the reader to fill in the missing
Save and Res parts.

(GFpAGF=p)|...|...

(GFp),GF=p]| ... | ...
Fp,XGFp,(GF=p)| ... |...
(Fp),XGFp,F-p,XGF=p]|...|...
p,XGFp, (F=p),XGF=p|{p};.|... Sub;

P, D, p,XGFp,XF-p,XGF=p|{p};.|...

(GFp),F-p,GF=p| ... | ...
Fp,XGFp,F=p, (GF=p)|...[...

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

(Fp),XGFp,F=-p,XGF=p|...|...
Sub, XFp,XGFp,(F-p),XGF=p| ... |...
XFp,XGFp,-p,XGF=p|{-p};.|... Subjz
(X)
Fp,(GFp),GF=p|...|...
Fp.XGFp, (GF=p)| | .
(Fp),XGFp,F-p,XGF-p|...|...
p,XGFp, (F-p),XGF-p|{p};.|... Suby
p, oD, - .. p,XGFp, XF=p, XGF=p|...](0,0) (loop)

The highlighted prestates above the (X)’s are the states of the tableau; the
first one (at ‘state’ depth 0) satisfies p and the second one satisfies —p. The
essential branch ends in an instance of (loop), where in the Res part the 0 refers
to the depth 0 of the first state and the () indicates that all eventualities (the
only candidate to check stems from XF —p) are satisfied on this loop. Sub; 4
stand for other branches in the expanded tableau.

The corresponding model is very simple: @ ,

Definition 26. The loop tree T = (W, S, L, R) for an expanded tableau is
defined in the following way:

1. S is the set of all states (not prestates!) of the tableau and the set of leaf
nodes which are not instances of (loop).

2. W is the set of paths (in terms of S) to the elements of S in the tableau.

3. R:

(a) (w,ws) is in R for all w,ws € W.

(b) (ws,ws) isin R if s is an instance of (false) or (contr). That is, we draw
a loop to the last state itself if it is inconsistent.

(¢) If w € W is a path to a state which is the last state before an instance of
(loop) in the tableau, then w must be of the form w'sw" where s is the
referenced loop state. Then (w,w's) is in R.

4. L(ws) is the set I' if s = I'| ... | ... plus all the formulae that are decom-
posed in the tableau between w and ws.

We could also (formally) omit the classical contradictions from the loop tree
(and the states which have only contradictory prestates below), and we would

obtain a pre-Hintikka-tree. However, the relevant information is always in the
result part.

Lemma 27. Let T = (W, S, L, R) be the loop tree for an expanded tableau. Then
we have for all ws € W, s = A, XX | Ev; Br|(n, uev):

a) L fulfills (PCO-8) and (LC) for ws if s is not an instance of (false) or (contr).
b) depths(ws) = len(Br).

¢) n = min({depth(v) | v is a loop state of a branch = = ... ws...}.

d) The subtree of T at ws is isolated iff n > len(DBr).

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

Proof. Follows from the definition of the calculus and Definition 26. The part d)
follows from b) and ¢) and Lemma 15.

Note that the S-rule applications in the tableau are between two states. The
lower state is at depth len(Br). The conditions in the S-rules, however, control
the result synthesis for the upper state which is at depth len(Br) — 1.

Theorem 28 (Correctness). If A is a formula in negation normal form and
if there exists an n such that there is a ezpanded tableau for A|(;]| (n,0), then
A is satisfiable.

Proof. (Sketch) We basically show that for any prestate ps = ... | ... | (n, uev)
in the tableau with uev # {false} there is a pre-Hintikka structure H,; = (S, L)
for A with open(S, L) = uev. We represent the pre-Hintikka structure as a loop
tree with one single branch 7 starting with the path that leads to ps. We proceed
bottom-up, that is, by induction on the depth of the tableau subtree with root ps.
The main case involves a linearization of two loops into a single one as depicted
in Fig. 2 (the capital letters denote sections of the path). Lemma 18 ensures that
the set of open eventualities is the intersection of the corresponding sets of the
two loops, according to the condition in the S-rules.

Fig. 2. Loop linearization.

Lemma 29. Let T = (W, S’ L', R) be the loop tree for an expanded tableau for
A|D]| (na,ueva). Then we have: If there is a infinite path w through T with
open(m, L) = 0, and if L fulfills (PC0-3) and (LC) on 7, then uev must be ().

Proof. (Sketch) We use Lemma 18, 15 and Lemma 27 b),c) and proceed by
induction on the depth of the subtree visited by .

Theorem 30 (Completeness). If a formula A in negation normal form is
satisfiable, then there exists a tableau for A|0;]| (n,0) for some n € N.

Proof. If A is satisfiable, there exists a complete Hintikka structure H = (S, L)
for A by Theorem 10. Let S be the sequence s¢s; ..., and let T = (W,S’, L', R)
be the loop tree for an expanded tableau for A |0 []|(n, uev). We define induc-
tively a map ¢ : S — W which provides us with a path © = ¢(s0)(s1) ...
through 7 with the following properties:

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

(a) A€ L'(p(s:)) if i = 0.

(b) L'((si)) € L(si).
(¢) T CUD e L'(p(s;)) and D € L(s;), then D € L'(p(s;))-

i = 0: First, A is in L'(w) for every root w € W since the loop tree stems
from a tableau for A|...| ..., and A is also in L(sg), since H is a Hintikka
structure for A. Second, there must exist a root wg € W with L'(wg) C L(s¢)
since in the tableau there is a root state for each possible decomposition of A,
and L(sg) must contain at least one set of decomposed formulae (L(sg) contains
A and L fulfills (PC2) and (PC3)). Third, we can choose a wq so that for each
CUD € L'(wy) with D € L(sg) the decomposition {CU D, D} rather than
{CUD,X(CUD)} is a subset of L'(wq). Set ¢(sq) = wq.

i — i + 1: Assume that we have defined the map up to ¢(s;). We define
the sets next := {C | XC € L(s;)} and next' := {C | XC € L'(p(si))}. We
know that next C L(s;41) since L fulfills (LC), and that for every successor w
of p(s;) next’ C L'(w) (see the (X) rule of PLTLy). Moreover, because of (b),
we have next’ C nmext. Again, since in the tableau there is a successor for each
possible decomposition of next’, and since L(s;11) must contain at least one
decomposition, there must exist a w;11 € W so that (b) and (c) are fulfilled if
we set ©(Si11) to wig1.

Obviously, L' fulfills (PC0-3) and (LC) on m = ¢(s0)(s1) Suppose now
that there exists an eventuality CU D € open(mw, L'). Then there exists a state
@(s;) so that CUD € L'(p(s;)) and D ¢ L'(p(s;)) for all j > i. However,
because of (b) and (c) this would mean that CU D is in open(S,L) as well,
which is a contradiction. Applying the previous lemma 29 concludes the proof
of the theorem.

5 Conclusion

We have presented a new one-pass tableau calculus for PLTL which works, as
most modal calculi, on trees rather than graphs . The representation is minimal
but complete, that is, it can be used directly as the basis for a decision procedure
without a second phase. It has inherent advantages compared to previous ap-
proaches: 1. Only one branch needs to be considered at any one time. This makes
it into a natural candidate for parallelization. 2. A simple linearization of loops
allows to actually extract linear models in a canonical way. Having the details
of the eventuality checking incorporated in a formal way, the calculus is also a
good starting point for theoretical investigations, for instance the verification of
pruning techniques. These are certainly simpler to check when the underlying
structure is a tree. A decision procedure based on PLTL7 has been implemented
and tested and will be publicly available as a part of the Logics Workbench [10]
version 1.1.

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX 98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

References

1.

10.

11.

12.

13.

14.
15.

16.

17.

M. Browne, E. Clarke, D. Dill, and B. Mishra. Automatic verification of sequential
circuits using temporal logic. IEEFE Transactions on Computers, 35:1035-1044,
December 1986.

. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient al-

gorithms for the verification of temporal properties. In Formal Methods in System
Design, volume 1, pages 275 288, 1992.

. M. D’Agostino, D. Gabbay, R. Héahnle, and J. Posegga, editors. Handbook of

Tableau Methods, chapter Tableau Methods for Modal and Temporal Logics.
Kluwer, to appear. (currently available as technical report TR-ARP-15-95, Aus-
tralian National University (ANU)).

. E. Emerson. Temporal and modal logic. In J. v. Leeuwen, editor, Handbook of

Theoretical Computer Science. Volume B, pages 995 1072. Elsevier, 1990.

M.J. Fischer and R.L. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18:194 211, 1979.

M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht,
1983.

R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verifica-
tion of linear temporal logic. In P. Dembinski and M. Sredniawa, editors, Protocol
Specification Testing and Verification, volume XV, pages 3-18. Chapman & Hall,
1996.

R. Goré. Cut-free Sequent and Tableau Systems for Propositional Normal Modal
Logic. PhD thesis, Computer Laboratory, University of Cambridge, England, 1992.
G. Gough. Decision procedures for temporal logic. Technical Report UMCS-89-
10-1, Department of Computer Science, University of Manchester, 1989.

A. Heuerding, G. Jiger, S. Schwendimann, and M. Seyfried. Propositional logics
on the computer. In P. Baumgartner, R. Hahnle, and J. Posegga, editors, Theorem
Proving with Analytic Tableaur and Related Methods, LNCS 918, pages 310 323,
1995.

A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward
proof search in some non-classical propositional logics. In P. Miglioli, U. Moscato,
D. Mundici, and M. Ornaghi, editors, Tableauz 96, LNCS 1071, pages 210-225,
1996.

Y. Kesten, Z. Manna, H. McGuire, and A.Pnueli. A decision algorithm for full
propositional temporal logic. In Computer Aided Verification, LNCS 697, pages
4 35. Springer, 1993.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer Verlag, 1991.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
A. Sistla and E. Clarke. The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery, 32(3):733-749, 1985.

R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal Com-
puting, 1(2):146 160, 1972.

P. Wolper. The tableau method for temporal logic: an overview. Logique et Analyse,
110-111:119 136, 1985.

Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, The
Netherlands, LNAT 1397, pages 277 291, Springer 1998

