Verification of Hybrid Systems Based on
Counterexample-Guided Abstraction Refinement

Edmund Clarké, Ansgar Fehnkér Zhi Har?, Bruce KrogR, Olaf Stursber$?, and
Michael Theobald

1 Computer Science, Carnegie Mellon University, Pittsburgh, PA
2 Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
3 Process Control Lab, University of Dortmund, Germany

Abstract. Hybrid dynamic systems include both continuous and discrete state
variables. Properties of hybrid systems, which have an infinite state space, can
often be verified using ordinary model checking together with a finite-state ab-
straction. Model checking can be inconclusive, however, in which case the ab-
straction must be refined. This paper presents a new procedure to perform this
refinement operation for abstractions of infinite-state systems, in particular of
hybrid systems. Following an approach originally developed for finite-state sys-
tems [1, 2], the refinement procedure constructs a new abstraction that eliminates
a counterexample generated by the model checker. For hybrid systems, analy-
sis of the counterexample requires the computation of sets of reachable states in
the continuous state space. We show how such reachability computations with
varying degrees of complexity can be used to refine hybrid system abstractions
efficiently. A detailed example illustrates our counterexample-guided refinement
procedure. Experimental results for a prototype implementation of the procedure
indicate its advantages over existing methods.

1 Introduction

Hybrid systems are formal models that include both continuous and discrete state vari-
ables. With the increasing use of hybrid systems to design embedded controllers for
complex systems such as manufacturing processes, automobiles, and transportation net-
works, there is an urgent need for more powerful analysis tools, especially for safety
critical applications. Tools developed so far for automated analysis of hybrid systems
are restricted to low-dimensional continuous dynamics [3]. The reason for this limita-
tion is the difficulty of representing and computing sets of reachable states for contin-
uous dynamic systems. Recent publications have proposed two general approaches to
deal with the complexity of hybrid system analysis, namely, modular analysis (e.g., [4,
5]) and abstraction (e.g., [6—8]). This paper focuses on the latter approach.

Abstraction maps a given model into a less complex model that retains the behaviors
of interest [6]. In the context of hybrid system verification, abstraction transforms the
inherently infinite state system into a finite-state model [7, 8]. Existing tools often do
not consider the property itself when building an abstract model. Rather, an abstract
representation is constructed for the entire hybrid system using a degree of detail which
seems to be appropriate. If the abstraction is not appropriate to analyze the property, the
whole abstraction process is started again, or the abstract model is globally refined [9].

As an alternative, we suggest a procedure that (a) starts from a coarse abstract model
and a safety property, (b) identifies parts of the hybrid system which potentially vio-
late the property, and (c) iteratively refines the abstract model until verification reveals

whether or not the property in question is satisfied. A framework that follows this gen-
eral scheme of abstraction, refinement, and analysisusterexample-guided abstrac-

tion refinement (CEGAR]Y, 10, 2]: For a given system the initial abstraction leads to

a conservative model that is guaranteed to include all behaviors of the original system.
Model checking is then applied to the abstract model. If the property is violated, the
model checker producescaunterexamplas anexecution pattior the abstract model

for which the property is not true. If the counterexample corresponds to a behavior
of the original system, then the property does not hold for the original system. Other-
wise, the information provided by the counterexample is then usedit®@the abstract
model, i.e., some detail is added to the abstract model in order to obtain a more ac-
curate, yet conservative, representation of the original model. In particular, the refined
model is constructed so that it is guaranteed to excludeplieouscounterexample.

The procedure of alternating between model checking and refinement is continued until
the property is confirmed or refuted.

This procedure has recently been applied successfully to finite discrete systems in
a variety of domains, particularly for the verification of digital circuits [1, 10]. Earlier
work that is based on the use of counterexamples includes the localization reduction in
the context of concurrent systems [2], and recent work has applied the technique to the
verification of C-programs [11, 12].

This paper makes two important contributions. First, we extend counterexample-
guided model refinement fofinite-statesystems. Second, we show how our new ap-
proach can be applied to hybrid systems, which include both continuous and discrete
state variables and thus have an infinite-state space. We provide effective means of cop-
ing with the difficulties of computing reachable sets for infinite state systems. In par-
ticular, we employ reachable set computations with varying degrees of complexity to
refine hybrid system abstractions efficiently. This flexibility cannot easily be achieved
with other verification tools for hybrid systems. We note that using counterexamples to
guide generation of discrete abstractions is being pursued independently by Alur et al.
at University of Pennsylvania.

The paper is structured as follows. Section 2 presents preliminaries on abstraction
and counterexample-guided refinement. In Section 3 we describe a new verification ap-
proach that refines abstract models of infinite state systems based on counterexamples.
We introduce hybrid systems in Section 4, and apply our new verification approach to
hybrid systems in Section 5. Section 6 presents conclusions.

2 Preliminaries

We introduce the notions of abstraction and counterexample-guided refinementin a gen-
eral setting for infinite state systems. The type of model we are working with throughout
the section is a transition system defined as follows:

Definition 1 Transition SystemA transition systens a 3-tuplel’S = (5, Sy, F) with
a (possibly infinite) state sef, an initial setS, C S, and a set of transitiong C
S x S. o

Given two transition systemd andC, A is said to be aabstract modedf C if the
following relation can be established.

Definition 2 Abstraction A transition systemd = (5, Sy, E) with a finite set of states
S is anabstract modebf a transition syster’ = (S, S, E), denotedd = C, if there
exists arabstraction functiony : S — S such that:

— the initial set |S§’0 = {§0| dsg € Sp : 89 = Oé(So)}
—andE D {(§1,§2)| 381,52 €S : (81,52) S E,él = O[(Sl),§2 = O[(Sg)}. o

Sometimes the terrsimulationis used in the literature to describe the abstraction
relation. In contrast to the definitions of abstraction in [1, 10], Defn. 2 allows Ahat
includesspurious transitiongsi.e., the set’. may contain elements that do not corre-
spond to transitions . As a consequence the abstraction function in Defn. 2 does
not uniquely defined. Spurious transitions arise in the construction of abstractions of
hybrid systems because in most cases sets of reachable states for continuous systems
can not be represented and computed exactly.

Abstract models will be used to analyze properties of a given transition system.
Throughout the paper, we will call the given systéhthe concrete system

In order to construct a more detailed model from a given abstract model, we define
the following concept omodel refinement

Definition 3 Refinement of Abstract Mode(Siven a concrete systefii = (S, S, F)
and an abstract model = (5,5, F) such thatC < A, with abstraction function
a: S — S, amodeld’ = (5,5, E') is called arefined abstract model af' with

respect toA if two abstraction functionsy’ : S — $’ ando’ : §' — S exist, i.e.,
C=<A <A o

The property is verified for the concrete modelusing an abstract model. In this
paper we will consider the verification of safety properties, defined as follows.

Definition 4 Safety.Given a transition syste'S = (5, Sp, E), let the setB C S
specify a set obad statesuch thatS; N B = (). We say thafl'S is safe with respect
to B, denoted byl'S = AG-B iff there is no path in the transition system from an
initial state in Sy to a bad state iB. Otherwise we say’S is unsafe denoted by
TS W AG-B. o

Definition 5 CounterexamplesA path o = (sg, $1,-..,8m) Of T'S = (S, 5o, E)
with s,, € B is called acounterexamplef T'S with respect to the safety property
TS = AG-B. Given a concrete transition systeff) an abstract transition system
A, and a counterexample in C, we say that = (8¢, 51, 8o, ..., &) is thecorre-
sponding abstract counterexammlkthe abstract system, if §; = «(s;) holds for all
i € {0,...,m}. Given a counterexample of A, o is called acorresponding concrete
counterexamplé §; = a(s;) and(s;,s;+1) € E. If a counterexamplé of A has no
corresponding concrete counterexampledo# is called aspurious counterexampte

Lemma 1. Given a concrete model'’ = (5,Sy, FE), and an abstract modell =
(S, So, E) of C with an abstraction functiony, let B C S,andB = {b|3b €
B:b=ab)}. If A= AG-B, thenC = AG-B. 0

If A = AG—B can be verified, it can immediately be concluded from Lemma 1
(i.e., without applying verification to the concrete syst€ithatC = AG—B. On the
other hand, the converse of Lemma 1 with respect toANBeproperty is not possible.

If the verification ofA revealsA £ AG—B, then we cannot conclude thatis not safe
with respect taB, since the counterexample fdrmay be spurious. We call a method

that checks whether or not a counterexample is spurieatidation methodif the val-
idation method discovers that the counterexample is spurious, then the counterexample
is used to refined. We now introduce a scheme foounterexample-guided refinement
of abstractiongo verify safety properties for a given concrete model. The basic princi-
ple is to repeat the following sequence of steps until the property is verified or refuted
[1]. The starting point is a concrete modéland an abstract model (we propose in
Sec. 5.1 one specific way to obtain an initial abstract model for hybrid systems). For
a setB C S of bad states for C, we assume for simplicity thek) < B implies
s € B. Thefirst step is then to analyze = AG — B by model checking. If this property
holds it can immediately be concluded from Lemma 1 that safe, too. Otherwise
a counterexample is obtained, and it must be validated whether it has a corresponding
counterexample id'. If there is a corresponding counterexampl&inthen the safety
property does not hold far'. In the other case, i.e. the counterexample is spurious, the
counterexample is used to refine the madelThat is, a new and more detailed model
A’ with C < A’ < Ais determined, which excludes the spurious counterexample.

The procedure of model checking, validation of the counterexample, and refinement
of the abstract model is repeated until the safety property is proved or refutedTowe
pseudo-code in Fig. 1 summarizes this procedure:

ALGORITHM: Counterexample-Guided Abstraction RefinememG&R
INPUT: Concrete model’ and a set of bad statés
OUTPUT: B is (or is not) reachable

Generate initial abstract moddl (bad states are callel?)
Generate counterexampteby model checkingd wrt. B
WHILE & existsDO
Validation of&
IF & validatedTHENterminate with "B reachable”
ELSE
Generate refined moddl’ using counterexample
A=A
Generate next by model checkingd wrt. B
ENDIF
ENDDO
Terminate with "B not reachable”
Fig. 1. CEGAR: Scheme for verifying/falsifying” = AG—B based on counterexample-guided
abstraction refinement

The crucial steps in the EIAR procedure arevalidation refinementand model
checking With respect to model checking, standard algorithmsAG6t-properties can
be used [13].

The important step in validating a counterexample is the computation of successors
of states. We define an operataicc that determines the successor states from a given
setS C S by suce(S) = {s € §|35 € S : (§,5) € E}. This set may not be exactly
computable for a given concrete mode) i.e. only over—approximationm(ﬁ) D
succ(S) may be available. We first assume thatc(S) is computable.

A counterexamplé = (3,...,$,) of A is then validated as follows: Lef;, =
a(8), k € {0,...,m} denote the set of concrete states corresponding to an ele-
ment of 5. The reachable parts of these sets are recursively definégb§* := S,

Sreach = guce(Sreac) N Sy, k € {1,...,m}. The counterexample is spurious iff
Sreach — () applies for at least onke, and we sayhe counterexample is refute@ther-
wise, the counterexamplevslidated andB is reachable.

If the counterexample is refuted wisy**<" =), the modelA is refined to a new
finite abstract model’ = (S,), ') (cf. Defn. 3). The refined model should take
into account that there are no concrete transitions from staté§°if" to states in
Si. We therefore require that the sBt of A’ doesnot contain transitions in the set
{(a/(s1),0/(s2)) |3 s1 € Speah sy € Si}. Thus, succeeding refined models will
exclude previously explored counterexamples. A method for the refinement of abstract
models for infinite-state systems will be presented in the next section.

3 Refinement of Abstract Models for Infinite State Systems

This section presents a specific method for refining an abstract mbéml an infi-

nite state system. The main idea is to directly use the information obtained from the
validation procedure to refine some abstract states: Assume that the abstract model in-
cludes a transition betwee and s, while the validation of the counterexample has
revealed that only a subset of concrete state$in= a~!(35) is reachable from con-

crete states ir5; := a~1(5;). In this case we refingl by splitting 3, into two new

states. The first one, denoted &“", represents the reachable subsetgfgiven by

Sreach .= guce(S1) N Sa. The second one, denoted BY"”, represents the comple-
ment of the reachable part, given B§*""? := Sy \ Sech. In addition, the abstraction
function that maps concrete states to abstract ones has to be refined, too.

Definition 6 Refinement by State SplittinGiven a concrete mode&l' = (S, Sy, E)
and an abstract model = (S, S,) with an abstraction functioa : S — S.
Let (51,82) € F be a transition of a counterexampie Then, we defing,,;;: as
a refinement function that map$, «, and (51, 82) € F onto the refined abstract
model 4’ = (5,5}, E') and the refined abstraction functied : S — 9, i.e.,
(A", a)) = psprit(A, @, (51, 52)), defined as follows:

_ Sr/ — (Sr \ §2) U {ggeached7 §§0mp}
a(s) if s ¢Sy
_ O/(S) _ §£each if s e Sgeach
§(230m,p if s e SSOMP
— S)={8 e 5" (5) € So}
— B = {(8,8) € 8" x 835,58 € § : (51,82) € ENS = " (8) N5y =
a’(85)}\ (81,8,7"7)

wherea” : &' — S mapss’ onto itself if & ¢ {seached 35°"PY and ons,
otherwise. o

Lemma?2. Let A = (5,5, E) be an abstract model af' = (S, So, E) with the
abstraction functionr : S — S. For a given transition(s;, $2) € F, assume that
Syeach £ () holds. Then(A4’,a') := pspit(A, o, (31, §2)) satisfiesd = A’ = C. O

As a next step, we consider the case where the set of successtrand the set
S, are disjoint. In this case, we can simply omit the corresponding abstract transition.

Definition 7 Refinement by Eliminating a Transitiofihe functionp,,,¢. is a refine-
ment that maps an abstract modek= (S, Sy,), an abstraction function : S — §
and a transitior{s;, $2) € Fonto A’ = (S, Sy, ') with E' = E'\ (81, §2). o

Lemma3. Let A = (5,5,) be an abstract model af' = (S, Sy, E) with the

abstraction functiom : S — S. For a given transition(sy, §2) € E, assume that
Sreach — () holds. ThenA’ := ppurge (4, a, (31, §2)) satisfiesd = A’ = C. O

Based on these results, we now present a more specific formulation ofEtherC
algorithm in Fig. 2, called NFINITE-STATE-CEGAR, which uses the functiongs,,;;;
andppyrqe for refinement.

ALGORITHM: INFINITE-STATE-CEGAR
INPUT: Concrete model’ and a set of bad statés
OUTPUT: B is (or is not) reachable

Generate initial abstract moddland abstraction function
B :=«a(B)
Generate counterexample= (3o, . .., $m) by model checking oA wrt. B
Sgeach = Cz_l(§0)
WHILE 6 existsDO
/l validation of counterexample
k:=0
WHILE Se*<" £ ¢ ANDE < m DO
k:=k+1
Sreach .= suce(Spe%) Na™t (5)
ENDDO
/I if counterexample is validated, then terminate, else refine
IF Speech £ ¢ THENterminate with "B reachable”
ELSE
FORI =1,...,k—1
/I split abstract stat&; into two: one that corresponds
I1'to S7e*°" and one that correspondsdo* (4;) \ Syee<™
IF Sy 2 ™' (&)
THEN(A, a) ‘= Psplit (A, «, <§l—1, §l)
ENDIF
ENDFOR
/I remove spurious transition betwegn_; ands;,
A= ppurge(A, a, 81, §k) R
Generates by model checking oA wrt. B
ENDIF
ENDDO
Terminate with "B not reachable”

Fig. 2. INFINITE-STATE-CEGAR.

Correctness of the algorithm is implied by the following two lemrh&ote that
termination of the algorithm cannot be guaranteed as the number of states in the con-
crete model may be infinite, and a finite abstract model to verify (or disprove) the given
property may not exist.

! The proofs of all lemmas in the paper can be found in the Appendix.

Lemma 4. If the algorithm terminates with "B reachable”, thefi (£ AG—B. 0

Lemma 5. If the algorithm terminates with "B not reachable”, thet = AG-B. O

The proposed procedure of validating counterexamples and refining abstract mod-
els is based on the computation of successor states. Alternatively, one could formulate
a similar algorithm that uses sets of predecessors, or even a combination of both as
presented in [1] and [10].

The INFINITE-STATE-CEGAR algorithm in Fig. 2 is based on the assumption that
sets of successor states are exactly computable. Lemma 5 holds, however, also if suc-
cessor states are not exactly computable, and insteacbwahapproximations of the
set of successor states can be computed. If only under-approximations of successor sets
can be computed, Lemma 5 will not hold, but Lemma 4 will. For the class of hybrid
systems considered in the following section only over-approximations of successor sets
are computable.

4 Hybrid Systems

Hybrid systems are a class of infinite state systems that include both continuous and
discrete state variables. This section presents the syntax and semantics of hybrid au-
tomata, which are used to model hybrid systems. We will illustrate these definitions
with an example that models a simple car controller. The same example will be used in
later sections to illustrate our new approach to the verification of hybrid systems.

4.1 Definition of Hybrid Automata

Definition 8 Syntax of the Hybrid AutomatoA A. A hybrid automatonis a tuple
HA=(Z,z,X,inv, Xy, T,g,7, f) where

— Z is afinite set ofocationswith aninitial location zg € Z.

— X C R™is the continuous state space.

— inv : Z — 2% assigns to each locatione Z an invariant of the forninv(z) C X.

— Xo C X is the set of initial continuous states. The set of initial hybrid statétfof
is thus given by the set of statés; } x Xj.

— T C Z x Z is the set ofliscrete transitiondetween locations.

— g: T — 2% assigns guardsetg((z1, 20)) € X tot = (21, 22) € T.

— j: T x X — 2% assigns to each palty, 22) € T andz € g((z1, 22)) ajumpset
J((z1,22),z) C X.

- f:Z — (X — R") assigns to each location € Z a continuous vector field
f(2). We use the notatioyfi. for f(z). The evolution of the continuous behavior in
locationz is governed by the differential equatigit) = f.(x(t)). We assume that
the differential equation has a unique solution for each initial vglite € X,. ©

The semantics off A is defined by means of a trace transition system. Each (state

in the trace transition system corresponds to a continuousssteitdiin locationz. Two
such states(z;,z1) and(z2, z2), are connected by a transition in the trace transition
system if and only if statéz,, x2) can be reached from state,, z1) by a continuous
evolution within locationz; followed by a discrete transition to locatiap.

Definition 9 Semantics of the Hybrid AutomatdéhA. The semantics of a Hybrid au-
tomatonH A is atransition systenT'T'S = (.5, Sy, E) with:

— the set of alhybrid stateqz, z) of HA,

SzU U (z,x) 1)

2€Z z€inv(z)

— the set ofinitial hybrid statesSy; = {20} x X,
— transitions(s1, s2) € Ewith sy = (21, 21), s2 = (22, x2), iff there existy z1, z2) €
T and a trajectory : [0, 7] — X for somer € R>? such that:
21 = x(0), x(7) € g((z1,22)),
z2 € j((21,22), X(7)),
X(t) = [(x(1)) for t € [0, 7],
x(t) € inv(z) fort € [0, 7],
T2 € inv(z2).

e o o o o

A patho = {s, s1, s2,...} of TTS is called atrace of H A, and we refer td'T'S as
thetrace transition systeraf H A. o

Definition 10 Safety of a Hybrid Automatofor a hybrid automatot/ A with a se-
mantics as in Defn. 9, let, € Z \ {so} denote arunsafelocation. H A is said to be
safewith respect taz, denoted byI'T'S |= AG -z, iff for all traceso applies:fis € o
with s = (zp,) for somez € X. We writeTT'S (£ AG—z;, otherwise. o

The extension of the analysis task to multiple initial locations and/or multiple unsafe
locations is straightforward but is omitted here for simplicity.

4.2 Example

As a motivating example, we use a simple controller that steers a car along a straight
road. The car is assumed to drive at a constant spee@, and its motion is modeled
by the horizontal position: (x = 0 corresponds to the middle of the road) from the
middle of the road and the heading angl€~y = 0 corresponds to moving in the
vertical direction). Fig. 3 shows a scenario in which the car drives initially on the road.
The controller is able to detect whether the car is on the left or right border (ke-1,
x > 1) — whenever the car enters the left border, the controller forces it to turn right
until the car is back on the road again. Then a left turn is initiated, and continued until
the car is again going straight ahead in the direction of the road, i.e. when the heading
is aligned with the roady(= 0). A similar strategy is employed when the car enters the
right border.

Fig. 4 shows a hybrid automaton model of the controlled behavior for the car. Be-
sides the positior and the heading angtg the description includes an internal timer
¢, that the controller uses to time the steering manoeuvres. The differential equations for
these three continous variables depend on the location: weihave r - sin(v) in all
locations except afi canal . The derivative ofy varies when a border is reached. On the
border the motion of the car describes an arc with the angular velpeity-w = —7 /4
(or w = m/4 respectively), i. e., the arc is part of a circle with radiys:. The timer
¢ measures the time period which the car spends on a borders. In the correction modes
the timer decreases with double rate, i.e., the correction takes half the time as the car
was on the border before. Since the signya$ reversed when the car moves back on
the road, the angle has the value zero when the correction mode isdefi) i.e., the
car moves then along the road. During this correction it might, however, happen that the

TYNYO
avod
TYNYO
avod
TYNYOD
avod

ii) i)

Fig. 3.i) Initially, the car drives on the road with heading angléi) If the controller detects that
the car left the road, it corrects the heading by turning right to avoid the d@né&ince the car is
back on the road, a left turn is initiated until the car moves straight again.

other border is reached, which means that the controller then switches to the strategy of
the corresponding location.

The three continuous variables are initializedtb < x < 1 (the car is on the road),
—m/4 <~ < 7/4,andc = 0. It has to be verified for this set of initial states whether
the given control strategy guarantees that the unsafe locatieanal (z;) is never
reached. The following sections present how this task can be solved by abstraction-
based and counterexample-guided verification.

correct _left correct _right

@& = —rsin(y) straight _ahead @& = —rsin(y)
& = —rsin(y)

4 =0

left _border right _border

in _canal
=0
=0

¢=0

& = —rsin(y)

& = —rsin(y)

§=w

Y€ [-m/4, 7/4]
c=0

Fig. 4. Hybrid automaton that models the car steering example. Locatiocanal has to be
avoided. For each location, the continuous dynamics of the three variablendc is described

by differential equations, and invariants are specified as inequalities. Guards and jumps are as-
signed to the transitions, e.g., a transition from locatiorahead toleft _boarder is possible

if the value ofz is 1, and then the value ofis set to zero.

5 Refinement of Abstractions for Hybrid Systems

This section applies the general concepts of Section 3 to the particular class of infinite
state systems of hybrid systems.

We present specific solutions for the two crucial steps, the validation of counterex-
amples and the refinement of abstract models. The key to the validation step is the
computation of successor states for a given set of states in the trace transition system.
Starting from the initial set, the validation procedure computes the successors along the
counterexample until either the unsafe locatiQp is reached or a transition is deter-

mined to be spurious. The computation of sets of successors states is usually the most
expensive step in hybrid system verification. Moreover, successor sets can be com-
puted and representesactlyonly for certain sub-classes of hybrid systems [15, 16].
However, several approaches to over-approximate successor sets have been published,
as e. g., successor set approximations by orthogonal polyhedra [17], general polyhe-
dra [18], projections to lower dimensional polyhedra [19], or ellipsoids [20]. Most of
these approaches aim at providing an efficient way to obtain conservative but tight ap-
proximations to sets of reachable states for hybrid systems.

The verification framework presented here can include different techniques to over-
approximate the set of successors. The idea of using different methods is motivated
by the trade-off between the accuracy and the computational complexity of different
methods. If, e.g., a faster but maybe less accurate technique is sufficient to refute a
counterexample, there is no need to use a more computationally expensive method.

In the following, we first describe how an initial abstraction for a hybrid automaton
can be obtained, and then focus on the validation of counterexamples and the refinement
based on the use of different methods for computing successor states.

5.1 Abstraction of Hybrid Systems

For the first step of theNFINITE-STATE-CEGAR algorithm, the construction of an
initial abstraction, we introduce one abstract state for each locatiéh®dfThis means
that two hybrid state$z;,«;) and(z;,x;) of TT'S are mapped to the same abstract
state if and only if; = z;. This rule applies for all but the initial location, for which we
introduce one abstract staigto represent all initial hybrid states @7".S, and another
one ;) to represent the remaining hybrid states corresponding to the locgtion

Definition 11 Initial Abstraction of Hybrid Systems&iven a hybrid automatoitf A
with Z = {zp, 21, ..., zn_ }, €t .S denote the set of hybrid states as defined in (1). For

i €{0,1,...,n,}, we define the abstraction function: S — S by:

§0ifi:0/\$€X0
alz,z) =1} §ifi=0Az ¢ X 2)
§; otherwise

and the initial abstract model = (S, S, E) is defined by { € {0,1,...,n},j €
{0,1,...,n.}):

— 5 = {8),50,31,- -, 80}
— So = {50}
= E=105:,8))I(21, ;) € T} U{(50, 85l (20, ;) € T} U{(54, 80)l(2i, 20) € T} 0

The initial abstract model represents the discrete structure of the hybrid system
without regarding the continuous dynamics and guards. Given this definition, it has to
be shown thatd is indeed an abstract model of the underlying trace transition system,
i.e., that it fulfills Defn. 2:

Lemma 6. For H A with trace transition systeiT'S = (S, S, E), letA = (S, Sy, E)
denote the initial abstract model f@r7T'S. Then,A = TT'S.

10

Example (cont.)Fig. 5 depicts the initial ab-

stract model of the hybrid system in Fig. 4. Itis @
a copy of the discrete part of the hybrid system, @ @

except that the initial location is divided into

two parts: sy represents the states in location A
go.ahead With z € [—1,1], v € [—n/4,7/4] @ @0@

andc = 0, ands; all other states igo_ahead . @

The abstract stateg, to s represent the hy-

brid states of the other locationsf(_border , Fig 5. Initial abstract model of the
right _border , correct _left , correct _right , hybrid system depicted in Fig. 4

straight _ahead andin _canal , respectively).¢
5.2 Over-approximation of the Sets of Successors

We now turn to the point of computing sets of successor states, as required in the valida-
tion and refinement steps. The goal is to use different over-approximations with differ-
ent precisions and different computational needs. We first define an over-approximation
operator of the successor relation for a tuple of sets of states. The operator conserva-
tively approximates which states in the second set (target set) are successors of states in
the first set (source set).

Definition 12 Over-approximation of successor statest H A be a hybrid automaton
with the trace transition systefiT'S = (S, Sy, F), and letA and« be defined as in
Defn. 11. For a transitios;, $2) € E of A, we callS; := a~1(3;) the set ofhybrid
source stategand S, := a~1(5;) the set ofpotential hybrid successor stateBhen,
suce : (29 x 2%) — 2% is anover-approximatiorof the hybrid successor statesS$g
iff the following holds:

— succ(Sy, S2) C Sy,
— forall s1 €51 and82 € Sy \m(ShSz), (81782) ¢ FE. o

A possible explicit realization of the operatsficc combines the following steps:
(a) By approximating the continuous evolution for all state§inthe reachable subset
of the guard sey(t) is determined, where = (z1,22) € T is the transition ofH A
that corresponds to the transitidg,, $2) € E of A. Usually, this step is the most
costly of the whole verification procedure; (b) the jump functjéh x) is applied to all
hybrid stategz1, z) which are in the reachable subsety¢f); (c) the image ofj(¢, x)
is intersected with the sék, of potential hybrid successor states.

Example (cont.)Our prototype implementation uses two different meth8dsg, oqrse
andsucc,;gne, 10 Over-approximate the set of successor states. Fig. 6 illustrates these
two methods for the discrete transition fraotrect _right toleft _border . For loca-
tion correct _right we chooseS; as subset of the plane= 1, and.S; as all states of
locationleft _border that satisfy the invariant-2 < = < —1. Fig. 6 depictsS; and
the face ofS, that coincides with the guard = —1. The transition is not spurious, if
there exists a trajectory that startsdp, and ends irby without leaving the invariant of
correct right (—1 < o < 1 Ac > 0). Fig 6 i) depicts a number of trajectories that
start in.S1, none of them reaché&%.

The first methodsuce...-sc POSES the existence question for a trajectory between
Sp and Sy as an optimization problem. The distance between a trajectorySarisl
defined as the minimum distance between all points on the trajectonpand the

11

polyhedra
c erclosing all

C s trajectories /

ariginating inS, /" ~

Fig. 6. All trajectories that originate irb; leave the invariant when = 0, and none of them
comes close t®>. Figurei) shows the result of the optimization method. Figiirehe result of
the method that enclose the trajectories by polyhedra.

global minimum over all trajectories that start.$h is strictly greater than zero, then

No successor state ¢f; exists inS,. In this casesucc..qse returns an empty set.

If the minimum distance is zero, at least one corresponding concrete path exists, and
SUcC.oarse FEtUrNs the complete st as an over-approximation of the set of successor
states. The bold trajectory in Fig. 6 i) is the optimal trajectory. Its distance, ts
greater than zero, and there is hence no trajectory ffomo .S;.

The second methasiice,;,,: computes polyhedra that encloses all trajectories that
originate inS;. This over-approximation with polyhedra is based on work presented
in [18]. The set of successor stat@&cy; 1. (51, S2) is then obtained by intersecting
the polyhedra withS,. Fig. 6 ii) shows that this intersection is empty, i.e. there are no
successors af; in Ss. ¢

5.3 Validation and Refinement

The INFINITE-STATE-CEGAR algorithm makes a clear distinction between the valida-
tion of a counterexample, and the refinement of the abstract model. For hybrid sys-
tems, we propose a slightly different approach, in which the steps of validation and
refinement are interleaved. We assume to have a set of over-approximation techniques
sucey, . . ., Succ, that can (but not necessarily need to) establish a hierarchy of coarse
to tight approximations.

The proposed algorithm for the combined validation and refinement steps of a coun-
terexample is shown in Fig. 7. Let = (3o, ..., §,,) denote a counterexample of the
abstract modeH. The algorithm consists of two nested loops. The outer loop corre-
sponds to checking each transition of the counterexample. The inner loop applies each
of the over-approximation techniques to the current transition of the counterexample,
and, depending on the result, one of the two refinement operations is executed: If an
over-approximation techniquezce,; reveals that the current transition is spurious, i.e.
Sreach — () then the transition is removed from the abstract modepy, .. When
a transition is removed, the set of behaviors4ofloes not include the current coun-
terexample anymore, and thus the combined validation and refinement of the current
counterexample is completed.

If on the other handsuee, returns a non-empty séf, _, and this setis a true subset
of the states correspondingdgp, the functiorp,;;; dividess;, into two stateé;e‘“h and
8.°™F (cf. Defn. 6). In this case however= (3o, ..., ..., 8k—1,85°%" Sk11..., 8m)

12

FORk=1,...,m
FORI =1,...,n
S}:each = ml(sge_alc}L7 Oéil(gk))
IF S;C‘each — @
A= Ppurge (A7 §k717 ék)!
RETURN/jump out of both loops
ELSEIF Speee ¢ o~ (1)

(A> 05) = Psplit (A7 @, §k717 §k7 Slgeach)
ENDIF
ENDFOR
ENDFOR

Fig. 7. Refinement and Validation Steps for Hybrid Systems.

remains a counterexample of the refined model. Thus the algorithm continues with the
next transition(k + 1) until either Sra<® = () or until the last transition of the coun-
terexample is validated.

There is some freedom in combining the steps of validation and refinement, i. e., the
scheme in Fig. 7 is just one possible implementation. One interesting alternative is to
apply the coarsest method for validation first to all transitions in the abstract counterex-
ample, or to apply state splitting{,;;:) only based on the result of the most accurate
approximation methoducc,, .

The algorithm as proposed in Fig. 7 has two possible outcomes: either it is proved
that a forbidden state cannot be reached or that there exists a counterexample that can-
not be refuted. Since the validation procedure relies on over-approximations, it can
not be guaranteed that this abstract counterexample corresponds to a concrete one.
In this case, under-approximations of sets of successor states can possibly be used
to prove that a counterexample exists: Assume that the procedure terminates with a
counterexampler = (8o, 81,...,8k,-..,Sm), NO transition of which could be re-
futed. Similar to Defn. 12, we can define ander-approximatiorof successor states
Sreach — suce(Sreech, a=1(8y)) which returns a se$reec" C a~1(3,) for which it is
ensured that it only contains true successorS,gﬁ_ffh. If this operator is applied along
the counterexample (from = 1 to k& = m) andSre*" = () applies, there exists at least
one path for the hybrid system which violates the safety property.

Example (cont) The requirement that the hybrid model in Fig. 4 should never en-
ter the locationn canal translates into the reachability question for stajeof the
abstract model in Fig. 5. The first counterexample for the initial abstract model is
o1 = (80,81,86) (see Fig. 8(i)). The validation procedure considers first the transi-
tion (5o, $1) which corresponds to the transition betwegerahead andleft _border in

the hybrid automaton. As a first stefjcceoarse (So, a~1(31)) is computed with the
result that the minimum distance over all initial states is zero. This is obvious from the
fact that those states of the initial set for whick= —1 enable the transition guard im-
mediately. Thussucc,.qse returns the entire invariant of locatiostt _border as set

Sy. The next step is to computge®“" = suee,; nt (So, a~1(81)). The algorithm then
splits3; such thats; represents the s€t°*<", and the new abstract statgrepresents

Sy \ Sheach (Fig. 8 (ii)).

Since the counterexample has not been eliminated yet, the trar(gitic) is con-
sidered next. Methogiuce,....s. finds that the minimal distance between the trajectories
that start inS5°e<*, and the guard = —2 is greater than zero. This means no trajectory
reaches the guard, and the corresponding transition is removed (Fig. 8 (iii)).

13

(vii) (viii) (ix)
Fig. 8. Counterexample guided abstraction illustrated for the car steering problem.

The procedure continues with the next counterexaraple- (3o, $2, 4, 8/, 86), as
depicted in Fig. 8 (iv). As for the first counterexample, the abstract statesplit into
the states that are reachable from the initial%gtand the remainder (Fig. 8 (v)). Then,
the procedure moves one transition ahead and splits $teds a result of applying
Succyghe. The reachable part is representedsgyin Fig. 8 (vi). Methodsucc oarse
then finds that one cannot reach any state that is representédroyn this set, and the
transition(3,4, 8)) can be deleted from (Fig. 8 (vii)).

The final counterexample iss = (3o, $1, 83, §5, 84, 81, 86). The states; was al-
ready split for the first counterexample. Similarly to the procedure for the counterex-
ampleo,, abstract staté; is split as depicted in Fig. 8 (viii). It can then be shown that
transition (33, §5) is spurious, which eliminates the last counterexample (Fig. 8 (ix)).
Consequently, the abstract stateis not reachable, and thus the same applies for the
locationin _canal of the hybrid automaton. ¢

5.4 Experimental Results

Experimental results for a prototype implementation of the procedure indicate its ad-
vantages over existing methods. We compamNITE-STATE-CEGAR with a method
based on breadth-first application of the successor opeyatoy; .. Breadth-first ap-
plication is the most prevalent method used for model checking hybrid systems. This
approach needs 175 second cputime on a Pentium 4, 1.4GHz, to compute that location
in _canal is not reachable.

INFINITE-STATE-CEGAR together with only one of the two over-approximation
methodssace,, 41:, takes about 120 seconds to verify that the system satisfies the prop-
erty. As in in the case of the breadth-first methods, 99% of the cputime is spend on
COMpUtingsucee;ghe. If | NFINITE-STATE-CEGAR employs both approximation meth-
ods, then the time is cut in about half. The algorithm takes 68 seconds for the verifica-
tion, of which 64 seconds ares used to compuier,;,,:, and 3 seconds to solve the
optimization problems ofucc oq.se -

14

6 Conclusions

This paper presents a new method for using counterexamples to refine abstractions of
hybrid systems. The principal alternative for verifying the safety properties considered
in this paper is to compute the reachable states for the hybrid system using a breadth-
first application of the successor operatoce. It is apparent that thenIFINITE-STATE-

CEGAR procedure can be faster than breadth-first reachability when the safety prop-
erty does not hold for the concrete system, since in this case it is possible that the
model checker will quickly find a true counterexample. On the other hand, if the safety
property holds, refuting one counterexample may implicitly refute others. However, the
INFINITE-STATE-CEGAR procedure may continue until all possible counterexamples
have been explored (and indeed, may not terminate), which is in some cases equivalent
to the breadth-first reachability computation. Nevertheless|NITE-STATE-CEGAR

offers the possibility of using multiple methods for computing approximations to the
successor states. Further evaluation of theiNITE-STATE-CEGAR procedure and a
comparison of NFINITE-STATE-CEGAR to breadth-first reachability as well as other
alternatives is currently underway.

A Proofs
Proof of Lemma 1.

Proof. By contradiction: IfC' (2 AG—B, then at least one path = (so, s1,...,b)
with b € B must exist forC'. From Defn. 2, it follows that the corresponding abstract
counterexamplé = (8o, 51, - . .,3) of A is a counterexample which contradicts the
premiseA = AG-B. [

Proof of Lemma 2.

Proof. (i) A = A’. It follows straightforwardly thatd is an abstract model of’ with
abstraction function” as defined in Defn. 6.

(i) A’ = C. From the above definitions of’ = (5, S, E’) and«/, it follows that A’
would be an abstract model 6F, if £’ also included the transitiofs;, 55°"). How-
ever, sinceS5ee" and S5 are disjoint, this abstract transition does not correspond

to any concrete transition and can therefore be omitted. |
Proof of Lemma 3.

Proof. (i) A = A’. The corresponding abstraction function is the identity. Sitdeas
just an additional transition it is an abstract modeHof

(i) A" = C. The abstraction function for this abstractiornisWe can then omit the
abstract transitiofs,, $2), since it does not correspond to any concrete transitidll.

Proof of Lemma 4.

Proof. If the algorithm terminates with "B reachable”, then the set of reachable states
in the concrete model is non-empty along the path of the last checked counterexam-
ple. Formally,S7each =£ (), k = 0,...,m due to the conditions in the IF statement
(Sreach £ () and the WHILE statemensS{¢*“" # () ANDk < m).

We can now show that the last checked counterexample in the algorithm is not
spurious. To do so, we first show that for edghall s, € S,Qe‘“h can be reached by
paths in the concrete model. The proof is done by inductiork.ofor £ = 0, each

15

so € Syeech can be reached by a path of length zero. For 0, for eachs;, € Speach
there exists am,_1 € S,Qe_af" such that(s;_1,s;) € E (by definition of the succ
operator). By inductions;_; is reachable by some concrete p@dhy . . ., si—1), hence

sy is reachable via the concrete patj, . . ., si).
Since for eacli, all s, € S;°e" can be reached by paths in the concrete model,
there are pathésg, s1,. .., s,) With s, € S"¢eh, Each such path corresponds to a

counterexample in the concrete model, Bg*" C B, sincea(s,,) € B (as the path

is a counterexample in the abstract model), afsl,,) € B implies s,, € B. Thus,
C =AG—-B |

Proof of Lemma 5.

Proof. The algorithm terminates only if it was not possible to find any counterexample
for the current abstract moddl But sinceA is in each step an abstraction@fwe can
conclude by Lemma 1 th& = AG—B holds. |

Proof of Lemma 6.

Proof. We show thatr as defined in Def. 11 is an abstraction function. The first condi-
tion in Def. 2 follows directly from the definition af. To show the second condition,
it must be proved that

E = {(8:,8,)(2i, %) € T} U{(8),8;)|(20,) € T} U {(5:,8))|(2i, 20) € T} 2
{(§1,§7)| 381‘,547‘ €S : (Si,Sj) (S E,§i = a(si),éj = 04(87)}

Assume(s;,s;) € E, ands; = (2, ;) ands; = (z;,z;) with z;,z; € X and
i,j # 0. Then, it follows from the definition of in Def. 9 that(z;, z;) € T. Thus,
(5;,8;) € E. The other cases & 0 or j = 0) can be shown in a similar way. [|

References

1. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: CAV. Volume 1855 of LNCS., SpringeréZOOO) 154-169
2. Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press (1994)
. Silva, B., Stursberg, O., Krogh, B., Engell, S.: An assessment of the current status of algo-
rithmic approaches to the verification of hybrid systems. In: IEEE Conf. on Decision and
Control. (2001) 2867-2874
. Henzinger, T., Minea, M., Prabhu, V.: Assume-guarantee reasoning for hierarchical hybrid
systems. In: HSCC. Volume 2034 of LNCS., Springer (2001) 275-290
. Frehse, G., Stursberg, O., Engell, S., Huuck, R., Lukoschus, B.: Modular analysis of discrete
controllers for distributed hybrid systems. In: IFAC World Congress. (2002)
Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems.
Proceedings of the IEE&3 (2000) 971-984
. Alur, R., Dang, T., lvancic, F.: Reachability analysis of hybrid systems via predicate abstrac-
tion. In: HSCC. Volume 2289 of LNCS., Springer (2002) 35-48
. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: HSCC. Volume 2289
of LNCS., Springer (2002) 465-478
. Chutinan, A., Krogh, B.: Verification of infinite-state dynamic systems using approximate
guotient transition systems. IEEE Transactions on Automatic Co#é(2001) 1401-1410
10. Clarke, E., Gupta, A., Kukula, J., Strichman, O.: Sat based abstraction-refinement using ilp
and machine learning techniques. In: CAV. LNCS, Springer (2002)

11. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of
c programs._In: PLDI. SIGPLAN 36(5) (2001)) o

12. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Symp. on Principles
of Programming Languages, ACM Press (2002) 58-70

13. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

14. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verification of hy-
brid systems based on counterexample-guided abstraction refinement. In: Technical Report.
(2002) Downloadable frorhttp://www.cs.cmu.edu/” theobald

w

© ® N o o A

16

15.

16.
17.
18.
19.
20.

Lafferriere, G., Pappas, G., Yovine, S.: A new class of decidable hybrid systems. In: HSCC.

LNCS 1569, Springer (1999) 103-116
Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What's decidable about hybrid automata? In:

Symposium on Theory of Computing, ACM Press (1995) 373—-382
Dang, T., Maler, O.: Reachability analysis via face lifting. In: HSCC. LNCS 1386, Springer

(1998) 96-109
Chutinan, A., Krogh, B.: Verification of polyhedral-invariant hybrid automata using polygo-

nal flow pipe approximations. In: HSCC. LNCS 1569, Springer Verlag (1999) 76-90
Greenstreet, M., Mitchell, I.: Reachability analysis using polygonal projections. In: HSCC.

LNCS 1569, Springer (1999) 103-116
Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: HSCC.

LNCS 1790, Springer (2000) 203-213

17

