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Abstract. Hybrid dynamic systems include both continuous and discrete state
variables. Properties of hybrid systems, which have an infinite state space, can
often be verified using ordinary model checking together with a finite-state ab-
straction. Model checking can be inconclusive, however, in which case the ab-
straction must be refined. This paper presents a new procedure to perform this
refinement operation for abstractions of infinite-state systems, in particular of
hybrid systems. Following an approach originally developed for finite-state sys-
tems [1, 2], the refinement procedure constructs a new abstraction that eliminates
a counterexample generated by the model checker. For hybrid systems, analy-
sis of the counterexample requires the computation of sets of reachable states in
the continuous state space. We show how such reachability computations with
varying degrees of complexity can be used to refine hybrid system abstractions
efficiently. A detailed example illustrates our counterexample-guided refinement
procedure. Experimental results for a prototype implementation of the procedure
indicate its advantages over existing methods.

1 Introduction
Hybrid systems are formal models that include both continuous and discrete state vari-
ables. With the increasing use of hybrid systems to design embedded controllers for
complex systems such as manufacturing processes, automobiles, and transportation net-
works, there is an urgent need for more powerful analysis tools, especially for safety
critical applications. Tools developed so far for automated analysis of hybrid systems
are restricted to low-dimensional continuous dynamics [3]. The reason for this limita-
tion is the difficulty of representing and computing sets of reachable states for contin-
uous dynamic systems. Recent publications have proposed two general approaches to
deal with the complexity of hybrid system analysis, namely, modular analysis (e.g., [4,
5]) and abstraction (e.g., [6–8]). This paper focuses on the latter approach.

Abstraction maps a given model into a less complex model that retains the behaviors
of interest [6]. In the context of hybrid system verification, abstraction transforms the
inherently infinite state system into a finite-state model [7, 8]. Existing tools often do
not consider the property itself when building an abstract model. Rather, an abstract
representation is constructed for the entire hybrid system using a degree of detail which
seems to be appropriate. If the abstraction is not appropriate to analyze the property, the
whole abstraction process is started again, or the abstract model is globally refined [9].

As an alternative, we suggest a procedure that (a) starts from a coarse abstract model
and a safety property, (b) identifies parts of the hybrid system which potentially vio-
late the property, and (c) iteratively refines the abstract model until verification reveals



whether or not the property in question is satisfied. A framework that follows this gen-
eral scheme of abstraction, refinement, and analysis, iscounterexample-guided abstrac-
tion refinement (CEGAR)[1, 10, 2]: For a given system the initial abstraction leads to
a conservative model that is guaranteed to include all behaviors of the original system.
Model checking is then applied to the abstract model. If the property is violated, the
model checker produces acounterexampleas anexecution pathfor the abstract model
for which the property is not true. If the counterexample corresponds to a behavior
of the original system, then the property does not hold for the original system. Other-
wise, the information provided by the counterexample is then used torefinethe abstract
model, i.e., some detail is added to the abstract model in order to obtain a more ac-
curate, yet conservative, representation of the original model. In particular, the refined
model is constructed so that it is guaranteed to exclude thespuriouscounterexample.
The procedure of alternating between model checking and refinement is continued until
the property is confirmed or refuted.

This procedure has recently been applied successfully to finite discrete systems in
a variety of domains, particularly for the verification of digital circuits [1, 10]. Earlier
work that is based on the use of counterexamples includes the localization reduction in
the context of concurrent systems [2], and recent work has applied the technique to the
verification of C-programs [11, 12].

This paper makes two important contributions. First, we extend counterexample-
guided model refinement toinfinite-statesystems. Second, we show how our new ap-
proach can be applied to hybrid systems, which include both continuous and discrete
state variables and thus have an infinite-state space. We provide effective means of cop-
ing with the difficulties of computing reachable sets for infinite state systems. In par-
ticular, we employ reachable set computations with varying degrees of complexity to
refine hybrid system abstractions efficiently. This flexibility cannot easily be achieved
with other verification tools for hybrid systems. We note that using counterexamples to
guide generation of discrete abstractions is being pursued independently by Alur et al.
at University of Pennsylvania.

The paper is structured as follows. Section 2 presents preliminaries on abstraction
and counterexample-guided refinement. In Section 3 we describe a new verification ap-
proach that refines abstract models of infinite state systems based on counterexamples.
We introduce hybrid systems in Section 4, and apply our new verification approach to
hybrid systems in Section 5. Section 6 presents conclusions.

2 Preliminaries
We introduce the notions of abstraction and counterexample-guided refinement in a gen-
eral setting for infinite state systems. The type of model we are working with throughout
the section is a transition system defined as follows:

Definition 1 Transition System.A transition systemis a 3-tupleTS = (S, S0, E) with
a (possibly infinite) state setS, an initial setS0 ⊂ S, and a set of transitionsE ⊂
S × S. �

Given two transition systemsA andC,A is said to be anabstract modelof C if the
following relation can be established.

Definition 2 Abstraction.A transition systemA = (Ŝ, Ŝ0, Ê) with a finite set of states
Ŝ is anabstract modelof a transition systemC = (S, S0, E), denotedA � C, if there
exists anabstraction functionα : S → Ŝ such that:
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– the initial set isŜ0 = {ŝ0| ∃s0 ∈ S0 : ŝ0 = α(s0)}
– andÊ ⊇ {(ŝ1, ŝ2)| ∃s1, s2 ∈ S : (s1, s2) ∈ E, ŝ1 = α(s1), ŝ2 = α(s2)}. �

Sometimes the termsimulationis used in the literature to describe the abstraction
relation. In contrast to the definitions of abstraction in [1, 10], Defn. 2 allows thatA
includesspurious transitions, i.e., the setÊ may contain elements that do not corre-
spond to transitions inC. As a consequence the abstraction function in Defn. 2 does
not uniquely defineA. Spurious transitions arise in the construction of abstractions of
hybrid systems because in most cases sets of reachable states for continuous systems
can not be represented and computed exactly.

Abstract models will be used to analyze properties of a given transition system.
Throughout the paper, we will call the given systemC theconcrete system.

In order to construct a more detailed model from a given abstract model, we define
the following concept ofmodel refinement.

Definition 3 Refinement of Abstract Models.Given a concrete systemC = (S, S0, E)
and an abstract modelA = (Ŝ, Ŝ0, Ê) such thatC � A, with abstraction function
α : S → Ŝ, a modelA′ = (Ŝ′, Ŝ′0, Ê

′) is called arefined abstract model ofC with
respect toA if two abstraction functionsα′ : S → Ŝ′ andα′′ : Ŝ′ → Ŝ exist, i.e.,
C � A′ � A. �
The property is verified for the concrete modelC using an abstract modelA. In this
paper we will consider the verification of safety properties, defined as follows.

Definition 4 Safety.Given a transition systemTS = (S, S0, E), let the setB ⊂ S
specify a set ofbad statessuch thatS0 ∩ B = ∅. We say thatTS is safe with respect
to B, denoted byTS |= AG¬B iff there is no path in the transition system from an
initial state inS0 to a bad state inB. Otherwise we sayTS is unsafe, denoted by
TS |6= AG¬B. �

Definition 5 Counterexamples.A path σ = (s0, s1, . . . , sm) of TS = (S, S0, E)
with sm ∈ B is called acounterexampleof TS with respect to the safety property
TS |= AG¬B. Given a concrete transition systemC, an abstract transition system
A, and a counterexampleσ in C, we say that̂σ = (ŝ0, ŝ1, ŝ2, . . . , ŝm) is thecorre-
sponding abstract counterexampleof the abstract systemA, if ŝi = α(si) holds for all
i ∈ {0, . . . ,m}. Given a counterexamplêσ of A, σ is called acorresponding concrete
counterexampleif ŝi = α(si) and(si, si+1) ∈ E. If a counterexamplêσ of A has no
corresponding concrete counterexample forC, σ̂ is called aspurious counterexample.�

Lemma 1. Given a concrete modelC = (S, S0, E), and an abstract modelA =
(Ŝ, Ŝ0, Ê) of C with an abstraction functionα, let B ⊆ S, and B̂ = {b̂ | ∃ b ∈
B : b̂ = α(b)}. If A |= AG¬B̂, thenC |= AG¬B. �

If A |= AG¬B̂ can be verified, it can immediately be concluded from Lemma 1
(i.e., without applying verification to the concrete systemC) thatC |= AG¬B. On the
other hand, the converse of Lemma 1 with respect to theAG-property is not possible.
If the verification ofA revealsA |6= AG¬B̂, then we cannot conclude thatC is not safe
with respect toB, since the counterexample forA may be spurious. We call a method
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that checks whether or not a counterexample is spurious avalidation method. If the val-
idation method discovers that the counterexample is spurious, then the counterexample
is used to refineA. We now introduce a scheme forcounterexample-guided refinement
of abstractionsto verify safety properties for a given concrete model. The basic princi-
ple is to repeat the following sequence of steps until the property is verified or refuted
[1]. The starting point is a concrete modelC and an abstract modelA (we propose in
Sec. 5.1 one specific way to obtain an initial abstract model for hybrid systems). For
a setB ⊆ S of bad states for C, we assume for simplicity thatα(s) ∈ B̂ implies
s ∈ B. The first step is then to analyzeA |= AG¬B̂ by model checking. If this property
holds it can immediately be concluded from Lemma 1 thatC is safe, too. Otherwise
a counterexample is obtained, and it must be validated whether it has a corresponding
counterexample inC. If there is a corresponding counterexample inC, then the safety
property does not hold forC. In the other case, i.e. the counterexample is spurious, the
counterexample is used to refine the modelA. That is, a new and more detailed model
A′ with C � A′ � A is determined, which excludes the spurious counterexample.

The procedure of model checking, validation of the counterexample, and refinement
of the abstract model is repeated until the safety property is proved or refuted forC. The
pseudo-code in Fig. 1 summarizes this procedure:

ALGORITHM: Counterexample-Guided Abstraction Refinement: CEGAR

INPUT: Concrete modelC and a set of bad statesB
OUTPUT: B is (or is not) reachable

Generate initial abstract modelA (bad states are called̂B)
Generate counterexamplêσ by model checkingA wrt. B̂
WHILE σ̂ existsDO

Validation ofσ̂
IF σ̂ validatedTHENterminate with ”B reachable”
ELSE

Generate refined modelA′ using counterexamplêσ
A := A′

Generate next̂σ by model checkingA wrt. B̂
ENDIF

ENDDO
Terminate with ”B not reachable”

Fig. 1. CEGAR: Scheme for verifying/falsifyingC |= AG¬B based on counterexample-guided
abstraction refinement

The crucial steps in the CEGAR procedure arevalidation, refinement, andmodel
checking. With respect to model checking, standard algorithms forAG-properties can
be used [13].

The important step in validating a counterexample is the computation of successors
of states. We define an operatorsucc that determines the successor states from a given
setS̃ ⊆ S by succ(S̃) = {s ∈ S|∃s̃ ∈ S̃ : (s̃, s) ∈ E}. This set may not be exactly
computable for a given concrete modelC, i.e. only over-approximationssucc(S̃) ⊃
succ(S̃) may be available. We first assume thatsucc(S̃) is computable.

A counterexamplêσ = (ŝ0, . . . , ŝm) of A is then validated as follows: LetSk =
α−1(ŝk), k ∈ {0, . . . ,m} denote the set of concrete states corresponding to an ele-
ment ofσ̂. The reachable parts of these sets are recursively defined bySreach0 := S0,
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Sreachk := succ(Sreachk−1 ) ∩ Sk, k ∈ {1, . . . ,m}. The counterexample is spurious iff
Sreachk = ∅ applies for at least onek, and we saythe counterexample is refuted. Other-
wise, the counterexample isvalidated, andB is reachable.

If the counterexample is refuted withSreachk = ∅, the modelA is refined to a new
finite abstract modelA′ = (Ŝ′, Ŝ′0, Ê

′) (cf. Defn. 3). The refined model should take
into account that there are no concrete transitions from states inSreachk−1 to states in

Sk. We therefore require that the setÊ′ of A′ doesnot contain transitions in the set
{(α′(s1), α′(s2)) |∃ s1 ∈ Sreachk−1 , s2 ∈ Sk}. Thus, succeeding refined models will
exclude previously explored counterexamples. A method for the refinement of abstract
models for infinite-state systems will be presented in the next section.

3 Refinement of Abstract Models for Infinite State Systems
This section presents a specific method for refining an abstract modelA for an infi-
nite state system. The main idea is to directly use the information obtained from the
validation procedure to refine some abstract states: Assume that the abstract model in-
cludes a transition between̂s1 and ŝ2, while the validation of the counterexample has
revealed that only a subset of concrete states inS2 := α−1(ŝ2) is reachable from con-
crete states inS1 := α−1(ŝ1). In this case we refineA by splitting ŝ2 into two new
states. The first one, denoted byŝreach2 , represents the reachable subset ofS2, given by
Sreach2 := succ(S1) ∩ S2. The second one, denoted byŝcomp2 , represents the comple-
ment of the reachable part, given byScomp2 := S2 \ Sreach2 . In addition, the abstraction
function that maps concrete states to abstract ones has to be refined, too.

Definition 6 Refinement by State Splitting.Given a concrete modelC = (S, S0, E)
and an abstract modelA = (Ŝ, Ŝ0, Ê) with an abstraction functionα : S → Ŝ.
Let (ŝ1, ŝ2) ∈ Ê be a transition of a counterexamplêσ. Then, we defineρsplit as
a refinement function that mapsA, α, and (ŝ1, ŝ2) ∈ Ê onto the refined abstract
modelA′ = (Ŝ′, Ŝ′0, Ê

′) and the refined abstraction functionα′ : S → Ŝ′, i.e.,
(A′, α′) = ρsplit(A,α, (ŝ1, ŝ2)), defined as follows:

– Ŝ′ = (Ŝ \ ŝ2) ∪ {ŝreached2 , ŝcomp2 }

– α′(s) =

α(s) if s 6∈ S2

ŝreach2 if s ∈ Sreach2

ŝcomp2 if s ∈ Scomp2

– Ŝ′0 = {ŝ′ ∈ Ŝ′|α′′(ŝ′) ∈ Ŝ0}
– Ê′ = {(ŝ′1, ŝ′2) ∈ Ŝ′ × Ŝ′|∃ŝ1, ŝ2 ∈ Ŝ : (ŝ1, ŝ2) ∈ Ê ∧ ŝ1 = α′′(ŝ′1) ∧ ŝ2 =
α′′(ŝ′2)} \ (ŝ1, ŝ

comp
2 )

whereα′′ : Ŝ′ → Ŝ mapsŝ′ onto itself if ŝ′ 6∈ {ŝreached2 , ŝcomp2 }, and onŝ2

otherwise. �

Lemma 2. Let A = (Ŝ, Ŝ0, Ê) be an abstract model ofC = (S, S0, E) with the
abstraction functionα : S → Ŝ. For a given transition(ŝ1, ŝ2) ∈ Ê, assume that
Sreach2 6= ∅ holds. Then,(A′, α′) := ρsplit(A,α, (ŝ1, ŝ2)) satisfiesA � A′ � C. �

As a next step, we consider the case where the set of successors ofS1 and the set
S2 are disjoint. In this case, we can simply omit the corresponding abstract transition.
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Definition 7 Refinement by Eliminating a Transition.The functionρpurge is a refine-
ment that maps an abstract modelA = (Ŝ, Ŝ0, Ê), an abstraction functionα : S → Ŝ

and a transition(ŝ1, ŝ2) ∈ Ê ontoA′ = (Ŝ, Ŝ0, Ê
′) with Ê′ = Ê \ (ŝ1, ŝ2). �

Lemma 3. Let A = (Ŝ, Ŝ0, Ê) be an abstract model ofC = (S, S0, E) with the
abstraction functionα : S → Ŝ. For a given transition(ŝ1, ŝ2) ∈ Ê, assume that
Sreach2 = ∅ holds. Then,A′ := ρpurge(A,α, (ŝ1, ŝ2)) satisfiesA � A′ � C. �

Based on these results, we now present a more specific formulation of the CEGAR

algorithm in Fig. 2, called INFINITE-STATE-CEGAR, which uses the functionsρsplit
andρpurge for refinement.

ALGORITHM: INFINITE-STATE-CEGAR

INPUT: Concrete modelC and a set of bad statesB
OUTPUT: B is (or is not) reachable

Generate initial abstract modelA and abstraction functionα
B̂ := α(B)

Generate counterexamplêσ = (ŝ0, . . . , ŝm) by model checking ofA wrt. B̂
Sreach0 := α−1(ŝ0)
WHILEσ̂ existsDO

// validation of counterexample
k := 0
WHILESreachk 6= ∅ ANDk < m DO

k := k + 1
Sreachk := succ(Sreachk−1 ) ∩ α−1(ŝk)

ENDDO
// if counterexample is validated, then terminate, else refine
IF Sreachk 6= ∅ THENterminate with ”B reachable”
ELSE

FORl = 1, . . . , k − 1
// split abstract statêsl into two: one that corresponds
// to Sreachl and one that corresponds toα−1(ŝl) \ Sreachl

IF Sreachl 6= α−1(ŝl)
THEN(A,α) := ρsplit(A,α, ŝl−1, ŝl)
ENDIF

ENDFOR
// remove spurious transition betweenŝk−1 andŝk
A := ρpurge(A,α, ŝk−1, ŝk)

Generatêσ by model checking ofA wrt. B̂
ENDIF

ENDDO
Terminate with ”B not reachable”

Fig. 2. INFINITE-STATE-CEGAR.

Correctness of the algorithm is implied by the following two lemmas.1 Note that
termination of the algorithm cannot be guaranteed as the number of states in the con-
crete model may be infinite, and a finite abstract model to verify (or disprove) the given
property may not exist.

1 The proofs of all lemmas in the paper can be found in the Appendix.
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Lemma 4. If the algorithm terminates with ”B reachable”, thenC |6= AG¬B. �

Lemma 5. If the algorithm terminates with ”B not reachable”, thenC |= AG¬B. �

The proposed procedure of validating counterexamples and refining abstract mod-
els is based on the computation of successor states. Alternatively, one could formulate
a similar algorithm that uses sets of predecessors, or even a combination of both as
presented in [1] and [10].

The INFINITE-STATE-CEGAR algorithm in Fig. 2 is based on the assumption that
sets of successor states are exactly computable. Lemma 5 holds, however, also if suc-
cessor states are not exactly computable, and instead onlyover-approximations of the
set of successor states can be computed. If only under-approximations of successor sets
can be computed, Lemma 5 will not hold, but Lemma 4 will. For the class of hybrid
systems considered in the following section only over-approximations of successor sets
are computable.

4 Hybrid Systems
Hybrid systems are a class of infinite state systems that include both continuous and
discrete state variables. This section presents the syntax and semantics of hybrid au-
tomata, which are used to model hybrid systems. We will illustrate these definitions
with an example that models a simple car controller. The same example will be used in
later sections to illustrate our new approach to the verification of hybrid systems.

4.1 Definition of Hybrid Automata

Definition 8 Syntax of the Hybrid AutomatonHA. A hybrid automatonis a tuple
HA = (Z, z0, X, inv,X0, T, g, j, f) where

– Z is a finite set oflocationswith an initial location z0 ∈ Z.
– X ⊆ Rn is the continuous state space.
– inv : Z → 2X assigns to each locationz ∈ Z an invariant of the forminv(z) ⊆ X.
– X0 ⊆ X is the set of initial continuous states. The set of initial hybrid states ofHA

is thus given by the set of states{z0} ×X0.
– T ⊆ Z × Z is the set ofdiscrete transitionsbetween locations.
– g : T → 2X assigns aguardsetg((z1, z2)) ⊆ X to t = (z1, z2) ∈ T .
– j : T ×X → 2X assigns to each pair(z1, z2) ∈ T andx ∈ g((z1, z2)) a jumpset
j((z1, z2), x) ⊆ X.

– f : Z → (X → R
n) assigns to each locationz ∈ Z a continuous vector field

f(z). We use the notationfz for f(z). The evolution of the continuous behavior in
locationz is governed by the differential equationχ̇(t) = fz(χ(t)). We assume that
the differential equation has a unique solution for each initial valueχ(0) ∈ X0. �

The semantics ofHA is defined by means of a trace transition system. Each state(z, x)
in the trace transition system corresponds to a continuous statex within locationz. Two
such states,(z1, x1) and(z2, x2), are connected by a transition in the trace transition
system if and only if state(z2, x2) can be reached from state(z1, x1) by a continuous
evolution within locationz1 followed by a discrete transition to locationz2.

Definition 9 Semantics of the Hybrid AutomatonHA. The semantics of a Hybrid au-
tomatonHA is atransition systemTTS = (S, S0, E) with:
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– the set of allhybrid states(z, x) of HA,

S =
⋃
z∈Z

⋃
x∈inv(z)

(z, x) (1)

– the set ofinitial hybrid statesS0 = {z0} ×X0,
– transitions(s1, s2) ∈ E with s1 = (z1, x1), s2 = (z2, x2), iff there exists(z1, z2) ∈
T and a trajectoryχ : [0, τ ]→ X for someτ ∈ R>0 such that:
• x1 = χ(0), χ(τ) ∈ g((z1, z2)),
• x2 ∈ j((z1, z2), χ(τ)),
• χ̇(t) = fz1(χ(t)) for t ∈ [0, τ ],
• χ(t) ∈ inv(z1) for t ∈ [0, τ ],
• x2 ∈ inv(z2).

A pathσ = {s0, s1, s2, . . .} of TTS is called atraceof HA, and we refer toTTS as
thetrace transition systemof HA. �

Definition 10 Safety of a Hybrid Automaton.For a hybrid automatonHA with a se-
mantics as in Defn. 9, letzb ∈ Z \ {s0} denote anunsafelocation.HA is said to be
safewith respect tozb, denoted byTTS |= AG¬zb iff for all tracesσ applies:@s ∈ σ
with s = (zb, x) for somex ∈ X. We writeTTS |6= AG¬zb otherwise. �

The extension of the analysis task to multiple initial locations and/or multiple unsafe
locations is straightforward but is omitted here for simplicity.

4.2 Example

As a motivating example, we use a simple controller that steers a car along a straight
road. The car is assumed to drive at a constant speedr = 2, and its motion is modeled
by the horizontal positionx (x = 0 corresponds to the middle of the road) from the
middle of the road and the heading angleγ (γ = 0 corresponds to moving in the
vertical direction). Fig. 3 shows a scenario in which the car drives initially on the road.
The controller is able to detect whether the car is on the left or right border (i.e.x ≤ −1,
x ≥ 1) – whenever the car enters the left border, the controller forces it to turn right
until the car is back on the road again. Then a left turn is initiated, and continued until
the car is again going straight ahead in the direction of the road, i.e. when the heading
is aligned with the road (γ = 0). A similar strategy is employed when the car enters the
right border.

Fig. 4 shows a hybrid automaton model of the controlled behavior for the car. Be-
sides the positionx and the heading angleγ, the description includes an internal timer
c, that the controller uses to time the steering manoeuvres. The differential equations for
these three continous variables depend on the location: we haveẋ = −r · sin(γ) in all
locations except ofin canal . The derivative ofγ varies when a border is reached. On the
border the motion of the car describes an arc with the angular velocityγ̇ = −ω = −π/4
(or ω = π/4 respectively), i. e., the arc is part of a circle with radiusr/ω. The timer
c measures the time period which the car spends on a borders. In the correction modes
the timer decreases with double rate, i.e., the correction takes half the time as the car
was on the border before. Since the sign ofγ̇ is reversed when the car moves back on
the road, the angle has the value zero when the correction mode is left (c = 0), i.e., the
car moves then along the road. During this correction it might, however, happen that the
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Fig. 3. i) Initially, the car drives on the road with heading angleγ. ii) If the controller detects that
the car left the road, it corrects the heading by turning right to avoid the canal.iii) Once the car is
back on the road, a left turn is initiated until the car moves straight again.

other border is reached, which means that the controller then switches to the strategy of
the corresponding location.

The three continuous variables are initialized to−1 ≤ x ≤ 1 (the car is on the road),
−π/4 ≤ γ ≤ π/4, andc = 0. It has to be verified for this set of initial states whether
the given control strategy guarantees that the unsafe locationin canal (zb) is never
reached. The following sections present how this task can be solved by abstraction-
based and counterexample-guided verification.

left border

ẋ = −r sin(γ)

γ̇ = −ω
ċ = 1

−2 ≤ x ≤ 1

right border

ẋ = −r sin(γ)

γ̇ = ω

ċ = 1

x = −1

c := 0

x = −2
ẋ = 0

in canal

γ̇ = 0

ċ = 0

x = 1

c := 0

go ahead

γ̇ = 0

ẋ = −r sin(γ)

ċ = 0

−1 ≤ x ≤ 1

x = −1 x = 1

−1 ≤ x ≤ 1

γ ∈ [−π/4, π/4]

c = 0

x ≥ 1

correct left

ẋ = −r sin(γ)

γ̇ = ω

ċ = −2

−1 ≤ x ≤ 1

c ≥ 0

ẋ = −r sin(γ)

γ̇ = 0

ċ = 0

correct right

straight ahead ẋ = −r sin(γ)

γ̇ = −ω
ċ = −2

−1 ≤ x ≤ 1

c ≥ 0

x = −1
x = 1

c := 0 c := 0

c = 0 c = 0

Fig. 4. Hybrid automaton that models the car steering example. Locationin canal has to be
avoided. For each location, the continuous dynamics of the three variablesx, γ andc is described
by differential equations, and invariants are specified as inequalities. Guards and jumps are as-
signed to the transitions, e.g., a transition from locationgo ahead to left boarder is possible
if the value ofx is 1, and then the value ofc is set to zero.

5 Refinement of Abstractions for Hybrid Systems
This section applies the general concepts of Section 3 to the particular class of infinite
state systems of hybrid systems.

We present specific solutions for the two crucial steps, the validation of counterex-
amples and the refinement of abstract models. The key to the validation step is the
computation of successor states for a given set of states in the trace transition system.
Starting from the initial set, the validation procedure computes the successors along the
counterexample until either the unsafe locationzsp is reached or a transition is deter-
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mined to be spurious. The computation of sets of successors states is usually the most
expensive step in hybrid system verification. Moreover, successor sets can be com-
puted and representedexactlyonly for certain sub-classes of hybrid systems [15, 16].
However, several approaches to over-approximate successor sets have been published,
as e. g., successor set approximations by orthogonal polyhedra [17], general polyhe-
dra [18], projections to lower dimensional polyhedra [19], or ellipsoids [20]. Most of
these approaches aim at providing an efficient way to obtain conservative but tight ap-
proximations to sets of reachable states for hybrid systems.

The verification framework presented here can include different techniques to over-
approximate the set of successors. The idea of using different methods is motivated
by the trade-off between the accuracy and the computational complexity of different
methods. If, e.g., a faster but maybe less accurate technique is sufficient to refute a
counterexample, there is no need to use a more computationally expensive method.

In the following, we first describe how an initial abstraction for a hybrid automaton
can be obtained, and then focus on the validation of counterexamples and the refinement
based on the use of different methods for computing successor states.

5.1 Abstraction of Hybrid Systems

For the first step of the INFINITE-STATE-CEGAR algorithm, the construction of an
initial abstraction, we introduce one abstract state for each location ofHA. This means
that two hybrid states(zi, xi) and (zj , xj) of TTS are mapped to the same abstract
state if and only ifzi = zj . This rule applies for all but the initial location, for which we
introduce one abstract stateŝ0 to represent all initial hybrid states ofTTS, and another
one (̂s′0) to represent the remaining hybrid states corresponding to the locationz0:

Definition 11 Initial Abstraction of Hybrid Systems.Given a hybrid automatonHA
with Z = {z0, z1, . . . , znz}, let S denote the set of hybrid states as defined in (1). For
i ∈ {0, 1, . . . , nz}, we define the abstraction functionα : S → Ŝ by:

α(zi, x) =

 ŝ0 if i = 0 ∧ x ∈ X0

ŝ′0 if i = 0 ∧ x /∈ X0

ŝi otherwise
(2)

and the initial abstract modelA = (Ŝ, Ŝ0, Ê) is defined by (i ∈ {0, 1, . . . , n}, j ∈
{0, 1, . . . , nz}):

– Ŝ = {ŝ′0, ŝ0, ŝ1, . . . , ŝn}
– Ŝ0 = {ŝ0}
– Ê = {(ŝi, ŝj)|(zi, zj) ∈ T} ∪ {(ŝ′0, ŝj)|(z0, zj) ∈ T} ∪ {(ŝi, ŝ′0)|(zi, z0) ∈ T} �

The initial abstract model represents the discrete structure of the hybrid system
without regarding the continuous dynamics and guards. Given this definition, it has to
be shown thatA is indeed an abstract model of the underlying trace transition system,
i.e., that it fulfills Defn. 2:

Lemma 6. ForHAwith trace transition systemTTS = (S, S0, E), letA = (Ŝ, Ŝ0, Ê)
denote the initial abstract model forTTS. Then,A � TTS. �
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Example (cont.) Fig. 5 depicts the initial ab-
stract model of the hybrid system in Fig. 4. It is
a copy of the discrete part of the hybrid system,
except that the initial location is divided into
two parts: ŝ0 represents the states in location
go ahead with x ∈ [−1, 1], γ ∈ [−π/4, π/4]
andc = 0, andŝ′0 all other states ingo ahead .
The abstract stateŝs1 to ŝ6 represent the hy-
brid states of the other locations (left border ,
right border , correct left , correct right ,
straight ahead andin canal , respectively).�

^
0s

^
1ŝ

^
3s

ŝ
^

4s

ŝ
^

0s’
s 2

5

6

Fig 5. Initial abstract model of the
hybrid system depicted in Fig. 4

5.2 Over-approximation of the Sets of Successors

We now turn to the point of computing sets of successor states, as required in the valida-
tion and refinement steps. The goal is to use different over-approximations with differ-
ent precisions and different computational needs. We first define an over-approximation
operator of the successor relation for a tuple of sets of states. The operator conserva-
tively approximates which states in the second set (target set) are successors of states in
the first set (source set).

Definition 12 Over-approximation of successor states.LetHA be a hybrid automaton
with the trace transition systemTTS = (S, S0, E), and letA andα be defined as in
Defn. 11. For a transition(ŝ1, ŝ2) ∈ Ê of A, we callS1 := α−1(ŝ1) the set ofhybrid
source statesandS2 := α−1(ŝ2) the set ofpotential hybrid successor states. Then,
succ : (2S × 2S) → 2S is anover-approximationof the hybrid successor states inS2

iff the following holds:

– succ(S1, S2) ⊆ S2,
– for all s1 ∈ S1 ands2 ∈ S2 \ succ(S1, S2), (s1, s2) /∈ E. �

A possible explicit realization of the operatorsucc combines the following steps:
(a) By approximating the continuous evolution for all states inS1, the reachable subset
of the guard setg(t) is determined, wheret = (z1, z2) ∈ T is the transition ofHA
that corresponds to the transition(ŝ1, ŝ2) ∈ Ê of A. Usually, this step is the most
costly of the whole verification procedure; (b) the jump functionj(t, x) is applied to all
hybrid states(z1, x) which are in the reachable subset ofg(t); (c) the image ofj(t, x)
is intersected with the setS2 of potential hybrid successor states.

Example (cont.)Our prototype implementation uses two different methods,succcoarse
andsucctight, to over-approximate the set of successor states. Fig. 6 illustrates these
two methods for the discrete transition fromcorrect right to left border . For loca-
tion correct right we chooseS1 as subset of the planex = 1, andS2 as all states of
location left border that satisfy the invariant−2 ≤ x ≤ −1. Fig. 6 depictsS1 and
the face ofS2 that coincides with the guardx = −1. The transition is not spurious, if
there exists a trajectory that starts inS1, and ends inS2 without leaving the invariant of
correct right (−1 ≤ x ≤ 1 ∧ c ≥ 0). Fig 6 i) depicts a number of trajectories that
start inS1, none of them reachesS2.

The first methodsucccoarse poses the existence question for a trajectory between
S1 andS2 as an optimization problem. The distance between a trajectory andS2 is
defined as the minimum distance between all points on the trajectory andS2. If the

11



i) ii)

Fig. 6. All trajectories that originate inS1 leave the invariant whenc = 0, and none of them
comes close toS2. Figurei) shows the result of the optimization method. Figureii) the result of
the method that enclose the trajectories by polyhedra.

global minimum over all trajectories that start inS1 is strictly greater than zero, then
no successor state ofS1 exists inS2. In this casesucccoarse returns an empty set.
If the minimum distance is zero, at least one corresponding concrete path exists, and
succcoarse returns the complete setS2 as an over-approximation of the set of successor
states. The bold trajectory in Fig. 6 i) is the optimal trajectory. Its distance toS2 is
greater than zero, and there is hence no trajectory fromS1 to S2.

The second methodsucctight computes polyhedra that encloses all trajectories that
originate inS1. This over-approximation with polyhedra is based on work presented
in [18]. The set of successor statessucctight(S1, S2) is then obtained by intersecting
the polyhedra withS2. Fig. 6 ii) shows that this intersection is empty, i.e. there are no
successors ofS1 in S2. �

5.3 Validation and Refinement

The INFINITE-STATE-CEGAR algorithm makes a clear distinction between the valida-
tion of a counterexample, and the refinement of the abstract model. For hybrid sys-
tems, we propose a slightly different approach, in which the steps of validation and
refinement are interleaved. We assume to have a set of over-approximation techniques
succ1, . . . , succn that can (but not necessarily need to) establish a hierarchy of coarse
to tight approximations.

The proposed algorithm for the combined validation and refinement steps of a coun-
terexample is shown in Fig. 7. Letσ = (ŝ0, . . . , ŝm) denote a counterexample of the
abstract modelA. The algorithm consists of two nested loops. The outer loop corre-
sponds to checking each transition of the counterexample. The inner loop applies each
of the over-approximation techniques to the current transition of the counterexample,
and, depending on the result, one of the two refinement operations is executed: If an
over-approximation techniquesuccl reveals that the current transition is spurious, i.e.
Sreachk = ∅, then the transition is removed from the abstract model byρpurge. When
a transition is removed, the set of behaviors ofA does not include the current coun-
terexample anymore, and thus the combined validation and refinement of the current
counterexample is completed.

If on the other hand,succl returns a non-empty setSkreach and this set is a true subset
of the states corresponding toŝk, the functionρsplit dividesŝk into two stateŝsreachk and
ŝcompk (cf. Defn. 6). In this case howeverσ = (ŝ0, . . . , . . . , ŝk−1, ŝ

reach
k , ŝk+1 . . . , ŝm)
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FORk = 1, . . . ,m
FORl = 1, . . . , n

Sreachk := succl(S
reach
k−1 , α−1(ŝk))

IF Sreachk = ∅
A := ρpurge(A, ŝk−1, ŝk),
RETURN//jump out of both loops

ELSEIF Sreachk ( α−1(ŝk)
(A,α) := ρsplit(A,α, ŝk−1, ŝk, S

reach
k )

ENDIF
ENDFOR

ENDFOR

Fig. 7.Refinement and Validation Steps for Hybrid Systems.

remains a counterexample of the refined model. Thus the algorithm continues with the
next transition(k + 1) until eitherSreachk = ∅ or until the last transition of the coun-
terexample is validated.

There is some freedom in combining the steps of validation and refinement, i. e., the
scheme in Fig. 7 is just one possible implementation. One interesting alternative is to
apply the coarsest method for validation first to all transitions in the abstract counterex-
ample, or to apply state splitting (ρsplit) only based on the result of the most accurate
approximation methodsuccn.

The algorithm as proposed in Fig. 7 has two possible outcomes: either it is proved
that a forbidden state cannot be reached or that there exists a counterexample that can-
not be refuted. Since the validation procedure relies on over-approximations, it can
not be guaranteed that this abstract counterexample corresponds to a concrete one.
In this case, under-approximations of sets of successor states can possibly be used
to prove that a counterexample exists: Assume that the procedure terminates with a
counterexampleσ = (ŝ0, ŝ1, . . . , ŝk, . . . , sm), no transition of which could be re-
futed. Similar to Defn. 12, we can define anunder-approximationof successor states
Sreachk = succ(Sreachk−1 , α−1(ŝk)) which returns a setSreachk ⊆ α−1(ŝk) for which it is
ensured that it only contains true successors ofSreachk−1 . If this operator is applied along
the counterexample (fromk = 1 to k = m) andSreachn 6= ∅ applies, there exists at least
one path for the hybrid system which violates the safety property.
Example (cont) The requirement that the hybrid model in Fig. 4 should never en-
ter the locationin canal translates into the reachability question for stateŝ6 of the
abstract model in Fig. 5. The first counterexample for the initial abstract model is
σ1 = (ŝ0, ŝ1, ŝ6) (see Fig. 8(i)). The validation procedure considers first the transi-
tion (ŝ0, ŝ1) which corresponds to the transition betweengo ahead andleft border in
the hybrid automaton. As a first step,succcoarse(S0, α

−1(ŝ1)) is computed with the
result that the minimum distance over all initial states is zero. This is obvious from the
fact that those states of the initial set for whichx = −1 enable the transition guard im-
mediately. Thus,succcoarse returns the entire invariant of locationleft border as set
S2. The next step is to computeSreach2 = succtight(S0, α

−1(ŝ1)). The algorithm then
splits ŝ1 such that̂s1 represents the setSreach2 , and the new abstract stateŝ′1 represents
S2 \ Sreach2 (Fig. 8 (ii)).

Since the counterexample has not been eliminated yet, the transition(ŝ1, ŝ6) is con-
sidered next. Methodsucccoarse finds that the minimal distance between the trajectories
that start inSreach2 , and the guardx = −2 is greater than zero. This means no trajectory
reaches the guard, and the corresponding transition is removed (Fig. 8 (iii)).
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1ŝ

^
3s

ŝ
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ŝ
^

4s

ŝ
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ŝ
^

0s’
^

1s’

s 2

5

6

(viii)

^
0s

^
1ŝ
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Fig. 8.Counterexample guided abstraction illustrated for the car steering problem.

The procedure continues with the next counterexampleσ2 = (ŝ0, ŝ2, ŝ4, ŝ
′
1, ŝ6), as

depicted in Fig. 8 (iv). As for the first counterexample, the abstract stateŝ2 is split into
the states that are reachable from the initial setS0, and the remainder (Fig. 8 (v)). Then,
the procedure moves one transition ahead and splits stateŝ4 as a result of applying
succtight. The reachable part is represented byŝ4 in Fig. 8 (vi). Methodsucccoarse
then finds that one cannot reach any state that is represented byŝ′1 from this set, and the
transition(ŝ4, ŝ

′
1) can be deleted fromA (Fig. 8 (vii)).

The final counterexample isσ3 = (ŝ0, ŝ1, ŝ3, ŝ
′
2, ŝ
′
4, ŝ
′
1, ŝ6). The statês1 was al-

ready split for the first counterexample. Similarly to the procedure for the counterex-
ampleσ2, abstract statês3 is split as depicted in Fig. 8 (viii). It can then be shown that
transition(ŝ3, ŝ

′
2) is spurious, which eliminates the last counterexample (Fig. 8 (ix)).

Consequently, the abstract stateŝ6 is not reachable, and thus the same applies for the
locationin canal of the hybrid automaton. �

5.4 Experimental Results

Experimental results for a prototype implementation of the procedure indicate its ad-
vantages over existing methods. We compare INFINITE-STATE-CEGAR with a method
based on breadth-first application of the successor operatorsucctight. Breadth-first ap-
plication is the most prevalent method used for model checking hybrid systems. This
approach needs 175 second cputime on a Pentium 4, 1.4GHz, to compute that location
in canal is not reachable.

INFINITE-STATE-CEGAR together with only one of the two over-approximation
methods,succtight, takes about 120 seconds to verify that the system satisfies the prop-
erty. As in in the case of the breadth-first methods, 99% of the cputime is spend on
computingsucctight. If I NFINITE-STATE-CEGAR employs both approximation meth-
ods, then the time is cut in about half. The algorithm takes 68 seconds for the verifica-
tion, of which 64 seconds ares used to computesucctight, and 3 seconds to solve the
optimization problems ofsucccoarse.
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6 Conclusions
This paper presents a new method for using counterexamples to refine abstractions of
hybrid systems. The principal alternative for verifying the safety properties considered
in this paper is to compute the reachable states for the hybrid system using a breadth-
first application of the successor operatorsucc. It is apparent that the INFINITE-STATE-
CEGAR procedure can be faster than breadth-first reachability when the safety prop-
erty does not hold for the concrete system, since in this case it is possible that the
model checker will quickly find a true counterexample. On the other hand, if the safety
property holds, refuting one counterexample may implicitly refute others. However, the
INFINITE-STATE-CEGAR procedure may continue until all possible counterexamples
have been explored (and indeed, may not terminate), which is in some cases equivalent
to the breadth-first reachability computation. Nevertheless, INFINITE-STATE-CEGAR

offers the possibility of using multiple methods for computing approximations to the
successor states. Further evaluation of the INFINITE-STATE-CEGAR procedure and a
comparison of INFINITE-STATE-CEGAR to breadth-first reachability as well as other
alternatives is currently underway.

A Proofs
Proof of Lemma 1.

Proof. By contradiction: IfC |6= AG¬B, then at least one pathσ = (s0, s1, . . . , b)
with b ∈ B must exist forC. From Defn. 2, it follows that the corresponding abstract
counterexamplêσ = (ŝ0, ŝ1, . . . , b̂) of A is a counterexample which contradicts the
premiseA |= AG¬B̂. �

Proof of Lemma 2.

Proof. (i) A � A′. It follows straightforwardly thatA is an abstract model ofA′ with
abstraction functionα′′ as defined in Defn. 6.
(ii) A′ � C. From the above definitions ofA′ = (Ŝ′, Ŝ′0, Ê

′) andα′, it follows thatA′

would be an abstract model ofC, if Ê′ also included the transition(ŝ1, ŝ
comp
2 ). How-

ever, sinceSreach2 andScomp2 are disjoint, this abstract transition does not correspond
to any concrete transition and can therefore be omitted. �

Proof of Lemma 3.

Proof. (i) A � A′. The corresponding abstraction function is the identity. SinceA has
just an additional transition it is an abstract model ofA′.
(ii) A′ � C. The abstraction function for this abstraction isα. We can then omit the
abstract transition(ŝ1, ŝ2), since it does not correspond to any concrete transition.�

Proof of Lemma 4.

Proof. If the algorithm terminates with ”B reachable”, then the set of reachable states
in the concrete model is non-empty along the path of the last checked counterexam-
ple. Formally,Sreachk 6= ∅, k = 0, . . . ,m due to the conditions in the IF statement
(Sreachk 6= ∅) and the WHILE statement (Sreachk 6= ∅ ANDk < m).

We can now show that the last checked counterexample in the algorithm is not
spurious. To do so, we first show that for eachk, all sk ∈ Sreachk can be reached by
paths in the concrete model. The proof is done by induction onk. For k = 0, each
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s0 ∈ Sreach0 can be reached by a path of length zero. Fork > 0, for eachsk ∈ Sreachk
there exists ansk−1 ∈ Sreachk−1 such that(sk−1, sk) ∈ E (by definition of the succ
operator). By induction,sk−1 is reachable by some concrete path(s0, . . . , sk−1), hence
sk is reachable via the concrete path(s0, . . . , sk).

Since for eachk, all sk ∈ Sreachk can be reached by paths in the concrete model,
there are paths(s0, s1, . . . , sm) with sm ∈ Sreachm . Each such path corresponds to a
counterexample in the concrete model, i.e.Sreachm ⊆ B, sinceα(sm) ∈ B̂ (as the path
is a counterexample in the abstract model), andα(sm) ∈ B̂ implies sm ∈ B. Thus,
C |= AG¬B �

Proof of Lemma 5.

Proof. The algorithm terminates only if it was not possible to find any counterexample
for the current abstract modelA. But sinceA is in each step an abstraction ofC we can
conclude by Lemma 1 thatC |= AG¬B holds. �

Proof of Lemma 6.

Proof. We show thatα as defined in Def. 11 is an abstraction function. The first condi-
tion in Def. 2 follows directly from the definition ofα. To show the second condition,
it must be proved that

Ê = {(ŝi, ŝj)|(zi, zj) ∈ T} ∪ {(ŝ′0, ŝj)|(z0, zj) ∈ T} ∪ {(ŝi, ŝ′0)|(zi, z0) ∈ T} ⊇
{(ŝi, ŝj)| ∃si, sj ∈ S : (si, sj) ∈ E, ŝi = α(si), ŝj = α(sj)}.

Assume(si, sj) ∈ E, andsi = (zi, xi) andsj = (zj , xj) with xi, xj ∈ X and
i, j 6= 0. Then, it follows from the definition ofE in Def. 9 that(zi, zj) ∈ T . Thus,
(ŝi, ŝj) ∈ Ê. The other cases (i = 0 or j = 0) can be shown in a similar way. �
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