
A New One-Pass Tableau Calculus for PLTLStefan SchwendimannInstitut f�ur Informatik undangewandte MathematikUniversity of BerneNeubr�uckstr.10CH-3012 BernE-mail: schwendi@iam.unibe.chPhone: +41 31 6313317Abstract. The paper presents a one-pass tableau calculus PLTLT forthe propositional linear time logic PLTL. The calculus is correct andcomplete and unlike in previous decision methods, there is no secondphase that checks for the ful�llment of the so-called eventuality formu-lae. This second phase is performed locally and is incorporated into therules of the calculus. Derivations in PLTLT are cyclic trees rather thancyclic graphs. When used as a basis for a decision procedure, it has theadvantage that only one branch needs to be kept in memory at any onetime. It may thus be a suitable starting point for the development of aparallel decision method for PLTL.1 IntroductionTemporal logic has proved to be a useful formalism for reasoning about executionsequences of programs. It can be employed to formulate and verify properties ofconcurrent programs, protocols and hardware (see for instance [1], [13], [14]). Aprominent variant is the propositional linear time logic PLTL where the decisionproblem is known to be PSPACE-complete [15]. In most of the previous publi-cations the decision algorithm itself has been presented as a 2-phase procedure:1. A tableau procedure that creates a graph.2. A procedure that checks whether the graph ful�lls all eventuality formulae.The second phase usually leads to an analysis of the strongly connected com-ponents (SCC) of the graph (see e.g. [16]). Typical descriptions of this 2-phasemethod can be found in [17] and [9] where, in both cases, the second phase isnot treated formally.The tableau method presented in [12] is claimed to be incremental, where`incremental' means that only reachable nodes are created (this is also true for[17] and [9]). However, it is essentially still a 2-phase procedure. The focus there ison providing a re�ned method for linear temporal logic with past time operators.

The above methods can treat the veri�cation problem directly as a logicalimplication `spec ! prop', where spec is the PLTL formula representing a speci-�cation and prop the formula representing a property to be veri�ed. The essenceof the problem is to show the validity of this implication in PLTL.An alternative approach uses state-based methods (also referred to as `modelchecking'). One possibility is to translate both the speci�cation (e.g. of a proto-col) and the negation of the property into labeled generalized B�uchi automata,where the property automaton is also generated by a tableau-like procedure. Asecond phase then checks whether the language accepted by the synchronousproduct of the two automata is empty. Once again, in general, this involves anSCC analysis. In [7] it is claimed that the check for emptiness can be done `on-the-
y' during the generation of the product: the tableau-like procedure buildsthe property graph in a depth-�rst manner choosing only successors that `match'the current state of the protocol. Validity can also be checked using this method.However, it is not clear from the description whether the procedure remains `on-the-
y' when there is no protocol to `match'. In [2] it is shown how a generalizedB�uchi automaton can be transformed into a classical B�uchi automaton for whichthe emptiness check reduces to a simple cycle detection scheme. So in the areaof state-based methods similar attempts have been made to intermix the twophases and to avoid a standard SCC analysis.Here we present a one-pass tableau calculus which checks locally, on-the-
y,for the ful�llment of eventuality formulae on a branch-by-branch basis. No secondphase is required. It can also be used for an incremental depth-�rst search whereonly reachable states are created. Derivations in this calculus result in (cyclic)tree-like structures rather than general graphs. Thus, the analysis of stronglyconnected components reduces to the detection of `isolated subtrees', a taskwhich is very simple and which can therefore be incorporated easily into thecalculus. The new aspects basically consist of:1. A branch-based loop check that ensures termination.2. A part that synthesizes the essential information gleaned from expandingthe subtrees of a node.The 2-phase methods require the creation of a fully expanded tableau, which isoften exponential in the size of the initial formula. Since our method involves onlyone pass and is complete, we can stop as soon as a (counter-) model is detected,thus, (sometimes) avoiding a fully expanded tableau. A further advantage isthat only one branch of the derivation tree needs to be considered at any stage.Therefore, the calculus PLTLT is a natural analogue of the tableau and Gentzen-style sequent calculi for various modal logics, for instance K, KT and S4 (see e.g.[6], [8], [3]), where derivations are also trees, where it is always su�cient toconsider one branch at any one time and where a check for loops is sometimesrequired to guarantee termination (see e.g. [11]).While the two phases of the previous methods are an obstacle for paralleliza-tion, the branch-by-branch treatment o�ers natural possibilities for concurrentsearch. Of course, at the end, the resultant parts would need to be combined, butStefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

until then the processors could work independently on di�erent subtrees withoutextra-communication.There is of course a caveat. Since a naive derivation in PLTLT essentiallyunfolds a graph into a tree, the run-time may be signi�cantly higher, especiallyfor examples where the graphs have (relatively) few nodes and many edges.Clearly, the calculus must be applied in combination with suitable pruning andcaching techniques. Algorithmic aspects, however, are beyond the scope of thispaper. We will focus on the new de�nitions and the key lemmata and theorems.Simpler observations are stated as propositions without proofs.2 SyntaxIn the following we deal with an extension L of the language for classical proposi-tional logic. It comprises: 1. Countably many propositional variables p0; p1; : : :. 2.The propositional constants true and false. 3. The connectives :, ^, _, X (neXttime), F (sometime), G (generally), U (until), and B (before). As auxiliarysymbols we have parentheses and commas. The formulae of L are inductivelyde�ned: 1. The propositional variables and constants are formulae. 2. If A andC are formulae, then (:A), (XA), (FA) , (GA), (A^C), (A_C), (AU C), and(ABC) are formulae.The set of propositional variables is denoted by Var and the set of all for-mulae by Fml. As metavariables for propositional variables we use P;Q, and asmetavariables for formulae A;C;D, possibly with subscripts. Propositional vari-ables are also called positive literals ; if P is a propositional variable then :P isa negative literal. As metavariable for positive literals we use P and as metavari-able for literals M , possibly with subscripts. In order to increase readability, weomit outer parentheses and de�ne the unary connectives to take precedence overall binary connectives. For example, we write F (p7 U p1) ^ (p0 B:X p1) for theformula ((F (p7 U p1)) ^ (p0 B (:(X p1)))).3 SemanticsDe�nition 1. A PLTL-model is a pair hS;Li, where S is an in�nite sequenceof states (si)i2N = s0 s1 : : : and L : S ! Pow(Var) is a function which assignsto each state a set of propositional variables. L is called a `labeling'.De�nition 2. Let M = hS;Li be a PLTL-model, si 2 S, and A 2 L. Therelation `M satis�es A at state si', formally M; si j= A, is inductively de�ned:1. M; si j= true and M; si 6j= false.2. M; si j= P i� P 2 L(si).3. M; si j= :A i� M; si 6j= A.4. M; si j= A ^ C i� M; si j= A and M; si j= C.5. M; si j= A _ C i� M; si j= A or M; si j= C.6. M; si j= XA i� M; si+1 j= A.Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

7. M; si j= GA i� M; si+j j= A for all j � 0.8. M; si j= FA i� there exists a j � 0 such that M; si+j j= A.9. M; si j= AU C i� there exists a j � 0 such that M; si+j j= C andM; si+k j= A for all 0 � k < j.10. M; si j= ABC i� for all j � 0 with M; si+j j= C there exists a 0 � k < jwith M; si+k j= A.IfM; si j= A for all si 2 S, we writeM j= A. A formula A is PLTL-satis�able i�there exists a PLTL-model M = hS;Li and a state si 2 S such that M; si j= A.A formula A is PLTL-valid i� M j= A for all PLTL-models M = hS;Li. Thenwe write PLTL j= A.Formulae which contain the symbol : only immediately before positive lit-erals are called formulae in negation normal form. The PLTL-valid equivalences(:XA $ X:A), (:GA $ F:A), (:(AU C) $ (:ABC)), and (:(ABC) $(:AU C)) allow us to push the negation inwards and to obtain for any for-mula an equivalent formula in negation normal form. In the following we restrictourselves to formulae in negation normal form.De�nition 3. The complement A of a formula A in negation normal form isinductively de�ned as follows. 1. true := false and false := true. 2. P := :Pand :P := P . 3. A ^ C := (A _ C) and A _ C := (A ^ C). 4. GA := FA andFA := GA. 5. ABC := AU C and AU C := ABC.De�nition 4. We classify the formulae in negation normal form: 1. Proposi-tional constants, literals and formulae of the form XA are called elementary.2. All other formulae are called non-elementary and can be represented eitheras �-formulae (conjunctions) or as �-formulae (disjunctions) according to thefollowing tables: � �1 �2A ^ C A CGA A XGAABC C A _ X (ABC) � �1 �2A _ C A CFD D XFDC U D D C ^ X (C U D)�-formulae of the form FD and C U D are also called eventuality formulae oreventualities for short; in order for these formulae to hold at a certain state ina model, there must be a future state where D `eventually' holds.In the following we use �, �1, �2 to denote an �-formula and its conjunctsand �, �1, �2 to denote a �-formula and its disjuncts. Moreover, we assume forthe rest of the paper that there are no formulae of the form FD; they can bewritten as trueU D.De�nition 5. We de�ne the closure cl(A) for any formula A in negation nor-mal form: 1. A is in cl(A). 2. If :P is in cl(A), then P is in cl(A). 3. If XB isin cl(A), then B is in cl(A). 4. If � is in cl(A), then �1 and �2 are in cl(A).5. If � is in cl(A), then �1 and �2 is in cl(A).Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

The closure of a formula is essentially the set of all subformulae augmentedwith the �2 and �2 parts of the temporal connectives. It is also called the Fischer-Ladner closure [5]. Before we turn to Hintikka structures for PLTL, we de�nesome properties for more general `labeling' functions which assign to states setsof formulae rather than sets of variables.De�nition 6. Let S be a (possibly �nite) sequence of states s0 s1 : : :, L a func-tion L : S ! Pow(Fml), and si 2 S.1. Propositional consistency properties:(PC0) false is not in L(si).(PC1) If a literal M is in L(si), then its complement M is not in L(si).(PC2) If � is in L(si), then �1 and �2 are in L(si).(PC3) If � is in L(si), then �1 or �2 is in L(si).2. Local consistency property:(LC) If XA is in L(si) and si is not the last state if S is �nite, then A isin L(si+1).We say that L ful�lls one of the above properties if the respective conditionis satis�ed for all states si of the sequence S.In the next de�nition we describe the set of eventualities that are not `satis-�ed' in a sequence of states.De�nition 7. Let S be a (possibly �nite) sequence of states s0 s1 : : : and L :S ! Pow(Fml) a labeling. Then the set open(S;L) of eventualities is de�ned as:open(S;L) := fC U D j 9i (C U D 2 L(si)) and 8j � i (D 62 L(sj))g:The following de�nition of a (pre-)Hintikka structure can be found in theliterature (e.g. [4]).De�nition 8. A pre-Hintikka structureH is a pair hS;Li, where S is a sequenceof states (si)i2N = s0 s1 : : : and L : S ! Pow(Fml) is a labeling function thatful�lls the properties (PC0-3) and (LC).By restricting the labeling function L to variables, we can associate with eachpre-Hintikka structure H = hS;Li a model MH := hS;L�Vari.De�nition 9. We say that a pre-Hintikka structure H = hS;Li is a Hintikkastructure if open(S;L) = ;, that is, if we have for any state si and any eventualityC U D: If C U D 2 L(si), then there exists a j � i with D 2 L(sj):H is said to be a (pre-)Hintikka structure for a formula A if A 2 L(s0). Wesay that H is a complete (pre-)Hintikka structure for A if for all i: L(si) =fC j C 2 cl(A) and MH; si j= Cg:Note that any Hintikka structure for A can be made into a complete Hintikkastructure for A by adding to L(si) all formulae of the closure that are satis�ed atsi. The following standard theorem relates the existence of Hintikka structuresto the existence of models.Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

Theorem 10. A formula A in negation normal form is PLTL-satis�able i� thereexists a Hintikka structure for A.Proof. See for instance [9].In the following we deal with a set W of words over an alphabet S. We writews for the concatenation of a word w and a single element s 2 S. Similarly,we write ww0 for the concatenation of the two words w and w0. w and w0 mayalso be the empty word. Now we introduce a new type of structures which areessentially trees with loops on their branches.De�nition 11. A loop tree is a tuple T = hW;S;L;Ri where:1. S is a �nite set.2. W is a �nite set of �nite words over S where:(a) If w = s0s1 : : : sk 2W , then si 6= sj for all 0 � i < j � k.3. R is a binary relation on W with the following properties:(a) (w;ws) 2 R for all w;ws 2W .(b) If w 2 W and ws =2 W for all s 2 S, then there exists a word w0 2 Wsuch that w0 is a pre�x of w and (w;w0) 2 R.(c) If (w;w0) 2 R, then either w0 is of the form ws or w0 is a pre�x of w.4. L : W ! Pow(Fml) is a labeling function with the property: L(ws) =L(w0s) for all ws;w0s 2 W .

Fig. 1. Example of a loop tree.

The set S can be viewed as a setof nodes and the words W as direc-tions how to reach these nodes. Theconditions say that a word should con-tain a node only once, and that wordswhich cannot be extended are relatedto a pre�x. This means that we ba-sically have a tree-like structure withloops back on the branches where atthe end of each branch we have at leastone loop back. The arrows in Fig. 1correspond to the relation R. The la-beling is controlled by the last nodeof a word. A word is essentially thelast node plus the information how it isreached. Therefore words will also becalled states.De�nition 12. Let T = hW;S;L;Ri be a loop tree.1. If ws 2 W and w =2 W , then ws is called a root of T .2. A path through T is a �nite or in�nite R-sequence of states w0; : : : ; wi;wi+1; : : :, where (wi; wi+1) 2 R for all wi of the sequence (except the lastone if the sequence is �nite).Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

3. A loop branch of T is a �nite path w0; w1; : : : ; wk; wk+1 through T where w0is a root and for all i < k wi+1 = wisi for some si 2 S. The last state wk+1is identical to a previous state, i.e. wk+1 = wj for a j � k, and it is calledthe loop state of the branch. The su�x path wj ; wj+1; : : : ; wk; wk+1 is calledthe loop of the branch. We say that a path � visits the loop branch or simplythe loop if wk; wk+1 occurs in � (as a pair of consecutive states).4. If � = w0; : : : ; wj ; wj+1; : : : ; wk; wk+1 is a loop branch, the set open inf(�; L)is de�ned as:open inf(�; L) := fC U D j C U D 2 open(�; L)and 8i; (j � i � k) D =2 L(wi))g:5. The function depthT : W ! N is de�ned as follows: 1. depthT (w) := 0 forany root w of T . 2. depthT (ws) := depthT (w) + 1 for any w, ws 2W .Remarks: 1. Note that a loop tree may contain several roots and may there-fore represent several tree-like structures. 2. A loop branch is de�ned to con-tain the backward loop. Therefore a `physical branch' can contain several loopbranches that share a common pre�x path (see Fig. 1). In particular, loops mayalso start at non-leaf nodes. 3. Obviously, open inf(�; L) is a subset of open(�; L).It denotes the eventualities of � which are not satis�ed on the loop itself even ifit is visited in�nitely many times.Proposition 13. If wj ; wj+1; : : : ; wk ; wk+1 is a loop (wk+1 = wj) and a path �visits it repeatedly (i.e. multiple occurrences of wk; wk+1 on �), then obviously allother states of the loop wj+1; : : : ; wk�1 must occur in � between two occurrencesof wk; wk+1, although not necessarily in a row.De�nition 14. Let T = hW;S;L;Ri be a loop tree. The subtree of T at w 2Wis a structure T 0 = hW 0; S0; L0; R0i de�ned as follows: 1. S0 := S. 2. W 0 :=fww0 j ww0 2Wg. 3. R0 := f(ww0; ww00) j (ww0; ww00) 2 Rg. 4. L0 := L�W 0.We say that T 0 is an isolated subtree of T if (w0; v) =2 R for any w0 2 W 0 andv 2 W nW 0.An isolated subtree is obviously a loop tree. Whether or not a subtree isisolated can be determined easily by checking the loop states of the loop branchesthat pass through the subtree's root.Lemma 15. Let T = hW;S;L;Ri be a loop tree and T 0 = hW 0; S0; L0; R0i thesubtree at w 2 W . Then we have: T 0 is isolated i�depthT (w) � min(fdepthT (w0) j w0is a loop state of aloop branch of T containing wg):Proof. If T 0 is isolated, then no loop branch of T containing w can have a loopstate outside T 0. Since w is the root of T 0, the depth of a loop state must begreater or equal than the depth of w.Conversely, if the depth of a loop state is greater or equal than the depthof w, then it must belong to T 0 since a branch may only loop back on itself.Therefore T 0 must be isolated.Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

De�nition 16.1. A pre-Hintikka-tree is a loop tree T = hW;S;L;Ri where L ful�lls the prop-erties (PC0-3) and (LC) for all paths through T .2. A Hintikka-tree for a formula A is a pre-Hintikka-tree T = hW;S;L;Riwith the additional property that there exists an in�nite path � = w0; w1; : : :through T with A 2 L(w0) and open(�; L) = ;.Proposition 17. Let � = wj ; wj+1; : : : ; wk; wk+1 be the loop (wk+1 = wj) of apre-Hintikka-tree T = hW;S;L;Ri. Then we have: If an eventuality C U D is inopen inf(�; L), then C U D and X (C U D) are in L(wi) for all i with j � i � k.The following lemma states that the open eventualities of a path depend ina simple way on the unful�lled eventualities of single loop branches.Lemma 18. Let � be an in�nite path through the pre-Hintikka-tree T =hW;S;L;Ri and �1; : : : ; �m be the loops of T that are visited in�nitely manytimes by �. Then we have:open(�; L) = \i=1:::m open inf(�i; L):Proof. �: Let C U D be in Ti=1:::m open inf(�i; L). There is a point in time afterwhich only the loops �1; : : : ; �m and, therefore, only states from �1; : : : ; �m arevisited. If C U D 2 open inf(�i; L), then D is not in any state of �i, and byProposition 17 we know that C U D is in each state of �i. Therefore C U D mustbe in open(�; L).�: Let C U D be in open(�; L). Then there is a state s in � such that forany future state s0 the formula D is not in L(s0) but X (C U D) is in L(s0) . Thisimplies that for any state s00 from �1; : : : ; �m the formula D is not in L(s00) andX (C U D) is in L(s00) since by Proposition 13 all these states are visited by �after s. Therefore C U D is in open inf(�i; L) for all �i (i = 1 : : :m).Theorem 19. There is a Hintikka structure for a formula A i� there exists aHintikka-tree for A.Proof. The direction from right to left is obvious. If T = hW;S;L;Ri is aHintikka-tree for A then simply choose a path � = w0w1 : : : through T withA 2 L(w0) and open(�; L) = ;. h�; Li is then a Hintikka structure for A.For the direction from left to right assume that H = hS;Li is a Hintikkastructure for A with S = s0s1 : : : sisi+1 : : : . First, we introduce an equivalencerelation � on the elements of S: si � sj i� L(si) \ cl(A) = L(sj) \ cl(A).The equivalence class of si is denoted by [si]. We construct a Hintikka-treeT = hW;S0; L0; Ri for A in the following way (w;w0; w00 may be the emptyword):1. S0 := S=�.2. W and R are de�ned inductively:Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

(a) [s0] is an element of W .(b) If w[si] is an element of W , then we distinguish two cases:i. If w[si] contains a state equivalent to si+1, that is, if w[si] = w0[sj]w00and sj � si+1, then (w[si]; w0[sj]) is in R (a loop).ii. Otherwise w[si][si+1] belongs to W and (w[si]; w[si][si+1]) is in R.3. The labeling L0 is de�ned as L0(w[si]) := L(si) \ cl(A).The structure T is obviously a loop tree. S0 is �nite since cl(A) is �nite,L0 satis�es (PC0-3) and (LC), and by the construction there is a path � =w0; w1; : : : through T (corresponding to s0s1 : : :) with w0 = [s0], A 2 L0(w0)and open(�; L0) = ;. Therefore T is a Hintikka-tree for A.4 The Calculus PLTLTWe present a Tableau-like calculus for PLTL that is complete and correct withrespect to the PLTL semantics. It operates on so-called prestates which containthe full information needed to decide satis�ability of formulae in negation normalform.In the following we use � and � for �nite sets of formulae in negation normalform, and � for sets of literals (and possibly constants). We also write A;� forthe set fAg [� , and �;� for the union � [�, and X� is used for the setfXA j A 2 �g.For lists we have the following conventions: We use � for the concatenationof lists and [] for the empty list. If M is a list, then we write len(M) for thelength ofM andM [i] for the ith element ofM (1 � i � len(M)). IfM is a list oftuples, then we write M [i]j to denote the projection to the jth element of M [i].De�nition 20. A prestate is a triple (�;Save ;Res), also written as � jSavejRes where:1. � is a �nite set of formulae in negation normal form.2. Save is a structure to store history information. It is a pair (Ev ;Br), alsowritten as Ev ; Br, where Ev is a set of formulae in negation normal formrepresenting the currently satis�ed eventualities, Br is a list of pairs (� 0;Ev 0)representing the current branch, and � 0 and Ev 0 correspond to the � and Evparts of previous prestates.3. Res is a structure to store partial result information. It is a pair (n; uev),where n is a natural number indicating the `earliest' prestate reachable bythe current one, and uev is a set of eventuality formulae in negation normalform. It represents the unful�lled eventualities of the current branch.A prestate is said to be a state if � is of the form �;X�, that is, if � consistsonly of elementary formulae.According to the above de�nition, � jEv ; Br j (n; uev) is the extended notionfor an abstract prestate. To focus on the locally relevant parts of a prestate, weuse `: : :' for the `unimportant' parts (e.g. � j : : : j : : :). If `: : :' appears at thesame position in the numerator and the denominator(s) of a rule, then we meanthat the corresponding parts are the same.Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

De�nition 21. The Tableau calculus PLTLT is de�ned as follows:a) Terminal rules: false; � jEv ; Br j (len(Br); ffalseg) (false)P;:P; � jEv ; Br j (len(Br); ffalseg) (contr)�;X� jEv ; Br j (k; uev) (loop)where in (loop) there exists an i, 1 � i � len(Br), such that:1. �;X� = Br [i]1.2. k = i�1 and uev = fC U D j C U D 2 � and D =2 ([len(Br)j=i+1 Br [j]2[Ev)g.b) �-rules: �; � j : : : j : : :�1; �2; � j : : : j : : : (�)c) �-rules: A _ B;� j : : : ; Br j (n; uev)A;� j : : : ; Br j (n1; uev1) B;� j : : : ; Br j (n2; uev2) (_)C U D;� jEv ; Br j (n; uev)D;� jEv [fDg ; Br j (n1; uev1) C;X (C U D); � jEv ; Br j (n2; uev2) (U)where in (_) and (U) :1. n = min(n1; n2).2. (m := len(Br)� 1).uev = 8>>>>>>>><>>>>>>>>:
; if uev1 = ; or uev2 = ;;ffalseg if n1 > m and n2 > m (and uev1 6= ;; uev2 6= ;);uev1 if n1 � m and n2 > m (and uev2 6= ;);or if uev2 = ffalseg;uev2 if n1 > m and n2 � m (and uev1 6= ;);or if uev1 = ffalseg;uev1 \ uev2 otherwise.d) Nexttime rule: �;X� jEv ; Br j : : :� j ; ; Br � ((�;X�);Ev) j : : : (X)In order to ensure termination, the �- and �-rules and the nexttime rule arerestricted to prestates that are not instances of a terminal rule. We call � in(�), A_B in (_), and C U D in (U) the decomposed formula of the respectiverule.Remark 22.{ The main di�erence to a modal calculus is the result part which is synthesizedbottom-up (from children to parents). It is needed because a single branchneed not be `open' or `closed'; it may be `open' in connection with someother branches.{ (loop): The sequence Br [i]1; : : : ;Br [len(Br)]1; (�;X�) corresponds to theloop of a branch. uev is de�ned to be the set open inf(:; :) of eventualitiesthat are not satis�ed on this loop branch (see proposition 17).Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

{ (�-rules): A �-rule corresponds to a branching of the tree. n is set to theminimum depth of the states to which branches of the two subtrees can loopback. uev is the minimal set of eventualities that are left open by any in�nitepath visiting only loops of the subtree below this � node.{ (Nexttime rule): The current state and the eventualities that are satis�ed bythe current state are appended to the branch Br .{ Note that the sets � , �, and � may be empty. For instance, if � is empty inthe numerator of (X), we obtain the following fragment of a tableau whichends in a basically empty instance of (loop). On the right the correspondingmodel is shown. � jEv ; Br j : : :; j ; ; Br � (�;Ev) j : : : (X); j ; ; Br � (�;Ev) � (;; ;) j (len(Br) + 1; ;) (loop) (X) ����-� ������?De�nition 23. A tableau for a prestate ps is a tree of prestates with root psand where the sons of a node (prestate) correspond to an application of a PLTLTrule to the node. We say that the tableau is expanded, if each leaf node is aninstance of a terminal rule.Let A be a formula and n the number of subformulae of A. Then it is clearthat any tableau for A j : : : j : : : is �nite. There are 2O(n) many subsets of cl(A)[cl(A). Each � of a prestate � j : : : j : : : is such a subset, and since the terminalrules must be applied whenever they can be applied, the number of di�erentprestates on each branch is �nite. Therefore, the total number of prestates inany tableau for A j : : : j : : : is �nite and any expansion will eventually terminate.Proposition 24.a) For every formula A there is an n 2 N and a set uev � Fml such that thereis an expanded tableau for A j ; ; Br j (n; uev).b) If in a tableau the set uev of a prestate is empty , then the set uev of the rootof the tableau is also empty.Example 25. We show the essential branch of a tableau for the satis�able prop-erty GF p^GF:p (recall that F p can be written as trueU p). The �- and �-rulesare applied until we reach a state with only elementary formulae. The currentlydecomposed formula is in parentheses. It is left to the reader to �ll in the missingSave and Res parts. (GF p ^ GF:p) j : : : j : : :(GF p);GF:p j : : : j : : :F p;XGF p; (GF:p) j : : : j : : :(F p);XGF p;F:p;XGF:p j : : : j : : :p;XGF p; (F:p);XGF:p j fpg ; : j : : :p;:p; : : : p;XGF p;XF:p;XGF:p j fpg ; : j : : :(GF p);F:p;GF:p j : : : j : : :F p;XGF p;F:p; (GF:p) j : : : j : : : (X) Sub1
Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

(F p);XGF p;F:p;XGF:p j : : : j : : :Sub2 XF p;XGF p; (F:p);XGF:p j : : : j : : :XF p;XGF p;:p;XGF:p j f:pg ; : j : : :F p; (GF p);GF:p j : : : j : : :F p;XGF p; (GF:p) j : : : j : : :(F p);XGF p;F:p;XGF:p j : : : j : : :p;XGF p; (F:p);XGF:p j fpg ; : j : : :p;:p; : : : p;XGF p;XF:p;XGF:p j : : : j (0; ;) (loop) Sub4(X) Sub3
The highlighted prestates above the (X)'s are the states of the tableau; the�rst one (at `state' depth 0) satis�es p and the second one satis�es :p. Theessential branch ends in an instance of (loop), where in the Res part the 0 refersto the depth 0 of the �rst state and the ; indicates that all eventualities (theonly candidate to check stems from XF:p) are satis�ed on this loop. Sub1:::4stand for other branches in the expanded tableau.The corresponding model is very simple: ����-p ����:p��?De�nition 26. The loop tree T = hW;S;L;Ri for an expanded tableau isde�ned in the following way:1. S is the set of all states (not prestates!) of the tableau and the set of leafnodes which are not instances of (loop).2. W is the set of paths (in terms of S) to the elements of S in the tableau.3. R:(a) (w;ws) is in R for all w;ws 2W .(b) (ws;ws) is in R if s is an instance of (false) or (contr). That is, we drawa loop to the last state itself if it is inconsistent.(c) If w 2 W is a path to a state which is the last state before an instance of(loop) in the tableau, then w must be of the form w0sw00 where s is thereferenced loop state. Then (w;w0s) is in R.4. L(ws) is the set � if s = � j : : : j : : : plus all the formulae that are decom-posed in the tableau between w and ws.We could also (formally) omit the classical contradictions from the loop tree(and the states which have only contradictory prestates below), and we wouldobtain a pre-Hintikka-tree. However, the relevant information is always in theresult part.Lemma 27. Let T = hW;S;L;Ri be the loop tree for an expanded tableau. Thenwe have for all ws 2 W , s = �;X� jEv ; Br j (n; uev):a) L ful�lls (PC0-3) and (LC) for ws if s is not an instance of (false) or (contr).b) depthT (ws) = len(Br).c) n = min(fdepthT (v) j v is a loop state of a branch � = : : : ws : : :g.d) The subtree of T at ws is isolated i� n � len(Br):Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

Proof. Follows from the de�nition of the calculus and De�nition 26. The part d)follows from b) and c) and Lemma 15.Note that the �-rule applications in the tableau are between two states. Thelower state is at depth len(Br). The conditions in the �-rules, however, controlthe result synthesis for the upper state which is at depth len(Br)� 1.Theorem 28 (Correctness). If A is a formula in negation normal form andif there exists an n such that there is a expanded tableau for A j ; ; [] j (n; ;), thenA is satis�able.Proof. (Sketch) We basically show that for any prestate ps = : : : j : : : j (n; uev)in the tableau with uev 6= ffalseg there is a pre-Hintikka structure Hps = hS;Lifor A with open(S;L) = uev . We represent the pre-Hintikka structure as a looptree with one single branch � starting with the path that leads to ps . We proceedbottom-up, that is, by induction on the depth of the tableau subtree with root ps .The main case involves a linearization of two loops into a single one as depictedin Fig. 2 (the capital letters denote sections of the path). Lemma 18 ensures thatthe set of open eventualities is the intersection of the corresponding sets of thetwo loops, according to the condition in the �-rules.
ps

A

B

C D

B

C

s1

s2
A

B

s1

s2

s2

(ps)

(ps)

DFig. 2. Loop linearization.Lemma 29. Let T = hW;S0; L0; Ri be the loop tree for an expanded tableau forA j ; [] j (nA; uevA). Then we have: If there is a in�nite path � through T withopen(�; L) = ;, and if L ful�lls (PC0-3) and (LC) on �, then uevA must be ;.Proof. (Sketch) We use Lemma 18, 15 and Lemma 27 b),c) and proceed byinduction on the depth of the subtree visited by �.Theorem 30 (Completeness). If a formula A in negation normal form issatis�able, then there exists a tableau for A j ; ; [] j (n; ;) for some n 2 N.Proof. If A is satis�able, there exists a complete Hintikka structure H = hS;Lifor A by Theorem 10. Let S be the sequence s0s1 : : : , and let T = hW;S0; L0; Ribe the loop tree for an expanded tableau for A j ; [] j (n; uev). We de�ne induc-tively a map ' : S ! W which provides us with a path � = '(s0)'(s1) : : :through T with the following properties:Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

(a) A 2 L0('(si)) if i = 0.(b) L0('(si)) � L(si).(c) If C U D 2 L0('(si)) and D 2 L(si), then D 2 L0('(si)).i = 0: First, A is in L0(w) for every root w 2 W since the loop tree stemsfrom a tableau for A j : : : j : : :, and A is also in L(s0), since H is a Hintikkastructure for A. Second, there must exist a root w0 2 W with L0(w0) � L(s0)since in the tableau there is a root state for each possible decomposition of A,and L(s0) must contain at least one set of decomposed formulae (L(s0) containsA and L ful�lls (PC2) and (PC3)). Third, we can choose a w0 so that for eachC U D 2 L0(w0) with D 2 L(s0) the decomposition fC U D;Dg rather thanfC U D;X (C U D)g is a subset of L0(w0). Set '(s0) = w0.i ! i + 1: Assume that we have de�ned the map up to '(si). We de�nethe sets next := fC j XC 2 L(si)g and next 0 := fC j XC 2 L0('(si))g. Weknow that next � L(si+1) since L ful�lls (LC), and that for every successor wof '(si) next 0 � L0(w) (see the (X) rule of PLTLT). Moreover, because of (b),we have next 0 � next . Again, since in the tableau there is a successor for eachpossible decomposition of next 0, and since L(si+1) must contain at least onedecomposition, there must exist a wi+1 2 W so that (b) and (c) are ful�lled ifwe set '(si+1) to wi+1.Obviously, L0 ful�lls (PC0-3) and (LC) on � = '(s0)'(s1) : : : . Suppose nowthat there exists an eventuality C U D 2 open(�; L0). Then there exists a state'(si) so that C U D 2 L0('(sj)) and D =2 L0('(sj)) for all j � i. However,because of (b) and (c) this would mean that C U D is in open(S;L) as well,which is a contradiction. Applying the previous lemma 29 concludes the proofof the theorem.5 ConclusionWe have presented a new one-pass tableau calculus for PLTL which works, asmost modal calculi, on trees rather than graphs . The representation is minimalbut complete, that is, it can be used directly as the basis for a decision procedurewithout a second phase. It has inherent advantages compared to previous ap-proaches: 1. Only one branch needs to be considered at any one time. This makesit into a natural candidate for parallelization. 2. A simple linearization of loopsallows to actually extract linear models in a canonical way. Having the detailsof the eventuality checking incorporated in a formal way, the calculus is also agood starting point for theoretical investigations, for instance the veri�cation ofpruning techniques. These are certainly simpler to check when the underlyingstructure is a tree. A decision procedure based on PLTLT has been implementedand tested and will be publicly available as a part of the Logics Workbench [10]version 1.1.Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

References1. M. Browne, E. Clarke, D. Dill, and B. Mishra. Automatic veri�cation of sequentialcircuits using temporal logic. IEEE Transactions on Computers, 35:1035{1044,December 1986.2. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-e�cient al-gorithms for the veri�cation of temporal properties. In Formal Methods in SystemDesign, volume 1, pages 275{288, 1992.3. M. D'Agostino, D. Gabbay, R. H�ahnle, and J. Posegga, editors. Handbook ofTableau Methods, chapter Tableau Methods for Modal and Temporal Logics.Kluwer, to appear. (currently available as technical report TR-ARP-15-95, Aus-tralian National University (ANU)).4. E. Emerson. Temporal and modal logic. In J. v. Leeuwen, editor, Handbook ofTheoretical Computer Science. Volume B, pages 995{1072. Elsevier, 1990.5. M.J. Fischer and R.L. Ladner. Propositional dynamic logic of regular programs.Journal of Computer and System Sciences, 18:194{211, 1979.6. M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht,1983.7. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-
y automatic veri�ca-tion of linear temporal logic. In P. Dembinski and M. Sredniawa, editors, ProtocolSpeci�cation Testing and Veri�cation, volume XV, pages 3{18. Chapman & Hall,1996.8. R. Gor�e. Cut-free Sequent and Tableau Systems for Propositional Normal ModalLogic. PhD thesis, Computer Laboratory, University of Cambridge, England, 1992.9. G. Gough. Decision procedures for temporal logic. Technical Report UMCS-89-10-1, Department of Computer Science, University of Manchester, 1989.10. A. Heuerding, G. J�ager, S. Schwendimann, and M. Seyfried. Propositional logicson the computer. In P. Baumgartner, R. H�ahnle, and J. Posegga, editors, TheoremProving with Analytic Tableaux and Related Methods, LNCS 918, pages 310{323,1995.11. A. Heuerding, M. Seyfried, and H. Zimmermann. E�cient loop-check for backwardproof search in some non-classical propositional logics. In P. Miglioli, U. Moscato,D. Mundici, and M. Ornaghi, editors, Tableaux 96, LNCS 1071, pages 210{225,1996.12. Y. Kesten, Z. Manna, H. McGuire, and A.Pnueli. A decision algorithm for fullpropositional temporal logic. In Computer Aided Veri�cation, LNCS 697, pages4{35. Springer, 1993.13. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.Springer Verlag, 1991.14. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.15. A. Sistla and E. Clarke. The complexity of propositional linear temporal logic.Journal of the Association for Computing Machinery, 32(3):733{749, 1985.16. R. Tarjan. Depth �rst search and linear graph algorithms. SIAM Journal Com-puting, 1(2):146{160, 1972.17. P. Wolper. The tableau method for temporal logic: an overview. Logique et Analyse,110-111:119{136, 1985.
Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proceedings, TABLEAUX'98, Oisterwijk, TheNetherlands, LNAI 1397, pages 277 { 291, Springer 1998

