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Motion capture-based facial animation has recently gained popularity in many applications, such as movies, video games, and
human-computer interface designs. With the use of sophisticated facial motions from a human performer, animated characters
are far more lively and convincing. However, editing motion data is difficult, limiting the potential of reusing the motion data for
different tasks. To address this problem, statistical techniques have been applied to learn models of the facial motion in order
to derive new motions based on the existing data. Most existing research focuses on audio-to-visual mapping and reordering
of words, or on photo-realistically matching the synthesized face to the original performer. Little attention has been paid to
modifying and controlling facial expression, or to mapping expressive motion onto other 3D characters.

This article describes a method for creating expressive facial animation by extracting information from the expression axis of a
speech performance. First, a statistical model for factoring the expression and visual speech is learned from video. This model can
be used to analyze the facial expression of a new performance or modify the facial expressions of an existing performance. With
the addition of this analysis of the facial expression, the facial motion can be more effectively retargeted to another 3D face model.
The blendshape retargeting technique is extended to include subsets of morph targets that belong to different facial expression
groups. The proportion of each subset included in a final animation is weighted according to the expression information. The
resulting animation conveys much more emotion than if only the motion vectors were used for retargeting. Finally, since head
motion is very important in adding liveness to facial animation, we introduces an audio-driven synthesis technique for generating
new head motion.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation
General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Facial animation, expression, retargeting, motion

1. INTRODUCTION

Computer animated characters are now indispensable components of computer games, movies, web
pages, and various human computer interface designs. In order to make these animated characters
lively and convincing, they require sophisticated facial expressions and motions. Traditionally, facial
animation has been produced largely by skilled artists using manual keyframe techniques. Although
it ensures the best quality animation, this process is slow and costly. While large studios or production
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Fig. 1. Editing pipeline for expressive speech animation. This work focuses on the last three modules, editing and retargeting
expressive animation onto new characters.

houses can afford to hire hundreds of people to make feature films and movies, it is not feasible for low
budget or interactive applications.

Recently, a great deal of research has been dedicated to motion capture-based and performance-driven
methods, hoping to produce facial animation more efficiently. However, editing motion capture data is
quite difficult and no completely satisfying solution yet exists. Ideally an artist could freely edit the
speech content, the emotional style, or the visual appearance of a character, while retaining the essence
of the captured performance.

Most current research has focused on either data driven speech synthesis which changes the speech
content and lip motion of a video sequence, or character animation which focuses on visual appearance
and methods for retargeting geometric deformations from one face onto another. Relatively few methods
exist for editing and retaining the expressive style of facial animation. While existing methods can
produce photorealistic results, they focus on changing the content of “what” the character does, but not
the style of “how” they do it, leaving the expression of captured data untouched. This article addresses
the need for expressive facial animation by introducing methods for both retargeting and head motion
synthesis that have been explicitly designed to incorporate emotion.

Methods for editing content, style, and appearance have been largely separated with few attempts
to build a complete systems for editing and retargeting all aspects of a facial animation. One of the
keys to this problem lies in the choice of data representation. Content editors seek to preserve the
identity of the original actor or actress so they choose a representation that preserve the appearance
of the data, often including complex high-dimensional texture models. Retargeting methods seek to
preserve speech content while editing appearance so they choose a representation, such as marker
positions, that is general and adaptable to multiple face models. Unfortunately, sparse models of 3D
markers may not contain sufficient information to encode emotion. A complete system will need to
choose a data representation that is compatible with these often contradictory goals. To address this
need and highlight the importance of designing algorithms that are compatible with the whole process,
we introduce a framework for integrating content, style, and appearance into a single editing pipeline.

This article attempts to resolve the problem of data representation by choosing the middle ground.
We neither choose a dense texture model, nor a simple sparse marker model. We instead analyze video
texture information and extract concise higher-level information that encodes facial expression. This
expression information is used to augment a sparse geometric model when retargeting. In addition,
our method allows artists to retain control over the process of interpreting various facial expressions.
Input geometry is mapped implicitly to the output face models rather than preserving explicit geometric
similarity.

Figure 1 illustrates the editing pipeline proposed in this work. The input performance is a video
sequence of a talking face. The speech content of this sequence could be edited using any of several
existing techniques. The resulting video is then analyzed using a statistical bilinear model in order
to factor emotional style and speech content into two components. This model essentially provides an
expression shader with which we can modify the emotional style of the video. We next retarget the
video sequence onto a 3D character. By using the extracted emotion vector to augment traditional
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shape information, our retargeting method preserves emotional style while allowing the characters
appearance to be freely edited. Finally, since head motion is an important aspect of expression, we
present a data driven synthesis technique that matches the characters emotional state. Since this work
emphasizes the importance of expression, we focus on the last three modules, simply passing the input
video’s speech content directly to the expression synthesis module.

This article contributes novel techniques for expressive retargeting as well as head motion synthesis.
In addition, and perhaps more importantly, we demonstrate how these methods fit in a complete pipeline
that allows the creation and editing of compelling facial animations.

2. RELATED WORK

Many research areas are relevant to this article. We will organize them into the following categories
based on the flow of the article: speech content editing, facial expression analysis and modeling, facial
motion retargeting, and head motion synthesis.

Statistical techniques have been applied to learn models of speech content in order to derive novel
motion based on existing data. For instance, Video Rewrite [Bregler et al. 1997] applied a machine
learning technique to synthesize a talking face. To ensure a smooth transition between words, a triphone
model is used for each viseme. The resulting system enables the same person to say things that he or
she has never said before. Voice Puppetry [Brand 1999] learns a probability distribution of facial motion
by applying a hidden Markov model (HHM) to both the audio signal and the facial motion. Given novel
audio input, the algorithm predicts the most likely trajectory of the facial motion. The synthesized
motion can be further retargeted to a different face by image warping. Ezzat et al. [2002] improved
upon Video Rewrite by learning a set of prototype mouth shapes from the training data. This minimizes
the storage required to keep all the video in the database. Many other research projects demonstrate
similar types of work, for example, Cossato [2002], Cohen and Massaro [1993], and Kalberer and Gool
[2001]. However, the research effort in data-driven facial synthesis has largely ignored emotion, and
the resulting speech retains the same neutral expression as the input data.

A great deal of previous research does involve the study of appropriate models of facial expression.
Most of the effort has been with regard to tracking and recognition of facial expressions, utilizing the
static or short-term dynamics of single-unit facial expressions such as a smile or a frown [Essa and
Basu 1996; Essa and Pentland 1997; Tian et al. 2001]. A popular representation based on muscular
movement [Ekman and Friesen 1978] is the Facial Action Coding System (FACS). However, rather
than learning and recognition, our goal is editing and synthesis of an expressive talking face where
the long-term dynamics of the entire facial configuration are important. A method of separating the
contributions of content and emotion is needed. Cao et al. [2003] applied Independent Component
Analysis (ICA) for representing facial motion data and extracted out the influence of facial expressions
on speech by separating regions and layers that contribute to different factors. The authors of this
work have previously reported a bilinear model for factorizing the influence of speech content and
facial expression [Chuang et al. 2002]. This article makes use of the bilinear model for factorizing
video in Section 3 but considerably expands upon our prior method by reporting a complete pipeline for
expressive animation including novel methods for retargeting and head motion synthesis.

This work uses a two factor model for expression analysis. Multilinear analysis involving more than
two factors has been applied to facial recognition [Vasilescu and Terzopoulos 2003]. Although the method
has not yet been applied to expression analysis, it seems a promising future area.

Techniques for retargeting facial motion fall into several categories. The first category uses explicit
parameterization, where the parameters usually have values associated with physical dimensions such
as eye opening, eyebrow raising, mouth opening, and so forth [Buck et al. 2000; Parke 1982; Ostermann
1998]. The second category of retargeting techniques directly applies the movement of facial marker
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data to the corresponding features on the target model. For vertices that have corresponding markers,
the displacement vectors are simply renormalized to match that of the target model. An interpolating
deformation method is applied to compute the displacement of the intermediate vertices [Litwinowicz
and Williams 1994; Noh and Neumann 2001]. A third category of facial retargeting parameterizes facial
motion with blendshapes. At each time step, the facial state is a weighted combination of several basic
expressions, sometimes called morph targets in commercial animation software [Kouadio et al. 1999;
Pighin et al. 1998; Pyun et al. 2003; Joshi et al. 2003; Zhang et al. 2003]. No existing methods have
specifically addressed the need to maintain emotional style during the process of retargeting.

We base our retargeting method on blendshapes since the mapping is implicit rather than explicit,
allowing broader and more intuitive artistic control over character appearance. Traditional motion
capture systems and explicit retargeting may not be able to effectively capture and parameterize sub-
tleties in facial expressions such as eyes squinting, wrinkles, or shadows cast by small changes in the
facial geometry. As we will show, implicit mapping allows these subtleties to be analyzed and encoded
separately, but still used in the retargeting process. In addition, blendshape animation fits well with
the traditional mode of how animators work as many commercial softwares already provides such a
tool.

Head motion for animated faces has typically been produced either manually, randomly, or by a set
of rules derived from communication studies. Ken Perlin [1997] proposed generating random noise for
character movement. Although surprisingly effective, viewers are eventually frustrated by the lack of
correlation with the facial animation. Head-motion procedures that model speaker turns and interaction
with a user have been proposed by several researchers [Cassell et al. 1994; Takeuchi and Nagao 1993;
Poggi et al. 2000]. Most recently, DeCarlo et al. [2002] proposed a new procedural system that enhances
nonverbal aspects of speech with head motions. This work successfully models the correct behavior;
however, since behavior can only be specified at a higher level, the animated avatars often lack the fine
details of motion found in realistic characters. Lastly, some facial synthesis systems use a “background”
sequence, which contains real head motion from a different sequence, and align it with the synthesized
facial motion. Unfortunately, since the head motion and the face are not correlated, this motion is not
always believable. This article introduces a data driven method for synthesizing head motion that is
correlated with the emotional content of the facial animation and contains the fine details that are
necessary for interesting animation. Although the parameterizations and challenges are very different
from head motion, we draw inspiration from several recent articulated motion synthesis systems that
have explored similar data driven methods [Arikan and Forsyth 2002; Pullen and Bregler 2002; Kovar
et al. 2002; Li et al. 2002].

3. FACIAL EXPRESSION ANALYSIS

In order to create animated characters with expressive facial motion, we need to create a mathematical
model of expression. This work builds that model from video training data. Expression analysis gives
us a tool to factor the contributions of expressive style and visual speech content. We use a bilinear
model for this task [Tenenbaum and Freeman 2000]. Our analysis results in an emotional style vector
used during retargeting. Additionally, given an input facial image, we can modify the facial expression
to enhance the animation.

3.1 Data Representation

We first represent images of a talking face by a statistical model of the shape and color appearance in
a similar spirit as in Active Appearance Model [Cootes et al. 2001]. A set of n tracked feature points,
[f1,..fn] on the face define the face shape, represented as the x, y positions of the features in the
vector x, where X = [fx1, fy1, fxn, fyn]. We apply Principal Component Analysis (PCA) to the data from
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all the frames in the training set to obtain a representation with reduced dimensionality. Each sample
shape can now be approximated using:

%=1+ P, b, (1)

where xp is the mean shape vector, Py is the set of orthogonal modes of variation derived from the PCA,
and b; is a set of shape parameters.

For the texture, we first warp all the face images to the average shape and sample the pixel values
in the normalized image, denoted as g. Similar to the shape model, we apply PCA to the texture data:

g=80+P, by, (2)

where g is the mean gray-level vector, P, is a set of orthogonal modes of variation, and bjg is a set of
color parameters. _

The shape and appearance of the face can thus be summarized by the vectors b, and b;. The facial
configuration vector at any given frame is defined as:

> Bs'l;s (3)
y = 5 |

B; is a diagonal matrix with weights for the shape parameters, allowing for a difference in units between
shape and gray values.

3.2 Model for Facial Expression

The bilinear model makes a simple assumption that the data is influenced only by two underlying
factors. In this case, the factors are the visual speech component and the expression component. Bilinear
models are two-factor models with the mathematical property of separability, and the outputs are
linear in either factor when the other is held constant. Together, the two factors modulate each other’s
contributions multiplicatively, which allows rich interactions between them.

Mathematically, a bilinear model can be described as:

Yhs =€ - Wg - C, (4)

where y; ; is the kth component of the data vector, shown in Equation 3, with a particular style s.
é; is the style vector, or expression vector, ¢ is the content vector, and W}, is the basis matrix that
describes the multiplicative relationship between the style and the content for the £-th component of
the facial vector. For K facial components, we will need W = [W1, ..., Wk]. In this work, the style is
the facial expression, and the content is the visual representation of speech, or viseme. We train our
model using video sequences captured with each of three expressions: happy, angry, and neutral. The
training algorithm is similar to Chuang et al. [2002], and we refer the reader to their work for details.
Training results in the models basis vectors, W, as well as a set of expression vectors for happy, angry,
and neutral expressions, ¢, €5, €,,, that are used in the retargeting process.

3.3 Modifying Facial Expression

The model described previously can be used to modify facial expressions. Given a new sequence, rep-
resented by the facial configuration shown in Equation 3, ¥, suppose we would like to analyze it
and perform some modifications. Taking the bilinear basis vector W previously presented, we need to
solve for the expression vector ¢ and the content vector ¢. This can be done by iteratively solving for
one factor, while keeping the other factor fixed. Given the input data Y and using the average from
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Fig. 2. Interpolated facial expressions from happy to neutral, and from neutral to angry. The expression changes gradually,
while the speech content maintains the same.

Equation 4 as an initial guess for the content vector ¢y, the expression vector is:
¢ =Wl Frest. (5)
Similarly, the content vector is:
=W &/ 117! Fregt. (6)

Here X7 denotes the vector transpose of X, and X! denotes the pseudo-inverse of X. We iterate over
these two equations until we reach convergence.

This process factors the image sequence, providing the expression and content vectors for each frame.
In order to modify the facial expression, the expression vector is simply replaced. By interpolating
between the expression vectors obtained during training, we can obtain in-between expressions such
as halfway happy. For instance, the facial vector y; with a facial expression between s1 and s2 is given
as:

yi=(a-ésq+(1—a) ) W;-c, D

where « specifies the amount of each target expression. The value of o should stay fairly close to the
range between zero and one, for if it’s outside this range, we are extrapolating the facial expressions.
Extrapolating too far can produce an invalid expression. Figure 2 shows interpolated facial expressions
from happy to neutral, and then to angry. The expressions change gradually, while the content remains
the same. Notice that the changes in the locations of the facial features are subtle. The change in
appearance is primarily due to the changes in small facial details encoded in the texture.

We now have both a method for modifying facial expressions, and a concise description of emotional
state. This description is encoded in the expression vector which we will make use of during retargeting.

4. FACIAL EXPRESSION RETARGETING

To retarget an expressive talking face to a different face model, we choose to use a blendshape retar-
geting method. Many commercial animation software systems have built-in methods for blendshape
animation using a set of predefined model poses. These basic poses are typically called morph tar-
gets. It is common to find commercial products of characters with preconstructed morph targets built
into the character. However, they are intended for making facial animation using manual keyframing,
as opposed to facial motion retargeting. To retarget captured, or synthesized, facial motion onto the
preconstructed morph targets, one would normally have to either build a face model that mimics the
appearance of the motion captured source [Pighin et al. 1999], or parameterize the marker data, es-
tablish marker correspondences, and renormalize the displacement so that the motion can be used on
a different face [Kouadio et al. 1999; Chai et al. 2003]. We introduce a method that requires neither
building a complex 3D photo-realistic model for each person we want to capture from, nor uses param-
eters that require physical correspondences between the models. Instead, we select a set of prototype
images called keyshapes from the training data and allow an artist to design a corresponding set of
keymorphs.
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Fig. 3. Examples of selected keyshapes for happy and angry expressions.

4.1 Keyshapes Selection

An ideal set of keyshapes should cover all the possible variations in the training set using as few
shapes as possible. Ezzat et al. [2002] described a method for automatically selecting prototype images,
or keyshapes, by clustering. Instead, we use the data points that have the largest values when projected
onto the principle axes found by Principle Component Analysis. We found that this performs slightly
better, since clustering sometimes loses the extreme facial poses [Chuang and Bregler 2002]. Starting
from the first principle axis, the one that has the largest eigenvalue, the frames with the maximum
and the minimum projection onto each axis, are chosen as key shapes. To pick k key shapes, we will
use the first k/2 axes. Sometimes the extremum for one dimension may be the same or nearly the
same data point as the extremum for a different dimension. We compare the square difference of the
two data points, and if the difference is below some threshold, eliminate the keyshape that was drawn
from the lower dimension. The process of keyshape selection is repeated separately for each expression
used in the training set for the bilinear model. For example, B = {Bis), B;S), ce, B,E,i)} represents a set
of ks keyshapes for expression s. There is not any correspondence in a mathematical sense between
the keyshapes chosen for different expressions, nor do the number of keyshapes need to be the same
for all expressions. However, they do often look similar. Figure 3 shows some examples of keyshapes
for the happy and angry data sets. In our experiment, we find that for the purpose of retargeting,
it is sufficient to use only the shapes of the face (¥ as described in Section 3) for the selection of
keyshapes.

4.2 Motion Parameterization

Given a new sequence of input images where the facial expressions change over time, we need to first
solve for the expression and speech content as described in Section 3.3 to get the expression matrix and
content matrices. Once we have these matrices, we can synthesize new sequences for each of the basic
expressions (happy, angry, etc.). To represent these expression sequences in terms of the keyshapes for
that expression as defined in the previous section, we first reproject back out the shape and texture
vector using the inverse of Equations 1 through 3. Here we only use the shape portion of the facial
vector, X. Each frame %)(¢) of the sequence associated with expression s can be decomposed into a

linear combination of key shapes B, and weights wy, ws, ..., ws,.
K, R
) =Y wi®)- B, w;>0. (8)
i=1
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Fig. 4. Examples of corresponding keyshapes to keymorphs for different expressions.

The weights are found by minimizing the least-squares error subject to a nonnegative constraint. Each
frame of the input sequence is now represented as a linear combination of keyshapes with different
keyshapes and weights for each expression.

In our representation of B, there is no simple relationship between the previous equation and the
synthesis equation (Equation 4) without going through several rounds of matrix transformation. One
might wonder why a new basis B is needed for retargeting, and whether there is some natural relation
between these bases. W is a mathematically optimal basis set computed in the context of the bilinear
model. It needs to represent the data well, but there is no need for it to have semantic meaning to a
human. In contrast, the keyshapes B must have semantic meaning since, as will be described in the next
section, an artist must produce corresponding keymorphs. However B does not need to be “optimal”,
it just needs to adequately represent the space of variations. W could not be used to replace B, since
an artist could not interpret W. Given the complexity encoded in the bilinear model, we doubt that B
could be used to replace W in a straightforward way. An interesting question for future exploration is
whether some other set of basis functions could be found which are both semantically meaningful and
suitably powerful such that they would be appropriate for both domains.

4.3 Keymorphs and Motion Retargeting

In order to relate a captured sequence of images to our output 3D model, we build a new set of morph tar-
gets, G = [é(ls), ces é;? ], that resemble the look of the keyshapes chosen from the training data. These
are built using the predefined morph targets, and we call these keymorphs. Keymorphs are similar to
the set of primitive morph targets defined in the character model. However, the mapping between the
keymorphs and the keyshapes are constructed to be one-to-one, whereas no natural mapping exists be-
tween keyshapes and the predefined morph targets. A one-to-one mapping allows the vector of weights
from the source data to be applied directly to the keymorphs to produce a retargeted animation. A set of
keymorphs is created for each basic facial expression, resulting in several retargeted animations that
all say the same thing, each with a different facial expression. Figure 4 shows some pairs of keyshapes
and keymorphs.

Finally, to create an animation with arbitrary or changing facial expression, we blend the retargeted
facial animation for each basic expression together using:

N K
N , = ()
He) =Y a;t) Y w’ )G, 9)
j=1 i=1
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where N is the number of basic expressions. The «;’s are the user-chosen barycentric coordinates of
the desired output expression in terms of the basic expression vectors found during training.

Notice that we do not solve for direct correspondence in a vertex-to-vertex sense. This is impor-
tant as it keeps the method flexible and does not limit the types of motion capture source or types
of target model. The vector of source data is only defined with respect to source keyshapes, while
the vector of target data is only defined with respect to target keymorphs. In the examples shown
in this article, we use 2D facial feature points as data when constructing the source keyshapes, B,
and blendshape control parameters for the target keymorphs, G. We have been equally successful
using polygon vertices or NURB control points as the data vector when constructing keymorphs. In
principle, keyshapes and keymorphs can be constructed from any measurement as long as it can be
linearized.

Note that the semantic notion of happy or angry is defined in both the video-based bilinear space
(training), and the output character’s 3D blendshape representation. In order to change expressions,
we merely need to interpolate between the various semantically defined expressions. In the bilinear
space, this interpolation occurs on the style (expression) vector, allowing the expression of video images
to be changed. In the blendshape space, this interpolation occurs between the keymorph sets defined
for each expression, allowing the 3D character’s expression to be changed. It is both meaningful and
possible to control the expression in either space.

This method requires manual modeling, and therefore it is not completely automatic. We feel that
this is beneficial since artists frequently wish to control the precise appearance of the target character.
Furthermore, we find that the keyshapes for several expressions are often similar. In these cases, the
shape itself'is not an adequate descriptor of expression, and automatic methods are unlikely to correctly
interpret artistic intent. Artistic judgment is required to insure that the keymorphs for each expression
are interpreted as desired.

By modeling the keymorphs one might wonder whether the artist has done most of the hard work
already, negating the need for a retargeting system at all. However, this is precisely the point of the
method. The artist has done most of the hard work, but they have not done most of the tedious work.
Using a small number of manually defined keymorphs, the algorithm can process a long video sequence.
This would normally require the artist to define hundreds of keyframes manually.

5. ADDING HEAD MOTION

Head motion is a very important part of facial animation. Traditional animators often start by creating
the head motion first, and then filling in less important details like lip-sync and other expressions.
This work introduces a data-driven approach to synthesizing head motion that is consistent with the
characters intended emotion.

Head motion synthesis presents a different set of challenges to facial speech animation. The coupling
between phonemes and visemes (the visual appearance of the mouth) is much stronger than that found
between audio signal and head motion. Many statistical techniques rely on strong correlations among
the different parameters. However, in this case, there is no deterministic relationship or obvious correla-
tion between head motion and other communication cues. For the same sentence and expression, many
different head motions are possible. Nevertheless, there is at least a weak correlation, and randomly
generated head motion will not convey the expressiveness desired.

Fortunately, there is evidences that leads us to believe that audio features as simple as pitch contour
are correlated with head motions. Recent study in the phonetics and linguistic community suggests that
there is anatomical evidence of a coupling between head motion and pitch [Honda 2000]. In addition,
empirical study by Yehia et al. [2000] also found that the pitch contour in a voice audio signal is highly
correlated to head motions.
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Fig. 6. Top: noisy pitch data. Bottom: cleaned up pitch data and segmented for use in the matching process.

Our process of head motion synthesis begins by building a database of examples which relate audio
pitch to motion. Synchronized motion and audio streams are captured and then segmented and stored
in the database. A new audio stream can be matched against segments in the database. A smooth path
is found through the matching segments and stitched together to create synthetic head motion. Figure 5
shows the overview of the approach.

5.1 Segmentation
We segment the input audio track using pitch contour information. The same segment boundary is then
used for slicing the head motion tracks.

We used a program called Praat [Boersma and Weenink 2003] to process the audio data and extract
pitch. Unfortunately, this processing is relatively noisy. The top of Figure 6 shows a raw pitch signal.
ACM Transactions on Graphics, Vol. 24, No. 2, April 2005.
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We filter the pitch values to consider only those that lie within the normal human range. In addition,
we interpolate neighboring values to fill in very short periods of missing data. After cleaning the pitch
curve, we use voiceless regions (regions with no pitch) to divide the curve into segments. The bottom
part of Figure 6 shows the same pitch contours now partitioned and cleaned up after the processing.
Since head motion continues to change regardless of whether the audio contains a voiced and voiceless
region, a segment is defined as starting from the onset of one pitch segment and ending on the onset of
the next pitch segment. Empirically we observe that most of the large head motion happens right after
pitch onset, suggesting that this is indeed a good segment boundary.

5.2 Pitch Matching

For a given sequence of new audio pitch segments, we need to find a matching sequence of segments
from the database. We define the matching distance in a two-stage process.

In the first stage, we compare pitch for an entire phrase, not just a single segment. This is important
because the emotional, idiosyncratic content of speech is often conveyed at a sentence level through
pitch phrasing. By matching first at the sentence or phrase level, we use only those sentences in our
database with expressive style similar to our new audio sequence. Sentences are compared by matching
feature vectors derived from the audio data. These features include statistics related to the speech
rhythm, the speaking rate, and the average length of the voiced and voiceless regions, as well as simple
statistics on the pitch signal, including the minimum, maximum, mean, and standard deviation of pitch
values [Dellaert et al. 1996]. These statistics are normalized and used as a feature vector. Euclidian
distance is used for calculating the top M sentences that best match the test input. These M sentences
represent a subset of the database which has the desired expressive style.

In the second stage, we compare individual pitch segment in the test phrase against the pitch seg-
ments in the database subset. The metric consists of similarity in geometric properties of the segments
G4 (min val, max val, range, min slope, max slope, curvature, etc.). Each pitch segment is resampled to
match the average length of all pitch segments. Then root-mean-square difference is used to compute
a distance metric to every other pitch segment:

Pd = RMS(Ptest - Ptemplate)' (10

Piost and Preppiate are length normalized pitch contour. To avoid over stretching or shortening of the
segments, a second criteria is used to penalize cases where the difference in lengths of the original
segments are too large:

_ |length(Ptemplate) - length(Ptest)|

L 11
¢ length(Pres;) (1

A combined distance metric is defined as a weighted sum of these two metrics:
Dtota1=b~Gd+C~Pd+(l—b—c)-Ld. (12)

In our experiment, we used ¢ = 0.3 and b = 0.05 to produce the final animations. Finally, the list of
matching segments for each input segment is pruned to retain only the top K choices. These segments
are the possible matches which will be stitched together during path searching.

5.3 Path Searching

Given N pitch segments in the input audio and the top K matches for each test segment, each matching
segment forms a node (S}) in a Trellis graph as shown in Figure 7. We set the weight of nodes equal to
the pitch distance metric as defined in Equation 12.
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sayojew doj,

Fig. 7. Trellis graph formed by the audio segments in the database which match those of the new sequence.

We need to find a path through the graph that produces a good head motion trajectory. Here we use
the head motion data accompanying each matching segment and compute the cost of transitions (C/)
from one segment to the next. Transition cost is based on two criteria.

First, in order to produce a smooth head motion, neighboring segments should have matching bound-
aries in terms of position, Pti, velocity, Vti, and acceleration, Aﬁ. Therefore, the first cost function is:
)+ wa- (Al - A7), (13)

)2 + oy - (Vti -V t+1

Htij:wP'(Pti_Pj t+1

t+1
where the values of wp, wy, wa are chosen to normalize the average contributions of each term.
Second, consecutive segments in the original database are highly encouraged, since these result in the
most natural motion. Similarly, repeating the same segment is discouraged since it produces repetitive
motion. The second cost function is thus:
0, Siand S}, are consecutive
R/ =12 Si=8/,
1, otherwise

(14)

The complete transition cost is a weighted sum of these two terms:

C/=w - H’ + wy - RY. (15)

We merely set the weight of w; and wy equally and have achieved good results. It would be interesting

to investigate an optimal balance of the various segment and transition weights in the future.
Finally, we apply the Viterbi [1967] algorithm to find the best path through the graph.

5.4 Motion Blending

The motion data associated with each segment is joined together to produce the final motion. To achieve
this, each motion segment is resampled to match the length of the test segment. Although this alters
the frequency content of the motion data, the length of the segment is part of the matching criteria,
thus the selected segments should have length similar to the test segment. Next, the starting position
of each motion segment is moved to match the ending position of the previous segment. This could lead
to potential drifting for long sentences. When this occurs, we break long sequences into smaller units
and perform a path search for each subsentence. In general, we found that breaks between sentences,
where the speaker takes a breath, serve as good boundaries for the subunits. Each subsequence is
linearly warped to join the next subsequence to correct for the drifting. Finally, the end positions where
the segments are connected are smoothed to minimize high frequency artifact caused by a mismatch
in the velocity.
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6. EXPERIMENT

Our training data is drawn from three short video sequences including three basic expressions: neutral,
angry, and happy. Each sequence is around 12 seconds long, but chosen so that the words cover most
viseme groups. The facial features are tracked using a technique similar to eigen-tracking [Black and
Jepson 1996], and the resulting data is compressed and represented as vectors as shown in Equation 3.
A bilinear model is then fitted to this data according to Equation 4.

Subsets of keyshapes for different facial expressions are selected from the training set using the
method described in Section 4. Although the required number of keyshapes or basis vectors are often
chosen automatically to represent a fixed percentage of the source variation, this still leaves the choice
of cutoff percentage as a parameter to be chosen by the animator or system developer. For the exam-
ples presented in this section, the animator determined that approximately 20 keyshapes adequately
represented the range of motion expected and specified the number of keyshapes directly since this is
more intuitive for artists than specifying the underlying mathematical quantities. It should be noted
that there is no requirement that the number of keyshapes be equal for each expression, and artists
tended to choose slightly fewer keyshapes for the neutral expression since less variation existed in the
data. The keyshapes themselves are determined automatically and separately in each expression set.
These keyshapes will be used for decomposing and retargeting facial expressions.

For the output character, we used commercial models that have built-in morph targets, such as
mouth opening, eye browsing raising, and so on, and sliders for manipulating the blendshape with the
morph targets. Keymorphs for the chosen keyshapes are constructed to correspond to each keyshape.
Depending on the model, the user’s skill and inclination for perfectionism, this modeling process can
take anywhere from minutes to hours.

To capture training data for head motion synthesis, a marker-based motion-capture system from
Vicon is used for motion acquisition. We employed seven cameras with 120Hz visual sampling frequency.
Eight markers are placed on a plastic hairband worn by the actress, and two markers are placed on
each of her ear lobes. These points are rigid relative to each other so we can compute 3D rotations
and translations using a technique based on singular value decomposition (SVD) [Arun et al. 1987].
To increase the amount of data, we add to the head motion data by mirror imaging the head motion.
We recorded a collection of 67 phrases. Each phrase consists of two or three sentences. The actress was
free to move from waist up and was informed that highly expressive motions were desired, therefore
the footage consists of a wide variety of motion.

To show the process of making a new expressive animation, we videotaped an input test sequence
about 13 seconds long which consists of the actress saying a completely new set of sentences with
neutral facial expression. The test sequence is analyzed using the bilinear model, and sequences with
different facial expressions are synthesized. We then decompose the reconstructed sequences into a
weighted combination of keyshapes. The resulting weights are used for retargeting. Since we do not
have a method for synthesizing expressive audio, we recorded the actress speaking the same text as
the input test sequence but with different emotions. The audio is used as input to the head motion
synthesis. Finally, the timing of the final animation is warped to match the new speech.

We show sample frames of the final animation in Figures 8 and 9. The full animation is in the supple-
mentary video. Notice that the facial expression does not stay constant throughout the whole animation,
instead it seems to be more extreme in some frames and rather neutral in others. This is desirable be-
cause a realistically animated character will need to talk and convey emotions at the same time. As one
tries to make a certain mouth shape necessary for speaking, the dynamics of the entire facial configu-
ration change depending on the viseme, and therefore it would be unnatural to hold a smile constantly
throughout the entire sequence. This variation is crucial to natural looking facial animation. To see the
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Fig. 9. Sample frames of the test sequence retargeted with happy expression.
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video of the complete animation, please visit the following URL: http:/graphics.stanford.edu/papers/
moodswings/.

7. CONCLUSION AND DISCUSSION

This article presents a method for creating expressive facial animation and retargeting it onto new
characters with arbitrary appearance. The example takes expressionless speech performance as input,
analyzes the content, and modifies the facial expression according to a statistical model. The expressive
face is then retargeted onto a 3D character using blendshape animation. By explicitly maintaining
a facial expression vector in our model, we are able to choose the appropriate combination of morph
targets during retargeting. The resulting animation is thus much more expressive than would otherwise
be possible. Finally, we present a head motion synthesis algorithm which produces expressive head
motion that is correlated to the audio signal, making the resulting facial animation more lively and
characteristic.

There are many opportunities to improve the techniques presented here. First, the bilinear model we
use for analyzing the expression does not include temporal constraints, therefore the output synthesis
can sometimes be jittery. A method for incorporating temporal constraints would be valuable. Second,
the fact that we completely rely on the implicit mapping from keyshapes to keymorphs can sometimes
be problematic since it relies on the artist to maintain consistency in the mapping. For instance, if
eyebrow-raising in one source keyshape is mapped to an ear-enlarging in the target keymorph, then
eyebrow-raising in another keyshape should also map to ear-enlarging in that keymorph. Either an
automated method for ensuring consistency or a method of visual feedback to guide the artist would
be useful. Lastly, the head motion synthesis technique presented does not address the dependency of
head motion on speech context. For instance, in most cultures, nodding is used for confirmation and
head shaking for negation. A method to incorporate these contextual rules in the algorithm is needed.

Although specific methods and data types were used for the modules described in this article, the
methodology is much more general, and we wish to reiterate our emphasis on building a complete process
for creating expressive animation. Changes could be made to almost any module while preserving the
pipeline, and we hope to inspire future work by suggesting a couple of possibilities here. We currently
rely on 2D video as a source for deriving input shape and emotion vectors. The use of video-rate 3D
range images would presumably result in better models which will address issues relating to robustness
against lighting changes and out-of-plane head movement. Furthermore, as with other video synthesis
techniques, the facial expression analysis method used in this article is person specific. Two possibilities
can be explored. A more general statistical model, such as a multilinear model described in Vasilescu
and Terzopoulos [2003], could be used for representing the person’s identity as the third dimension.
Alternatively, more abstract facial parameters, such as those used in the field of facial expression
recognition, could replace the appearance-based facial features used here. This would allow for the
modeling of more general features that would represent the facial expressions of all people. It would
also be interesting to explore physical simulation for creating the morph targets. In this case, instead of
blending the locations of vertices, the output space would be a linear combination of physical parameters.
Linking expression to physical parameters may lead to a level of performance beyond what is now
possible.
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