
Coordination of Large-Scale
Multiagent Systems

Coordination of Large-Scale
Multiagent Systems

Edited by

Paul Scerri
Carnegie Mellon University

Regis Vincent
SRI International

Roger Mailler
Cornell University

Sprin ger

Paul Scerri
Carnegie Mellon University

Régis Vincent
SRI International

Roger Mailler
Cornell University

Library of Congress Cataloging-in-Publication Data

Coordination of large-scale multiagent systems / edited by Paul Scerri, Régis Vincent,
 Roger Mailler.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-387-26193-1 -- ISBN 0-387-27972-5 (e-book)
 1. Intelligent agents (Computer software) 2. Electronic data processing--Distributed
 processing. 3. Distributed artificial intelligence. I. Scerri, Paul, 1974- II. Vincent, Régis.
 III. Mailler, Roger, 1971-

 QA76.76.I58C72 2005
 006.3--dc22

 2005050015

© 2006 by Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science + Business
Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression
of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America

9 8 7 6 5 4 3 2 1 SPIN 11310037

springeronline.com

http://springeronline.com

Contents

Preface vii

Part I Effects of Scaling Coordination

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs
Dmitri A Dolgov, Edmund H Durfee 3

A Study of Scalability Properties in Robotic Teams
Avi Rosenfeld, Gal A Kaminka, Sarit Kraus 27

Comparing Three Approaches to Large-Scale Coordination
Paul Scerri, Regis Vincent, Roger Mailler 53

Part II Scaling Existing Coordination Approaches

Decentralized Partner Finding in Multi-Agent Systems
Marcelo M, Vanzin, K. S, Barber 75

Distributed Coordination of an Agent Society Based on Obligations and
Commitments to Negotiated Agreements
Jiangbo Dang, Devendra Shrotri, Michael N, Huhns 99

A Family of Graphical-Game-Based Algorithms for Distributed
Constraint Optimization Problems
Rajiv T. Maheswaran, Jonathan R Pearce, Milind Tambe 127

Key-Based Coordination Strategies: Scalability Issues
Tom Wagner, John Phelps, Valerie Guralnik and Ryan VanRiper 147

Designing Agent Utilities for Coordinated, Scalable and Robust
Multi-Agent Systems
Kagan Tumer 173

vi Contents

Part III New Approaches for Large Scale Coordination

Learning Scalable Coalition Formation in an Organizational Context
Sherief Ahdallah, Victor Lesser 191

Multi-Agent Coordination in Open Environments
Myriam Ahramson, Ranjeev Mittu 217

Mobile Agents
Ichiro Satoh 231

WIZER: Automated Model Improvement in Multi-Agent Social-Network
Systems
Alex Yahja, Dr Kathleen M. Carley 255

Part IV Robustness and Flexibility for Large Scale Coordination

Handling Coordination Failures in Large-Scale Multi-Agent Systems
Gal A. Kaminka 273

Towards Flexible Coordination of Large Scale Multi-Agent Teams
Yang Xu, Elizabeth Liao, Paul Scerri, Bin Yu, Mike Lewis, Katia Sycara 287

Techniques for Robust Planning in Degradable Multiagent Systems
Ping Xuan 311

Index 345

Preface

The increased availability of low-cost, high-power computation has made it feasible
to consider building distributed systems on a previously unimagined scale. For exam­
ple, in domains such as space exploration, military planning and disaster response,
groups with hundreds or thousands of intelligent agents, robots and people that work
together can revolutionize the achievement of complex goals. To effectively and ef­
ficiently achieve their goals members of a group need to cohesively follow a joint
course of action while remaining flexible to unforeseen developments in the environ­
ment. Such coordination entails a new set of challenges that have not been adequately
addressed by previous coordination research.

It is becoming increasingly clear that many algorithms, theories and infrastruc­
tures developed for smaller groups of agents have serious limitations or weaknesses
when the size of the group is scaled above 10-20 agents. For example, establishing
and maintaining joint commitments between a thousand agents is infeasible, likewise
existing multi-agent programming languages, e.g., Taems, do not provide an appro­
priate level of support for programming large groups. On the other hand, established
techniques specifically designed for coordinating very large numbers of agents, pri­
marily swarm based groups, do not provide developers with the required level of
control needed to ensure coherent behavior of the group as a whole.

The key assumption drawing together the chapters in this book is that meeting
the challenges of very large scale coordination will likely require new theories, ab­
stractions, tools and algorithms. The goal of this book is to present some of the most
recent insights and approaches used by researchers working or thinking about very
large groups of coordinating agents. By bringing together key ideas, the field can
progress towards establishing a sound theoretical and experimental basis for coordi­
nating many agents. Eventually, we hope that methods for designing, implementing,
and understanding large-scale coordination will have the same level of maturity that
has been already achieved for smaller groups.

This book is broken down into four main parts. In Part I - "Effects of Scaling Co­
ordination", we present work from various researchers who have developed systems
that operate on a large scale. Each of these systems demonstrate behaviors which
only occur when the systems are scaled beyond the size of a few or several. Part
II - "Scaling Exisiting Coordination Approaches", presents a number of interesting
attempts at scaling exisiting small-scale methods to operate on large volume prob­
lems. Part III - "New Approaches for Large Scale Coordination" presents algorithms
specifically designed for large scale coordination. Finally, Part IV - "Robustness and
Flexibility for Large Scale Coordination" presents novel methods for ensuring that
large scale systems remain stable when faced with failures and changes that become
increasingly common when large numbers of agents are involved.

We hope that this book represents the first step towards a science of large scale
coordination that one day forms the basis for revolutionary systems that change the
planet for the better.

Paul Scerri, Roger Mailler and Regis Vincent.

Parti

Effects of Scaling Coordination

The Effects of Locality and Asymmetry in Large-Scale
Multiagent MDPs

Dmitri A Dolgov^ and Edmund H Durfee^

^ University of Michigan; Ann Arbor, MI 48109; ddolgov^umich. edu
^ University of Michigan; Ann Arbor, MI 48109; durf ee©uinich. edu

Summary. As multiagent systems scale up, the complexity of interactions between agents
(cooperative coordination in teams, or strategic reasoning in the case of self-interested agents)
often increases exponentially. In particular, in multiagent MDPs, it is generally necessary to
consider the joint state space of all agents, making the size of the problem and the solution
exponential in the number of agents. However, often interactions between the agents are only
local, which suggests a more compact problem representation. We consider a subclass of mul­
tiagent MDPs with local interactions where dependencies between agents are asymmetric,
meaning that agents can affect others in a unidirectional manner. This asymmetry, which often
occurs in large-scale domains with authority-driven relationships between agents, allows us to
make better use of the locality of agents' interactions. We discuss a graphical model that ex­
ploits this form of problem structure and use it to analyze the effects of locality and asymmetry
on the complexity and structure of optimal policies. For problems where the solutions retain
some of the compactness of problem representation, we present computationally-efficient al­
gorithms for constructing optimal multiagent policies.

1 Introduction

Markov decision processes [2, 17] are widely used for devising optimal control poli­
cies for agents in stochastic environments. Moreover, MDPs are also being applied
to multiagent domains [3, 18, 19]. However, a weak spot of traditional MDPs that
subjects them to "the curse of dimensionality" [1], and presents significant computa­
tional challenges, is the flat state space model, which enumerates all states the agent
can be in. This is especially significant for large-scale multiagent MDPs, where, in
general, it is necessary to consider the joint state and action spaces of all agents.
Because of this, as the number of agent in a multiagent system increases, the size of
the flat MDP representation increases exponentially, which means that very quickly
it becomes impossible to even model the problem, let alone solve it.

Fortunately, there is often a significant amount of structure to MDPs, which can
be exploited to devise more compact problem and solution representations, as well as
efficient solution methods that take advantage of such representations. For example, a
number of factored representations have been proposed [4,5,10] that model the state

4 Dolgov and Durfee

space as being factored into state variables, assume the reward function is additive,
and use dynamic Bayesian network [8] representations of the transition function to
exploit the locality of the relationships between variables.

In this work, we focus on multiagent MDPs and on a particular form of prob­
lem structure that is due to the locality of interactions between agents. Central to
our problem representation are dependency graphs that describe the relationships
between agents. The idea is very similar to other graphical models, e.g., graphi­
cal games [12], coordination graphs [10], and multiagent influence diagrams [13],
where graphs are used to more compacdy represent the interactions between agents
to avoid the exponential explosion in problem size. Similarly, our representation of
a multiagent MDP is exponential only in the degree of the dependency graph, and
can be exponentially smaller than the size of the flat MDP defined on the joint state
and action spaces of all agents. A distinguishing characteristic of the graphical rep­
resentation that we study in this work is that it makes more fine-grained distinctions
about how agents affect each other: we distinguish between agents' effects on other
agents' reward functions from their effects on other agents' transition functions.

We focus on asymmetric dependency graphs, where the influences that agents
exert on each other do not have to be mutual. Such interactions are characteristic of
large-scale multiagent domains with authority-based relationships between agents,
i.e., low-authority agents have no control over higher-authority ones. As we discuss
below, there are problem classes where this asymmetry has important positive impli­
cations on the structure of optimal multiagent policies and the problem complexity.

For any compact problem representation, an important question is whether the
compactness of problem representation can be maintained in the solutions, and if so,
whether it can be exploited to devise more efficient solution methods. We must an­
swer the same question for the graphical model discussed in this work. To that end,
we analyze the effects of optimization criteria and shapes of dependency graphs on
the structure of optimal policies, and for problems where the compactness can be
maintained in the solution, we present algorithms that make use of the graphical rep­
resentation. The main contribution of this work is that it answers, for several classes
of multiagent MDPs, the question of whether optimal policies can be represented
compacdy. However, we analyze the structure and complexity of optimal solutions
only, and the claims do not apply to approximation techniques that exploit compact
MDP representations (e.g., [10, 6, 7, 20]). As such, this work provides complexity
results and can serve as a guide to where it is necessary to resort to approximate
algorithms for large-scale multiagent policy optimization problems.

The rest of the paper is organized as follows. Section 2 briefly discusses Markov
decision processes and introduces the graphical MDP representation that is the basis
of our study. Section 3 discusses the properties of the graphical model and estab­
lishes some results that facilitate the analysis of the following sections, where the
properties of optimal policies and solution algorithms are discussed. In Section 4,
we focus on cooperative agents that maximize the social welfare of the group, and in
Section 5, we analyze the case of self-interested agents, each of whom maximizes its
own payoff. Section 6 makes further assumptions about the structure of the agents'
influence on each others' rewards and analyzes their effects on optimal policies. We

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 5

conclude by summarizing our results and discussing some unanswered questions in
Section 7.

2 Model and Background

In this section, we briefly review some background and introduce our compact rep­
resentation of multiagent MDPs.

2.1 Markov Decision Processes

A single-agent fully-observable MDP can be defined as a n-tuple (5, J^,P,/?), where:

• 5 == {/} is a finite set of states an agent can be in.
• Jl = {a} isa. finite sets of actions the agent can execute.
• P : 5 x j ^ x 5 t - > [0 , 1] defines the transition function; the probability that the

agent goes to state j if it executes action a in state / is P{i,aJ),
• R:S ^-^R defines the rewards; the agent gets a reward of R{i) in state i?

A solution to a MDP is a policy defined as a procedure for selecting an action. It is
known [17] that, for such fully-observable MDPs, there always exist policies that are
uniformly-optimal (optimal for all initial conditions), stationary (time independent),
deterministic (always select the same action for a given state), and Markov (history-
independent); such policies (TI) can be described as mappings of states to actions:
7 i : 5 t - ^ ^ .

Let us now consider a multiagent environment with a set of n agents 0\{ = {m}
(\9\{\ = n), each of whom has its own set of states Sm = {im} and actions ^ = {am}.
The most straightforward and also the most general way to extend the concept of
a single-agent MDP to the fully-observable multiagent case is to assume that all
agents affect the transitions and rewards of all other agents. Under these conditions,
a multiagent MDP can be defined simply as a large MDP {S(]^,^<J^,PCJ^,R(M), where
the joint state space Sg^ is defined as the cross product of the state spaces of all
agents: Sg^ = S\x ...xSn, and the joint action space is the cross product of the action
spaces of all agents: J^g^ = J^i x ...x J^. The transition and the reward functions
are defined on the joint state and action spaces of all agents in the standard way:
Pg^ : Sri^ X J^g^ X Sr^f ^ [0,1] and Rr^'^Sr^^ R.

This representation, to which we refer SiS flat, is the most general one, in that, by
considering the joint state and action spaces, it allows for arbitrary interactions be­
tween agents. However, the weak spot of this representation is that the problem (and
solution) size grows exponentially with the number of agents, making it unacceptable
for large-scale multiagent systems.

Let us note that, if the state space of each agent is defined on a set of world
features, there can be some overlap in features between the agents, in which case

^ Often, rewards are said to also depend on actions and future states. For simplicity, we define
rewards as function of current state only, but our results can also be extended to the more
general case.

6 Dolgov and Durfee

1 k-
'^

~3~

m

r

/ 2

Fig. 1. Agent dependency graph

the joint state space would be smaller than the cross product of the state spaces
of all agents, and would grow as a slower exponent. For simplicity, we ignore the
possibility of overlapping features, but the results are directly applicable to that case
as well.

2.2 Graphical Multiagent MDPs

In many multiagent domains, the interactions between agents are only local, meaning
that the rewards and transitions of an agent are not directly influenced by all other
agents, but rather only by a small subset of them. To exploit the sparseness in agents'
interactions, we use a compact representation that is analogous to the Bayesian net­
work representation of joint probability distributions of several random variables.
Given its similarity to other graphical models (e.g., [11, 12]), we label the represen­
tation a graphical multiagent MDP (graphical MMDP).

Central to the definition of a graphical MMDP is a notion of a dependency graph
(Figure 1), which shows how agents affect each other. The graph has a vertex for
every agent in the multiagent MDP. There is a directed edge from vertex k to vertex
m if agent k has an influence on agent m. The concept is very similar to coordination
graphs [10], but we distinguish between two ways agents can influence each other:
(1) an agent can affect another agent's transitions, in which case we use a solid
arrow to depict this relationship in the dependency graph, and (2) an agent can affect
another agent's rewards, in which case we use a dashed arrow in the dependency
graph. For example, if an agent is trying to go through a doorway, and a second
agent is controlling the state of the door, the transition probabilities of the first agent
are affected by whether the door is open (state of the second agent), in which case we
use a solid transition-related arrow from the second agent to the first. In a different
scenario, if the door is always open, but the second agent sometimes rewards agents
for going through the doorway, the transition probabilities of the first agent are not
affected by the second one, but the reward that the first agent gets depends on the
state of the second agent. In this case, we use a dashed reward-related arrow from
the second agent to the first.

To simplify the following discussion of graphical multiagent MDPs, we also
introduce some additional concepts and notation pertaining to the structure of the
dependency graph. Consider an agent m ^ M and its neighbors. Let us label all
agents that directly affect m's transitions as 9{^ (P) (parents of m with respect to

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 7

transition function P), and all agents whose transitions are directly affected by m
as 0\[^{P) (children of m with respect to transition function P). Similarly, we use
0\(^{R) to refer to agents that directly affect m's rewards, and 0^{R) to refer to
agents whose rewards are directly affected by m. Thus, in the graph shown in Fig-
ure 1, 9{^{P) = {1,4}, 0^{R) = {1,2}, ^{P) = {3}, and !1^{R) = {4}. We
use the terms "transition-related" and "reward-related" parents and children to dis­
tinguish between the two categories. Sometimes, it will also be helpful to talk about
the union of transition-related and reward-related parents or children, in which case
we use lACr = ^ " (^) U ^ ~ W and 9\Q- - 1A4+(P)U^^(^). Furthermore, let us
label the set of all ancestors of m (all agents from which m is reachable) with respect
to transition-related and reward-related dependencies as 0~{P) and 0~{R), respec­
tively. Similarly, let us label the descendants of m (all agents reachable from m) as
0+(P) and 0+(/?), with O- = 0-{P)(jO-{R) and 0+ - 0+(P)UO+(/?) referring
to the unions of all ancestors and descendants, respectively.

We define a graphical MMDP with a set of agents Oi{ as follows. Associated
with each agent m G fAf is a n-tuple {Sm^-%iyRmiRm)^ where the state space Sm and
the action space J^ are defined exactly as before, but the transition and the reward
functions are defined as follows:

Rm • *^%;{P) >< ^m X •%! X Sm^-^ [0,1]

where S^fp\ and Sri^fj^\ are the joint state spaces of the transition-related and
reward-related parents of m, respectively. In other words, the transition function of
agent m specifies a probability distribution over its next states Sm as a function of its
own current state Sm^ the current states of all of its parents 5 ^ (p\, and its own action
j ^ . That is P{ir;^fp\Jm^^mJm) is the probability that agent m goes to state jm if it
executes action a^ when its current state is /^ and the states of its transition-related
parents are ^V- (p) - The reward function is defined analogously on the current states
of the agent itself and the reward-related parents (i.e., R{i^ fp\, im) is the reward that
agent m gets when it is in state /^ and its parents are in states ̂ V-(/?))•

Notice that, in (eq. 1), the transition function of m does not depend on actions of
m's parents, but only on their current states. This is done for notational convenience
and to simplify the discussion. It does not limit the generality of our model, as (eq.
1) can be used to model the more general case, by encoding the information about
the last executed action in the state. Such an encoding might not be desirable for
efficiency reasons, in which case the alternative is to modify our model, which should
not present any fundamental difficulties.

Also notice that we allow cycles in the agent dependency graph, and moreover
the same agent can both influence and be influenced by some other agent (e.g., agents
4 and m in Figure 1). We also allow for asymmetric influences between agents, i.e., it
could be the case that one agent affects the other, but not vice versa (e.g., agent m in
Figure 1 is influenced by agent 1, but the opposite is not true). This is often the case in
domains where the relationships between agents are authority-based. It turns out that
the existence of such asymmetry has important implications on the compactness of

8 Dolgov and Durfee

the solution and the complexity of the solution algorithms. We return to a discussion
of the consequences of this asymmetry in the following sections.

It is important to note that, in this representation, each transition and reward func­
tion only specifies the rewards and transition probabilities of agent m, and contains
no information about the rewards and transitions of other agents. This implies that
the reward and next state of agent m are conditionally independent of the rewards
and the next states of other agents, given the current action of m and the state of m
and its parents fA^. Therefore, this model does not allow for correlations between
the rewards or the next states of different agents. For example, we cannot model the
situation where two agents are trying to go through the same door and whether one
agent makes it depends on whether the other one does; we can only represent, for
each agent, the probability that it makes it, independently of the other. This is anal­
ogous to the commonly-made simplifying assumption that variables in a dynamic
Bayesian network are independent of other variables within the same time slice. This
limitation of the model can be overcome by "lumping together" groups of agents that
are correlated in such ways into a single agent as in the flat multiagent MDP formula­
tion. In fact, we could have allowed for such dependencies in our model, but it would
have complicated the presentation. Instead, we assume that all such correlations have
already been dealt with, and the resulting problem only consists of agents (perhaps
composite ones) whose states and rewards have this conditional independence prop­
erty.

It is easy to see that the size of a problem represented in this fashion is expo­
nential in the maximum number of parents of any agent, but unlike the flat model,
it does not depend on the total number of agents. Therefore, for large-scale multia­
gent problems where each agent has a small number of parents, space savings can
be significant. In particular, this can lead to exponential (in terms of the number of
agents) savings for domains where the number of parents of any agent is bounded by
a constant.

3 Properties of Graphical Multiagent MDPs

Given the compact representation of multiagent MDPs described above, two impor­
tant questions arise. First, can we compactly represent the solutions to these prob­
lems? And second, if so, can we exploit the compact representations of the problems
and the solutions to improve the efficiency of the solution algorithms? Positive an­
swers to these questions would be important indications of the value of this graphical
problem representation. However, before we attempt to answer these questions and
get into a more detailed analysis of the related issues, let us lay down some ground­
work that will simplify the following discussion.

First of all, let us note that a graphical multiagent MDP is just a compact rep­
resentation, and any graphical MMDP can be easily converted to a flat multiagent
MDP, analogously to how a compact Bayesian network can be converted to a joint
probability distribution. For example, for a problem where all agents in a graphical
MDP are maximizing the social welfare of the team (sum of rewards of all agents).

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 9

this graphical MMDP is equivalent to the following flat MDP:

J><^ = J)i X . . . X j) ^ ,

yi(j^ = J%\ X . . . X J%iy

^fA/lW)"^ Z, ^^(^H^{R)^^^)^ (2)

Therefore, all properties of solutions to flat multiagent MDPs (e.g., stationarity,
history-independence, etc.) also hold for equivalent problems that are formulated as
graphical MMDPs. However, in general, it is not possible to convert a flat multiagent
MDP to a graphical MMDP without "lumping" together all agents into one by taking
cross products of their state and action spaces. This suggests that it might be possible
to more compactly represent the class of policies that are optimal for problems that
are representable as graphical MMDPs.

Let us make the following simple observation that defines the notation and sets
the stage for the following discussion.

Observation 1 For a graphical MMDP {Sm^-%i^Pm^^m)» m^My with an optimiza­
tion criterion for which optimal policies are Markov, stationary, and deterministic, "^
such policies can be represented as Tim '- Sxm ^~^ -^» where Sx^ ^^ ^ cross product of
the state spaces of some subset of all agents (X^i C !M).

Clearly, this observation does not say much about the compactness of policies,
since it allows ; ^ = fW, which corresponds to a solution where an agent has to con­
sider the states of all other agents when deciding on an action. If that were always the
case, using this compact graphical representation for the problem would not (by it­
self) be beneficial, because the solution would not retain the compactness and would
be exponential in the number of agents. However, for some problems, Xm can be sig­
nificantly smaller than 9i{, Thus we are interested in determining, for every agent m,
the minimal set of agents whose states m's policy has to depend on:

Definition 1 In a graphical MMDP, a set of agents X^ is a minimal domain of an
optimal policy Km : Sxn, ^~^ - ^ of agent m if and only if, for any set of agents y and
any policy K!^'- S<y ^-^ ^ , the following implications hold:

where U{n) is the payoff that is being maximized.

In words, any policy that is defined on the states of a subset of the minimal domain
Xtn will be stricdy worse than 71 ,̂ and no policy defined on a superset of X^n can be
better than Tim.

^ We will implicitly assume that optimal policies are Markov, stationary, and deterministic
from now on.

10 Dolgov and Durfee

In essence, this definition allows us to talk about the sets of agents whose joint
state space is necessary and sufficient for determining optimal actions of agent m.
From now on, whenever we use the notation Km ' Sxm -̂̂ - ^ , we implicitly assume
that Xfn is the minimal domain of 7Ĉ .

3.1 Assumptions

As mentioned earlier, one of the main goals of the following sections will be to char­
acterize the minimal domains of agents' policies under various conditions. We will
be interested in analyzing the worst-case complexity of policies (i.e., the structure
of policies for the most difficult examples from a given class of multiagent MDPs).
One way to perform such an analysis is by studying examples of such worst-case
scenarios. However, we take a different route which we believe is more illustrative:
we first make some assumptions about properties of minimal domains that allow us
to rule out some non-interesting degenerate special cases, and then rely on these as­
sumptions to derive our complexity results. As such, these assumptions do not limit
the general complexity results that follow, as the latter only require that there exist
some problems for which the assumptions hold. In the rest of the paper, we implicitly
assume that they hold.

Central to our future discussion will be an analysis of which random variables
(rewards, states, etc.) depend on which others. It will be very useful to talk about the
conditional independence of future values of some variables, given the current values
of others.

Definition 2 We say that a random variable X is Markov on the joint state space
5<y of some set of agents ^ if given the current values of all states in S<y, the future
values ofX are independent of any past information. If that property does not hold,
we say that X is non-Markov on 3<y.

We make the following assumptions:

Assumption 1 For a minimal domain X^ of agent m's optimal policy, and a set of
agents % the following hold:

1. Xfn is unique

2. meXm

3. I E Xfn =^ Si is Markov on Sx^

4. Sm is Markov on Sry <=^ !/ 2 - ^

The first assumption allows us to avoid some special cases where there are sets of
agents whose states are 100% correlated, and equivalent policies can be constructed
as functions of either of the sets.

The second assumption states that the domain of an optimal policy of an agent
should include its own state, which is true for all but the most trivial cases.

The third assumption says that the state space of any agent / that is in the minimal
domain of m must be Markov on the state space of the minimal domain. Since the

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 11

state space of agent / is in the minimal domain of m, it must influence m's rewards in
a non-trivial manner. Thus, if 5/ is non-Markov on Sx^,' agent m will, in general, be
able to increase its payoff by expanding the domain of its policy to make 5/ Markov
(since that will allow it to better predict future rewards).

The fourth assumption says that the agent's state is Markov only on supersets of
its minimal domain. Indeed, if there exists a smaller domain Zc Xm such that the
agent's state space Sm is Markov on Z, the agent should be able to implement the
same policy on Z, contradicting the definition of the minimal domain. Conversely,
Sm niust be Markov on the minimal domain, since if the opposite were true, the agent
would, in general, benefit from expanding the domain of its policy to better predict
future rewards. Clearly, if Sm is Markov on Jl^, it must be Markov on any superset

These assumptions are slightly redundant (e.g., 4 could be deduced from weaker
conditions), but we use this form for brevity and clarity.

We can combine Assumptions 1.1 and 1.4 into the following useful result.

Corollary 1 For a minimal domain Xm of agent m's optimal policy and a set of
agents % such that y 2 -^> the following holds: Sm ^s non-Markov on S<y.

Indeed, if the above did not hold, meaning that Sm were Markov on S<y, by Assump­
tion L4, y would be a superset of some minimal domain X^i^ Xm, which would
violate the uniqueness assumption L L

3.2 Transitivity

Using the assumptions of the previous sections, we can derive an important property
of minimal domains that will significandy simplify the analysis that follows.

Proposition 1 Consider two agents mje M, where the optimal policies ofm and
I have minimal domains ofXm and Xi, respectively (Km * Sxn, '~^ - ^ ' ^/ * ^Xi ^-^ -^)-
Then, under Assumption I, the following holds:

I ^ Xfn ==> Xi C Xm^

Le,, if the minimal domain X^ of agent m's policy includes agent I, then X,n i^ust also
include the minimal domain of I.

Proof: We will show this by contradiction. Let us consider an agent from /'s minimal
domain: k£ Xi. Let us assume (contradicting the statement of the proposition) that
I e Xfn, but k^ Xfn. Consider the set of agents that consists of the union of the two
minimal domains ^ and X/, but with agent k removed:

7'm = Xm\J{Xi\k).

Then, since Tm^ Xi, Assumption L4 implies that Si is non-Markov on 5%,. Thus,
Assumption L3 implies / ^ A^, which contradicts our earlier assumption. •

Essentially, this proposition says that the minimal domains have a certain "tran­
sitive" property: if agent m needs to base its action choices on the state of agent /,

12 Dolgov and Durfee

then, in general, m also needs to base its actions on the states of all agents in the min­
imal domain of /. As such, this proposition will help us to establish lower bounds on
policy sizes.

Intuitively, the proposition says that since m's policy depends on /'s state, and the
trajectory of /'s state depends on Xi, it makes sense for agent m to base its actions
on the states of all agents in Xi, Otherwise, the evolution of m's own state might not
be Markov and agent m might not be able to predict the future as well as it could,
leading to suboptimal policies. To illustrate, let us once again refer to our doorway
example, where one agent, m, needs to go through a doorway that is being controlled
by a second agent, /. Naturally, the optimal action of the first agent, m, depends on
the state of the second agent, /, implying that / G X^ (second agent is in the minimal
domain of the first one). Now, suppose that the door-opening policy of the second
agent / depends on the state of a third agent k (perhaps the third agent controls the
power to the building), which by definition means that keXi, Under these conditions
the first agent m should base its action choices on the state of agent /: (e.g., no sense
pursuing a policy that requires going through the door if there is no power and no
chance of the door opening). Thus, agent m should expand its domain to include all
the external factors which affect the policy of the door-controlling agent /.

In the rest of the paper, we analyze some classes of problems to see how large
the minimal domains are under various conditions and assumptions, and for domains
where minimal domains are not prohibitively large, we outline solution algorithms
that exploit graphical structure. In what follows, we focus on two common scenarios:
one, where the agents work as a team and aim to maximize the social welfare of the
group (sum of individual payoffs), and the other, where each agent maximizes its
own payoff.

4 Maximizing Social Welfare

The following proposition characterizes the structure of the optimal solutions to
graphical multiagent MDPs under the social welfare optimization criterion, and as
such serves as an indication of whether the compactness of this particular represen­
tation can be exploited to devise an efficient solution algorithm for such problems.
We demonstrate that, in general, when the social welfare of the group is considered,
the optimal actions of each agent depend on the states of all other agents (unless
the dependency graph is disconnected). Let us point out that this scenario where all
agents are maximizing the same objective function is equivalent to a single-agent
factored MDP, and our results for this case are analogous to the fact that the value
function in a single-agent factored MDP does not, in general, retain the structure of
the problem [14].

The implication of these results is that for large-scale cooperative MDPs where
all agents are maximizing the social welfare of the group, the complexity and size of
optimal solutions very quickly becomes prohibitive. Therefore, for such problems it
is necessary to resort to approximate solution methods [10, 6, 7, 20].

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 13

SiXS2xS3->/l2 2 2 S^xS^xS^-^A^

6
Fig. 2. Illustration for Proposition 2

finish 4\ <^ 4\ <i

1-?- 2 + 3 ^ 4

start - i j > — ^ > ^ > — ^ > — ^

Fig. 3. Assembly line example.

Proposition 2 For a graphical MMDP with a connected (ignoring edge direction­
ality) dependency graph, under the optimization criterion that maximizes the social
welfare of all agents, an optimal policy Km of agent m, in general, depends on the
states of all other agents, i.e., Um : Sg^ ^-^ ^ .

Proof (Sketch): Agent m must, at the minimum, base its action decisions on the
states of its immediate (both transition- and reward-related) parents and children (as
illustrated in Figure 2). Indeed, agent m should worry about the states of its transition-
related parents, fA/^(P), because their states affect the one-step transition probabili­
ties of m, which certainly have a bearing on m's payoff. Agent m should also include
in the domain of its policy the states of its reward-related parents, 9{^{R), because
they affect m's immediate rewards and agent m might need to adjust its behavior de­
pending on the states of its parents. Similarly, since the agent cares about the social
welfare of all agents, it will need to consider the effects of its actions on the states
and rewards of its immediate children, and must thus base its policy on the states of
its immediate children 9Q (P) and 9\Q {R) to potentially "set them up" to get higher
rewards.

Having established that the minimal domain of each agent must include the im­
mediate children and parents of the agent, we can use the transitivity property from
the previous section to extend this result. Although Proposition 1 only holds under
the conditions of Assumption 1, for our purpose of determining the complexity of
policies in general, it is sufficient that there exist problems for which Assumption 1
holds. It follows from Proposition 1 that the minimal domain of agent m must include
all parents and children of m's parents and children, and so forth. For a connected
dependency graph, this expands the minimal domain of each agent to all other agents
infAf. •

14 Dolgov and Durfee

The above result should not be too surprising, as it makes clear, intuitive sense.
Indeed, let us consider a simple example, shown in Figure 3, that has a flavor of
a commonly-occurring production scenario. The agents are operating an assembly
line, where several tasks have to be done in sequence to build the output product.
Each agent has to perform two operations in order for the whole process to succeed
(e.g., in Figure 3, agent 2 has to perform operations 2 and 7). Furthermore, each agent
can choose to participate in the assembly line, yielding a very high reward if all agent
cooperate, or it can concentrate on a local task that does not require the cooperation of
other agents, but which has a much lower social payoff. The interactions between the
agents in the assembly line are only local, i.e., each agent receives the product from
a previous agent, modifies it, and passes it on to the next agent. Let us now suppose
that each agent has a certain probability of breaking down, and if that happens to at
least one of the agents, the assembly line fails. In such an example, the optimal policy
for the agents would be to act as follows. If all agents are healthy, participate in the
assembly line. If an agent fails and the current production item is not "blocked" by
the failed agent, finish processing the current item and then switch to the local task.
If the agent that fails blocks the ongoing process, switch to local task immediately.
Clearly, in this example, agents' policies are functions of the states of all other agents.

The take-home message of this section is that, when the agents care about the
social welfare of the group, even when the interactions between the agents are only
local, the agents' policies depend on the joint state space of all agents. The reason
for this is that a state change of one agent might lead all other agents to want to
immediately modify their behavior. Therefore, the compact problem representation
(by itself and without additional restrictions) does not lead to compact solutions.

5 Maximizing Own Welfare

In this section, we analyze problems where each of the agents maximizes its own
payoff. Under this assumption, unlike the discouraging scenario of the previous sec­
tion, the complexity of agents' policies is slighdy less frightening. The following
result characterizes the sizes of the minimal domains of optimal policies for prob­
lems where each agent maximizes its own utility. It states that the policy of every
agent depends on the states of all of its ancestors.

Proposition 3 For a graphical MMDP with an optimization criterion where each
agent maximizes its own reward, the minimal domain of m 's policy consists of m
itself and all of its transition- and reward-related ancestors: Xm = ^^, where we use
^m — ^ U ^m —^U^m (^) U ̂ m W ^^ ̂ ^f^^ ^^ ^ ^^^ ^^^ ^f ^^^ ancestors.

Proof (Sketch): To show the correctness of the proposition, we need to prove that,
(1) the minimal domain must include at least m itself and its ancestors (Xm 2 ^m)'
and (2) that Xtn does not include any other agents (X^ C ̂ E").

We can show (1) by once again applying the transitivity property. Clearly, an
agent's policy should be a function of the states of the agent's reward-related and
transition-related parents, because they affect the one-step transition probabilities

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 15

and rewards of the agent. Then, by Proposition 1, the minimal domain of the agent's
policy must also include all of its ancestors.

We establish (2) as follows. We assume that it holds for all ancestors of m, and
show that it must then hold for m. We then expand the statement to all agents by
induction.

Let usjfix the policies n^ of all agents except m. Then, consider the tuple
(5r£- ,J^,P^-,R^-), where P^;- and R^- are functions with the following domains
and ranges:

^£^ • -̂z;;̂ X j ^ X S^- ^ [0,1]
(3)

and are defined as follows:

^!£^ (^£^ ' ^w' JT^) ~^f^V'0^(P)' ^^' ^fn5 jm)

Ylj'k[%-{Py^k^'^k{i<E-)Jk) (4)
keo;;r

The above constitutes a fully-observable MDP on S<^- and J^ with transition func­
tion Pm and reward function /?^. Let us label this decision process MDP\. By prop­
erties of fully-observable MDPs, there exists an optimal stationary deterministic so­
lution 71̂ of the form nj^: 5 ^ -̂̂ ^ .

Also consider the following MDP on an augmented state space that includes the
joint state space of all the agents (and not just m's ancestors): MDP2 = {Sr\{, J4m,P^jRgi{),
where Pg^ and 7?^ are functions with the following domains and ranges:

(5)
P:So^xJ^xSg^^ [0,1]

R'.Sg^^R

and are defined as follows:

/:GfJ^\(mUO^)

Basically, we have now constructed two fully-observable MDPs: MDP\ that is
defined on 5<r-, and MDPi that is defined on Sc}^, where MDP\ is essentially a "pro­
jection" of MDP2 onto 5^;- • We need to show that no solution to MDP2 can have a

(6)

16 Dolgov and Durfee

higher value^ than the optimal solution to MDPi. Let us refer to the optimal solu­
tion to MDPi as 71 .̂ Suppose there exists a solution 7î to MDP2 that has a higher
value than nj^. The policy 71̂ defines a stochastic trajectory for the system over the
state space 5 ^ (for any fixed initial distribution over the state space). Let us label
the distribution over the state space at time t as p{if^(,t) and its projection onto S<^-
as p{i^,t). Under our assumptions we can always construct a non-stationary ran­
domized policy nj^{t): S^ x J ^ -̂̂ [0,1] for MDP\ that yields the same distribution
p{i^-,t) over the state space S^ as the one produced by 71 .̂ Thus, there exists a
randomized non-stationary solution to MDP\ that has a higher payoff than 7X̂ , which
is a contradiction, since we assumed that nj„ was optimal for MDP\.

We have therefore shown that, given that the policies of all ancestors of m depend
only on their own states and the states of their ancestors, there always exists a policy
that maps the state space of m and its ancestors (S^-) to m's actions (j^) that is
at least as good as any policy that maps the joint space of all agents (Sgi{) to m's
actions. Then, by using induction, we can expand this statement to all agents (for
acyclic graphs we use the root nodes as the base case, and for cyclic graphs, we use
agents that do not have any ancestors that are not simultaneously their descendants).
•

The intuition behind the above result is very simple: if an agent is maximizing
its own welfare, it should not worry about the state of agents that have no bearing on
its future rewards and transitions (the descendants). It does, however, need to worry
about all of its reward and transition-related ancestors, because otherwise the agent's
state or reward sequence might not be Markov on the state space of its minimal
domain, in which case its policy will, in general, be suboptimal.

The implication of the above proposition is that, for situations where each agent
maximizes its own utility, the optimal actions of each agent do not have to depend
on the states of all other agents, but rather only on its own state and the states of its
ancestors. In contrast to the conclusions of Section 4, this result is more encourag­
ing. For example, for dependency graphs that are trees (typical of authority-driven
organizational structures), the number of ancestors of any agent equals the depth of
the tree, which is logarithmic in the number of agents. Therefore, if each agent max­
imizes its own welfare, the size of its policy will be exponential in the depth of the
tree, but only linear in the number of agents.

5.1 Acyclic Dependency Graphs

Thus far we have shown that problems where agents optimize their own welfare can
allow for more compact policy representations. We now describe an algorithm that
exploits the compactness of the problem representation to more efficiently solve such
policy optimization problems for domains with acyclic dependency graphs.

It is a distributed algorithm where the agents exchange information, and each
one solves its own policy optimization problem. The algorithm is very straightfor-

^ The proof does not rely on the actual type of optimization criterion used by each agent and
holds for any criterion that is a function only of the agents' trajectories.

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 17

Algorithm 1: Solving acyclic multiagent MDPs.
Function SolveAcyclicMDP()
in : (Jw,J^,Pw,/?w)-MDP of agent m

: 9{^ - parents of agent m
: 9sQ - children of agent m

out: optimal policy Km for agent m
wait for policies Uu of all ancestors {ke 0~) from parents 9{^
form MDPU={5T ,̂J^n.P -̂J^ -̂) per (eq. 4)
7t̂ ̂ solve MDP (J^-, ;^ , F ;̂̂ ,/?2;̂)
send own policy Km and Uj^ to children 9{^

ward and works as follows. First, the root nodes of the graph (the ones with no
parents) compute their optimal policies that are simply mappings of their own states
to their own actions. Once a root agent computes a policy that maximizes its wel­
fare, it sends the policy to all of its children. Each child waits to receive the policies
Uk, k e 9{^ from its ancestors, then forms a MDP on the state space of itself and
its ancestors as in (eq. 4). It then solves this MDP {S<^,J^,P<^-,R^) to produce
a policy 7î : 'E^ i-> J^, at which point it sends the policy and the policies of its
ancestors to its children. The process repeats until all agents compute their optimal
policies. Essentially, this algorithm performs, in a distributed manner, a topological
sort of the dependency graph, and computes a policy for every agent. Let us note that
parents have no incentive to hide their policies from the children, since the children
cannot influence the parents' utility, because of to the asymmetry.

5.2 Cyclic Dependency Graphs

We now turn our attention to the case of dependency graphs with cycles. Note that
the complexity result of Proposition 3 still applies, because no assumptions about the
cyclic or acyclic nature of dependency graphs were made in the statement or proof
of the proposition. Thus, the minimal domain of an agent's policy is still the set of
its ancestors.

The problem is, however, that the solution algorithm of the previous section is
inappropriate for cyclic graphs, because it will deadlock on agents that are part of
a cycle, since these agents will be waiting to receive policies from each other. In­
deed, when self-interested agents mutually affect each other, it is not clear how they
should go about constructing their policies. Moreover, in general, for such agents
there might not even exist a set of stationary deterministic policies that are in equi­
librium, i.e., since the agents mutually affect each other, the best responses of agents
to each others' policies might not be in equilibrium.

A careful analysis of this case falls in the realm of Markov games (e.g., [21,
16, 15]), and is beyond the scope of this paper. However, if we assume that there
exists an equilibrium in stationary deterministic policies, and that the agents in a
cycle have some "black-box" way of constructing their policies, we can formulate

18 Dolgov and Durfee

Algorithm 2: Solving cyclic multiagent MDPs.
Function SolveCyclicMDP()
in : (5m,-^,^m,^w)-MDPof agentm

: 0\(^ - parents of agent m
: 9{^ - children of agent m

out: optimal policy Km for agent m
^m ^ find all your peers
wait for policies nic of all ancestors not in Qm
P^ ̂ local transition function from Pm and {uk}
form a joint MDP {S<E^ , Ag^ ,Pg^,RgJ
Km <r- solve joint MDP {Sg^,J^g^,Pg^,RgJ
send own policy Km to children 9^

an algorithm for computing optimal policies, by modifying the algorithm from the
previous section as follows. The agents begin by finding the largest cycle they are
a part of, and then, after the agents receive policies from their parents who are not
also their descendants, the agents proceed to devise an optimal joint policy for their
cycle, which they then pass to their children.

Notice that the algorithm relies on a way for each agent m to find all other agents
that are a part of a cycle that contains m. Since the set of agents that are in a cycle
with m is the intersection of the ancestors and descendants of m, finding all peers
of an agent can be done in polynomial time (in the number of agents) via a simple
algorithm that performs a traversal of the dependency graph.

6 Additive Rewards

In our earlier analysis, a reward function /?,„ of an agent could depend in an arbitrary
way on the current states of the agent and its parents (eq. 1). In fact, this is why
agents, in general, needed to adjust their behavior depending on the states of their
parents (and children in the social welfare case), which, in turn, was why the effects
of reward-related dependencies propagated just as the transition-related ones did.

In this section, we consider a subclass of reward functions for which locality is
better maintained. Namely, we focus on additively-separable reward functions:

Rmvg^i^Ryim) — l^mmy'm)'^ 2^ ^mkVk)', U)

where r^nk is a function (r^/^: 5/: -̂̂ R.) that specifies the contribution of agent k to m's
reward. In words, we assume that a reward of agent m can be expressed as a sum of
several terms, each of which depends on the state of only one agent.

Furthermore, the results of this section are only valid under certain assumptions
about the optimization criteria the agents use. Let us say that if an agent receives
a history of rewards ^{r) = {r{t)} = {r(0),r(l),...}, its payoff is U{iH{r)) =

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 19

1 \n^:S^-^A

^̂ ^

F"

m^

71,: S^->/l,

2 n^: 8^x82-^A^

(a) (b) (c)

Fig. 4. Additive rewards. Two-agent problems.

f/(r(0),r(l),...). Then, in order for our results to hold, U has to be linear addi­
tive:

umn + r2)) = uWn)) + umr2)) (8)
Notice that this assumption holds for the commonly-used risk-neutral MDP opti­
mization criteria, such as expected total reward, expected total discounted reward,
and average per-step reward, and is, therefore, not greatly limiting.

In the rest of this section we examine problems with reward functions that are
subject to these conditions. We begin by analyzing some important special cases
with only two agents (shown in Figure 4) and then discuss whether and how these
results can be extended to problems with more than two agents.

First, let us observe that all problems in Figure 4 have cyclic dependency graphs.
Therefore, if the reward functions of the agents were not additively-separable, per
our earlier results of Section 5, there would be no guarantee that there would exist an
equilibrium in stationary deterministic policies. The problem in Figure 4a has a cycle
in transition-related dependencies, and our assumptions about the reward functions
will not help us with the existence of equilibria. Therefore, in this section, we will
only consider problems where there are no cycles due to transition-related dependen­
cies. Under these conditions, as we show below, our assumption about the additivity
of the reward functions ensures that an equilibrium always exists for problems such
as the ones in 4b and 4c.

Let us consider the case in Figure 4b. Clearly, the policy of neither agent affects
the transition function of the other. Thus, given our assumptions about additivity of
rewards and utility functions, it is easy to see that the problem of maximizing the
payoff is separable for each agent. For example, for agent 1 we have:

maxt/i(i^(/?i(/i,/2))-maxC/(i^(rii(/i)))+max^(:^(r2i(/2))) (9)
7li,7l2 n\ 7C2

Thus, regardless of what policy agent 2 chooses, agent 1 should adopt a policy
that maximizes the first term in (eq. 9). In game-theoretic terms, each of the agents
has a (weakly) dominant strategy, and will adopt that strategy, regardless of what the
other agent does. This is what guarantees the above-mentioned equilibrium.

Now that we have demonstrated that, for each agent, it suffices to optimize a
function of only that agent's own states and actions, it is clear that each agent can
construct its optimal policy independently. Indeed, each agent has to solve a standard

20 Dolgov and Durfee

MDP on its own state and action space with a slightly modified reward function:
^mi^m) = f'fnm{im)^ which differs from the original reward function (eq. 7) in that it
ignores the contribution of m's parents to its reward.

Let us now analyze the case in Figure 4c, where the state of agent 1 affects the
transition probabilities of agent 2, and the state of agent 2 affects the rewards of
agent 1. Again, without the assumption that rewards are additive, this cycle would
have caused the policies of both agents to depend on the cross product of their state
spaces S\ x Si, and furthermore the existence of equilibria in stationary determinis­
tic policies between self-interested agents would not be guaranteed. However, when
rewards are additive, the problem is simpler. Indeed, due to our assumptions, we can
write the optimization problems of the two agents as:

max/7i (...)== max f/i (i^(rii)) 4-max/7i (i^(ri2))
7^1,712 ^1 711,712 . ^ .

max (/2(. ..) = max 6^2(^(^21))+ niax ^2(^(^22))
n\ ,7l2 ^1 ^1)^2

Notice that here the problems are no longer separable (as they were in the previous
case of Figure 4b), so neither agent is guaranteed to have a dominant strategy.

However, we can make an additional assumption about the structure of agents'
rewards that will guarantee an existence of a Nash equilibrium in stationary deter­
ministic policies. Namely, let us assume that agents' reward functions are subject to
the following condition:

rmk{k) = lmk{rkk{k)), (11)

where Imk is a positive linear function {lmk{^) = ou;-fP, a > 0 , P > 0) . This condition
implies that agents' preferences over each other states are positively (and linearly)
correlated, i.e., when an agent increases its local reward, its contribution to the re­
wards of its reward-related children also increases linearly.

Under that assumption, (eq. 10) will always have an equilibrium solution in sta­
tionary deterministic policies. This is due to the fact that a positive linear trans­
formation of the reward function of a MDP does not change its optimal policy, as
demonstrated below (for concreteness we show this for MDPs with the total expected
discounted reward optimization criterion, but the statement is true more generally).

Observation2 Consider two MDPs: A = {S,J^,R,P) andM = {3,^,R\P), R'{i) =
(xR{i)-\- p, where a > 0 and (3 > 0. Then, a policy n is optimal for A under the total
expected discounted optimization criterion if and only if it is optimal for A',

Proof: Let us consider how the linear transformation of the reward function will
affect the Q function of the MDP. It is easy to see that the linear transformation
R^(^i) = a/?(/) -f P of the reward function will lead to a linear transformation of the Q
function, where Q'{i,a) ^ aQ{i,a) H- P(l - Y)~^ where y is the discount factor.

Indeed, suppose that this is true. Then, the new Bellman equations for the trans­
formed MDP A' will have the form:

Q'{i,a)=R'{i)+yJ^P{i,aJ)maxQ'{j,a)

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 21

p 1

T

2

f

3

^̂

(a) (b) (c) (d)

Fig. 5. Multiagent problems, additive rewards: existence of equilibrium strategies.

or, under our hypothesis about the transformation of the Q function:

ae(/,a) + y ^ - aR{i) + ^-^yJ^P{i,aJ)m^x (aQU.a) + j^)

After a trivial algebraic manipulation, the above can be expressed as

Qii,a)=Rii)+jyii,aJ)m^QiJ,a) + l + ^ ^ - ^ ^ ,

where the last terms cancel out, yielding exactly the Bellman equation for the original
MDPA:

Q{i,a) = R{i)+yYP{i,aJ)m^xQU,a)
. a

J

Therefore, since the agent computes the optimal policy as

n{i) = mdixQ!{i,a) = maxaG(/,a)H-P(l -y)"^ = max2(/,fl),
a a a

a policy n is optimal for A if and only if it is optimal for A'. •
Observation 2 implies that, for any policy n\, a policy ni that maximizes the

second term of U\ in (eq. 10) will be simultaneously maximizing (given n\) the
second term of U2 in (eq, 10). In other words, given any 7Ci, both agents will agree
on the choice of m. Therefore, agent 1 can find the pair (711,712) that maximizes its
payoff U\ and adopt that TCi. Then, agent 2 will adopt the corresponding 712, since
deviating from it cannot increase its utility because 712 is simultaneously maximizing
the second terms in (eq. 10) for both agents.

Let us now consider whether these results carry over to problems with more than
two agents. Unfortunately, there is no trivial extension of the analysis to problems
with arbitrary numbers of agents and general dependency graphs, because the ques­
tion of the existence of equilibria in stationary deterministic strategies becomes more
complicated. To illustrate the issue, let us consider a few more special cases shown
in Figure 5.

Consider the dependency graph in Figure 5a. The optimization problems the
agents face are as follows.

22 Dolgov and Durfee

max/7i (...) = max L̂ i (i^(rii)) 4-max t/i (:^(ri3))
n\ 7Ci ,713

maxf/2(...) = maxf/2(i^(r22)) + maxt/2(:^(r23)) (12)
7l2 ^2?^3

maxf/3(...)== max t/3(:^(r33))
7li ,7ll ,7C3

It is easy to see that the existence of a Nash equihbrium is not guaranteed in this
case, because agents 1 and 2 might want agent 3 to behave in different ways and
there might not exist a set of stationary, deterministic strategies {K\,712,113) that are
in equilibrium (i.e., one of the agents might want to deviate). The problem with this
example is due to the fact that agent 3 has multiple transition-related parents, which
suggests that problems with tree-like transition dependency graphs might be better-
behaved.

Let us, therefore, consider the example in Figure 5b, whose transition depen­
dency graph is a tree. The optimization problems of the agents are:

max(/i(...) = maxt/i(i^(rii))+ max Ui{iH{ri3))

max^2(...) = max 6^2(^(^22)) (13)

max^3(...)=^ max ^3(^(^33))

Here, the existence of an equilibrium is also not guaranteed because, even though
agents 1 and 3 will always agree on TC3 (given any Tii), agents 1 and 2 might not have
an equilibrium. In other words, given a 7Ci (which defines the transition function and
thus the optimization problem of agent 2) agent 2 can find its best policy 7I2 (TCI) —
argmax7C2 ̂ 2(^(^22)). However, given n^, agent 1 might want to change its TCi to
improve its reward. Here, the problem is due to the fact that agent 2 has control of
agent 3 who does not contribute to 2's rewards directly, but does effect the rewards
of a parent of 2.

The above suggest that perhaps limiting reward loops to immediate transition-
related children and parents (as in the case of two agents) might lead to equilibria.
To investigate, let us consider the example from Figure 5c. The agents' optimization
problems are:

max ̂ 1 (...) = max t/i (:^(rii)) +max (/i (:^(ri2))

maxt/2(-..) ^niax(72(i^(r22))+ max 6^2(^(^23)) (14)
711,7^2 Tlj ,712,713 ^ -̂

max(/3(...)= max ^3(^(^33))

Alas, here a Nash is also not guaranteed, because once again the interests of agents 1
and 2 might conflict (for example, the term L̂ i {^{rn)) might be the most important
for agent 1, whereas agent 2 might want to choose 712 to increase 6̂2 (-^(^23)) above
all else).

A condition that does ensure the existence of an equilibrium is illustrated by the
example in Figure 5d, where the optimization problems of the agents are:

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 23

maxf/i(...)=maxl7i(:7/'(rii)) + maxL^i(:^(ri2))+ max U\{!^{ri3))

max(/2(...)==max/72(:^(r22))+ max U2{^{r23)) (15)
7li,7l2 Til ,712,713 ^ ^

max/73(...)= max 6/3(^(^33))

Here, an equilibrium exists, because each agent maximizes a subset of reward terms
that its parent is maximizing, i.e., given any 711 and 712, all three agents will agree on
the choice of 713; similarly, given a 711 the agents will agree on the choice of K2 and
713.

Thus, just like in the two-agent problems discussed earlier, if the contributions
of agents to each other's rewards are aligned (as in (eq. 11)), and the maximization
problem of each agent includes reward terms that are a subset of the terms of each
of its parents, an equilibrium strategy profile exists. In this case, the agents can for­
mulate their optimal policies via algorithms similar to the ones described in Section
5.1.

An interesting question is whether this is a necessary condition for the existence
of equilibria in stationary deterministic strategies for problems with arbitrary de­
pendency graphs and numbers of agents, or whether weaker assumptions would be
sufficient. An analysis of this issue is one of the directions of our current and future
work.

7 Conclusions

We have analyzed the use of a particular compact, graphical representation for a
class of multiagent MDPs with local, asymmetric influences between agents. As is
the case with other graphical models, the representation studied in this work can lead
to exponential savings in problem representation. However, in general, because the
effects of agents' influences on each other propagate with time, the compactness of
the problem representation is not fully preserved in the solution. We have shown
this for multiagent problems with the social welfare optimization criterion, which
are equivalent to single-agent problems, and for which similar results are known
[14]. Because optimal policies for such problems do not retain any of the structure
of the original problem (agents' policies depend on the states of all other agents),
exact solution methods are infeasible, and approximate solution techniques appear
well-justified.

We have also analyzed multiagent problems with self-interested agents, and have
shown the complexity of solutions to be less prohibitive in some cases (acyclic de­
pendency graphs). We have demonstrated that under further restrictions on agents'
effects on each others' rewards (additively-separable, positive linear functions), lo­
cality is preserved to a greater extent. Under these conditions, equilibria in stationary
deterministic strategies can exist even for graphs with reward-related cycles.

Our future work will combine the graphical representation of multiagent MDPs
with other forms of problem factorization, including constrained multiagent MDPs
[9].

24 Dolgov and Durfee

Another direction of our future work includes analyzing problems where re­
distribution of rewards is possible, which might cause agents to negotiate policies
with their children.

8 Acknowledgments

This work was supported, in part, by a grant from Honeywell Laboratories, and by
DARPA/ITO and the Air Force Research Laboratory under contract F30602-00-C-
0017 as a subcontractor through Honeywell Laboratories.

References

1. R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
1961.

2. Richard Bellman. Dynamic Programming. Princeton University Press, 1957.
3. Craig Boutilier. Sequential optimality and coordination in multiagent systems. In Pro­

ceedings of the 1999 International Joint Conference on Artificial Intelligence, pages 478-
485, 1999.

4. Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Struc­
tural assumptions and computational leverage. Journal of Artificial Intelligence Research^
11:1-94, 1999.

5. Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Stochastic dynamic program­
ming with factored representations. Artificial Intelligence, 121(l-2):49-107, 2000.

6. D. P. de Farias and B. Van Roy. The linear programming approach to approximate dy­
namic programming. Operations Research, 51(6), 2003.

7. Daniel a de Farias and Benjamin Van Roy. On constraint sampling in the linear pro­
gramming approach to approximate dynamic programming. Mathematics of Operations
Research, 29(3):462-478, 2004.

8. Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causa­
tion. Computational Intelligence, 5i3):\42-\50, 1989.

9. Dmitri A. Dolgov and Edmund H. Durfee. Optimal resource allocation and policy formu­
lation in loosely-coupled Markov decision processes. In Proceedings of the Fourteenth In­
ternational Conference on Automated Planning and Scheduling (ICAPS 04), pages 315-
324, June 2004.

10. C. Guestrin, D. Koller, R. Parr, and S Venkataraman. Efficient solution algorithms for
factored MDPs. Journal of Artificial Intelligence Research, 19:399-468, 2003.

11. M. I. Jordan. Graphical models. Statistical Science (Special Issue on Bayesian Statistics),
19:140-155,2004.

12. Michael Keams, Michael L. Littman, and Satinder Singh. Graphical models for game
theory. In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence
(UAIOl), pages 253-260, 2001.

13. Daphne Koller and Brian Milch. Multi-agent influence diagrams for representing and
solving games. In Proceedings of Seventeenth International Joint Conference on Artificial
Intelligence, pages 1027-1036, 2001.

14. Daphne Koller and Ronald Parr. Computing factored value functions for policies in struc­
tured MDPs. In Proceedings of the Sixteenth International Conference on Artificial Intel­
ligence IJCAI-99, pdigts 1332-1339, 1999.

The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 25

15. Michael L. Littman. Markov games as a framework for multi-agent reinforcement learn­
ing. In Proceedings of the 11th International Conference on Machine Learning (ML-94),
pages 157-163, New Brunswick, NJ, 1994. Morgan Kaufmann.

16. Guillermo Owen. Game Theory: Second Edition. Academic Press, Orlando, Florida,
1982.

17. M. L. Puterman. Markov Decision Processes. John Wiley & Sons, New York, 1994.
18. D. Pynadath and M. Tambe. Multiagent teamwork: Analyzing the optimality and com­

plexity of key theories and models. In In Proceedings of the First Conference on au­
tonomous agents and multiagent systems (AAMAS-2002), 2002.

19. Satinder Singh and David Cohn. How to dynamically merge Markov decision processes.
In Michael I. Jordan, Michael J. Keams, and Sara A. Solla, editors, Advances in Neural
Information Processing Systems, volume 10. The MIT Press, 1998.

20. Robert St-Aubin, Jesse Hoey, and Craig Boutilier. Apricodd: Approximate policy con­
struction using decision diagrams. In NIPS, pages 1089-1095, 2000.

21. J. van der Wal. Stochastic dynamic programming. Mathematical Centre Tracts, 139,
1981.

A Study of Scalability Properties in Robotic Teams'̂

Avi Rosenfeld, Gal A Kaminka, Sarit Kraus

Bar Ilan University, Ramat Gan, Israel

Summary. In this chapter we describe how the productivity of homogeneous robots scales
with group size. Economists found that the addition of workers into a group results in their
contributing progressively less productivity; a concept called the Law of Marginal Returns. We
study groups that differ in their coordination algorithms, and note that they display increas­
ing marginal returns only until a certain group size. After this point the groups' productivity
drops with the addition of robots. Interestingly, the group size where this phenomenon occurs
varies between groups using differing coordination methods. We define a measure of interfer­
ence that enables comparison, and find a high negative correlation between interference and
productivity within these groups. Effective coordination algorithms maintain increasing pro­
ductivity over larger groups by reducing the team's interference levels. Using this result we are
able to examine the productivity of robotic groups in several simulated domains in thousands
of trials. We find that in theory groups should always add productivity during size scale-up,
but spatial limitations within domains cause robots to fail to achieve this ideal. We believe that
coordination methods can be developed that improve a group's performance by minimizing in­
terference. We present our findings of composite coordination methods that provide evidence
of this claim.

1 Introduction

Teams of robots are likely to accomplish certain tasks more quickly and effectively
than single robots [9, 12, 23]. To date, only limited work has been performed on
studying how performance scales with the addition of robots to such groups. Should
one expect linear, exponential, or decreasing changes in productivity as the group
size grows? Previous work by Rybski et al. [23] demonstrated that groups of identi­
cal robots do at times demonstrate marginal decreasing returns. As such, their pro­
ductivity curves resembled logarithmic functions; the first several robots within their
group added the most productivity per robot and each additional robot added succes­
sively less. In contrast, Fontan and Mataric [26] found that robotic groups reached

This material is based upon work supported in part by the NSF under grant #0222914 and
ISF grant #1211/04 . Sarit Kraus is also affiliated with UMIACS.

28 Rosenfeld, Kaminka and Kraus

a certain group size, a point they call "critical mass", after which the net productiv­
ity of the group dropped. Similarly, Vaughan et al. [29] wrote that the rule of "too
many cooks" applies to their groups and adding robots decreases performance after
a certain group size.

Economists have studied the gains in productivity within human groups. Accord­
ing to their Law of Marginal Returns, if one factor of production is increased while
the others remain constant, the overall returns will relatively decrease after a certain
point [4]. As the size of the group becomes larger, the added productivity by each
successive worker is likely to become negligible, but never negative. This classical
model contains no reference to a concept similar to a "critical mass" group size after
which the added worker decreases the total productivity of the group.

Our research goal is to understand when the marginal returns predicted by the
economic model would be consistently realized as work by Rybski [23] found they
were, and when adding robots would decrease performance as Fontan and Vaughan
[26, 29] described. Towards this goal, we first analyze several existing group coor­
dination algorithms and empirically observe the different groups' productivity with
the addition of robots. We observe that the different coordination techniques affect
the productivity graphs of these groups during scale up.

To determine the cause for the differences between coordination algorithms, we
define a measure of interference that facilitates comparison, and find a high negative
correlation between group interference and productivity. Effective coordination al­
gorithms maintain marginal productivity over larger groups by reducing interference
levels. Using this result we are able to examine robotic group productivity in several
simulated domains in thousands of trials. We find that groups in theory always pro­
duce marginally, but that competition over space causes robots to deviate from this
ideal.

We believe this result can aid in studying the scalability qualities of robots. First,
our interference metric is useful post-facto, for understanding the scalability quali­
ties within robotic groups. The effectiveness of a coordination method can be judged
based on its ability to minimize interference. A team's ability to scale will be ham­
pered if interference is not kept in check. Additionally, we believe interference can
be used in an online fashion to increase the group's productivity and scalability. We
present preliminary results of composite coordination methods that indicate that our
interference metric can be used to adapt a group's coordination activities to the needs
of the domain. For future work, we plan to further study the use of this metric in im­
proving the scalability, and performance qualities of robotic groups.

2 Related Work

The study of robotic groups is quite important for several reasons. Certain tasks
require groups of robots. For example, a large hazardous item might require the
combined strength of several robots to physically move it. Other tasks can be ac­
complished through groups of robots more quickly and robustly. Rybski et al. [23]
demonstrated that groups of robots are likely to finish certain collection tasks faster

A Study of Scalability Properties in Robotic Teams 29

than one robot. Groups of inexpensive robots are also useful in certain domains
where there is a high probability damage will be incurred by any single robot. Thus,
tasks such as mine clearing are well suited for groups of inexpensive robots. In this
work we study the scalability qualities of these type of robotic tasks, but many of our
results are likely to be useful for other categories of robotic activity as well.

We study methods for improving upon the productivity of robotic groups through
improving the coordination methods in these groups. At the logical level, various
formal frameworks for teamwork have been proposed such as the joint intentions
theory of Cohen and Levesque [5], Grosz and Kraus' SharedPlans [11], and Joint
Intentions [14] have been presented for creating a cohesive team unit. Several practi­
cal teamwork implementations have been proposed for dynamic environments based
on these models. The GRATE* teamwork method [14] is based on creating Joint
Recipes based on the needs of a specific domain. The STEAM [28] teamwork en­
gine is based on creating a set of domain independent team rules. All of these frame­
works revolve around having the members of the group agreeing to and maintaining
a mutual beliefs among all members of the group. These beliefs are often explicitly
communicated, and team members require robust sensing and communication capa­
bilities. Finally, a behavior based approach, Alliance [20], operates through members
of a robot team using impatience and acquiescence behaviors to create teamwork.
This approach does not explicitly model teamwork and relies on using team behav­
iors within each robot to create team cohesion.

A second model of group behavior revolves around swarm group behaviors,
instead of formalized teamwork. Swarm behaviors typically involve homogeneous
groups of members with limited processing and operating ability. Often these models
are inspired from group activity of animals [17, 21]. Such approaches are typically
best suited for domains where large groups are available, the task does not require
tight cooperation between group members, and robust sensing and communication
abilities do not exist in group members. Dudek et al. [6] present a taxonomy of these
and other possible categories.

Between these extremes lies numerous possibilities. Swarms could be created
with high level reasoning and sensing abilities. These large groups could use high
level team reasoning skills. For example, Scerri et al. [25] presents a scalable ap­
proach where large teams are based on dynamically evolving subteams. This work
presents the challange of creating effective coordination methods that can scale.
Novel coordination approaches are needed in addressing this issue.

Our research goal in this work is to understand how to increase the effective­
ness of robotic groups' coordination during scale-up. Previous work by Fontan and
Mataric [26] noted that proper coordination lies at the root of effective group be­
havior. As such, the creation of effective coordination is critical for achieving high
productivity within a group. Our first step was to study how adding robots effects the
groups' productivity. We wished to ascertain when adding foraging homogeneous
robots hurt group performance as [26] and [29] predict they will after a certain team
size, and when these robots continuously adds to the team's performance as Rybski
etal. found [23].

30 Rosenfeld, Kaminka and Kraus

Several coordination methods have been developed for use within the foraging
domain. This domain is formally defined as locating target items from a search region
S, and delivering them to a goal region G [10]. We began by studying this domain
because of the wealth of existing research conducted within this environment [9, 10,
19, 23, 26, 29].

The foraging domain is characterized by a limited field of operation where spatial
conflicts between group members are likely to arise. Many other robotic domains
such as waste cleanup, search and rescue, planetary exploration and area coverage
share this trait. In fact, this paper demonstrates that our foraging results were equally
applicable within a second search domain.

We first studied the interplay between the success of group's coordination and
the corresponding productivity during group scale up. Several coordination methods
have been developed for use within the foraging domain. For the sake of simplifying
the comparison, we initially only contrasted methods that operate on homogeneous
robots, do not require prior knowledge of the domain, and do no require any commu­
nication. Arkin and Balch [1] describe a system of using repulsion schema any time a
robot projects it is in danger of colliding. It additionally adds a noise element into its
direction vector to prevent becoming stuck at a local minima. Vaughan et al. [29] de­
scribe an algorithm that uses Aggression to resolve possible collisions by pushing its
teammate(s) out of the way. They posit that possible collisions can best be resolved
by having the robots compete and having only one robot gain access to the resource
in question. A third approach, is a dynamic Bucket Brigade mechanism [19]. In this
method, a robot drops the item it is carrying when it detects another robot nearby. In
theory, the next closest robot should retrieve the recently dropped object and carry it
closer to the goal. While this last method may be effective in foraging, it is limited to
certain domains. This coordination method is not appropriate for certain tasks such
as searching. It also requires the robot to drop and retrieve its target without cost - an
assumption that is not necessarily true in domains such as toxic cleanup.

Other foraging coordination algorithms exist that require advance knowledge of
physical details of the operating domain and/or use groups of heterogeneous robots.
Examples of these algorithms include the territorial allocation method developed
by Fontan and Mataric [26] and the territorial arbitration scheme in Goldberg and
Mataric [9]. Both methods limit each foraging robot to a specific area or zone and
thus prevent collisions. Thus, these methods assume that improved performance can
be achieved by specializing the robots to operate only within portions of the field.
Another group of algorithms preassigns values so that certain robots inherently have
a greater priority to resources than others. This group of coordination methods is
similar to the Aggression method mentioned [29], but it preassigns robots to be ag­
gressive or meek. The fixed hierarchy system within Vaughan et al. [29] and the caste
arbitration algorithm in Goldberg and Matarid [9] implemented variations of this idea
on foraging robots.

Other variations of these coordination methods exist within other domains. For
example, Jager and Nebel [12] presented an algorithm that can dynamically create
limiting areas of operation for robots in a vacuuming domain, but require the robots
to communicate locally. Within the robotic soccer domain, various groups have been

A Study of Scalability Properties in Robotic Teams 31

created that rely on allocating each group member to a role. Communication is then
needed to allocate and reallocate these roles. One example of this idea is within
Marsellaet. al. [18].

Because the first group of algorithms require no communication, they seem more
suitable to scale to larger groups of robots. As they do not require prior knowledge
of the domain, they seem better suited for working with unknown or dynamic en­
vironments. More generally, a survey work done by Kraus [16] presented various
multi-agent coordination schemes and states that those requiring large overheads are
typically unable to scale beyond small groups. Similarly, Jones and Mataric [15]
point out that minimal robots, or those with low requirements for communication
or sensor input from teammates are more suited to scale to large swarms of robots.
Minimalistic methods have been used in collection tasks [10] and formation control
[8].

To date, only limited work exists on improving robot group scalability. The work
by Fontan and Mataric [26] found that groups of 3 robots performed best within their
foraging domain. Adding more robots only hurt performance when using their ter­
ritorial coordination method. Jager and Nebel [13] presented a collision avoidance
technique for use in trajectory planning among robot groups that requires local com­
munication. They noted that their coordination method will not scale beyond groups
of 4 robots. Rybski et al. [23] found increasing marginal productivity up to groups
of 5 foraging robots, but did not study larger sizes.

Within the general agent community, Shehory et al. [27] presented a scalable
algorithm for a package delivery domain suitable for groups of thousands of agents.
He based his algorithm on concepts borrowed from physics. Later work by Sander et
al. [24] studied how computational geometry techniques could be applied to groups
in the same domain. Both found that group productivity did scale marginally with the
addition of agents and that a point existed where adding agents did not significantly
improve the productivity of their system. Their agents did not compete over physical
space, and they never found that adding agents hurt group performance. Specific to
the search domain, work by Felner et al. [7] studied the scalability qualities of their
PHA* algorithm, and found that their algorithm yields marginally better results with
the addition of agents. Our research goal is to understand when robotic teams would
similarly scale.

The Law of Marginal Returns, also often called the Law of Diminishing Returns,
is well entrenched as a central theory within economics. Most economic domains
have spatial limitations and other finite production resources. These limiting factors
cause the groups' performance to typically increase marginally with the addition of
labor. Brue [4] demonstrated that economists from the Enlightenment Period until
modem times often did not provide empirical evidence for their theories. He con­
cluded, "more empirical investigation is needed on whether this law is operational"
within new domains, and "conjectures by 19th century economists about input and
outputs ... simply won't do!" The first goal of this paper was to provide this robust
study for robotic groups.

32 Rosenfeld, Kaminka and Kraus

3 Comparing Group Coordination Methods

In this section we present our initial study of scalability within groups of forag­
ing robots. In order to minimize the factors involved in this experiment, we limited
our study to groups of homogeneous robots without communication where only the
coordination methods differed between groups. We were surprised to find that the
coordination method strongly impacted the scalability qualities of the group. While
every group demonstrated diminishing positive marginal gains up to a certain group
size, the shape of this graph varied greatly between groups.

3.1 Initial Experiment Setup

We implemented a total of eight coordination methods for use on foraging robots.
The Noise, Bucket Brigade and Aggression methods were based on previously pub­
lished methods described in the previous section. Our implementation for the Noise
team was included as the default team in the Teambots distribution [3]. The Bucket
Brigade coordination behavior was initiated once a robot detected a teammate within
2 robot radii. Then, these robots would drop the target being carried, move backwards
for 25 cycles, and finally revert to the random walk behavior. The Aggression group
was based on the random function of aggressive behaviors described in Vaughan et
al. [29]. For every cycle a robot found themselves within 2 robot radii of a teammate,
it selected either an aggressive or timid behavior. In order to decide, we had each
robot choose a random number between 1 and 100. If the random number was lower
than fifty, it became timid and back away for 100 cycles. Otherwise it proceeded
forward, mimicking the aggressive behavior. As all robots within two radii choose
whether to continue being aggressive every cycle, one or both of the robots assumed
the timid behavior before a collision occurred.

Our remaining five methods were based on variations of existing methods. Sim­
ilar to the Aggression group, the Repel Fix group backtracked for 100 cycles but
mutually repelled like the Noise group. The Repel Rand group moved backwards
for a random interval uniform over 1 - 200 and also mutually repelled. The Gothru
and Stuck groups both removed all coordination behaviors. The Gothru group was
allowed to ignore all obstacles, and as such spent no time engaged in coordination
behaviors. This "robot" could only exist in simulation as it simply passes through
obstacles such as other robots. However, this group was still not allowed to exit the
boundaries of the field. We used this group to benchmark ideal performance with­
out productivity lost because of teammates. At the other extreme, the Stuck group
also contained no coordination behaviors but simulated a real robot. As such, this
group was likely to become stuck when another robot blocked its path. Like the
Stuck group, the Timeout group contained no repulsion vector to prevent collisions.
However, these robots did add noise to the direction vector after a certain threshold
had been exceeded where their position did not significantly change. The Timeout
group moved with a random walk for 150 cycles once these robots did not signifi­
cantly move for 100 cycles. If the timeout threshold was set too low, the robot may
consider itself inactive while approaching a target or its home base. However, if this

A Study of Scalability Properties in Robotic Teams 33

value was set too high, it did not successfully resolve possible collisions in a timely
fashion. We experimented with various values until we found that this combination
seemed to work well.

We used a well-tested robotic simulator, Teambots [3], to collect data on groups
of these foraging robots. We strongly preferred using a simulator as it allowed us
the ability to perform thousands of trials of various team sizes and compositions.
The sheer volume of this data allowed us to make statistical conclusions that would
be hard to duplicate with manually setup trials of physical robots. Using a simulator
also allows us to research behaviors, such as Gothru's, that cannot exist with physical
robots.

In this experiment, Teambots [3] simulated the activity of groups of Nomad N150
robots. The field measured approximately 5 by 5 meters. Our implementation of
foraging followed Balch's [2] multi-foraging task in which the robots attempt to
retrieve two or more types of objects. There were a total of 40 such target pucks,
20 of which where stationary within the search area, and 20 moved randomly. Each
trial measured how many pucks were delivered by groups of 1 - 30 robots within
9 minutes. For statistical significance, we averaged the results of 100 trials with the
robots being placed at random initial positions for each run. Thus, this experiment
simulated a total of 24,000 trials of 9 minute intervals.

The simulated robots we studied were based on the same behaviors. The only
software differences between the robots lay within their implementation of the pre­
viously described teamwork coordination behaviors. Each robot had three common
behaviors: wander, acquire, and deliver. In the wander phase, the robots originated
from a random initial position, and proceeded in a random walk until they detected
a resource targeted for collection. This triggered the acquire behavior. While per­
forming this second behavior, the robots prepared to collect the puck by slowing
down and opening up their grippers to take the item. Assuming they successfully
took hold of the object, the deliver behavior was triggered. At times the puck moved,
or was moved by another robot, before the robot was able to take it. Once this tar­
get resource moved out of sensor range, the robot reverted once again to the wander
behavior. The deliver behavior consisted of taking the target resource to the goal
location which was in the center of the field.

3.2 Initial Results

Figure 1 graphically represents the results from this experiment. Our X-axis repre­
sents the various group sizes ranging from 1 to 30 robots. The Y-axis depicts the
corresponding average number of pucks the group collected over its 100 trials.

According to the economic Law of Marginal Returns, marginal returns will be
achieved when one or more items of production are held in fixed supply while the
quantity of homogeneous labor increases. In this domain, the fixed number of pucks
acted as this limiting factor of production. Consequently, one would expect to find
production graphs consistent with marginal returns. However, only the Gothru group
demonstrated this quality over the full range of group sizes. All other groups con­
tained a critical point (CPl) where maximal productivity was reached. After the

34 Rosenfeld, Kaminka and Kraus

Foraging Productivity

Aggnession

Bucket

Gothm

Noise

Rep el Fix

—O— Repel Rand

Stuck

Timeout

0 I

1 5 9 13 17 2 1 2 5 2 9

Number of Robots

Fig. 1. Comparing Foraging Productivity Results during Group Size Scale-Up

group size exceeded this point, productivity often dropped precipitously. Eventu­
ally, the groups reached a level (CP2) where the addition of more robots ceased to
significantly negatively effect the groups' performance.

With the exception of the Aggression, Repel Fix, and Repel Rand groups, all
groups' productivity graphs differed significantly. For example, the Stuck group
reached its CPl point with an average of only 20.94 pucks collected with groups
of 3 robots. The Aggression group reached a maximum of 30.84 pucks collected in
groups of 10 robots. Even among equally sized groups, the differences were large.
When comparing foraging groups of 10 robots, the Stuck group gathered only 8.58
pucks - far fewer than Gothru's 35.62 pucks, while the Aggression group collected
30.52 pucks, only 5.2 fewer than Gothru. Large differences between the level of CP2
also existed between groups. Notice how the Bucket Brigade group maintained a
CP2 level near 12 pucks, while the Stuck and Noise group's CP2 level was near 4
pucks. The Bucket Brigade mechanism was more effective even in large group sizes.

Our resulting research was motivated by these results. The Gothru group was
the only group capable of realizing marginal gains throughout the entire range of
30 robots. However, many groups demonstrated the positive quality of maintaining
increasing productivity over a larger range of robots. For example, the Noise group
only kept marginal gains until groups of seven robots, while the Aggression group
kept this quality through groups of 10 robots. We also found that the positive qualities
of improved performance and maintaining marginal performance over larger groups
are not always synonymous. The Noise group kept positive marginal performance

A Study of Scalability Properties in Robotic Teams 35

over a smaller range than the Aggression group, yet performed better in groups sized
seven or less. A closer look at the various coordination models was needed to draw
lessons about how to create groups with both properties.

4 Why does Performance Drop?

We needed a mechanism for understanding why certain coordination methods were
more effective than others during size scale-up. We posited that differences among
robotic groups were often sparked from clashes in spatial constraints. Specific to
foraging, conflicts arose over which robot in the group had the right to go to the home
base first. As the group size grew, this problem became more common. This caused
the groups to deviate from the ideal marginal productivity, depicted by the Gothru
group, by greater amounts. The length of time robots clashed with their teammates
because of joint resources, such as the home base location, served as the basis in
comparing coordination models within any domain.

Previous work by Goldberg and Mataric [9] found a connection between the
level of interference a group demonstrated and its corresponding performance. They
defined interference as the length of time robots collide, and we began by using this
definition to equate between our coordination algorithms. This measure sufficed for
some robots, such as those simulated by the Stuck group, because they did not engage
in any other coordination behaviors. However, this metric of interference could not
explain the differences between all groups. Many robots, such as those simulated by
the Aggression group, never collided. If one takes the position that only collisions
constitute interference within robotic groups, these robots do not interfere. Yet we
clearly observed how the addition of robots detracted from the groups' productivity
after its maximal productivity point.

In this section we present our measure of interference. We describe scale up ex­
periments in foraging and search domains that are characterized by resources that
lend themselves to group conflicts. We find that interference and productivity are
strongly negatively correlated in such domains, and use this metric to explain dif­
ferences in productivity between all teams. We posit that in the absence of spatial
conflicts, all teams should consistently demonstrate marginal gains during scale up.
We confirm this idea by easing the "space crunch" in our domains and notice how
all groups consistendy demonstrate marginal returns. We conclude that any domain
with group spatial conflicts will suffer from deviations in marginal performance once
the causes of interference cannot be resolved.

4.1 Interference: Measure of Coordination

We define interference as the length of time an agent is involved with, either phys­
ically or computationally, projected collisions, real or imaginary, from other robots
and obstacles. This period of involvement often extends well beyond the actual col­
lision between two robots. Any time spent before a supposed collision in replanning

36 Rosenfeld, Kaminka and Kraus

and avoidance activities must also be recorded. Similarly, all post-collision resolu­
tion activity must be included as well. Thus, according to our definition, the Gothru
group has zero interference because it never engages in any interference resolution
behaviors and represents idealized group performance. The Aggression group en­
gages in interference resolution behaviors before a collision ever happens. Its vari­
ous timid and aggressive behaviors to avoid collisions all constitute interference by
our definition. The Bucket Brigade group demonstrates that interference can exist
after a collision is prevented. For this group, one needs to measure the productivity
lost by handing off the resource from one robot to the next. Many times this group
lost productivity during this process because the second robot never properly took
the dropped target. Only this measure takes into the account the total interference
resolution process.

According to our hypothesis, we expected to see a negative correlation between
levels of interference and productivity in three respects. We reasoned that the degree
to which a group deviates from the idealized marginal gains is proportional to the
amount of average interference within the group. This can impact where the group
hits maximal performance. Those groups which reached CPl with a small number
of robots spiked high levels of interference much faster than those where this point
was delayed. Second, even before groups hit their maximum productivity point, we
hypothesized that the more productive groups have lower levels of interference than
their peers. Finally, we expected that differences in where the productivity of the
groups eventually plateau can be attributed to the group's saturation level of interfer­
ence. Those robots that more effectively deal with interference even in large groups
will have CP2 values at higher levels.

In order to confirm this hypothesis, we reran our eight foraging groups and logged
their interference levels according to our definition. The Gothru group never regis­
tered any interference. For all remaining groups, we used the simulator to measure
the number of cycles the robots in the groups collided. For all groups other than
the Stuck and Gothru groups, we additionally measured the number of cycles the
robots triggered interference resolution behaviors when they were not colliding. In
the Noise and repulsion groups, this represented the number of cycles spent in re­
pelling activities. In the Aggression group, it was the number of cycles spent in timid
and aggressive behaviors. In the Timeout group, this was the cycles spent trying to
resolve a collision once the robot timed out. In the Bucket Brigade group, inter­
nal behaviors alone did not suffice to measure interference by our definition. We
only recorded cycles spent when the robots came close to another and consequently
dropped the resource they were carrying. However, we could not measure the time
lost when the second robot did not effectively take that resource as we did not have
onmipotent knowledge of such events. As a result, our measurement for interference
for this group did not necessarily represent an exact measurement, but an underesti­
mate.

Figure 2 represents the result from this trial. The X-axis once again represents
the group size, and the Y-axis represents the average number of interference cycles
that each robot within the group registered over the 100 trials.

A Study of Scalability Properties in Robotic Teams 37

Foraging Interference Comparison
6000

0 4w2t«^H^^i^4^>f^>H>ft>fa4^^

1 5 9 13 17 21 25 29

Number of Robots

Fig. 2. Interference Levels in Foraging Domain

We found that CPl typically occurred for all groups when the average inter­
ference level within each robot of the group reached a level between 1500 and 2500
cycles. The longer the group was able to maintain classically diminishing returns, the
more cycles of interference were needed to cause the critical point. This is because
CPl will only be reached once the productivity lost due to interference is larger than
the total marginal productivity of the group. Before this point, the total production of
the group increases, albeit marginally. For example, the Stuck group, which reached
its critical point with only four robots, needed closer to only 1500 cycles to cause
this critical point. The Aggression group hit CPl with 10 robots, and consequently
needed approximately 2200 cycles to counter the productivity of more robots.

Even when viewing the differences between productivity among equally sized
groups, interference differences were significant. We found a very strong average
negative correlation of -0.94 between the groups' performance and their interfer­
ence level over the entire range of 1 to 30 robots. For example, the Noise group most
closely followed the idealized Gothru productivity graph for groups up until 7 robots,
and registered significantly less interference than the other groups. This interference
resolution mechanism had litde overhead, and needed fewer cycles to resolve a pos­
sible collision. However, this method didn't scale well beyond this point. When the
group size became larger than seven, its interference levels grew exponentially and
the group's performance quickly decayed. In contrast, the Aggression and other re­
pelling groups had significant levels of interference from the onset, but interference

38 Rosenfeld, Kaminka and Kraus

levels only grew linearly with respect to the group size. As a result, this group proved
more effective with larger group sizes.

We also found that the eventual performance plateau (CP2) was strongly cor­
related with interference. Some groups leveled off at significantly smaller interfer­
ence levels than other groups. For example, even in group sizes above 20 robots, the
Bucket Brigade group registered an average interference level of 400 fewer cycles
less than the Stuck group. Consequently, it collected on average over 5 pucks more
than this group at this level.

As one would expect, most groups performed equally well with one robot, as
coordination behaviors should only be triggered in groups of two robots or more.
The one exception was the Timeout group which collected on average 8.7 pucks with
one robot, or about 2 pucks fewer than the other groups. As we defined interference
as the time spend on resolving collisions, or even perceived collisions, such a result
is quite plausible. At times these robots timed out while slowing down to pick up a
puck or avoid an obstacle even by themselves. As we defined such internal reasoning
as interference, these robots interfered with themselves in the amount of about 1000
average cycles per trial.

Two of our groups have slight underestimates for interference; however, this did
not change our overall results. As previously mentioned, the Bucket Brigade group
interfered if a second robot did not successfully receive the resource handed off to
it. We found that this did occur at times when there were relatively small groups
of these robots. Thus, the correlation between their productivity and that of other
groups' among groups of 2-6 robots dropped to -0.80. By discounting this range, the
average overall correlation reached almost -0.97. However, after 6 robots we found
that there were enough robots in the area to ensure a second robot would quickly
take the resource, and the amount of this underestimate was less significant. The
Noise group also registered an underestimate for interference. These robots actually
used two repulsion fields for collision resolution. They triggered a strong repulsion
field when they sensed another robot or obstacle 0.1 meters away. We only measured
the number of times this repulsion field was triggered. However, a second, much
weaker repulsion field was triggered from 1.5 meters away. In this instance, our
underestimate did not seem to significantly statistically detract from our results. With
or without the data from this group, the average correlation between groups was
-0.94.

4.2 Competing over Spatial Resources

We proceeded to study if our results were limited to foraging or were a general phe­
nomenon seen when robotic groups are faced with restriction production resources.
We created a new spatially limited search domain where the task goal was to find
the exit out of the room as quickly as possible. We placed groups of robots within a
room of 1.5 by 1.5 meters with one exit 0.6 meters wide. We reasoned a critical pro­
ductivity point would once again form in this domain. Too few robots would result in
a long search time until the exit was found. However, too many robots would cause
interference as the exit was only physically wide enough for one robot.

A Study of Scalability Properties in Robotic Teams 39

Search Productivity

E
o o

10G0 I I I—I

1 5 9 13 17 21
Number of Robots

-Gothru

-Noise

-Repel Fix

"Repel Rand

"Stuck

-TimeoTjt

Search Interference Comparison

9 13 17

Number of Robots

Fig. 3. Search Time and Interference Measurements during Group Size Scale-Up

40 Rosenfeld, Kaminka and Kraus

We ran simulated trials of seven of our eight foraging groups ranging in sizes
from 1 - 23 robots (the room holds 23 robots) and averaged the results from 100 trials
for statistical significance. We omitted the Bucket Brigade group as this coordination
method was not relevant to this domain. We then measured the length of time it took
the first robot from each group to completely exit the room. We ended the trial at that
point and recorded the time elapsed. Thus, this experiment constitutes over 16,000
trials of variable length.

Figure 3 presents our productivity graphs and corresponding interference levels
from this experiment. The X-axis in both graphs depict the size of our groups. In the
upper section, we flipped the Y-axis to represent the search time of zero as the highest
point. As in our foraging graphs, we represent better performance as higher values
in this graph. In the lower graph the Y-axis represents our average measurement of
interference per robot in the group.

We found that the time to complete the search task was strongly negatively corre­
lated in our new domain as well. We observed that with the exception of the Gothru
group, all groups ceased to demonstrate marginal returns at some point. In the Repel
Fix group this point occurred with only 5 robots, while the Noise group reached this
point with 10. The Noise group had the lowest level of interference through groups
of 13 robots, and was able to most closely approximate Gothru's performance un­
til this group size. After this point the Timeout group fared the best. We found that
certain interference resolution mechanisms work best in specific domains. While the
repulsion methods were quite effective in foraging, the interference levels in these
groups grew exponentially in this domain. Overall, the average statistical correla­
tion for groups of 1-23 robots between the time elapsed to exit the room and their
corresponding interference level was -0.94.

4.3 Easing Spatial Restrictions

According to our hypothesis, deviations of productivity in robot groups are strongly
correlated with interference. Once our foraging and search groups ceased to effec­
tively resolve interference they reached their critical group sizes. Adding more robots
only hurt the groups' performance. We posit that the physical space limitations ex­
istent within many robotic groups often cause this interference. The one home base
area within the foraging domain and the one exit within the search domain create a
competition over space between robots that cannot always be properly resolved.

We were able to confirm that our robotic groups always demonstrated marginal
returns once restrictions over physical space were eased. We changed the foraging
group requirement of returning the pucks to one centralized home base location.
Instead, they were allowed to consider the pucks to be in the home base immediately.
With the exception of the Bucket Brigade group, we reused all 8 previously studied
foraging groups. Once again, we omitted this method because it was not applicable
to our new domain. We left all other environmental factors such as the number of
trials, the size and shape of the field and the targets to be delivered identical. Thus,
Teambots [3] simulated 21,000 trials of 9 minute intervals in this experiment.

A Study of Scalability Properties in Robotic Teams 41

Modified Foraging Productivity

13 17 21
Number of Robots

25 29

Fig. 4. Productivity of Groups in Modified Foraging Domain during Size Scale-Up

As figure 4 shows, all groups did indeed always achieve marginal returns in the
modified foraging domain. While Gothru still performed the best, the differences be­
tween it and other groups' coordination methods were not as pronounced. The level
of interference all groups demonstrated was also minimal, and thus not displayed.
We concluded that not every foraging domain needed to have a critical point for
productivity where marginal gains during scale up ceased.

Within the search domain, we hypothesized that limitations in the room size and
width of the exits created the large amounts of interference during scale up. In order
to ease this restriction, we doubled the size of the room to become approximately 3
by 3 meters, and widened the exit to allow free passage out of the room by more than
one robot. Once again, we measured the time elapsed (in seconds) until the first robot
left the room and averaged 100 trials for each point. This experiment also constituted
over 16,000 trials of varying lengths. Figure 5 graphically shows that our modified
domain consistently realized marginal increases in faster search times with respect to
group size. Once again, interference levels were also negligible in our new domain.
Thus, we concluded that achieving marginal productivity gains was always possible
once competition over spatial resources was removed.

5 Improved Scalability through Coordination Combination

Our next step was to apply lessons based on our understanding of the coordination
methods we studied towards creating methods with improved productivity and scal­
ability properties. In this section we present our Composite Coordination Methods.
We found that it was possible to combine methods with different scalability prop-

42

c

E o
O

03

"D
C
O
o
a>

CO

Rosenfeld, Kaminka and Kraus

Search Group Comparison

20

40

60

80

100

—4—Aggression

-D— Gothru

-Tiir-Noise

—Tte- Rjep el Fix

„™0™„Rjepel Rand

-™^̂ ~~ Stuck

O Timeout

1 2 0 I I I I I I I I I I i I I I I I I I I I I I I
1 5 9 1 3 1 7 2 1

Number of Robots

Fig. 5. Productivity of Groups in Modified Search Domain during Size Scale-Up

erties to create a new composite method. This method achieved higher productivity
levels in the foraging and search domains we studied. Surprisingly, we found that
our new composite method at times far exceeded the productivity levels of even the
that highest levels of productivity from the groups they were based on. We believe
that using multiple methods in tandem allowed robots to more effectively deal with
the spatial limitations that characterized their operating domain. This allowed for the
gains we found in these groups' scalability properties.

5.1 Composite Coordination Methods

Our composite coordination methods combined the two best coordination methods
for any given domain. Our previous study demonstrated that it possible to order coor­
dination methods based on groups sizes where they are most effective. In the foraging
domain, the Noise group had the highest productivity in small groups, while the Ag­
gression group had higher productivity in larger groups. In the search domain, the
Noise group again had the highest productivity in the small groups with the Timeout
group faring better in larger group sizes. In both domains, our implementation for the
composite method was based on allowing these two simpler methods to be triggered
under different domain conditions.

Our implementation of the composite method in the foraging domain revolved
around using two different methods to attempt to prevent collisions. Robots first
used the Noise method, but if this method proved insufficient opted for the more ro­
bust Aggression method. Once a robot detected that another teammate came within
two robot radii away, it attempted to resolve a possible collision by inserting a slight

A Study of Scalability Properties in Robotic Teams 43

repulsion and noise element into its trajectory. In cases when the probability of col­
lisions was low, as was the case in small group sizes, this behavior alone sufficed.
However, at times the spatial conflicts in the domain could not be resolved through
this simple coordination behavior. For example, in large group sizes, the probabil­
ity that two or more robots mutually blocked became substantial. In these cases, the
robots continued to move closer despite the use of this method. Once the robots came
within a second, closer threshold, which we set to one robot radii, the second, more
robust Aggression method was triggered. The timid and aggressive behaviors in this
method were more successful in resolving spatial conflicts than the simpler behaviors
in the Noise method. However, the interference overhead in the Aggression behavior
was higher, and not justified in situations where the simpler behavior sufficed. Thus,
by two different thresholds we attempted to match the correct collision prevention
behavior to the domain conditions.

We found this approach to be very effective within our foraging domain. Figure 6
displays the productivity of the composite foraging group. Noise -t- Aggression, com­
pared to the two methods it is based on. In the top portion of the graph we display
the average number of pucks retrieved (Y-axis) over different group sizes (X-axis).
The bottom graph displays the varying interference levels (Y-axis) as a function of
the group size. Notice how the composite group significantly outperformed the two
groups it was based on. We performed the two-tailed t-test between our composite
group and the two static ones it was based on. Both p-scores were well below 0.05
needed to establish the statistical significance, with the higher score of 0.003 found
between the Aggression group and the composite one. We also found that the re­
lationship between interference and productivity applies to this new group with a
strong negative correlation of -0.92 between all three group's productivity and the
corresponding interference level averaged over the interval of 1 - 30 robots.

Our motivation in the search domain was similar, but our composite coordination
method was implemented slightly differently. In this domain we also created our
composite method between two methods - Noise and Timeout. These two methods
resolve collisions with different mechanisms. The Noise method attempts to prevent
collisions before they occur through repulsion. In contrast, the Timeout behavior was
purely reactive in nature and its behavior only was triggered after collisions already
occurred. Thus, a composite coordination method between these two methods was
able to created without two different distance thresholds. The Noise method behavior
was fully implemented to attempt to prevent collisions. The Timeout behavior was
also fully implemented. In cases when the Noise behavior did not prevent a collision,
this second behavior was effective in then resolving the conflict.

We also found that this approach yielded marked improvement in performance
and scalability properties for our search domain. Figure 7 displays the productivity
of the composite foraging group. Noise + Timeout, compared to the two methods it
is based on. In the top portion of the graph we display the average time to complete
the search task (Y-axis) over the different group sizes (X-axis). The bottom graph
displays the varying interference levels (Y-axis) as a function of the group size. No­
tice how the composite group again significantly outperformed the two groups it was
based on, especially in larger group sizes. We performed the two-tailed t-test between

44 Rosenfeld, Kaminka and Kraus

Foraging Productivity

Agg:essdon

Noise

0 I M I I I

1 5 9 13 17 21 25 29

Number of Robots

Interference Metric

5000

9 13 17 21

Number of Robots

Fig. 6. Comparing a Composite Foraging Method to its Two Base Methods

A Study of Scalability Properties in Robotic Teams 45

our composite group and the two static ones it was based on. Both p-scores were well
below 0.05 needed to establish the statistical significance, with the higher score of
0.004 found between the Noise group and the composite one. We also confirmed that
the relationship between interference and productivity applies to this new group with
a strong negative correlation of -0.98 between the three groups' productivity levels
and their corresponding interference levels over the interval of 1 - 23 robots. It is im­
portant to note that the composite method in the search domain was able to eliminate
the critical group size that existed in every group we studied except for the theoretical
Gothru group. As such, this group demonstrated the best scalability quality from all
methods we studied - the group's average productivity never significantly dropped
with the addition of robots. Further study was needed to understand why these com­
posite groups had significantly better productivity and scalability qualities than the
methods they were based on.

5.2 Studying How to Improve Scalability

Our interference metric was useful for understanding why the composite methods we
created were able to significantly outperform the simpler methods they were based
on. These composite methods had significantly lower levels of interference, allowing
marginal gains and larger productivity over larger groups. However, we believe that
coordination methods can be developed to improve the scalability capabilities of
robots. It is possible that our interference metric is not only useful post-facto, but can
facilitate online adaptation to improve performance even in dynamic and changing
environments. We have begun to study how to create adaptive methods based on
interference and have presented our initial results in [22].

We believe coordination methods that respond to the triggers of interference can
minimize the time spent resolving those instances. Throughout the course of one
trial, many spatial conflicts are likely to occur. The speed with which the robots
resolve these conflicts will determine the success of the robots to achieve higher
productivity and scalability properties. As such, we posit that a causal relationship
exists between a robot's interference level and the corresponding productivity that
robot is able to contribute to its group. The more time spent on resolving coordination
conflicts, the less time will be left to perform the desired action. Thus, if robots could
reduce their interference levels, they will consequently be able to achieve higher
productivity.

Our working hypothesis is that groups that effectively deal with interference
episodes are going to improve their productivity levels. While coordination behav­
iors themselves constitute interference, at times they are needed for achieving co­
hesive group behavior. Effective behaviors cannot realistically eliminate interfer­
ence. Optimal coordination methods behaviors can only minimize interference levels
given domain conditions. For example, in the foraging domain we studied, the Noise
method's simpler coordination method contained little overhead. However, as col­
lisions within the domain became frequent, this method did not suffice, and robots
were not capable of successfully resolving space conflicts and thus loss productivity.
The Aggression method had an overhead that made it more effective in larger group

46 Rosenfeld, Kaminka and Kraus

Search Productivity

1 3 5 7 9 11 13 15 17 19 21 23
_ l I I I I I I I I » I I I I 1 1 1 I I I L

c o
^ a»
a.
E o
o
jm

1-
o
4^

m
"O L.
O
o 01

1000

2000

3000

4000

5000

bUOO

7onn
8000

9000

10000

10000

% 9000

I 8000
^ 7000

S" 6000

o 5000

Noise

Timeout

Noise +
Timeout

Interference Metric

^^-Noise

Timeout

Noise +
Timeout

1 3 5 7 9 11 13 15 17 19 21 23

Number of Robots

Fig. 7. Comparing a Composite Search Method to its Two Base Methods

A Study of Scalability Properties in Robotic Teams 47

sizes, but the larger interference overhead in this method made it less effective in
smaller group sizes.

We believe that our composite methods outperformed the static method because
of their improved ability to effectively match their coordination efforts to the needs of
their domain. This allowed these robots to change the time spent on resolving coordi­
nation conflicts based on the needs of the domain. Figure 8 demonstrates the ability
of our composite method to resolve conflicts in a more timely fashion. The graph
represents the percentage of foraging robots that on average collided throughout the
course of three trials (540 simulated seconds) in groups of 20 robots. The X-axis in
this graph represents the number of seconds that elapsed in the trial (measured in
ten second intervals), while the Y-axis measures the percentage of robots colliding at
that time in the Noise, Aggression, and Noise + Aggression methods. Notice that the
Noise group was ineffective in resolving collision instances in this group size and
thus throughout the trial nearly all robots were exclusively engaged in collision res­
olution behaviors. As a result, this group had the highest interference levels and the
poorest productivity. The Aggression group was able to more effectively deal with
collisions, but on average consistently spent more than half of their time resolving
spatial conflicts. In contrast, robots in the composite group were able, on average, to
resolve conflicts and thus reduce their interference levels. This resulted in the signif­
icantly higher productivity levels in this group over the two static ones it was based
upon.

Urn

o
I
JZ

m
c o

o m m
DC

m
*^ o
o

Noise +
Aggression

n 1111111111111111 i I i i 11111111 i M 1111111111111111111111

6 11 16 21 26 31 36 41 46 51

Time Elapsed into Trials

Fig. 8. Average Percentage of Robots Colliding as a Function of Time

48 Rosenfeld, Kaminka and Kraus

When viewing spatial conflicts on a per trial basis, the fluctuations in the in­
stances of interference and the robot's ability to react to those fluctuations are even
more pronounced. We posit that the composite method used the Aggression method
in reaction to collisions becoming more frequent within the domain. To support this
claim we viewed the internal state of these robots over the course of our trials. Figure
9 displays three individual foraging trials of the composite group, again in groups of
20 robots. In the upper graph we mapped the percentage of robots that were engaged
in resolution behaviors (Y-axis) over the course of the trials (the Y-axis). The bottom
graph represents the internal coordination state of these robots as a number between
1 and 2. A value of 1 represents all robots being engaged in the Noise behavior, and
a value of 2 corresponds to all robots in the Aggression behavior. Groups on average
typically have a value between these extremes with robots autonomously choosing
different states based on how close its closest teammate is at that moment. Notice the
relationship between these two graphs with the composite robots using the Aggres­
sion behavior (an average state closer to 2) when collisions are more frequent. On
average over the entire time period, we found a strong negative correlation of -0.90
between these two graphs. This supports our claim that changes in interference can
be sensed autonomously by robots. We believe this allowed the composite groups
to achieve such a strong improvement in the productivity and scalability qualities of
these teams.

6 Conclusion and Future Work

In this paper we presented a comprehensive study on the productivity of robotic
groups during scale-up. As the size of robotic groups increased, effective coordina­
tion methods were critical towards achieving effective team productivity. The limited
space inherent in many environments, such as the foraging and search domains we
studied, makes this task difficult. Using our novel, non-domain specific definition of
interference, we were able to equate between the effectiveness of various existing co­
ordination algorithms. Our interference metric measured the total time these robots
dealt with resolving team conflicts and found a strong negative correlation between
this metric and the corresponding productivity of that group. Groups demonstrated
marginal gains only when their interference level was low. If the new robot added
too much interference into the system, it detracted from the group's productivity
and marginal productivity gains would cease. Gains during scale-up would always
be achieved if interference was not present. We present our composite coordination
methods as an example of how to achieve improved scalability through minimizing
interference.

Many robotic domains also contain the limited space and production resources
that our foraging and search domains exemplify. We predict robotic groups involved
with planetary exploration, waste cleanup, area coverage in vacuuming, and planning
collision-free trajectories in restricted spaces will all benefit from use of our interfer­
ence metric. We plan to implement teams of real robots in these and other domains
in the future.

A Study of Scalability Properties in Robotic Teams 49

I M I I I I I I I I I I I I I I I I I I M

1 5 9 13 17 21 25 29 33 37 41 45 49 53

• Trial A

• Trial B

•Trial C

1.8 n -

1 5 9 13 17 21 25 29 33 37 41 45 49 53

Time

Fig. 9. Fluctuations in Collisions over Time and the Corresponding Foraging Method

We demonstrated in our paper that the spatial restrictions within robotic domains
often prevented marginal gains from being realized as group sizes grew. The corol­
lary of this hypothesis is that marginal returns will always be achieved in domains
that do not clash over resources. It is not surprising that groups of agents should
therefore always realize marginal returns during scale up once group interference
issues have be resolved or are not applicable.

Many applications and extensions to our interference metric are possible. For fu­
ture work, we hope to address several directions for possibly extending our metric.
This paper limited its study to homogeneous robots without communication. Ad­
ditionally, we did not study coordination methods which require pre-knowledge of
their domain or algorithms that use other forms of preprocessing. We leave the study

50 Rosenfeld, Kaminka and Kraus

of how to widen our metric to allow contrasting robots with differing capabilities
such as communication, foreknowledge of domains, and preprocessing requirements
for future work. We are hopeful that our interference metric will be useful for a range
of applications.

References

1. R.C. Arkin and T. Balch. Cooperative multiagent robotic systems. In Artificial Intelli­
gence and Mobile Robots. MIT Press, 1998.

2. T. Balch. Reward and diversity in multirobot foraging, In IJCAI-99 Workshop on Agents
Learning About, From and With other Agents, 1999.

3. Tucker Balch. www.teambots.org.
4. Stanley L. Brue. Retrospectives: The law of diminishing returns. The Journal of Economic

Perspectives, 7(3):185-192, 1993.
5. Phil R. Cohen and Hector J. Levesque. Teamwork. Nous, 25(4):487-512, 1991.
6. G. Dudek, M. Jenkin, and E. Milios. A taxonomy for multi-agent robotics. Robot Teams:

From Diversity to Polymorphism, Balch, T and Parker, L.E., eds., Natick, MA: A K Peters,
3:3-22, 2002.

7. Ariel Felner, Roni Stem, and Sarit Kraus. PHA*: Performing A* in unknown physical
environments. \nAAMAS2002, pages lA^lAl,

8. J. Fredslund and M. Matarid. A general, local algorithm for robot formations. In IEEE
Transactions on Robotics and Automation, special issue on Multi Robot Systems, pages
837-846, 2002.

9. D. Goldberg and M. Matarid. Interference as a tool for designing and evaluating multi-
robot controllers. InAAy4///A4/, pages 637-642, 1997.

10. D. Goldberg and M. Matarid. Design and evaluation of robust behavior-based controllers
for distributed multi-robot collection tasks. In Robot Teams: From Diversity to Polymor­
phism, pages 315-344, 2001.

11. Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action. Artificial
Intelligence, 86(2):269-357, 1996.

12. M. Jager and B. Nebel. Dynamic decentralized area partitioning for cooperating cleaning
robots. In ICRA 2002, pages 3577-3582.

13. Markus Jager and Bemhard Nebel. Decentralized collision avoidance, deadlock detection,
and deadlock resolution for multiple mobile robots. In IROS, 2001.

14. Nicholas R. Jennings. Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence, 75(2): 195-240, 1995.

15. C. Jones and M. Matarid. Adaptive division of labor in large-scale minimalist multi-
robot systems. In Proceedings of the lEEE/RSJ International Conference on Robotics
and Intelligent Systems (IROS), pages 1969-1974, 2003.

16. Sarit Kraus. Negotiation and cooperation in multi-agent environments. Artificial Intelli­
gence, 94(l-2):79-97, 1997.

17. C. Ronald Kube and Hong Zhang. Collective robotic intelligence, pages 460-468, 1992.
18. Stacy Marsella, Jafar Adibi, Yaser Al-Onaizan, Gal A. Kaminka, Ion Muslea, and Milind

Tambe. On being a teammate: experiences acquired in the design of RoboCop teams. In
Oren Etzioni, Jorg P. Muller, and Jeffrey M. Bradshaw, editors. Proceedings of the Third
International Conference on Autonomous Agents (Agents'99), pages 221-227, Seattle,
WA, USA, 1999. ACM Press.

http://www.teambots.org
file:///nAAMAS2002

A Study of Scalability Properties in Robotic Teams 51

19. E. Ostergaard, G. Sukhatme, and M. Matari. Emergent bucket brigading - a simple mech­
anism for improving performance in multi-robot constrainedspace foraging tasks. In Pro­
ceedings of the 5th International Conference on Autonomous Agents, 2001.

20. L. Parker. Alliance: An architecture for fault-tolerant multi-robot cooperation. IEEE
Transactions on Robotics and Automation, 14(2):220-240, 1998.

21. Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Computer
Graphics, 2\{4):25-34, 1987.

22. A. Rosenfeld, G. Kaminka, and S. Kraus. Adaptive robot coordination using interference
metrics. In The Sixteenth European Conference on Artificial Intelligence, Valencia, Spain,
August 2004.

23. P. Rybski, A. Larson, M. Lindahl, and M. Gini. Performance evaluation of multiple robots
in a search and retrieval task. In Workshop on Artificial Intelligence and Manufacturing,
1998.

24. Pedro Sander, Denis Peleshcuk, and Barbara Grosz. A scalable, distributed algorithm for
efficient task allocation. In AAMAS 2002, pages 1191-1198.

25. Paul Scerri, Yang Xu, Elizabeth Liao, Justin Lai, and Katia Sycara. Scaling teamwork to
very large teams. In AAMAS '04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 888-895. IEEE Computer Society,
2004.

26. M. Schneider-Fontan and M. Mataric. A study of territoriality: The role of critical mass
in adaptive task division. 1996.

27. O. Shehory, S. Kraus, and O. Yadgar. Emergent cooperative goal-satisfaction in large
scale automated-agent systems. Artificial Intelligence journal, 110(1): 1-55, 1999.

28. M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research, 7:83-
124, 1997.

29. R.T. Vaughan, K. St0y, G.S. Sukhatme, and M.J. Matarid. Go ahead, make my day: robot
conflict resolution by aggressive competition. In Proceedings of the 6th int. conf on the
Simulation of Adaptive Behavior, 2000.

Comparing Three Approaches to Large-Scale
Coordination

Paul Scerri^ Regis Vincent^, Roger Mailler^

^ Carnegie Mellon University
^ SRI International
^ Cornell University

Summary. Coordination of large groups of agents or robots is starting to reach a level of ma­
turity where prototype systems can be built and tested in realistic environments. These more
realistic systems require that both algorithmic and practical issues are addressed in an inte­
grated solution. In this chapter, we look at three implementations of large-scale coordination
examining common issues, approaches, and open problems. The key result of the comparison
is that there is a surprising degree of commonality between the independently developed ap­
proaches, in particular the use of partial, dynamic centralization. Conversely, open issues and
problems encountered varied greatly with the notable exception that debugging was a major
issue for each approach.

1 Introduction

Coordinating large groups of intelligent robots to perform a complex task in a com­
plex environment requires meeting a range of challenges in an integrated solution.
These challenges range from well-known algorithmic issues, e.g., managing the com­
putational complexity of task and resource allocation, to more practical issues, e.g.,
initialization and deployment of a large number of robots. In the past few years,
a small number of systems have been developed that are capable of demonstrating
real coordination between large numbers of robots in realistic domains. While ex­
tensively leveraging the large body of previous work, these systems required new
techniques to deal with the practical complexity of coordinating a large group of
robots. In this chapter, we look at three successful approaches to coordination to find
commonalities and differences in the techniques used. The aim is to identify ideas
that generalize across approaches as well as issues that appear to come up regardless
of the approach used.

Each of the applications and approaches described in this chapter involves at
least 100 completely unselfish and cooperative group members. One application re­
quired coordination of simulated agents for a complex task, one involved 100 robots
on an exploration and, tracking task and another involved hundreds of sensors for
a montoring task. The group members are relatively homogeneous, although there

54 Scerri, Vincent and Mailler

is always some heterogeneity due to location. Thus despite being relatively homo­
geneous in design, the agents were not always easily interchangeable. The complex
tasks on which the teams were working were relatively decomposable, although con­
straints (either resource or spatial or both) existed between the decomposed subtasks.
In all cases, the coordination algorithms had to deal with many of the issues faced by
any multi-agent system, as well as complications due to scale. Since the applications
involve at least somewhat realistic environments, the approaches were required to
address a full spectrum of issues, including many practical challenges often ignored
in the multiagent literature. Some of these practical challenges are well known, e.g.,
dealing with lossy communication or building reliable software, while others were
more novel, e.g., working out how 100 robots can enter a building in a reasonable
amount of time.

While the approach to each application was developed independently of the oth­
ers and was underpinned by a diverse set of philosophies and constraints, there was a
surprising amount of commonality in both the solutions and the open problems. Two
specific, major commonalities were of particular interest. The first was that each
approach used some form of dynamic, partial centralization to reduce the overall
complexity. In particular, some decision-making responsibility for a small group of
agents was dynamically assigned to an agent particularly able to make those deci­
sions. The form of the centralization varied greatly, from dynamic subteams to dis­
patchers to mediation. In each case, only a small subset of the team was involved in
the centralization, and the agents involved, as well as the "center", were not chosen
in advance. The reason for this commonality appears to stem from a need to balance
the complexity of key algorithms and the practical limitations of time and commu­
nication resources. In situations where coordinated decision making involved a large
percentage of the group, developers resorted to various heuristics for controlling re­
source requirements, and when a small percentage of the group was involved, partial
centralization was used. Although the reason for it is unclear, it is noteworthy that
no optimal completely distributed algorithms were used, perhaps because in cases
where they were applicable partial centralization was more efficient.

Most likely related to the dynamic localized centralization, the second notable
commonality between the three approaches was that the coordination was neither
simple and relying on emergent properties nor highly structured with top-down guid­
ance. While the lack of top-down structure was at least partially due to the decom-
posibility of the task, there was more structure to the coordination than the task,
indicating that the coordination was not simply designed to mirror the task. Interest­
ingly, none of the approaches were inspired by any particular organizational theory,
human or biological. Structure limited the decisions that could be made by an in­
dividual, including who that individual could communicate with about what, what
tasks the individual could perform, and protocols for making coordinated decisions.
For example, in one of the approaches, the notion of a subteam was strictly defined
and carried certain responsibilities that were often not required for best coordinated
behavior, but simplified the possible organizations that could occur. Although not
explicit in any of the designs, it appears that each approach carefully balanced im­
posed structure for making the coordination intelligible to a human and flexibility

Comparing Three Approaches to Large-Scale Coordination 55

for allowing the group to find the best way to complete a task. The need for intelligi­
bility was key when programming, testing, deploying and improving the system, but
the additional structure limited the potential of the team. Future development tools
may open the possibility to decrease the amount of structure and, thus, increase the
potential of the group.

In contrast to the high degree of commonality between the approaches used, the
problems encountered and the major open problems were varied. In two of the ap­
proaches, determining appropriate parameters for heuristics was identified as a prob­
lem. In two approaches, there was unwanted emergent behavior. In one approach,
sharing information was a problem. It does not appear that any of the approaches are
immune to the problems encountered by the others, only that the specific problems
were not induced by the specific applications. This diversity of problems and open is­
sues is especially interesting since the approaches had so much in common. However,
it is unclear what to conclude from this, since one might come to the mutually exclu­
sive conclusions that the basic approach was poor and problems manifested them­
selves in different ways or that the approach was fundamentally good and time was
spent on more detailed issues. More applications are required for a definitive conclu­
sion. In each approach, debugging was found to be a major difficulty with only the
most rudimentary support available for debugging extremely complex, distributed
applications. The most stunning evidence of this problem is that all approaches re­
ported that major bugs went unnoticed for extended periods of time, before being
discovered by chance. The bugs went unnoticed because the overall behavior was
not accurately predicted in advance, so disappointing performance was attributed to
causes other than faulty software.

In the remainder of this chapter, we briefly describe the way each of the three
approaches addresses a variety of problems. By showing in detail the commonalities
and differences, we provide a fair comparison of the approaches. Finally, open, im­
portant problems, identified in the development of the systems, are described to help
shape the research agenda for large-scale coordination.

2 Applications and Assumptions

Each of the applications involves at least 100 cooperative entities and has been tested
either in hardware or realistic simulation of hardware. Although specific communi­
cation restrictions differ, communication is identified as a much bigger limitation
than computation. None of the applications requires optimal performance; instead,
the focus is on doing a large task robustly.

2.1 Teamwork and Machinetta

Machinetta software proxies are used to develop teams where the members are as­
sumed to be completely cooperative and willing to incur costs for the overall good of
the team [20]. Typically, team members will be highly heterogeneous, ranging from

56 Scerri, Vincent and Mailler

simple agents and robots to humans. When a group of agents coordinates via team­
work they can flexibly and robustly achieve joint goals in a distributed, dynamic and
potentially hostile environment [7, 9]. Key teamwork algorithms have evolved from
an extensive body of work on both the theory and practice of teamwork [23, 8, 3].
Teams of heterogeneous actors have potential applications in a wide variety of fields,
ranging from supporting human collaboration [1, 22] to disaster response [16] to
manufacturing [9] to training [23] to games [10]. To date we have demonstrated
teams of 500 software agents [21], in both a UAV simulation [19] and a disaster
response simulation, but teams of as many as 200,000 agents are envisioned.

Given the complexity of the domains, tasks, and heterogeneity of the team, we
typically assume that optimality is not an option. Instead, we look for satisficing
solutions, that can achieve the goals rapidly and robustly. The assumption is that
doing something reasonable is a very good start. For example, in a disaster response
domain, we assume that it is better to have fire trucks on reasonable routes to fires,
than to delay departure with computationally expensive optimization. While the team
will be able to leverage reasonably high bandwidth communication channels, we
assume that the bandwidth is not sufficiently high to allow centralized control. The
team will need to achieve complex goals in a complex, dynamic domain. We assume
that some decomposition of the complex task into relatively independent subtasks
can take place.

2.2 Centibots Dispatching

Funded by DARPA, the CENTIBOTS project is aimed at designing, implementing,
and demonstrating a computational framework for the coordination of very large
robot teams, consisting of at least 100 small, resource-limited mobile robots (CEN­
TIBOTS, see Figure 1), on an indoor search-and-rescue task. In this project, commu­
nication was limited and unreliable, and any coordination mechanisms had to deal
with the limitations. There are two types of agents in the Centibots system; hence,
heterogeneity is not an issue. Similarly, optimality is infeasible, so having a reactive,
"good enough" system was the primary aim.

In the scenario, the CENTIBOTS are deployed as a search-and-rescue team for
indoor missions. A first set of mapping-capable CENTIBOTS surveys the area of in­
terest to build and share a distributed map highlighting hazards, humans, and hiding
places. A second wave of robots, with the capability of detecting an object of interest
(e.g. biochemical agents, computers, victims), is then sent. The key goal of the sec­
ond wave is to reliably search everywhere and report any findings to the command
center. These robots are then joined by a third wave (possibly the same robots used
during the second wave) of tracking robots that deploy into the area, configuring
themselves to effectively sense intruders and share the information among them­
selves and a command center [11].

Communication is done using an ad-hoc wireless network, which has a maximum
/̂za re J bandwidth of 1 Mpbs. Communication is not guaranteed because as the robots

move to achieve their own missions, links between the agents are created and lost.
Because the robots fail, break, and get lost, planning the entire mission ahead of

Comparing Three Approaches to Large-Scale Coordination 57

Fig. 1. 100 Robots used during the January 2004 evaluation.

time is not possible. Essentially, there is no chance that all the robots will finish
the mission. In addition, resources (i.e. robots) and goals can be added, removed, or
disabled at any time, making an adaptable system crucial.

2.3 Cooperative Mediation

Scalable, Periodic, Anytime Mediation (SPAM) [12] is a cooperative-mediation-
based algorithm that was designed to solve real-time, distributed resource allocation
problems (RTDRAP). SPAM was developed to coordinate the activities of hundreds
to thousands of agents that controlled sensors within a large sensor network as part
of the DARPA Autonomous Negotiating Teams (ANTS) program (see figure 2).

In this project, sensors were randomly placed in the environment and had to co­
ordinate their internal schedules in order to discover and track moving targets. Each
of the sensor platforms had three Doppler-radar-based sensor heads capable of re­
turning amplitude and frequency shift information for objects within their 20-foot
range and 120-degree viewable arc. Because of this, multiple, temporally coordi­
nated measurements from different sensors within the network were needed in order
to triangulate the precise position of a target at any given time. In addition, each of
the sensor platforms was controlled by a Basic stamp micro-controller that was ca­
pable of processing the incoming sensor data from only one head at a time. These
two factors when combined together formed the basis of a difficult, distributed re­
source allocation problem that was further complicated by dynamics created by the
movement of the targets.

Adding to the complexity of this problem, communications varied from 100
Mbps TCP-based wired networks to 14.4 kbps half duplex, RF-based, multichannel
wireless communications. In the latter, message passing was very unreliable and loss
rates of 50% were not uncommon. The communication restrictions combined with

58 Scerri, Vincent and Mailler

: *̂ '

i^^m^i^^ii
sAA^'lr-...

__•» i ' * -Y f r i^ ' " ' • - v ''"'^B

1'

TV^
• • - • ; - . : ; K ' ^ ^ ^ ^ i - " • " - ^

^"^^^WJf^l^lP^-;-,'

T'

^ i - * - ' * * * * ^

T

H
"̂ îSSI

J

Fig. 2. Researchers work on a demonstration involving 36 sensors and 3 mobile targets.

the real-time coordination needs made complete centralization out of the question
and traditional distributed techniques inadequate.

SPAM has been tested in real-world hardware environments with 36 sensors and
in simulated environments with more than 500 sensors.

3 Key Algorithms and Principles

Although distinct approaches are used, i.e., teamwork, hierarchical dispatching and
cooperative mediation, each approach imposes some limited, flexible structure on the
overall group. Notice that a central aim of each approach is to efficiently, robustly,
and heuristically allocate and reallocate tasks and resources.

3.1 Machinetta and Teamwork

A key principle in teamwork is that agents have both models of teamwork and mod­
els of other team members [21]. The models are used to reason about which actions
to take to achieve team goals. Having explicit models with which the agents can rea­
son leads to more robustness and flexibility than fixed protocols. The key abstraction
in our implementation of teamwork is a Team Oriented Plan, which breaks a com­
plex joint activity down into individual roles, with constraints between the roles [18].
Typically, a large team will be executing many team-oriented plans at any time. Dy­
namically changing subteams form to execute each of the plans. Small amounts of
communication occur across subteams, to ensure that sub-teams do not act at cross
purposes or duplicate efforts.

Scalable algorithms required to perform the teamwork were designed with two
key ideas in mind. First, we use probabilistic models of team activity and state to
inform key algorithms. This actually leverages the size of the team because the prob­
abilistic models tend to be more accurate with a large number of agents, since local
variation gets canceled out more effectively. The teamwork algorithms are designed
to leverage the probabilistic models to make very rapid decisions that are likely to be

Comparing Three Approaches to Large-Scale Coordination 59

at least "reasonable". Second, we note that when there are very many team members,
Murphy's Law"̂ applies, simply because everything happens so many times. Creating
efficient, lightweight software that is simple enough to be implemented reasonably
quickly, yet robust enough to be used in teams with thousands of agents, is as much
a function of the algorithms as it is of the actual code. Significant emphasis must
be placed on designing algorithms that are sufficiently simple to be straightforward
to implement in a very robust maimer. Specifically, most key algorithms use tokens
to encapsulate "chunks" of coordination reasoning [19]. A good example of these
principles is in our algorithm for ensuring that the team is not working on conflict­
ing plans. That algorithm uses tokens, for robustness, and the associates network to
ensure, with high probability, that the team is not working at cross purposes.

These two principles are embodied in the role allocation process that uses a prob­
abilistic model of the current capabilities and tasks of the team to calculate a thresh­
old capability level that a team member performing a role would have in a good
overall allocation, and then uses a token that moves around the team until an avail­
able team member is found with capability above the threshold [5].

3.2 Centibots Dispatching

Once the Centibots have produced a map as a bitmap image, an abstraction is needed
so search goals can be created to ensure that all space is searched. The abstraction
is done by building a Voronoi diagram from the map, and then the Voronoi skeleton
is abstracted into a graph. This abstraction is solely based on the sensor capabilities
of a robot. Once we have all the goals generated, coordination is required to allocate
them to a pool of robots.

To coordinate the robots' activities, we use a hierarchical dispatching system,
where robots can register with multiple dispatching agents, one of which is consid­
ered "preferred". Teams of robots are formed by a commander, and for each team,
a manager or dispatcher is selected. The manager selection is unimportant as known
solutions can be used. The commander assigns a set of goals to each team and the
teams' dispatchers assign these to individual robots. When a robot has finished its
assigned goals, it notifies the dispatcher, making itself available, and asks for a new
goal.

A key problem for Centibots was the strategy used by a dispatcher to assign goals
to robots. Since all robots started from the same position, the problem is to minimize
the search time. This allocation is in theory similar to a multiple traveling salesman
problem except that there is no a priori notion of how many salesmen you might have,
and a salesman can fail at any time during the traveling. Given these constraints, we
found, after trying several techniques, that the best strategy for the dispatcher is to
send the robot the farthest away for the first goal and then minimize its movement by
taking the closest goals after the first one.

Anything that can go wrong will go wrong.

60 Scerri, Vincent and Mailler

3.3 Cooperative Mediation

SPAM works by having one or more agents concurrently take on the role of media­
tor. An agent decides to become a mediator whenever it identifies a conflict with a
neighbor (both scheduled a sensor for use at the same time) or it recognizes a sub-
optimality in its allocation (it could achieve higher utility if it changed its sensor
assignment). As a mediator, an agent solves a localized portion (or subproblem) of
the overall global problem. In SPAM, this subproblem entails the agents with which
the mediator shares sensor resources. As the problem solving unfolds, the mediator
gathers preference information, from the agents within the session, which updates
and extends its view and overlaps the context that it uses for making its local deci­
sions with that of the other agents. By overlapping their context, agents understand
why the agents within the session have chosen a particular value that allows the sys­
tem to converge on mutually beneficial assignments.

This technique represents a new paradigm in distributed problem solving. Un­
like current techniques that attempt to limit the information the agents use to make
decisions in order to maintain distribution [28, 27], SPAM and more generally coop­
erative mediation centralize portions of the problem in order to exploit the speed of
centralized algorithms.

4 Key Novel Ideas

New ideas were required to overcome weaknesses in the principles as approaches
were scaled from small numbers of agents to the large numbers needed for the coor­
dination.

4.1 Machinetta and Teamwork

There are a variety of novel ideas in the Machinetta proxies. To maintain cohesion
and minimize conflicted effort, the whole team is connected via a static, scale free
associates network [21]. As well as the obligation to communicate information to
members of its dynamically changing subteam, as required by teamwork, an agent
must keep its neighbors in the associates network appraised of key information. The
network allows most conflicted or duplicated efforts to be quickly and easily detected
and resolved. Movement of information around the team, when team member(s) re­
quiring the information are not known in advance, also leverages the associates net­
work. Every time information is communicated, the agent receiving the information
updates a model of where it might send other information, based on information
received to date [26]. Because of a phenomenon known as small worlds networks,
information passed around a network in this manner can be efficiently sent to the
agent(s) requiring the information.

Allocating roles in team-oriented plans to best leverage the current skill set of
the team is accomplished by a novel algorithm called LA-DCOP [5]. LA-DCOP
extends distributed constraint optimization techniques in several ways to make it

Comparing Three Approaches to Large-Scale Coordination 61

appropriate for large, dynamic teams. Most important, LA-DCOP uses probabilistic
models of the skills of the team and the current roles to be filled to estimate the
likely skill of an agent filling a role in a "good" allocation. To take advantage of
human coordination reasoning, when it is available, we represent all coordination
tasks explicitly as coordination roles and allow the proxy to meta-reason about the
coordination role [20]. For example, in a disaster response domain, there may be a
role for fighting some particular fire that no firefighter is able to fill. The proxies can
recognize this and send the role to some person and allow that person to determine
what action to take.

4.2 Centibots

The hierarchical dispatching model offers two key interesting qualities. The com­
munication is minimal since the dispatcher is eavesdropping on the status message.
Assuming the status message is required, then using a centralized dispatching will
outperform any distributed methods. The drawback is the need of communication
between the team of robots and the dispatcher. We assume that the dispatcher is a
network service that resides physically anywhere on the network. The dispatcher
can be running on any team member, and would require only local communication.
The second quality is a natural hierarchy can be created to handle a large number
of robots. In this configuration, we could have a hierarchy of dispatchers, each re­
sponsible for an area of the map, using a subteam of robots. Each robot can already
subscribe to several dispatchers. If a dispatcher has completed all its goals, then it
can release its assets for other dispatchers to use, achieving a load-balancing sys­
tem. Like the SPAM system, the Centibots architecture leverage the power of the
mediation by centralizing a sub portion of the problem.

4.3 Cooperative Mediation

The key principle that allows SPAM to be scalable is the heuristic restriction of the
size of the subproblem that the mediators are able to centralize. Mediators in SPAM
are only allowed to conduct sessions including agents with which they directly share
resources. Although this prevents the search from being complete, in all but the most
tightly constrained problem instances, this technique limits the amount of communi­
cation and computation that must occur within any single mediator. The downside to
this heuristic approach, however, is that the mediators have less information and are
often unaware of the consequences of their actions on other agents. To combat this
effect, SPAM incorporates the use of conflict propagation and conflict dampening.

As the name implies, conflict propagation occurs whenever a mediator causes
conflicts for agents that are outside of one of its sessions. It easy to envision this
as the mediator pushing the conflicts onto agents over which it has no control (or
responsibility). The key goal of the propagation is to find regions within the global
resource problem that are under-constrained and can absorb the conflict. The actual
propagation occurs when one the agents that has the newly introduced conflict takes

62 Scerri, Vincent and Mailler

over the role of mediator. These agents can then either absorb the conflict (by find­
ing a satisfying assignment to their subproblem) or can push the conflict onto other
agents, which may push it even further.

It is easy to see that conflict propagation alone would have disastrous conse­
quences if it were not for conflict dampening. Conflict dampening is very similar
to the min-conflict heuristic presented in [13]. When an agent mediates, it gathers
information about the impact of particular assignments from each of the agents in­
volved in the session. This allows the mediator to choose solutions that minimize the
impact on agents outside of its view. Overall the effects of conflict propagation and
dampening can be visualized as ripples in a pond that eventually die down because
of the effects of friction and gravity.

SPAM also incorporates a number of resource-aware mechanisms that prevent
it over-utilizing communication. In particular, SPAM monitors the state of the com­
munications links between itself and other agents and when it notices that one of
the agents in the session has become overburdened, it is dropped from the session.
In addition, if an agent notices that it has become a communication hotspot, then it
avoids taking the role of mediator until the situation resolves itself. Overall, these
mechanisms allow SPAM to tradeoff utility for scalability of communications.

5 Software

We describe the major pieces of technology, specifically software, that are used for
the coordination in each of the approaches.

5.1 Machinetta and Teamwork

The teamwork algorithms are encapsulated in domain-independent software proxies
[17]. Each member of the team works closely with its own proxy. The proxy handles
all the routine coordination tasks, freeing the agent to focus on specific domain-level
tasks. The proxy communicates with the domain-level agent (or robot or person) via
an agent-specific, high-level protocol. Adjustable autonomy reasoning is applied to
each decision, allowing either the agent or the proxy to make each coordination deci­
sion [20]. Typically, all decisions are made by the proxy on behalf of agents or robots,
but when the proxy is working with a person, key decisions can be transferred to that
person. The current version of the proxies is called Machinetta and is a lightweight
Java implementation of the successful SOAR-based TEAMCORE proxies [21]. The
proxies have been successfully tested in several domains including coordination of
UAVs, disaster response, distributed sensor recharge, and personal assistant teams.
The proxy code can be freely downloaded from the Web. The application-dependent
aspects of the proxies, specifically the communication code and the interface to the
agents, are implemented as "pluggable" modules that can be easily changed for new
domains, thus improving the applicability of the proxies. The proxy software is freely
available on the Internet.

Comparing Three Approaches to Large-Scale Coordination 63

5.2 Centibots

The Centibots software makes an extensive use of the Jini [24] architecture. Each
robot and each key algorithm is a network service that registers, advertises and inter­
acts independently of its physical location. We have services like the map publisher
that aggregates data from the mappers and publishes a map for the other robots, and
like the dispatcher that allocates tasks to robots or even the user interface. The result
is a very modular, scalable infrastructure. Each robot has its own computer where it
runs localization, navigation, path plarming, and vision processing algorithms.

5.3 Cooperative Mediation

The SPAM protocol is implemented both within simulation and as part of more com­
plex agents designed to work on sensor hardware. The protocol itself is composed of
several finite state machines (FSMs) that are written in Java. Each state in the FSM
encapsulates a nondecomposable decision point within the protocol. Transitions be­
tween states are event driven and allow the protocol to specify state transitions based
on time-outs, message traffic, specific execution conditions, and so on. This allows
the protocol to be time and resource aware, modifying its behavior based on the
current environmental conditions. SPAM is currently being considered for use in a
number of domains, including real-time airspace deconfliction and the control of
sensors for severe weather tracking.

6 Key Unexpected Challenges

Challenges were encountered during development that were not expected at the out­
set. Each approach ran into different, unexpected problems, ranging from sharing
information to controlling oscillations.

6.1 Machinetta and Teamwork

Two main unexpected challenges occurred during the development of large teams.
First, it was often the case that some team member had information that could be
relevant to some other member of the team, but did not know to which other team
member the information was relevant. For example, in a disaster response domain,
an agent may get information about chemicals stored in a particular factory, but not
know which firefighters will be attending that fire. Restricting knowledge of current
activities to within a subteam provides scalability but reduces the ability of other
team members to provide potentially relevant information. Previous approaches, in­
cluding blackboards, advertisement mechanisms and hierarchies, do not immediately
solve this problem in a manner that can effectively scale. To address this problem we
made use of the fact that the associates network connecting team members had a
small worlds property and allowed an agent to push information to its neighbor most
likely to be able to make use of that information or know who would [26].

64 Scerri, Vincent and Mailler

The second unexpected problem encountered was that there were many algo­
rithm parameters that interact with one another in highly nonlinear ways. Moreover,
slightly different situations on the ground require substantially different configura­
tion of the algorithm parameters. Determining appropriate values for all parameters
for a given domain is as much art as science and typically requires extensive experi­
mentation. When the situation changes significantly at runtime, an initially appropri­
ate configuration of algorithm parameters can end up being poor. We are currently
developing techniques that use neural networks to model the relationships between
parameters and assist the user in finding optimal settings for specific performance
requirements and tradeoffs.

6.2 Centibots Challenges

The two main challenges we had to face are the instability of the communications and
the number of goals to be assigned per agent. In this project, the communication was
coordinated assuming a very conservative range for the wireless network. Unfortu­
nately, we have encountered more than once parts of buildings where this conserva­
tive distance was not working. In this case, any robot that enters this communication
dead zone will not be able to contact the centralized dispatcher. Our solution was to
have the dispatcher living on close-by robots , which was a good improvement but
did not completely solve the problem. As a result, we had to implement a low-level
behavior where the robot, after waiting a known timeout, will return to its original
starting position if it could not contact the dispatcher. In this case, at least we would
retrieve it.

The second challenge was to determine the number of goals to assign to a robot.
There was no way to know a priori how many robots would be part of the mission;
therefore, a fair division of the number of goals was not possible. In section 5.2
we have shown that the most effective dispatching would require an assignment of
several close-by goals; the key question is how many. Since the number of robots
assigned to the mission is unknown (robots assigned will break and the commander
may reassign others in the middle of the mission), the solution we use is an empirical
function. The number of goals assigned varies (one to seven) depending on the num­
ber of goals left to be assigned. At the end of each run we collect the number of goals
fulfilled by each robot and we collect each ending time; if there is a large variation
(meaning some robots were under-utilized and others were overutilized) we vary the
total number of goals to be assigned.

6.3 Cooperative Mediation

Because the SPAM protocol operates in a local manner, a condition known as os­
cillation can occur. Oscillation is caused by repeated searching of the same parts of
the search space because of the limited view that the agents maintain throughout the
problem solving process.

During the development of the SPAM protocol, we explored a method in which
each mediator maintained a history of the sensor schedules that were being mediated

Comparing Three Approaches to Large-Scale Coordination 65

whenever a session terminated. By doing this, mediators were able determine if they
previously may have been in a state that caused them to propagate in the past. To stop
the oscillation, the propagating mediator lowered its solution quality to force itself to
explore different areas of the solution space. It should be noted that in certain cases
oscillation was incorrectly detected by this technique, which resulted in having the
mediator unnecessarily accept a lower-quality solution.

This technique is similar to that applied in [14], where a nogood is annotated
with the state of the agent storing it. Unfortunately, this technique does not work
well when complex interrelationships exist and are dynamically changing. Because
the problem changes continuously, previously explored parts of the search space need
to be constantly revisited to ensure that an invalid solution has not recently become
valid.

In the final implementation of the SPAM protocol, we allowed the agents to enter
into potential oscillation, maintaining almost no prior state from session to session
and relied on the environment to break oscillations through the movement of the
targets, asynchrony of the communications, timeouts, and so on.

7 Open Problems

As with the unexpected problems, each approach has different open problems. Even
though most of the problems appear to be reasonably approach independent, e.g.,
traffic control in Centibots, neither of the other approaches has specific solutions to
that problem, suggesting that the problems may be general.

7.1 Machinetta and Teamwork

Despite its successes, Machinetta has some critical limitations. Most critically, Ma­
chinetta relies on a library of predefined team-oriented plan templates. While some
constructs exist for expressing very limited structure in the plans, these constructs
are hard to use. In practice, to write successful Machinetta plans, the domain must be
easily decomposable into simple, relatively independent tasks. The ability to write
and execute more complex plans is a pressing problem.

While the probabilistic heuristics used by Machinetta are typically effective and
efficient, occasionally an unfortunate situation happens and the resulting coordina­
tion is very poor. Sometimes the coordination will be unsuccessful or expensive be­
cause the situation is particularly hard to handle, but sometimes it will be that the
particular heuristic being used is unsuited to the specific situation. Critically, the
agents themselves cannot distinguish between a domain situation that is difficult to
handle and a case where the coordination is failing. For example, it is difficult for a
team to distinguish between reasonable role allocation due to a dynamic and chang­
ing domain and "thrashing" due to a heuristic not being suited to the problem. While
individual problems, such as thrashing, can be solved on an ad hoc basis, the gen­
eral problem of having the team detect that the coordination is failing is important

66 Scerri, Vincent and Mailler

before deploying teams. If such a problem is detected, the agents may be able to re­
configure their algorithms to overcome the problem. However, as mentioned above,
determining how to configure the algorithms for a specific situation is also an open
problem.

7.2 Traffic Control in Centibots

Linked to the goal assignment, traffic control for several dozen robots in a small
environment is a huge challenge. The assignment should take into consideration the
schedule in which each robot will do its tasks to prevent deadlocks. For a robot, a
doorway is a very narrow choke point, and only one robot can go through at one
time. When more than two robots try to enter and exit the same room at the same
time, you have a conflict. Currently we are not managing this problem; luck and local
avoidance is how we solve it. We have seen in our dozens of real-life experiments
some conflicts becoming literally traffic jams and blocking permanently one access
of an area. The only way to reason about the choke point is as resource and solve the
conflict during the assignment by using a method such as SPAM.

7.3 Cooperative Mediation

The most interesting open questions for the SPAM protocol deal with the when,
why, and whom for extending the view of the mediators given different levels of en­
vironmental dynamics and interdependency structures. Because the optimality and
scalability of the protocol are strongly tied not only to the size, but to the charac­
teristics of the subproblem that the mediators centralize, a detailed study needs to
be conducted to determine the relationship between these two competing factors.
Some work has already been done that preliminarily addresses these questions. For
example, the whom and why to link questions were in part addressed in the texture
measures work of Fox, Sadeh, and Baycan [6]. In addition, recent work on phase
transitions in CSPs [2, 4, 15] in part addresses the question of when. It is clear that a
great deal of work still needs to be done.

8 Evaluation and Metrics

We agree that evaluating the algorithms and the metrics used to measure performance
is an immature and difficult science. Clearly, useful and comparable metrics will need
to be developed, if sensible comparison is to be performed.

8.1 Machinetta and Teamwork

Evaluating teamwork is very difficult. While success at some particular domain-level
task is clearly a good sign, it is a very coarse measure of coordination ability, and
thus it is only one aspect of our evaluation. To ensure that we are not exploiting

Comparing Three Approaches to Large-Scale Coordination 67

some feature of the domain when evaluating the algorithms, we have endeavored to
use at least two distinct domains for testing. Moreover, typically it is infeasible to
test head to head against another approach; hence, we are limited to varying param­
eters in the proxies. For the larger teams, a single experiment takes on the order of
an hour, severely limiting the number of runs that can be performed. Unfortunately,
because of the sheer size of the environment and the number of agents, there tends
to be high variation in performance, implying that many runs must be performed to
get statistically significant results. Even determining what to measure in an exper­
iment is a difficult decision. We measure things like number of messages, number
of plans created, roles executed and scalability, although it is not clear how some of
these numbers might be compared to other algorithms. Typically, we measure global
values, such as the overall number of messages rather than local values such as the
number of messages sent by a particular agent.

Since there are no modeling techniques available for mathematically analyzing
the algorithms'performance, we have developed a series of simple simulators that
allow specific algorithms to be tested in isolation and very quickly. These simulators
typically also allow comparison against some other algorithms. Currently, we have
simple simulators for role allocation, subteam formation, and information sharing.
Performing very large numbers of experiments with these simulators, we are able
to understand enough about the behavior of the algorithms to perform much more
focused experimentation with the complete Machinetta software.

8.2 Centibots Evaluation

This project was driven by the challenge problem set by DARPA and in this sense
the evaluation was independently done by a DARPA team that has measured the be­
haviors of the Centibots software to solve the search-and-rescue mission, not purely
the coordination. For a week in January 2004, the Centibots were tested at a 650m^
building in Ft. A.P. Hill, Virginia. They were tested under controlled conditions, with
a single operator in charge of the robot team.

For searching, the evaluation criteria were time to locate object of interests
(OOIs), positional accuracy, and false detections. There were four evaluation runs,
and the results, in the Table 1, show that the team was highly effective in finding the
object and setting up a guard perimeter. Note that we used very simple visual detec­
tion hardware and algorithms, since we had limited computational resources on the
robots - false and missed detections were a failure of these algorithms, rather than
the spatial reasoning and dispatching processes.

The results were not focused on the coordination portion but measured the overall
performance of the system to solve the search-and-rescue mission. As explained in
the next section, extracting meaningful data from such a system is not an easy task.

8.3 Cooperative Mediation

The SPAM protocol was implemented and tested within a working sensor network,
but most of the development and analysis of the protocol was done in simulation.

68 Scerri, Vincent and Mailler

Run

1
2
3
4

Avg.

Mapping Time

22min
26min

17 min (2 robots)
19 min (2 robots)

21 min

Map
Area
96%
97%
95%
96%
96%

Search
Robots

66
55
43
42
51

Search Time
False Pos
34 min / 0
76 min /1
16 min/O
Missed / 2

30 min / 0.75

Position Error /
Topo Error

11 cm / none
24 cm / none
20 cm / none

NA
14 cm / none

Table 1. Results of the four evaluation runs.

The primary metrics used to measure SPAM were the number of targets being
effectively tracked during a fixed period of time, the number of messages being used
per agent, and the social utility being obtained. For this problem, social utility is
defined as the sum of the individual utilities for each target with penalties assigned
for ignoring objects.

Targets

Fig. 3. Percentage of optimal utility for SPAM and greedy solutions.

We implemented two alternative methods for comparison. The first, which are
called greedy, involved having each agent request all possible sensing resources to
track its target, potentially overlapping with the requests of other agents. The utility
calculation treated these overlaps as subdivided sensor time for each of the tracks.
We also implemented algorithms to calculate the optimal utility and optimal number
of tracks. Because these algorithms took so long to find the optimal solution however,
we were forced to restrict the size of the problems to less than 10 targets. Overall,
SPAM performed nearly optimally under various amounts of resource contention
(see Figure 3). Independent analysis of the protocol was also conducted in [25],
which verified these findings.

Comparing Three Approaches to Large-Scale Coordination 69

9 Testing and Debugging

Testing and debugging of the approaches is perhaps the most unexpectedly difficult
area. Despite the sophisticated basic approaches and the relatively straightforward al­
gorithms used, debugging always degenerated into a process of pouring over logfiles,
which is clearly inappropriate if such systems are to be widely used.

9.1 Machinetta and Teamwork

Testing and debugging Machinetta teams is extremely difficult. Probabilistic reason­
ing and complex, dynamic domains lead to occasional errors that are very hard to
reproduce or track down. We have extensive logging facilities that record all the de­
cisions the proxies make, but without tool support determining why something failed
can be extremely difficult and time-consuming. Simple simulators play a role in al­
lowing extensive debugging of protocols in a simplified environment, but the benefit
is limited. We believe that development tools in general, and testing and debugging
support specifically, may be the biggest impediment to the deployment of even larger
teams.

9.2 Centibots

Debugging is especially difficult because overall the system is behaving correctly.
In one experiment, we had 66 robots in use at one time, producing over 1 MB of
logs and debugging information per minute. We ran our experiment for more than 2
hours. In Centibots, we have a very sophisticated logging mechanism that writes ev­
ery event, every message and information in an SQL database. By using the database,
it is possible to replay an entire experiment. We also built SQL scripts that can extract
statistics such as average running time per robot, average traveling time per robot,
and number of goals fulfilled per robot that are very useful to the debugging process.
Unless the system is performing very strangely, noticing the presence of bugs is ex­
tremely hard. In fact, one bug persisted for more than a year before being detected
and fixed, leading to a dramatic improvement in performance.

9.3 Cooperative Mediation

Even with specialized simulation environments, testing and debugging coordination
protocols that operate in the large is very difficult. On reasonably small problems
involving tens of agents, noncritical problems often went unnoticed for long periods
of time. We encountered a number of problems in trying to debug and test SPAM.

In the end, countless hours were spent pouring over many large log files, adding
additional debugging text, rerunning, and so on. We did develop several graphical
displays that helped to identify pathologies (or emergent behaviors) that could be
witnessed only by viewing the system's performance from a bird's eye perspective.
It is clear that a combination of macro and micro debugging methods is essential to
developing systems of this type.

70 Scerri, Vincent and Mailler

10 Conclusion

We have presented three initial attempts at performing large-scale coordination
among robots or agents. We have shown striking similarities between the approaches
that raise interesting scientific questions that must be addressed in a principled way.
Critically, design of the coordination seems to be driven more by the difficult chal­
lenge of developing the software to implement it than by principles or theory. It will
be important, for the field to move forward, to balance (or mitigate) development
complexity with algorithmic performance in a better way than has been done so far.
If these challenges can be met, the promise of large-scale coordinating is very excit­
ing.

References

1. Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina Lerman, Jean Oh, David V.
Pynadath, Thomas A. Russ, and Milind Tambe. Electric Elves: Agent technology for
supporting human organizations. AIMagazine, 23(2): 11-24, 2002.

2. P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems are. In
Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-
9/), pages 331-337, 1991.

3. Philip R. Cohen and Hector J. Levesque. Teamwork. Nous, 25(4):487-512, 1991.
4. Joseph Culberson and Ian Gent. Frozen development in graph coloring. Theoretical

Computer Science, 265(1-2):227-264, 2001.
5. Alessandro Farinelli, Paul Scerri, and Milind Tambe. Building large-scale robot systems:

Distributed role assignment in dynamic, uncertain domains. In Proceedings of Workshop
on Representations and Approaches for Time-Critical Decentralized Resource, Role and
Task Allocation, 2003.

6. Mark S. Fox, Norman Sadeh, and Can Baycan. Constrained heuristic search. In Pro­
ceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI-89),
volume 1, pages 309-316, Detroit, MI, August 1989. Morgan Kaufmann.

7. J. Giampapa and K. Sycara. Conversational case-based planning for agent team coordina­
tion. In Proceedings of the Fourth International Conference on Case-Based Reasoning,
2001.

8. Barbara Grosz and Sarit Kraus. Collaborative plans for complex group actions. Artificial
Intelligence, 86:269-358, 1996".

9. Nick Jennings. Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence, 15:195-240, 1995.

10. Hiraoki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, , and Hi-
toshi Matsubara. RoboCup: A challenge problem for AI. AI Magazine, 18(l):73-85,
Spring 1997.

11. Kurt Konolige, Dieter Fox, Charlie Ortiz, Andrew Agno, Michael Eriksen, Benson
Limketkai, Jonathan Ko, Benoit Morisset, Dirk Schulz, Benjamin Stewart, and Regis Vin­
cent. Centibots: Very large scale distributed robotic teams. In Proc. of the International
Symposium on Experimental Robotics, 2004.

12. Roger Mailler, Victor Lesser, and Bryan Horling. Cooperative Negotiation for Soft Real-
Time Distributed Resource Allocation. In Proceedings of Second International Joint Con­
ference on Autonomous Agents and MultiAgent Systems (AAMAS 2003), pages 576-583,
Melbourne, July 2003. ACM Press.

Comparing Three Approaches to Large-Scale Coordination 71

13. Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimizing
conflicts: A heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58(1-3): 161-205, 1992.

14. Pragnesh Jay Modi, Hyuckchul Jung, Milind Tambe, Wei-Min Shen, and Shriniwas
Kulkami. Dynamic distributed resource allocation: A distributed constraint satisfaction
approach. In John-Jules Meyer and Milind Tambe, editors. Pre-proceedings of the Eighth
International Workshop on Agent Theories, Architectures, and Languages (ATAL-200I),
pages 181-193, 2001.

15. Remi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror Troy-
ansky. Determining computational complexity from characteristic 'phase transitions'.
Nature, 400:133-131, 1999.

16. R. Nair, T. Ito, M. Tambe, and S. Marsella. Task allocation in robocup rescue simulation
domain. In Proceedings of the International Symposium on RoboCup, 2002.

17. David V. Pynadath and Milind Tambe. An automated teamwork infrastructure for hetero­
geneous software agents and humans. Journal of Autonomous Agents and Multi-Agent
Systems, Special Issue on Infrastructure and Requirements for Building Research Grade
Multi-Agent Systems, page to appear, 2002.

18. D.V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Toward team-oriented program­
ming. In Intelligent Agents VI: Agent Theories, Architectures, and Languages, pages
233-247, 1999.

19. P. Scerri, E. Liao, Yang. Xu, M. Lewis, G. Lai, and K. Sycara. Theory and Algorithms
for Cooperative Systems, chapter Coordinating very large groups of wide area search
munitions. World Scientific Publishing, 2004.

20. R Scerri, D. V. Pynadath, L. Johnson, P Rosenbloom, N. Schurr, M Si, and M. Tambe. A
prototype infrastructure for distributed robot-agent-person teams. In The Second Interna­
tional Joint Conference on Autonomous Agents and Multiagent Systems, 2003.

21. P. Scerri, Yang. Xu, E. Liao, J. Lai, and K. Sycara. Scaling teamwork to very large teams.
In Proceedings ofAAMAS'04, 2004.

22. K. Sycara and M. Lewis. Team Cognition, chapter Integrating Agents into Human Teams.
Erlbaum Publishers, 2003.

23. Milind Tambe. Agent architectures for flexible, practical teamwork. National Conference
on AI (AAAI97), pages 22-28, 1997.

24. Jim Waldo. The Jini architecture for network-centric computing. Communications of the
ACM, 42(7):76-82, 1999.

25. Guandong Wang, Weixiong Zhang, Roger Mailler, and Victor Lesser. Analysis of Nego­
tiation Protocols by Distributed Search, pages 339-361. Kluwer Academic Publishers,
2003.

26. Y. Xu, M. Lewis, K. Sycara, and P. Scerri. Information sharing in very large teams. In In
AAMAS'04 Workshop on Challenges in Coordination of Large Scale MultiAgent Systems,
2004.

27. Makoto Yokoo. Asynchronous weak-commitment search for solving distributed con­
straint satisfaction problems. In Proceedings of the First International Conference on
Principles and Practice of Constraint Programming (CP-95), Lecture Notes in Computer
Science 976, pages 88-102. Springer-Verlag, 1995.

28. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. Distributed
constraint satisfaction for formalizing distributed problem solving. In International Con­
ference on Distributed Computing Systems, pages 614-621, 1992.

Part II

Scaling Existing Coordination Approaches

Decentralized Partner Finding in Multi-Agent Systems

Marcelo M. Vanzin and K. S. Barber

The Laboratory for Intelligent Processes and Systems
Electrical and Computer Engineering Department
The University of Texas at Austin
Austin, TX 78712
vanzin@lips.utexas.edu and barber@mail.utexas.edu

One of the most compelling characteristics of multi agent systems is the ability to
form coalitions to share their resources, create plans, share execution of tasks, etc.
The work presented in this article offers scalable methods for finding potential coali­
tion partners when not all agents in a large multi-agent system are known to the
agents in need of help to achieve their goals. A new algorithm for finding partners
in a MAS, based on concepts inspired by peer-to-peer networks, is described. The
proposed algorithm design aims to provide a new, completely decentralized scheme
that can be used by agents to gather information needed to make decisions about po­
tential partners. The proposed algorithm is competitive with centralized approaches
in smaller multi-agent systems and provides better scalability for larger systems.

1 Introduction

Multi-Agent Systems (MAS) are a particular field of distributed systems research,
where nodes that comprise the system, termed Agents [20], have characteristics such
as reactivity, autonomy, pro-activeness and social ability. These systems are some­
times referred to as Distributed Artificial Intelligence [8], since the agents in these
systems often borrow ideas from the field of artificial intelligence to achieve their
goals.

Among the characteristics of an agent system is the ability of different agents
to work together to solve problems. Often when working on a goal, agents will dis­
cover that they lack the needed resources to accomplish that goal, or that work could
be done more efficiently if other agents were helping by providing access to the re­
sources they have available. By forming partnerships, agents can make use of the new
resources provided by the partners to more efficiently work towards their objectives.
There are several ways in which agents can cooperate [16]. These include but are not
restricted to load-balancing (distributing the task of working on large computations),
resource sharing (allowing other agents to use your resources if they need them to
accomplish their objectives) and action coordination (agents planning together and
deciding on a set of actions, aiming at maximizing the outcome of some effort).

mailto:vanzin@lips.utexas.edu
mailto:barber@mail.utexas.edu

76 Vanzin and Barber

There is no single solution to the problem of how to find information about these
other agents in the system, and which resources they have. Different approaches
have been proposed for forming coalitions [1, 14, 15]. The work presented in this
article provides a method and algorithm for finding and evaluating information about
agents in open, large, distributed systems where knowledge about or connectivity to
potential information sources may not be available. This research aims to improve on
the qualities of existing approaches while avoiding some of the shortcomings these
approaches, such as having a single point of failure or depending on some specific
network functionality that may not be available to the agents.

Finding partners is only the first part in the process of forming a coalition. Af­
ter or as a part of the coalition formation process, there are a number of issues re­
garding the scope of the coalition and the organizational structure of the members.
For this research, coalition scope is defined by the goals the members will seek to
achieve jointly. Organizationally, it must be determined which coalition members
are making decisions about which goals and which members are taking actions to
accomplish these goals. Therefore, we need a representation to identify decision­
making responsibility and execution authority within the coalition organization, giv­
ing agents a means to find and establish a coalition to best meet their goals. The
representation used to capture a coalition's organizational structure is based on the
concept of Decision-Making Frameworks (DMF) developed by Martin [7], which
will be introduced briefly in a later section.

2 Motivation

The problem of coalition formation can be viewed as a composition of two separate
problems:

1. Finding partners: agents must determine what are their needs regarding their
current goals, and, when not able to accomplish the goals by themselves, decide
on a group of agents with whom they are interested in working.

2. Forming the coalition: once enough knowledge exists about possible partners
to form a coalition, the agent communicates its desires to those possible part­
ners and starts a negotiation that leads to having all the agents agree on some
coordination protocol to carry out the different tasks.

This research assesses the first step of the coalition formation process, finding
partners in a MAS. In the scope of this research, the term "partners" will be used to
refer to any agent in the system that can provide needed information or resources to
an agent trying to achieve its goals.

When looking for potential coalition partners, an agent must have enough infor­
mation about other agents in the system to be able to identify which agents con­
tain the resources needed to complete the tasks leading to the accomplishment of
the agent's goals. This information is not available to the agent a priori: the agent's
knowledge base has to be built in some manner. In an information rich environment,

Decentralized Partner Finding in Multi-Agent Systems 77

it is crucial for an agent to have the ability to search for and evaluate potential part­
ners quickly and efficiently.

Multi-Agent systems present several challenges for the agents in this respect.
These include, but are not limited to:

Opeimess: agents may enter and leave the system at any time, changing the distri­
bution of resources in the system.

Scale: as more agents enter the system, agents looking for partners are faced with a
huge amount of information about potential partners.

Distribution: agents working in these systems are independent of each other. The
implications of this are that agents make their own decisions when working to
achieve their goals and do not have direct influence on the actions other agents
take.

Partial knowledge: related to the scale problem, this means that it is unfeasible for
the agents to hold data about everything in the environment, for several reasons
that will be discussed in more detail below.

Partial cormectivity: agents will only be able to talk directly to a small subset of
the agents currently in the system. This also means that communicating with
different agents incurs different costs in terms of latency and number of hops
needed to reach a respective agent.

Addressing these challenges is important as agent systems become more com­
plex. Below the concept of Decision-Making Frameworks used to represent coali­
tions in the scope of this research is briefly introduced. Also, an analysis of current
methods applied to solve the problem at hand is presented, showing the advantages
and shortcomings of each approach and providing some examples of systems that
employ these techniques.

2.1 Decision-Making Frameworks

Agents in a coalition need some representation to capture the organizational struc­
ture of the coalition. One possible representation is a Decision-Making Framework
(DMF) [7]. A DMF is represented by a tuple, defined as:

DMF= (D,G,C) , where:
D : The set listing the agents acting as decision makers for the goals in G.
G : A non-empty set of goals to which the coalition is committed.
C : The set of agents that perform actions based on the decisions made by

agents in the set D.

Regardless of how the process of reaching agreements with the resulting mem­
bers of D and C is conducted, it is assumed that the agents already have enough
knowledge about the system to be able to choose a set of partners for a new coali­
tion. While it is important to separate the process of finding the possible partners and
the process of negotiating and establishing partnerships in order to enhance the sys­
tem's flexibility, finding the potential partners is an important step in the process of

78 Vanzin and Barber

forming the coalitions. The need for a scalable algorithm for finding this information
about potential partners in an open, dynamic multi-agent environment is the main
incentive for this research.

2.2 The Problem of Finding Partners

Looking for the potential partners for a coalition requires the agent to have enough
information about other agents in the system to be able to identify which ones provide
the resources required for its tasks. This information is not available to the agent a
priori: the agent's knowledge base has to be built in some manner.

Information about other agents in the system can come from many different
sources. Some approaches to retrieving information about the environment are pre­
sented next.

Broadcasting

When searching for potential partners, agents could broadcast a request for a partner.
Broadcasting involves sending a message that can be received by many, and possibly
all, agents in the system. This may be done by using a communication infrastructure
that allows broadcasting, or by sending the same message to several destinations,
emulating the effect of a real broadcast domain. Once having received a message,
the agents may choose to reply or not to the requests made in the message. The re­
questing agent then analyzes all the replies to form its internal model of the other
agents and decide on possible partnerships. The main advantage of a system based
on broadcasting messages is its simplicity in the case where a network infra-structure
that supports broadcasting exists. On the other hand, its simplicity is also its disad­
vantage.

The first problem is that it becomes non-trivial to emulate a broadcast domain
over networks that do not support broadcast messages. Especially when considering
wireless ad-hoc networks, broadcasting is not trivial and can be very expensive [19].
This is unfortunate, since this kind of setup is very interesting for the deployment of
agents, as it does not require any existing network infra-structure to be available.

Also, broadcasting makes it more difficult to protect the content of the messages,
since all agents within reach of the message can read its contents. Cryptography may
be used to allow only a subset of agents to read the message, but using this approach
would require a complex key management scheme.

Contract Nets [17] employ a protocol that uses broadcasting to find potential
partners for possible partnerships.

Environment Modeling

The agents may maintain information about other agents in the system based on their
interactions with those agents.

The main advantage of this approach is reusing the information created by work­
ing with other agents in the system. The downside is that such information may not

Decentralized Partner Finding in Multi-Agent Systems 79

form an accurate and up-to-date model: the models will be dated by the date of the
interactions, which will vary depending on the agent.

Also, requiring an agent to model the whole environment may be infeasible when
the system is large or changes too quickly. In many cases, agents will have only
limited memory and computational resources, limiting the amount of data they can
hold and process at any time. Quickly changing systems pose a different challenge
in this case: the changes may be occurring faster than the agent can notice these
changes and update its model of the system, resulting in incorrect models that can
negatively impact the work of the agent.

Centralized Directory

Using a central directory for information retrieval is common practice in several ap­
plications, due to its simplicity. Agents publish their information to a directory, and
send a request to the directory when they need information about other agents, keep­
ing the agent implementation very trivial. Centralized systems also make scalability
rather easy, by simply adding more directories to the system to handle the larger
number of requests that might be made by the agents.

The problems with the directory approach are the same as with other centralized
systems. First of all, the system becomes reliant on a single entity, or a small number
of nodes that act as a directory, allowing agents with malicious intent to easily attack
the system and interfere with the work of other agents. Also, as the system grows,
maintaining up-to-date information in the directory becomes harder, a problem that
is even more difficult to solve when several directories are employed. In the case of
multiple directories, there is also the problem of synchronizing information stored in
the various directories.

Another concern related to agent operations is trust. In a heterogeneous environ­
ment it may be the case that a single directory is not trusted by all the agents in
the system. In such a case, agents may not be willing to release information about
themselves to a directory, or may not want to use a particular directory to retrieve
information they need. This is a concern that exists for every approach that might be
chosen, but a centralized system makes it especially harder to solve: the agents have
no other information source to rely on aside from the directories.

An example of a centralized system would be one that uses the CoABS Grid [5]
to find services. The CoABS Grid, while using more than one directory to hold infor­
mation, is still based on requiring agents to publish their information to a directory
and retrieve information from agents designed to be directories in the system, thus
still suffering from the shortcomings discussed above.

Decentralized Information Exchange

A different approach is a system where explicit communication between the agents
is used to exchange information such as resource availability, coalitions or any other
information that may be useful for the agents.

80 Vanzin and Barber

Some work has been done in the area of finding partners using a peer-to-peer
approach, such as the Distributed Matchmaking (DM) work conducted by Ogston
[9, 10, 11]. The work described herein, while sharing some characteristics with DM,
has some fundamental differences. First, this research will not rely on a central au­
thority to maintain any kind of information, while DM still uses a central agent to
hold information about the coalitions that are formed in the MAS. This research also
expands the problem of finding partners in a MAS into the area of coalition forma­
tion, an area that is not explored by DM currently.

In the next section we examine how the agents can efficiently model the environ­
ment and how they can collaborate with each other when constructing those models,
leading to a decentralized solution for the problem of finding partners in a large
MAS.

3 Modeling Agents

The first step towards having an efficient partner finding algorithm is to maintain a
consistent model of the other agents in the system, creating an Environment Model.
This model must capture enough information about the agents to allow the holder
to decide on trying to form a partnership or not, given its purposes. Also, the envi­
ronment model needs to be regularly updated, since working with out-of-date infor­
mation in a dynamic environment may lead to wasted time, such as agents trying to
form coalitions with other agents that may not anymore be suitable for the tasks for
which they were wanted.

To better understand how the modeling is done in the scope of this research, some
clarification about how the agents represent their goals in the scope of this research
is needed. A goal is defined as being a top-level task, comprised of a list of tasks that
need to be executed by one agent. Tasks can be of two kinds: they can be atomic,
meaning they cannot be decomposed and thus have to be executed by a single agent,
or they can be decomposable, consisting of a list of other tasks (of either kind),
meaning that if an agent cannot execute the task on its own, the task can be broken
down and a group of agents can work to accomplish the respective task.

Tasks require certain resources to be executed. It is assumed that the resources
cannot be used remotely. Instead, the task requiring a set of resources needs to be
assigned to an agent that has those resources. If the agent does not have all resources
needed to accomplish the task, and the task is not decomposable, then it is said
that the agent cannot execute the task. If the task is decomposable, each sub-task
is analyzed individually, recursively. One assumption is made about the nature of
decomposable tasks, though. Let's say that a decomposable task t\ needs a set of
resources, /? == {ri, r2,..., r„}. It is assumed that for any task ti{ii^\) that is a subtask
of ri, the set of resources needed by ti is a subset of /?, and is not equal to /?, and the
union of all sets of resources needed by the subtasks of ri is equal to R. In summary:

Decentralized Partner Finding in Multi-Agent Systems 81

^"^ {^u4^'"^4} ' set of subtasks of task r̂
/?/ = {ri, r2,..., r„} : set of resources needed by ti

U {Ri)=RkmdRiCRk
i=l...n

Agents build models of other agents in the MAS based on interactions. Gener­
ally, the agent will explicitly ask another agent for information, updating its internal
model with the information received in return. But other kinds of interactions may
also contribute to update the state of the internal model; for example, when trying to
form a partnership, the agent being contacted may realize that it carmot execute some
task anymore (e.g., because some resource it once had is not available anymore), so it
may choose to send updated information about itself to the agent requesting the part­
nership and indicate another agent it knows about who can help with that particular
problem.

As discussed before, having the agent hold information about every other agent
and the resources thos agents currently hold can lead to scalability issues and lots of
wasted resources, from memory space to communication needed to maintain those
models. In this research, agents can work with a limited amount of models and com­
municate with each other in case some needed information is not in their local knowl­
edge base.

The approach taken for modeling other agents in the system is to maintain a
mapping between the resources the agent knows about in the system and the agent(s)
that provide those resources. Building from this, two other features have been built
into the model allowing an agent to easily manage information about a group of
agents that share some commonality: Similar Agent Groups and Complementary
Agent Groups.

Similar Agent Groups model a group of agents that provide similar resources.
An agent orders similar agents internally according to an utility function. Similar
agents can be used interchangeably for tasks that require the resources they share
in common. This model can greatly simplify the work of searching for partners that
provide a resource: a whole list of agents is readily available, in an arbitrary order
defined by the agent. If the first agent in the list denies a partnership for some reason,
it is easy for the agent to just choose the next one on the list, using the list as a
"queue" of possible partners.

Complementary Agent Groups (CAGs) define agents that, together, can work on
solving a set of tasks.An agent can use the CAG information when it carmot work
alone on a goal, and needs some way to keep track of which agents can help accom­
plish the tasks that comprise that goal. CAGs are flexible with regard to matching of
agents to tasks. Depending on the needs of the agent building the model, the choice
of which agent will be assigned to which task may be done in different ways, such
as:

• Minimize the number of agents in a coalition, in which case preference will be
given to the agent that can execute a larger number of different tasks when choos­
ing among assignees for a task.

82 Vanzin and Barber

• Reduce the total cost of communication among the members in the partnership,
thus giving preference to agents with which it can communicate more efficiently
when looking for coalition partners.

The experiments performed during this research used the "minimize coalition
size" approach, meaning that the agents will choose the partners that can execute the
most tasks, even if that incurs higher communication costs.

4 Searching for Partners

This section introduces an algorithm than can be used by agents to find partners in a
large MAS. This algorithm has the following characteristics:

1. It is completely decentralized, meaning that there is no need for a central author­
ity in the system during any part of the partner finding process of looking for
partners.

2. It allows an agent to have only limited information about its environment, and
assures that any information available in the environment can be reached.

It is assumed that the agents know enough information about the environment to
at least maintain communication with one or more other agents, and use this capa­
bility to build a more complete environment model.

The algorithm is heavily influenced by peer-to-peer networks, so a brief intro­
duction of such systems is presented next.

4.1 Brief overview of peer-to-peer systems

Peer-to-peer (P2P) systems have grown in popularity in the last few years, partic­
ularly because of their ability to easily provide to their users access to lots of in­
formation. The big advantage of P2P systems, though, is its decentralized nature: a
desirable feature is that there is no central server where information resides. Every
peer connected to the network can aid other peers in the process of searching for
information and retrieving it.

P2P systems are sometimes also called "content addressable networks", since in­
stead of providing a server from which information will be taken, the users provide
the information they are looking for and the network provides facilities for discover­
ing where the requested information is available. There are two main functions a P2P
system provides for its nodes. The first one is discovery of other peers in the network,
so that the node joining the network can have an initial set of information about how
to connect to other nodes and start to look for and retrieve information. This is gen­
erally done using servers that cache node addresses (called "GWebCaches" [3] in
the Gnutella network, for example), which send subsets of the information they hold
to newly connected nodes, which then use that information to bootstrap their set of
neighbors in the network.

Decentralized Partner Finding in Multi-Agent Systems 83

This research is interested in content location, since this functionality can en­
able agents to discover the location of the resources they need to achieve their goals.
In P2P networks, users will generally provide some keywords and receive a list of
possible matches containing that keyword. The method used to retrieve this informa­
tion varies from network to network: Gnutella, for example, floods the query to all
known peers, which in their turn propagate the messages even further by re-sending
the requests to their neighbors up to a certain time-to-live value for the request. This
approach can make the search quite slow in a very large network but is acceptable
for the purposes for which the system was developed. Other systems provide better
algorithms for searching, in exchange for more complex protocols for maintaining
the network in a consistent state.

A system that provides an interesting way of addressing content is the Chord [18]
lookup protocol. Chord works by having nodes in the network choose an identifier,
and mapping content to nodes based on a hash value (or key), which is used as the
information's identifier in the network. Both nodes and information share the same
identifier namespace, and information is assigned to the first node in the network
whose identifier is equal to or higher than the information's computed hash value.
Nodes can enter and leave the network at any time, triggering a reassignment of
the information that was mapped to the leaving node, or the assignment of some
information currently mapped to a neighboring node to the new node joining the
network.

Chord uses what it calls a "finger table" to create links between nodes in the
network. In this table, an entry at position / in node n's table means that the node is
the first one that succeeds n by at least 2/ — 1 on the identifier circle. This property
makes searching for a key in the circle an 0{log n) operation, where n is the number
of nodes in the ring. This is possible because each step in the querying process will,
at least, halve the distance from the node making the query to the node containing
the sought information. Figure 1 illustrates one query in a Chord ring.

The query depicted in Figure 1 works as follows: node n\ is looking for infor­
mation i\9, and the only other node it knows in the network is node ^lO. This causes
n\ to send a request for i\9 to ^lO, even though i\9 would not be assigned to n\0
in this ring, since its identifier is higher than the node's identifier. Node ^lO knows
about node ^25 (but not about node AZ20), and according to its view of the system,
information i\9 should be assigned to node ^25, so it sends the request to this node.
Node ^25, however, knows about ^20, which means that i\9 should be assigned to it,
and redirects the query to niO. Node niO then replies to node n\ with the requested
information, causing n\ to update its finger table to contain the new node /t20.

Chord's main benefit is enabling efficient searching with only limited amounts of
information stored locally in each node. On the other hand. Chord does not support
keyword queries, although such a system could be built using Chord at the expense
of efficiency. Chord also has a more robust protocol for updating the ring state when
peers join and leave the network.

Many other algorithms have been created to enable efficient lookups in peer-
to-peer networks, many of them inspired by Chord. One of these algorithms is the
one by Plaxton et al [13], referred to as PRR (after the names of the authors: Plax-

84 Vanzin and Barber

n10

Fig. 1. Request propagation for a lookup of information il9

ton, Rajaraman and Richa) or Plaxton Mesh in some papers. PRR has a more com­
plex structure when compared to Chord, dependent on the topology of the network
and distances between nodes, but has more predictable behavior when performing a
search, leading to tighter bounds for the needed number of messages and cost to find
some information in the network. The Simplified PRR (SPRR) [6] algorithm is an
enhancement of PRR, and very similar to Chord in the complexity of queries. The
main advantage introduced by SPRR is that at the cost of more complexity to con­
struct the identifier rings (SPRR can have many overlapping rings), the queries are
guaranteed to follow a shortest path (relating to cost of communication) to the node
holding information about the key.

Koorde [4] is another distributed hash table and lookup protocol, based on Chord,
which provides degree-optimality (i.e., optimal number of hops to find the needed
information given the degree of the hash table - the number of neighbors with which
each node has to maintain contact). This is achieved by using de Bruijn graphs [2]
instead of the standard Chord finger table to propagate requests in the ring.

4.2 Distributed Partner Finding (DPF)

Analyzing the different algorithms commonly used in P2P networks, some of which
were presented in the previous section, it is not hard to notice that none of the ap­
proaches exactly matches the needs of a multi-agent system.

Keyword-based P2P networks generally are targeted at finding the information,
with minimum regard to efficiency. Flooding the network with requests is a common
technique, creating large numbers of messages going around the network. This works
acceptably when you have fixed nodes with reliable, fast communication channels.

Decentralized Partner Finding in Multi-Agent Systems 85

which is generally the case in these networks. Such an approach would not work well
in a MAS that does not have this kind of communication infra-structure in place,
though.

Lookup algorithms such as Chord and Koorde work well when the agents know
exactly what information they seek. This may not be the case in a MAS: agents may
be looking for resources or combinations of different resources, making it impracti­
cal to create a distributed index of what are all the possible resource combinations
available and where those resources are located. Even more importantly, keeping this
distributed index up-to-date in an open, dynamic environment is a very difficult task,
not to say impractical.

The proposed solution is to make a compromise between the two approaches:
improving the efficiency of keyword-based queries by using concepts from systems
that use indexing. The following sections described how the characteristics of dif­
ferent peer-to-peer systems were used to create a new Distributed Partner Finding
algorithm for finding partners in a MAS.

Finding Partners

Given that the agents will not always have enough information available in their
knowledge base to be able to find all the necessary partners to accomplish their tasks,
an algorithm to find this information in the MAS is necessary. The algorithm must
define how the agents will create these requests for information and propagate them
to the other known agents, until the sought information can be found or the agent
gives up finding the information.

The DPF algorithm works by using the current list of an agent's models describ­
ing other agents in the system as a finger table for requests, in the same manner that
nodes in a Chord ring maintain a finger table of other nodes in the network. As we
have discussed, the agent can not make the request based on the hash value of the
information it is searching, so a more conservative request propagation strategy is
necessary.

Some assumptions about the way communication works in the system are made:

• It is assumed that every agent in the system can communicate with at least one
other agent.

• Communication is assumed to be asynchronous, meaning that the agent will send
a message and not wait for an immediate reply. It will keep on working on its
tasks until the other agent replies to its message. It may be the case also that no
reply will ever come, due for example to an agent having problems and not being
able to reply to a message that was received, so the algorithm must plan for this
possibility.

The following is a description of the algorithm run by the agent issuing a request:

1. Send the request to the closest known agent in the system.
2. If nt reply arrives within a certain timeout period, re-send the request to a known

agent further away than the previous, doubling the timeout period.

86 Vanzin and Barber

3. Repeat 2 until all of the agent's known peers are queried.
4. When the list of known agents is exhausted, the agent may choose to issue an

error or restart the algorithm.

Agents receiving requests from other agents must also perform some operations,
which are described next:

1. If an agent that fulfills the request is known, return information about that agent
to the requesting agent.

2. If no agent is found to fulfill the requirements of the request, check if the time-
to-live for the message has not expired.

3. If the time-to-live has not expired, decrease the time-to-live counter, then deter­
mine the set of agents that are closest. Propagate the request to one chosen agent
from that set, or to the whole set of agents depending on the operation mode of
the algorithm.

The algorithm relies on timeouts and time-to-live of messages to operate. These
concepts and how each is implemented in the algorithm are described in the next
section.

Timeouts and Time-to-Live

Timeouts and time-to-live are the main features used by the agents to determine
how and when the requests should be re-sent. Basically, every time an agent sends
a request, it determines the time it thinks it will take other agents to reply to that
request. The agent then sets up a timer to execute after this period and re-process the
request. Each request also has a maximum lifetime inside the MAS, the time-to-live
value, so that it is not propagated forever if no one is able to respond to it.

The two concepts are borrowed from TCP/IP networks. The TCP protocol defines
a timeout mechanism in which if a node does not receive an acknowledgement of a
packet within a certain time period, it will re-send the packet and double the time
it will wait for the acknowledgement. This is meant to allow the nodes to adapt to
changing conditions in the network, such as routes changing during the lifetime of a
connection, or congestion occurring in the network.

The IP protocol defines a property called time-to-live, or TTL, for packets. This
property is an integer number that defines how many devices the packet can traverse
in the network before being dropped. Each device that processes the packet in the IP
routing process to the destination decreases the TTL counter, and if it ever reaches
zero, the packet is discarded even if it has not reached the destination. TTL values
are used mainly for ICMP (Internet Control Message Protocol) messages, since they
are useful for discovering the topography of the network.

While TTL values are not used in regular IP traffic, the timeouts are one of the
basic features of TCP connections. Timeout estimates are kept on a per-connection
basis, meaning that they provide an estimate of the expected round-trip time of a
message to its destination. To calculate this estimate, the Jacobson/Karels algorithm
[12] is used. The algorithm works by maintaining two variables: the timeout estimate

Decentralized Partner Finding in Multi-Agent Systems 87

and a measure of the deviation of the sample round-trip times measured by the node.
The following operations are then performed on the values when a new sample is
obtained:

Difference = SampleRTT — EstimatedRTT

EstimatedRTT = EstimatedRTT + (5 x Difference)

Deviation = Deviation + d{\Difference\ — Deviation)

Having the estimated round-trip time and the deviation updated, the timeout value
to be used is calculated as follows:

Timeout = jjx EstimatedRTT -\-^x Deviation

For the DPF algorithm, the values used for jj and O are 1 and 4, respectively.
These are the values typically used in TCP implementations, based on experience
acquired by the implementors of the different versions of the protocol. 5 is a number
between 0 and 1, and 0.125 is used by the DPF implementation of the algorithm.
The design of the algorithm is such that if large variations in the sampled round-trip
time are measured, these variations will have more influence on the new value of the
timeout. For lower variations, the estimated value for the timeout has larger impact
on the timeout value.

While using the same algorithm for timeout calculations, the value of the esti­
mate does not hold the same meaning in the DPF algorithm. The timeout estimate is
not maintained per connection in DPF, since there is no notion of a long-lived con­
nection between two agents as in the case of TCP. Consequently, only one estimate
is maintained by each agent for all communication, providing a measurement of the
expected time for a request to be replied to in the system regardless of the recipients
of the request.

The management of the TTL value is simpler: the value is incremented by a
certain amount at every timeout and decremented by the same amount when a reply
is received. This means that if the agent needed several retransmissions to receive
a reply, the TLL will grow, and if no retransmissions were needed it will shrink a
little, until a minimum is reached. The minimum value for the TTL is one of the
parameters than can be used to tune the algorithm.

The intent of maintaining a good estimate of the timeout and TTL values is to
pursue a balance between the time needed to find the information that is being sought
and the number of messages that are sent in the network. A low timeout value means
that the agent will be re-sending requests too early, increasing the work load of other
agents unnecessarily. A value that is too large means the agent will be waiting for
a long time before considering a request as lost, and may miss the opportunity to
re-send the request and receive a reply earlier.

The same reasoning can be applied to the TTL values: low values mean that the
request will not be propagated much further into the MAS, meaning less probability

88 Vanzin and Barber

of reaching an agent that has the wanted information. Large TTL values would incur
in requests having a long lifetime in the system, meaning that the requests would still
be alive and wasting agents' resources even after being successfully replied by some
agent in the system.

Operation Modes

Having introduced the Distributed Partner Finding (DPF) algorithm, there can be
different ways for the agent to route requests in the MAS. Three different modes of
operation of the algorithm are described next. These modes only dictate the behavior
of the agents creating requests - the propagation of received requests still follows the
rules described in section 4.2 regardless of the mode of operation. The three differ­
ent modes of operation are the Single Message Request Mode (DPFl), the Multiple
Message Request Mode (DPF2) and the Flooding Mode (DPF3).

The Single Message Request Mode (DPFl)

This is the mode that exactly matches the description of the algorithm provided in
section 4.2. In this mode of operation, the agent will choose the closest agent from
the list of known agents and send the request to it. When a timeout occurs, the agent
will look for one agent that is further away than the agent previously chosen, and
re-send the request one more time.

This mode of operation is the most conservative in terms of the number of mes­
sages used by the algorithm: only one message is sent by the agent that created the
request at every timeout. Figure 2 shows an example of a request using this mode,
where ro means the time when the request process was initiated by the source (SRC),
and to means the initial timeout value used for that request. "Local networks" define
how far away agents are from each other. If a group of agents is in the same "local
network", they are perceived to be at the same distance from some other agent in the
system. This means that, in Figure 2, agents A4, A5, A6 and Al are all at the same
distance from agent A1, for example.

The Multiple Message Request Mode (DPFl)

The Multiple Message Request Mode is an extension of the Single Message Request
Mode described above. When operating in this mode, the agent will send the request
to every known agent at the chosen distance threshold at the same time. Thus, the
first requests will be sent to all agents that are deemed by the agent as its "closest
neighbors". After a timeout occurs, the agent will look for agents at a greater distance
threshold, and send the same request to every agent at that threshold, and so forth.
Figure 3 shows the message flow of a request using this mode of operation.

In Figure 3 it can be seen that since the source agent (SRC) knows agents A1 and
Al already, it will send the request to both at the same time. A3, which is not known
to the source, will only receive the request after A1 checks that it can not answer it
and decides to propagate it. The same behavior can be seen regarding agents A4 and
A7, after the first timeout occurs.

Decentralized Partner Finding in Multi-Agent Systems 89

node

I I node known by src

l y l node with needed resources

(^ " local" network

— • query made by src
• •• query propagated by peers

^ reply to src's request

Fig. 2. Example of request using DPFl - Single Message Request Mode

The goal of this mode is to send the request to more agents more quickly, avoid­
ing the extra latency caused by waiting for other agents to propagate the request to
their neighbors, at the cost of an increase in the number of sent messages.

The Flooding Mode (DPF3)

In this mode of operation, agents do not care about the distances to other agents.
Requests are sent to every known agent when they are created, and re-sent to every
known agent at every timeout.

This is the less conservative mode in terms of number of messages. Agents are
expected to send a lot more messages than when using the other two modes until
they find the information they are seeking.

This mode is intended to be used as a way to analyze the performance of the
other two modes: how the timeout / time-to-live mechanism and the propagation of
requests by the agents receiving the requests affect the efficiency of the algorithm.

90 Vanzin and Barber

node

I I node known by src

lyJ node with needed resources

(^ "local" network

— • query made by src
• •• query propagated by peers
• ^ reply to src's request

Fig. 3. Example of request using DPF2 - Multiple Message Request Mode

5 The DPF Experiment

The domain chosen for the experiment is a distributed sensing problem using Un­
manned Aerial Vehicles (UAVs). The UAVs are small flying devices that have lim­
ited capabilities and various constraints on what kind of work they can do. The UAVs
may carry a limited number of sensors, which might not be suitable to analyze their
targets under every possible situation encountered. For example, if light conditions
change, the UAVs that do not carry an infra-red sensor might not be able to analyze
their targets correctly. In these cases, they must search in the system for other UAVs
that have the appropriate sensors and can perform the necessary tasks to collect in­
formation about the targets.

The UAVs also cannot hold a lot of information at one time, and have limited
processing capabilities. Sensors in the UAVs may fail during the operation of the
vehicle, and it may not be possible to notify other UAVs of these problems. Thus,
the UAVs must be able to locate other UAVs that are carrying the necessary sensors
on demand, without the need to hold information about all the UAVs currently in the
environment.

Decentralized Partner Finding in Multi-Agent Systems 91

Relying on a central server to provide information is not a desirable solution,
since the server may be out of the range of communication from the UAV, and also
would provide a single location for an opponent to attack and try to sabotage the
work of the UAVs. Having a limited range for communication also discards the pos­
sibility of using simple broadcast messages, since a request might not reach an agent
that contains the requested resources unless a more complicated broadcast scheme is
used.

The agents are distributed in several different "local networks" based on commu­
nication range. Within the same network, communication between the nodes has the
same cost. Traffic leaving the local network needs to be routed in some way (which
is not relevant to this research at this point), incurring a cost penalty and leading to
longer delays for the arrival of messages.

Each UAV aims to achieve one goal, "Target Analysis", once a target is detected.
Before working on its goals, the UAV is required to find the other UAVs that hold
the necessary resources for performing the different tasks required by each goal.

5.1 Network Model

In the experiments, communication between agents is handled by the simulation en­
vironment using a simple network layer. This communication layer does not imple­
ment all the different layers that are generally part of the network stack in a real
application, such as the physical layer and logical link layer. This means that there
is no simulation of the possible issues that can occur in these other layers, such as
congestion or delays caused by detecting a carrier signal in the physical layer.

The only feature provided by the communication layer is message delay. This
delay is based on the distance between the agents in the system, and does not change
over time. Similarly, there is no simulated message loss.

The goal of having such a simple network layer is to study the performance of
the algorithm in a "best case" scenario, so that it is easier to detect shortcomings in
the DPF algorithm without having to worry about issues in the other layers affecting
the performance of the algorithm.

There are four types of messages exchanged among the agents during the simu­
lation. Messages are stored in a priority queue in each agent until each is processed.
For example, messages related to current goals of the agents are given higher prior­
ity, to speed up the process of working on goals. Table 1 shows the message types
used in the experiment and their respective priorities.

ModelUpdate messages are given medium priority if those messages are replies
to queries made by other agents. Otherwise, they are given low priority. Agents may
choose to send un-requested model updates to other agents in the system in some
circumstances, such as a change in the availability of resources.

5.2 Controlling Agent Execution

The experiment is run in discrete time, so it is important to define how much work
an agent can do during one time step. Some assumptions are made here: mainly.

92 Vanzin and Barber

Table 1. Message Types

Message Type Priority

ModelRequest LOW
ModelUpdate LOW or MEDIUM
TaskAssignment HIGH
TaskCompleted HIGH

the assumption that receiving messages and adding messages to the agent's message
queue is cheap compared to processing the information the message contains. The
same assumption is made for queuing messages for delivery to other agents.

The agents are allowed to do one unit of work each time step. A unit of work
is defined as one unit of work for a task (the tasks have costs defined in "units of
work") or processing one message from the waiting queue. The agents also make
use of a timer facility to execute tasks at certain time steps or after some interval
of time; the implementation is careful not to break the "unit of work" restriction by
using the timers only to send new messages to other agents, and not for doing work
or performing model updates.

A configuration option allows the central agent directory to have the number of
units of work at each time step specified. This allows the agent directory to have an
advantage over the other agents. This feature also tries to compensate for the fact that
the directory will have to process messages from all the agents, while this work is
distributed when the agents are working using DPF. Allowing more units of work per
time step also serves as emulation of a "load-balancing" directory structure, although
in this experiment the directory is still only one agent, meaning that agents will not
be able to direct their queries to different directories based, for example, on distance.

5.3 Metrics

During each execution of the simulation scenario, the following metrics were ob­
served and used to compare the different approaches:

Average number of messages sent : the average number of messages, of any kind,
that an agent will send in the system during the simulation. This is intended to
measure the overhead created by the use of the DPF algorithm instead of using
a central directory.

Average time to start of goal execution : time elapsed between the assignment of a
goal to an agent and the time the agent has found all partners that will help it
achieve its goal. The average is weighed based on the number of tasks associated
with the goal. The more tasks the goal has, the higher the probability the agent
will need more requests for partners before the goals tasks can be executed, thus
having a larger weight. This measures how fast an agent can find the partners to
accomplish its tasks in the various tested configurations.

Decentralized Partner Finding in Multi-Agent Systems 93

Average goal execution time : the time between the start of the execution of the goal,
after finding all partners, and the time the goal has been accomplished (all tasks
finished). The measurements are weighed based on the total cost of the goal.
This is intended to measure how much the overhead the DPF algorithm imposes
on the agents affects their ability to work on their goals.

The goals are always created and assigned randomly during the simulation. To
reduce the effects of the randomness in the results, each different configuration was
run five times. The average of these five runs was then taken to create the results
presented below.

5.4 Experimental Setup

The experiment described above was partially implemented, with the goal of ana­
lyzing the characteristics of the proposed communication model for finding partners.
The peer-to-peer approach was tested against the central directory approach, and
some metrics were analyzed in the process.

Table 2 shows the different MAS configurations used by the research experi­
ments. Each configuration tries to capture the characteristics of a real world scenario,
where a large MAS would mean having more agents actively working on goals at the
same time.

Table 2. MAS Configurations

1. Agents 2. Concurrent Goals 3. Max. held models 4. Dir. Work 5. Initial Msgs

10000
7500
5000
2500
1000
100

1000
750
500
250
100
10

45
43
44
36
30
15

{4,8}
{4,8}
{4,8}
{3,6}
{3,6}
{2,4}

20
19
18
17
15
10

Column 3 (maximum number of models) and column 5 (number of initial mes­
sages) only refer to the peer-to-peer simulations, since in the central directory sim­
ulations agents do not need to keep information unrelated to their current working
goals. Column 5 shows the number of messages sent by each agent at the start of the
simulation, trying to build an initial environment model.

Column 4 (directory work per time step) applies only to the central directory sim­
ulations, and shows the number of messages that the directory is allowed to process
during a single time step. A total of five different simulations were run for each MAS
configuration: one for each P2P mode, and two for the central directory mode.

Some simulations were also run to verify the scalability of the system with regard
only to the number of concurrent goals in the system. These experiments have the

94 Vanzin and Barber

same configuration as the 1000-agent MAS described in Table 2, but also use 50,150
and 500 for the number of concurrent goals in the system.

The simulations were allowed to run until all goals were accomplished, or up to
50000 time steps, whichever occurred first. The measured time averages are weighted
based on the total cost of the goals (for the execution time) and the number of tasks
per goal (for the average time for the start of execution), and the results are the
average of five runs. The results are presented next.

5.5 Experimental Results

Below we present several graphs showing the results obtained from the different
simulations. The legend in the graphs refer to the following configurations:

DPFl : agents using the DPFl mode of the Distributed Partner Finding algorithm.
DPF2 : agents using the DPF2 mode of the Distributed Partner Finding algorithm.
DPF3 : agents using the DPF3 mode of the Distributed Partner Finding algorithm.
Dir:Base : system using a central directory with the low value for the directory work

parameter as shown in Table 2, e.g., 2 for the system with 100 agents.
Dir:2x : system using a central directory with the high value for the directory work

parameter as shown in Table 2, e.g., 4 for the system with 100 agents.

Average Number of Messages Sent per Agent

• DPF1

• DPF2

A DPF3

• DJnBase

• Dir:2x

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0

Number of Agents

Fig. 4. Average number of message sent by agents

Figure 4 shows the communication overhead caused by the use of the Distributed
Partner Finding algorithm instead of a central directory solution. For the DPFl and
DPF2 modes, the average number of messages an agent sends is larger, but still
reasonable. DPF3 (flooding) shows a large increase in the number of messages with
the growth of the system.

Decentralized Partner Finding in Multi-Agent Systems 95

The information presented on Figure 4 related to the configurations that use a
central directory needs to be analyzed more closely, since the data presented here
is a little bit misleading. In these cases, a significant portion of the total number
of messages is created by a single agent - the directory. The average number of
messages sent by the other agents is much lower than in the simulations using DPF,
at the cost of an overload of the directory agent, which must analyze a large number
of incoming messages and reply to them.

Figure 5 shows how quickly agents can find partners to execute a goal using the
different approaches. As the system grows, the number of concurrent queries sent
to the directories results in a large message queue, leading to delays in the replies,
while peer-to-peer configurations show more consistent performance.

Average Time to Start of Goal Execution

2200

• DPF1

• DPF2

A DPF3

V Dir:Base

• Dir:2x

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0

Number of Agents

Fig. 5. Average time to start of goal execution

Although the data is not presented here, analysis of the quality of the solution
shows that there is not a significant difference among the different approaches. The
use of the priority queue to deliver messages allows mode DPF3 to perform as well
as the others, in spite of the larger number of messages that must be processed by the
agents.

It is interesting to notice that the central directory simulation has an "optimal"
result in this case, at least in terms of communication cost, since the directory will
find the nearest partner that can help the agent. However, the directory does not check
how much work that agent is doing, so the solution cannot be considered optimal
since the agent may be doing work for lots of coalitions.

Figure 6 shows results with varying numbers of concurrent goals for a fixed num­
ber of agents (1000). The configurations using DPF show better scalability, and all
modes are able to surpass the performance of all directory-based approaches as the
number of concurrent goals increase.

96 Vanzin and Barber

Average Time to Start of Goal Execution

• DPF1
• DPF2
A DPF3

T Dir:Base

• Dir:2x

150 200 250 300 350 400

Numb«r of Concurrent Goals

450 500

Fig. 6. Average time to start of goal execution versus number of concurrent goals

Comparing the different modes of operation of the P2P systems, we can see
that DPF3 shows consistently better performance when compared to the DPFl and
DPF2 modes. This difference can be explained by the timeout strategy used for these
modes, described in section 4.2.

By using just one value for the expected round-trip time of a request, the timeout
may cause agents using DPFl or DPF2 to wait longer for messages that were sent to
agents close by, since the timeout becomes an average for all the requests, no matter
how many retries were made by each request to find the sought information. This
causes requests to take more time to reach further regions of the MAS. Since DPF3
does flooding to all known agents, it does not suffer from this problem.

To solve this issue, a different timeout mechanism should be used, taking into
account the factors cited above. Nonetheless, the performance measured for DPFl
and DPF2 is still acceptable, and the system scales well even with the shortcomings
identified above.

6 Conclusions and Future Work

Being able to efficiently find information about other agents in a multi-agent system
is one of the main requirements in any modem agent system. The ability to find part­
ners to form coalitions means that agents can more easily and/or efficiently achieve
their goals when they do not have the appropriate resources or time to accomplish all
the tasks related to their goals.

No single solution to this problem exists, and different solutions provide different
compromises from which the system designer must choose. Different systems may
benefit from different characteristics of these approaches.

Decentralized Partner Finding in Multi-Agent Systems 97

The Distributed Partner Finding (DPF) algorithm was presented, leveraging peer-
to-peer network research to create a new, completely decentralized scheme that can
be used by agents to efficiently find information about potential coalition partners. It
is the first step towards a revised scheme for explicit coalition formation, explicitly
determining coalition membership as well as the coalition organizational structure,
given by the allocation of decision-making responsibility and execution authority of
the coalition's goals.

The experimental results show that it is feasible to use the DPF algrithm in place
of a directory-based approach with reasonable performance penalties and better scal­
ability.

However, more work is needed to analyze the robustness of the algorithm and
its responsiveness to several different environmental characteristics. Testing larger
agent systems and using a different network models are initial steps to be taken in
this regard.

References

1. N. David, J. S. Sichman, and H. Coelho. Extending social reasoning to cope with mul­
tiple partner coalitions. In Proceedings of the 9th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW'99), pages 175-187, Valencia,
Spain, 1999. Springer.

2. N. G. de Bruijn. A combinatorial problem. In Koninklijke Nederlandse Akademie van
Wetenschappen, pages 758-764, Netherlands, 1946.

3. H. Dmpfling. Gnutella web caching system, 2003. Last updated: June 18th, 2003, last
accessed: August 10th, 2004.

4. M. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal distributed hash table.
In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS '03),
Berkeley, CA, 2003.

5. M. L. Kahn and C. D. T. Cicalese. The coabs grid. In Proceedings of the Goddard / JPL
Workshop on Radical Agent Concepts, Tysons Comer, VA, 2002.

6. X. Li and C. G. Plaxton. On name resolution in peer-to-peer networks. In Proceedings
of the International Symposium on Distributed Computing (DISC 2002), Workshop on
Principles of Mobile Computing, Toulouse, France, 2002.

7. C. E. Martin. Representing autonomy in sensible agent-based systems. Master's thesis.
The University of Texas at Austin, 1997.

8. B. Moulin and B. Chaib-draa. An Overview of Distributed Artificial Intelligence, chap­
ter 1, pages 3-55. John Wiley & Sons, 1996.

9. E. Ogston and S. Vassiliadis. Local distributed agent matchmaking. In Proceedings of the
9th International Conference on Cooperative Information Systems, pages 67-79, Trento,
Italy, 2001.

10. E. Ogston and S. Vassiliadis. Matchmaking among minimal agents without a facilitator. In
Proceedings of the 5th International Conference on Autonomous Agents, pages 608-615,
Montral, QC, Canada, 2001.

11. E. Ogston and S. Vassiliadis. Unstructured agent matchmaking: Experiments in timing
and fuzzy matching. In Proceedings of the Languages And Applications Special Track of
the 17th ACM Symposium on Applied Computing, pages 300-305, Madrid, Spain, 2002.

98 Vanzin and Barber

12. L. A. Peterson and B. S. Davie. Computer Networks: A Systems Approach. Morgan
Kaufmann, 1999.

13. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated
objects in a distributed environment. In Proceedings of the 9th Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 311-320, Newport, RI, 1997.

14. T. W. Sandholm and V. R. Lesser. Coalitions among computationally bounded agents.
Artificial Intelligence, 1(94):99-137, 1999.

15. S. Sen and R S. Dutta. Searching for optimal coalition structures. In Proceedings of the
Fourth International Conference on MultiAgent Systems (ICMAS-2000), pages 287-292,
Boston, MA, 2000.

16. O. Shehory and S. Kraus. Task allocation via coalition formation among autonomous
agents. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pages 655-661, Montral, QC, Canada, 1995.

17. R. G. Smith. The contract net protocol: High-level communication and control in a dis­
tributed problem-solver. IEEE Transactions on Computers, pages 1104-1113, 1980.

18. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet applications.
In Proceedings of the ACM SIGCOMM '01 Conference, San Diego, C A, 2001.

19. B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad hoc
networks. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Net­
working and Computing (MOBIHOC '02), pages 194-205, 2002.

20. Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and prac­
tice. HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-html.h (Hypertext version
of Knowledge Engineering Review paper), 1995.

HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-html.h

Distributed Coordination of an Agent Society Based
on Obligations and Commitments to Negotiated
Agreements

Jiangbo Dang, Devendra Shrotri, and Michael N. Huhns

University of South Carolina
Department of Computer Science and Engineering
Columbia, SC 29208 USA
{dangj,shrotri,huhns}@engr.sc.edu

Summary. This chapter discusses coordination from a commitment basis. Typically, com­
mitments are established via a process of negotiation between the parties—the debtor and
creditor—involved in the commitment. We define obligations to be those commitments, some­
times termed norms or social commitments, without a clearly identifiable creditor. The estab­
lishment of a commitment occurs in response to the adoption of a goal or the acceptance and
performance of a task. Using a service-oriented computing (SOC) context, we describe an
efficient negotiation process for establishing commitments. We then show how commitments
and obligations can be used to monitor and control the aggregate behavior of a group of agents
to yield coordinated progress towards the agents' overall objective.

1 Introduction

In service-oriented multiagent environments, the participating agents are distin­
guished by the services they provide, the services they seek and the negotiated service
agreements to which they commit. As an example, participants in typical real-world
business environments interact by exchanging goods and providing services to each
other. In seeking and providing services, they form associations by negotiating on
service agreements, make promises, commit to products, quality, and service levels,
fulfill what they promised, and attempt to achieve their intended goals.

The coherent behavior of systems in such an environment is governed by inter­
actions among the agents, and we believe that commitments and obligations are the
proper abstraction to characterize the interactions for monitoring and control of the
systems. We hypothesize that a commitment is an appropriate abstraction for man­
aging, monitoring, and assuring large-scale distributed coordination.

1.1 The Coordination Problem

Coordination is a ubiquitous problem for distributed systems, where the objective
is to achieve coherent and efficient operation while making rapid progress toward

100 Dang, Shrotri and Huhns

system-wide goals. The problem can appear in many forms, ranging from manag­
ing access to shared resources to engaging the expertise of multiple participants in
reaching an overall goal.

In this chapter, we make several assumptions to limit the scope of the coordina­
tion problem that we are considering. First, we assume that the problem can be cast in
terms of a known set of agents performing a dynamic set of tasks to reach a globally
known goal. Second, we assume that there might be thousands of individual tasks
that need to be coordinated, but not millions and not just a few. Third, we assume
that the time and resources needed to perform an individual task are generally avail­
able (not scarce). Fourth, we assume that the time needed to perform an individual
task is much less than the time needed to reach the goal, allowing time for tasks to
be created, modified, redone, cancelled, or reassigned. The individual tasks might be
discrete (e.g., the task to remove an obstacle) or continuous (e.g., the task to prevent
the introduction of an obstacle). Fifth, we assume that the tasks are organized into
a workflow, which may evolve as commitments are made, resources are expended,
and tasks are decomposed and performed. Sixth, we assume that the agents are each
aware of and have accepted the global goal, but are otherwise self-interested and au­
tonomous. (Sen [21] has shown that societies of purely selfless agents are inefficient.)
Finally, we assume that the environment where the coordinated behavior takes place
has the following characteristics.

1.2 A Service-Oriented Computing Environment

A typical real-world multiagent service-oriented environment is partially observable,
stochastic, sequential, dynamic, and continuous. This environment consists of two
classes of agents: participating agents and non-participating agents.

The participating agents either play the role of a service provider or that of a ser­
vice seeker. These service providers and service seekers negotiate and reach a service
agreement. Negotiation is a process by which agents communicate and compromise
to reach an agreement on matters of mutual interest while maximizing their utilities.
We believe that these negotiated agreements associate or bind these participating
agents with each other and that this association can be best represented as the binary
relationship of commitments.

In addition to this class of participating agents, there is another class of non-
participating agents in this environment; these are agents that act more like impartial
arbiters. The nonparticipating agents provide the context to a commitment relation­
ship, termed a Sphere of Commitment (SoCom) [25]. Every agent in the environment
is autonomous, hence at any point in time any agent may choose to either abide by
its commitment or stray from it. The nonparticipating arbiters can be used to capture
a participating agent's behavior with regard to its commitments. Historical informa­
tion about a participating agent's behavior can be utilized to measure its commitment
adherence for future interactions.

We assume that the service providers and service seekers have already identified
each other. How service seekers and service providers locate each other, how they

Agent Coordination via Negotiated Commitments 101

identify compatible providers or seekers and what structure of communication and
protocol they use are questions beyond the scope of this chapter.

It is further assumed that in this commitment-driven service-oriented environ­
ment the partial view that an agent has is governed solely by the commitment rela­
tionships in which it participates. In other words, agents have knowledge of other
agents with whom they are associated via commitment relationships. Furthermore,
it is assumed that the knowledge about a commitment relationship is governed by
commitment operations, i.e., an agent has knowledge about a commitment associ­
ation only through operations that affect that commitment. For example, when a
service-seeking agent and a service-providing agent participate in a commitment re­
lationship, each will have knowledge of the other agent's commitment actions and
each will have knowledge of when the commitment gets created, fulfilled, revoked,
etc. However, knowledge such as how that commitment is fulfilled, why it was not
fulfilled, or why it was canceled is not available to the participating agents.

The typical environment for commitments is dynamic and nondeterministic;
hence its temporal dimension is best represented as branching time. The underlying
temporal parameter moves forward and branches out like a tree. Also, an agent's
beliefs, desires and intentions define its internal state of mind. We use Rao and
Georgeff's BDI framework [19], Emerson's CTL framework [5], Singh and Huhns's
definitions for commitments and operations on them [24], and Shrotri and Huhns's
definitions of commitments in terms of BDI [22].

2 IModeling and Representation

Goals are achieved via interleaved phases of planning and execution. Planning, which
may be done by humans or by the agents responsible for goal achievement, yields
sets of executable tasks and the dependencies among them. The dependencies will
be primarily temporal, e.g., one task must be performed before another, but they
also might be conditional, e.g., one task must be performed only if another fails.
The resultant ordering of the tasks is a workflow, which can exist at several levels
of generality as tasks are either aggregated into composite tasks or decomposed into
subtasks.

Each task has associated with it a number of attributes that are used by an agent to
perform the coordination. Each task will have a latest finish time (deadline) by which
the task must be completed, earliest start time, expected duration, priority, and worth.
Temporal values allow the agent to reason about when a task can be performed. A
task's priority and worth represent the value of the task to the goal. Task assignment
to a particular agent leads to determination of values of several additional attributes:
expected quality of a result, expected cost, and expected risk.

Tasks are associated with agents via a process of negotiation as described in Sec­
tion 4. The resultant assignments, especially when dependent tasks are assigned to
different agents, are monitored via commitments. A commitment is a well-defined
data structure with an algebra of operations that have a formal semantics. A commit­
ment has the form C{a; b\p\ G), where a is its creditor, b is its debtor, p the condition

102 Dang, Shrotri and Huhns

the debtor will bring about, and G the organizational context for the given com­
mitment. The operations on commitments are create, discharge, delegate, assign,
cancel, and release. Commitments capture the dependencies among the agents with
regard to the tasks.

Note that tasks, interactions, and commitments are not completely known a pri­
ori, but can enter the system dynamically. We do not assume that each agent knows
a priori all the possible tasks that it might be asked to perform. When it has been
assigned and authorized to perform a task, then its commitment is formed. The dy­
namic nature of task assignment necessitates the ability of the system to reason about
commitments in a principled way, thus enabling the agents to have optimized ways
of dynamically forming and breaking commitments as new tasks enter the system.

Explicit representation of commitments helps coordination in the following two
ways:

1. Commitment is an abstraction that explicitly refers to inter-agent dependencies,
either through task temporal dependencies, task preconditions, or through con­
tingencies (i.e., alternative ways of performing a task), thus allowing agents to
recognize focus points in the revision process where coordination with other
agents is needed; focusing the distributed search this way benefits the efficiency
of coordination.

2. During the process of revising its local plan, an agent first tries to revise task
timings that do not involve commitments; this heuristic modularizes the revision
as much as possible, making it more scalable.

The following structures for tasks, goals, and task performers (agents) are con­
sistent with the above assumptions, and also consistent with the TAEMS formula­
tion [9]:

Task: a unit of work to be performed in furtherance of an overall goal
• duration (time needed to perform)
• effort required
• deadline (when task must be finished)
• resources required (consumable and non-consumable)
• utility, including cost and quality
• revocable?
• compensation (if result of task must be revoked and it is not revocable)

Agent: a performer of one or more tasks
• capabilities, including access to resources
• limitations

Goal: an overall mission or objective to be achieved
• workflow or goal decomposition

Agent Coordination via Negotiated Commitments 103

3 Negotiated Commitments

In supply chains, e-commerce, and Web services, the participants negotiate contracts
and enter into binding agreements with each other by agreeing on functional and
quality metrics of the services they request and provide. The functionality of a ser­
vice is the most important factor, especially for discovering services. Once discov­
ered, however, services are engaged, composed, and executed by the participants'
negotiating over QoS metrics to maximize their profits.

Negotiation is a process by which agents communicate and compromise to reach
agreement on matters of mutual interest while maximizing their individual utilities.
Negotiation for QoS-aware services is currently limited to primitive QoS verifica­
tion methods or sorting and matching algorithms. We extend current techniques by
presenting an optimal negotiation procedure that considers the cost to reach an agree­
ment for QoS-aware service engagement and contracting.

3.1 Research Issues

Semantic Web services, as envisioned by Bemers-Lee, are intended to be applied
not statically by developers, but dynamically by the services themselves through
automatic and autonomous selection, composition, and execution. Dynamic selection
and composition first require service requestors to discover service providers that
satisfy the requestors' functional requirements. Second, the requestors and providers
negotiate non-functional requirements (QoS), including cost and qualities such as
response time, accuracy, and availability.

In general, negotiation is the technique for reaching mutually beneficial agree­
ment through communication among agents. Negotiation in QoS-aware services in­
volves a sequence of information exchanges between parties to establish a formal
agreement among them, whereby one or more parties will provide services to one or
more other parties. The agreement typically involves QoS issues [26]. By QoS, we
refer to the non-functional properties of services, such as performance, cost, relia­
bility, and security. To meet the requirements of service requestors, multiple issues,
including both functional and non-functional, need to be taken into account during
service advertisement, discovery, composition, and delivery. Preist [17] discussed
how negotiation plays an important role in reaching a service agreement for a ser­
vice.

Current standards for Web services do not support QoS negotiations. As a result,
several researchers have attempted to merge negotiation from the MAS domain into
QoS-aware Web services. Ran [18] proposes to enrich current UDDI registries by
extending the SOAP message format and the UDDI data structures to describe QoS
information. Petrone [16] proposed a conversation model to enrich the communica­
tion and coordination capabilities of Web services by adapting agent-based concepts
to the communications among services and users. In [18, 8] researchers extend the
Web service model by introducing a third party broker, certifier, or QoS manager
for QoS enactment and enforcement. Their work includes simple QoS verification or
match algorithms and permission for the broker to negotiate and make decisions on

104 Dang, Shrotri and Huhns

behalf of the requestors. This is problematic, especially in situations where price and
payment issues are involved.

Maximilien and Singh [13] propose a Web service agent framework (WSAF)
with a QoS ontology. When a service consumer needs to use a service, WSAF will
create a service agent that can capture a consumer's QoS preference and select the
most suitable service.

Negotiating for services involves both functional and non-functional issues. We
can not apply existing multiple-issue negotiation models to service negotiation and
contracting directly, because existing models often make the limiting assumption that
agents know the private information of their opponents, and their theoretic models
do not take computational cost into consideration. Therefore, these models do not fit
the environment of on-line QoS negotiation for services.

Many researchers have investigated multiple-issue negotiation [10, 14, 6]. Fa-
tima et al. [6] presented an optimal agenda and procedure for two-issue negotiation
by introducing two negotiation procedures: issue-by-issue negotiation eind package
deal. For ^-issue negotiation where n> 2, which is common in negotiation over
QoS issues, the computational cost to reach a package deal might exceed the ben­
efits obtained by optimizing the participants' utilities. By considering both utility
optimization and computational efficiency, Dang and Huhns [2] propose the coali­
tion deal that is suitable for multiple-issue negotiation, especially in the case of QoS
negotiation for services.

In [10] agents know the incomplete preference information about their opponents
and exploit this information to reach negotiation efficiency. This work is thus limited
to cooperative negotiation, where agents care about not only their own utilities, but
also equity and social welfare, which is not common in most application environ­
ments.

The outcome of multiple-issue negotiation depends on not only strategies, but
also the procedure by which issues will be negotiated. Different procedures yield dif­
ferent outcomes. Based on an incomplete information assumption, Fatima et al. [6]
discussed two procedures for multiple issue negotiation: issue-by-issue and package
deal. For two-issue negotiation, they determined the equilibrium strategy for these
procedures and analyzed the optimal agenda and procedure. Since their analysis is
limited to two-issue negotiation, they concluded that the package deal is the proce­
dure that provides agents with optimal utilities; they did not address the computa­
tional cost. However, the computational cost becomes crucial when more issues are
involved. We focus on the optimal strategy of efficiently negotiating multiple QoS
issues to reach an agreement that gives both the requestor and the provider their
maximum utilities.

We hypothesize that a coalition deal negotiation can overcome these limitations.
As shown in [2], this is the optimal strategy for service negotiation over multiple is­
sues when computation cost is considered. The coalition deal mitigates the computa­
tional cost problem by making a trade-off between optimal utility and computational
efficiency. This chapter makes four contributions to the advancement of QoS-aware
service negotiation and contracting. First, it describes the coalition deal negotiation
for reaching utility optimization and computational efficiency. Second, it generalizes

Agent Coordination via Negotiated Commitments 105

the analysis of an optimal negotiation procedure to multiple-issue negotiation over
more than two issues. Third, it tailors negotiation components to fit QoS-aware nego­
tiation. Fourth, it focuses on agents' own information; no agent has any information,
such as reserve price, about its opponent.

3.2 QoS Scenario for Negotiation

In order to illustrate the coalition deal for n-issue negotiation over the QoS metrics
of a service, we present a motivating scenario. Consider how one site, a requestor,
might arrange to get a stock quote from a service provider. In this scenario, a service
requestor a (a.k.a. the creditor if a commitment is established) locates a GetStock-
Quote Web service provided by b (a.k.a. the debtor if a commitment is established)
that meets its functionality requirements. The GetStockQuote service takes the re­
questor's inquiring stock number as an input and a currency symbol as an argument,
and provides a stock quote.

During the procedure of service selection, QoS becomes an important factor to
both a and h. Before reaching a service contract, they need to negotiate over (1) pay­
ment method indicates the way a user pays for inquiries (e.g., pay per inquiry and
pay for bundle); (2) inquiry cost indicates the cost per inquiry; (3) update interval
represents how often the stock quote information is updated; (4) response time is the
round-trip time between sending an inquiry and receiving the response; (5) availabil­
ity represents the probability that this service is available and ready for immediate
use; (6) service plan cost is the plan cost for service with agreed-upon quality.

Agents a and b could negotiate each issue individually using issue-by-issue ne­
gotiation, but some issues are related to each other and isolating them will degrade
the utility and increase the risk of a conflict deal. A package deal allows both a and
b to make trade-offs among all six issues, but the computation is intractable with
exponential cost. By using a coalition deal, we can partition six issues into two par­
titions where strongly related issues are in the same partition. For example, payment
method, inquiry cost and update interval belong to partition one, while response time,
availability, and service plan cost belong to partition two. a and b can negotiate two
partitions in parallel, where each partition is settled as a package deal and indepen­
dently of other partitions. By pursuing a coalition deal, agents can reach a service
agreement while optimizing their utilities with efficient computation. The coalition
deal is explored in the next section.

4 Coalition Deal Negotiation

A service is what an agent performs when it works on and completes a task. Ne­
gotiating for tasks has four components: (1) a negotiation set, which represents the
possible proposal space for both functionality and QoS metrics of a service; (2) a
protocol, which defines the legal proposals that an agent can make, as defined in
a service description and constrained by negotiation history; (3) a strategy, which

106 Dang, Shrotri and Huhns

determines what proposals the agents will make, decided by an agent's private pref­
erence and affected by the service discovery result; and (4) a rule enforced by a
mediator to determine when a deal has been struck and what the agreement is. We
focus on the negotiation procedure of multiple-issue negotiation for services, which
adopts Rubinstein's alternating offers protocol.

As described in our motivating scenario, let a denote the service requestor and
b the service provider. From a service viewpoint, a has a task and tries to find a
service to perform it. From a task viewpoint, b has a service and is capable of fulfiling
certain tasks, so b tries to find a task to work on. We assume that each agent only
has complete information about its own negotiation parameters. For some private
information, such as the opponent's deadline, we can use the negotiation protocol
in [20] to make truth-telling about a negotiation deadline the dominant strategy. We
use Sa (Sh) to denote the set of negotiation parameters for agent a {b) and describe
the negotiation model similarly to that in [6].

4.1 Single-Issue Negotiation

Consider a and b negotiating over an issue set /, where I = A and A is one issue, say,
the inquiry price. The agents' parameter sets are defined as

Sh^{li,U^,T,\8t) (1)

where P^, U^,T^, and 6^ denote agent a's reserve price over issue A, utility function
over issue A, bargaining deadline, and time discounting factor, respectively. Agent
b's negotiation parameters are defined analogously. The agents' utilities at price p
and at time t are defined as in [6]:

-p){5^y if t<Ta
if t>Ta

^h[p^n i n ift>n ^^

The value for 5^ is > 1 when agent a is patient and gains utility with time, < 1
when a is impatient and loses utility with time, and = 1 when a's utility is indepen­
dent of time. The same holds for agent b. We only consider 5^ < 1, which is common
in a service-oriented environment.

In single-issue negotiation, the preferences of the agents are symmetric, in that a
deal which is more preferred from one agent's point of view is guaranteed to be less
preferred from the other's point of view. At the beginning of the negotiation, an agent
makes an offer that gives it the highest utility and then incrementally concedes as the
negotiation progresses by offering its opponent a proposal that gives it lower utility.
Because of the symmetric preference of agents, agents have to concede to offer deals
that are more likely to be accepted by their opponents if they prefer reaching an
agreement to the conflict deal. An outcome is individual rational if it gives an agent

Agent Coordination via Negotiated Commitments 107

a utility that is no less than its utility from the conflict outcome. The maximum
possible utility that agent a (b) can get from an outcome over issue A is denoted
U^ax,a (^mca,b^ ^^^ ^^ ^^ individual rational to both agents.

Agent a's strategy (denoted o«) is a mapping from the previous negotiation pro­
posals Pa/<t and Sa to the action Aca^t that it takes at time r: a^ : Pa/<t ^Sa—^ Aca^t
is defined as:

{ Quit ift>Ta

Accept if ^a^KpO > ^ ,^ (<+i , r+1) (3)
Offer/T^^ î att+1, otherwise.

where p^^ is the offer made by agent b over issue A at time t. p^^^i is defined
analogously. Let P^^ denotes the offer that agent a makes at time t in equilibrium,
drawn from agent a's equilibrium strategy. P^^ is determined by:

/̂ ,, = (t/-M^((l-<r)xt/^^^) (4)

where y^j is agent a's yield-factor [6] at time t.

4,2 Multiple-Issue Negotiation

We next consider multiple-issue negotiation over issue set I of k issues, where / =
{/i ,/2,... ,4} . The agents' parameter sets can then be defined as follows:

S, = {PluinA) (5)

where P^ = {P^ \ i ^ f} denotes agent a's reserve prices over / and P̂ denotes a's
reserve price over issue /, U^ — {U^ \ i e 1} denotes agent a's utility functions over
/, Ta, and 5^ denote agent a's bargain deadline and discount factor. Agent ^'s nego­
tiation parameters are defined analogously. We assume that an agent's utility from
issue set / is the sum of its utilities from all issues, then we have:

iel iel

Two procedures for multiple-issue negotiation have been discussed [6]: package
deal and issue-by-issue negotiation. For a package deal, an offer includes a value for
each issue under negotiation. Thus for k issues an offer is a package oik values, one
for each issue. This allows trade-offs to be made between issues. Agents can either
accept a complete offer or reject a complete offer. For issue-by-issue negotiation,
each issue is settled separately and an agreement can take place either on a subset of
issues or on all of them.

We first describe the procedure for a package deal. Assume that the agents use
the same protocol as described in the previous section for single issue negotiation,
but instead of making an offer on a single issue, an agent offers a set of offers (an

108 Dang, Shrotri and Huhns

offer consists of a set of values for issues from /, all of which give it equal utility).
This is because when there is more than one issue, an agent can make trade-offs
across issues, resulting in a set of offer sets, all of which give it equal utility. As an
example. Figure 1(a) illustrates the utility for ^-issue negotiation with two package
deals of two issues each. Here, we focus on the utility frontiers for the issue set
I = {A,B}.ln this figure the agents' utilities are measured along two axes, and the
origin represents the conflict outcome. The segment AA' is the utility frontier for
issue A and BB' that for issue B. The utility frontier for / is A"B"C'D'' (i.e., the
sum of all possible utilities from issue A and issue B). The points along LL' are
pairs of values for issue A and issue B that give equal utility to agent a, but different
utilities to agent b. L is Pareto-optimal since it is the only one, from all possible pairs
along LL', that lies on the segment A''J5''C"D''. Because an agent does not know its
opponent's utility function, it does not know which of the possible pairs along LL' is
Pareto-optimal. Therefore, agent a makes trade-offs across A and B, and then offers
a set of pairs that correspond to points along LL'. The slopes of segments AA' and
BB' represent how the agents value the issues A and B. Agent a is said to value issue
A more (less) than b if the increase in a's utility for a unit change for issue A is
higher (lower) than the increase in Z?'s utility for a unit change for issue A. Therefore,
the slope of the segment represents the agents' utility preference for a issue, and is
named comparative interest in [6].

We define P^^ == \f*a\t^fa,t^"-ifa,t) ^s agent a's current optimal utility offer

for agent b that satisfies Ul{PL) = argmax Ul{p^ ^) where p^^ G Pt{^i^t) ^^^

PMJ) = {{p'l,^---A)\V'a{p'ln---A<^t) = ^'aj}- Therefore, agent a's ac-
tion Aca^t for the package deal procedure is defined as

{ Quit '\ft>Ta

Accept ifUl{Py)>uU (7)
Offer Pf+i(/7^̂ ^_ /̂) att+1, otherwise.

Agent a is playing its equilibrium strategy if C/̂ ^̂ j = (1 -y^at-^\)^max,a^ where
^max.a ^^ ĥc maximum possible utility agent a can get from issue set / [6]. The
equilibrium strategy for agent b is defined analogously. We now turn to the issue-by-
issue procedure. Agent a's action Aca^t is defined as follows and proved in [6]:

{ Quit '\it>Ta

i o r ^ s ^ i e l i ^ f ^M^^VLM,.^) (8)
[Offer/7^̂ _ ĵ otherwise.

where p^ ̂ satisfies the constraints for the equilibrium strategy described in Section
4.1.
4.3 Coalition Deal Negotiation
We discussed two negotiation procedures: issue-by-issue negotiation and package
deal. The outcome of negotiation depends on different negotiation strategies and

Agent Coordination via Negotiated Commitments 109

procedures. For our example GetStockQuote, issue-by-issue negotiation and package
deal may produce different negotiation outcomes and give agents different utilities.
We assume that both a and b prefer agreement to the conflict deal for every issue.
In issue-by-issue negotiation, for example, agents agree on the issue of payment
method with pay for bundle, and they also reach agreement that p is the inquiry cost.
Since agents negotiate these issues independently, it is possible that p is too high to
a if a chooses to pay for the bundle as its payment method. That means issue-by-
issue negotiation may degrade agents' utilities. In package deal negotiation, agents
can make a set of values over six issues and propose offers and counter offers by
crossing over issues. Agents may combine different payment methods with different
inquiry costs to reach mutually beneficial agreement over the two issues. However,
the package deal also leads to an exponential growth in the computation cost to
generate the offer sets. Most tasks (services), of course, are more complex than our
example, and when they are composed this computation problem is significant. To
make negotiating for tasks both optimum and efficient, we introduce the coalition
deal.

Definition and Negotiation Model

We define coalition deal negotiation, which makes a better trade-off between issue-
by-issue negotiation and the package deal procedure, to provide agents approxi­
mately optimized utilities with minimized computation costs.

Definition 1. For a coalition deal, all negotiation issues are partitioned into disjoint
partitions and each partition is negotiated independently of other partitions. Like the
package deal, issues inside the same partition are negotiated as a whole and an offer
includes a value for each issue in this partition. Furthermore, there is more than one
partition in a coalition deal and at least one partition that has more than one issue.

From this definition, we can see that issue-by-issue negotiation is a specific case of a
coalition deal where one issue per partition. The package deal is also a coalition deal,
where there is only one partition for all issues. Coalition deal negotiation provides
(a) better utility, (b) less computational cost, (c) more flexible negotiation, and (d)
better management of QoS metrics for services.

Consider multiple-issue negotiation with issue set I of k issues, where / =
{/i ,/2,... ,4} . From the definition, we know that there exists a partition IP of size s
over /, where IP — {IPj \l < j <s}.IP satisfies th6 constraint: \/\ <m<s,\ <n<
s.m^n, we have IPm C\IPn = ^ and DjeiP ^lej i = -̂ Similarly, agents' parameter sets
can be defined as follows:

Sh = {Pi'',Ul'jb,h) (9)

where Plf = {p^^ \ i G jj G IP] denotes agent a's reserve prices set over partitions
of issue set / and pĵ denotes a's reserve price over issue /, which belongs to partition
y, Ulf = {{ŷ I / G IP] denotes agent a's utility functions over partition IP where

110 Dang, Shrotri and Huhns

U^ denotes agent a's utility function over one partition / from IP, Ta and 5^ denotes
agent a's bargaining deadline and discount factor. Agent b's negotiation parameters
are defined similarly. An agent's utility from partition IP of issue set / is the sum of
its utilities from all partitions, so then we have

f^f = I t/i = I IK' ^L,a = I lu!„a.,a dO)
jelP jelPiej jefPiej

For a coalition deal, each partition is negotiated independently of other partitions. An
agreement can take place either on some or all of the partitions. For each partition,
an offer includes a value for each issue inside the partition that would be the same as
the package deal for this partition. This allows trade-offs to be made between issues
inside the partition. An agreement has to take place either on all or none of the issues
inside the partition.

For each partition, we assume the agents use the same protocol as for the package
deal, but instead of making a set of offers over issue set /, an agent makes a set
of offers over issues from this partition. An agent can make trade-offs only across
issues in the same partition, resulting in a set of offer sets, all of which give it equal
utility. As an example, Figure 1(a) illustrates the utility frontiers for issue set / where
/ = {A,B,C,D}. There exists a partition IP for / where IP = {{A,B}, {C,D}}. Let
IPi = {A, 5}, and IP2 = {C,D}. The utility frontier for I Pi is A^'B^'C'D'^ and the
utility frontier for IP2 is S"T"V"U". For IP\, the points along LLl are pairs of values
for IP\ that give equal utilities to agent a but different utilities to agent b. The points
along RR" are pairs of values for IP\ that give equal utilities to agent b but different
utilities to agent a. The utility for IP is the sum of the utilities from IP\ and I Pi
after these partitions are negotiated independently. If we only consider the optimal
outcome from both negotiations over IP\ and I Pi, All optimal outcomes for IP\ lie
on the segment MB"K, and all optimal outcomes for I Pi lie on the segment XT"Y
as we described for the package deal. Therefore, the possible utility frontier for IP is
represented by region 0M"P"QQ!P in Figure 1(b). For a partition IPi of hi issues, we
define P^J = (PaJ ? • • • ? PaJ) ^s agent a's current optimal utility offer for agent
b that satisfies f//̂ ' {PH^j) = argmax Up {pfj), where pfj e Pr (^i?) and Pt{ul,^') =

i \Pa,t i"">Pa,t I I ^a \Pa,t ? • • • >Pa,t) — ^a,t j •

Pf^i {U^IJ^^) is defined analogously. For a coalition deal, each partition is considered
using the package deal negotiation protocol. Agent a's action Aca^t for the coalition
deal procedure is defined as follows:

rQuit ifr>7:,

Aca^t = \ Accept package deal for/P/ if f/f ' (P̂ ^̂ ') > ^i^V/ (H)
[Offer P̂ +i {Ull^l^^) for IPi at t+1, otherwise.

Similarly, we define agent a as playing its equilibrium strategy for the package deal
over a partition if t/^^^i = (1 -y^fl^i)u!J^^a, where t/iSx,̂ is the maximum possible
cumulative utility agent a can get from partition IPi. The equilibrium strategy for
agent a and agent b over other partitions is defined analogously.

Agent Coordination via Negotiated Commitments 111

Coalition Deal Utility

In previous sections, we discussed three different negotiation procedures: issue-by-
issue, package deal, and coalition deal. These three procedures can generate different
outcomes, and consequently give different utilities to the agents. To decide the op­
timal procedure that gives the agents highest utilities, we need to compare agents'
utilities from these procedures for n-issue negotiation. Fatima et al. [6] introduced
the zone of agreement for individual issues where both agents prefer agreement over
no deal. An issue has a zone of agreement if its utility frontier lies in quadrant g l .
We discuss the common scenario of service-oriented computing (SOC) in which both
agents are individual rational (i.e., all issues have a zone of agreement ensured by
the service description and the discovery procedure).

Lemma 1. each agent's utility from the package deal is no worse than its utility from
issue-by-issue negotiation for two-issue negotiation.

Lemma 1 has been proven in [6]. In a service-oriented environment, there are
many issues concerning functionality and quality that need to be negotiated during
service engagement. Can we generalize Lemma 1 to cover more than two? Here,
we compare agents' utilities from package deal and issue-by-issue negotiation for
n-issue negotiation.

Theorem 1. Each agent's utility from the package deal is no worse than its utility
from is sue-by-is sue negotiation for n-issue negotiation, where n>2.

Theorem 1 has been proven in [2] by induction. From this theorem, we know
that a package deal gives agents better utilities than issue-by-issue negotiation does.
As stated in the previous section, a coalition deal provides approximately optimized
utilities to agents. Then we prove that a coalition deal give agents utilities better than
issue-by-issue negotiation does.

Theorem!. Each agent's utility from a coalition deal is no worse than its utility
from issue-by-issue negotiation for n-issue negotiation, where n> 2.

Theorem 2 has been proved by combining Theorem 1 and our assumption of
additive utilities [2]. Both package deal and coalition deal give agents utilities better
than issue-by-issue negotiation does. The remaining question is which procedure,
package deal or coalition deal, gives agents better utilities. To answer this question,
we first prove that the package deal gives agents utilities better than a coalition deal
of two partitions.

Lemma 2. Each agent's utility from the package deal is no worse than its utility from
i-by-j negotiation for n-issue negotiation, where i> \J> l,n> 2, and i-h j = n.

We have proven that the package deal gives agents utilities better than a coalition
deal of two partitions for n-issue negotiation in [2]. For QoS negotiation for tasks,
we need to extend Lemma 2 to the coalition deal with more than two partitions.

Theorem 3. Each agent's utility from a coalition deal is no better than its utility from
the package deal for n-issue negotiation, where n> 2 [2].

112 Dang, Shrotri and Huhns

If. If.

-

\
A- fe-

^ \

-v;

. „ , . . ,

~

D ^

T \

7̂

f^

\ . \

Fig. 1. Agents' utilities for4-issue negotiation

Coalition Deal Efficiency

From Theorems 1, 2 and 3, we know that each agent's utility from the package deal
is better than its utility from a coalition deal and issue-by-issue negotiation. There­
fore, we should choose the package deal negotiation to maximize agents' utilities.
However, we need to consider the computational costs, which can be the primary
factor when negotiating for tasks.

Given an issue set / = {/i, /2, . . . , 4} and a partition IP = {IP\ JP2,...JPk} over
/, we define the unit computational cost for generating a price value for one issue as a
constant. We assume that every issue in issue-by-issue negotiation can be negotiated
in parallel and every partition in a coalition deal can also be negotiated in parallel.
To compare the computational efficiency, we only need to compare the computa­
tional cost of generating an offer in each round of three different procedures. If we
suppose agents need almost the same rounds of negotiation to reach an agreement
in these three negotiation procedures, we can compare their computational costs by
comparing the cost of generating an offer in each round.

An n-issue negotiation can be viewed as a distributed search through an n-
dimensional space, where each issue has a separate dimension associated with it.
In issue-by-issue negotiation, each issue is negotiated separately, Based on the above
equilibrium strategy, agents will compute a value for each issue. Therefore, the com­
putational cost in one round is 0{n), where n is the size of the issue set. In the
package deal, an offer is a set including a value for each issue under negotiation. In
each round, an agent can make trade-offs across all n issues to offer a set of offers
that give it the same utilities. In the worst case, the computational cost in one round
is O(m^), where we assume each issue may have m possible values.

The computation problem of generating an offer set is equivalent to searching
in an n-dimensional space for all combinations of possible distributions of given
utility value among all n issues with a utility constraint. This problem is intractable
and takes 0{m^) time in the worst case. Even worse, we have to solve this problem

Agent Coordination via Negotiated Commitments 113

every round during the package deal negotiation procedure. It means that it will be
infeasible for an agent to consider every possible offer given a utility constraint.
In coalition deal negotiation, issues are partitioned into k disjoint partitions and each
partition is settled independently of the other partitions. Like the package deal, issues
inside the same partition are negotiated as a whole and an offer includes a value for
each issue in this partition. Therefore, the computation problem is reduced to the
sum of k searches where the /-th search is in an ^/-dimension space, where ni « n
and Xf î Hi = n. This problem takes 0(km^') time in the worst case, where ris =
argmax ni. Moreover, we can limit the maximum size of a partition to a constant C.
Therefore, the computational cost of a coalition deal reduces to 0{nnf). The time
complexity will be 0{rrf) if we have several agents, one for each partition, work
together to generate a coalition deal.

In our GetStockQuote service scenario, we divide six issues into two partitions.
The computational cost is 6 in each round for issue-by-issue negotiation. In package
deal, agents need to search through all possible offers in a 6-dimensional space to
meet the given utility constraint. The computational cost is 0{a^) in the worst case,
where a is the size of possible value per issue. In a coalition deal, the computational
cost is 0{a^) in the worst case.

Coalition Deal Negotiation for Services

With much lower computational cost than that for the package deal, agents earn
greater utilities from the coalition deal than from issue-by-issue negotiation. Besides
computational cost and agent utility, another advantage of the coalition deal is that
it is natural to partition issues into different categories and deal with each category
separately. For example, in bilateral negotiation of a labor dispute, it would be easier
if money issues such as salary and bonus are negotiated in a partition separately from
issues such as working condition and healthcare. Of course, it is possible that both
sides would benefit if they could deal with all issues as a package, but the negotiation
might become infeasible.

In QoS-aware service contracting, self-interested service agents negotiate with
each other over multiple issues besides QoS attributes to reach an agreement while
maximizing their utilities. The optimal negotiation strategy for the coalition deal is:
(1) Agents reveal their deadlines; honesty about their real deadline is enforced by the
negotiation protocol. For example, the agent that has the latest deadline will receive
better payoff at the time right before its deadline. (2) Each agent estimates individu­
ally the rounds this negotiation should have before the earliest deadline. (3) Agents
are identified by their time discount factors (< 1) from their own utility functions.
Agents choose either the Boulware or conceder discount functions by mapping their
discount factor to different parameters. (4) Agents compute the expected cumulative
utility by their Boulware/conceder functions and generate a set of offers, all of which
give them equal utility, by crossing over multiple issues inside one partition.

Since all partitions can be negotiated in parallel and independently, the fourth
steps can be executed in parallel for each partition. A service agent can breed sev­
eral negotiation agents, each for one partition. These negotiation agents cooperate to

114 Dang, Shrotri and Huhns

reach a service agreement with distributed computation. The coahtion among these
negotiation agents provides the framework for a possibly more flexible negotiation
procedure in the future.

5 Commitments and Obligations

Now that we have described efficient multiple-issue negotiation, in this section we
define commitments and obligations and describe various operations that the partici­
pating agents can perform on them. We briefly revisit earlier formalisms of commit­
ments and their operations [24, 22], and then define an extension useful for coordi­
nation.

5.1 Commitments

Social commitments are legal abstractions associating one entity with another. These
commitments are accessible publicly and represent an interaction between two par­
ticipating entities. Commitments are binary relationships that bind two agents: a
"debtor agent" that promises to provide a particular service for a ''creditor agent."
For example, service level agreements, QoS agreements, online purchases, and ser­
vice contracts are all real-world instances of commitments.

Earlier works have treated all the information about a commitment as publicly
available or accessible. It is more realistic to treat some of the information as partially
accessible and some as private. To do this, we refine the commitment structure in [24,
22] with the key properties of accessibility.

First, the commitment properties that are publicly accessible are

Multiagency: Commitments associate one agent with another. The agent that promises
or commits to satisfying a condition is called the debtor agent and the agent that
wants the condition to be fulfilled by the debtor is called the creditor agent. Each
commitment is directed from its debtor to its creditor.

Scope: Commitments have a well-defined scope, also known as a Sphere of Com­
mitment (SoCom), which gives context to the commitment.

Manipulability: Commitments are modifiable. They can become fulfilled, breached,
active, suspended, or revoked, which is public information about their current
status.

The following two additional parameters are not properties of a commitment per
se, but represent an agent's attitude towards its commitments. These are also public.

Commitment Adherence Rating: Agents may choose to respect or ignore their com­
mitments. For effective coordination, fulfilling promises is critical and deter­
mines an agent's reputation. A participating agent's history of commitment ad­
herence can be captured and translated into a this rating, which represents the
agent's reputation in a domain. Nonparticipating arbiters can be used to measure
and maintain this parameter.

Agent Coordination via Negotiated Commitments 115

Utility Weighting: This is a numerical coefficient in the range (0,1] that represents
the relative importance of the committed promise on the overall utility that is de­
sired by the creditor agent. This commitment property is used for multiple-issue
commitments. For single-issue commitments, the value is always 1. It cannot be
0, as that would represent an issue on which the creditor agent is completely
agnostic.

The next (partially-accessible) property is accessible to the debtor of the com­
mitment and to the nonparticipating arbiters, defined as follows:

Utility Coefficient: Imagine a scenario where a debtor agent makes false promises
to many service seekers and then does nothing to fulfill the promises. In the real
world there are checks and measures in place to discourage such behavior. The
Utility Coefficient, which represents the affect of debtor's behavior on its utility,
provides similar discouragement. Its value in the range [0,1] captures whether a
debtor receives all of the utility associated with a commitment (value 1) or none
of the utility (value 0).

Lastly, we revisit two key commitment properties [22] and redefine them as prop­
erties that represent an agent's private or internal information.

Life: Commitments have a life cycle; they are created, remain active, and at some
point cease to exist. Continuous commitments are beyond the scope of this for­
malism and are a subject of future research.

Degree: We believe that when active, commitments do not necessarily remain in one
constant state; they might age by becoming more or less important. This notion
of commitment aging is captured by what we define as the degree of commit­
ment. We believe that for a service-oriented coordination environment, the de­
gree of commitment changes with changing beliefs, desires, and intentions. Also,
specifically in the case of commitment cancellation or revocation, the commit­
ment might not go from an active state to an inactive state instantaneously, but
gradually decrease its degree until it becomes inactive.

Commitments are represented by a predicate C. The partially accessible commit­
ment properties are represented inside angle brackets "(. . .)" and the private proper­
ties are represented inside square brackets "[. . .]". Commitments have the form C(i,
a, b, p, S, W, (ju), [d]), where

/: is a unique identifier,
a\ is the creditor agent,
b: is the debtor agent,
p\ is the promise or the condition that the debtor will bring about,
S\ is the context, also known as the sphere of commitment,
W\ is the utility weighting,
H'. is the utility coefficient,
d\ is the age or degree of commitment.

116 Dang, Shrotri and Huhns

In this chapter, we do not use all of these properties, but mention them wherever
pertinent. Throughout the rest of this chapter we refer to the creditor entity as a and
the debtor entity as b.

5.2 Obligations

We believe that obligations are closely tied to the notions of duty and responsibility.
An obligation is a promise that one makes to oneself; it is driven by the demand
of ones own conscience or custom or socially accepted norms and it binds one to a
specific course of action. We believe that obligations may also exist between a debtor
agent and an abstract creditor agent, which cannot be represented as one concrete
creditor, for instance society or say one's country. In this chapter however, we will
consider only those obligations that represent promises one makes to oneself.

We believe that obligations can be represented as a special case of commitments.
Obligations, unlike commitments, are best described as unitary and private in nature.
In the described service-oriented environment, obligations are the abstractions of
bindings that an agent imposes on itself. These obligations or internal bindings are
visible only to the agent and are driven solely by agent's internal state of mind i.e.
beliefs, desires and intentions. We believe that commitments' claim over a promise
is stronger than that of obligations.

As we are dealing only with unitary obligations, the Multiagency and Utility
Weighting properties are inapplicable. R and jn have special values set by the debtor
agent itself. The other properties of Scope, Manipulability, Life, and Degree are
treated the same as they are for commitments.

Obligations are represented by a predicate O, with their private properties inside
square brackets "[. . .]". ObUgations have the form: 0{i,b,p,S,ju, [d]), where

/: is a unique identifier,
b: is the debtor agent,
p: is the promise or the condition that the debtor will bring about,
S: is the context, also known as the sphere of commitment,
ju: is the utility coefficient,
d: is the age or degree of obligation.

5.3 Operations on Commitments and Obligations

As described above, our service-oriented environment is commitment-driven and
participating agents' knowledge is governed solely by commitment operations. In
this section, we describe commitment operations [23, 12] and their extension
[22]. Commitments are treated as abstract data types that associate debtor, creditor,
promise, and context. The seven fundamental commitment operations are

1. Create (b, C(i, a, b, p, S)): This operation establishes a commitment C in the
situation S. This operation can only be performed by C's debtor.

Agent Coordination via Negotiated Commitments 117

2. Discharge(b, C(i, a, b, p, S)): This operation indicates that the inherent promise
in the commitment C has been fulfilled; hence the commitment C has been sat­
isfied.

3. Revoke(b, C(i, a, b, p, S)): This operation cancels the commitment C and can
only be performed by C's debtor. This operation also reflects the autonomy of
the participating entity.

4. Release(a, C(i, a, b, p, S)): This operation captures the situation where a creditor
no longer wishes its debtor to fulfill its committed promise and releases it of its
commitment. It can only be performed by C's creditor.

5. Assign(a, z, C(i, a, b, p, S)): This operation enables a commitment's creditor to
designate another entity as the creditor. It can only be performed by C's creditor
and replaces a with z as C's creditor.

6. Delegate(b, z, Qi, a, b, p, S)): This operation enables C's debtor to transfer its
commitment promise to another agent. This operation can only be performed by
C's debtor and replaces b with z as C's debtor.

7. Suspend(b, C(i, a, b, p, S)): This operation can only be performed by C's debtor,
and describes a situation where the debtor has put its promised commitment on
hold.

We use predicates to describe whether the commitment C has been satisfied, re­
voked, breached, or still holds, written as satisfied(C), revoked(C), breached(C), and
active(C), respectively.

For obligations, only the following four of the above operations are applicable:
Create(b, C (i, b, p, S)), Discharge(b, C (i, b, p, S)), Revoke(b, C (i, b, p, S)), and Sus-
pend(b, C (i, b, p, S)), Obligations are unitary, internal, and private in nature; hence,
assignment and delegation is not applicable. Because obligations can be treated as a
special case of commitments, in the remainder of this chapter we use commitments
as the basic abstraction for both binary and unitary agent bindings.

5.4 Negotiated Agreements as Commitment Promises

As described in Section 1, in service-oriented environments the participating agents,
which play the roles of a service provider and a service seeker, negotiate and commit
to a service agreement about the execution and completion of a task. During the ne­
gotiation, the agents communicate and compromise to reach an agreement on matters
of mutual interest while maximizing their utilities. In this section we will describe
how the negotiated agreements, which associate or bind these participating agents
with each other, can be best encapsulated as commitment promises.

Let b denote the service provider or the debtor agent and a denote the service
seeker or the creditor agent as described in Section 4.3. Both a and b negotiate on
issues related to the service and come to an agreement. How they communicate and
their particular negotiation strategy is beyond the scope of this section.

We first consider agreements over a single issue. Specifically, a and b have nego­
tiated and agreed upon an issue set I = A, where A represents one issue, such as the
product price in an e-commerce transaction.

118 Dang, Shrotri and Huhns

Expanding on the agents' negotiation parameters as defined in Section 4, we
define the agents' agreement parameters as

Sb={Pa.Ut)^ (12)

where, Pa = Pt, = Pagreed is the agreed price or the agreed parameter over issue A.
This is public information.

Ua and Ub are utihties of the respective participating agents. The utihties are
associated with the negotiated agreement on A. It is partially accessible information
known to the owner agent and the non-participating arbiters. Note that the actual
utility, Uactuai = jux U, is awarded to the agent once the commitment C reaches
finality.

The negotiated agreement between agents a and b over issue A is a commitment
in which the agreed parameter over A is the commitment promise. From section
5.1, and because this is a single-issue agreement so that W = 1, the commitment is
represented as C{i,a,b,Pagreed^S,\,(ju), [degree,age]).

We now consider multiple-issue negotiated agreements. As an example, an on­
line transaction between an online bookseller and a buyer would involve agreement
from both sides on the multiple issues of book price, book condition (new or used),
delivery method, etc. All these are sub-issues of the main issue of "buying a book."

Let there be an issue set I of k issues, where / = {/i,/2,... ,4} . Expanding on
the agents' negotiation parameters as defined in Section 4, the agents' agreement
parameter sets are defined as:

^a = Yai^a) I

Sb = {Pb.Ub)j (13)

where. Pa = ItefPa^ ^^^ similarly, Pb = ILieiPb
This means that the overall agreed price or agreed parameter over issue /, which

comprises k sub-issues, is the summation of the agreed price or the agreed parame­
ter of all the sub-issues. Since a and b are in agreement, Pa = Pb — Pagreed^ it is the
overall agreed price or the overall agreed parameter over the issue A. This is pub­
lic information, which is available to all the participants and the non-participating
arbiters.

Ua and Ub are overall utilities of the respective participating agents. This util­
ity is associated with the negotiated agreement on the issue /. This is partially ac­
cessible information, which means that it is known to the owner agent and the non-
participating arbiters. Note that the actual utility, Uactmi =l^xU and will be awarded
to the agent once the commitment C reaches some kind of finality. We know that
Ua = Y^iei^l' Similarly, Ub = Y^iei^l' Which means that the overall utility for an
agent to have an agreement on a parameter over issue set /, which comprises k sub-
issues is the summation of utilities it gains on having an agreement on all the sub-
issues.

Now we describe the concept of W in greater detail. As described above, the
overall utility of the debtor agent b over the issue set / is the sum all the utilities

Agent Coordination via Negotiated Commitments 119

("sub-utilities") it gains over all the k sub-issues that make up the issue set /. We
theorize that in the issue set / all of the sub-issues do not necessarily have an equally
significant effect on its overall utility. In our book-selling example, let us assume
that a service provider b and a service seeker a enter into a commitment relationship
in which b promises to deliver a book to a. Of the many sub-issues that make up
the complete transaction, the "color of the book cover" may not have as significant
an impact on b's overall utility as does the "condition of the book" or the "delivery
time". W represents the relative significance of sub-issues that make up an issue set.

Considering the negotiated agreement between agents a and b over the issue set /
as a commitment relationship, the relationship between a and b can be represented as:
Qz? = Y^iei^ab' which means that the commitment relationship between a and b over
negotiated agreements on the issue set /, which comprises k sub-issues, is the sum­
mation of all the commitments on all the k sub-issues. Note that X/e/ ̂ 1? = 1- Thus,
service-oriented environments where participating agents are involved in negotiated
agreements over single or multiple issues can be modeled by our commitment-driven
approach.

6 Commitment-Based Coordination Protocol

Organizational control is needed to ensure that the appropriate information is com­
municated among the coordinating agents, so that they can make effective decisions
to advance the overall objective. The key information being communicated is of three
types:

1. Static information, such as authority relationships
2. Dynamic information, such as policies, standard operating procedures, and com­

munication protocols
3. Contextual information, such as the current state of the overall workflow or plan

and the states of the relevant agents.

An important aspect of our approach is that it treats organizational control as an
integral aspect of planning, particularly for coordinating in the face of exceptions.
This is a reasonable approach, because the flexibility of an organization reflects the
complexity of its plans, the dynamism of its environment, and the risks faced by
its plans. Thus heuristic techniques for encoding and using coordination strategies
are naturally extended into strategies that accommodate organizational structure and
control.

Moreover, organizational structure can be used to control the complexity both
of the design and configuration of agent systems and of the execution by individual
agents. This improves scalability. Well-designed organizations naturally yield narrow
interfaces so that changes are not unnecessarily propagated and the right information
flows at the right time. We cast the problem of organization design as a natural next
step to the representation and design of agent heuristics, where the heuristics are se­
lected so as to capture and exploit organizational structure. For example, we could
have heuristics to report exceptions or anticipated exceptions to a supervisory role;

120 Dang, Shrotri and Huhns

to delegate a commitment to a subordinate; to request a peer to accept a delegate;
to assign a resource not needed to a peer; and so on. In this manner, the general
approach for verifying correctness could be made more elaborate to take advantage
of organizational structure. Moreover, a model of the agents' organization, policies,
and authority can be integrated with coordinated decision making to ensure the com­
pliance of decisions to organizational policies.

To make this discussion concrete, let's outline how inter-agent control and intra-
agent control mesh:

1. One or more agents perceive or are notified of an event.
2. Each agent perceiving the event decides (a) whether the event changes its lo­

cal plan, and (b) whether to communicate the change (by itself or along with
additional results of its reasoning) to another agent.

3. If an agent decides the event does not affect it or any one of its dependent agents,
then it filters out the event and continues on its prior execution path. If an agent
decides that the event does not affect its own plan, but could possibly affect plans
of its dependent agents, then it communicates the event to the affected agents.

4. If an agent decides that the change affects its own plan, it reconsiders its com­
mitments and begins a renegotiation of those that cannot be met.

5. The actions proposed to meet commitments are subjected to a "filter" that detects
any that are in opposition to policies. All agents have an obligation to act in
accordance with appropriate and applicable policies.

6. If the coordinated commitment-revision process encounters difficulties, the agent
who has the most severe difficulty is given its preference and the coordination
continues.

The above process can be captured in a general and flexible manner through
the use of commitments. As explained in Section 5, commitments provide a natu­
ral abstraction to encode relationships among autonomous, heterogeneous parties.
Commitments are important for organizational control, because they provide a layer
that mediates across the declarative semantics of organizations from the operational
behavior of the team members. Organizational control based on commitments by a
reasoner in an agent has the advantages that:

1. Commitments can be assigned to roles, so that any unit that fills the role of
"transport troops" will, e.g., inherit a commitment assigned to the role to move
troops from location A to location B.

2. Commitments can be delegated, so that a captain who has the commitment to
"transport troops" can delegate the commitment to Helicopter Unit 1.

3. Commitments can be reassigned. For example, if Helicopter Unit 1 fails to meet
its commitment (the helicopters break down) then the captain can release Unit 1
from the commitment and delegate it to Unit 2.

4. Commitments can be negotiated. The captain might ask another captain (a peer)
to take over a commitment that could not otherwise be met.

5. Commitments can fail to be met, in which case the failure can be communicated
to an agent with the authority to release the original commitment and reassign it.

Agent Coordination via Negotiated Commitments 121

Commitments to follow required policies are a kind of obligation, and are man­
aged by a deontic reasoner. An organizational model based on obligations and rights
can enable agents to represent and reason about the relationship between the respon­
sibilities of the agent or group being coordinated and applicable policies, decision­
making constraints, authorities, and overall objectives. This feature decides which
organizational policies apply for the current situation and marks as unacceptable any
intended actions that are inappropriate.

7 Commitments in Plan Revision

It is clear from the above that coordination is not a one-shot effort that can be sat­
isfied through one round of planning, but must be carried out repeatedly. Further,
coordination includes challenges such as unexpected events and changing situations,
and must respect not only physical constraints, but also organizational challenges.

One aspect of commitments involves scheduling algorithms so that an agent can
manage multiple commitments in the face of external events. Each agent applies
classification to identify the general class of an event, then the classification is used
to choose heuristics most likely to lead to effective coordinated behavior. Each agent
maintains the consistency of formally represented commitments leading to robust,
yet flexible coordination reasoning.

This relies upon a temporal semantics for commitments, which naturally leads to
heuristics for ensuring that tasks that can be scheduled are satisfactorily scheduled
given the emerging constraints. Another aspect involves reasoning about commit­
ments more directly at the level of coordination as it relates to communication. To
this end, it helps to develop additional representations based on commitments. Such
representations can be thought of as patterns of coordination relationships.

Heuristic Classification Heuristic Classification

Abstract Plan Failiiras

Delayed resource
Unavailable resource
Insufficient resource

Contingencies

Alternative resource
Additional resource
Accelerated
compensation
Cancel task
Delay task
Reduce task scope

noorriinatinn StratfiqJRS

Propagate delay based on
dependencies
Request help based on commitments

Request help from peers
Request help from superior

Propagate resource consumption data
Adopt task

Fig. 2. Elements of a simple domain-independent mechanism for coordinating a response to
conflicts and failures in plans

122 Dang, Shrotri and Huhns

Commitments provide us with a basis for creating techniques that are generic and
reusable. It is helpful to frame these as first-order patterns of interaction as well as
second-order patterns of how other patterns are modified. These patterns would be
indexed according to different situations and potential threats such as lost commu­
nications, ineffective participants, and so on. Figure 2 illustrates examples of how
certain coordination strategies can be associated with potential plan failures. This is
an example of heuristic classification in the sense of [1]. In our approach, this heuris­
tic classification is supported by our semantics for commitments. Commitments are
formally modeled via temporal logic; each agent's behavior is modeled via a simple
finite-state machine (FSM).

Ignore Exceptions

\ Replan Subplan Complete .

Consider Exceptions

"v Replan Subplan Complete ^

Exceeded(Deadline) / ^
Send(ReminderRequest)

Receive(ConfiiTmtion) /
Send(Trooppestination)

Set Deadline
Alarm

Send(TroopTranjsportRequest) Send(TroopTrar»sportRequest)

Fig. 3. Operationalizing commitments: an example of a finite-state machine for a coordinator
that handles a delayed resource

To operationalize a commitment, we represent it as an FSM that processes com­
mitments. The FSMs corresponding to different patterns can be combined with each
other to yield the desired composite structure for the different agents. Figure 3 illus­
trates an example of a heuristic for handling a delayed resource. On the left is a part
of an agent's FSM behavior where it deals with obtaining a resource from another
party. An agent implemented according to this FSM would wait for the resource to
arrive and then process it according to its current plan. However, such an agent would
not be robust under certain kinds of enactment failures, specifically if the resource
fails to materialize on time. The FSM on the right is an alternative for the same func­
tional behavior. An agent implemented according to this FSM would be robust under
the above failure, because it would time-out and generate reminders for the missing
resource.

The above heuristic is promising, but has an obvious shortcoming in that, if
the resource is dead rather than merely delayed, the agent will keep generating re-

Agent Coordination via Negotiated Commitments 123

minders, whereas it should drop the current plan altogether. As agents are designed
for a rich variety of scenarios, more such heuristics v̂ ill be needed. They might be
invented at run-time via machine learning or during configuration when a team of
agents is deployed.

We can validate if a set of agents will function together in a manner to produce the
right behaviors. It is known that checking the correctness of a distributed system of
complex components is not tractable. The FSM representation of the heuristics hides
irrelevant detail and enables the correctness verification known as model checking.
Examples of the kinds of errors that can be detected early via model checking are:
(1) if all the agents in a system are implemented according to the simple FSM on
the left in the figure above, then such a system will hang when a resource dies, and
(2) when resource sharing, if the receiver of a resource is implemented according to
the FSM on the right, then we can confirm that reminders will be generated in case
of a delay, but there might still be unnecessary delays because the resource provider
cannot notify the resource consumer and the resource consumer will be unable to
terminate its current plan if the resource is in fact dead. Similarly, we can create
additional sets of FSMs and verify their correctness. Previous work on this problem
used a Computational Tree Logic (CTL) model checker to create FSMs that would
guarantee specified combinations of commitment patterns [28, 27].

In simple terms, the methodology combines the power of heuristics and the learn­
ing of agent behaviors, while providing a sound underpinning in terms of commit­
ments and their formal semantics. Heuristic classification is essential for practical
knowledge acquisition and implementation; formalization gives us the essential guar­
antees of robustness and reliability that are necessary for mission-critical situations.

8 Conclusions

Commitments are a powerful representation for modeling intelligent interactions
among agents distributed within an organizational structure. Previous approaches
have considered the semantics of commitments and how to check compliance with
them. However, for large-scale applications such as supply chains or military oper­
ations, these approaches do not capture implicit temporal task dependencies or the
organizational authority and responsibilities among the participating entities. Our
use of negotiated commitments for coordination lets us capture realistic task depen­
dencies and avoid ambiguities. Consequently, it enables us to reason about whether,
and at what point, a commitment is satisfied or breached, and whether it is or ever
becomes unenforceable when replanning must be done.

Our use of deadlines for agent plans is similar to that for commitment life-
cycles [7], which explains how operations can create, modify, delete, and satisfy
commitments. This work operationalizes commitments, and we extend it to yield
agent-internalized BDI semantics for temporal commitments.

The use of policy and organizational reasoning for coordination requires ad­
vances in the representation of policies in terms of commitments and obligations and
an associated deontic reasoning mechanism. A temporal deontic logic for specifying

124 Dang, Shrotri and Huhns

obligations so that interaction protocols can take deadlines into account has been de­
veloped [4]. Other work on obligations [11] used them to represent and reason about
policies, but did not incorporate commitments, as we do.

The choice of commitments as a basic data type for coordination enables the
monitoring of performance by recording the satisfaction of prior commitments. This
can be used to predict an agent's computational resource needs, and can be used to
determine when an agent is not meeting expectations.

This chapter also investigates the coalition deal as a strategy for QoS-aware ne­
gotiation over commitments. Using equilibrium strategies, we prove that it makes
better tradeoffs between utility optimization and computational efficiency than ei­
ther the package deal or issue-by-issue negotiation.

Many real world systems are becoming service-oriented. In a service-oriented
multiagent system, commitments represent agent associations and interactions. In
such an environment, a participant agent's beliefs, desires, and intentions about the
commitments in which it is involved are critical to modeling its behavior. By formal­
izing commitments in terms of BDI, we have provided the basic framework on which
a more comprehensive commitment-driven coordination theory could be developed.
The advantage of this framework is that it blends two established formalisms—
BDICTL [3] and commitments—that together can model a service-oriented multi-
agent system. Our future research involves exploration of how agents decide what to
commit (integrating earlier works on "capability" [15] with commitments), when to
revoke a commitment, how a commitment ages, and how historical information of
an agent's commitment adherence can be utilized to predict agent behavior.

References

1. William J. Clancey. Heuristic classification. Artificial Intelligence, 27(3):289-350, 1985.
2. Jiangbo Dang and Michael N. Huhns. Optimal multiple-issue negotiation over qos metrics

of web service. USC CIT Technical Report TR-CIT05-01, 2005.
3. M. Dastani and L. van der Torre. An extension of bdictl with functional dependencies and

components. In Proceedings ofLPAR'02, volume LNCS 2514, pages 115-129. Springer,
2002.

4. Frank Dignum, H. Weigand, and E. Verharen. Meeting the deadline: On the formal spec­
ification of temporal deontic constraints. In Foundations of Intelligent Systems, 9th Inter­
national Symposium, 1996.

5. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science: Formal Models and Semantics, volume B, pages 995-
1072, 1990.

6. S. S. Fatima, M. Wooldridge, and N. Jennings. Optimal negotiation of multiple issues
in incomplete information settings. In Proc. Third International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS'04), pages 1080-1089, New York,
USA, 2004. ACM.

7. Nicoletta Fornara and Marco Colombetti. Operational specification of a commitment-
based agent communication language. In AAMAS '02: Proceedings of the First Interna­
tional Joint Conference on Autonomous Agents and Multiagent Systems, pages 536-542.
ACM Press, 2002.

Agent Coordination via Negotiated Commitments 125

8. D. Gouscos, M. Kalikakis, and P. Georgiadis. An approach to modeling web service
qos and provision price. In Proc, Fourth International Conference on Web Information
Systems Engineering Workshops (WISEW'03), pages 121-130, Roma, Italy, 2003.

9. Bryan Horling, Victor Lesser, Regis Vincent, Tom Wagner, Anita Raja, Shelley
Zhang, Keith Decker, and Alan Garvey. The TAEMS white paper. 2004.
http://mas.cs.umass.edu/research/taems/white.

10. C M . Jonker and V. Robu. Automated multi-attribute negotiation with efficient use
of incomplete preference information. In Proc. Third International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS'04), pages 1056-1063, New
York,USA, 2004. ACM.

11. Lalana Kagal, Tim Finin, and Anupam Joshi. A policy based approach to security on the
semantic web. In Proc. Second International Semantic Web Conference, 2003.

12. Ashok U. Mallya and Michael N. Huhns. Commitments among agents. IEEE Internet
Computing, 7(4):90-93, July-Aug 2003.

13. E. M. Maximilien and M. R Singh. A framework and ontology for dynamic web services
selection. IEEE Internet Computing, 8(5):84-93, Sept-Oct 2004.

14. T. D. Nguyen and N. Jennings. Coordinating multiple concurrent negotiations. In Proc.
Third International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS'04), pages 1064-1071, New York,USA, 2004. ACM.

15. Lin Padgham and Patrick Lambrix. Agent capabilities: Extending BDI theory. In
AAAI/IAAI, pages 68-73, 2000.

16. G. Petrone. Managing flexible interaction with web services. In Proc. Workshop on
Web Services and Agent-based Engineering (WSABE 2003), pages 41-47, Melbourne,
Australia, 2003.

17. C. Preist. A conceptual architecture for semantic web services. In Proceedings of the
Third International Semantic Web Conference 2004 (ISWC2004), Hiroshima,Japan, 2004.

18. S. Ran. A model for web services discovery with qos. ACM SIGecom Exchanges, 4(1): 1-
10, 2003.

19. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings of the
First Intl. Conference on Multiagent Systems, San Francisco, 1995.

20. Tuomas Sandholm and N. Vulkan. Bargaining with deadlines. In Proc. National Confer­
ence on Artificial Intelligence (AAAI), pages 44-51, Orlando, FL, 1999.

21. Sandip Sen. Reciprocity; a foundational principle for promoting cooperative behavior
among self-interested agents. In Proc. International Conference on Multi-Agent Systems,
pages 322-329, Menlo Park, CA, 1996.

22. Devendra Shrotri and Michael N. Huhns. Formalization of multiagent commitments in a
BDLCTL framework. USC CIT Technical Report TR-CIT05-02, 2005.

23. Munindar P. Singh. Synthesizing coordination requirements for heterogeneous au­
tonomous agents. Autonomous Agents and Multi-Agent Systems, 3(2): 107-132, 2000.

24. Munindar P. Singh and Michael N. Huhns. Social abstractions for information agents.
In Matthias Klusch, editor. Intelligent Information Agents, Boston, MA, 1999. Kluwer
Academic Publishers.

25. Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Semantics, Pro­
cesses, Agents. Wiley, London, UK, 2005.

26. SWSA. Semantic web services architecture requirements. Semantic Web Services
Initiative Architecture committee (SWSA). http://www.daml.org/services/swsa/swsa-
requirements.html.

27. Mahadevan Venkatraman and Munindar P. Singh. Verifying compliance with commit­
ment protocols. Autonomous Agents and Multi-Agent Systems, 2(3):217-236, 1999.

http://mas.cs.umass.edu/research/taems/white
http://www.daml.org/services/swsa/swsa-

126 Dang, Shrotri and Huhns

28. Jie Xing and Munindar P. Singh. Engineering commitment-based multiagent systems: A
temporal logic approach. In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 891-898. ACM Press, 2003.

A Family of Graphical-Game-Based Algorithms for
Distributed Constraint Optimization Problems

Rajiv T. Maheswaran^ Jonathan P. Pearce^, Mihnd Tambe^

^ University of Southern California maheswar@usc. edu
^ University of Southern California jppearce@usc. edu
^ University of Southern California tainbe@usc. edu

Summary. This paper addresses the application of distributed constraint optimization prob­
lems (DCOPs) to large-scale dynamic environments. We introduce a decomposition of DCOP
into a graphical game and investigate the evolution of various stochastic and deterministic al­
gorithms. We also develop techniques that allow for coordinated negotiation while maintaining
distributed control of variables. We prove monotonicity properties of certain approaches and
detail arguments about equilibrium sets that offer insight into the tradeoffs involved in lever­
aging efficiency and solution quality. The algorithms and ideas were tested and illustrated on
several graph coloring domains.

1 Introduction

A distributed constraint optimization problem (DCOP) [8, 12] is a useful formalism
in settings where distributed agents, each with control of some variables, attempt to
optimize a global objective function characterized as the aggregation of distributed
constraint utility functions. DCOP can be applied to many multiagent domains, in­
cluding sensor nets, distributed spacecraft, disaster rescue simulations, and software
personal assistant agents. For example, sensor agents may need to choose appropriate
scanning regions to optimize targets tracked over the entire network or personal as­
sistant agents may need to schedule multiple meetings in order to maximize the value
of their users' time. As the scale of these domains become large, current complete
algorithms incur immense computation costs. A large-scale network of personal as­
sistant agents for instance, would require DCOP global optimization over hundreds
of agents and thousands of variables, which is currently very expensive. On the other
hand, if we let each agent or variable react on the basis of its local knowledge of
neighbors and constraints utilities, we create a system that removes the necessity for
tree-based communication structures and scales up very easily and is far more robust
to dynamic environments.

Recognizing the importance of local search algorithms, researchers initially in­
troduced DBA[13] and DSA[1] for Distributed CSPs, which were later extended
to DCOPs with weighted constraints [14], We refer to these as algorithms without

128 Maheswaran, Pearce and Tambe

coordination or 1-coordinated algorithms. While detailed experimental analyses of
these 1-coordination algorithms on DCOPs is available[14], we still lack theoretical
tools that allow us to understand the evolution and performance of such algorithms
on arbitrary DCOP problems. Our fundamental contribution in this paper is the de­
composition of a DCOP into an equivalent graphical game. Current literature on
graphical games considers general reward functions [3, 11] not necessarily tied to
an underlying DCOP setting. This decomposition provides a framework for analysis
of 1-coordinated algorithms and furthermore suggests an evolution to k-coordinated
algorithms, where a collection of k agents coordinate their actions in a single negoti­
ation round.

The paper is organized as follows. In Section 2, we present a formal model of the
DCOP framework. In Section 3, we introduce a decomposition of the DCOP into a
game, where the players are the variables whose utilities are aggregates of their out­
going constraint utilities. We prove that the optimal solution of the DCOP is a Nash
equilibrium in an appropriate game. In Section 4, two algorithms that consider only
unilateral modifications of values are presented. We prove monotonicity properties of
one approach and discuss its significance. In Section 5, we devise two extensions to
the unilateral algorithms that support coordinated actions and prove the monotonicity
of one of the extensions, which indicates justification for improved solution quality.
In Section 6, we discuss experiments and results and we conclude in Section 8.

2 DCOP: Distributed Constraint Optimization

We begin with a formal representation of a distributed constraint optimization prob­
lem and an exposition to our notational structure. Let V = {v/j^j denote a set of
variables, each of which can take a value v/ = x/ G X/, / G lÂ = {1, . . . A }̂. Here, X/
will be a domain of finite cardinality Mi G lÂ . Interpreting each variable as a node in a
graph, let the symmetric matrix E characterize a set of edges between variables/nodes
such that Eij — Eji = 1 if an edge exists between v/ and Vj and Eij = Eji = 0, oth­
erwise (Eii = 0 V/). For each pair (ij) such that Eij = 1, let Uij{xi,Xj) = Uji{xj,Xi)
represent a reward obtained when v/ = xi and Vj — Xj. We can interpret this as a utility
generated on the edge between v/ and vj, contingent simultaneously on the values of
both variables and hence referred to as a constraint. The global or team utility U{x)
is the sum of the rewards on all the edges when the variables choose values according
to the assignment xeX = X\ x -" XXN. Thus, the goal is to choose an assignment,
X* G X, of values to variables such that

X* G argmaxL^(x) = argmax ^ Uij{xi,Xj)
xex xex ij-E-j^i

wherex/ is the /-th variable's value under an assignment vectors G X. This constraint
optimization problem completely characterized by {X,E,U), where U is the collec­
tion of constraint utility functions, becomes distributed in nature when control of the
variables is partitioned among a set of autonomous agents. For the rest of this paper,
we make the simplifying assumption that there are Â agents, each in control of a
single variable.

A Family of Graphical-Game-Based Algorithms for DCOP 129

3 DCOP Games

Various complete algorithms [8] have been developed to solve a given DCOP.
Though heuristics that significantly speed up convergence have been developed [6],
the complexity is still prohibitive in large-scale domains. The tree-based communi­
cation structures are not robust to dynamics in problem structure. Finding a solution
to a slightly modified problem requires a complete rerun which is expensive and may
never terminate if the time-scale of the dynamics are faster than the time-scale of the
complete algorithm.

Thus, we focus on non-hierarchical variable update strategies based on local in­
formation consisting of neighbors' values and constraint utility functions on outgoing
edges. We remove the need to establish a parent-child relationship between nodes.
Essentially, we are creating a game where the players are the variables, the actions
are the choices of values and the information state is the context consisting of neigh­
bor's values. The key design factor is how the local utility functions are constructed
from the constraint utility functions. We present a particular decomposition of the
DCOP (or equivalently a construction of local utility functions) below.

Let Vj be called a neighbor of v/ if Eij = 1 and let 9^= {j \ j ^ ^,Eij = 1}
be the indexes of all neighbors of the /-th variable. Let us define x-i = [xj^ • • -Xj^.],
hereby referred to as a context, be a tuple which captures the values assigned to tne
Ki = \0\[i\ neighboring variables of the /-th variable, i.e. Vĵ = Xjj^ where ^j^LiJk — ^ •
We now define a local utility for the /-th agent (or equivalently the /-th variable) as
follows:

Ui{xi\x-i) = ai Y, Uij{xi,Xj)

where a/ > 0. We now have a DCOP game defined by (X,E,u) where w is a collection
of local utility functions. For simplicity, we will assume a, = 1 V/ G 1A(̂ in the rest of
this paper, but all the results hold for arbitrary positive choice if a/. This is the case
because scaling the utility functions uniformly across all outgoing links does not
change the global payoffs of any strategy, where a strategy is defined as a mapping
from information state to action that maximizes local utility.

A Nash equilibrium assignment is a tuple of values x e X where no agent can
improve its local utility by unilaterally changing its value given its current context:

Xi e argmaxw/(x/;i_/), V/ G 0\C.
xjeXj

Given a DCOP game (X,E,u), let X̂ v̂ C X be the subset of the assignment space
which captures all Nash equilibrium assignments:

XNE = {xeX :xie argmaxw/(x/;i_/), V/ G 9{}-
xjeXj

Proposition 1. The assignment x* which optimizes the DCOP characterized by
{X,E,U) is also a Nash equilibrium with respect to the graphical game {X,E,u).

130 Maheswaran, Pearce and Tambe

Proof. Let us assume that x* optimizes the DCOP (X,£, C/) yet is not a Nash equi-
hbrium assignment. Then, some agent can improve its local utility by altering the
value of its variable. For some ne 9^ and JCn 9̂ x*, we have

Leti = [x\ • • -x*.! Xn x*^i • • -XIJ]. Then,

i,j:Eij=l

X Uij{xi,Xj)+ X ^nj{Xn,Xj)-\- ^ ^m(^/>-^n)

"= X ^U i^i' -̂ 7) + 2W/ {Xn ;X-n)
i,j\ii^njtn,Eij^\

> S ^U (^i' -̂ 7) + 2w/ (x*; X*_^)
iJ:ii'nJi^n,Ejj=\

£ Uij{x*,x*) + 2uiix:;x*_„)

ij\ii^njtn,Eij=\

iJ\Eij=\
which implies that

X* ^ arg max Y C/n {xt, x ,•)

which is a contradiction. •
Because we are optimizing over a finite set, we are guaranteed to have an assign­

ment that yields a maximum. By the previous proposition, an assignment that yields
a maximum is also a Nash equilibrium, thus, we are guaranteed the existence of a
pure-strategy Nash equilibrium. This claim cannot be made for any arbitrary graph­
ical game [3, 11]. Though it has been shown to exist in congestion games without
unconditional independencies [10, 9], we have shown that the games derived from
DCOPs have this property in a setting with unconditional independencies. The map­
ping to and from the underlying distributed constraint optimization problem yields
additional structure. If there were only two variables, the agents controlling each
variable would be coupled by the fact that they would receive identical payoffs from
their constraint. In a general graph, DCOP-derived local utility functions reflect the
amalgamation of multiple such couplings which reflects an inherent benefit to coop­
eration.

4 Algorithms without Coordination

Given this game-theoretic framework, how will agents' choices for values of their
variables evolve over time? In a purely selfish environment, agents might be tempted

A Family of Graphical-Game-Based Algorithms for DCOP 131

to always react to the current context with the action that optimizes their local utility,
but this behavior can lead to an unstable system [5]. Imposing structure on the dy­
namics of updating values can lead to stability and to improved rates of convergence
[4]. We begin with algorithms that only consider unilateral actions by agents in a
given context. The first is the MGM (Maximum Gain Message) Algorithm which
is a modification of DBA (Distributed Breakout Algorithm) [13] focused solely on
gain message passing. DBA cannot be directly applied because there is no global
knowledge of solution quality which is necessary to detect local minima. The second
is DSA (Distributed Stochastic Algorithm) [1], which is a homogeneous stationary
randomized algorithm. Our analysis will focus on synchronous applications of these
algorithms.

Let us define a round as the duration to execute one run of a particular algorithm.
This run could involve multiple broadcasts of messages. Every time a messaging
phase occurs in a round, we will count that as one cycle and cycles will be our
performance metric for speed, as is common in DCOP literature. Let x^^^ e X denote
the assignments at the beginning of the n-ih round. We assume that every algorithm
will broadcast its current value to all its neighbors at the begirming of the round
taking up one cycle. Once agents are aware of their current contexts, they will go
through a process as determined by the specific algorithm to decide which of them
will be able to modify their value. Let M^^"^ C 9\C denote the set of agents allowed
to modify the values in the n-th round. For MGM, each agent broadcasts a gain
message to all its neighbors that represents the maximum change in its local utility if
it is allowed to act under the current context. An agent is then allowed to act if its gain
message is larger than all the gain messages it receives from all its neighbors (ties
can be broken through variable ordering or another method). For DSA, each agent
generates a random number from a uniform distribution on [0,1] and acts if that
number is less than some threshold p. We note that MGM has a cost of two cycles
per round while DSA only has a cost of one cycle per round. Through our game-
theoretic framework, we are able to prove the following monotonicity property of
MGM,

Proposition 2. When applying MGM, the global utility U{x^^'^) is strictly increasing
with respect to the round (n) until x^"^ G X^E-

Proof. We assume M̂ '̂ ^ 9̂ 0, otherwise we would be at a Nash equilibrium. When
utilizing MGM, if / G M "̂) and Eij =- 1, then ; ^ M^"). If the i-th variable is al­
lowed to modify its value in a particular round, then its gain is higher than all its
neighbors gains. Consequently, all its neighbors would have received a gain message
higher than their own and thus, would not modify their values in that round. Because
there exists at least one neighbor for every variable, the set of agents who cannot
modify their values is not empty: M "̂) 9̂ 0. We have x\^'^ ^ i^ xf^ V/ G M̂ ^̂ and
J.n-\-\) ^ ^{n) ^. ^ ^(,)^ ^ j^^^ w,-(4'''̂ ^̂ ;jcL"î) > Uiix^^'^'j!^]) V/ G M^"), otherwise the
i-th player's gain message would have been zero. Looking at the global utility, we
have

132 Maheswaran, Pearce and Tambe

[7(x("+'))

I ^,(.r",.r'0

i,j:ieM^"\ ij:im^''\ ij\im^"\

jm^""! ,Eij - 1 JGM(") ,Eij=1 J$?M(") ,£:/̂ - =: 1

jm^''\Eij=\

j^M^"\Eij=^\

iJ:ieM'^"\ iJ-MM^"\ iJ-MM^''\
jm^"\Eij=\ jeM^"\Eij=\ jm'^"\Eij=\

= I7(;c(")).

The second equality is due to a partition of the summation indexes. The third equality
utilizes the properties that there are no neighbors in M̂ '̂ ^ and that the values for
variables corresponding to indexes not in M̂ ^̂ in the (^4- l)-th round are identical
to the values in the n-th round. The strict inequality occurs because agents in M^^"^
must be making local utility gains. The remaining equalities are true by definition.
Thus, MGM yields monotonically increasing global utility until equilibrium. •

Why is monotonicity important? In anytime domains where communication may
be halted arbitrarily and existing strategies must be executed, randomized algorithms
risk being terminated at highly undesirable assignments. Given a starting condition
with a minimum acceptable global utility, monotonic algorithms guarantee lower
bounds on performance in anytime environments. Consider the following example.

Example 1. The Traffic Light Game. Consider two variables, both of which can
take on the values red or green, with a constraint that takes on utilities as follows:
U{red, red) == 0, U {red, green) = U {green, red) — l,U {green, green) = —1000. Turn­
ing this DCOP into a game would require the agent for each variable to take the utility
of the single constraint as its local utility. If {red, red) is the initial condition, each
agent would choose to alter its value to green if given the opportunity to move. If

A Family of Graphical-Game-Based Algorithms for DCOP 133

both agents are allowed to alter their value in the same round, we would end up in

the adverse state {green,green). When using DSA, there is always a positive proba­

bility for any t ime horizon that {green, green) will be the resulting assignment.

In domains such as independent path plaiming of trajectories for UAVs or rovers,

in environments where communication channels are unstable, bad assignments could

lead to crashes whose costs preclude the use of methods without guarantees. This is

illustrated in Figure 1 which displays sample trajectories for M G M and DSA with

identical starting conditions for a high-stakes scenario described in Section 6. The

performance of both M G M and DSA with respect to a various graph coloring prob­

lems are investigated and discussed in Section 6.

SCCD n

3 I

g SDCC
a
c

*B IDCCO
n
o
Ul

:5CC3

2DCC0

"MGMi

NVV VT • «

cycles

-DS*ft,. p« .9

j-.Q

Fig. 1. Sample Trajectories of MGM and DSA for a High-Stakes Scenario

5 Algorithms with Coordination

When applying algorithms without coordination, the evolution of the assignments
will terminate at a Nash equilibrium point within the set X^E described earlier. One
method to improve the solution quality is for agents to coordinate actions with their
neighbors. This allows the evolution to follow a richer space of trajectories and al­
ters the set of terminal assignments. In this section we introduce two 2-coordinated
algorithms, where agents can coordinate actions with one other agent. Let us re­
fer to the set of terminal states of the class of 2-coordinated algorithms as XIE, i.e.
neither a unilateral nor a bilateral modification of values will increase sum of all
constraint utilities connected to the acting agent(s) if x G XIE- We will call XIE the
set of 2-equilibria and XJ^E the set of 1-equilibria. Clearly the terminal states of a

134 Maheswaran, Pearce and Tambe

coordinated algorithm will depend on what metric the coordinating agents will use
to determine if a particular joint action is acceptable or not. In a team setting (and in
our analysis), a joint action that increases the sum of the utilities of the acting agents
is considered acceptable, even if a single agent may see a loss in utility. This would
be true in a purely selfish environment as well, if agents could compensate each other
for possible losses in utility. An alternative choice would be to make a joint action
acceptable only if both agents see utility gains. We consider the former notion of an
acceptable joint action and define the terminal states as follows:

X2E = \x: {xi,Xj) = argmax [ui{xi\iA-i{xj,x-ij))

-\-Uj{xj\id-j{xi,x-ji))], V/,y e^,ii^j\

where x-ij is a tuple consisting of all values of variables except the /-th and y-th
variable, and^_/(xy,x_j/) is a function that converts its arguments into an appropriate
vector of the form of x-t described earlier, i.e. n-i takes values from the variables
indexed by {y} U {lA^\ {/U7}} to a vector composed of the variables indexed by

Propositions. For a given DCOP {X,E,U) and its equivalent game {X,E,u), we
have X2E Q XNE-

Proof. We show this by proving the contrapositive. Suppose x ^ XME- Then, there
exists a variable / such that w/(i/;x_/) > Ui{xi\x-i) for some Jc/ 9̂ xi. This further
implies that there exists some variable j G lA/£, for which Uij{xi,Xj) > Uij{xi,Xj). We
then have

i^i{xr,H-i{xj,x-ij)) > ui{xi\n-i[xj,x-ij)) and uj{xj\^-j{xi,x-ji)) > uj{xj\n-j{xux-ij))

which implies that x ^ XIE- •
Essentially, we are saying that a unilateral move which improves the utility of

a single agent must improve the constraint utility of at least one link which fur­
ther implies that the local utility of another agent must also increase given that the
rest of its context remains the same. The interesting phenomenon is that our defi­
nition of X2E above is sufficient to capture both unilateral and bilateral deviations
within the context of bilateral deviations. This is due to the underlying DCOP struc­
ture and would not be true in a general game. If we wanted the terminal set of 2-
coordinated assignments to be a strict subset of the Nash equilibrium set in a general
game, we would have to augment the definition of X2E to specifically include the
Xi G argmaXjc/GX, Ui{xi\x-i), \/i G 0\C condition, as it is possible that there exists a lo­
cal utility improvements due to a unilateral action that does not lead to a combined
utility improvement for the acting agent and any neighbor.

It has been proposed that coordinated actions be achieved by forming coalitions
among variables. In [2], each coalition was represented by a manager who made

A Family of Graphical-Game-Based Algorithms for DCOP 135

the assignment decisions for all variables within the coalition. These methods in­
herently undermine the distributed nature of the decision-making by essentially re­
placing multiple variables with a single variable in the graph. It is not possible in
all situations for this to occur because utility function information and the ability
to communicate with the necessary neighbors may not be transferable (due to in-
feasibility or preference). We introduce two algorithms that allow for coordination
while maintaining the underlying distributed decision making process and the same
constraint graph: MGM-2 (Maximum Gain Message-2) and SCA-2 (Stochastic Co­
ordination Algorithm-2).

Both MGM-2 and SCA-2 begin a round with agents broadcasting their current
values. The first step in both algorithms is to decide which subset of agents are al­
lowed to make offers. We resolve this by randomization, as each agent generates a
random number uniformly from [0,1] and considers themselves to be an offerer if the
random number is below a threshold q. If an agent is an offerer, it cannot accept of­
fers from other agents. All agents who are not offerers are considered to be receivers.
Each offerer will choose a neighbor at random (uniformly) and send it an offer mes­
sage which consists of all coordinated moves between the offerer and receiver that
will yield a gain in local utility to the offerer under the current context. The offer
message will contain both the suggested values for each player and the offerer's lo­
cal utility gain for each value pair. Each receiver will then calculate the global utility
gain for each value pair in the offer message by adding the offerer's local utility gain
to it's own utility change under the new context and (very importantly) subtracting
the difference in the link between the two so it is not counted twice. If the maximum
global gain over all offered value pairs is positive, the receiver will send an accept
message to the offerer with the appropriate value pair and both the offerer and re­
ceiver are considered to be committed. Otherwise, it sends a reject message to the
offerer, and neither agent is committed.

At this point, the algorithms diverge. For SCA-2, any agent who is not committed
and can make a local utility gain with a unilateral move generates a random number
uniformly from [0,1] and considers themselves to be active if the number is under a
threshold p. At the end of the round, all committed agents change their values to the
committed offer and all active agents change their values according to their unilat­
eral best response. Thus, SCA-2 requires three cycles (value, offer, accept/reject) per
round. In MGM-2 (after the offers and replies are settled), each agent sends a gain
message to all its neighbors. Uncommitted agents send their best local utility gain for
a unilateral move. Committed agents send the global gain for their coordinated move.
Uncommitted agents follow the same procedure as in MGM, where they modify their
value if their gain message was larger than all the gain messages they received. Com­
mitted agents send their partners a go message if all the gain messages they received
were less than the calculated global gain for the coordinated move and send a no-go
message, otherwise. A committed agent will only modify its value if it receives a go
message from its partner. We note that MGM-2 requires five cycles (value, offer, ac­
cept/reject, gain, go/no-go) per round. Given the excess cost of MGM-2, why would
one choose to apply it? We can show that MGM-2 is monotonic in global utility.

136 Maheswaran, Pearce and Tambe

Proposition 4. When applying MGM-2, the global utility U{x^^^) is strictly increas­
ing with respect to the round (n) until x^^^ G X2E'

Proof. We begin by introducing some notation. At the end of the n-th round, let
C(") c 0\C denote the set of agents who are committed, M "̂) C 0\C denote the set of
uncommitted agents who are active, and 5̂ "̂ = {Ĉ "̂ UM '̂̂ ^}^ c 9\C denote the un­
committed agents who are inactive. Let p(/) G Ĉ ") denote the partner of a committed
agent / G C^"\ The global utility can then be expressed as:

A Family of Graphical-Game-Based Algorithms for DCOP 137

f7(x(«+'))

iJ'Eij=\

/GCW /GCW;GfA/^\{/7(/)}

138 Maheswaran, Pearce and Tambe

- I f̂ M -̂Sr^"') + I t/,(xW,4«))
jGCW U:/G5W,

7G5W,£,7=1

The first equality is by definition. The second equality partitions the indexes into up­
date class, eliminating cross indexes of M "̂̂ with anything other than 5 "̂̂ . In the third
equality, we simplify the summations involving committed agents using expressions
for partners and neighbors, we insert a zero value term in parenthesis, and transform
the summations involving active agents into local utilities. In the fourth equality,
we modify the round index for those agents who are inactive. In the fifth equality,
we transform the summations involving committed agents into local utilities. The
inequality is due to the fact that the global utility on the links of the committed part­
ners and the local utility of the active agents must increase due to the positive gain
messages. The key is that by setting j = p{i) in the second and third summations,
we recover the gain message of the committed teams. Note the subtraction of the
utility gain on the link between partners to avoid double counting. The final equal­
ity can be achieved by reversing the transformation to yield the global utility at the
previous round. Thus, MGM-2 yields monotonically increasing global utility until
equilibrium is reached. •

Example 2. Meeting Scheduling. Consider two agents trying to schedule a meet­
ing at either 7:00 AM or 1:00 PM with the constraint utility as follows: /7(7,7) =
1,/7(7,1) - ^(1,7) = -100,/7(1,1) = 10. If the agents started at (7,7), any 1-
coordinated algorithm would not be able to reach the global optimum, while 2-
coordinated algorithms would.

It is not obvious that 2-coordinated algorithm will yield a solution with higher
quality than a 1-coordinated algorithm in all situations. In fact, there are DCOPs
and initial conditions for which a 1-coordinated algorithm will yield a better solution
than a 2-coordinated algorithm. The complexity lies in that we cannot predict exactly
what trajectory the evolution will follow. However, due the proposition above we can
have some confidence that 2-coordinated algorithms will perform better on average
as outlined in the following corollary.

A Family of Graphical-Game-Based Algorithms for DCOP 139

Corollary 1. For every initial condition xo G XJ^E \ XIE* MGM-2 will yield a better
solution than either MGM or DSA.

Proof. Since XQ G XJ^E^ neither MGM nor DSA will move and the solution quality
will be that obtained at the assignment XQ. However, since xo ^ XIE^ M G M - 2 will
continue to evolve from XQ until it reaches an assignment in X2E' Because MGM — 2
is monotonic in global utility, whatever solution in reaches in X2E will have a higher
global utility than XQ. •

Thus, MGM-2 dominates DSA and MGM for initial conditions in XME \ XIE
and is identical to DSA and MGM on X2E (as neither algorithm will evolve from
there). The unknown is the behavior on X \ X^^E- It is difficult to analyze this space
because one cannot pinpoint the trajectories due to the probabilistic nature of their
evolution. If we assume that iterations beginning in X \ XJ^E are taken to points in
Xj^E in a relatively uniform manner on average with all algorithms, then we might
surmise that the dominance of MGM-2 should yield a better solution quality. The
performance of both MGM-2 and SCA-2 with respect to a various graph coloring
problems are investigated and discussed in Section 6.

6 Experiments

We considered three different domains for our experiments. The first was a standard
graph-coloring scenario, in which a cost of one is incurred if two neighboring agents
choose the same color, and no cost is incurred otherwise. Real-world problems in­
volving sensor networks, in which it may be undesirable for neighboring sensors to
be observing the same location, are commonly mapped to this type of graph-coloring
scenario. The second was a fully randomized DCOP, in which every combination of
values on a constraint between two neighboring agents was assigned a random re­
ward chosen uniformly from the set {1 , . . . , 10}. In both of these domains, we con­
sidered ten randomly generated graphs with forty variables, three values per variable,
and 120 constraints. For each graph, we ran 100 runs of each algorithm, with a ran­
domized start state. The third domain was chosen to simulate a high-stakes scenario,
in which miscoordination is very costly. In this enviroment, agents are negotiating
over the use of resources. If two agents decide to use the same resource, the result
could be catastrophic. An example of such a scenario might be a set of unmanned
aerial vehicles (UAVs) negotiating over sections of airspace, or rovers negotiating
over sections of terrain. In this domain, if two neighboring agents take the same
value, there is a large penalty incurred (-1000). If two neighboring agents take dif­
ferent values, they obtain a reward chosen uniformly from {10,..., 100}. Because
miscoordination is costly, we introduced a safe (zero) value for all agents. An agent
with this value is not using any resource. If two neighboring agents choose zero as
their values, neither a reward nor a penalty is obtained. In such a high-stakes scenario,
a randomized start state would be a poor choice, especially for an anytime algorithm,
as it would likely contain many of the large penalties. So, rather than using random­
ized start states, all agents started with the zero value. However, if all agents start

140 Maheswaran, Pearce and Tambe

Graph Coloiinq Randomized DC OP

Hifi IvStakes Scenario

5CCC -1

- E C O -I

3£CC

3C-C3

2£C0

20C0

ISCO

:cc3
sec

II f 1 M r * * !

DBA.

D5A.

p»

P*
p-

.1

.5

.•3

1© 20 30

cycles

"̂0 SO GO

Fig. 2. Comparison of the performance of MGM and DS A

at zero, then DSA and MGM would be useless, since no agent would ever want to
move alone. So, a reward of one was introduced for the case where one agent has the
zero value, and its neighbor has a nonzero value. In the high-stakes domain, we also
performed 100 runs on each of 10 randomly generated graphs with forty variables
and 120 constraints, but due to the addition of the safe value, the agents in these
experiments had four possible values.

For each of the three domains, we ran: MGM, DSA with/?G {0.1,0.3,0.5,0.7,0.9},
MGM-2 with q e {0.1,0.3,0.5,0.7,0.9} and SCA-2 with all combinations of the
above values of p and q (where q is the probability of being an offerer and p is the
probability of an uncommited agent acting). Each table shows an average of 100 runs
on ten randomly generated examples with some selected values of p and q. Although

A Family of Graphical-Game-Based Algorithms for DCOP

Graph Cdorinq Randomize DCOP

141

3EC0

3C CO

25CG

2CCC \

:scc

I C C O

sec

cycles

HifilvStakes Scenario

MGM 2. q - 1

MGM 2, q • E

MGM 2. Q- G

3C

cycles

SC

Fig. 3. Comparison of the performance of MGM and MGM-2

each run was for 256 cycles, most of the graphs display a cropped view, to show the
important phenomena.

Figure 2 shows a comparison between MGM and DSA for several values of p.
For graph coloring, MGM is dominated, first by DSA with p = 0.5, and then by DSA
with p = 0.9. For the randomized DCOP, MGM is completely dominated by DSA
with p = 0.9. MGM does better in the high-stakes scenario as all DSA algorithms
have a negative solution quality (not shown in the graph) for the first few cycles. This
happens because at the beginning of a run, almost every agent will want to move. As
the value of p increases, more agents act simultaneously, and thus, many pairs of
neighbors are choosing the same value, causing large penalties. Thus, these results
show that the nature of the constraint utility function makes a fundamental difference
in which algorithm dominates. Results from the high-stakes scenario contrast with

Maheswaran, Pearce and Tambe

Sn

I D •

>

a-
e

0

0
•25 -

3D •

Graph Coloring

_^

1 /^
/ J , /

L

75C

7.1 S

7-1C

±f

g?3c

c 7 2 S
o
172C

?1C

?cs

Randomized DC OP

cycles
ICC 5C ICC

cycles

Hifi lvStakes Scenario

5CC0

>-3£C0

c25CC
o

'§2CC0

S:£CO

ICCO

sec

. f t . " / - '

ry'

A'
^

K

^

iUL

,.,„ »,.,.,„...„ .„ r- '̂ ,", ,-
L.w.-v, s_ . -

£CA 2. i: -

SCA 2. i:

SCA 2. i : -

.y. q - . l

.9.. q-.S

.O.q-.O

5C IOC :sc
cycles

20̂ 0̂ 250 :̂

Fig. 4. Comparison of the performance of DSA and SCA-2

[14] and show that DSA is not necessarily the algorithm of choice when compared
with DBA across all domains.

Figure 3 shows a comparison between MGM and MGM-2, for several values ofq.
In all domains, MGM-2 eventually reaches a higher solution quality after about thirty
cycles, despite the algorithms' initial slowness. The stair-like shape of the MGM-2
curves is due to the fact that agents are changing values only once out of every five
cycles, due to the cycles used in communication. Of the three values of q shown in
the graphs, MGM-2 rises fastest when q ^ 0.5, but eventually reaches its highest
average solution quality when 7̂ = 0.9, for each of the three domains. We note that,
in the high-stakes domain, the solution quality is positive at every cycle, due to the
monotonic property of both MGM and MGM-2. Thus, these experiments clearly

A Family of Graphical-Game-Based Algorithms for DCOP 143

verify the monotonicity of MOM and MGM-2, and also show that MGM-2 reaches
a higher solution quality as expected.

Figure 4 shows a comparison between DSA and SCA-2, for p ^ 0.9 and several
values of q. DSA starts out faster, but SCA-2 eventually overtakes it. The result of
the effect of q on SCA-2 appears inconclusive. Although SCA-2 with q = 0.9 does
not achieve a solution quality above zero for the first 65 cycles, it eventually achieves
a solution quality comparable to SCA with lower values of q.

Figure 5 contains a graph and a pie-chart for each of the three domains, providing
a deeper justification for the improved solution quality of MGM-2 and SCA-2. The
graph shows a probability mass function (PMF) of solution quality for three sets of
assignments: the set of all assignments in the DCOP (X), the set of 1 -equilibria (XME),

and the set of 2-equilibria (X2E)' Here we considered scenarios with twelve variables,
36 constraints, and three values per variable (four for the high-stakes scenario to
include the zero value) in order to investigate tractably explorable domains. In all
three domains, the solution quality of the set of 2-equilibria (the set of equilibria
to which MGM-2 and SCA-2 must converge) is, on average, higher than the set of
1-equilibria. In the high-stakes DCOP, 99.5% of assignments have a value less than
zero (not shown on the graph.)

The pie chart shows the proportion of the number of 2-equilibria to the number
of 1-equilibria that are not also 2-equilibria. Notice that in the case of the randomized
DCOP, most 1-equilibria are also 2-equilibria. Therefore, there is very little differ­
ence between the PMFs of the two sets of equilibria on the corresponding graph.
We also note that the phase transition mentioned in [14] (where DSA's performance
degrades for /? > 0.8) is not replicated in our results. In fact, our solution quality gets
better as p > 0.8, though with slower convergence.

7 Related Work

Algorithms for solving DCOPs are generally divided into two categories. Complete
algorithms, such as Adopt[8] and OptAPO[7], are guaranteed to converge to an opti­
mal solution. However, their comparatively long runtime, as well as other properties,
such as Adopt's requirement that agents be organized in a depth-first-search tree or
OptAPO's requirement that all agents reveal all their constraints to their neighbors,
ensures that incomplete DCOP algorithms, including those presented here, will be
preferred in many domains.

For incomplete DCOP algorithms, this paper provides a complement to recent
experimental analysis of DSA and DBA[14] on graph coloring problems. The cited
work provides insight into the effects of the choice between randomized and deter­
ministic 1-coordinated algorithms on solution quality and convergence time, show­
ing randomized algorithms to be the preferred choice in general. In contrast, this
paper provides theoretical justifications for both monotonicity and 2-coordination,
as well as providing new 2-coordinated algorithms, based on DSA and DBA, and
experimental analysis of the new algorithms' performance. In addition, we show that

Maheswaran, Pearce and Tambe

Graph Coloring

0.5 n

^ 0 3 -

5 0 2 .
^ 0 1

0 •

1

w- '' ' i

.^r-"'^-'-^^ / ; ^ • 1

-^^ ^ r-t", .^- . ; .
^18 "16 -14-12 "10 "8 "6 'A »2 0

solytJon qya i i t y

Randomized DCOP

ail l - ^ q y i i i b r i a

193

0.3S n
0 3 •

•M' 0 iiS -
^ 0 2 -
J3 ^.»-

S 0 1 ^ .
E 0 1-

0 3^. -
1 .

\
' S »

^ - A . - < • ^- t

/ \ /-•• V. i
/ \ r \-. :

/ \ . (i
/ __y ---^ 1

12 13 M IS 16 17 IS IQ 2D 21 22 23
soiytion qyality

1318

all l~€qyi i (br ia

36,.7^iB^

HiglvStakes Scenario

0.12 .

0 1 •

•H Q - îg .

ro 0 "̂ "̂̂ -
0 Q 3.1 .
0.

0 02 -

Q .

3

.,
J

. - ^ - - ^ ^ ; • • • ' :

1 : - v • i

\

/ •• ^ N • • • • • - '•

" ̂

EC S5C 75C 9SC l lSO 1350

so lu t ion qua l i ty

2 Eqj.lis'iE

all 1-eqyi i ibr ia

50-4

887

D l eq.
net 2

• 2 'eq.

1 JDria t i a t
-cqui'iDria

iiiDria

a •e

Fig. 5. The graphs show a comparison of the distribution of solution quality among the com­
plete set of solutions, the set of 1-equilibria, and the set of 2-equilbria. The pie charts show
the proportion of 1-equilibria that are also 2-equilibria.

A Family of Graphical-Game-Based Algorithms for DCOP 145

randomized algorithms, while efficient, are not ideal for all domains, particularly in
high-stakes, anytime scenarios.

In [7] and [2], coordination was achieved by forming coalitions represented by
a manager or mediator who made the assignment decisions for all variables within
the coalition. These methods require high-volume communication to transfer util­
ity function information and the abdication of authority from one agent to another,
which can be infeasible or undesirable in many distributed decision-making envi­
ronments. Furthermore, in [2], the cost of forming a coalition may discourage rapid
commitment and detachment from teams. MGM-2 and SCA-2, however, allow for
coordination while maintaining the underlying distributed decision-making process
and allowing dynamic teaming in each round.

Finally, also related is research in general graphical games, which has focused on
centralized algorithms for finding mixed-strategy Nash equilibria [3, 11]. In contrast,
distributed algorithms based on DCOP games are guaranteed to result at least in
pure-strategy Nash equilibria (1-equilibria), but may also introduce 2-coordination
and hence 2-equilibria.

8 Conclusions

The key contributions of this paper include: (i) a decomposition of a DCOP into an
equivalent graphical game, (ii) the proof of monotonicity for MGM, a 1-coordinated
algorithm, (ii) the development of 2-coordinated algorithms that maintain distributed
control of variables, (iii) the proof of monotonicity of MGM-2, (iv) a theoretical anal­
ysis and comparison of the equilibria sets of algorithms of differing degrees of coor­
dination, and (v) experimental verification and discovery when applying these algo­
rithms to a variety of graph coloring problems. The key theoretical idea is that break­
ing a DCOP down to a game can lead to algorithms where we can guarantee strict
improvement in global solution quality over time which is critical in anytime appli­
cation in high-stakes environments. Also important is the idea of ^-coordinated al­
gorithms leading to progressively nested sets of equilibria, which yield both a higher
average solution quality and a higher likelihood of obtaining the globally optimal
solution. Through our experiments, we are able to show that randomized algorithms
though very efficient are not ideal for all environments. Initial results imply that the
nature of the constraint utility function makes a fundamental difference in the solu­
tion structure rather than the graph structure. Future work will entail development
of distributed /^-coordinated algorithms and deeper analysis of stochastic schemes
to obtain analytic reasoning for choosing particular update rates. Also, it would be
interesting to see if convergence rates can be reduced with the use of heterogeneous
dynamic randomized algorithms.

References

1. S. Fitzpatrick and L. Meertens. Distributed coordination through anarchic optimization.
In V. Lesser, C. L. Ortiz Jr., and M. Tambe, editors, Distributed Sensor Networks: A

146 Maheswaran, Pearce and Tambe

Multiagent Perspective, pages 257-295. Kluwer, 2003.
2. K. Hirayama and J. Toyoda. Forming coalitions for breaking deadlocks. In Proc, ICMAS,

pages 155-162, 1995.
3. M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In Proc. UAl,

pages 253-260, 2001.
4. R. T. Maheswaran and T. Ba§ar. Multi-user flow control as a Nash game: Performance of

various algorithms. In Proc. CDC, Tampa, FL, December 1998.
5. R. T. Maheswaran and T. Ba§ar. Decentralized network resource allocation as a repeated

noncooperative market game. In Proc. CDC, Orlando, FL, December 2001.
6. R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham. Taking

DCOP to the real world: efficient complete solutions for distributed multi-event schedul­
ing. In AAMAS, 2004.

1. R. Mailler and V. Lesser. Solving distributed constraint optimization problems using
cooperative mediation. In AAMAS, 2004.

8. P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete method for
distributed constraint optimization. In AAMAS, 2003.

9. D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior,
14:124-143, 1996.

10. R. W. Rosenthal. A class of games possessing pure-stratgy Nash equilibria. International
Journal of Game Theory, 2:65-67, 1973.

11. D. Vickrey and D. Koller. Multi-agent algorithms for solving graphical games. In Proc.
AAAl, pages 345-351, 2002.

12. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfac­
tion problem: formalization and algorithms. IEEE Transactions on Knowledge and Data
Engineering, 10(5):673-685, 1998.

13. M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed con­
straint satisfaction and optimization problems. In ICMAS, 1996.

14. W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis and application of dis­
tributed constraint satisfaction and optimization algorithms in sensor networks. In AA­
MAS, 2003.

Key-Based Coordination Strategies: Scalability Issues

Tom Wagner^ John Phelps^, Valerie Guralnik^ and Ryan VanRiper^

DARPA-IPTO
Honeywell Labs

Summary. We describe a key-based approach to multi-agent coordination, where certain co­
ordination decisions are done only when the agent holds a coordination key. This approach
is primarily decentralized, but has some centralized aspects, including synchronization of co­
ordination decisions and schedule information sharing. The approach is described within the
context of the application requirements that motivated its development. Finally, its scalability
properties are discussed.

1 Introduction

In this paper we examine an approach to multi-agent coordination in the context
of two different multi-agent applications and discuss their response to scaling in
the three coordination dimensions identified by Durfee [4]: agent population, task
environment, and solution.

In the first application, agents with heterogeneous and interacting capabilities are
coordinated. In the other, agents with homogenous capabilities are coordinated. The
coordination solution to both problems is distributed. However, the use of a coordi­
nation "key" passed between agents introduces elements of centralization, including
partial global sharing of schedule information and synchronization of coordination
decisions.

Before we delve into the applications and specifics of their coordination proto­
cols, it is worthwhile to ask the basic question of "what is coordination and when
do we need it?" Typically a multi-agent systems (MAS) model of development is
pursued when distributed processing and distributed control are required. As with
other distributed processing models, one important problem of MAS research is how
to obtain globally coherent behavior from the system when the agents operate au­
tonomously and asynchronously. In general, when the agents share resources or the
tasks being performed by the agents interact, the agents must explicitly work to co­
ordinate their activities. Consider a simple physical example. Let two maintenance
robots, Rl and R2, be assigned the joint task of moving a long table from one room
to another. Let both robots also have an assortment of other independent activities

DFOISR05-S-1456

148 Wagner, Phelps, Guralnik and VanRiper

that must be performed, e.g., sweeping the floor. Assume that neither robot can lift
the table by him/herself. In order for the robots to move the table together they must
coordinate their activities by 1) communicating to determine when each of the robots
will be able to schedule the table moving activity, 2) possibly negotiating over the
time at which they should move the table together, 3) agreeing on a time, 4) show­
ing up at the table at the specified time, 5) lifting the table together, and so forth.
This is an example of communication-based coordination that produces a temporal
sequencing of activities enabling the robots to interact and carry out the joint task
(over a shared resource - the table). Without the coordination process, it is unlikely
that the table would ever be moved as desired unless the robots randomly decided
to move the table at the same moment in time. Note that if the robots are designed
to "watch" each other and "guess" when the other is going to move the table that
this is an instance of coordination by plan inference and still counts as a coordina­
tion episode. In general, achieving global coherence in a MAS where tasks interact
requires coordination.

In the robot/table example, the coordination episode is peer-to-peer. Imagine now
a room full of maintenance robots, each having multiple joint tasks with other agents
and all sharing physical resources such as tools and floorspace or XA" coordinates.
Without coordination said room full of robots would have much in common with a
preschool "free play session" with robots moving about, unable to perform tasks due
to obstacle avoidance systems always diverting them from their desired directions
or due to the lack of a required tool. There are two primary ways to coordinate
this room full of robots - either in a distributed peer-to-peer (or group to group)
fashion or in a centralized fashion. When coordination is distributed each agent is
responsible for determining when to interact with another agent and then having a
dialog to determine how they should sequence their activities to achieve coherence.
When coordination is centralized generally one agent plans for the others or manages
a shared resource. Note that in the example above coordination focuses on when to
perform a given task. Coordination can also be about which tasks to perform, what
resources to use, how to perform a task, and so forth.

While the robot domain is good for illustrating conceptually the coordination
problem, the need for coordination is not limited to robots. Software agents, humans,
and systems composed of mixes of agents, humans, and robots [10] all have a need
for some kind of coordination. When the tasks or activities of different parties inter­
act, in a setting where control is distributed (parties are autonomous), coordination
is needed.

We now examine two MAS applications, the coordination protocols that are used
to achieve global coherence, and the scalability properties of each. One application,
Dynamic Readiness and Repair Service, is a system for dynamic coordination of dis­
tributed aircraft service teams. The other application is a system for coordination of
First Responder teams. Coordination requirements in these two systems are similar
- achieve global coherence and do this in "real-time" (response time fast enough for
the application). However, in these two systems the coordination solutions imple­
mented are different and these differences are driven by the different characteristics
of the underlying problem spaces.

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 149

TAEMS Agent for Team X

Candidate tasks, deadlines,
resource constraints, & other

options.

Coordination
niessages from

other agents.

Agent-to-Agent
Communication

Module

ProblemSolver

Communication
Stub

Schedules

Commitments,
"proposals.

& feedback.

DTCHybrid
Scheduling/PlanningI

Module

Fig. 1. A Single T/EMS-based Agent Ready to Coordinate Its Activities With Other Agents

2 Aircraft Service Team Coordination

2.1 The Application

We describe an agent-based solution to aircraft service team coordination called Dy­
namic Readiness and Repair Service[14]. For this application we employed GPGP-
based [3,2, 6] agent technologies to coordinate the aircraft service team activity. We
compared the performance of the algorithm to a centralized scheduling oracle that
generates optimal schedules for the teams.

2.2 T^MS and T/EMS Agents

By establishing a domain independent language (T^EMS) for representing agent ac­
tivity, we have been able to design and build a core set of agent construction com­
ponents and reuse them on a variety of different applications (mentioned above).
TiEMS agents are created by bundling our reusable technologies with a domain spe­
cific component, generally called a domain problem solver, that is responsible for
knowing and encapsulating the details of a particular application domain.

It is sufficient to understand that Ti^MS agents have components for scheduling
and coordination that enable them to 1) reason about what they should be doing
and when, 2) reason about the relative value of activities, 3) reason about temporal
and resource constraints, and 4) reason about interactions between activities being
carried out by different agents. A high-level view of a T^MS agent is shown in
Figure 1; everything except for the domain problem solver is reusable code. Note
that each module is a research topic in its own right. The agent scheduler is the
Design-to-Criteria [9,13, 16] scheduler and the coordination module is derived from
GPGP [2]. Other modules, e.g., learning, can be added to this architecture in a similar
(conceptual) plug and play fashion.

DFOISR05-S-1456

150 Wagner, Phelps, Guralnik and VanRiper

Engines
Avionics
WeapCtrl

Refuel
Rearm

1 Repair
1 Engines

NLE
NLE

Repair
Avionics

NLE

Repair
WeapCtrl

NLE

Refuel

NLE

NLE

Rearm

NLE

NLE

Table 1. Tasks Interactions Indicated by NLE for Non-Local Effect, In this paper, NLEs are
all mutual exclusion where tasks that interact cannot be performed on the same aircraft at the
same time (spatial + temporal MUX). Other NLEs supported include effects like hindering
where tasks can be performed together but will slow each other down in some quantified way.

2.3 Dynamic Readiness and Repair Service

For the Dynamic Readiness and Repair Service project we simulated aircraft return­
ing from an engagement and needing repairs and readiness operations to be per­
formed. Three types of aircraft are modeled in the prototype: F16s, A 10s, and C9
surveillance craft. When an aircraft returns it is potentially in need of (to varying
degrees): 1) fuel, 2) missiles, 3) repairs to engines, 4) repairs to cockpit avionics, or
5) repairs to cockpit weapons controls. Each incoming aircraft is assigned a dead­
line which is its take-off time for redeployment. Mission Control is responsible for
assigning the deadline and for identifying the areas of the aircraft that need service.

There are five teams on the ground that repair, refuel and rearm the aircraft for
their next mission. Each team is controlled by a coordination decision support agent
that uses TiEMS agent technology to reason about what the team should be doing,
when, and with which resources. In this scenario the following teams handle aircraft
preparation: 1) refuel, 2) rearm (replaces depleted missiles), 3) avionics repair, 4)
weapons controls repair, and 5) engines repair. As aircraft land the Mission Control
agent notifies the service teams of the aircrafts' service needs and readiness dead­
lines. The agents then coordinate how best to select and sequence operations so that
the most aircraft can be ready by their respective launch times. Not all problem in­
stances given to the MAS contained fully satisfiable constraints.

The tasks required to repair an individual plane do not need to be performed
in any specific sequence. However, there are sets of tasks that cannot be performed
simultaneously because they involve the same spatial regions of the aircraft. For
instance, the engines cannot be serviced while a plane is rearmed as both of these
activities take place on or near the wings. In contrast, avionics can be serviced while
an aircraft is rearmed because avionics reside in the cockpit region and the rearming
takes place on or about the wings. A full specification of task interactions is shown
in Table 1.

This problem instance requires three classes of simulation activities: 1) simulat­
ing the outcome of the last mission in terms of aircraft condition, 2) simulating the
activities of Mission Control and the initial damage assessment team, 3) simulating
the activities of the repair crews. While detailed description is beyond the scope of

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 151

'"Repa,rA.rcraf,Eng.nes') ^ " S ' " ' " ' ^ - ' " ' * 9 - ' Mission Con.ro. A g e n t ^

"^ r'-j '^v, / Prepare and Launch \
"•A-"""/. > v . \ AiicrafI /

^ SumQ » L _ _ _ _ V y

Repair Engines Damaged to i Repair Engines Damaged to L ^ ^ - — ' " Sum() ' ~ ~ ~ " - > ^

Level4onF16/ l | [^^Level 3on Plan9F16.2 | " - - ^ / ' • ' p ; ^ ^ i ? ^ ^ ^ ^ ' LaZ^ZT2'

'Q"(l"00»/ : i2 ;DeVdirnir2 ib""" 'N " Q - n O O ° o a , 'o'eauLne zoo ^ K}-J:^'::^J29L1^' Ue!ia\\ne-. 240 ^-^^^—'r/^
D,1001 .20U) \ D (100% 150) \ ^ r - . ^ - . o . . ^ , 5,um,VN n = , ^
C (100% 12) ^ C. (1C0»4 9)

Avionics Repair Agent

iwW\ i
J, \ Earliest Stan Time. 1!

^^<r I V"'"" ^ ^ -N
— . a - \ X _ / PrepareA10 1 Y \

.VepareF16.1 ^ " * » ^^Prepare7l6.3 N V . ! " ^ ^ ' ! " * . / V

Rena,rA,r.ranA.on,cs N ' ^o. L..nch ^-Prepare P 1 6 . 2 \ V / o r Laonch y S u m (^ x ^ ^ ' r — — N

V Sum() \ For Launch ,' 7:~~^,«r,i\ . . . ! Prepare A10.2 ,̂
^ ^ \ ^ - / v ' / V " ' " " — V For Launch ,

• i^ . . . ^ • ' La jnchF ie . l " • ' y X k *
. • • • - * • ! I / W e a p o n s Controls Repair Ag«nt \ ^ . . .

.s Typft 1 on F16 1 - ^^^^^ , ^ ^ . ^ ^ ^^^

{
- Q ! 1 0 0 » / , 6) - • •• ^ V \ V ^ ^ : l / - ^ ^ weapons controls j / W e a p o n ; < \ . . .

Oof >sumes , „ , , i , i „ „ , „ i 5 „ ^ . ,u^
(100% 1>

T'.pe 1 ResOLirce ' ' Typo ? Rosoiirco _ ' _̂ Tvp^ 3 Resource _ "" — ^ ^ • ' r ^ L . ^. ^ni-UK c \ — ~"—--^^—~-- /
Con^umahle Resoitrce " "'"Co'nsirmaWe R p b w r i i ' " " Const.mab¥Reaou«.e" M»!u« iv Exclusive ' Deafllln«r240 ° 7 .] . " . ^ , ^ ' L i m t V - - ^ " * - , ' W e a p o n s \
imaal state 12 modules Initial state 12 modules initalsiate 12 modules So-.iiai / Temporal . i ! , „ „ » ; , „ (inf>% i o t m i " " " / ' ^ ° " " ' ° ' * ' " " " ^ ^

imeraction j C: (100% 10) jiinrx, MKi^j .-^ Resource
Consumable Resource

ie 12 modules.

Fig. 2. Portions of the TvEMS Task Structures for Mission Control and Three of the Service
Team Agents

the paper, from a high level, the aerial battle is simulated using either a problem space
generator or a human generator who selects aircraft from a palette and "breaks" the
aircraft. The activities of Mission Control and the initial damage assessment team
are captured in T^EMS task structures that are produced by the generation tools. In
essence, the Mission Control agent is first notified that there is an aircraft requiring
service when it lands. At that same time a description of the aircraft's service needs is
transmitted to Mission Control in TiEMS format. Mission Control then disseminates
the information to the service teams. The activities of the service teams are simulated
using the T^MS agent simulation environment [12]. In this environment the agents,
which are distributed on different machines and execute as different processes co­
ordinated simulated tasks. These tasks like real tasks, take a specified amount of
time to execute and consume resources, e.g., replacing an avionics module of type 1
consumes one type 1 avionics module.

We will now discuss an example problem for this domain. Figure 2 shows por­
tions of Ti^MS task structures for Mission Control and three of the service teams.
The Mission Control task structure is a hierarchical decomposition of a top level goal
which is simply to Prepare and Launch Aircraft. The top level goal, or task, has
two subtasks which are to Prepare and Launch Wingl and Prepare and Launch
Wing2. Each of these tasks are decomposed into subtasks to service a particular air­
craft in the given wing, e.g., Prepare F16.1 For Launch, and finally into primi­
tive actions. Tasks are represented with oval boxes, primitive actions with rectangles.
Note that most of the decompositions are omitted from the figure for clarity. The de­
tails are shown for the Prepare F16.1 For Launch task - it is decomposed into a
single primitive action. Launch F16 .1 , which denotes the time required for Mission
Control to launch the aircraft when the plane is ready. The operative word here is
ready. In order for a given aircraft to be launched on its next mission, it must be
serviced. The service activities are not carried out by Mission Control. In the figure,

DFOISR05-S-1456

http://Con.ro

152 Wagner, Phelps, Guralnik and VanRiper

Mission Contrors dependence on the activities of the service agents is denoted by
the edges leading into Launch F16.1 from the actions of other agents. These edges,
called enables in TiEMS, denote that the other agents must successfully perform
their tasks before the Launch F16.1 activity can be carried out by Mission Control.
These enables are non-local-effects (NLEs) and identify points over which the agents
must coordinate. The time at which Mission Control can execute Launch F16.1 is
dependent on when the other agents perform their tasks. A different type of NLE
exists between the Weapons Controls Repair agent and the Avionics Repair agent -
the two F16.1 actions cannot be performed simultaneously and that is another point
over which the agents must coordinate. In this problem, this spatial/temporal interac­
tion of the service teams is the coordination problem on which we focus. The former
enabling-of-the-launch-task interaction only requires that the service agents notify
Mission Control of when they plan to perform their activities because in this applica­
tion Mission Control sets and maintains deadlines and the other agents negotiate over
the temporal/spatial MUX NLEs to satisfy the stated deadlines if possible. Note that
within a task structure deadlines and earliest-start-times are inherited (unless those
lower in the tree are tighter) so the temporal constraints on Prepare and Launch
Wingl also apply to Launch F16.1. The same deadlines are propagated through the
enables coordination to the service team agents - note that F16.1 's engines must be
serviced by 240 also.

Note that all of the primitive actions (leaf nodes) also have Q (quality), C (cost),
and D (duration) discrete probability distributions associated with them. For sim­
plicity in this paper we do not use uncertainty and all values will have a density of
100%. Repairing the engines of F16.1 thus takes 200 time units while servicing the
engines of F16.2, which are less damaged, requires 150 time units. The two activ­
ities produce qualities of 12 and 9 respectively. The sum() function under most of
the parent tasks is called a quality-accumulation-function or qaf. It describes how
quality (akin to utility) generated at the leaf nodes relates to the performance of the
parent node. In this case we sum the resultant qualities of the subtasks - other TiEMS
functions include min, max, sigmoid, etc. Quality is a deliberately abstract concept
into which other attributes may be mapped. In this paper we will assume that quality
is a function of the importance of the repair.

In the sample task structure there is also an element of choice - this is a strong
part of the TiEMS construct and important for any dynamic environment in which
resources or time may be constrained. The Repair Aircraft Engines task, for ex­
ample, has two subtasks joined under the sum () qaf. In this case the Engine Repair
agent may perform either subtask or it may perform both depending on what activi­
ties it has time for and their respective values. The explicit representation of choice
- a choice that is quantified by those discrete probability distributions attached to the
leaf nodes - is how TiEMS agents make contextually dependent decisions.

Space precludes a more detailed specification of tasks and attributes, however, it
is important to note that different tasks require different resources, different amounts
of resources, and require different time to perform. For instance, refueling an aircraft
that is fully depleted requires more time and consumes more fuel (a resource). Other
examples: repairing engines damaged to level 4 (heavily damaged) requires more

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 153

time than engines that are damaged to level 1 (lightly damaged), rearming four mis­
siles requires more time than rearming two missiles, etc. Similarly, different aircraft
consume different resources and not all aircraft need a particular class of service. For
instance, the C9 surveillance aircraft does not carry missiles and does not contain a
weapons controls module. In contrast, both the A10 and the F16 carry missiles and
both have weapons controls modules but the modules for the two aircraft are different
and require different amounts of time to service. The teams themselves also maintain
different resources, e.g., the refueling team is the only team that consumes the fuel
resource. However, in the problem instance discussed in this paper the teams do not
interact over consumable resources so the coordination problem is one of spatial and
temporal task interaction.

The characteristics of the solution to this particular application problem can be
found in other problem domains. The underlying technical problem is to coordinate
distributed processes that affect one another when the environment is dynamic and
the coordination problem cannot be predicted offline / a priori but instead must be
solved as it evolves.

2.4 Coordination via Don't Commitments

The goals of coordination in the Dynamic Readiness and Repair Service application
are: 1) to adapt to a dynamic situation, 2) to maximize the number of planes that
are completely repaired by their respective deadlines, 3) to provide mutual access to
shared physical resources, 4) achieve global optimization of individual service team
(agent) schedules through local mechanisms and peer-to-peer coordination. When
examining the coordination problem, it became clear that this application domain
has a unique property not generally found in TiEMS agent applications - for agents
whose tasks interact, all of their tasks will interact. By way of example, all of the
engine repair tasks interact with all of the refueling tasks interact with all of the
rearming tasks. Similarly for the tasks that pertain to the cockpit. All avionics tasks
interact with all weapons controls tasks.

The implications of this property for coordination are that: 1) there is no rea­
son for a service team that operates on the wing region to interact with a team that
operates in the cockpit and vice versa^, 2) agents that operate on the same spatial
area (wing or cockpit) must always coordinate their activities. This translates into a
discrete partitioning of the agents into coordination sets.

Within each coordination set the tasks of the member agents form a fully con­
nected graph via TiEMS non-local-effects. This means that for any agent of a given
set, e.g., the engine repair agent of Agent^ing^ to schedule a repair task it must dialog

^ An indirect interaction occurs when the problem instance contains deadlines that cannot be
met. In such cases both wing and cockpit agents should forgo work on selected planes in
order to avoid having an entire fleet of aircraft that are partially complete, none of which are
ready for their next mission. This interaction is dealt with using value for commitment sat­
isfaction and algorithms/experiments pertaining to that topic must be presented separately
due to space limitations.

DFOISR05-S-1456

154 Wagner, Phelps, Guralnik and VanRiper

with the other agents to ensure that mutual exclusion over the shared resource, e.g.,
the wing on plane F16.1, is maintained.

This coordination problem could be solved in typical GPGP [3, 2, 6] fashion.
However, GPGP operates in Sipairwise peer-to-peer fashion. For agents in Agents^ing
this means that coordination could require a significant amount of time to propagate
and resolve the interacting constraints and it is unclear given the dynamics of the
environment and the speed with which coordination must occur whether convergence
on a reasonable, if suboptimal, solution would ever occur. This would also apply to
other agent sets if the problem scaled in the number and type of mutually exclusive
methods. Because of the strong interconnectedness of the tasks and the partitioning
of agents into coordination sets, we developed a new algorithm for problem classes
of this type.

If (coordinationKey is not null) and
(needCoordinate or coordianationKey.othersNeedCoordinate) {

primarySchedule = evaluate(taems,
coordinationKey.getPrlmaryDontCommltmentsO);

if (coordinationKey.getSecondaryDontCommitmentsO interractWith taems.getDeadlineComnnitmentsO) {
secondarySchedule = evaluate(taems, coordinationKey.getSecondaryDontCommitments());
if (primarySchedule.quality > secondarySchedule.quality) {

preferredSchedule = primarySchedule;
coordinationKey.discardSecondaryDontCommitmentsO;

} else {
preferredSchedule = secondarySchedule;
coordinationKey.replacePrimaryDontCommitmentsWithSecondaryDontcommitmentsO

}
} else {

preferredSchedule = primarySchedule;

}
taems.setSchedule(preferredSchedule);
violatedDeadlines = taems.getViolatedDeadlines(preferredSchedule);
newViolatedDeadlines = violatedDeadlines.getNewDeadlines();
whatifDontCommitments = coordinationKey.getPrimaryDontCommitments();
whatifDontCommitments.discardlnteractions(newViolated Deadlines);
whatifSchedule = evaluate(taems, whatifDontCommitments);
if (whatifSchedule != preferredSchedule)

coordinationKey.addSecondaryDontCommltments(whatifSchedule);
whatifViolatedDeadlines = taems.getViolatedDeadlines(whatifSchedule);
taems.markAsOldDeadlines(whatifViolatedDeadlines)

}
oldViolatedDeadlines = violatedDeadlines.getOldDeadlines();
communicateDeadlineViolation(oldViolatedDeadlines);

Fig. 3. Pseudo-code for an Individual Agent's GPGP protocol for Dynamic Readiness and
Repair.

The algorithm uses a coordination key data structure and concepts from token-
passing [11, 5] algorithms to coordinate the agents. The general operation of the
algorithm is that there is one coordination key per coordination set that is passed
from agent to agent in a circular fashion. When an agent is holding the coordination
key for its coordination set, it can 1) declare its intended course of action / schedules,
2) evaluate existing proposals from other other agents, 3) confirm or negate proposals

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 155

of other agents, 4) make its own proposals, or 5) read confirmations or negations of its
own proposals by other agents. The coordination key itself is the vehicle by which
this information is communicated. Each key contains intended courses of action,
proposals, and proposal responses, and this information is modified as the agents
circulate the given key. The pseudo-code of the algorithm is shown in Figure 3.

Avionics F16.1 Weapon Ctrls
F16.1

Serv ice

T a s k s

T o Be

Pe r f o rmed

Earliest-start-time 10
Deadline 105
Duration 30

Engines Level 2
F16.1

Earliest-start-time 10
Deadline 105
Duration 30

Earliest-start-time 10
Deadline 105
Duration 100

Engines Level 1
F16.2

Rearm Level 3
F16.2

Earliest-start-time 12
Deadline 105
Duration 50

I Avionics I
I A10.1 I
Earliest-start-time 25

Deadline 175
Duration 35

Earliest-start-time 12
Deadline 105
Duration 60

I Weapon Ctrls
I A i d
Earliest-st$rt-time 25

Deadline 175
Duration 35

Rearm Level 4
A10.1

Earliest-start-time 25
Deadline 175
Duration 80

:
Rearm Level 4

Aircraft i
Earliest-start-time

Deadline..
Duration..

I Avionics F16.1
Avionics Is busy Weapon Ctrls is

elsewhere. busy ielsewhere.

\ Aircraft .-^^ ^ Earliest start Time for F16.1 = 10 Deadline for F16.1 = 105
r i b . l

I Wing Region
I Schedule
\ Cockpit ;

Schedule |

Aircraft p̂ g 2

Wing Region I
Schedule |__

Cockpit f
Schedule

Earliest Start Time for F16.2 - 12 Deadline for F 16.2 = 105

Avionics is busy Avionics is busy Weapon Ctrls is
elsewhere. elsewhere. busy elsewhere.

Aircraft A10.1 Earliest Start Time for A10.1 = 25 Deadline for A10.1 = 175

Wing Region
Schedule

Cockpit
Schedule

Aircraft =

Avionics is busy
elsewhere.

Avionics
A10.1

Weapon Ctrls
A10.1

Constraints to maintain: 1) Service team on a single aircraft at a given instant in

time. 2) One service team in each region at a given instant in time. 3) Earliest start

times which denote when the aircraft lands. 4) Deadlines which denote when the

aircraft is due for its next mission.

Fig. 4. The Centralized Exhaustive Scheduling Oracle Has An Omnipotent View - Figure
Shows One Scheduling Instance

The coordination key algorithm is effective but approximate and heuristic. The
crux of the matter is that in order for the agents to coordinate optimally over a single
issue, e.g., when agent X should perform task Ti, the key must circulate through
the coordination set multiple times. The number of times that each agent must hold
the key is dependent on the changes made during each iteration. In the worst case
DFOISR05-S-1456

156 Wagner, Phelps, Guralnik and VanRiper

Exp
Class

A
B
C
D

Num
Trials

32
32
32
28

Mean # Solutions Possible
Missing X Aircraft Deadlines

X=0lX=l]X=2|X=3JX=4LX=5|X=6

.31

.31
0
0

1.09
2

3.2
3.1

.75
3.1
13

16.8

.31
3.6
24.1
33.0

.13
2.9
16.3
49.6

0
0

2.53
36.3

0
0
.4

2.7

Exp
Class

A
B
C
D

Num
Trials

32
32
32
28

Chara

Mean

1.13
1.5
2.1
2.4

cteristi

%-tile

1.0
.98
.97
.98

:s of Sol
Median
%-tile

1.0
1.0
1.0
1.0

ution Gen
StdDev

of %-tile

0
.12
.08
.04

erated
%-tile
Same

.80

.58

.38

.26

byCoc
%-tile
Better

0
.02
.03
.02

)rdination Keys
%-tile
Worse

.20

.41

.62

.73

Table 2. Results Comparing Coordination Keys to Exhaustive and Optimal Centralized Sched­
ule Generation

each agent will have to re-sequence each of its n activities once for every change
that is made, but these changes propagate to the other agents so the circulation-to-
convergence factor is 0{a^) rather than 0(rf), where a is the number of agents in a
coordination set. The coordination key algorithm above multiplexes changes so that
in a given pass through a coordination set multiple changes are considered by the
agents at once.

We hypothesized that in some problem instances the algorithm would fail to find
an optimal solution but that in most problem instances it would perform well. To test
this hypothesis we created a centralized global scheduler that creates schedules for
all of the agent teams via exhaustive search. The centralized scheduling problem is
exponential, however, for instances having less than 11 total repairs the exhaustive
scheduler is responsive enough for experimentation.'̂ Because the problem instance
presented here uses a subset of T^EMS features, the centralized scheduler is designed
to solve a representation of exactly the subset needed, i.e., it does not perform de­
tailed TiEMS reasoning but instead maintains the required constraints (e.g., dead­
lines, earliest start times, service teams can only service one aircraft at a time, and
only one service team can work in a cockpit or the wing region at a given point in
time). The centralized scheduler algorithm is outlined in Figure 4. The function of the
centralized scheduler is twofold. First, it determines the minimum number of aircraft
deadlines that will be missed by an optimal solution. In some cases all deadlines can
be met and in others aircraft deadlines represent unsatisfiable constraints. The sec­
ond role of the centralized scheduler is to determine the relative size of the different
solution spaces. For instance, for a given problem there may be zero solutions that

^ The centralized scheduler requires on the order of 10 minutes to schedule 11 repairs on a
dual-processor Xenon 2Ghz linux workstation. A problem instance of that size will gener­
ate about 250,000 schedules, some subset of which are unique.

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 157

don't miss any deadlines, X (optimal) solutions that miss one aircraft deadline, Y
solutions that miss two aircraft deadlines, Z solutions that miss three aircraft dead­
lines, etc. By tabulating this information we can determine a percentile ranking for
the solutions produced by the distributed coordination key algorithm. The central­
ized scheduler does not compete with the distributed coordination key algorithm on
a completely level playing field. The centralized scheduler sees all the repairs that
will be needed for all planes on a given problem instance at time 0. The agents in the
distributed system only see repairs as the aircraft land. Thus, for the instance shown
in Figure 4, the service team agents will not see aircraft A 10.1 until time 25 (when
it lands). At this time they may be committed to a suboptimal course of action that
the centralized omnipotent scheduler will avoid because it can see AlO.l's repairs
at time 0 along with all of the other repairs that will need to be scheduled. This dif­
ference is due to a need to keep the centralized scheduler development costs down
and has its roots in design/implementation issues with the simulation environment.
A related bias in favor of the centralized scheduler is that the distributed coordina­
tion mechanisms operate in the same simulated clock as the repairs themselves. This
enables the simulation environment to control and measure coordination costs but
causes a skew in terms of the apparent cost of coordination relative to domain tasks,
e.g., in some cases the ten clicks (about 5 seconds in wall clock time) that the agents
require to coordinate will take as much simulation time as it takes the service teams
to rearm one missile on an aircraft. The skew is of primary relevance when compar­
ing the distributed algorithm to the centralized scheduler and is less of an issue when
comparing different distributed algorithms.

Table 2 presents the results of comparing the coordination key algorithm to the
optimal and exhaustive centralized scheduler. Each row is the statistical aggregation
of one set of trials where each set of trials is drawn from one difficulty class. The
rows lower in the table represent increasingly more difficult problem instances - air­
craft having more repairs and tighter deadlines relative to their landing times and the
time required for their repairs ^. All rows except for the last represent 32 random
trials. Row D contains 28 because of the occasional exception thrown by the exhaus­
tive scheduler caused by running out of RAM. As the difficulty increases, note that
the density of the solution space increases and shifts right. This is represented by the
colunms X=0, X=7,..., which contain the mean number of solutions produced by the
oracle that miss 0 deadlines, 1 deadline, etc., respectively. As the problem instances
get harder more aircraft are likely to miss deadlines. Note that the coordination key
algorithm generally performs well for all of the tested conditions. The Mean value
denotes the average number of aircraft deadlines missed during a batch of trials. The
more descriptive statistics are those about the percentile ranking of the solutions gen­
erated by coordination keys. This is because how well the keys algorithm performs is
determined not by the absolute number of missed deadlines (the average of which is
presented in the mean column) but instead by the solutions possible for a given trial.

^ The seven trial parameters are: (1) land time, (2) takeoff time deadlines, (3) level of avionics
damage, (4) level of weapons control damage, (5) level of engines damage, (6) level of
rearm damage, and (7) refuel level.

DFOISR05-S-1456

158 Wagner, Phelps, Guralnik and VanRiper

For instance, in some trials the best solution possible may miss two deadlines. As the
difficulty increases the mean value for the keys algorithm increases because there are
more instances where the optimal solution is to miss one deadline, or two deadlines,
etc. Looking at the percentiles, in experiment class A the keys algorithm performed
in the 100th percentile, in experiment class B the 98th percentile, in experiment class
C the 97th percentile, and in class D (the most difficult class), the 98th percentile.
The percentile rating is computed as follows:

• The centralized scheduler generates all of the unique schedules that exist for a
given individual trial.

• These schedules are binned according to the number of deadlines missed, e.g.,
in X of the schedules 0 aircraft miss a deadline, in Y of the schedules 1 aircraft
misses a deadline, in Z of the schedules 2 of the aircraft miss a deadline, etc.
Think of the centralized scheduler as producing a histogram of possible solutions
where solutions are binned by the number of deadlines missed.

• Let CKDLMi be the number of aircraft deadlines missed by the coordination key
algorithm in trial i.

• Let BinJCKi denote the histogram bin in which CKDLMi falls (the bin that per­
tains to CKDLMi missed deadlines).

• Let DensityMt.or jabovei be the X of the densities of solutions that are in bins >
or = to Bin.CKi. Bins > BinJOKi represent solutions that are worse because they
entail missing more deadlines.

• Let Percentile-Ranking i = Density Mt-orMbovei/TNi * 100, where TNi is the
total number of solutions generated by the centralized scheduler for trail i.
Percentile-Rankingi is the percentile ranking for the coordination key algorithm
for trial i of the set of 32.

• Let Overall-Percentile-Ranking =
(Sfii Percentile JRankingi)132 be the overall percentile ranking for one batch of
32 trials.

In all cases the median percentile is 100% and the standard deviation is low.
Because there are generally multiple solutions that perform as well as the solutions
actually generated by the coordination keys, its percentile is broken down in the last
three columns of Table 2. The column marked %-tile Same indicates the mean % of
possible solutions that miss exacdy as many deadlines as the keys algorithm did. %-
tile Better indicates the number that performed strictly better (missing fewer aircraft
deadlines) and %-tile Worse indicate the number that performed strictly worse. Note
that as the problem space gets harder the number of solutions possible that are worse
than those found by the keys algorithm increases. At the same time the band of
solutions as good as those generated by keys narrows, as does the band of solutions
that are strictly better than those found by the keys algorithm.

While the data suggests that the algorithm performs well on average, there are
circumstances where the algorithm performs less well. We examined several such in­
stances in detail and while we have intuitions about when the algorithm will perform
in a suboptimal fashion, the experiments in which performance is suboptimal pertain

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 159

to a more basic issue. To illustrate let us assume a three-aircraft problem instance
with the following characteristics:

• Aircraft F16 arrives at time 15 with a deadline or take-off time of 400 and re­
quires repair of engines damaged to level 2 (the duration of this repair is 100).

• Aircraft AlO arrives at time 18 with a deadline of 450 and requires complete
refueling (the duration of this task is 100).

• Aircraft C9 arrives at time 24 with a deadline of 240 and requires repair of en­
gines damaged to level 2 (the duration of this repair is 100) and refueling of a
quarter tank (duration of this tank 25).

The F16 lands at time 15 and the engine service team obtains the coordination
key and schedules the engine repair of the F16 to run from time 17 to 117. The AlO
lands at time 18 and at time 19 the refuel team gets the coordination key and sched­
ules refueling of the AlO to last from 19 to 119. When the C9 lands at time 24 the
engine service team is thus occupied with the F16 until time 117 and the refueling
team is occupied with the AlO until time 119. To respond to the C9's landing and
repair needs, the engine service team obtains the coordination key at time 25 and
schedules C9's repair to run from time 117 to time 217, At a subsequent time-step,
the refueling team attempts to schedule C9's refueling, however, because both refu­
eling and engine repair are mutually exclusive tasks, the earliest time the refueling
team can schedule the C9 is at time 217. This means it is impossible to service the C9
by its deadline (take-off time) of 240. In response to this pending failure, the refuel
service team attempts to negotiate with the engine service team via the coordination
key to obtain a wing access slot between 119 and 217. However, the engine service
team needs that time slot to complete its portion of the C9's engine repairs on time.
The end result is that the C9's deadline cannot be met. For this same problem in­
stance, however, the centralized scheduler was able to produce a solution in which
all of the deadlines are met.

The underlying issue is that service activities are not interruptible in this problem
instance - otherwise repair teams could run from aircraft to aircraft and the optimiza­
tion problem would be much simpler. If activities were interruptible, when the C9
first landed either the engine service team or the refuel service team could disengage
from their respective current activities (servicing the F16 or the AlO) and attend to
the C9, which is the aircraft with the tightest deadline. The reason the centralized
scheduler is able to produce a better solution in this problem instance - a solution
which eludes the distributed coordination approach - is that the centralized oracle
sees all of the repair tasks a priori. It thus considers the possibility of not servicing
the Fl6 or AlO immediately upon arrival so that the C9 can be serviced by engines
or refueling immediately upon its arrival and all deadlines can be met.

This particular performance issue derives from the somewhat imbalanced playing
field (discussed earlier) between the distributed algorithm and the centralized oracle.
Interestingly, we can hypothesize two instances where the distributed algorithm will
fail to perform well, even on a level playing field, but such instances occur infre-

DFOISR05-S-1456

160 Wagner, Phelps, Guralnik and VanRiper

quently in randomly generated problem instances - even those with tight deadline
constraints and numerous repairs per aircraft."̂

One instance where the the coordination key algorithm will perform less well
entails semi-independent coordination problems that occur simultaneously in the co­
ordination set of more than two agents. Imagine a coordination set of the rearm,
refuel, and engine repair agents. Let the key pass from agent to agent in the fol­
lowing order: rearm to refuel to engine (then the cycle repeats). Now, let us assume
that at time t the rearm agent needs a time slot that is held by the engine agent, and
that refuel needs a time slot that is held by the rearm agent. The implications are
that multiple unrelated proposals must reside on one key for part of the coordination
set traversal, i.e., the proposal from rearm to engine and the proposal from refuel to
rearm both reside on the key during the refuel to engine to rearm circuit. The key
algorithm is designed with the assumption that, in general, multiple proposals will
pertain to a single (sometimes multi-step) coordination process. Therefore, when the
engine agent receives the coordination key it either accepts or rejects the set of cur­
rent proposals (from the rearm and refuel agents) en masse even though it may only
be affected by the rearm agent's proposal. In this case, when the set of proposals ar­
rives and the engine agent determines that it cannot satisfy the rearm agent's request,
it rejects the proposals en masse and the proposal from refuel to rearm is never evalu­
ated by the rearm agent. This may result in a missed opportunity for the refuel agent.
The shortcoming described here can be fixed by making the agents more selective in
proposal rejection.

Another instance where the coordination key algorithm may perform less well is
when a long chain of multi-step inter-locking resource releases are required. The fac­
tor at work is the algorithm's approximate limited-cycle-to-action model. However,
as noted, neither class of problems occur frequently with random instances. We are
currently exploring creating a generator and experiments to test performance under
these circumstances.

2.5 Scalability Issues

The Dynamic Readiness and Repair Service application could conceivably be de­
ployed in a situation where dozens of agents needed to be coordinated. This is based
on superficial studies of modem air support crew structures and responsibilities,
which appear to typically be disparate in space and in time to utilize the airstrip to its
maximum capacity. In such a scenario, an Air Traffic Control agent would hand off
returning airplanes to the Mission Control agent, which would setup the coordination
problems for the service team repair agents to solve. Thus, the problem's complexity
as a function of scaling the number of agents could plausibly be controlled by infor­
mation hiding - agents would only be required to solve relatively small spatially and
temporally local problems.

Scaling in the task environment dimension for this application could mean in­
creasing the number and kind of repairs required for each aircraft and increasing

"̂ If the repairs are spread over a large number of aircraft there is little spatial resource con­
tention and service teams can basically function in parallel.

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 161

the rate at which aircraft land. It could also mean increasing the number of pairs
of service operations that are mutually exclusive. Scaling in this dimension would
present a more significant problem for the protocol described above due to the afore­
mentioned worst case performance of key-circulation to convergence ratio. For each
change introduced, it is 0(a"), where n is the number of tasks per agent and a is the
number of agents in a coordination set. Obviously, in such degenerative cases, less
optimal results could be tolerated, but ideally, we would like to at least bound the
performance for a given problem type. This is an area of future research.

This brings us quite naturally to consideration of the solution properties dimen­
sion which concerns solution quality, robustness, and overhead limitations. In the
evaluation that we conducted, the key-based coordination protocol performed well,
although it utilized a heuristic search. This was due to the fact that the relatively hard
problems vis-a-vis the protocol we developed were sparse in the set of problems gen­
erated to test it. Whether these problems would be sparse in real-world setting was
beyond the scope of our research.

With respect to robustness in the face of uncertainty, to an extent we can rely
on mechanisms built into the T^EMS task structure evaluation [9, 13, 16]. However,
the precise manner by which uncertainty of task finish times and accrued quality are
handled in commitment information between agents would need to be further de­
veloped. For instance, each agent would need to decided, based on its unique task
environment, whether it could afford to choose a commitment with higher expected
quality with uncertainty of finish time or one with lower expected quality and cer­
tainty of finish time.

Finally, communication overhead limitations were not a consideration in the de­
velopment of the key-based coordination protocol. There are numerous obvious ways
to compact the schedule information for each agent sent in the coordination key that
we would need to implement in order to reduce the key size. Another aspect of this
dimension is what would happen if one of the agents in a coordination set was dis­
abled. Again, we assumed that none would be disabled. At the very minimum, the
loss of an agent in a coordination set would need to be detectable by at least one
other agent in the coordination set, who could notify the other agents in the set.
Also, a key-caching mechanism would need to be implemented to warrant against
the loss of the key if the agent who was disabled possessed the key.

3 First Response Coordination

3.1 The Application

COORDINATORS [18, 17] are coordination managers for fielded first responders.
They provide decision support for first response teams and the incident commander
by reasoning about mission structures, resource limitations, time considerations, and
interactions between the missions of different teams to decide who should be doing
what, and when, so as to get the best overall result. COORDINATORS provide global

DFOISR05-S-1456

162 Wagner, Phelps, Guralnik and VanRiper

mm.
:fp:^ S ^ K;

Fig. 5. A Network of COORDINATORS Handling Task Coordination Between Responders

team activity optimization - helping the teams to respond to the dynamics of the envi­
ronment and to act in concert, supporting one another, as appropriate for the current
circumstances. When the situation changes, the COORDINATORS communicate,
evaluate the implications of change, and potentially decide (or suggest, depending
on their role) on a new course of action for the teams. Fiture 5 depicts the network of
COORDINATOR-enabled teams performing activities. The two COORDINATOR-
first responder pairings on the left of the figure are connected to each other and to
the COORDINATOR-incident commander pairing on the right by communications
as well as task interrelationships.

The underpinnings of COORDINATORS areT^EMS agents [3,7, 14,15] equipped
with a new coordination module derived from the coordination keys [14] technology.
This means that each distributed COORDINATOR is able to reason about complex
mission task structures and communicate with other coordinators to determine who
should be supporting whom, when, in order to save the most lives, make the best use
of assets or resources, reduce risk to the response teams, and so forth.

COORDINATORS are implemented and functioning and have been experimented
with using staged first response exercises. However, this project and the work de­
scribed here is only the potential starting point for COORDINATORS and technology
that supports human activity coordination.

There are several characteristics of this problem instance that make it a hard
problem:

The situation is dynamic - it is not known with any detail at the time of the 911 call
what sort of state the site or victims will be in when response teams arrive. Thus
the agents must coordinate and decide which operations to perform in real-time.
This is especially true when fire is involved; in an unmitigated average office
fire, gas temperature inside the burning, enclosed space can easily reach 1200
degrees Fahrenheit in less four minutes[8].

Agents must make quantified / value decisions - different tasks have different val­
ues and require different amounts of time and labor resources. It may be critical
to provide water supply support to suppress fire spread until victims are discov­
ered during a search, at which point, priorities require adjustment.

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 163

Coordination is dynamic - the operations being performed by the first responder
teams interact and the occurrence of the interactions are also not known a priori.
For instance, until victims are found, it is not known whether ventilation in a
hallway will be required.

Deadlines are present - a fire suppression team will need to put out a fire in one area
within a deadline in order for a rescue operation to be able to effectively com­
plete their evacuation operation. Deadlines require the agents to reason about
end-to-end processes and to coordinate with other agents to optimize their activ­
ities.

Tasks are interdependent - tasks interact in two different ways: 1) over shared re­
sources in a spatial/temporal fashion, 2) multiple tasks must be performed to
accomplish a goal, e.g., a fire has not been met with a satisfactory response until
all the people threatened by it have been evacuated, and it has been extinguished
in the most effective maimer possible (though in T^EMS this generally pertains
to degrees of satisfaction rather than a boolean or binary value).

COORDINATORS have been constructed using off-the-shelf wireless PDAs and
desktop PCs. COORDINATORS also leverage a Honeywell-proprietary asset loca­
tion technology to track the physical location of first response teams, victims, and
important resources such as a wall cutting saw or a multi-story portable ladder. A
screen snapshot of a the incident commander display as well as the PDA-based co­
ordinators running in simulation is shown in Figure 6. The left of the incident com­
mander display is a scrollable map of the area of concern - in our scenario our lab
building. The map can display first responders moving about as well as situation in­
formation, such as the location and intensity of fire, smoke, or building damage as
well as the location of first responder resources, such as saws or hoses. Below the
map is a dispatch command bar that the incident commander can use to send teams
to specific locations in the building to do situation assessment. In the center of the
display are cameras that track the first responders through the building. There is one
camera per team. Whenever the team enters a region that is covered by a camera,
the incident commander display switches the team's camera view to the feed from
the covering camera. To the right of the camera displays are the team Gantt displays
which show the task schedules for each team.

Note that herein we use the term "first responder" to mean personnel ranging
from fire fighters to emergency medical teams. For the details of this project, how­
ever, we have focused primarily on the needs of the fire fighters and the incident
commander because we were able to get domain expertise in that area.

In this section we discuss the first response domain and the motivation for CO­
ORDINATORS. We then provide architectural and technical details of the agent tech­
nologies that make COORDINATORS possible and illustrate their role using a first
response episode. Human-based first response exercises using COORDINATORS are
then discussed, followed by important research directions and next steps for COOR­
DINATORS.

DFOISR05-S-1456

164 Wagner, Phelps, Guralnik and VanRiper

I

^.on^-^'ir 1 «40 ^nnn/^r, ™ o . "liP n «,

- • • • " „ " — • • : : • ; _ - - - " _ - - ;

1 .m ij r " °" | 1 .m 1 ^ "

.^^„.±. lr^^.L^ \.^^ll.,.. |,„^^„„. in
Fig. 6. The Incident Commander display and Simulated PDAs for the First Response Coordi­
nation application.

3.2 Coordination via Commitment Value

The goals of coordination in the COORDINATORS application are similar to those
for the Dynamic Readiness and Repair Service application. However, since first re-
sponders are concerned with the safety of life and property, COORDINATORS at­
tempts to maximize the number of civilians that are saved while minimizing facility
damage and risk to first responders.^

This application augments the decision-making powers first responders capable
of performing any task in the domain. The implication homogeneous first responder
capabilities for coordination is that agents do not have a partition of coordination
based on task types that they had in the Dynamic Readiness and Repair Service ap­
plication. Each agent coordinates with every other agent. Each agent must maximize
the quality of its local tasks performed, while cooperatively assisting other agents to
maximize the quality of their local tasks performed. It does this by satisfying support
needs. Figure 7 gives the high-level pseudocode for the key-based COORDINATOR
protocol.

The algorithm's coordination key is derived from the Dynamic Readiness and Re­
pair Service application data structure [14]. The general operation of the algorithm is
that there is one coordination key for the entire application that is passed from agent
to agent (fielded first responder agents only). As with the previous application of the
key-based protocol, when an agent is holding the coordination key for its coordina­
tion set, it can evaluate, confirm, or negate existing or proposed commitments from
other agents. However, the mechanism by which it does this is significantly changed.
In this application, we used commitment value for the proposed support tasks instead
of the avoidance of mutually exclusive activities to drive the coordination. When an

^ Although risk-reward tradeoffs are supported by the DTC Ty^MS scheduler, we did not
leverage these capabilities in our GPGP implementation.

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 165

if(coordination Key is not null) {
if(needCoordinate or coordinationKey.othersNeedToCoordinate()){

coordinationKey.addNewCommitmentRequests(requests);
needChoice = coordinationKey.setCommitments(taenfis, PRIMARY);
primarySchedule=evaluate(taems);
coordinationKey.determineSatisfiedCommitments(taems, primarySchedule, PRIMARY);
if(needChoice is false) {

preferredSchedule = primarySchedule;
coordinationKey.setCommitments(taems, PROPOSAL);
whatifSched = evaluate(whatlfCond);
coordinationKey.determineSatisfiedCommitments(taems, whatifSched, PROPOSAL);

} else {
coordinationKey.setCommitments(taems, SECONDARY);
secondarySchedule = evaluate(taems);
coordinationKey.determineSatisfiedCommitments(taems, secondarySchedule, SECONDARY);
if(coordinationKey.pickChoiceCommitments()) {

preferredSchedule = firstBestSched;
} else {

preferredScheudle = secondarySchedule;
generateNegotiationEventsO;

Fig. 7. Pseudo-code for an Individual Agent's GPGP protocol for First Response Coordination.

agent proposes tasks for other agents to commit to doing in its service, the commit­
ment value associated with task performance is associated with the value the overall
task (requiring support). This leads to a global utility accounting irregularity, but this
is a approximate, heuristic mechanism that, while not perfect, works well in practice.

3.3 Evaluation

Arguably, the most important overall evaluation question for COORDINATORS is
whether they improve the performance of first responders. In a perfect world with
unlimited resources, one might design a set of experiments in which first responders
engage in a series of first response episodes both with and without COORDINATORS
providing support. In each case, one would like to measure specific metrics like num­
ber of lives saved, number of assets saved, time required to perform the mission tasks,
number of responders necessary to address the situation, amount of risk incurred by
the responders and the civilians, etc. In this perfect world, one would have buildings
to bum and the ability to recreate, verbatim, scenarios so that the measurement and
comparison could be one-to-one.

We elected to use a somewhat more economic approach. To evaluate COORDI­
NATORS from an application view, rather than simply evaluating the performance
of the underlying technology (e.g., time required for coordination), we staged first
response exercises and had human performers take the role of first responders. Note
that the lessons learned from this process are anecdotal but are also more meaningful
as an early viability test of the concept.
DFOISR05-S-1456

166 Wagner, Phelps, Guralnik and VanRiper

In the exercises there are four teams and an incident commander (IC). The sce­
nario is set in a petrochemical plant though the plant is mapped back onto the Honey­
well Lab's building. During the exercise, responders must move around the building,
perform situation assessment tasks, respond to the situations they discover, and co­
ordinate to rescue civilians. The scenario is setup in such a way that teams must
coordinate in order to rescue the civilians. Failure to do so results in (simulated) loss
of life - a metric that can be tabulated.

To assess the benefits of having COORDINATORS, we first deploy the teams
on the first response exercise using walkie-talkies for communication (they are also
equipped with stop-watches and building maps to make the simulation more com­
plete). After the walkie-talkie exercise, during which loss of (prop) life is recorded,
the teams are rotated and the scenario run again, this time with COORDINATORS
providing automated support.

In doing this exercise, we rapidly discovered the degree to which humans are
overwhelmed when faced with lots of temporal and task related data that is in a state
of constant change. The initial plan was to host VIPs and to have a VIP take the role
of incident commander - the individual who generally handles coordination in the
walkie-talkie exercise. Not only was the IC task too difficult for the VIPs, it was too
difficult for most of the research team members. In practice, only someone who had
memorized the flow of events in the exercise could help the teams to rescue all the
civilians. We resorted to this model in order to get human performers through the
walkie-talkie exercise at all.

Thus VIPs and visitors (with varying degrees of domain expertise) generally took
the role of first response teams. At the start of the scenario, the teams are deployed
by the IC and given situation assessment tasks. In enacting the scenario, at this point
teams move throughout the building and go to assigned zones (generally conference
rooms). To simulate the situation assessment task, we created a series of props repre­
senting the situation. For instance, a first response team might find fire props, debris
props, and a civilian prop pinned by a girder prop. This would indicate that a civilian
was trapped and that the fire needed to be put out and the debris cleared before the
girder could be cut away. Cutting the girder also requires some other team (generally)
to fetch a power saw from the simulated truck. In the exercise, props are reinforced
by staging data sheets that describe the situation textually and explicitly cull out re­
source needs and potential temporal issues (e.g., "you must evacuate these civilians
before the adjacent wall collapses at time T=40").

Because fielded first responders must coordinate while carrying out domain tasks,
we also require our first response stand-ins to carry out simulated domain tasks. In
general, this translates into putting props into one another and moving them physi­
cally throughout the building. For example, to extinguish the fire, it goes into Sifire
extinguishment box and the box must then be carried to a staging area on a specific
floor of the building. Similarly, evacuation of an injured civilian requires that the
civilian prop be put into the gumey prop box, a box that must be fetched from the
staging area, and then the gumey box must be put into a stairwell box (if that is the
exit route chosen) and the stairwell box carried to the staging area.

DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 167

Dynamics are introduced into the environment using secondary envelopes on
which is printed a time at which they are to be opened. Thus teams may coordinate,
decide on a course of action, then open an envelope and discover that the situation
has changed (e.g., a ceiling fell-in) and then they must recoordinate to adapt to the
new situation.

As one might guess from the description, human performers generally fared
poorly during this exercise. Only with an expert IC who knew the complete sce­
nario a priori and had figured out exactly who should be supporting whom, and
when, could get both the teams and the cardboard civilians out of the facility in time.
What is more interesting is that the stress incurred by the human performers during
the exercise was pronounced and observable even to the non-expert. Trying to battle
one's props while processing all the cross chatter on the walkie-talkie and interact
with the IC proved to be a difficult task even without the heat, smoke, sound, and in­
herent danger of a crisis situation. Few performers were able to coordinate properly.
Few were able to evaluate their mission structures properly. Not once did a guest
team make it through the scenario with the optimal course of action chosen. Notable
among our VIPs was a Honeywell VP who processed the temporal data without hand
drawn Gantt charts and who carried the props with great vigor while barking com­
mands into his walkie-talkie. (Confidence in management rose a fraction during this
episode.)

In contrast to the walkie-talkie scenario, the run with COORDINATORS handling
the activity coordination is almost boring - despite the scenario being run at a faster
clock rate. In the COORDINATOR scenario, the teams perform situation assessment
and describe their situation to the COORDINATORS. The COORDINATORS then
handle all of the exchange of local information, the analysis, and the formation of
commitments. Teams are then informed of what they should be doing, when, who
will be supporting them, and so forth.

After both exercises, the VIPs are then debriefed and shown a simplified Gantt
chart of the major coordination points and support needs of the different teams. While
the evidence gathered during these exercises is anecdotal, the reaction of our visitors,
some with first response and military domain expertise, has served to reinforce our
belief that this line of work is valuable. In practice, the "fog of war" caused by
flames, screaming, smoke, etc., makes a set of tasks that humans have difficulty with
under normal circumstances nearly impossible. Information exchange and coordi­
nation analysis should be off-loaded from the humans to automated assistants that
are better equipped to reason precisely and respond in a (near) optimal and timely
fashion.

3.4 Scalability Issues

Unlike the Dynamic Readiness and Repair Service application, the agent popula­
tion for this application could quite reasonably number in the hundreds or thousands
- incorporating first response teams from local, state and federal police, fire, haz­
ardous materials, and other agencies. However, in the exercises that we ran, there
were only five agents: one for the incident commander and four for each of the first
DFOISR05-S-1456

168 Wagner, Phelps, Guralnik and VanRiper

responders. The solution, although providing a good basis for further development,
is currently not well suited to deployment in large-scale crisis response situations.
There are a number of important issues related to crisis response management that
are not addressed in the current application, including coordination between incident
commander agents, coordination of domain-relevant resources such as hazardous
materials cleanup kits, and a generally richer, more extensible model for situation
assessment and information sharing.

We can again hypothesize that information through hierarchical task abstraction
and assignment can lessen the coordination burden on an individual COORDINA­
TOR as the number of COORDINATORS increases. However, we must still address
the rate and complexity of tasks generated by interactions with the environment could
affect the coordination protocol. Specifically, we would like to know how it affects
the distributed solution convergence time. The rate of protocol convergence is depen­
dent on the rate and quantity of commitment requests from each agent for assistance
with their local tasks. Each commitment request can mean the addition of one or
more tasks to an agent's local task structure. So, as with the Dynamic Readiness and
Repair Service application, in the worst case, for each change introduced, the key-
circulation to convergence ratio is 0{a"), where n is the number of tasks per agent
and a is the number of agents in a coordination set.

The solution dimension for COORDINATORS, including quality, robustness, and
overhead limitations is further complicated by its mixed-initiative qualities. The
baseline solution is human performance unmediated by COORDINATOR technol­
ogy, and humans are typically not very good at solving coordination problems with­
out optimization assistance. This brings up the problem of how best to enable a hu­
man user of COORDINATORS to interact with the coordination optimization pro­
tocols as the number of agents and rate and quantity of task change increases. Ab­
straction and information hiding based on natural problem decompositions (based on
physical or other inherent problem constraints) seem to be again the best approach to
addressing these problems. That is, ensuring that if a person is looking at a state-wide
coordination problem via COORDINATORS, he will not be burdened by low-level
resource information, like how many oxygen packs are stationed in a given municipal
fire station.

4 General Scalability Limitations and Future Work

We have examined two different applications that use a key-based approach to co­
ordinate interactions of multiple agents and discussed its scalability properties in
each along the three dimensions identified by Durfee [4]: agent population, task en­
vironment, and solution. We now discuss in general some of the limitations of the
key-based coordination protocols and lay out directions for future work.

One limitation of the current key-based implementation is a notion of hierarchy in
the coordination protocol. For instance, coordination sets (the agents where one key
circulates) can overlap, but the notion of a decision in one coordination set preempt­
ing the decision in another coordination set is not supported. This could be useful
DFOISR05-S-1456

Key-Based Coordination Strategies: Scalability Issues 169

especially in the COORDINATOR application, where the "upper management" of a
crisis response could direct resources based on strategic priorities in a way that might
contradict local resource needs or commitment requests.

Another limitation of the key-based protocols when scaling in the rate of task
change or arrival is that the decisions of a coordination set can be made no faster
than its slowest member - the complexity of one agent's local coordination problem
could bring the group's decision making to a stand-still. One way around this would
be to enforce time-bounded computation at each agent. Each agent would then be
required to gauge the level of heuristic analysis it does s based on the amount of time
it has to compute and the complexity of the problem it must solve.

Yet another direction we could take to make the solution more robust and quite
possibly faster would be to switch to a centralized, black-board [1] mechanism. This
would open up the possibility (and complexity) of asynchronous coordination deci­
sions.

5 Acknowledgments

The applications described herein were based on agent TiEMS-agent infrastructure
and coordination work that has a long history and we would like to acknowledge
those many other researchers who have contributed to their growth and evolution -
some of the individuals are Victor Lesser, Keith Decker, Alan Garvey, Bryan Hor-
ling. Regis Vincent, Ping Xuan, Shelley XQ. Zhang, Anita Raja, Roger Mailler, and
Norman Carver.

The Dynamic Readiness and Repair Service project was sponsored by the De­
fense Advanced Research Projects Agency (DARPA) and the Office of Naval Re­
search under agreement number N00014-02-C-0262 and by Honeywell International
under project number I10105BB4.

The COORDINATORS project was sponsored by DARPA through AFRL un­
der agreement number F30602-03-C-0010 and by Honeywell under project num­
bers I10133AC1000,110155AD1000, and 110171AJ2000. We would also like to ac­
knowledge the efforts of the other Honeywell Lab's project team who performed first
hand interviews with fire marshals and first responders. These include Tom Plocher,
Walt Heimerdinger, Tony Faltesek, and Michelle Raymond. This work was partially
supported by DARPA's IPTO office, through AFRL, and by Honeywell International.
We would like to thank Ron Brachman, Barbara Yoon, Zach Lemnios, John Beane,
Mike Lynch, and Andrew Berezowski for their support.

The U.S. Government is authorized to reproduce and distribute reprints for Gov­
ernmental purposes notwithstanding any copyright annotation thereon. Disclaimer:
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
Office of Naval Research, the National Institute of Standards and Technology, the
U.S. Government or Honeywell International.

DFOISR05-S-1456

170 Wagner, Phelps, Guralnik and VanRiper

References

1. Norman Carver and Victor Lesser. Blackboard Architectures for Knowledge-Based Sig­
nal Understanding. In Symbolic and Knowledge-Based Signal Processing, pages 205-
250, Alan Oppenheim and S. Hamid Nawab, (eds.), January 1992. Prentice Hall.

2. K. Decker and J. Li. Coordinated hospital patient scheduling. In ICMAS '98: Proceedings
of the 3rd International Conference on Multi Agent Systems, page 104. IEEE Computer
Society, 1998.

3. Keith S. Decker. Environment Centered Analysis and Design of Coordination Mecha­
nisms. PhD thesis. University of Massachusetts, 1995.

4. Edmund Durfee. Scaling up agent coordination strategies. In IEEE Computer, pages
39-46. IEEE, July 2001.

5. IEEE. 802.5: Token Ring Access Method. IEEE, New York, NY, 1985.
6. V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podor-

ozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q Zhang. Evolution
of the GPGP/TAEMS Domain-Independent Coordination Framework. Proceedings 1st
International Conference on Autonomous Agents and Multi-Agent Systems (Plenary Lec­
ture/Extended Abstract), pages 1-2, 2002.

7. Victor Lesser, Bryan Horling, and et al. The taems whitepaper / evolving specification.
http://mas.cs.umass.edu/research/taems/white.

8. National Fire Protection Association. Fire Protection Handbook, 18th edition, 1997.
9. Anita Raja, Victor Lesser, and Thomas Wagner. Toward Robust Agent Control in Open

Environments. In Proceedings of 5th International Conference of Autonomous Agents(AA
2000). Also Umass CS Technical Report 1999-059, pages 84-91, Barcelona, Spain, June
2000.

10. Paul Scerri, David Pynadath, Lewis Johnson, Paul Rosenbloom, Nathan Schurr, Mei
Si, and Milind Tambe. "A Prototype Infrastructure for Distributed Robot-Agent-Person
Teams. In AAMAS. ACM, 2003.

11. Andrew S. Tanenbaum. Computer Networks. Prentice Hall, New Jersey, 1996.
12. Regis Vincent, Bryan Horling, and Victor Lesser. An agent infrastructure to evaluate

multi-agent systems: The Java agent framework and multi-agent system simulator. In
Thomas Wagner and Omer Rana, editors. Infrastructure for Agents, Multi-Agent Systems,
and Scalable Multi-Agent Systems, Lecture Notes in AI, pages 102-127. Springer, 2001.

13. Thomas Wagner, Alan Garvey, and Victor Lesser. Criteria-Directed Heuristic Task
Scheduling. International Journal of Approximate Reasoning, Special Issue on Schedul­
ing, 19(1-2):91-118, 1998. A version also available as UMASS CS TR-97-59.

14. Thomas Wagner, Valerie Guralnik, and John Phelps. A key-based coordination algorithm
for dynamic readiness and repair service coordination. In Proceedings of the 2nd Interna­
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS2003), 2003.,
2003. Nominated for most novel application award.

15. Thomas Wagner, Valerie Guralnik, and John Phelps. Software Agents: Enabling Dynamic
Supply Chain Management for a Build to Order Product Line. International Journal of
Electronic Commerce Research and Applications, Special issue on Software Agents for
Business Automation, 2(2): 114-132, 2003.

16. Thomas Wagner and Victor Lesser. Design-to-Criteria Scheduling: Real-Time Agent
Control. In Wagner/Rana, editor. Infrastructure for Agents, Multi-Agent Systems, and
Scalable Multi-Agent Systems, LNCS. Springer-Verlag, 2001. A version is also available
as UMASS CS Tech Report TR-99-58.

DFOISR05-S-1456

http://mas.cs.umass.edu/research/taems/white

Key-Based Coordination Strategies: Scalability Issues 171

17. Thomas Wagner, John Phelps, Valerie Guralnik, and Ryan VanRiper. An application
view of coordinators: Coordination managers for first responders. In Sixteenth Innovative
Applications of Artificial Intelligence Conference (IAAI04), 2004.

18. Thomas Wagner, John Phelps, Valerie Guralnik, and Ryan VanRiper. Coordinators - co­
ordination managers for first responders. In 3rd International Joint Conference on Au­
tonomous Agents and Multi-Agent Systems (AAMAS04), 2004.

DFOISR05-S-1456

Designing Agent Utilities for Coordinated, Scalable
and Robust Multi-Agent Systems

Kagan Turner

NASA Ames Research Center ktumer@mail. arc. nasa. gov

Summary. Coordinating the behavior of a large number of agents to achieve a system level
goal poses unique design challenges. In particular, problems of scaling (number of agents in
the thousands to tens of thousands), observability (agents have limited sensing capabilities),
and robustness (the agents are unreliable) make it impossible to simply apply methods devel­
oped for small multi-agent systems composed of reliable agents. To address these problems,
we present an approach based on deriving agent goals that are aligned with the overall sys­
tem goal, and can be computed using information readily available to the agents. Then, each
agent uses a simple reinforcement learning algorithm [26] to pursue its own goals. Because
of the way in which those goals are derived, there is no need to use difficult to scale external
mechanisms to force collaboration or coordination among the agents, or to ensure that agents
actively attempt to appropriate the tasks of agents that suffered failures.

To present these results in a concrete setting, we focus on the problem of finding the sub­
set of a set of imperfect devices that results in the best aggregate device [5]. This is a large
distributed agent coordination problem where each agent (e.g., device) needs to determine
whether to be part of the aggregate device. Our results show that the approach proposed in this
work provides improvements of over an order of magnitude over both traditional search meth­
ods and traditional multi-agent methods. Furthermore, the results show that even in extreme
cases of agent failures (i.e., half the agents failed midway through the simulation) the system's
performance degrades gracefully and still outperforms a failure-free and centralized search al­
gorithm. The results also show that the gains increase as the size of the system (e.g., number of
agents) increases. This latter result is particularly encouraging and suggests that this method
is ideally suited for domains where the number of agents is currently in the thousands and will
reach tens or hundreds of thousands in the near future.

1 Introduction

Coordinating a large number of agents to achieve complex tasks collectively presents
new challenges to the field of multi-agent systems. The research issues in this area
present significant departures from those in traditional multi-agent systems coordi­
nation problems where a handful of agents interact with one another. When dealing
with a handful of agents, it is reasonable to assume that in many cases agents re­
act to one another, can model one another, and/or enter into contracts with one an-

174 Turner

other [6, 8, 12, 21]. When dealing with thousands of agents on the other hand, such
assumptions become more difficult to justify. At best each one can assume that the
agents are aware of other agents as part of a background. In such cases, agents have
to act within an environment that may be shaped by the actions of other agents, but
cannot be interpreted as the the by-product of the actions of any single agent.

This distinction is crucial and makes the coordination problem fundamentally
different than that traditionally encountered in many domains, and thus requires new
approaches. In this work, we focus on an agent coordination method that aims to
handle systems which have the following four characteristics:

1. The agents have limited sensing and decision making capabilities. Therefore,
rather than rely on carefully designed agents, the interactions among the agents
will be leveraged to achieve the complex task;

2. The agents will not be able to model the other agents in the system. Therefore,
they will "react" to the signals they receive from their environment;

3. The agents will not necessarily perform reliably, and a non-negligible percentage
of the agents will to fail during the life-cycle of the system. Therefore, the agents
will not rely on other agents performing specific tasks at specific performance
levels.

4. The number of agents will be in the thousands. Therefore, the agents will need
to act with local information and without direct regard for the full system per­
formance.

To study such multi-agent systems within a concrete domain, we focus on the
problem of imperfect device subset selection. This problem consists of a set of im­
perfect devices, and the task is to find the subset of those devices that results in the
best aggregate device [5]. It can be viewed as an abstraction of what will likely loom
as a major challenge in achieving coordination in large scale multi-agent systems
(e.g., systems of nano or micro-scale components) meeting the four criteria listed
above. This is a hard optimization problem, and brute force approaches cannot be
used for any but its smallest toy instances [5, 10].

We propose addressing this problem by associating each device with an adaptive
Reinforcement-Learning (RL) agent [15, 17, 26, 33]) that decides whether or not
its device will be a member of the subset. In this problem, there is a well-defined,
system-level objective function that needs to be achieved. As such we focus on how
the agents' actions further that system-level goal (i.e., global utility). Furthermore,
because we intend to scale this system to a large number of agents, the agents need
to take their actions without actively soliciting information from other agents in the
system. The design problem we face then, is to determine how best to set the private
utility functions of the agents in a way that will lead to good values of the global
utility, without involving difficult to scale external mechanism that ensure coopera­
tion among the agents. Note that though the agents have simple decisions to make,
this is still fundamentally a multi-agent problem: Each agent autonomously makes a
decision at each time step based on its estimate of the reward it will receive; and the
system is fully distributed as each agent has full autonomy over its actions.

Designing Agent Utilities for Coordinated, Scalable and Robust MAS 175

For the joint action of agents working in such a system to provide good values of
the global utility, we must both ensure that the agents do not work at cross-purposes,
and that each one has a learning problem that is relatively easy to solve. Typically
these two requirements are in conflict with one another. For example, providing each
agent with the system-level goal will ensure that they will not work at cross purposes.
However, such a choice will leave the agents with a difficult problem: each of the
agents' utilities will depend on the actions of all the other agents, making it all but
impossible for the agents to determine the best actions to follow in most systems
of interest. At the other extreme, providing each agent with a simple, local utility
function will provide a clear signal, but may not necessarily lead the system to high
values of global utility.

The challenge is is to find the best trade-off between these two requirements. This
design problem is related to work in many other fields, including multi-agent sys­
tems (MAS's), computational economics, mechanism design, computational ecolo­
gies and game theory [4, 20, 13, 18, 25]. However, because of issues related to the
scale of the system, the reliability of the agents and the limited availability of in­
formation, they do not provide a full solution to this problem. (See [30] for a de­
tailed discussion of the relationship between these fields, involving hundreds of ref­
erences.)

This chapter presents an agent utility based multi-agent coordination algorithm
that is well-suited for large and noisy multi-agent systems where coordination among
simple and coomperative agents is required. In Section 2 we summarize the back­
ground material for agent utility derivation and define the desirable properties an
agent utility needs to possess for coordination in large multi-agent systems. In Sec­
tion 3 we present the imperfect device combination problem and derive the specific
agent utilities for this domain. In Section 4 we describe the simulations and present
results showing the performance of the various utilities, their scaling properties and
their robustness to agent failures. Finally, in Section 5 we provide a summary and
discuss the implications and general applicability of this work.

2 Background

In this work, we focus on multi-agent systems that aim to maximize a global utility
function, G{z), which is a function of the joint move of all agents in the system, z.
Instead of maximizing G{z) directly, each agent, /, tries to maximize its private util­
ity function gi{z). Our goal is to devise private utility functions that will cause the
multi-agent system to produce high values of G{z) [2, 28, 34]. Because this method
is based on assigning a utility function to each agent, it is better suited for inher­
ently cooperative distributed domains such as multi-rover coordination [1], or the
imperfect device combination problem presented here. On the other hand, with some
modifications, it is also applicable to more general domains such as data routing [32],
job scheduling over heterogeneous servers [29] or multivariate search [35].

In this work, the notation Zi refers to the parts of z that are dependent on the
actions of /, and z-i to refer to the components of z that do not depend on the actions

176 Turner

of agent /. Instead of concatenating these partial states to obtain the full state vector,
we use zero-padding for the missing elements in the partial state vector. This allows
us to use addition and subtraction operators when merging components of different
states (e.g., z = z/ + z-/).

2.1 Properties of Utility Functions

Now, let us formalize the two requirements discussed above that a private utility
should satisfy. First, the private utilities have to be aligned with respect to G, quan­
tifying the concept that an action taken by an agent that improves its private utility
also improves the global utility. Formally, for systems with discrete states, the degree
of factoredness for a given utility function gi is defined as:

^ _lzlz'4i8i{z)-gi{z')){G{z)-G{z'))]

for all z! such that z-/ = z!_i and where u[x] is the unit step function, equal to 1 if
;c > 0, and zero otherwise. Intuitively, the higher the degree of factoredness between
two utilities, the more likely it is that a change of state will have the impact on the
two utilities (e.g., make both of them go up). A system is fully factored when jTg, = 1.
As a trivial example, a system in which all the private utility functions equal G [7] is
fully factored.

Second, the private utilities have to have high learnability, intuitively meaning
that an agent's utility should be sensitive to its own actions and insensitive to actions
of others. Formally we can quantify the learnability of utility gi, for agent / at z:

E^,^\gt{z)-gi{z-i+m ...

where E[-] is the expectation operator, zj's are alternative actions of agent / at z, and
z'_/s are alternative joint actions of all agents other than /. Intuitively, learnability
provides the ratio of the expected value of gi over variations in agent /'s actions to
the expected value of g/ over variations in the actions of agents other than /. So at a
given state z, the higher the learnability, the more gi{z) depends on the move of agent
/, i.e., the better the associated signal-to-noise ratio for /. Higher learnability means
it is easier for / to achieve a large values of its utility. Note that, though a system
where all agents' private utilities are set to G is fully factored, such a system will
have low learnability since each agent's utility will depend on the actions of all the
other agents in the system.

2.2 Private Utility Functions

Now, let us present two utilities that are fully factored and have high learnability. The
Estimated Difference Utility is given by:

EDUi = G{z)-E,.[G[z)\z-i] (3)

Designing Agent Utilities for Coordinated, Scalable and Robust MAS 177

where E^i [G{z) \z-i] gives the expected value of G over the possible actions of agent /.
Such a private utility for the agents is fully factored with G because the second term
does not depend on agent /'s state [34] (these utilities are referred to as AU in [34]).
Furthermore, because it removes noise from an agent's private utility, EDU yields
far better leamability than does G [34]. This noise reduction is due to the subtraction
which (to a first approximation) eliminates the impact of states that are not affected
by the actions of agent /.

The second utility we consider is the Wonderful Life Utility [34], given by:

WLUi = G{z)-G{z-i). (4)

The major difference between EDU and WLU is in how they handle z_/. EDU pro­
vides an estimate of agent /'s impact by sampling all possible actions of agent /
whereas WLU simply removes agent / from the system WLU is also factored with
G, because the second term does not depend on the actions of agent / [34]. In general,
WLU also has better leamability than G, and in the next section we discuss this in
more detail for this problem domain.

3 Combination of Imperfect Devices

We now explore the use of these private utility functions for the problem of com­
bining imperfect devices [5]. A typical example of this problem arises when many
simple and noisy observational devices (e.g., nano or micro devices, low power sens­
ing devices) attempt to accurately determine some value pertinent to the phenomenon
they're observing. Each device will provide a single number that is slightly off, sim­
ilar to sampling a Gaussian centered on the value of the real number. The problem
is to choose the subset of a fixed collection of such devices so that the average (over
the members of the subset) distortion is as close to zero as possible.

3.1 Problem Definition

Formally, the problem is to minimize

where rij e {0,1} is whether device j is or is not selected, and there are Â devices in
the collection, having associated distortions {aj}. This is a hard optimization prob­
lem that is similar to known NP-complete problems such as subset sum or partition­
ing [5, 10], but has two twists: the presence of the denominator and that aj G R Vy.
In this work we set the system-level utility function to G == - e (we do this so that
the goal is to "maximize" G, which is more consistent with the concept of "utility"
design).

The system is composed of N agents, each responsible for setting one of the HJ.
Each of those agent has its own private utility function, though the overall objective

178 Turner

is to maximize system level performance. The aim is to give those agents private
utilities so that, as they learn to maximize their private utilities, they also maximize
G.

3.2 Expected Difference Utility

For this application, the EDU discussed in the previous section becomes:

EDUi{z) = - ' 7 - ^ ^^'

where p{ni — 1) and p{ni = 0) give the probabilities that agent / set its ni to 1 or
0 respectively. In what follows, we will assume that those two actions are equally
likely (i.e., for all agents /, p{ni = l) = p{ni = 0) = 0.5).

Depending on which action agent i chose (0 or 1), EDU can be reduced to:

=\''j'^j EDUiiz) = 0.5—£ĵ ;̂ 0.5-;̂ ^ ;̂̂ if W/ = 1 , (7)
lL\^k-l lk=\^k

or:

\l%injaj + ai\ _^^\J^U^W\
SLi^^ + 1 ' Iti^k

EDUiiz) = 0.5'^^-^ ' \ ^ -0.5' ^-^ ' '̂ if ni = 0, (8)

Note that in this formulation, EDU provides a very clear signal. If EDU is posi­
tive, the action taken by agent / was beneficial to G, and if EDU is negative, the action
was detrimental to G. Thus an agent trying to maximize EDU will efficiently max­
imize G, without explicitly trying to do so. Furthermore, note that the computation
of EDU requires very little information. Any system capable of broadcasting G can
be minimally modified to accommodate EDU. For each agent to compute its EDU,
the system needs to broadcast the two numbers needed to compute G: the number
of devices that were turned on (i.e., the denominator in Equation 5) and the associ­
ated subset distortion as a real number (i.e., the numerator in Equation 5 before the
absolute value operation is performed. Based on those two numbers, the agent can
compute its EDU.

3.3 Wonderful Life Utility

For this application, the WLU discussed in the previous section becomes:

WLUiiz) = - '̂ ^V + S (9)
lk=\^k Ik^irik

Designing Agent Utilities for Coordinated, Scalable and Robust MAS 179

Note however, that unlike with EDU, the action chosen by agent / has a large
impact on the WLU. If agent / chooses action 0, the two terms in Equation 9 are
identical, resulting in a WLU of zero. Depending on which action agent i chose (0 or
1), WLU can be reduced to:

WLUi{z)=' ' ^ , - v^ i f n . - ^ l , (10)

or:

WLUi{z) = 0 ifn/ = 0. (11)

In this formulation, unlike EDU, WLU provides a clear signal only if agent i had
chosen action 1. In that case, a positive WLU means that the action was beneficial
to G, and a negative WLU means that the action was detrimental for G. However, if
agent / had chosen action 0, it receives a reward of 0 regardless of whether that action
was good or bad for G. This means that on average half the actions an agent takes
will be random as far as G is concerned. Considering leamability implications, this
means that on average WLU will have half the leamability of EDU for this problem.

4 Experimental Results

In this work we purposefully used computationally unsophisticated and easy to build
agents for the following reasons:

1. To ensure that we remained consistent with our purpose of showing that a large
scale system of potentially failure-prone agents can be coordinated to achieve
a system level goal. Indeed, building thousands of sophisticated agents may be
prohibitively difficult; therefore though systems that will scale up to thousands
may use sophisticated agents, they cannot rely on such sophistication.

2. To focus on the design of the utility functions. Having sophisticated agents can
obscure the differences in performance due to the agent utility functions and the
algorithms they ran. By having each agent run a very simple algorithm we kept
the emphasis on the effectiveness of the utility functions.

Each agent had a data set and a simple reinforcement learning algorithm. Each
agents' data set contained time, action, utility value triplets that the agent stored
throughout the simulation. At each time step each agent chose what action to take,
which provided a joint action which in turn set the system state. Based on that state
the system level utility, and the private utility of all the agents are computed. The
new time, action take and utility value for agent / then gets added to the data set
maintained by agent /. This is done for all agents and then the process repeats.

To choose its actions, an agent uses its data set to estimate the values of the utility
it would receive for taking each of its two possible move. Each agent / picks its action
at a time step based on the utility estimates at that time. Instead of simply picking the
largest estimate, to promote exploration it probabilistically selects an action, with a

180 Turner

higher likelihood of selecting the actions with higher utility estimates (e.g., it uses
a Boltzmann distribution across the utility values). Because the experiments were
run for short periods of time, the temperature in the Boltzmann distribution did not
decay in time. However to reflect the fact that the environment in which an agent is
operating changes with time (as the other agents change their moves), and therefore
the optimal action changes in time, the two utility estimates are formed using expo­
nentially aged data: for any time step r, the utility estimate / uses for setting either
of the two actions ni is a weighted average of all the utility values it has received at
previous times t' that it chose that action, with the weights in the average given by an
exponential of the values r — r'. Finally, to form the agents' initial data sets, there is
an initialization period in which all actions by all agents are chosen uniformly ran­
domly, with no learning used. It is after this initialization period ends that the agents
choose their actions according to the associated Boltzmaim distributions.

For all learning algorithms, the first 20 time steps constitute the data set initial­
ization period (note that all learning algorithms must "perform" the same during that
period, since none are actually in use then). Starting at r = 20, with each consecu­
tive time step a fixed fraction of the agents switch to using their learner algorithms
instead, while others continue to take random actions. Because the behavior of the
agents starting to use their learning algorithm changes, having all agents start learn­
ing simultaneously provides a sudden "spike" into the system which significantly
slows down the learning process. This gradual introduction of the learning algo­
rithms is intended to soften the "discontinuity" in each agent's environment. In these
experiments, for N = 50 and N = 100, three agents turned on their learning algo­
rithms at each time step, and for Â = 1000, sixty agents turned on their learning
algorithms at each time step.

4.1 Agent Utility Performance

Figures 1-3 show the convergence properties of different agent utilities and a search
algorithm in systems with 50,100 and 1000 agents respectively. The results reported
are based on 20 different {at} configurations, where each {«/} is selected from a
Gaussian distribution with zero mean and unit variance. For each configuration, the
experiments were run 50 times (i.e., each point on the Figures is the average of 20 x
50 = 1000 runs). The graphs labeled G, EDU and WLU show the performance of
agents using reinforcement learners with those reinforcement signals provided by G
(team game), EDU and WLU respectively. S shows the performance of local search
where new w/'s are generated at each step by perturbing the current state and selected
if the solution is better than the current best solution (in the experiments reported
here, 25% of the actions were randomly changed at each time step, though somewhat
surprisingly, the results are not particularly sensitive to this parameter). Because the
runs are only 200 time steps long, algorithms such as simulated aimealing do not
outperform local search: there is simply no time for an annealing schedule. This
local search algorithm provides the performance of an algorithm with centralized
control.

Designing Agent Utilities for Coordinated, Scalable and Robust MAS 181

0.001
\ri{\fifi(\fi(\fiC\f\f\f\C\tif\

^^^.^^f^A^^'^-''^^^'''^^

^ ^ , . , e . a « - ° - ^
Q . Q G O Q -

. ^ e a B a B O Q B Q B O B B O B Q C D

^OOOO-O-OOOK^O-OOO^^O-OOO-O-O-OOO^D-O-OGO-O-O-OOO-O-O-OOO-OG

100

time
150 200

Fig. 1. Combination of Imperfect Devices Problem, N=50.

O

1.001

0.01

0.1

EDU -
WLU -

G
• S

..0
0'"

0''
. /

X

•' 1 1 I •" " 1 "'
A ^

'-'O- ^ ^ A A A A A A A A A A A A A AAAAAA AAAAAAAAAAAAAA AAAAA

Q v ^ :

' / 0-O-€>OOO-©-O-OOO-O-€>OOO-O-e)-OOO-O-e>OOO-©-O-OOO-©-€>OOO

1 . 1 ,, . , , ,.,. 1 i ,

50 100

time

150 200

Fig. 2. Combination of Imperfect Devices Problem, N=100.

In all cases in which agents use the G utility, they have a difficult time learning.
Even for 50 agents, the noise in the system is too large for such agents to learn how
to select their actions. For 50 agents (Figure 1) both WLU and EDU outperform the
centralized search algorithm. In this case, both utility functions sufficiently "clean­
up" the signal for the agents to perform well. For 100 agents (Figure 2), WLU starts

182 Turner

O

1e-05

0.0001

0.001

0.01

0.1

EDU — —
WLU "X

G ^
s e

-

0' f

"fWx^^

Al •

ji^O-0-OGOO-©-0-0000-0-e>-0-€>00000-0-00000-0-€>0 J

-

50 100

time

150 200

Fig. 3, Combination of Imperfect Devices Problem, N=1000.

to suffer. Because agents only receive useful feedback when they take one of the two
actions, the noise in the system is increasing. This "noise" becomes too much for
systems with 1000 agents (Figure 3), where WLU is outperformed by the centralized
algorithm. EDU, on the other hand, continues to provide a clean signal for all systems
up to the largest we tested (1000 agents).

Note that because agents turning on their learning algorithm changes the environ­
ment, the performance of the system as whole degrades immediately after learning
starts (i.e., after 20 steps) in some cases. Once agents adjust to the new environment,
the system setdes down and starts to converge.

4.2 Scaling Characteristics of Utilities

Figure 4 shows scaling results (the t = 200 average performance over 1000 runs)
along with the associated error bars (differences in the mean). As Â grows two com­
peting factors come into play. On the one hand, there are more degrees of freedom
to use to minimize G. On the other hand, the problem becomes more difficult: the
search space gets larger for 5, and there is more noise in the system for the learning
algorithms. To account for these effects and calibrate the performance values as N
varies, we also provide the baseline performance of the "algorithm" that randomly
selects its action ("Ran"). Note that the difference between the performances of all
algorithms and EDU increases when the system size increases, reaching a factor of
twenty for S and over 600 for GfoYN= 1000.

Also note that all algorithms but EDU have slopes similar to that of "Ran", show­
ing that they cannot use the additional degrees of freedom provided by the larger N.
Only EDU effectively uses the new degrees of freedom, providing gains that are

Designing Agent Utilities for Coordinated, Scalable and Robust MAS 183

100

Number of Agents

Fig. 4. Scaling in the Combination of Imperfect Devices Problem

1000

proportionally higher than the other algorithms (i.e., the rate at which EDU's per­
formance improves outpaces what is "expected" based on the random algorithm's
performance).

4,3 Robustness

In order to evaluate the robustness of the proposed utility functions for multiagent
coordination, we tested the performance of the system when a subset of the agents
failed during the simulation. At a given time (r = 100 in these experiments), a certain
percentage of agents failed (e.g., were turned off) simulating hazardous condition in
which the functioning of the agents caimot be ascertained. The relevance of this
experiment is in determining whether the proposed utility functions require all or a
large portion of the agents to perform well to be effective, or whether they can handle
sudden changes to their environment.

Figure 5 shows the performance of EDU, WLU, and G for 50 agents when 10%
of the agents fail at time step t = 100. Similarly Figure 6 shows the performance of
100 agents where 20% of them fail. The results of the centralized search algorithm
with no failures ("S" from Section 4.1), is also included for comparison.

In these experiments, none of the agent learning algorithms were adjusted to
account for the change in the environment. In agents that continued to function, the
learning proceeded as though nothing had happened. As a consequence, not only
did the agents need to overcome the sudden change in their task but they had to
do so with parameters tuned to the previous environment. Despite these limitations,
EDU and WLU recover rapidly for the 50 agent case, whereas G does not. For the
case with 100 agents and 20% agent failure, only EDU outperforms the centralized

184 Turner

0.001

O
0.01

200

Fig. 5. System performance for 50 agents, 10% of which fail at time t=100.

0.001

O
0.01

0.1

/^e> o oo-o-o o G<D-o-e> o o-o-0"6> o o-o-o

50 100

time

150 200

Fig. 6. System performance for 100 agents, 20% of which fail at time t=100.

search algorithnn. Note this is a powerful results: a distributed algorithm with only
80% functioning agents, each tuned to a different environment outperforms a 100%
functioning centralized algorithm.

Figures 7 and 8 show the performance of EDU when the percentage of agent fail­
ures increases from 10 to 50% for 50 and 100 agents respectively. For comparison

Designing Agent Utilities for Coordinated, Scalable and Robust MAS 185

0.001

9 0.01

0.1

10% —-—
t20% ---X
50% ^

S e.

mmmm.

200

Fig. 7. Effect of agent failures on EDU for 50 agents (S has no agent failures).

0.001

O
0.01

0.1

50 100
time

150 200

Fig. 8. Effect of agent failures on EDU for 100 agents (S has no agent failures).

purposes, the search results (From Section 4.1) are also included. After the initial
drop in performance when the agents stop responding, EDU trained algorithms re­
cover rapidly and even with half the agents outperform the fully functioning and
centralized search algorithm. These results demonstrate both the adaptability of the
EDU and its robustness to failures of individual agents, even in extreme cases.

186 Turner

5 Discussion

The combination of imperfect devices is a simple abstraction of a problem that will
loom large in the near future: How to coordinate a very large numbers of agents
- many of which may have limited access to information and perform unreliably
- to achieve a prespecified system-level objective. This problem is fundamentally
different from traditional multi-agent problems in at least four ways: (i) the agents
have limited sensing and decision making capabilities; (ii) the agent do not model
the actions of other agents; (iii) the agents are unreliable and failure-prone; and (iv)
the number of agents is in the thousands.

The work summarized in this chapter is based on ensuring coordination while
eliminating external mechanisms such as contracts and incentives to allow the sys­
tems to scale to large system. In the experimental domain of selecting a subset of
imperfect devices, the results shows the promise of this method by providing im­
provements of up to twenty times better than a centralized algorithm and of nearly
three orders of magnitude over a multi-agent system using a team game approach.
Furthermore, when as many as half the agents failed during simulations, the proposed
method still outperformed a fully functioning centralized search algorithm.

This approach is well-suited for addressing coordination in large scale cooper­
ative multi-agent systems where the agents do not have pre-set and possibly con­
flicting goals, or when the agents do not need to hide their objectives. The focus is
on ensuring that the agents do not inadvertently frustrating one another in achiev­
ing their goals. The results show that in such large scale, failure-prone systems, this
method performs well precisely because it does not rely on the agents building an ac­
curate model of their surroundings, modeling the actions of other agents or requiring
all agents in the system to reach a minimum performance level.

Acknowledgements: The author would like to thank David Wolpert for invaluable
discussions and for bringing the faulty devices problem to his attention, Adrian
Agogino for his many comments, as well as the participants in the Coordination
of Large Scale Multi-Agent Systems workshop at AAMAS 2004 for their helpful
suggestions.

References

1. A. Agogino and K. Turner. Efficient evaluation functions for multi-rover systems. In The
Genetic and Evolutionary Computation Conference, pages 1-12, Seatle, WA, June 2004.

2. A. Agogino and K. Tumer. Unifying temporal and structural credit assignment problems.
In Proceedings of the Third International Joint Conference on Autonomous Agents and
Multi-Agent Systems, New York, NY, July 2004.

3. S. Arai, K. Sycara, and T. Payne. Multi-agent reinforcement learning for planning and
scheduling multiple goals. In Proceedings of the Fourth International Conference on
MultiAgent Systems, pages 359-360, July 2000.

4. C. Boutilier. Planning, learning and coordination in multiagent decision processes. In
Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and Knowl­
edge, Holland, 1996.

Designing Agent Utilities for Coordinated, Scalable and Robust MAS 187

5. D. Challet and N. F. Johnson. Optimal combinations of imperfect objects. Physical
Review Letters, 89:028701, 2002.

6. B. Clement and E. Durfee. Theory for coordinating concurrent hierarchical planning
agents. In Proceedings of the National Conference on Artificial Intelligence, pages 495-
502, 1999.

7. R. H. Crites and A. G. Barto. Improving elevator performance using reinforcement learn­
ing. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors. Advances in Neural
Information Processing Systems - 8, pages 1017-1023. MIT Press, 1996.

8. K. Decker and V. Lesser. Designing a family of coordination mechanisms. In Proceedings
of the International Conference on Multi-Agent Systems, pages 73-80, June 1995.

9. J. Fredslund and M. J. Mataric. Robots in formation using local information. In Pro­
ceedings, 7th International Conference on Intelligent Autonomous Systems (IAS-7), pages
100-107, Marina del Rey, CA, March 2002.

10. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, San Fransisco, 1979.

11. T. Hogg and B. A. Huberman. Controlling smart matter. Smart Materials and Structures,
7:R1-R14, 1998.

12. J. Hu and M. R Wellman. Multiagent reinforcement learning: Theoretical framework
and an algorithm. In Proceedings of the Fifteenth International Conference on Machine
Learning, pages 242-250, June 1998.

13. B. A. Huberman and T. Hogg. The behavior of computational ecologies. In The Ecology
of Computation, pages 77-115. North-Holland, 1988.

14. N. F. Johnson, S. Jarvis, R. Jonson, P. Cheung, Y. R. Kwong, and P. M. Hui. Volatility
and agent adaptability in a self-organizing market, preprint cond-mat/9802177, February
1998.

15. M. Kearns and D. Roller. Efficient reinforcement learning in factored MDPs. In Pro­
ceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pages
740-747, 1999.

16. S. Kraus. Negotiation and cooperation in multi-agent environments. Artificial Intelli­
gence, pages 79-97, 1997.

17. M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of the 11 th International Conference on Machine Learning, pages 157-163,
1994.

18. D. C. Parkes. Iterative Combinatorial Auctions: Theory and Practice. PhD thesis. Uni­
versity of Pennsylvania, 2001.

19. D. Pynadath and M. Tambe. The communicative multiagent team decision problem:
Analyzing teamwork theories and models. Journal of Artificial Intelligence Research,
16:389-423, 2002.

20. T. Sandholm and R. Crites. Multiagent reinforcement learning in the iterated prisoner's
dilemma. Biosystems,'il:\Al-\66, 1995.

21. T. Sandholm and V. R. Lesser. Coalitions among computationally bounded agents. Arti­
ficial Intelligence, 94:99-137, 1997.

22. P. Scerri, Y. Xu, E. Liao, J. Lai, and K. Sycara. Scaling teamwork to very large teams.
In Proceedings of the Third International Joint Conference on Autonomous Agents and
Multi-Agent Systems, New York, NY, July 2004.

23. Sandip Sen, Mahendra Sekaran, and John Hale. Learning to coordinate without sharing
information. In Proceedings of the Twelfth National Conference on Artificial Intelligence,
pages 426-431, Seattle, WA, 1994.

24. P. Stone. Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic
Soccer. MIT Press, Cambridge, MA, 2000.

188 Turner

25. P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning perspec­
tive. Autonomous Robots, 8(3), 2000.

26. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

27. M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research, 7:83-
124, 1997.

28. K. Tumer, A. Agogino, and D. Wolpert. Learning sequences of actions in collectives
of autonomous agents. In Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems, pages 378-385, Bologna, Italy, July 2002.

29. K. Tumer and J. Lawson. Collectives for multiple resource job scheduling across het­
erogeneous servers. In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Melbourne, Australia, July 2003.

30. K. Tumer and D. Wolpert, editors. Collectives and the Design of Complex Systems.
Springer, New York, 2004.

31. K. Tumer and D. Wolpert. A survey of collectives. In Collectives and the Design of
Complex Systems, pages 1,42. Springer, 2004.

32. K. Tumer and D. H. Wolpert. Collective intelligence and Braess' paradox. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence, pages 104-109, Austin,
TX, 2000.

33. C. Watkins and P Dayan. Q-learning. Machine Learning, 8(3/4):279-292, 1992.
34. D. H. Wolpert and K. Tumer. Optimal payoff functions for members of collectives. Ad­

vances in Complex Systems, 4(2/3): 265-279, 2001.
35. D. H. Wolpert, K. Tumer, and E. Bandari. Improving search algorithms by using intelli­

gent coordinates. Physical Review E, 69:017701, 2004.
36. P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent cooper­

ation: Model and experiments. In Proceedings of the Fifth International Conference on
Autonomous Agents, pages 616-623, Montreal, January 2001. ACM Press.

37. Y. C. Zhang. Modeling market mechanism with evolutionary games. Europhysics Letters,
March/April 1998.

Part III

New Approaches for Large Scale Coordination

Learning Scalable Coalition Formation in an
Organizational Context"̂

Sherief Abdallah and Victor Lesser

University of Massachusetts Amherst
shario,lesser@cs.umass.edu

1 Introduction

Agents can benefit by cooperating to solve a common problem [2, 11]. For example,
several robots may cooperate to move a heavy object, sweep a specific area in short
time, etc. However, as the number of agents increases, having all agents involved in
a detailed coordination/negotiation process will limit the scalability of the system.
It is better to first form a coalition of agents that has enough resources to undertake
the common problem. Then only the agents in this coalition coordinate and negotiate
among themselves.

This situation is common in domains where a task requires more than one agent
and there are more than one task competing for resources. Computational grids and
distributed sensor networks are examples of such domains. In computational grids
a large number of computing systems are connected via a high-speed network. The
goal of the grid is to meet the demands of new applications (tasks) that require large
amounts of resources and reasonable responsiveness. Such requirements cannot be
met by an individual computing system. Only subset of the available computing sys­
tems (aka a coalition) has enough resources to accomplish an incoming task.

The work in [8] defined the coalition formation problem as follows (a formal
definition is given in Section 2). The input is a set of agents, each controlling some
amount of resources, and a set of tasks, each requiring some amount of resources and
each worth some utility. The solution assigns a coalition of agents to each task, such
that each task's requirements are satisfied and total utility is maximized. It should

* This material is based upon work supported in part by the National Science Foundation un­
der Grant No. IIS-9988784 and the Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory Air Force Materiel Command, US AF, under agreement
F30602-99-2-0525. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation thereon. Any opin­
ions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation,
the Defense Advanced Research Projects Agency (DARPA), Air Force Research Labora­
tory or the U.S. Government.

mailto:lesser@cs.umass.edu

192 Abdallah and Lesser

be noted that the coalition formation problem is not concerned with how agents in
a coalition cooperate to actually executes its assigned task. Such cooperation can be
achieved by other complementing frameworks such as teamwork [11].

In this chapter we propose a novel approach for solving the coalition formation
problem approximately using an underlying organization to guide the formation pro­
cess. The intuition here is to exploit whatever knowledge is known a priori in order to
make the coalition formation process more efficient. For instance, in many domains,
agents' capabilities remain the same throughout the lifetime of the system. Addition­
ally, incoming tasks may follow some statistical pattern. Can we organize agents to
exploit this knowledge (of their capabilities and task arrival patterns) to make the
search for future coalitions more efficient? If so, will all organizations yield the same
performance, or do some organizations perform better than others? In the remainder
of this chapter we try to provide answers to these questions. The main contributions
of this work are:

• an organization-based distributed algorithm for approximately solving the coali­
tion formation problem

• the use of reinforcement learning to optimize the local allocation decisions made
by agents in the underlying organization

The chapter is organized as follows. In Section 2 we define the problem for­
mally, laying out the framework we will use throughout the chapter. In Section 4 we
present our approach. Section 5 describes our experimental results. We compare our
approach to similar work in Section 6. Conclusions and future work are discussed in
Section 7.

2 Problem definition

To focus on the coalition formation problem, some simplifying assumptions are
made to avoid adding the scheduling problem to it.̂ We assume time is divided into
episodes. At the beginning of each episode each agent receives a sequence of tasks.-̂
Once a task is allocated a coalition, agents in that coalition can not be assigned to
another task until the end of the episode. At the end of every episode all agents are
freed and ready to be allocated to the next sequence of tasks. More formally:

Let r = (7i, 72,..., r^) be the sequence of tasks arriving in an episode. Each task
Ti is defined by the tuple {ui,rri^\,rri^2,"-->fn,m)y where Ui is the utility gained if
task Ti is accomplished; and rq^k is the amount of resource k required by task 7]. Let
/ = {/i, /2,...,/«} be the set of individual agents in the system. Each agent // is defined
by the tuple (cr/j ,cr/,2, •••,cr/,;„), where crt^k is the amount of resource k controlled
by agent//.

The coalition formation problem is finding a subset of tasks SCT that maximizes
utility while satisfying the coalition constraints, i.e.:

^ In future we plan to integrate scheduling in our framework.
^ Note that the overall system may receive more than one task at the same time but at different

agents.

Learning Scalable Coalition Formation in an Organizational Context 193

• and there exists a set of coalitions C = {Ci,..., C\s\}, where Q C / is the coalition
assigned to task 7]-, such that V7]- eSyk: Y^I-^Q ^^j,k ^ fr^^ and V/ 9̂ j : C/ nC; =
0

In other words, each task is assigned a coalition capable of accomplishing it
and any agent can join at most one coalition. This means if the resources controlled
(collectively) by a coalition exceed the amount of resources required by the assigned
task, the excess resources are wasted. Having more than one type of resource means
that there will be trade-offs, where decreasing the excess of one resource type may
increase the excess of another resource type. Next section shows that the coalition
formation problem (as defined above) is NP-hard.

2.1 Complexity

In this section we prove that the Coalition Formation Problem (CFP), as we formu­
lated it, is NP-hard. We do so by reducing the multidimensional knapsack problem,
which is known to be NP-hard, to CFP.

The Multi-dimensional Knapsack Problem, MDKP

The input of this problem consists of a set of constraints C = {ci,C2, ...,c^} and a
set of objects O — {01 ,(̂ 2, ...,6>^}, where each object is defined by the tuple oi =<
w/,vv/,i,w/,2,.-.,vVi> >, where w/ is its value and w/j is its weight for dimension j .
The goal is to find a subset of objects S c O, s.t. ^aes^i is maximized, while Vc; G

Theorem 1. Coalition Formation Problem, CFP, is NP-hard

Proof, This is proved by reducing an MDKP instance to a CFP instance. This is done
as follows. The decision version of the MDKP problem is:

Ql: given a set of objects O and a set of constraints C, is there a valid subset of
objects Sk that satisfy the constraints and has total utility of k or more?

The mapping from MDKP to CFP is as follows. For each object oi =< w/, w/, 1,..., w/,^ >
in MDKP, we define an agent«/ = < w/, 1,..., wt^m > and a task 7]- = < w/, w/, 1,..., w/,̂ >.
We also add task T'^<U,Wu...,Wni>, where U = S^.^^ "/ and Wj = (Zo^go ̂ u) -
Cj (this amount can be viewed as the gap between the demand of a resource and its
supply). As will be described shordy, T' encodes the constraints of the MDKP in­
stance such that the coalition assigned to this task corresponds to the set of objects
left outside the knapsack. The CFP decision problem then becomes:

Q2: given the set of tasks T and the set of agents A, is there a a valid set of
Coalitions C that results inU -^k utility or more?

To prove the theorem, we need to show that the answer to Q1 is yes iff the answer
to Q2 is yes. Let Q = {Wi} ' oi ^Sk] be the set of coalitions corresponding to S^
(i.e. Q is a set of singular coalitions). Let C_^ = [at : oi ^ S^}, i.e. the coalition

194 Abdallah and Lesser

corresponding to all objects not in S^. By definition, every coalition {at} e Q can be
assigned to 7], resulting in k utility. The hard part is to prove that the constraints of
the MDKP problem is not violated by this assignment. This is where 7' comes into
play. If Sk satisfies the MDKP constraints, then

i'.ojeO ojeSk i'.ojeO

•••vy X ^ij>wj

-Cj

i.e., C-k is a valid coalition to undertake T', This means there exists a set of coalitions
C = Q U [C-k] that yield k-^U utility.

3 Control

In a real multiagent system, which implements the coalition formation approach,
a task may arrive at any agent. How can this agent know which agents have the
right capabilities? We refer to the problem of locating and assigning an agent to a
coalition as the control problem. While the control problem is crucial to the coalition
formation process, it has received little attention in previous work that deals with
coalition formation. This section tries to pin down the different approaches to solve
this problem.

Figure 1 illustrates three possible approaches to the control problem. The first ap­
proach is having a fully distributed control paradigm where every agent is a manager.
Each manager knows about and controls every other agent. The other extreme is the
fully centralized approach, where there is only one manager in the system. The third
approach is having a hierarchy. In this case there is a tree of managers. Each man­
ager controls a fixed number of neighbors. The remainder of this section discusses
the trade-offs between these three approaches in light of the following issues: state
consistency, scalability, and reliability.

Communication is needed when a new task arrives for two reasons. First to in­
form agents that are chosen in the coalition which task they are assigned to. Second,
to inform other managers of the change of state in the system, i.e. maintaining state
consistency. State consistency is the property that every manager in a system sees the
same system's state. This is important to avoid conflicts among managers as early as
possible. For example, assume manager m\ asks agent a\ to undertake task T\, a\
accepts and hence is no longer available to be assigned to another task. On the other
hand, manager mi does not know of the change in a\ 's state, mi receives another
task, decomposes it, and starts contracting subtasks, relying on its incorrect system
state. After contracting and committing some subtasks, mi asks a\ to do subtask Ti,

Learning Scalable Coalition Formation in an Organizational Context 195

Fig. 1. Different control structures: fully distributed (top left), fully centralized (top right), and
hierarchy (bottom).

ai rejects the request as it is still working on T\, mi fails to find a substitute for a\
and starts decommitting the subtasks already committed.

Naturally, maintaining state consistency becomes a problem as the number of
managers in a system increases. For example, in the fully distributed approach where
every agent is itself a manager, the number of managers is maximum and maintain­
ing state consistency needs a lot of communication overhead."̂ This makes the fully
distributed approach the least efficient. On the other hand, in the fully centralized ap­
proach there is only one manager in the system that handles all allocations, therefore
maintaining state consistency is free. The hierarchical approach strikes a balance
between the other two approaches (the overhead for maintaining state consistency
depends on the number of managers in the system).

Scalability is also an issue. A manager that needs to know the state of 1000 agents
and control them is much more overloaded than a manager that needs to know the
state of only 10 agents and control just these 10 agents. In both the centralized and
the fully distributed approaches a manager is connected to all agents in the system.

^ It is also possible to leave other managers have an old state of the system, hoping that no
conflict will occur (e.g. they will never ask for the same agent, or even if they ask, the other
agent will be already done from the old task.) This may lead to communication savings in
some domains. We do not cover this approach in this chapter.

196 Abdallah and Lesser

which significantly reduces these approaches scalability. The hierarchical approach
that we adopt in this paper is more scalable than the other two approaches.

Reliability is how the failure of a manager affects the performance of the sys­
tem as a whole. The fully distributed approach is the most reliable, where the failure
of a manager minimally affect the system's performance. The centralized approach
is naturally the least reliable, but it is possible to employ failure recovery mecha­
nisms, e.g. electing a new manager to replace the one that failed. The hierarchical
approach is still not as reliable as the fully distributed approach, but having multiple
managers means the system will still be functional even if one manager fails. This
may lead to having multiple disconnected islands of agents, but each island can still
function independently.^ Again failure recovery mechanisms can be employed in the
hierarchical approach as well.

Another control architecture that is not mentioned above is the network archi­
tecture. This is a generalization of the hierarchy approach, where cycles may exist
between managers. Having cycles in the control architecture introduces some prob­
lems. Figure 2 shows an example of that. Manager A asks managers B and C to
report how many resources they have available. Manager B reports the resources of
its neighbors, which include the resources available at C. Similarly, C reports the
resources available at 5. In the end, manager A will have a wrong view of what re­
sources are available, because resources of both B and C are counted twice. Even
worse, both B and C also have wrong view of the resources available, as they both
may ask A for its state (which wrongfully indicates that A has a lot of resources).
Having cycles also requires care with contracting tasks. Without careful protocol
design, a task may circulate indefinitely being continuously contracted. For these
reasons we did not consider control structures that include cycles.

* Most recent state of a neighbor

[a] [b]

Fig. 2. Problems with cycles in control architectures.

4 Proposed Solution

Because the coalition formation problem is NP-hard, an optimal algorithm will need
exponential time in the worst case (unless NP = P). An approximation algorithm.

^ Because islands are now disconnected, it is possible that some tasks that were achievable
by the connected hierarchy are no longer achievable.

Learning Scalable Coalition Formation in an Organizational Context 197

which can exploit information about the problem, is needed. If the environment (in
terms of incoming task classes and patterns) does not follow any statistical model,
and agents continually and rapidly enter and exit the system, there is little informa­
tion to be exploited. Luckily, in many real applications the environment does follow
a model, and the system can be assumed closed.

In such cases, it is intuitive to take advantage of this stability and organize the
agents in order to guide the search for future coalitions. We chose to organize agents
in a hierarchy, which is both distributed and scalable as discussed in Section 3. Figure
3 shows a sample hierarchical organization. An individual (the leaves in Figure 3)
represents the resources controlled by a single agent. A manager (shown as a circle
in Figure 3) is a computational role, which can be executed on any individual agent,
or on dedicated computing systems. A manager represents agents beneath it when it
comes to interaction with other parts of the organization.

[[Iz 13 [l4 1 15 [ie]

[izj

(M4

[is

)

Jid]

(M5

no 111

{m)

lu] \\13\

Fig. 3. An Organization Hierarchy

Each manager M has a set of children, children{M), which is the set of nodes
direcdy linked below it. So for instance, in the organization shown in Figure 3,
children{M6) = {/12,/13}, while children{M3) = {M4,M5,M6}. Conversely, each
child C has a set of managers managers{C). For example, managers{MA) = {M3}.
For completeness, children of an individual are the empty set, and so are the man­
agers of a root node.

Each agent A (either a manager or an individual) controls, either direcdy or indi-
recdy, a set of individuals, cluster{A) (i.e., the leaves reachable from agent A). In the
example above, dw5r^r(M6) = {/12,/13},c/M5rer(M3)-{/7,78,79,/10,/11,/12,/13},
and cluster{16) = {76}. Also for each agent A, we define members{A) to be the set of
all agents reachable from A. In the above example, members{M3) = {M3,M4,M5,M6,
77,78,79,710,711,712,713}. Sections 4.3 and 4.6 show how agents in such organiza­
tions learn to work with each other.

4.1 Example

Figure 4 shows how a group of agents, organized in a hierarchy, can cooperate to
form a coalition. A task T — {u= 100, rri = 50, rra = 150) is discovered by agent

198 Abdallah and Lesser

M6. Knowing that members{M6) does not have enough resources to accompHsh 7,
M6 sends task T to its manager M3. Since members{M3) has enough resources to
achieve T, M3 uses its local policy to chose the best child to contribute in achieving
7, which is M5. M3 partially decomposes T into subtask 75 = {us = 50,rrs^\ =
0,rrs^2 = 100), and asks M5 to allocate a coalition for it. M5 returns a committed
coalition CT^ = {/10,/11}. The process continues until the whole task T is allocated.
Finally, M3 integrates all sub-coalitions into CT and sends it back to M6.

[a] Agent M6 discovers a new task, T [b] Task T is beyond M6's capabilities,
so it hands T to a higher manager, M3

[c] Having more global view of the organzation, M3
decides to decompose T into subtask T5
and ask MS to allocate a coalition for it.

[d] MS successfully allocate TS, and sends
committed coalition back to M3

^ - >

[e] M3 decomposes the rest of T into
subgoal T4 and ask another agent to allocate it.

The process continues until all T is allocated

[f] At the end. Task T is achieved. M3 integrates
all subcoalition into C and sends it to

the originating agent, M6.

Fig. 4. An example of organization-based coalition formation.

Learning Scalable Coalition Formation in an Organizational Context 199

4.2 Architecture

In the system we developed, managers are concurrently and distributively learning
their local policies. A local policy determines the order by which a manager decom­
poses a high-level task into subtasks and allocate these subtasks to its children. The
combination of local policies constitutes a global hierarchical policy of the whole
system. Figure 5 illustrates a block diagram of a manager's architecture in the sys­
tem. There is a handler for every child. Each handler includes a neural net, which
approximates the value of choosing the corresponding child to form a sub-coalition
(for the task at hand). The weights of a neural net are optimized using reinforcement
learning, as Algorithm 3 shows (described in Section 4.3). To speedup learning using
neural nets, the state encoder encodes the current state differently for the neural net
of different children, depending on the amount of resources available at each child.
More on learning in Section 4.6.

from manager to manager

Task
Decomposer

Local
Decision

Child l^s handler

state
Encoder

Decomposed
task

State
aggregator

t
Current State

Child n's handler

Decomposed Abstract
state

child 1 ' child n

Fig. 5. A manager architecture.

The state aggregator aggregates the state of a manager m before it is sent to
higher managers managers{m). When a higher manager rrih receives the aggregated
state from its child m, nth will store the aggregated state in the abstract state field
of child m's handler. The current state of a manager is a combination of the abstract
states of its children and the current status of the task at hand (i.e. the resources the
task requires and not yet allocated and the utility to be gained if the remainder of
the task is completed). The task decomposer stores arriving tasks. When the local
policy chooses a child to form a sub-coalition, the task decomposer decomposes the

200 Abdallah and Lesser

task for this child (storing it in the child's handler). More details of the operation of
a manager in Section 4.3.

4.3 Local Decision

Algorithm 3 describes the decision process used by manager A in the organization
once it receives a task 7)\. Figure 6 illustrates the algorithm. Though in this figure TA
comes from another agent, TA can also arrive directly from the environment as well.
The algorithm works as follows.

chUd chUd

Fig. 6. The recursive decision process of a manager.

LOCM is the list of coalitions committed by manager M for tasks that M received
previously in the current episode. LOCM is reset at the beginning of each episode.
M evaluates its current state SM (Section 4.4). M then selects an action a based on
its policy (Section 4.6). Each action corresponds to a child M/ G children{M). Once
a child is selected, a subtask 7]- of T is dynamically created based on M/'s state
(Section 4.5). M then asks M/ to form a sub-coalition capable of accomplishing 7].
(The notion Mi.allocateCoalition{Ti) means that the function allocateCoalition is
called remotely on agent Mi). Mi forms a sub-coalition Cy;. and sends a commitment
back to M. M updates Cj and learns about this action. M updates its state, including
the amount of resources to be allocated (URM) and the corresponding utility to be
gained (UUM)-

M selects the next best child and the process continues as long as the following
conditions hold (step 3): T requires more resources than currently allocated AND
M still controls some unallocated resources that are required by 7. At the end, if
enough resources are allocated to 7, M adds the formed coalition CT to its list of
commitments LOCM and returns C7. Otherwise T is passed up the hierarchy. Also
to simplify handling of multiple tasks, we do not allow coalition formation of a task

Learning Scalable Coalition Formation in an Organizational Context 201

to be interrupted. This means that if a new task Tnew arrives at manager M while
M is still forming a coalition for an older task Tou, then M will finish forming the
coalition for Toid before considering Tnew

Algorithm 3: allocateCoalition(T)
INPUT: taskr = {u,rr\,...,rrm)
OUTPUT: coalition CT = {/i, ...,/|C^|}

1: let CT = {],uu<^ u, UR <— {rr\, ...,rrm)y stop <— false, AR <r- the amount of available
resources controlled by M = availableResourcesQ
= totalResources{M) — Y,celjOCtotalResources{C)

2: 5" <— encodeState(ww, UR)
3: while UR>0 AND URAR > 0 AND stop = false do
4: a <— selectAction(s)
5: let Mi be the child corresponding to a.
6: Ti <r- decomposeTask({UR, uu) , M/)
7: CTI <- M/.allocateCoalition(7]-)
8: Cj <— CT UCŷ .
9: UR^UR- total Resources {CTi),uu<r- uu-uTi, and AR^AR- totalResources{CTi)

10: r <r- time and communication costs of forming C7;.
11: if UR = 0 /* 7 does not need more resources */ then
12: r<r-r + u
13: end if
14: 5' <— encodeState(uu, UR) /* the next state */
15: learn(^,a,r,y)
16: s^s'
17: end while
18: if C//? > 0 /* task T successfully allocated */ then
19: LOC ^ LOCUCT /* to exclude agents in CT from next allocations */
20: return CT
21: else
22: if 3M' e managers{M) /* if not root */ then
23: M'.allocateCoalition(T) /* pass T up */
24: else
25: fail.
26: end if
27: end if

4.4 State Abstraction

For a manager M, the function encodeState encodes the current state at manager
M to produce the current state of members{M). This encoding is then fed to neural
nets to get action values, as discussed in Section 4.6. Since the higher the manager
in the hierarchy the exponentially more individuals it controls, state abstraction is
necessary to achieve scalability. Otherwise, one is effectively centralizing the prob­
lem. In this work, each manager M abstracts the state of its organization, through

202 Abdallah and Lesser

the state aggregator (Section 4.2). This abstraction involves aggregating the states of
underlying children recursively as described below.

Due to the large state space and to facilitate recursive abstraction, we defined
the state by a set of features. Each state feature of manager M is defined recur­
sively in terms of the features of M's children. For example, let the feature vector
total Re source s{M) = {tr\,...,trm) be the total amount of resources controlled by
manager M (where m is the number of different resource types). It can be defined
recursively as follows: totalResources{M) — Y,cechiidren{M)^otalResources{c). That
is, the total resources controlled by a manager is thesum of the total resources con­
trolled by its children. For an individual //, totalResources{Ii) = //.

Some features cannot be defined recursively in a straightforward way. Instead,
they are defined in terms of other recursive features. For example, let averageResources{M)
be a feature vector of the average amount of resources controlled by any indi­
vidual in members{M). This feature can be defined as averageReources{M) =
totalResources{M)Isize{M). totalResources{M) is described above, while size{M)
is the total number of individuals in an organization and is recursively defined as
size[M) =-Y.cechildren{M)size{c).

The recursive features defined above are assumed constant throughout the system
lifetime. For example, size{M) will return the number of individuals controlled by
manager M, even if at a specific time none of these individuals is free. Clearly, for
allocation purposes, one needs more dynamic features that reflect the current state of
the system. For each static feature, a corresponding dynamic feature is defined pre­
ceded by the keyword avail. For example, the number of individuals not allocated to
tasks = availSize{M) = size{M) - J,ceLOC{M) size{C), and their aggregated resources

availTotalResources{M) = total Re source s{M) — ^ total Re source s{C)
CeLOC{M)

In our implementation, tasks allocation always starts from the root manager (even
if a task is received/discovered at a lower manager it is propagated up the hierarchy
to the root manager). This restriction and the strict tree control architecture sim­
plify communication and maintaining state consistency. The reason is that an agent
can receive a request to do a task only from its manager. Since there is only one
manager for each agent, each manager knows the state of its children through the
request/response messages exchange. For example, manager M initially knows its
child M\ has 100 of CPU resource. M asks M\ to form a coalition with at least 50
CPU resource. Mi replies that it formed a coalition of 60 CPU resource (because, for
example, M\ controls 5 agents of 20 CPU resource each). M now knows that M\ has
only 40 CPU resource available.

As a result, when a manager asks a child to form a coalition, the manager knows
a priori that a capable coalition will be formed. What is not known is how much
resources will be wasted. In the last example, manager M knows that its child Mi has
100 units of CPU resource. When M asks M\ to form a sub-coalition with at least
50 CPU units, M knows that M\ will commit a coalition with 50 or more CPU units,
but M does not know exactly how much CPU units. For example, ifM\ controls only

Learning Scalable Coalition Formation in an Organizational Context 203

one agent with 100 CPU units then this agent will be the formed coalition and 50
extra CPU units might be wasted.

As usual, nothing comes for free. While abstraction significantly enhances the
scalability of the system, the price of abstraction is loss of information. A manager
higher in the hierarchy "sees" fewer details about its organization. This leads to un­
certainty in the manager state, and hence makes the local decision process more
difficult to optimize. Section 4.7 discusses how the hierarchy affect the quality of
abstraction.

4.5 Task Decomposition

When a manager M selects a child M/ to be asked for resources (for an incoming task
7), M partially decomposes T to 7] (using heuristics that will be described shordy).
As described in Section 4.4, a manager M only sees abstract features of its child M/.
Using this information, M needs to find 7] such that the expected excess of resources
is minimized. What makes this difficult is that when a manager M decomposes T
into Ti it does not know the exact state of M/, but only an abstraction of it.

The partial decomposition heuristic we use, which is oudined in Algorithm 4, is
to request from each child a multiple, a, of the average available resources it controls;
.^^ a X ' ' ' ^ ' ^ " ; ; ; (M 7 ^ ^ ' ^ ^ The intuition behind the heuristic is as follows. If all
individuals controlled by M/ are identical, the heuristic is optimal. As individuals
become more diverse in the resources they control, the heuristic still gives a good
approximate decomposition that may succeed without wasting many resources.

Let us elaborate at Algorithm 4 in more detail. Because agents can not partici­
pate in more than one coalition, the minimum of the ratio Ij (in the algorithm) over
all resource types is selected and used for all other resource types. Also to ensure
progress, a is at least 1. Finally, the utility of the decomposed task is proportional to
the total of the decomposed resources.

Algorithm 4: decomposeTask(r,M/)
INPUT: task T = (M,rri,...,rr^) AND manager M/
OUTPUT: task 7]- = {ui,rr^,...,rri^rn)

1: ARi <— availTotalResources{Mi) = {ari^\,,..,ari^fri)
2: Zi ^ availsize{Mi)

4: a^— minj{lj)
5: a<—max(a, 1)
6: rri J ^ mm (a x ^ , rrj)

7: Ui ^ ux -^r-d^
^j ''j

8: return 7]

For example, let T — {u=\00, rr\ — 50, rr2 — 150), availTotalResources{M/[) =
(ar4,i = 100,ar4,2 = 100), and availSize{M^) = 10. Using the algorithm below we

204 Abdallah and Lesser

get a = 5 and hence T4 = {u4 = 50, rr4,i = 50, rr4,2 = 50). Note that asking M4 for
as much as possible will result in wasted resources. For example, the decomposed
task 74 = (W4 = 50,rr4 1 = 50,rr4 2 = 100) can only be satisfied if all individuals
controlled by M4 are allocated, resulting in 50 units of resource type 1 being wasted.

Note that the above heuristic algorithm is not optimal. In the previous example,
if the whole organization only has 150 units of resource type 2 available, then the
decomposed task T^ may be better than T4. Because of that, we allow each manager
to select the same child more than once to fine tune the decomposition at the expense
of more communication and time cost.

4.6 Learning

A key factor in the performance of our system is how a manager selects its actions
(function select Act ion in Algorithm 3). In particular, in what order a manager should
ask each child for its contribution. We modeled this as a Markov Decision Process,
MDP, then used reinforcement learning (RL) techniques to learn a good local policy
for each manager. This section briefly describes the MDP model and the RL algo­
rithm this work uses to learn the manager's policy. The section also describes how
this work uses neural nets in conjunction with RL to cope with large state space.
Before getting into the details of the model, some terms need to be defined:

System/Environment. These terms are used interchangeably to refer to anything out­
side the agent. A state of manager M (when it receives task T) consists of the
abstract states of each child M/ G children{M), the resources required by T and
its utility.

Action. Whatever an agent can do is an action. In a manager, there is an action
corresponding to each child.

Reward. A real number indicating the quality of the last executed action. In other
words, the agent executes an action and then receives its immediate reward (util­
ity) from the system. From Algorithm 3, intermediate rewards are small negative
rewards to reflect the communication and the processing costs of each additional
step spent forming the coalition. Once a manager M successfully allocates a
coalition to task 7, it gains a reward equal to 7's utility. Note that we can im­
plicitly indicate our preferences by modifying the reward function. For example,
in [8] the author prefers coalitions of smaller size. This can be achieved by ad­
justing the reward function accordingly (e.g., dividing the utility gained by the
size of the coalition formed). Note that even if 7 is a subtask of another task T',
the rewards received by M are independent of whether the coalition formation
for T' will succeed or not. This recursive optimality speeds up learning, while
not affecting the quality of the formed coalitions.

State. Ideally, the state of the system at a certain time should include every bit of
detail about this system. However, for all practical purposes, only part of the
system that would affect decision is important. If the state of an agent does not
capture enough details of the real world, the agent may fail to learn an optimal
policy and the best it can do is to learn a near optimal policy.

Learning Scalable Coalition Formation in an Organizational Context 205

Policy. The policy K{S) is a table that specifies for every state the action that should
be taken. The goal of a learning algorithm is to learn an optimal policy 7i* {s), i.e.,
a policy that specifies for every state the best action such that the total reward
gained (by the agent) is maximized.

Decision Cycle. When an agent starts in a given state s, executes an action a, re­
ceives a reward r, and moves to the next state s\ then this completes a decision
cycle. This decision cycle is defined by the tuple (5, a, r, s^).

The model used in this work is Markov Decision Process, or MDP. In this model,
the agent starts in a certain state s. The agent decides which action to execute. Upon
executing an action a, the agent receives a reward r and the system moves to an­
other state s'. The process continues until the system reaches a terminal state (if none
exists, the process continues). An MDP model is completely defined by four compo­
nents: {S,A,P,R), where

• 5 is the set of system states.
• A is the set of actions available for the agent to choose from.
• P{s,a,s') is a transition probability function, i.e., the probability that the system

will transit from state s to state 5' if the agent executes action a. The uncertainty
in coalition formation is due to the abstraction and the fact that a child might
have allocated a task that its parent does not know about. Because it is difficult to
analytically compute such transition probability, we used a model free learning
algorithm as we discuss shordy.

• R{s,a,s') is the expected reward function, if the system is in state s, the agent
applies action a, and the system's next state is s'

In the field of operations research, it is assumed that all four components of the
MDP are known and the optimal policy can be found using dynamic programming
techniques [10]. However, in real domains, the P and R components are usually un­
known. These two components together characterize the dynamics of the system in
which the agent operates. They are called the environment model.

Reinforcement learning algorithms can be used in these cases as they make no
assumptions regarding the environment model, and hence they are model free. These
algorithms use decision cycle tuples to approximate the P and R functions. Deci­
sion cycle tuples can be obtained by executing actions in the system and receiving
rewards, i.e., an agent observes its current state s and executes the best action a ac­
cording to its policy, then observes the resulting reward r and next state s\ These
four values constitute a decision cycle tuple.

This work uses a well-known algorithm, Q-learn[lO] to automatically find the
optimal policy. The main idea of the original algorithm is as follows. For every state
and action pair {s,a), a real value Q{s,a) is stored. These values are initialized ran­
domly (or in any arbitrary way). They are then updated using the following equation
(also known as Bellman's Equation):

Q{s,a) ^ Q{s,a) -i-a[r-hymdxQ{s\a') - Q{s,a)]

206 Abdallah and Lesser

Where {s,a,r,s^) is a decision cycle tuple; a and y are learning parameters and
are called learning rate and discounting factor respectively. As the agent moves from
state to state, executing actions and receiving rewards, the values stored in Q con­
verges and can be used to determine the optimal policy. Q-leaming learns in an
incremental and interactive manner; as an agent gains more experience, its perfor­
mance improves. This is important in domains containing huge number of states,
many of which will not be visited. The best action to perform in a given state s is
a* •= n*{s) = argmaXaQ{s,a). The details explaining the intuition behind the algo­
rithm and a proof of its correctness is beyond the scope of this chapter and can be
found in [10]. We used the Q-leaming algorithm with neural nets to approximate
action values.

It should be noted that for this algorithm (and any other Reinforcement Learning
algorithm) to work correctly, the agent needs to try all actions at every state "a large
enough" number of times. One way to achieve this is to select an action randomly
e% of the time, and in the remaining 1 - e% pick the best action. This simple algo­
rithm is called E-greedy exploration algorithm [10] and e is called the exploration
rate. Typically, e is initially large (to allow the agent to try more actions) and then
decreases over time. We use a decaying exploration rate so that agents explore less
as they gain more experience. We also tried using eligibility tracing, but the learning
algorithm often diverged so this approach was dropped.

Neural Nets

Since the state of a manager includes the amount of available resources of each of
its children and the amount of recourses required by the incoming task, the state
space is very large. This prohibits the use of traditional Q-leaming algorithm which
uses a table to store the value of every state and action pair. Altematively, functional
approximators can be used. The idea here is to use a parametrized function instead
of a table to approximate the values of actions (i.e. approximates Q{s,a)), In this
case, Q-leaming algorithm is used to update the parameters of the function, which
implicitly updates the value of the action.

Here we use neural nets as the functional approximator. Q-leaming is used to up­
date the weights of the neural net. The details are beyond the scope of this document
but can be found in [10]. A separate neural net is used to approximate the value of
each action/child as shown in Figure 5. This uses more memory space (because of
storing more neural nets), but provides better approximation as the weights of each
neural net can be better fitted to the corresponding action/child.

We explored several techniques to speed up the leaming further. One technique
involved minimizing the input fed to each neural net. The key observation is that the
value of choosing a child M/ depends mainly on M/'s state, and to a lesser extent on
the other children's states.

4.7 Organization Structure

In this work, the underlying organization can be viewed as a search tree. Our dis­
tributed algorithm searches the same search tree several times for each task and for

Learning Scalable Coalition Formation in an Organizational Context 207

each episode. Each time, the search has a different start state (where and when the
task is discovered) and different goal state (the set of individuals — leaves — that
form the coalition.)

To optimize performance, not only does one need to learn a good search mecha­
nism, as we do here, but also to find an organization that for a specific environment
model and agent population yields the best performance. The interesting question
is whether by modifying the search tree can the search mechanism perform better.
The closest analogue in classical AI is the use of macro operators, which adds edges
to the search tree to speedup the search. In our case there is more flexibility, as the
search tree can be modified in whatever way.

While in this work we do not tackle the hard problem of optimizing the organi­
zation, we verify the effect of the underlying organization on the performance of the
overall system. Our experiments verify this by testing different organization struc­
tures of the same agent population and same tasks distribution, as described in Sec­
tion 5.

5 Experiments and Results

5.1 Setup

In our experiments we compare three possible policies: random, greedy, and learn­
ing. The random policy just picks a child at random. The greedy policy selects the
child Mi with the highest preference value /?/ = Y!k=\ f^^f^{<^n,k^ffk)^ which measures
how much resources Mi can contribute to the incoming task. For example, let the
incoming task T — {u= 100, rr\ = 50, rr2 = 150) and let manager M has two possi­
ble children Mi and M2 where availTotalResources{M\) = {cr\^\ = 200,cr\^2 = 0),
availTotalResources{M2) - (cr2,i = 0,cr2,2 = 200), p\ = 50 and p2 = 150. Thus M
will select M2.

The experiments try to evaluate the effect of both the underlying organization
and learning the local policy on the system's performance. To do so, we compared
the performance of the same agent population under five organizations and the three
local policies described above. In the tested agent population, agents control two
types of resources, and the fall into 6 types of agents:

Type A controls {crA^i = 2,crA,2 = 2) resources
Type B controls {crB^i = lO,crB^2 = 10) resources
Type C controls (crc,i = 0,crc,2 = 30) resources
Type D controls {crp,! = l,crz),2 = 10) resources
Type E controls {crE^i = 20,crE,2 = 2) resources
Type F controls (cr/r 1 = S,crf^2 = 0) resources

These classes represent different specializations among agents. Four of the stud­
ied organizations are shown in Figure 7. Organization HOMOGEN is homogeneous.
Agents of each type are clustered together, then similar types (e.g., A and B) are clus­
tered together. Organization SEMI — HOMOG is semi-homogeneous. Each couple

208 Abdallah and Lesser

of agents of similar types are clustered together, then similar clusters are clustered
together. Organization SHORT is similar to HOMOGEN, but one level of the hierar­
chy is omitted. Finally, organization RANDOM has the same "structure" of SHORT,
but individual agents are assigned randomly to each cluster.

manager

individual type A

individual type B

individual type C

individual type D

O
A
A
D
H

HOMOGEN SEMI-HOMOG

SHORT RANDOM

Fig. 7. Different Organization Structures.

Because the above four organizations (unlike the fifth organization described be­
low) involve distributed decision making, we refer to the three local policies as: dis­
tributed learned policy (Distrib-Leam), distributed random policy (Distrib-Random),
and distributed greedy policy (Distrib-Greedy), whenever we compare performance
against the fifth organization.

The fifth organization is the centralized organization, CENTRALIZED, where
there is only one manager connected to every other agent. This organization is tested
using the random policy (Center-Random) and the greedy policy (Center-Greedy).
The learned policy is not tested for this organization because the state of the cen­
tralized manager is exponential in the number of individuals, which is 40 in our
experiments. We use this organization as a base line for comparison.

Results for every organization/technique combination were computed over 10
simulation runs. Each simulation run consisted of 30,000 episodes. Seven tasks ar­
rive at every episode and are randomly picked from a bag of tasks. Tasks in the bag
are generated randomly such that each task requires between 4 and 10 agents to be
accomplished. Each task has an associated payoff, which is 1750 on average (it de­
pends on the amount of resources each task requests). At any episode, the resources
required by arriving tasks exceed the resources available to the system. The cost of
every message (requesting a coalition or responding with a formed coalition) costs
-1. Each Decision cycle (i.e. a time-step in forming a coalition) costs -1.

Learning Scalable Coalition Formation in an Organizational Context 209

Our experiments focused only on 40 individuals and 10 managers so we can
easily hand code different organization structures and study their effect. However,
to verify the scalability of our approach, we tested it in a population of 90 agents
and 13 managers. Agents were organized in a way similar to organization H and
were randomly generated (using 9 distributions to represent 9 different classes of
agents). Tasks were also randomly generated (from two different distributions). We
plan further experiments on even larger populations and on the use of clustering
techniques to automatically generate different organizations.

5.2 Results

Figure 8 shows the average utility for different organizations and policies when
things have stabilized (i.e. learned policy converged). As expected, Center-Random
performed worst. Distrib-Random performed better than Center-Random.^ Center-
Greedy is better than both. Our approach, Distrib-Leam, outperformed all other
policies for all organization structures, except when using a random organization
structure.

Figure 9 illustrates how the performance of our system improves as agents gain
more experience (i.e., witness more episodes). Interestingly, Distrib-Greedy, per­
formed worse than Distrib-Random and Distrib-Leam in all organizations except
RANDOM, where it performed better than both. We think this is due to the fact that
the greedy policy is based on a heuristic, which might perform best in some contexts
and worst in others. That is also why the greedy policy has the highest deviation.
In our experiments with larger agent population (90 agents), Distrib-Leam was bet­
ter than other policies, achieving 35% more utility than Center-Random and at least
20% better than Distrib-Random and Distrib-Greedy.

More importantly, Distrib-Leam is more stable than other approaches as Fig­
ure 10 shows. The standard deviation (of achieved utility) using Center-Greedy is
70% worse than Distrib-Leam with SE organization. Center-Random is 30% worse
than Distrib-Leam. Also Distrib-Greedy was the worst for all organizations except
RANDOM. We had similar results with the larger agent population. Distrib-Leam
had the least standard deviation, which was around one third that of Distrib-Greedy.

While it is expected that our approach performs better than distributed random
and greedy policies, one might expect centralized policies to perform better than our
approach, due to the inaccuracies (incurred by abstraction) and the limitations on
managers' choices (imposed by the organization). We believe the reason our system
performed better is the underlying organization, which implicitly encodes domain
knowledge. In other words, limiting the actions of a manager is actually a good thing
if these actions are the best actions this manager can take. This is also why a bad
organization may lower performance. The underlying organization also affects the
abstraction quality. A random organization contains more information, hence it will
be abstracted poorly (the entropy principle).

^ We believe this is due to the goal decomposition component of the organization, which
encodes part of the domain knowledge.

210 Abdallah and Lesser

10000 n

8000 H

•56000

m

|4000

to

2000 H

0 -•

Random

Greedy

Learning

CENTRAL SHORT SEMl-HOMOG HOMOGEN RANDOM

Fig. 8. Average utility for random, greedy and learned policies and for different organizations.

Fig. 9. Learning curve.

Figure 11 compares the average number of exchanged messages per task. As
expected this measure increases as the organization hierarchy gets taller. Central­
ized approaches exchange fewer messages. Still, learning the local decision re­
duces the number of exchanged messages. Finally, Figure 12 shows the average
resources wasted. Center-Greedy wasted 20% more resources than Distrib-Leam,
while Center-Random wasted 40% more. We got similar results for the larger agent
population.

1400 - |

1200 A

§1000 A

> 800 H
o

Jeoo J
"•§ 400 -^

200 A

0 -I

Learning Scalable Coalition Formation in an Organizational Context 211

Random

Greedy

Learning

CENTRAL SHORT SEMI-HOMOG HOMOGEN RANDOM

Fig. 10. Utility standard deviation for random, greedy and learned policies and for different
organizations.

Random

Greedy

Learning

50 H

40

30 -\

E 20 H

10 H

0 -I

CENTRAL SHORT SEMI-HOMOG HOMOGEN RANDOM

Fig. 11. Messages average for random, greedy and learned policies and for different organiza­
tions.

6 Related work

In [8], the authors presented a distributed algorithm for solving the coalition for­
mation problem. The algorithm requires exponential time but is optimal. It neither
used learning nor an underlying organization. Our algorithm is an approximation
algorithm that returns a solution in polynomial time.

212 Abdallah and Lesser

45

40 -j

w 35 4
I 30
o
I 25
-i 20
0)
« 15
a
5 10

5 H

0

Random

Greedy

.Learning

CENTRAL SHORT SEMI-HOMOG HOMOGEN RANDOM

Fig. 12. Average percentage of wasted resources for random, greedy and learned policies and
for different organizations.

The work in [6] introduced an anytime coalition structure generation algorithm
(the term coalition structure refers to the solution of the coalition formation prob­
lem). As in [8], the work did not use any organization for guiding the coalition for­
mation search and assumed a black box function that given a feasible solution returns
the value of such solution, while we evaluate the solution based on the total utility of
the allocated tasks.

The work in [9] used a multi-leveled learning scheme to form coalitions. Both
reinforcement learning and case based reasoning were used. Unlike our work, they
do not use an underlying organization, which limits the scalability of their approach
(their experiments were limited to 4 agents).

Though some extensions to the original contract net protocol [12] proposed the
use of an underlying organization, none of these extensions (to our knowledge) pro­
vided a formal model of such an organization, nor evaluated the performance for
different organizations, unlike our work here.

In the brokering research area [4] not enough attention is given to scalability
or coalition formation, the main focus of our work. In some sense, our use of an
underlying organization can be viewed as a hierarchy of brokering agents. Integrating
brokering techniques into our framework is an interesting future work direction.

The coalition formation problem can be mapped to a multi-unit combinatorial
auction. However, none of the algorithms developed for combinatorial auctions [7]
make use of stable knowledge, which remains relatively unchanged throughout the
system lifetime. This includes agents' capabilities (e.g., same bids repeat for consec­
utive auctions) and task patterns (e.g., consecutive auctions follow some statistical
model). We on the other hand try to exploit this knowledge implicitly using an under­
lying organization and learning the local decision of each agent in the organization.

Learning Scalable Coalition Formation in an Organizational Context 213

The work in [3] tried to provide a unified framework for coordination in MAS.
In this framework each agent follows a set of behaviors that differ in their level of
abstraction. As behaviors become more and more abstract, an (implicit) underlying
organization becomes more and more apparent. The goal of such an organization is
to optimize the immediate individual goals. In our work, the goal of the organiza­
tion is to optimize the coalition formation process, which indirectly optimizes the
performance of the MAS as a whole.

In [5], the authors proposed and analyzed a simplified and restricted model of
an organization, which takes only processing and communication costs into account.
While they tried also to analyze the performance of different organizations, unlike
our work there was no notion of resources, individual capabilities, coalition capabil­
ities, task requirements, coalition formation, and learning.

In our approach a group of agents co-learn to work together in an organization.
This can be viewed as distributed learning of a hierarchical policy that targets recur­
sive optimality [1]. However, none of the work in hierarchical learning area (HRL)
introduced the concepts of quantitative/dynamic state abstraction and task decompo­
sition. We defined these concepts to decouple agents' local decision problems while
minimizing communication, and hence achieve scalability. Our work also quanti­
tatively evaluates how different action hierarchies affect the learning performance.
Figure 13 illustrates the relationship between our work and HRL. HRL learns a pol­
icy for the whole action hierarchy in a single agent. In our approach each agent
concurrently learn a sub-policy. Collectively, these sub-policies constitute a global
hierarchical policy, but learning of sub-policies is distributed.

Fig. 13. Relationship between Hierarchical Reinforcement Learning and our approach.

214 Abdallah and Lesser

7 Conclusions and Future work

In this work we defined a generic problem solving framework using an underlying
organization, and applied it to the coalition formation problem. We provided an al­
gorithm for the local decision to be made by each agent, given state abstractions
from other agents and its decomposed task. We used Q-leaming with neural nets
as functional approximators to improve the local decision. Our initial results show
that our approach outperformed both random and greedy policies for most of the or­
ganizations we studied. It achieved higher utility and more stability with a smaller
percentage of wasted resources and fewer exchanged messages. The results also ver­
ify the scalability of our approach as it still outperforms the other approaches we
studied for larger systems.

In future, we aim to study a wider variety of organizations for different types
of environments. We will also investigate further our abstraction and decomposition
schemes, as we believe better schemes can considerably improve the learned policy
performance. We also plan to study the optimization of the underlying organization
and how this interacts with optimizing the hierarchical policy.

References

1. A Barto and S Mahadevan. Recent advances in hierarchical reinforcement learning. In
Discrete Event Systems journal, volume 13, pages 41-77, 2003.

2. K Decker and V Lesser. Designing a family of coordination algorithms. In 1st Interna­
tional Conference on Multi-Agent Systems, 1995.

3. E. Durfee and T. Montgomery. Coordination as distributed search in a hierarchical be­
havior space. IEEE Trans, on Systems, Man, and Cybernetics, 21:1363-1378, 1991.

4. Matthias Klusch and Katia Sycara. Brokering and matchmaking for coordination of agent
societies: A survey. In Coordination of Internet Agents: Models, Technologies and Appli­
cations, chapter 8, pages 197-224. Springer Verlag, 2001.

5. Young pa So and Edmund Durfee. Designing tree-structured organizations for compu­
tational agents. Computational and Mathematical Organization Theory, 2(3):219-246,
1996.

6. T. Sandholm and et al. Coalition structure generation with worst case guarantee. Pro­
ceedings of the 3rd Internation Conference on Autonomous Agents, 1999.

7. T. Sandholm and et al. Winner determination in combinatorial auction generalizations.
Proceedings of the 1st International Joint Conference on Autonomous Agents and Multi-
agent Systems, 2002.

8. Onn Shehory. Methods for task allocation via agent coalition formation. Artificial Intel­
ligence Journal, 101(l-2):165-200, 1998.

9. K. Soh and X. Li. An integrated multilevel learning approach to multiagent coalition for­
mation. International Joint Conference on Artificial Intelligence, pages 619-624, August
2003.

10. R Sutton and A Barto. Reinforcment Learning: An Introduction. MIT Press, 1999.
11. M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research, 7:83-

124, 1997.

Learning Scalable Coalition Formation in an Organizational Context 215

12. D. Norrie W. Shen. An agent-based approach for dynamic manufacturing scheduling.
Proceedings of the 3rd International Conference on the Practical Applications of Agents
and Multi-Agent Systems, 1998.

Multi-Agent Coordination in Open Environments

Myriam Abramson^ Ranjeev Mittu^

^ U.S. Naval Research Laboratory Myriam. Abramson@nrl .navy .mil
^ U.S. Naval Research Laboratory ranjeev.mittu@nrl .navy.mil

Summary. This paper proposes a new approach to multi-agent systems leveraging from re­
cent advances in networking and reinforcement learning to scale up teamwork based on joint
intentions. In this approach, teamwork is subsumed by the coordination of learning agents.
The intuition behind this approach is that successful coordination at the global level gener­
ates opportunities for teamwork interactions at the local level and vice versa. This unique
approach scales up model-based teamwork theory with an adaptive approach to coordination.
Some preliminary results are reported using a novel coordination evaluation.

1 Introduction

Open environments such as Peer-to-Peer (P2P) and wireless or Mobile AdHoc
Networks (MANET) provide new challenges to communication-based coordina­
tion algorithms such SiS joint intentions[l3] as well as the opportunity to scale-up.
Our framework is based on the proxy architecture of Machinetta[17] where proxy
agents perform the domain-independent coordination task on behalf of real, domain-
dependent agents. This framework is extended with a coordination mechanism of
individual actions based on reinforcement learning. This adaptive proxy agent ar­
chitecture is illustrated in Figure 1. In this approach, local teamwork outcomes pro­
vide the feedback for learning the coordination task on a larger scale. The teamwork
theory of joint intentions and its associated problems in open environments are pre­
sented first and then our general approach, OpenMAS, is introduced with illustration
from the prey/predator example[3]. An implementation addressing some of the issues
is presented followed by conclusions for future work.

2 Joint intentions and Open Environments

Joint intentions[5, 13] form the cornerstone of teamwork theory of BDI (Belief, De­
sire, Intention) agents. It differentiates joint actions from individual actions by the
presence of a common internal state (beliefs) and the joint commitment of achieving

http://navy.mil

218 Abramson and Mittu

Other
Agents

Fig. 1. Adaptive proxy agent architecture

a goal. It is based on the communication of critical information among team mem­
bers. However, the mutual responsiveness expected of team members at a local level
is difficult to achieve on a larger scale. Open environments are characterized by their
dynamic nature and the heterogeneity of the agents as well as asynchronous and un­
reliable communication on a large scale. The problems addressed can be categorized
as follows: team formation, role allocation, synchronization of beliefs, communica­
tion trade-offs, and information sharing.

1. Team Formation. An open environment gives the opportunity to find teammates
appropriate for a task instead of relying on a fixed group of agents. What is the
best way to find teammates? When is the best time to find teammates? How to
decide whether to join a team? In open environments, peers form "groups" by
similarity of individual interests. Likewise, similarity of individual intentions is a
necessary stepping stone for team formation in open environments. An intention
is defined here[5] as the decision to do something in order to achieve a goal and
can be construed as a partial plan.

2. Role Allocation. While direct point-to-point communication with any node can
be expensive and uncertain, access to neighbors is readily available in open envi­
ronments. P2P middleware, such as JXTA (Juxtapose)[l], provides the function­
ality needed to communicate reliably and cheaply with neighbors. In MANET,
the possibility of disconnecting the network is another constraint in accepting a
role requiring a change in location. Figure 2 describe the connection role that
peers play in communication in MANET. In open environments, multiple teams
are involved. How to adjust the connectivity role of the agents so that each team
can accomplish its goals most effectively?

3. Synchronization of Beliefs. The theory of joint commitments is based on the
ability to synchronize beliefs regarding "who is doing what". Teamwork breaks
down when roles do not match expected beliefs leading to coordinated attack
dilemmas[14]. How to adjust gracefully to uncertainties in communication?

Multi-Agent Coordination in Open Environments 219

4. Communication Selectivity. The tradeoffs involve the robustness that redun­
dancy of messages can provide in open environments versus the costs of com­
munication to the network. When reliable communication cannot be assumed,
selective communication of critical information might be detrimental to the co­
ordination task.

5. Information Sharing. Sharing information is critical to the formation of a com­
mon internal state. The redundancy of messages from different sources provides
corroborative evidence to support the information transmitted while conflicts
undermine certainty. However, a problem in open systems is the unnecessary
replication of messages from the same source through the network leading to
false corroborative evidence.

Synchronization of beliefs, communication selectivity and information sharing are
areas that are complicated by open environments, while team formation as well as
role allocation are the problems we are interested in addressing given these compli­
cating factors.

Fig. 2. Multi-hop routing in a MANET

3 OpenMAS Approach

Our proactive approach consists of leveraging from the belief framework of cognitive
agents at the local level but endowing the agents with the adaptative capabilities of
reinforcement learners as an additional coordination mechanism at the global level
where communication is unsure and unreliable. The objective is to find a contin­
uum between large-scale coordination and local teamwork. The overarching issues
addressed in support of this objective are (1) how to integrate general models of co­
operation with reinforcement learning in distributed, open environments (2) what are
good evaluation measures for the propagation of beliefs to heterogeneous agents and
(3) how to integrate multiple teams.

Methodology

Through the propagation of beliefs, the agents have some knowledge of the global
situation, albeit imperfect and decaying with time. This capability relaxes the in-

220 Abramson and Mittu

validation of the Markov property for multi-agent reinforcement learning systems.
Instead of committing to a non-local role, the agents just commit to the next individ­
ual step. This is a least-commitment approach that addresses the problems outlined
above of teamwork in open environments. Local environmental beliefs on the other
hand trigger a role allocation mechanism among neighbors sharing the same beliefs.
Role allocation of mutually exclusive tasks among agents can be modeled with dis­
tributed resource allocation algorithms based on constraint satisfaction[24]. The joint
actions generated are preferred over the individual actions generated by the coordi­
nation learning mechanism. Similarities between joint actions and individual actions
produce the terminal rewards needed for the learning algorithm. In this approach,
there is a tight integration between the local level of teamwork and the global level
of coordination. The overall approach is described in Algorithm 5. Figure 3 illus­
trates the approach in the prey/predator example.

Algorithm 5: Intention/Action loop
INPUT: intentions
OPENMAS-interpreter:
do

<information, intention> •«— receive-information()
if similar-intentions(intention)
accept-information()
update-current-state()

end if
state-estimation()
take-next-step 0
reinforce-learn()
propagate <next-step, intentions>

forever

The information received includes information communicated from peers and/or
perceived local information from the environment

The environment of agents acting under uncertainty can be conveniently mod­
eled as a POMDP (Partially-observable Markov Decision Process). POMDP can be
reformulated as continuous-space Markov decision processes (MDPs) representing
belief states[10] and solved using an approximation technique. When propagating lo­
cal environmental beliefs, the redundancy of messages reinforces current state beliefs
through corroborative evidence while discrediting others. The most likely state of the
global situation is then modeled as an MDP and the action to take determined by a
stochastic policy approximated by a policy gradient method [19]. Through commu­
nication, the agents are able to construct a global, albeit imperfect, view of the world
validating their assumption of the Markov property for independent autonomous
decision-making based on trial and error. However, even assuming the same global
knowledge of the world and optimization algorithm, coordination imposes the addi­
tional constraint that the agents choose the action leading to pareto optimality. For a
deterministic policy, this constraint can be met through conventions or through the

Multi-Agent Coordination in Open Environments 221

•• Role Allocation

• — • Propagation of Information

• ^ Perception

Fig. 3. Prey/predator example
The agents propagate changes of position and changes in the prey's status to their neighbors
recursively according to a time-to-live (TTL) parameter. The TTL parameter ensures that a
message does not bounce around needlessly when the destination cannot be found and can also
be used to disseminate information within a certain range. Role allocation strategies resolve
local conflicts.

transmission of knowledge. Another way to meet this coordination constraint is to
learn a stochastic policy that approximates a mixed strategy.

Role allocation endows the agents with a goal-driven behavior. In addition to ac­
complishing their roles and searching for possible role instantiations, agents in open
environments have the additional implicit task of maintaining the connectivity of the
network. It is necessary to balance those sometimes conflicting goals. The capabil­
ity to assume multiple roles is a characteristic of intelligent and flexible behavior.
Instead of modeling each goal separately in an MDP given the state of the envi­
ronment, the goals themselves, as formulated by a role allocation strategy for each
target, are part of the environment. This soft-subsumption architecture for multiple
roles is illustrated in Figure 4.

4 Problem Modeling

The world is modeled as the problem space:

where

• S is the believed perceived local state of the world.

• 5' is the believed global state of the world through propagation of information.
A is the set of actions.

222 Abramson and Mittu

State

^
W

Role
Allocation
Strategy ^

^
w

Learning
Engine

J
Action

Fig. 4. Soft-subsumption architecture for multiple roles

• T is the set of transition probabilities

5 x A x 5 - > [0,1]

• /?is the set of roles,

and

5' X A; -^ 9t

where

• Ai is the action determined to achieve a role.
• Aj is the action determined by coordination in the believed state space S',

A reward r is obtained if A/ = Aj.
The goal of each agent is to find a policy n maximizing the sum of expected

rewards such that:

s'es'
where 5' is the next state following the action prescribed by 71(5), r is the reward

in state s, and y is the discount factor weighting the importance of future rewards.

5 An Example

An prototype evaluation of the OpenMAS general methodology has been con­
ducted with some simplifying assumptions with the RePast simulation tool[6]. Fur­
ther experiments are planned for a large-scale MANET simulation in ns-2[2] using
P2PS[22], a P2P agent discovery infrastructure designed to work in ns-2 simulations.

Multi-Agent Coordination in Open Environments 223

5.1 Prey/Predator Example

The prey/predator pursuit game is a canonical example in the teamwork literature[3,
11] because one individual predator alone cannot accomplish the task of capturing a
prey. Practical applications of the prey/predator pursuit game include, for example,
unmarmed ground/air vehicles target acquisition, distributed sensor networks for sit­
uation awareness, and rescue operations. The original problem can be extended to
multiple teams by including more than one prey. Prey/predators can sense each other
if they are in proximity but do not otherwise communicate. Predators communicate
with other predators individually or can broadcast messages through their neighbors.
Four predators are needed to capture a prey by filling out four different roles: sur­
round the prey to the north, south, east and west. Those roles are independent of
each other and can be started at any time obviating the need for scheduling. The only
requirement is that they have to terminate at the same time either successfully when
a capture occurs or unsuccessfully if no team can be formed. The predator agents are
homogeneous and can assume any role but heterogeneity can be introduced by re­
stricting the role(s) an agent can assume. The prey and predators move concurrently
and possibly asynchronously at different time steps. In addition to the four orthog­
onal navigational steps, the agents can opt to stay in place. In case of collision, the
agents are held back to their previous position. Several escape strategies are possi­
ble for the prey. A linear strategy, i.e. move away in the same random direction, has
been shown to be an effective strategy while a greedy strategy, i.e. move furthest
away from the closest predator, can lead to capture situations[9].

The preference or utility w/y of predator agent / for a role j is inversely propor­
tional to the Manhattan distance d required to achieve the role. Other factors such
as fatigue, speed, resources, etc. can affect the preference for a role and are grouped
under a capability assessment C[16].

w / j ^ - x C / y (1)
d

The predators move in the direction of their target when assigned a role or ex­
plore the space according to a pre-defined strategy. The decision space for the role
allocation of P predators and p preys is 0{p^) where T is the number of teams of
size t that can be formed with P predators- .̂ This problem belongs to the most dif­
ficult class of problems for constraint satisfaction in multi-agent systems[15] due to
the dynamic nature of the environment and the mutually-exclusive property of role
allocation.

5.2 Role Allocation Strategy

An optimization algorithm can be used in parallel fashion by each agent based on
sensed and communicated information from the other agents in the group to au­
tonomously determine which role to assume. It is assumed that the other agents

3 P\

224 Abramson and Mittu

reach the same conclusions because they use the same optimization algorithm[8].
The Hungarian algorithm[12] (see below) is used as the optimization method by
each agent. Information necessary to determine the payoff of each role needs to be
communicated. Therefore, it is the current local state within the perception range,
or augmented with second hand information, that is communicated to the neighbors
instead of the intended role in a trade-off between performance and privacy.

This algorithm, also known as the bipartite weighted matching algorithm, solves
constraint optimization problems such as the job assignment problem in polyno­
mial time. The implementation of this algorithm follows Munkres' assignment
algorithm[4]. The algorithm is run over a utility matrix of roles x agents. The maxi­
mization of utilities is transformed to a cost minimization problem:

cost = argmax^^w/j

Minimize^{cost — utj)

The algorithm consists of transforming the matrix into equivalent matrices until
the solution can be read off as independent elements of an auxiliary matrix. While
additional rows and columns with maximum value can be added to square the matrix,
the optimality is no longer guaranteed if the problem is over-constrained, i.e. there
are more roles to be filled than agents. A simple example is illustrated in Table 1.

Table 1. A 4 x 4 assignment problem

The optimal assignment is {r\,^3),(^2,^2), (o?-̂ 4)) {f4}^\)

r\
ri

0
H

X\

0.79
0.29
0.33
0.92

X2

0.28
0.51
0.03
0.14

-̂ 3

1.00
0.83
0.47
0.82

;c4

0.89
0.38
0.91
0.80

When multiple teams are involved, an agent chooses the role in the team that
has the maximum sum of utilities rather than maximizing the sum of utilities across
teams, thereby ensuring team formation.

5.3 Policy Search

In reinforcement learning, there are two ways to search the state space of a problem.
We can search the policy space which is a mapping from current state to actions
or we can search the value space which is a mapping from possible states to their
evaluation. Because there are only a limited number of actions that can be taken from
a state, it is usually faster to search the policy space. Both methods however, should

Multi-Agent Coordination in Open Environments 225

converge to the optimal greedy strategy whether by taking the best state-action value
or the action that leads to the best valued state as the expected sum of rewards.

A function approximator generalizes to large state space. For gradient methods,
it was shown that a small change in the parameter space can lead to large changes in
the output space when searching for the value function while policy search where the
output are action probabilities is assured locally optimal convergence[19]. Learning
a stochastic policy has some advantages in dynamic and uncertain environments es­
pecially in pursuit games where the opponent might learn to escape a deterministic
adversary.

5.4 Coordination Evaluation

Because coordination is an emergent property of interactive systems, it can only be
measured indirectly through the performance of the agents in accomplishing a task
where a task is decomposed in a number of goals to achieve. The more complex the
task, the higher the number of goals needed to be achieved. While performance is
ultimately defined in domain-dependent terms, there are some common characteris­
tics. Performance can be measured either as the number of steps taken to reach the
goal, i.e. the time complexity of the task, or as the amount of resources required.
An alternative evaluation for coordination is the absence of failures or negative in­
teractions such as collisions, lost messages, or fragmentation of the network when
no messages are received. Figure 5 illustrates a taxonomy of coordination solution
metrics. To show the scalability of a solution, the evaluation must vary linearly with
the complexity of the task[7].

Coordination
Solution
Quality

I I
Performance Failures

1 I I I I
Goals, Resources Collisions, Unused
Steps I Conflicts, Resources

I ' I Fragmentations I

Number of Number of Lost
Messages Agents Messages

Fig. 5. Taxonomy of coordination solution quality for communicating agents

A combined coordination quality measure is defined as the harmonic mean of
goals achieved g, net resources expanded r and collisions c as follows:

226 Abramson and Mittu

#PreysCaptur€d
#Preys

Predators
log2{#Messages Received) + ̂ Predators

^Predators
c =

^Collisions + ̂ Predators (4)

3grc
coordination = (5)

gr + rc + eg
Although the message size required by the different predator strategies was

roughly equivalent, further work should measure the number of information bits per
message [20].

5.5 Experimental Evaluation

In the prey/predator example, actions leading to collisions with other predators are
negatively reinforced while actions leading to the capture of the prey are rewarded.
Experiments were conducted on a 20x20 grid with 2 preys and a variable number
of predators moving concurrently but synchronously at each time steps. The preys
move to a random adjacent free cell 70% of the time except edge cells to avoid
toroidal world ambiguities. The predators communicate their location and sensory
information about the preys to their neighbors according to pre-defined communica­
tion and perception range. The probability of receiving a message vary according to
a normal distribution based on (Euclidean) distance and the communication range of
each agent. The current state is represented by the one-dimensional locations of the
preys, the current location of the agent, and the location of the closest other three
predators known. A feed-forward neural net was implemented with 54 binary input
nodes, 7 hidden nodes and 5 output nodes to translate to the four possible orthogonal
directions to move and an option to stay in place. Each output node ot represents the
probability that the direction will lead to success. The sigmoid transfer function was
used for all internal and output nodes.

The agents learn to coordinate through trial and error in simulation using tempo­
ral difference learning between the value of the current direction in the output vector
and the value of the direction in the last output vector. They train following the opti­
mized role allocation strategy (see 5.2) when available as their behavior policy. The
direction to take is then conventionally derived according to the differences between
the destination of the role assignment and the current location of the agent along the
X-axis first and then the y-axis. When no role allocation is found, a softmax policy
is followed where the direction / is selected stochastically according to the probabil­
ity P(/) = ^ ^ . A reward of 1.0 is received when a goal is reached or when a role
allocation was found and a penalty of lE-6 is received when colliding.

In the performance phase, the neural net from the most successful agent is se­
lected. Table 2 summarizes the different parameters used. Figure 6 shows coordina­
tion quality results averaged over 1000 runs comparing different policies followed

Multi-Agent Coordination in Open Environments 227

when restricting the optimized role allocation strategy above a certain utility thresh­
old comprising about 5% of the interactions. There is a significant difference be­
tween the results obtained following the greedy policy learned through reinforce­
ment learning and a random policy (t-test p-values were 2E-5, 0.0001, 0.004 for 7,
8 and 9 predators respectively). The memory-based approach consists of moving
to an adjacent cell that was not visited in the last 7 steps. Interestingly, although
memory-based exploration performs better than random walk for a single reinforce­
ment learner agent[21], they rate worse for multi-agent coordination. Those experi­
ments have shown that learning from past experiences can produce a viable behav­
ioral policy on a larger scale that is conducive to teamwork on a local scale and
that can produce domain-dependent coordination rules. Further application of state
estimation techniques should enhance this approach.

Table 2. Parameters
Input nodes 54

Hidden nodes 7
Output nodes 5

Learning rate a* 0.3
Penalty lE-6
Reward 1.0

Role utility threshold 3.0
Communication range 7

Perception range 2
Cycles 1000
Tmax 3000

*decreasing with time t at the rate T—̂
1+ 7

6 Related Work

The dissemination of information enables agents to obtain some global, though im­
perfect, knowledge of the world. This capability is taken into account in scaling up
teamwork approaches based on communication and our approach also takes this ca­
pability into account to enhance multi-agent learning. Our approach is different from
the large-scale coordination of Machinetta proxies[18] because (1) individual actions
lead to joint actions through on-line adaptation and (2) the uncertainty and ambiguity
of information is taken into account through state estimation. Our least-commitment
approach is however similar to a token-based approach to teamwork[16].

The importance of communication in solving decentralized Markov decision pro­
cesses was noted in [23] where the goal was to develop a communication policy in
addition to the navigation policy. For agents in open environments, those policies
overlaps since the location of the agent determines its communication range.

228 Abramson and Mittu

Behavior policies, 20x20 grid, 2 preys

^ 0.012

o> 0.01

i
•§ 0.008
c

I 0.006

^ 0.004

0.002

0

greedy RL -
random -

memory-based •

Number of agents

Fig. 6. Behavior policies

7 Conclusions and Future Work

Open environments such as P2P and MANET forces a reexamination of teamwork in
large scale systems relying more on adaptive coordination than explicit cooperation
requiring synchronization points. The capability to acquire global, albeit imperfect,
knowledge through the propagation of information makes it possible to use indepen­
dent reinforcement learners for coordination tasks in multi-agent systems. Similarity
of intentions can help relieve the burden placed on the network by selectively prop­
agating information while state estimation based on evidence reasoning calibrates
incoming information. A local teamwork model drives the rewards of the overall
coordination task. This proactive approach scales well to any dimensions and its
precision can be modulated by the TTL parameter. Future experiments are plarmed
for large MANET network simulations and P2P agent discovery of heterogeneous
agents.

Acknowledgement

The authors want to acknowledge useful discussions with Joe Macker, William Chao,
and Joe Collins,

References

1. Project jxta. http://www.jxta.org.
2. The network simulator. Retrieved from http://www.isi.edu/nsnam/ns/, 2003.

http://www.jxta.org
http://www.isi.edu/nsnam/ns/

Multi-Agent Coordination in Open Environments 229

3. M. Benda, V. Jagannathan, and R. Dodhiawalla. On optimal cooperation of knowledge
sources. Technical Report BCS-G2010-28, Boeing AI Center, Boeing Computer Services,
1985.

4. F. Burgeios and J. C. Lassalle. An extension of the munkres algorithm for the assignment
problem to rectangular matrices. Communication of the ACM, 14:802-806, 1971.

5. Philip R. Cohen and Hector J. Levesque. Teamwork. Nous, 25(4):487-512, 1991.
6. Nick Collier. Repast: the recursive porous agent simulation toolkit. Retrieved from

http://repast.sourceforge.net, 2001.
7. E. H. Durfee. Scaling up agent coordination strategies. IEEE Computer, 2001.
8. Brian R Gerkey and Maja J. Mataric. RobotCup 2003, volume 3020, chapter On Role

Allocation in RobotCup. Springer-Verlag Heidelberg, 2004.
9. Thomas Haynes and Sandip Sen. Evolving behavioral strategies in predator and prey. In

IJCAI-95 Workshop on Adaptation and Learning in Multiagent Systems, 1995.
10. L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable

stochastic domains. Artificial Intelligence, (101):99-134, 1998.
11. Richard E. Korf. A simple solution to pursuit games. In Working Papers of the 11th

International Workshop on Distributed Artificial Intelligence, pages 183-194, 1992.
12. H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logis­

tics Quarterly, 2{^2>), 1955.
13. H. J. Levesque, P. R. Cohen, and J. Nunes. On acting together. In Proceedings of the

National Conference on Artificial Intelligence, 1990.
14. Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
15. P. J. Modi, H. Jung, M. Tambe, W. Shen, and S. Kulkami. Dynamic distributed resource

allocation: A distributed constraint satisfaction approach. In Proceedings of the 7th Inter­
national Conference on Principles and Practice of Constraint Programming, 2001.

16. P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe. Token approach for role allocation
in extreme teams: Analysis and experimental evaluation. In Proceedings of 2nd IEEE
International Workshop on Theory and Practice of Open Computational Systems, 2004.

17. P. Scerri, D. Pynadath, N. Schurr, A. Farinelli, S. Gandhe, and M. Tambe. Team ori­
ented programming and proxy agents: The next generation. Workshop on Programming
Multi Agent Systems, Autonomous Agents and Multi-Agent Systems Conference, 2003.

18. Paul Scerri, Elizabeth Liao, Justin Lai, and Katia Sycara. Cooperative Control, chapter
Coordinating Very Large Groups of Wide Area Search Munitions. Kluwer Publishing,
2004.

19. R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for re­
inforcement learning with function approximation. In Advances in Neural Information
Processing Systems, volume 12, pages 1057-1063. MIT Press, 2000.

20. Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative learning. In
Michael N. Huhns and Munindar P. Singh, editors. Readings in Agents, pages 487-^94.
Morgan Kaufmann, San Francisco, CA, USA, 1997.

21. S. B. Thrun. Efficient exploration in reinforcement learning. Technical Report CMU-CS-
92-102, Pittsburgh, Pennsylvania, 1992.

22. Ian Wang and Ian Taylor. P2ps, peer-to-peer simplified. Retrieved from
http://srss.pf.itd.nrl.navy.mil/, 2003.

23. Ping Xuan and Victor Lesser. Multi-agent policies: From centralized ones to decentralized
ones. In Autonomous Agents and Multi-Agent Systems, 2002.

24. M. Yokoo. Distributed Constraint Satisfaction. Springer-Verlag, 1998.

http://repast.sourceforge.net
http://srss.pf.itd.nrl.navy.mil/

Mobile Agents

Ichiro Satoh

National Institute of Informatics ichiro@nii. ac. jp

Summary. Mobile agent technology has been promoted as an emerging technology that
makes it much easier to design, implement, and maintain distributed systems. It also pro­
vides an infrastructure for multi-agent computing. This chapter discusses the potential uses of
mobile agents in distributed systems, lists their potential advantages and disadvantages. The
body of the chapter has descriptions of technologies for executing, migrating, and implement­
ing mobile agents. It also presents several actual and potential applications of mobile agents.
A brief review of other research in the area and prospects for the future conclude the chapter.

1 Introduction

Mobile agents are autonomous programs that can travel from computer to computer
in a network, at times and to places of their own choosing. The state of the running
program is saved, by being transmitted to the destination. The program is resumed
at the destination continuing its processing with the saved state. They can provide
a convenient, efficient, and robust framework for implementing distributed applica­
tions including mobile applications for several reasons, including improvements to
the latency and bandwidth of client-server applications and reducing vulnerability
to network disconnection. Although not all applications for distributed systems will
need mobile agents, many other applications will find mobile agents the most effec­
tive technique for implementing all or part of their tasks. In fact, many mobile agent
systems have been released over the last few years ([10, 9, 2, 23]).

This chapter discusses the potential uses of mobile agents in distributed systems
and presents a number of their potential advantages and disadvantages. It also de­
scribes technologies for executing, migrating, and implementing mobile agents and
presents several actual and potential applications for them. A brief review of other
research in the area and prospects for the future conclude the chapter.

1.1 Advantages of Mobile Agents

Mobile agents have several advantages in the development of various distributed
applications.

232 Satoh

• Reduced communication costs: Distributed computing needs interactions be­
tween different computers through a network. The latency and network traffic of
interactions often seriously affect the quality and coordination of two programs
running on different computers. As we can see from Figure 1, if one of the pro­
grams is a mobile agent, it can migrate to the computer the other is running on
communicate with it locally. That is, mobile agent technology enables remote
communications to operate as local communications.

• Asynchronous execution After migrating to the destination-side computer, a
mobile agent does not have to interact with its source-side computer. Therefore,
even when the source can be shut down or the network between the destination
and source can be disconnected, the agent can continue processing at the desti­
nation. This is useful within unstable communications.

• Direct manipulation A mobile agent is locally executed on the computer it is
visiting. It can directly access and control the equipments for the computer as
long as the computer allows it to do so. This is helpful in network management,
in particular in detecting and removing device failures. Installing a mobile agent
close to a real-time system may prevent delays caused by network congestion.

• Easy-development of distributed applications Most distributed applications
consist of at least two programs, i.e., a client-side program and a server side pro­
gram and often spare codes for communications, including exceptional handling.
However, since a mobile agent itself can carry information to another computer,
we can only write a single program to define distributed computing. A mobile
agent program does not have to define communications with other computers.
Therefore, we can easily modify standalone programs as mobile agent programs.

As we can see from Figure 2, mobile agents can save themselves through persis­
tent storage, duplicate themselves, and migrate themselves to other computers under
their own control so that they can support various types of processing in distributed
systems.

Computer 1

r ^
Client ,
program.

\J

\
4

(̂
1

Communication!

Network

Computer 2

C ^
V J

^
J
^

. Server

. program 1

1

Computer 1
Agent migraion.

Computer 2

Fig. 1. Reduced communication

Mobile Agents 233

Computer D
Parallel execution

Computer A

on persistent storage

Fig. 2. Functions of mobile agents in distributed system

Remarks

Mobile agent technology may be treated as a type of software agent technology, but
it is not always required to offer intelligent capabilities, e.g., reactive, pro-active,
and social behaviors that are features of existing software agent technologies. This is
because these capabilities tend to be large in terms of scale and processing, and no
mobile agent should consume excessive computational resources, such as processors,
memory, files, and networks, at its destinations. Also, all mobile agents must be as
small as possible because their size seriously affects the cost of migrating over a
network.

1.2 Mobility and Distribution

Fuggetta, et al [5] provided a description of mobile software paradigms for dis­
tributed applications. These are classified as client/server (CS), remote evaluation
(REV), code on demand (COD), and mobile agent (MA) approaches. By decompil­
ing distributed applications into code, data, and execution, most distributed execu­
tions can be modeled as primitives of these approaches as we can see from Figure
3.

• The client-server approach is widely used in traditional and modem distributed
systems (Figure 3 a)). The code, data, and execution remain fixed at computer
A. Computer B requests a service from the server with some data arguments
of the request. The code and remaining data to provide the service are resident
within computer B. As a response, computer B provide the service requested by
accessing computational resources provided in it. Computer B returns the results
of the execution to computer A.

• The remote evaluation approach assumes that the code to perform the execution
is stored at computer A (Figure 3 b)). Both the code and data are sent to computer
B. As a response, computer B executes the code and data by accessing compu­
tational resources, including data, provided in them. An additional interaction
returns the results from computer B to computer A.

234 Satoh

a) CS (Client/Server

Computer A

b) REV (Remote EV. i luation)

Computer A

c) C O D (Code On Demand)

Computer A

Code

Data

4

\

1 Data 1

1 Code 1

1 coda 1

r

Data

Code

Data

Code

Data

Code

Computer B

Computer B

Computer B

d) MA (Mobile Agent)

^ I Data I
L..-irj'..J I Code I

• >

Computer A Computer B

Fig. 3. Client/server, remote evaluation, code on demand, and mobile agent

The code-on-demand approach is an inversion of the remote evaluation approach.
(3 c)). The code and data are stored at computer A and execution is done at com­
puter B. Computer A fetches code and data from computer B and then executes
the code with its local data as well as the imported data. An example of this
is Java applets, which are Java codes that web-browsers download from remote
HTTP servers to execute locally.
The mobile agent approach assume that the code and data are initially hosted
by computer A (Figure 3 d)). Computer A migrates the data and code it need to
computer B. After it has moved to computer B, the code is executed with the data
and the resources available on computer B.

2 Mobile Agent System

Mobile agent systems consist of two parts: mobile agents and runtime systems. The
former defines the behavior of software agents. The latter are called agent platforms,
agent systems, and agent servers, and support their execution and migration. The
same architecture exists on all computers at which agents are reachable. That is,
each mobile agent runs within a runtime systems on its current computer. When an
agent requests the current runtime system to migrate itself, the runtime system can
migrate the agent to a runtime system on the destination computer, carrying its state
and code with it. Each runtime system itself runs on top of the operating system
as a middleware. It provides interpreters or virtual machines for executing agent

Mobile Agents 235

programs, or the system themselves are provided on top of virtual machines, e.g., the
Java virtual machine (JVM).

2.1 Remote Procedure Call

Agent migration is similar to RPC (Remote Procedure Calling) or RMI (Remote
Method Invocation). RPC enables a client program to call a procedure for server
programs running in separate processes, generally in different computers from the
client [3]. RMI is an extension of local method invocation that allows an object to
invoke the methods of the object on a remote computer. RPC or RMI can pass ar­
guments to a procedure or method of a program on the server and receives a return
value from the server. The mechanism for passing arguments and results between
two computers through RPC or RMI correspond to that for agent migration between
two computers. Figure 4 shows flow for the basic mechanism of RPC between two
computers.

computer A

(calling

^

computer B

program j

J return

marshaling j unmarshalingj

OS/Hardware y marshaled arguments

marshaled return

[calling

c
program j

Targumenljs

marshaling unmarshaling

C OS/Hardware J
I I

Fig. 4. Remote procedure call between two computers

Agent Marshaling

Data items, e.g., objects and values, in a running program cannot be directly trans­
mitted over a network. They must be transformed into external data representation,
e.g., a binary form or text form, before migrating them (Figure 5). Marshaling is the
process of collecting data items and assembling them into a form suitable for trans­
mission in a message. Unmarshaling is the process of disassembling them on arrival
to produce an equivalent collection of data items at the destination.^ The marshaling
and unmarshaling processes are carried out by runtime systems in mobile agent sys­
tems. The runtime system at the left (at sender-side computer) of Figure 6 marshals
an agent to transmit it to a destination through a communication channel or mes­
sage and then the runtime system at the right (at receiver-side computer) of Figure 6
receives the data and unmarshals the agent.

^ Note that marshaling and serialization are often used without any distinction between them.
The latter is a process of flattening and converting an object, including its referring objects,
into a sequence of bytes to be sent across network or saved on a disk.

236 Satoh

(Object 1 ^

[/ \)
Reference^ \Reference
f Object2 ^ r Objects ^

I Reference

r Object 4 ^

Marshaled (serialized) agent

Marshaling

Unnnarshaling

-!-ias
^ms
iJ
iJ

Fig. 5. Marshaling agent

Computer A Computer B

r

1 Mobile agent] I M n h i o K

[Runtime system

Marshaling! T Un

f OS/Hardware

i>\A^

)
marsh

1
J

Marshaled agent

' CD

I Mobile agent! I Mobile agent I

[Runtime system J

Marshaling! | Unmarshaling

-c OS/Hardware D
I

Fig. 6. Agent migration between two computers

Agent Migration

Figure 6 shows the basic mechanism for agent migration between two computers.

1) The runtime system on the sender-side computer suspends the execution of the
agent.

2) It marshals the agent into a bit-chunk that can be transmitted over a network.
3) It transmits the chunk to the destination computer through the underlying network

protocol.
4) The runtime system on the receiver-side computer receives the chunk.
5) It unmarshals the chunk into the agent and resumes the agent.

Most existing mobile agent systems use TCP channels, SMTP, or HTTP as their
underlying communication protocols. Mobile agents themselves are separated from
the underlying communication protocols.

Strong Migration vs. Weak Migration

The state of execution is migrated with the code so that computation can be resumed
at the destination. According to the amount of detail captured in the state, we can
classify agent migration into two types: strong and weak.

• Strong Migration: is the ability of an agent to migrate over a network, carry­
ing the code and execution state, where the state includes the program counter,
saved processor registers, and local variables, which correspond to variables al­
located in the stack frame of the agent's memory space, global variables. These

file:///Reference

Mobile Agents 237

correspond to variables allocated in the heap frame. The agent is suspended, mar­
shaled, transmitted, unmarshaled and then restarted at the exact position where it
was previously suspended on the destination node without loss of data or execu­
tion state.

• Weak Migration: is the ability of an agent to migrate over a network, carry­
ing the code and partial execution state, where the state is variables in the heap
frame, e.g., instance variables in object oriented programs, instead of its program
counter and local variables declared in methods or functions. The agent is moved
to and restarted on the destination with its global variables. The runtime system
may explicitly invoke specified agent methods.

Strong migration can cover weak migration, but it is a minority. This is because the
execution state of an agent tends to be large and the marshaling and transmitting
of the state over a network need heavy processing. Moreover, like the latter, the
former cannot migrate agents that access the computational resources only available
in current computers, e.g., input-and-output equipments and networks. The former
unfortunately has no significant advantages in the development and operation of real
distributed applications as discussed by Srasser et al. [2].

The program code for an agent needs to be available at the destination where the
agent is running. The code must to be deployed at the source at the time of creation
and at the destination to which it moves. Therefore, existing runtime systems offer
a facility for statically deploying program code that is needed to execute the agent,
for loading the program code on demand, or for transferring the program code along
with the agent.

2.2 Mobile Agent Languages

Since mobile agents are programming entities, programming languages for defining
mobile agents are needed. There has been a huge number of programming languages,
but all of these are not available for mobile agents. Programming languages for mo­
bile agents must support the following functions. They should enable programs to be
marshaled into data and vice versa. They should also download code from remote
computers and link it at run-time. A few researchers have provided newly designed
languages for defining mobile agents, e.g., Telescript [23], and most current mobile
agent systems use existing general-purpose programming languages that can satisfy
the above requirements, e.g., Java [1]. Telescript provides primitives for defining
mobile agents, e.g, go operation, and enables a thread running on an interpreter to
migrate to another computer. The Java language itself offers no support for the mi­
gration of executing code, but offers dynamic class loading, a programmable class
loader, and a language-level marshaling mechanism, where these can be directly ex­
ploited to enable code mobility. Creating distributed systems based on mobile agents
is a relatively easy paradigm because most existing mobile agents are object oriented
programs, e.g., Java, and can be developed by using rapid application development
(RAD) environments.

Distributed systems are characterized by heterogeneity in hardware architectures
and operating systems. To achieve heterogeneity, the state and code of an agent need

238 Satoh

to be saved in a platform-independent representation. Hidden differences between
platforms is provided at the language level, by using intermediate byte code rep­
resentation in Java or by relying on scripting languages such as Tcl/Tk. Therefore,
Java-based mobile agents are executed on Java virtual machines and Tcl/Tk-based
mobile agents on Tcl/Tk interpreters. The costs of running agents in a Java virtual
machine on a device are decreasing by using just-in-compiler technologies.

2.3 Agent Execution Management

The runtime system manages execution and monitoring of all agents on a computer. It
allows several hundred agents to be present at any one time on a computer. It also pro­
vide these agents with an execution environment and executes them independently
of one another. It manages the life-cycle of its agents, e.g., creation, termination, and
migration.

Each agent program can access basic functions provided by its runtime system
by invoking APIs (Table 1). The agent uses the go command to migrate from one
computer to another with the destination system address (and its target agent's iden­
tifier) and does not need to concern itself with any other details of migration. Instead,
the runtime system supports the migration of the agent. It stops the agent's execu­
tion and then marshals the agent's data items to the destination via the underlying
communication protocol, e.g., tcp channel, HTTP (hyper text transfer protocol), and
SMTP (simple mail transfer protocol). The agent is unpacked and reconstituted on
the destination.

Table 1. Functions available in agents

command
go

terminate
duplicate

identify
lookup

communicate

parameters
destination address, agent-identifier
agent-identifier
agent-identifier
agent-type
agent-type, runtime system address
agent-identifier

function
agent migration
agent termination
agent duplication
identification
discovery of available agents
inter-agent communication

2.4 Inter-agent communication

Mobile agents can interact with other agents residing within the same computer or
with agents on remote computers as other multi-agents. Existing mobile agent sys­
tems provide various inter-agent communication mechanisms, e.g., method invoca­
tion, publish/subscribe-based event passing, and stream-based communications.

Mobile Agents 239

2.5 Locating Mobile Agents

Since mobile agents can autonomously travel from computer to computer, a mecha­
nism for tracking the location of agents is needed by the users to control their agents
and for agents to communicate with other agents. Several mobile agent systems pro­
vide such mechanisms, which can be classified into three schemes:

• A name server multicasts query messages about the location of an agent the to
computers and receives a reply message from a computer hosting the agent (Fig­
ure 7 (a)).

• An agent registers its current location at a predefined name server whenever it
arrives at another computer (Figure 7 (b)).

• An agent leaves a footprint specifying its destination at its current computer
whenever it migrates to another computer to track the trails of the agent (Fig­
ure 7 (c)).

Query ^ ^

/-"-;:" -~\.
\ . "" .J~ Agent

m

Name server

jery
sssage

Que
mes sage ^ \ ^

Agent

Reply
sjTjessage

Computer A migration Computers migration Computer C

^

agent

Name server

4 T»s

'
' ' • Agent

Arrival
»v^essage

Computer A migration Computers migration Computer C

Agent Agent
Computer A migration Computers migration Computer C

Fig. 7. Discovery for migrating agents

In many cases, locating agents is application specific. For example, the first
scheme is suitable for an agent moving within a local region. It is not suitable for
agents visiting distant nodes. The second scheme is suitable for an agent migrating
within a far away region; in the case of a large number of nodes, registering nodes are

240 Satoh

organized hierarchically. However, it is not suitable for a large number of migrations.
The third scheme is suitable for a small number of migrations; it is not appropriate
for long chains.

2.6 Security

Security is one of the most important issues with mobile agent systems. Most secu­
rity issues in mobile agents are common to existing computer security problems in
communication and the downloading of software. In addition, many researchers have
explored mechanisms to enhance security with mobile agent systems. There are two
problems in mobile agent security: the protection of hosts from malicious mobile
agents and the protection of mobile agents from malicious hosts. It is difficult to ver­
ify with complete certainty whether an incoming agent is malicious or not. However,
there are two solutions to protecting hosts from malicious mobile agents. The first
is to provide access-control mechanisms, e.g., Java's security manager. They explic­
itly specify the permission of agents and restrict any agent behaviors that are beyond
their permissions. The second is to provide authentication mechanisms by using dig­
ital signatures or authentication systems. They explicidy permit runtime systems to
only receive agents that have been authenticated, have been sent from authenticated
computers, or that have originated from authenticated computers.

There have been no general solutions to the second problem, because it is im­
possible to keep agent private from runtime systems executing the agent. However,
(non-malicious) runtime systems can authenticate the destinations of their agents, to
check whether these are non-malicious, before they migrate the agents to these des­
tinations. While strong security features would not immediately make mobile agents
appealing, the absence of security would certainly make mobile agents unattractive
and unpractical.

2.7 Remarks

Several technologies have been presented for enabling software to migrate between
computers, e.g., mobile code, process-migration, and mobile objects. Mobile agents
differ from mobile codes, e.g., downloadable applets, in that mobile codes can main­
tain the states of running programs. As a result, they must start their initial states
after they have been deployed at remote computers.

One of the most important differences between mobile agents and traditional
techniques, e.g., process-migration or mobile objects is in their acceptable levels of
mobility-transparency. Introducing too much transparency can adversely affect other
characteristics, such as complexity, or the scope of modifications made to the un­
derlying environment. For example, a solution allowing the migration of processes
or objects at any time in response to a request from any other object would require
significant changes to the underlying environment, e.g., balancing the processor load
and escaping from a shutdown computer, whereas mobile agents can move where
and when they choose, typically through a go statement. Similarly, solutions that in­
sist on continuous communication and name resolution could be achieved for naming

Mobile Agents 241

and open channel handling, but they would incur significant complexity in commu­
nication support and the naming model. Process-migration and mobile object tech­
nologies require fully transparent solutions at the operating system level to minimize
complexity. For example, processes and objects still continue to access the com­
putational resources, e.g., file systems, database systems, and channels, that they
accessed at their source-side computers, even after they have moved. With a reason­
able choice of transparency-requirements, mobile agents can access computational
resources provided in current computers after mobile agents have moved to their des­
tinations. Although mobile agents are similar to mobile objects at the programming-
level, they contain threads and they are therefore active and can act autonomously,
whereas most mobile objects are implemented as passive entities.

3 Mobile Agent Agent Systems

There have been a huge number of mobile agent systems. This section presents sev­
eral traditional mobile agent systems, which offer common functions to other ex­
isting mobile agent systems, and modem mobile agent systems for large-scale and
dynamic distributed systems.

3.1 Telescript

Telescript is the first commercial mobile agent implementation developed by Gen­
eral Magic [23]. It provides an object-oriented language designed for mobile agents,
which employs an intermediate, portable language across servers, and introduces
three essential concepts for mobile agents: agents, places, and the go command.
Places are essentially stationary agents that can contain other agents or places.
Agents migrate to places, which reside at local or remote computers. Telescript sup­
ports strong migration so that the execution of a moving agent can be resumed after
it arrives at the destination. Each agent and place has an associated authority. A place
can query an incoming agent's authority and potentially deny entry to the agent or
restrict its access rights. The agent receives a permit, which encodes its access rights
and resource-consumption quotas. The system terminates agents that exceed their
quota and raises exceptions when they attempt unauthorized operations. Agents in­
teract with the place or other agents at a meeting place by issuing a meet primitive.

shopper: class (Agent, EventProcess) = {
public

see i n i t i a l i z e
see meeting

private
see goHome

property

242 Satoh

Meet

/ ^ C \ (Agent) (Agent)
jAgent; (Agent) V V V H y

2 l l Place

] [Place

r OS/Hardware
Computer l V , -

Runtime System

OS/Hardware

Fig. 8. Telescript Agent

List: Telescript class definition

initialize: op (
desiredProduct: owned String;
desiredPrice: Integer) = {

clientName = sponsor.name.copy()

};

goHome: op (homeName: Telename;
homeAddress: Teleaddress) = {

*.go(Ticket(homeName,homeAddress));

*.enableEvents(PartEvent(clientName));

here@MeetingPlace.meet(Petition(clientName));

*.getEvent(nil, PartEvent(clientName))

};

List: Telescript method definition

Although Telescript was commercially unsuccessful, it has influenced other mobile
agent systems. General Magic provided a Java-based system named Odyssey that
used the same design framework. It did not feature strong migration.

3.2 Agent TCL

Agent Tel is a mobile-agent system developed at Dartmouth College [6]. It primarily
supported the Tel scripting language (a later version, named DAgents, supported
Java and Scheme as well as Tel). It provided an extended interpreter for Tcl-based
agent programs and a server that received agents from other servers (Figure 9).

Agent Tel supports the notion of strong migration, because, when an agent mi­
grate to another computer, the system captures the stack frame and program counters
as well as the heap frame of the agent and sends these data items to the destina­
tion. It also extends the Tel scripting language with several primitives. For example.
The agent_jump command captures the internal state of the agent and sends the

Mobile Agents 243

UNIX

Agent

||Tel Script] 1
1 State 1
1 Modified Tel 1
1 Interpreter |
UNIX Proeess

Pipe "* * * *
1 Agent
1 Table

UNIX Proeess

Agent

1 Tel Script 1

1 State 1

1 Modified Tel
1 Interpreter
UNIX Proeess

^ .̂̂ ---n
'UNIX Fork

Socket L
1 Watcher |

UNIX Proeess

^

Migrating

- •
Tel Script

State

Network

Fig. 9. System Structure Agent Tel

state information to the destination machine through SMTP. The server on the des­
tination machine restores the migrated agent's state information in this execution
environment, and resumes the agent's execution at the statement immediately after
the command is executed.

proc who machines {

global agent

set list ""

foreach m $machines {

if ([catch {agent_jump $m} result]} {

append list

"$in:nunable to JUMP here ($result)nn"

} else {

set users [exec who]

append list

"$agent(local-server):n$usernn"

}

}
agent_send $agent(root) 0 $list
exit

}

List: Agent Tel Program

The above is an Agent Tel program to migrate to another computer and then
execute UNIX's who command. The agent continues this through its list of machines
until it has visited them all. No agent has a reference is bound to other agents or
components.

244 Satoh

3.3 Aglets

The Aglets system was created by IBM [10]. Mobile agents, called Aglets, are im­
plemented as Java objects that can move from one host on the Internet to another
based on the notion of weak migration. Aglets runtime system itself is built on Java.
It supports the notion of weak migration, because since Java, the underlying technol­
ogy, does not allow stack frames to be captured or thread objects to be marshaled. To
solve this. Aglets (and other Java-based mobile agent systems) provides a callback
mechanism for agents, like Java's Abstract Window Toolkit (AWT). That is, when
the life-cycle state of an agent is changed, e.g., creation, destruction, and migration,
specified methods for the agent's program are invoked by the runtime system so that
a moving agent may close windows and file handles. The global variables are mar­
shaled and sent to the destination node. On arriving an event can be generated to
instruct the agent to do something, e.g., set up resources. The following program is
an agent in Aglets.

public class SimpleAglet extends Aglet implements MobileListener {

public String name;
// onCreationO invoked after the agent is created,
public void onCreation(Object init) {
addMobilityListener(this);
name = new String("Agent");
try {

// dispatch 0 is a migration command

dispatch("atp://some.where.com");

} catch (Exception e) {/* migration fail */}

}

// onDispatching() is invoked before migrating,

public void onDispatching(MobiltyEvent e) {

System.out.println(name+" is going to "

+e.getLocation());

)

// onArrivalO is invoked after arriving,

public void onArrival(MobileEvent e) {

System.out.println(name+" came from "

+e.getLocation0);

}

// main program,
public void run() {

}

}

Figure 10 shows the execution of the agent defined in the above program. The
onCreation() method is invoked before the agent is created and then the run()
method is invoked to perform the agent's behavior with the Aglets runtime system.
The MobileListener interface defines callback methods invoked when an agent
migrates to another computer. The onDispatching () method is invoked before the

Mobile Agents 245

migration of the agent. After arriving at the destination, the onArr ival () method is
invoked and then run () is invoked again. The Aglets system provides several prim­
itives for invoking methods of other agents, e.g., a one-way asynchronous message,
a synchronous method call, and an asynchronous method call (future-based mecha­
nism).

Creation

onCreat ionO

onDispatching()

onArr iva l ()

time

Destination

Fig. 10. Execution of Agent in Aglets system

Table 2. Lifecycle events of Aglets

lifecycle state
creation
migration
termination
duplication

method invoked before

onDispatching(URL)
onDisposingO
onCloningO

method invoked after
onCreation()
onArrval()

onClone()

3.4 Voyager

Voyager [9] is a Java-based Object Request Broker (ORB) system, which is not com­
patible with CORBA, developed by ObjectSpace Inc. It not only supports mobile
agents but also distributed objects. It supports a universal naming service, univer­
sal directory, activation framework, publish-subscribe, and mobile agent technology.
Runtime system can be used as an agent server to host objects as mobile agents.
It provides a mechanism for the creation of distributed applications through the
use of its core ORB so that a programmer wishing to deploy remote objects needs
to first define the object's interface. It provides typical inter-agent communication
primitives, such as Future (asynchronous), OneWay (no return value is required),
OneWayMulticast (sending a one way message to a group of objects or to objects
who satisfy a certainly criteria) and finally the default Sync (synchronous). Voyager

246 Satoh

uses Java's standard object serialization and sockets for communication so that it
can migrate agents to other computers based on the notion of weak migration. It can
dynamically generate proxies which removes the need for stub generators to support
the notion of mobility-transparency. That it, it enables an object to communicate
other agents even after they have moved to remote computers. A mobile agent with
Voyager is defined as follows:

public class Traveler extends Agent {

Sting name = null;

// start0 is invoked by the Voyager runtime system

public void start() {

System.out.printIn(name+" is going to "

+Voyager.getAddress());

// the migration command to migrate the agent itself to the destination

// and specifies a user defined method to be invoked at the destination.

moveTo("some.where.com", "method");

}

// method is invoked after the agent arriving,

public void method() {

System.out.printIn(name+" am in "

+Voyager.getAddress());

}

There is a migration primitive, called moveTo (), which the programmer uses to spec­
ify a destination host or destination object; a call-back method is used to restart the
object.

3.5 FarGo

FarGo is an infrastructure for Java-based distributed objects developed by the Israel
Institute of Technology [8]. It supports Java-based mobile agents and migrate them
between computers based on the notion of weak migration. Its goal is to separate the
application logic of an object program from the dynamic deployment of the program
since a developer is unlikely to know a priori how to an application can be structured
in a way that best leverages the available infrastructure. Therefore, FarGo introduces
the notion of complet references, which are proxies of objects that forward messages
to their target objects. The references can explicidy specify the deployment policies
of objects as relationships between the locations of two objects. If an object has a
reference to another object, when the former object migrates to another computer,
the latter migrates to the same destination or specified locations, according to the
policy specified in the reference. This mechanism provides a dynamic application
layout and elevates system scalability and adaptability

Mobile Agents 247

3.6 MobileSpaces

MobileSpaces [14] is a Java-based mobile agent system like Aglets, Voyager, and
FarGo, but is unique among other existing similar systems because it can dynami­
cally organize multiple mobile agents. The system introduces two concepts, agent
hierarchy and group migration. The former means that each mobile agent can be
a container of other mobile agents inside itself, and the latter allows mobile agents
to move inside other mobile agents as well as inside other computers. These con­
cepts enable us to organize more than one mobile agent into a single mobile agent
and they introduce agent migration as a meta mechanism of dynamically changing
and extending mobile agent-based applications. Although existing software devel­
opment methodologies, including object orientation, construct large and complex
mobile applications, such applications are essentially static and monolithic in the
sense that they cannot be adapted adaptable. Moreover, a large-scale application soft­
ware program is often constructed as a collection of subcomponents. Consequently,
a mobile application needs to be migrated as a whole with all its subcomponents.
MobileSpaces can naturally use mobile agents as mobile software components and
can easily construct a large-scale and adaptable mobile application as a compound
mobile agent.

Fig. 11. Agent Hierarchy and Inter-agent Migration

The MobileSpaces runtime system is characterized by allowing a group of mo­
bile agents to be composed hierarchically and its architecture is structured based on
agent hierarchy and group migration. For example, agent migration between different
computers is offered by subcomponents, called transmitter mobile agents, instead of
a runtime system. Transmitter agents are allocated on hosts. Each transmitter agent

248 Satoh

can exchange its inner agents with one another through its favorite communication
protocol as we can see in Figure 12. When a mobile agent is preparing for a trip, the
agent migrates itself into an appropriate transmitter agent. The transmitter suspends
the moving agent (including its nesting agents) and then serializes its state, classes,
and destination address into a proper form for its communication protocol. It next
transfers the serialized agent to a transmitter agent on the destination side. The trans­
mitter agent receives the data and then reconstructs the agent (including its nesting
agents) according to the data. Each runtime system can be equipped with more than
one transmitter agent to exchange agents through various communication protocols
and networks, e.g., TCP, UDP, HTTP, and SMTP, studied by Satoh [14, 19].

The MobileSpaces system can dynamically change and evolve its facilities by
migrating agents implementing these facilities. For example, while the system is
running, it can add a new function to itself by migrating a new mobile agent which
implements the function to the system. The system can be open to evolve and adapt
itself to its execution environment and the requirements of visiting agents.

Aosnt
Migration

XT^giiirB;^ /—>^

Transirdttari

Computer A

Serialized agents

§f^'^ N e t w o r k . ^

Migration ^ ^
> - > . AgeatflC^gentT^

^^'^"'"^'TIZ-^
Computer B

Fig. 12. Transmitter Mobile Agents

4 Mobile Agent Applications

Many researchers have stated that there are no killer applications for mobile agent
technology [11], because almost everything you can do with MAs can be done with
more traditional technologies. However, mobile agents make it easier, faster, and
more effective to develop, manage, and execute distributed applications than other
technologies. We describe typical applications of mobile agents as follows:

4.1 Remote Information Retrieval

This is one of the most traditional applications of mobile agents. If all informa­
tion were stored in relational databases, a client could send a message containing
SQL commands to database servers. However, given that most of the world's data
is in fact maintained in free text files on different computers, remote searching and
filtering require the ability to open, read, and filter files. Since mobile agents can
perform most of their tasks locally at the destination. Client can send its agents to
database servers so that they locally perform a sequence of query or update tasks on
the servers. Communications between the client and server can be minimized, i.e.,
the migration of a search agent to the server and the migration of an agent to the

Mobile Agents 249

client. Since agents contain program codes for filtering information that is of interest
to their users from databases, they only need to carry wanted information back to
the client to reduce communication traffic. Furthermore, agents can migrate among
multiple database servers to retrieve and gather the interesting data from the servers.
They can also determine the destinations based on information they have acquired
from the database servers that they have thus far visited.

4.2 Network Management

Mobile agent technology provides a solution to the flexible management of network
systems. Mobile agents can locally observe and control equipment at each node by
migrating among nodes. Mobile agent-based network management has several ad­
vantages in comparison with traditional approaches, such as the client/server one.

• As code is very often smaller than the data it processes, the transmission of mo­
bile agents to sources of data creates less traffic than transferring the data itself.
Deploying a mobile agent close to the network nodes that we want to monitor
and control prevents delays caused by network congestion.

• Since a mobile agent is locally executed on the node it is visiting, it can easily
access the functions of devices on this node.

• The dynamic deployment and configuration of new or existing functionalities
into a network system are extremely important tasks, especially as they poten­
tially allow outdated systems to be updated in an efficient manner.

• Network management systems must often handle networks that may have various
malfunctions and disconnections and whose exact topology may not be known.
Since mobile agents are autonomous entities, they may be able to detect proper
destinations or routings on such networks.

Adopting mobile agent technology eliminates the need for administrators to con-
standy monitor many network management activities, e.g., the installation and up­
grading of software and periodic network auditing. There have been several attempts
to apply this technology to network management tasks. Karmouch presented typi­
cal mobile agent approaches to network management [12]. Satoh proposed a frame­
work for building and operating agent itineraries for network management systems
[16,20].

4.3 Load Balancing

This is a legacy application of process migration and mobile agent technologies. In
a distributed system, e.g., a grid computing system, computers tend to be heteroge­
neous so that their computational loads are different. Computers may also be dynam­
ically added to or removed from the system. Tasks should be dynamically deployed
at computers which loads light rather than those lose with heavy loads. Since mobile
agents can migrate to other computers, tasks that are implemented as mobile agents
can be relocated at suitable computers whose processors can execute the tasks. This
is practical in implementing massively multi agent systems that must operate a huge

250 Satoh

number of agents, which tend to be dynamically created or which terminate, on a
distributed system that consists of heterogeneous computers.

4.4 Active Documents

Mobile code technology is widely used in plug-in modules for rich internet applica­
tions (RIA) in web-browsers, e.g., Java Applet and Macromedia Flash. Such modules
provide us with interactive user experiences because their virtual machines, e.g., Java
virtual machines and Flash players, can locally execute and render them across mul­
tiple platforms and browsers without having to communicate with remote servers.
However, it is not easy to save their results on local computers or remote servers, and
to resume them with the previous results later, since their code can be transported
but not their state. Mobile agents solve this problem and provide a next-generation
RIA. Mobile agent-based modules for RIA can naturally carry both their code and
state at client computers. For example, MobiDoc [15] is a mobile agent-based frame­
work for building mobile compound documents where a compound document can be
dynamically composed of mobile agent-based components, which view or edit their
contents, e.g., text, images, and movies. It can migrate itself over a network as a
whole, with all its embedded components. Each component is self-contained in the
sense that it maintains its content and program code for viewing and modifying the
content inside it, and multiple components can be combined into an active and mo­
bile document.

4.5 Mobile Computing

Mobile agents use the capabilities and resources of remote servers to process their
tasks. When a user wants to do tasks beyond the capabilities of his or her comput­
ers, the agents that perform the tasks can migrate to and be executed at a remote
server. Mobile agents can also mask temporal disconnections in networks. Mobile
computers are not always connected to networks, because their wired networks are
disconnected before they are moved to other locations or wireless networks become
unstable or non-available due to deteriorating radio conditions or are not uncovered
by the area at all. A stable connection is only requested at the beginning to send
the agent, and to take the agent back at the end of the task, but this is not requested
during the execution of the whole application execution. Several researchers have ex­
plored mechanisms for migrating agents through unstable networks [4, 7,19]. When
a mobile agent requests a runtime system to migrate itself, the system tries to trans­
mit the moving agent to the destination. If the destination cannot be reached, the
system automatically stores the moving agent in a queue and then periodically tries
to transmit the waiting agent to either the destination or another runtime system on
a reachable intermediate node as close to the destination as possible. These relay
runtime systems repeat the process until the agent arrives at its destination.

Mobile Agents 251

4.6 Active Networking

There are two approaches to implementing active networks (for example, see [22]).
The active packet approach replaces destination addresses in the packets of existing
architectures with miniature programs that are interpreted at nodes on arrival. The
active node approach enables new protocols to be dynamically deployed at interme­
diate and end nodes using mobile code techniques. Mobile agents are very similar to
active networks, because a mobile agent can be regarded as a specific type of active
packet, and an agent platform in traditional networks can be regarded as a specific
type of active node. There have been a few attempts to incorporate mobile agent
technology with active network technology (for example, see [12]). Of these, the
MobileSpaces system [19] provides a mobile agent-based framework for integrating
the both approaches. The framework enables us to implement network processing of
mobile agents with mobile agent-based components, where the components are still
mobile agents so that they can be dynamically deployed at computers to customize
network processing.

4.7 Ubiquitous Computing

Ubiquitous computers often have limited resources, such as restricted levels of CPU
power and amounts of memory. Mobile agents can help to conserve these limited re­
sources, since each agent only needs to be present at the computer when the computer
needs the services provided by that agent. The SpatialAgent framework [13, 17] pro­
vides a bridge between the movement of physical entities, e.g., people and things, and
the movement of mobile agents to support and annotate the entities using location-
tracking systems, e.g., RFID technology. It binds physical entities with mobile agents
and navigate agents to stationary or mobile computers near the locations of the en­
tities and places to which the agents are attached, even after their locations have
changed. Figure 13 (a) shows that a moving entity carrying an RF-tagged agent host
and a space containing a place-bound RF-tag and RF reader. When the reader detects
the presence of the RFID tag that is bound to the agent host, the framework instructs
the agents attached to the tagged place to migrate to the visiting agent host to offer
location-dependent services of for that place. Figure 13 (b) shows that an RF-tagged
agent host and an RF reader have been allocated. When an RF-tagged moving entity
enters the coverage area of the reader, the framework instructs the agents attached to
the entity to migrate to the agent host within the same coverage area to offer entity-
dependent services to the entity.

4.8 Software Testing

Mobile agents are useful in the development of software as well as the operation of
software in distributed and mobile computing settings. An example of these applica­
tions is testing methodology for software running on mobile computers, called Flying
Emulator [18, 21]. Wireless LANs or 4G-networks incorporate wireless LAN tech­
nologies, and mobile terminals can access the services provided by LANs, as well as

252 Satoh

(a) Moving agent host and stationary sensor
Stepi

Agent
host

-^ Host movement © stationary

(b) Moving tagged entity and stationary sensor

Step 1 Agent I
host

Step 2

A tagged entity
movement

1 Agent
/ host

—•O Stationary
sensor

Agent |7
host b-^-^Agent migration

to host near
moving entity |

Fig. 13. Linkages between physical and logical worlds

global network services. Therefore, software running on mobile terminals may de­
pend on not only its application-logic but also on services within the LANs that the
terminals are connected to. Effective software constructed to run on mobile termi­
nals for 4G wireless networks and wireless LANs must be tested in all networks to
which the terminal could be moved and then connected to. Like existing approaches,
this provides software-based emulators for mobile terminals for software designed to
run on the terminals. It also constructs the emulators as mobile agents that can travel
between computers. As we can see from Figure 14, these emulators can carry target
software to networks that the terminals are cormected to and allow it to access ser­
vices. These services are provided by the networks in the same way as if the software
had been carried by and executed on terminals cormected to the networks.

5 Conclusion

Mobile agents are just an implementation technique used in the development and
operation of distributed systems, as other software agents, including multi-agents, are
themselves not goals but tools for modeling and managing our societies and systems.
Therefore, the future of mobile agents is not specifically as mobile agents. They
will be used as essential technologies in real distributed systems, even though they
will not be called mobile agents. In fact, although monolithic mobile agent systems
were developed in the past decade to illustrate the concepts of mobile agents, recent
several mobile agent systems have been developed based on several slighdy different
semantics for mobile agents.

References

Ken Amold, James Gosling, and David Holmes. The Java Programming Language (3rd
ed.). Addison-Wesley, 2000.
J. Baumann, F. Hohl, K. Rothermel, and M. StraBer. Mole: Concepts of a mobile agent
system. World Wide Web, 3(3):123-137, 1998.
Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(l):39-59, 1984.

Mobile Agents 253

^.- Physical mobility of terminal

I Target with target software

[software 1 wireless network

^ .^ Disconnection C-^^'> ^ Servers
^ \ and movement; / > y'f.fi^ y >,
Target | V , - / ,. I

, software • ,,,. , , , l-'~- , t' /cra
V \ Wireless network,,.i.,*-«—^ Vî . "y^

5̂ «s / J-

^

Wireless network
Servers

Disconnection*
and movement

Logical mobility of emulator
with target software

Fig. 14. Corelation between the movement of target mobile computer and migration of mobile
agent-based emulator

10.

11,

12.

13.

Jiannong Cao, Xinyu Feng, Jian Lu, and Sajal K. Das. Mailbox-based scheme for design­
ing mobile agent communication protocols. IEEE Computer, 35(9):54-60, 2002.
Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code mobility.
IEEE Transactions on Software Engineering, 24(5):342-361, 1998.
Robert S. Gray. In CI KM Workshop on Intelligent Information Agents, 1995.
Robert S. Gray, David Kotz, Saurab Nog, Daniela Rus, and George Cybenko. Mobile
agents for mobile computing. Technical report, Dartmouth College Technical Report:
PCS-TR96-285, 1999.
Ophir Holder, Israel Ben-Shaul, and Hovav Gazit. System support for dynamic layout of
distributed applications. In I9th IEEE International Conference on Distributed Comput­
ing Systems, pages 403-411, 1999.
ObjectSpace Inc. ObjectSpace voyager technical overview. Technical report, Ob-
jectSpace, 1999.
Danny B. Lange and Oshima Mitsuru. Programming and Deploying Java Mobile Agents
Aglets. Addison-Wesley, 1998.
Dejan Milojicic. Mobile agent applications. IEEE Concurrency, 7(4):80-90, July-
September 1999.
Vu Anh Pham and Ahmed Karmouch. Mobile software agents: An overview. IEEE
Communications Magazine, 36(7):26-37, July 1998.
Ichiro Satoh. Physical mobility and logical mobility in ubiquitous computing environ­
ments. In 6th International Conference on Mobile Agents (MA '2002), Lecture Notes in
Computer Science 2535, pages 186-202. Springer, October.

254 Satoh

14. Ichiro Satoh. MobileSpaces: A framework for building adaptive distributed applications
using a hierarchical mobile agent system. In 20th International Conference on Distributed
Computing Systems (ICDCS 2000), pages 161-168. IEEE Computer Society, April 2000.

15. Ichiro Satoh. MobiDoc: A mobile agent-based framework for compound documents.
Informatica, 25(4):493-500, 2001.

16. Ichiro Satoh. Building reusable mobile agents for network management. IEEE Transac­
tions on Systems, Man and Cybernetics, 33C(3):350-357, August 2003.

17. Ichiro Satoh. Spatial Agents: Integrating user mobility and program mobility in ubiquitous
computing environments. Wireless Communications and Mobile Computing, 3(4):411-
423, June 2003.

18. Ichiro Satoh. A testing framework for mobile computing software. IEEE Transactions on
Software Engineering, 29(12):1112-1121, December 2003.

19. Ichiro Satoh. Configurable network processing for mobile agents on the internet. Cluster
Computing, 7(l):73-83, January 2004.

20. Ichiro Satoh. Selection of mobile agents. In 24th IEEE International Conference on
Distributed Computing Systems (ICDCS'2004), pages 484-493. IEEE Computer Society,
March 2004.

21. Ichiro Satoh. Software testing for wireless mobile computing. IEEE Wireless Communi­
cations, ll(5):58-64, October 2004.

22. David L. Tennenhouse. A survey of active network research. IEEE Communications
Magazine, 35(l):80-86, January 1997.

23. James E. White. Software Agents, chapter Telescript Technology: Mobile Agents, pages
437-472. 1997.

WIZER: Automated Model Improvement in
Multi-Agent Social-Network Systems

Alex Yahja^ and Dr. Kathleen M. Carley^

^ Computation, Organizations, and Society Program, Institute for Software Research
International, Center for the Analysis of Social and Organizational Systems, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 ay@cmu.edu

^ Institute for Software Research International, Center for the Analysis of Social and
Organizational Systems, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213 kathleen.carley@cmu.edu

Summary. There has been a significant increase in the use of multi-agent social-network
models due to their ability to flexibly model emergent behaviors in complex socio-technical
systems while linking to real data. These models are growing in size and complexity which re­
quires significant time and effort to calibrate, validate, improve the model, and gain insight into
model behavior. In this paper, we present our knowledge-based simulation-aided approach for
automating model-improvement and our tool implementing this approach (WIZER). WIZER
is capable of calibrating and validating multi-agent social-network models, and facilitates
model-improvement and understanding. By employing knowledge-based search, causal anal­
ysis, and simulation control and inference techniques, WIZER can reduce the number of sim­
ulation runs needed to calibrate, validate, and improve a model and improve the focus of these
runs. WIZER automates reasoning and analysis of simulations, instead of being a multi-agent
programming language or environment. We ran a preliminary version of WIZER on BioWar
a city-scale social agent network simulation of the effects of weaponized biological attacks on
a demographically-realistic population within a background of naturally-occurring diseases.
The results demonstrate the efficacy of WIZER.

1 Introduction

Currently, a paradigm shift is occurring in how we model and think about knowl­
edge, individuals, teams, groups, networks, organizations, markets, institutions, and
other societal systems due to developments in the field of computational model­
ing and analysis [1][8][16][32][39][19][40]. Computational modeling and analysis
has emerged as a useful scientific tool for addressing socio-technical problems with
complex dynamic inter-related parts, such as natural disaster response and biological
attacks. These problems do not occur in vacuum but within a context constrained by
social, organizational, geographical, technological, regulatory, cultural, and financial
factors. As opportunities and challenges emerge dynamically in, say tsunami relief,
existing rescue and aid plans often need major adaptations. For members of a rescue

mailto:ay@cmu.edu
mailto:kathleen.carley@cmu.edu

256 Yahja and Carley

and aid team to cohesively follow a joint course action, it helps if the development in
the environment, the consequent change of plans, and the effects of the intervention
carried out according to the plans can be thought over and analyzed both in advance
and in real/ongoing time.

There has been a rapid increase in the use of multi-agent models [12] [26] [28] -
as well as social network analysis [41] - to address complex socio-technical prob­
lems. Model assessment determining how valid, how explainable, and how robust
a model is is becoming a major concern [11]. Indeed, identifying reliable valida­
tion methods for complex systems such as electronic medical surveillance systems
is a critical research area [34]. Calibration and validation serve as a foundation for
model improvement through simulation and inference.

Models contain both explicit and implicit assumptions about some portion of the
real world. These assumptions form abstractions of reality and these abstractions
may or may not be sound. Moreover, the real world changes continuously and in
unexpected ways. A cohesive joint course action by a group(s) responding to ongoing
socio-technical problems is crucial to the efficiency and success of the action. How to
adapt existing plans in ongoing socio-technical environments and how to coordinate
members of a group(s) depend on how valid the underlying models and assumptions
are. It is also desirable to automate improvement of models and assumptions based
on live empirical data. Validation and model-improvement serve as a foundation for
the coordination of large number of agents and their distributed tasks, goals, and
organizations to deal with live socio-technical problems. The required fidelity of the
model varies as a function of the research, policy, and/or mission questions being
asked. Calibration, validation, and model-improvement are hard due to the changes
in the real world, altered goals, inherent assumptions and abstractions, and human
cognitive limitations such as bounded rationality [38].

Information exploitation is a technique that has yet to be fully employed to deal
with the problem of calibration, validation, and model improvement. (The term "val­
idation" will be used from now on to denote calibration, validation, and model-
improvement.) Few multi-agent simulations have exploited the depth and breadth of
available knowledge and information for validation that resides in journals, books,
websites, human experts, and other sources. Typically, simulation results are de­
signed solely for human analysis and validation is provided by subject matter ex­
perts announcing that the model "feels right" face validity. While this may be suf­
ficient for small-scale simulations, it is woefully inadequate for large-scale simu­
lations designed to inform decision-makers. In particular, automated help for val­
idation and analysis is crucial. However, little work to date probes the important
aspect of automating validation and analysis (this is conventionally left to humans
to perform: there is an invisible wall of separation between simulation and analy­
sis/knowledge inference). To successfully automate validation and analysis, domain
knowledge must be exploited, for example by an expert systems inference engine. A
simulation and inference engine that can do virtual experiments and knowledge infer­
ence in concert would facilitate focused search by using both the simulation engines
search space and the inference engines knowledge space to arrive at better param­
eter and meta-model values for validation. This paper describes our approach for

WIZER: An Automated Tool for Model Improvement 257

doing knowledge-based simulation-aided validation in multi-agent social-network
systems, embodied in a tool called WIZER (What-If AnalyZER). WIZER applies
knowledge control of the simulation, inference and intelligent search in multi-agent
social-network simulations.

The results presented in this paper are based on WIZER runs using Bio War.
Bio War is a city-scale multi-agent social-network simulator capable of modeling the
effects of weaponized biological attacks on a demographically-realistic population
within a background of naturally-occurring diseases [7] [6]. Bio War currently runs
a few thousand to several million agents. Unlike traditional models that look at hy­
pothetical cities (such as the Brookings smallpox model [17] and the SARS model
[22]), Bio War is configured to represent real cities by loading census data, school
district boundaries, etc. It models both healthy and infected agents as they go about
their lives, enabling observation of absenteeism, drug purchases, hospital visits, and
other data streams of interest.

2 Validation Experience

The complexity of ensuring valid results of agent-based simulations is shown dur­
ing the validation of Bio War outputs. BioWar has many input and model parameters
and these parameters can be stochastic. Brute-force search in the space of input and
model parameters to fit the non-computational data is all but impossible. BioWar also
has a complex response surface(s) and is knowledge intensive. Putting BioWar in
specification can be viewed as a multi-dimensional numeric and symbolic optimiza­
tion problem, with the knowledge component (e.g., school district announcements).
The validation experience shows that there is a need for:

• Sophisticated analysis and response techniques to optimize the space over which
parameters must be varied for correctness, and thus increase the number of pa­
rameters which can be studied.

• Tools to semi-automatically create and execute parametric studies to minimize
the manual intervention currently required for these studies.

• New approaches to simulation scaling so as to reduce the size of the simulations
which produce validated output streams.

WIZER addresses the first two points above.

3 Related Work

Multi-agent systems are usually "validated" by strictly applying requirements engi­
neering. In software engineering terms [31], validation means the determination of
the correctness of the final program or software produced with respect to the user
needs and requirements not necessarily the empirical data or the real world. The
usual emphasis in multi-agent system development is on language, programming.

258 Yahja and Carley

and design principles such as agent autonomy, team work, roles/types, and interac­
tion protocols [12][28]. Formal methods [13] used in software engineering for con­
trol and understanding of complex multi-agent systems lack an effective means of
determining if a program fulfills a given formal specification [15]. Complex societal
problems contain "messy" interactions, dynamic processes, and emergent behaviors,
so it is often problematic to apply requirements engineering and/or formal methods.

Another validation method is evolutionary verification and validation or EVV
[37][36], which utilizes evolutionary algorithms, including genetic algorithms and
scatter search, for verification and validation. While EVV allows testing and ex­
ploitation of unusual combinations of parameter values via evolutionary processes,
it employs knowledge-poor genetic and evolutionary operators, not the scientific
method, for doing experiments, forming and testing hypotheses, refining models,
and inference, precluding non-evolutionary solutions.

Docking is another approach to validating multi-agent systems [2]. Docking is
based on the notion of repeating a scientific experiment to confirm findings or to
ensure accuracy. It considers whether two or more different simulation models align
(produce similar results), which is used in turn as a basis to determine if one model
can subsume another. The higher the degree of alignment among models, the more
they can be assumed to be valid, especially if one (or both) of them has been pre­
viously validated. The challenges in applying docking are the limited number of
previously validated models, the implicit and diverse assumptions incorporated into
models and the differences in data and domains among models.

One application of docking is to align complex multi-agent simulations against
mathematical or system dynamics models. Bio War's anthrax simulation has been
successfully docked against the IPF (Incubation-Prodromal-Fulminant) mathemat­
ical model, a variant for anthrax of the well-known SIR (Susceptible-Infected-
Recovered) epidemiological model [9] and BioWar's smallpox model has been
docked against a SIR model of smallpox [10]. While aligning a multi-agent model
with a widely used mathematical model can show the differences and similarities be­
tween these two models, the validity is limited by the type of data the mathematical
model uses. For example, the IPF model mentioned above operates on population-
level data, so the result of the alignment will be only valid at the granularity of
population-level data. Mathematical models also have difficulties representing non-
numerical (symbolic) knowledge, including the knowledge base underlying complex
context-sensitive agent interactions.

Validating complex multi-agent simulations by statistical methods alone [23] is
problematic due to the coarse granularity required for statistical methods to operate
properly and the insufficient representation of symbolic knowledge. Statistical meth­
ods are good at describing data and inferring distributional parameters from samples,
but statistic methods alone are insufficient to handle the highly dynamic, symbolic,
causal, heterogeneous, and emergent nature of societal systems.

Complex multi-agent simulations are not normally validated using expert sys­
tems (such as OrgCon [5]) as it is thought that it is sufficient to let human experts
alone perform the analyses, experiment design, and quantitative and symbolic rea-

WIZER: An Automated Tool for Model Improvement 259

soning. This view is especially prevalent as most simulations are in the realm of
purely numeric models.

Human experts can do validation by focusing on the most relevant part of the sys­
tem and thinking about the problem intuitively and creatively. These subject matter
experts (SMEs) have the knowledge needed to judge model performance in their spe­
cialized fields. Applying learned expertise and intuition, SMEs can exploit hunches
and insights, form rules, judge patterns, and analyze policies. Managed and admin­
istered properly, SMEs can be effective. Pitfalls include bounded rationality, implicit
biases, implicit reasoning steps, judgment errors, and others.

Another approach to validation is direct comparison with real world data and
knowledge. Validation can be viewed as experimenting with data and knowledge, us­
ing models as the lab equipment for performing computational experiments [20] [3].
Simulation models to be validated should reflect the real world and results from ex­
periments in simulation should emulate changes in the real world. If results from
virtual or computational experiments are compared to real world data and match
sufficiently, the simulation is sufficiently valid. Simulation [24][33] has an advan­
tage over statistics and formal systems as it can model the world closely, free of the
artifacts of statistics and formal systems.

There is related work in engineering design methods using Response Surface
Methodology or RSM [27] and Monte Carlo simulations [35] to do direct validation,
but only with numerical data and limited to a small number of dimensions. RSM is
collection of mathematical and statistical techniques for the modeling and analysis
of problems in which a response of interest is influenced by several variables. It can
include virtual experiments using Monte Carlo simulation. It usually tests only a few
variables and operates to find the best fit equation so that the correlation of equations
predictions with real data is statistically significant.

4 Our Approach: Knowledge-Based Simulation-Aided
IVIodel-Improvement

WIZER (What-If AnalyZER) is a coupled inference and simulation engine that im­
proves upon Response Surface Methodology to deal with the high dimensional, sym­
bolic, stochastic, emergent, and dynamic nature of multi-agent social-network sys­
tems. Viewing simulation systems as knowledge systems, WIZER is designed for
controlling and validating them directly with empirical data and knowledge using
pattern analyses and knowledge inferences (mimicking those of SMEs) and virtual
experiments (mimicking those of RSM).

WIZER integrates an inference engine and simulation virtual experiments to do
calibration and validation for model-improvement and to provide explanations. It im­
proves on RSM features by performing knowledge-intensive data-driven search steps
via an inference engine constrained by simulation outputs, instead of just doing sta­
tistical and mathematical calculations. WIZER facilitates knowledge-based simula­
tion control and simulation-assisted inference, enabling reasoning about simulations
and simulation-assisted reasoning. It enables the management of model assumptions.

260 Yahja and Carley

contradictory or incomplete data, and increases the speed and accuracy of model val­
idation and analysis. It is capable of explaining the reasoning behind inferences using
both the simulation and inference engine. Search in WIZER is performed using both
simulation and knowledge inference. The amount of search is reduced as the knowl­
edge inferences, empirical data and knowledge, and virtual experiments constrain
the search space.

WIZER seeks to emulate scientists doing experiments and analyses via the scien­
tific method, instead of simply emulating an experimental setup. While other toolkits
such as Swarm (http://wiki.swarm.org), TAEMS [25], and Repast
(http://repast.sourceforge.net) are designed with the goal of assisting the design and
implementation of agent-based systems, WIZER is designed to help with scientific
experimentation, validation, analysis, and model improvement. WIZER is conceptu­
ally able to run on top of any simulation system, including those constructed using
Swarm and Repast toolkits. WIZER is basically a logical reasoning, experimentation,
and simulation control engine with statistical and pattern recognition capabilities.
This is similar to techniques scientists employ when designing, executing, and ana­
lyzing experiments. WIZER differs from Evolutionary Programming [18] as it does
not need a population of mutation candidates and the mutation operator. Instead,
WIZER applies knowledge inference to simulations to design the next simulation
run, based on scientific experimental method. If the result of inferences mandates
a radical change, a revolution would occur. WIZER also differs from Evolutionary
Strategies and Genetic Algorithms [14] as it does not use recombination/crossover
operators. In short, WIZER employs a unique logical reasoning, simulation control
and scientific method for doing virtual experiments. Explaining what a simulation
system does and what happens in simulation to SMEs is important from validation
perspective. Utilizing its inference engine, WIZER can provide automated expla­
nation of the happenings and emergent behaviors within a multi-agent simulation
system.

As shown in Figure 1, Alert WIZER takes in the simulation output data and de­
termines which data streams of the simulation outputs do not fall within the empir­
ical data value ranges and how. The WIZER Inference Engine takes the simulators
causal diagram of what parameter influences which output data and the empirical
constraints and confidence intervals on parameters to make a judgment on which
parameters to change and how (including causal links and the model or agent sub­
model itself, if necessary). This results in new parameters for the next simulation.
This simulation in turn yields new outputs which are fed back into WIZER.

This cycle repeats until a user-defined validity level is achieved. Thus, WIZER
consists of:

• A system for determining which outcome variables match or fall within the ac­
ceptable range of the real data Alert WIZER. This system will create an "alert"
when there is not a match. Inputs to Alert WIZER include real and virtual data.
Real data include various types of data such as subject matter experts (SMEs)
estimation of behavior, V\ 2"^, and 3^^ order statistics for data streams at the

http://wiki.swarm.org
http://repast.sourceforge.net

WIZER: An Automated Tool for Model Improvement 261

SimuhUor

Sijiiuiation oiitput.s ajui
happenings

Causal diagiam
and nieta-model

New parajiieter values

Eiiipuical data, kjiowledge.
and parajneter constraints

WIZER

Alert
WIZER

Data
description

Inference
Engnie

User-defmed criteria for
sufficient validity

Fig. 1. WIZER Diagram

yearly, seasonal, monthly, and day of week level, and actual streams of data.
Alert WIZER includes statistical tools.

• An intelligent system for identifying which of the "changeable" parameters
should be changed and how to improve the fit of the virtual to the real data the
WIZER Inference Engine. This component uses a database relating parameters
to the variables and modules they impact. This includes assumptions about the
expected range for parameter values (according to SMEs) or best guesses, thus
placing confidence measures on parameters.

• A local response surface analysis feature that can run simple virtual experiments
for parametric studies.

The knowledge bases in the inference engine are populated with the knowledge
about the simulator, simulation outcomes, domain facts and knowledge, assumptions,
ontology, problem solving strategies, information about statistical tools it employs
and other data. The knowledge bases contain both knowledge (hard or certain rules
and facts) and assumptions (soft or uncertain rules and facts). Simulation outcomes
provide measurements of the degree-of-support an assumption has. These different
types of knowledge are included to enable the inference engine to reason about its
reasoning. For example, knowledge about the simulation allows the inference engine
to back up its symbolic reasoning with simulation outcomes and also to reason about

262 Yahja and Carley

the simulation. Part of the knowledge base is portable between simulations, but users
need to provide the remainder.

The emergence of causal links based on low-level interactions can be probed by
the inference engine, including probes to see what an individual agent does in its
life and what events affected this agent and why, in addition to sample based probes.
For sample based probes, WIZER conducts inferences based on the application of its
included statistical tests.

The WIZER Inference Engine was inspired by the rule-based Probabilistic Argu­
mentation Systems (PAS) [21] for handling assumptions. While a rule-based system
is sufficient if knowledge engineers are able to check the causal relations inherent in
rules, for large knowledge bases manual checks are cumbersome and prone to errors.
Thus, there is a need for automated and formal causal checking. Fortunately, causal
analysis has been treated mathematically [30]. WIZER uses a novel probabilistic
argumentation causal system (PACS), which utilizes the probabilistic argumentation
[21] in causal analysis [29]. Users of WIZER specify which rules are causal in nature
and WIZER is capable of suggesting causal links and performing empirical compu­
tations to provide justification for these causal links. Results from social network
analysis form one silo of domain knowledge fed into the WIZER inference engine.
The inference engine in turn, along with the execution of virtual experiments in sim­
ulations, provides knowledge-based grounding for the emergence and evolution of
social networks from low-level agent behaviors and interactions. The causal mech­
anisms encoded in WIZER enable formal computation of interventions or actions,
instead of mere observation. This allows WIZER to make changes in parameters,
causal links, and meta-models, and to analyze the consequences. In other words,
WIZER can emulate what scientists do by changing and analyzing experiments.

Causal analysis involves mechanisms (stable functional relationships), interven­
tions (surgeries on mechanisms), and causation (encoding of behavior under inter­
ventions). Associations common in statistics can characterize static conditions, while
causal analysis deals with the dynamics of events under changing conditions. Sim­
ply turning off some potential causal links and re-simulating is insufficient and while
counterfactual testing - checking would happen if (true) facts were false - can un­
cover causal effects, the method can fail in the presence of other causes or when other
causes are preempted and it ignores the sufficiency aspect. These weaknesses of this
(global) counterfactual test can be addressed by sustenance, providing a method to
compute actual causation [29]. Sustenance means minimally supporting an effect.
Actual cause is computed by constructing causal beams and doing local counter-
factual test within the beams. Causal beams are causal links that have been pruned
to retain a subset of causal links that sustains the occurrence of an effect. Dynamic
beams are simply causal beams with a time dimension [29].

To account for the probability of causation, the causal model [30][29] specifies
the use of Bayesian priors to encode the probability of an event given another event.
It does not distinguish between different kinds of uncertainty. It is unable to model
ignorance, ignores contradictions and is incapable of expressing evidential knowl­
edge without the use of the probability distribution format. Since the intended use of
WIZER is to do validation in environments with incomplete, contradictory, and un-

WIZER: An Automated Tool for Model Improvement 263

certain knowledge and because WIZER needs to clearly delineate between assump­
tions and facts, we need an improved causal model, built by borrowing concepts
from the Probabilistic Argumentation Systems (PAS). Table 1 shows the encoding
of facts, assumptions, and rules for rule-based systems using probabilistic argumen­
tation, while Table 2 shows the encoding of facts, assumptions, and causations for
causal analysis enhanced with PAS-like assumption management. In both tables, let
Pi be proposition /, at be assumption /, causes be the causation operator, and ^ be
the implication operator.

Table 1. Rule-Based Encoding

Type of Knowledge Logical Representation Meaning

A fact
A rule
An uncertain fact
An uncertain rule

PI
PI =^P2
a l ^ P l
a2 => (PI => P2)

PI is true
PI implies P2
If al is true then PI is true
If a2 is true then PI implies P2

Table 2. Causation Encoding

Type of Knowledge Logical Representation Meaning

A fact PI PI is true
A rule PI causes P2 PI causes P2
An uncertain fact al =4> PI If a 1 is true then PI is true
An uncertain rule a2 =» (PI causes P2) If a2 is true then PI causes P2

We call Table 2's formalism the probabilistic argumentation causal systems
(PACS). WIZER includes both rule-based and causal formalisms. PACS algorith­
mic details are derived from both PAS [21] and causal analysis [30]. Simulation
virtual experiments can be seen as a proxy for real world experiments when doing
real world interventions would be unrealistic or unethical. Causal analysis uses com­
putations based on real-world experimental and non-experimental data. WIZER adds
another dimension to causal analysis: allowing quasi-experimental that is, simulated
data.

The internal workings of the WIZER Inference Engine are complex, but its ba­
sic operations are simple. Let P = p\, ...,/?„ be propositions, A = a\, ..,, a^ be
assumptions, h be the hypothesis and K = c\ fi ... Pi c« be the knowledge base of
clauses, where c/ is an element of the set of all possible A and P clauses. Let a be the
(conjunctive) arguments supporting h. We have

anK=>h
or equivalently

264 Yahja and Carley

or equivalently
^(-^K Uh)=>-^a

In other words, if we know K and /z, we can compute the supports, that is, the
arguments supporting h. The hypothesis his a. clause produced by Alert WIZER after
comparing simulation data streams with empirical data. After finding the arguments
supporting /i, the degree of support can be found, defined as

dsp(h, K) = proh(a support aofh is valid \ no contradiction, K)
Similarly, the degree of plausibility can be found, defined as

dpl(h, K) = prob(no support of-^h is valid \ no contradiction, K)
These two measures are used to determine which arguments are the most relevant

to the hypothesis at hand, pinpointing which parameter values, causal links, and/or
submodels should be changed. In other words, hypothesis h is the input to WIZER
Inference Engine and the arguments supporting h are the output, leading to changes
in parameter and meta-model values.

The operations described above are performed for both rule-based and causal
clauses. Then, for clauses denoted as causal, additional operations are performed to
see whether and to what degree the causal relations are empirically correct, partially
based on the degree of support and the degree of plausibility. Sustenance, causal
beams and actual cause are also computed. WIZER also performs virtual experiments
as needed.

The intertwining causal computation and virtual experimentation capability of
WIZER enhances R\CS and is useful in simulations to:

• Provide a formal computational means to convert simulation results or happen­
ings to user-friendly causal sentences and also a mechanism to arrive at proba­
bility distributions or profiles for assumption variables.

• Allow probing of existing and potential causal assumptions and links and ex­
amination of the robustness of causal links using empirical data and quasi-
experimental data obtained by simulations based on other known mechanisms
and empirical data. For example, a simulation may have modeled Washington
DC and policy analysts would like to know the effects of quarantining certain
city blocks or closure of some major roads to mitigate the spread of smallpox.
The mechanisms, data values, and stochastic processes in the city model them­
selves do not contain direct answers to the above causal question. Utilizing causal
computation would allow this question to be answered.

• Allow the formal modeling of interventions in simulations.
• Allow symbolic values/events to be considered in determining causal relations.

For example, the recent shortage of flu vaccine caused the CDC to recommend
restrictions on who received the vaccine, resulting in a stockpile of unused flu
vaccine, partly because some eligible people believed that none were available
due to the news. WIZER would be able to probe similar kinds of cause and effect
relationships.

• Allow experimentation and simulation control. As WIZER modifies, runs, re-
modifies, and re-runs simulations, it uses causal mechanisms to keep track of

WIZER: An Automated Tool for Model Improvement 265

and help inform what causes a certain series of modifications to work or fail and
to suggest possible next steps.
Allow better inference by letting the inference engine run simulations in the midst
of causal inferences as needed. This allows the examination of the empirical
claims of causal inferences.
Provide a way to automatically tweak agent meta-models and individual agents
so that they are both realistic and able to coordinate in a realistic environment.

5 Run Setup and Empirical Data

WIZER was used to validate BioWar. As mentioned earlier, Bio War [7] is a city-scale
spatial multi-agent social-network model capable of bioattack simulations. BioWar
has a large number of variables and interactions. Application of the Spiral Develop­
ment model [4] to BioWar code development means that any previous validation of
model predictions may no longer apply to a new version.

We have implemented Alert WIZER, which takes the empirical data on school
absences, workplace absenteeism, doctor visits, emergency room visits, with addi­
tional emergency room visitation data from SDI (Surveillance Data Inc.), and over-
the-counter drug purchase data. It also uses the outputs of the BioWar simulator and
conducts minimum bound checking, maximum bound checking and mean compari­
son.

The following empirical data was used to compute the empirical bounds and
means for the Alert WIZER:

• NCES Indicator 17, 2002 (Year 2000 data), for calculating school absenteeism
http://nces.ed.gov/programs/coe/2002/section3/indicatorl7.asp

• CDC Advance Data, from Vital and Health Statistics, no. 326, 2002, for calcu­
lating ER visits http://www.cdc.gov/nchs/data/ad/ad326.pdf

• CDC Advance Data, from Vital and Health Statistics, no. 328, 2002, for calcu­
lating doctor visits http://www.cdc.gov/nchs/data/ad/ad328.pdf

• 1997 US Employee Absences by Industry Ranked for determining work absen­
teeism http://publicpurpose.com/lm-97absr.htm

• Over-the-counter (OTC) Drug Sales extracted from Pittsburgh Supercomputing
Centers "FRED" data containing pharmacy sales data.

BioWar simulation outputs include the data streams matching the above empiri­
cal data such as daily absences for each school.

6 Preliminary Results

WIZER was run on "Challenge 3" and "Challenge 4" data from BioWar [6] using an
implementation of Alert WIZER. Challenge 3 data consists of 4 data streams with 10
simulation runs for each attack case (no attack, anthrax attack, and smallpox attack)
for each of 4 cities. The city population and locations (buildings and facilities) were

http://nces.ed.gov/programs/coe/2002/section3/indicatorl7.asp
http://www.cdc.gov/nchs/data/ad/ad326.pdf
http://www.cdc.gov/nchs/data/ad/ad328.pdf
http://publicpurpose.com/lm-97absr.htm

266 Yahja and Carley

scaled at 20%. The parameters were adjusted following an execution of preliminary
inference engine steps based on a partial causal diagram of Bio War. We present the
means from the four Challenge 3 simulation output data streams in Tables 3-6.

Table 3 shows that the simulated means of school absenteeism rates for normal
simulation cases (no bioattack) fall between lower and upper empirical bounds for
the simulations of Norfolk, Pittsburgh, San Diego, and "Veridian Norfolk" (a part of
Norfolk specified by Veridian, Inc.). For anthrax attack cases, the simulated means
are higher than normal means but still lower than the empirical higher bounds. This
is plausible as the empirical higher bound contains (contagious) influenza outbreaks
and other disease cases. For smallpox attacks, however, the simulation mean for one
city - San Diego - is higher than the empirical higher bound. Smallpox is highly
contagious so this is also plausible. For other cities, the simulated means of school
absenteeism remain within expected bounds.

Table 3. School Absenteeism

City, scale Lower bound Higher bound No attack Anthrax Smallpox

Norfolk, 20% 3.C
Pittsburgh, 20% 3.C
San Diego, 20% 3.C
Veridian Norfolk, 20% 3.04%

5.18%
5.18%
5.18%
5.18%

3.45%
3.52%
3.78%
3.73%

3.75%
4.67%
3.81%
4.05%

3.55%
4.46%
5.57%
4.31%

For the workplace absenteeism (Table 4), the simulated means are within the
empirical bounds for normal (no attack) cases for all the cities. In case of anthrax
attack, the workplace absenteeism means are higher than those for normal cases; and
in three of four cities, higher than the empirical higher bound. For smallpox attack,
the simulated means are higher than those for normal cases, and higher than the
empirical higher bound for one of the four cities.

Table 4. Workplace Absenteeism

City, scale Lower bound Higher bound No attack Anthrax Smallpox

Norfolk, 20% 2.30%
Pittsburgh, 20% 2.30%
San Diego, 20% 2.30%
Veridian Norfolk, 20% 2.30%

4.79%
4.79%
4.79%
4.79%

2.72%
2.77%
3.26%
3.16%

4.65%
5.79%
4.99%
5.50%

2.82%
3.99%
5.78%
3.81%

Table 5 shows that for doctor visits the simulated means for the four cities fall
within the empirical bounds for normal (no attack) cases. For anthrax attack cases,
the simulated means are higher than those for normal cases for two cities, and slightly
lower for two other cities. For smallpox attacks, the means are higher than those for
normal cases for three cities and the same for one city. The results for attack cases

WIZER: An Automated Tool for Model Improvement 267

are imperfect but indicate correct trends. All means for anthrax and smallpox attacks
are within the empirical bounds.

Table 5. Doctor Visit per Person per Year

City, scale Lower bound Higher bound No attack Anthrax Smallpox

Norfolk, 20% 0.415
Pittsburgh, 20% 0.415
San Diego, 20% 0.415
Veridian Norfolk, 20% 0.415

1.611
1.611
1.611
1.611

0.499
0.493
0.726
0.707

0.476
0.485
0.753
0.821

0.499
0.573
0.796
0.738

For emergency room visits (Table 6), the simulated means for four cities fall
within the empirical bounds for normal (no attack) cases. For anthrax attacks, the
simulated means are higher than those of normal cases for two cities and slightly
lower for two others. For smallpox attacks, the simulated means are higher than those
for normal cases for three cities and the same for one city. The results for attack cases
are imperfect but indicate correct trends.

Table 6. Emergency Room Visit per Person per Year

City, scale Lower bound Higher bound No attack Anthrax Smallpox

Norfolk, 20% 0.056
Pittsburgh, 20% 0.056
San Diego, 20% 0.056
Veridian Norfolk, 20% 0.056

Challenge 4 data has 12 data streams: school absenteeism, work absenteeism,
doctor visits, emergency room visits, emergency room visits using the Surveillance
Data Inc. data, and seven drug type purchase data streams. Table 7 shows the per­
centage of validated data streams for six cities for the no attack case.

Table 7. Percentage of "Challenge 4" Simulation Output Data Streams Validated

0.232
0.232
0.232
0.232

0.112
0.109
0.149
0.161

0.108
0.106
0.159
0.187

0.112
0.129
0.188
0.168

City Data Streams Validated

San Francisco 5 out of 12, or 41.67%
San Diego 7 out of 12, or 58.33%
Pittsburgh 7 out of 12, or 58.33%
Norfolk 6 out of 12, or 50.00%
Hampton 4 out of 12, or 33.33%
Washington DC 4 out of 12, or 33.33%

268 Yahja and Carley

7 Discussion

Automation of simulation experiment control and analysis is rarely viewed as a crit­
ical feature of simulation systems; instead, experimental control, analysis, interven­
tion, validation, and model-improvement are left for humans to perform. Most sim­
ulation platforms aim to provide tools to ease the coding of simulation systems,
rather than automating the analysis, control, validation, intervention, and model-
improvement. WIZER indicates that such automation can be very useful, especially
when dealing with socio-technical and public health problems which have a high
degree of uncertainty and interactions. Based on empirical data and knowledge, sim­
ulations can bound the inferences and allow the empirical claims of the inferences
to be investigated. At the same time, knowledge-based inference and control of sim­
ulation can reduce the number of simulation searches and virtual experiments that
need to be conducted. Simulations and inferences on them here act like a dynamic
version space on both search and knowledge spaces.

The results presented in this paper are preliminary. More WIZER and simulation
runs are needed to get better statistics - such as the median and variance -, and to
evaluate error margins, the effects of sample choices, search space traversal, and the
performance of combined simulation and knowledge search, including the metrics
for measuring the amount of search reduction in both search space and knowledge
space. The performance of WIZER will be compared with that of human subject
matter experts.

8 Acknowledgements

This research was supported, in part, by DARPA for work on Scalable Biosurveil-
lance Systems, the NSFIGERT9972762 in CASOS, the MacArthur Foundation, and
by the Carnegie Mellon Center on Computational Analysis of Social and Organiza­
tional Systems. The computations were performed on the National Science Foun­
dation Terascale Computing System at the Pittsburgh Supercomputing Center. Any
opinions, findings, conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of DARPA, the National
Science Foundation, the Pittsburgh Supercomputing Center, the MacArthur Founda­
tion, or the US Government.

References

1. R Axelrod. Advancing the art of simulation. In Simulating Social Phenomena, pages
21-40. Springer-Verlag, Berlin, Germany, 1997.

2. R Axtell, R Axelrod, J.M Epstein, and M.D Cohen. Aligning simulation models: A case
study and results. Computational and Mathematical Organization Theory, 1(2): 123-141,
1996.

WIZER: An Automated Tool for Model Improvement 269

3. S Bankes. Models as lab equipment: Science from computational experiments. In Pro­
ceedings of the North American Association for Computational Social and Organiza­
tional Science Conference. Center for Computational Analysis of Social and Organiza­
tional Systems, Pittsburgh, PA, 2004.

4. B Boehm. Spiral development: Experience, principles, and refinements. In Spiral Devel­
opment Workshop, Special Report CMU/SEI-2000-SR-008. Carnegie Mellon University,
Pittsburgh, PA, 2000.

5. R Burton and B Obel. Strategic Organizational Diagnosis and Design: Developing The­
ory for Application, Kluwer Academic Publishers, Dordrecht, the Netherlands, second
edition, 1998.

6. K Carley, N Altman, B Kaminsky, D Nave, and A Yahja. Biowar: A city-scale multi-agent
model of weaponized biological attacks. Technical report, Carnegie Mellon University,
Pittsburgh, PA, 2004.

7. K Carley, D Fridsma, E Casman, N Altman, J Chang, B Kaminsky, D Nave, and
A Yahja. Biowar: Scalable multi-agent social and epidemiological simulation of bioter-
rorism events. In Proceedings of North American Association for Computational Social
and Organizational Science Conference. Center for Computational Analysis of Social and
Organizational Systems, Pittsburgh, PA, 2004.

8. K Carley and M Prietula, editors. Computational Organizational Theory. Lawrence
Erlbaum Associates, Mahwah, NJ, 1999.

9. L-C Chen, K Carley, D Fridsma, B Kaminsky, and A Yahja. Model alignment of anthrax
attack simulations. Decision Support Systems in the special issue on Intelligence and
Security Informatics, 2003.

10. L-C Chen, B Kaminsky, T Tummino, K Carley, E Casman, D Fridsma, and A Yahja.
Aligning simulation models of smallpox outbreaks. In Intelligence and Security Infor­
matics, volume 3073 of Lecture Notes on Computer Science, pages 1-16. Springer-Verlag,
Berlin, Germany, 2004.

11. C Cioffi-Revilla. Invariance and universality in social agent-based simulations. In Pro­
ceedings of the National Academy of Sciences of the U.S.A, volume 99 (Supp. 3), pages
7314-7316. National Academy Press, Washington, DC, 2002.

12. M Dastani, J Dix, and A.E.F Seghrouchni, editors. Programming Multi-Agent Systems,
volume 3067 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Ger­
many, 2004.

13. N Dershowitz, editor. Verification: Theory and Practice. Springer-Verlag, New York, NY,
2004.

14. M Dianati, I Song, and M Treiber. An introduction to genetic algorithms and evolution
strategies. Technical report, University of Waterloo, 2003.

15. B Edmonds and JJ Bryson. The insufficiency of formal design methods: the necessity
of an experimental approach for the understanding and control of complex mas. In Pro­
ceedings of Autonomous Agents and Multi Agent Systems Conference. Association for
Computing Machinery, 2004.

16. J Epstein and R Axtell. Growing Artificial Societies. MIT Press, Cambridge, MA, 1996.
17. J Epstein, D.A.T Cummings, S Chakravarty, R.M Singa, and D.S Burke. Toward a con­

tainment strategy for smallpox bioterror: An individual-based computational approach.
Technical report, Brookings Institution Press, Washington, DC, 2004.

18. LJ Fogel. Intelligence Through Simulated Evolution: Forty Years of Evolutionary Pro­
gramming. Wiley Series on Intelligent Systems, New York, NY, 1999.

19. N Gilbert and KG Troitzsch. Simulation for the Social Scientist. Open University Press,
Berkshire, United Kingdom, 1999.

270 Yahja and Carley

20. HS Guetzkow, P Kotler, and RL Schultz, editors. Simulation in Social and Administrative
Science: Overviews and Case-Examples. Prentice Hall, Englewood Cliffs, NJ, 1973.

21. R Haenni, J Kohlas, and N Lehmann. Probabilistic argumentation systems. Technical
report. University of Fribourg, Fribourg, Switzerland, 1999.

22. C-Y Huang, C-T Sun, J-L Hsieh, and H Liu. Simulating sars: Small-world epidemiolog­
ical modeling and public health policy assessments. Journal of Artificial Societies and
Social Simulation, 7(4), 2004.

23. NP Jewell. Statistics for Epidemiology. Chapman and Hall/CRC, Boca Raton, FL, 2003.
24. AM Law and WD Kelton. Simulation Modeling and Analysis. McGraw-Hill, New York,

NY, third edition, 2000.
25. V Lesser, K Decker, T Wagner, N Carver, A Garvey, B Horling, D Neiman, R Podor-

ozhny, M NagendraPrasad, A Raja, R Vincent, P Xuan, and XQ Zhang. Evolution of
the gpgp/taems domain-independent coordination framework. Autonomous Agents and
Multi-Agent Systems, 9(1):87-143, 2004.

26. C Lucena, A Carcia, A Romanovsky, J Castro, and P Alencar, editors. Software Engi­
neering for Multi-Agent Systems II, volume 2940 of Lecture Notes in Computer Science.
Springer-Verlag, New York, NY, 2004.

27. RH Myers and DC Montgomery. Response Surface Methodology: Process and Product
Optimization using Designed Experiments. John Wiley and Sons, New York, NY, second
edition, 2002.

28. M Nickles, M Rovatsos, and G Weiss, editors. Agents and Computational Autonomy:
Potential, Risks, and Solutions, volume 2969 of Lecture Notes on Artificial Intelligence.
Springer-Verlag, Berlin, Germany, 2004.

29. J Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cam­
bridge, United Kingdom, 2000.

30. J Pearl. Statistics and causal inference: A review. Test Journal, 12(2):281-345, 2003.
31. RS Pressman. Software Engineering. McGraw-Hill, New York, NY, 2001.
32. M Prietula, K Carley, and L Gasser. Simulating Organizations. AAAI Press/The MIT

Press, Menlo Park, CA, 1998.
33. S Rasmussen and CL Barrett. Elements of a theory of simulation. In Proc. of the Third

European Conference on Artificial Life (ECAL'95), volume 929 of Lecture Notes in Com­
puter Science, pages 515-529. Springer, Berlin, Germany, 1995.

34. J Reifman, G Gilbert, M Parker, and D Lam. Challenges of electronic medical surveil­
lance systems. In RTO HEM Symposium on NATO Medical Surveillance and Response:
Research and Technology Opportunities and Options. NATO, Budapest, Hungary, 2004.

35. CP Robert and G Casella. Monte Carlo Statistical Methods. Springer-Verlag, New York,
NY, 1999.

36. S Shervais and W Wakeland. Evolutionary strategies as a verification and validation tool.
Technical report, Portland State University, Portland, OR, 2003.

37. S Shervais, W Wakeland, and D Raffo. Evolutionary verification and validation of soft­
ware process simulation models. In 5th International Workshop on Software Process
Simulation and Modeling. IEEE Computer Society, Washington, DC, 2004.

38. H Simon. A behavioural model of rational choice. Quarterly Journal of Economics,
69:99-118, 1957.

39. CS Taber and RJ Timpone. Computational Modeling. Sage, Newbury Park, CA, 1996.
40. MD Ward. Theories, Models, and Simulations in International Relations. Westview Press,

Boulder, CO, 1985.
41. S Wasserman and K Faust. Social Network Analysis: Methods and Applications. Cam­

bridge University Press, Cambridge, United Kingdom, 1994.

Part IV

Robustness and Flexibility for Large Scale
Coordination

Handling Coordination Failures in Large-Scale
Multi-Agent Systems

Gal A. Kaminka

Bar Ilan University

Summary. Agents monitor other agents to coordinate and collaborate robustly. The goals
of such monitoring include detection of coordination failures. However, as the number of
monitored agents is scaled up, two key challenges arise: (i) Agents become physically and
logically unconnected (unobservable) to their peers; and (ii) the number of possible coordi­
nation failures grows exponentially, with all potential interactions. This paper examines these
challenges in teams of cooperating agents. We provide a brief survey of the evolution of two
key approaches to handling coordination failures in large-scale teams: Restricting the number
of agents that must be monitored, and using model-based rather than fault-based detection
methods. We focus on a monitoring task that is of particular importance to robust teamwork:
detecting disagreements among team-members.

1 Introduction

Agents in realistic, complex, domains must monitor other agents to accomplish their
tasks, detect failures, coordinate, and collaborate. Indeed, the importance of agent
monitoring in deployed multi-agent systems has long been recognized in theory (e.g.,
[2, 7, 9]), and in practice. Monitoring has been discussed in the context of industrial
systems (e.g., [16]), to virtual environments for training and research (e.g., [36, 37,
30, 31]), to human-computer interaction (e.g., [27]), and multi-robot teams (e.g.,
[28, 5, 21]). Agent monitoring infrastructure is of particular importance in teams
of cooperating agents, since the correct execution of teamwork mandates that team-
members come to agree on the task that is jointly executed by the team, and manage
interdependencies among team-members [2, 9].

One specific goal of monitoring in teams is detection and resolution of teamv^ork
and coordination failures [24, 29, 38]. These may occur because of unanticipated
environment states—likely in complex, dynamic environments—or from communi­
cation, sensor, or actuator uncertainties. For instance, intermittent failures in com­
munications may cause a failure where one agent has sent a message, while its peers
have not received it.

Thus deployed multi-agent systems must include facilities for detecting, diagnos­
ing, and resolving failures. Indeed, a number of investigations have begun to explore

274 Kaminka

mechanisms for detecting failures in coordination and teamwork [23, 25, 24, 3, 29,
38] and for diagnosing such failures [22, 32, 33, 12, 17]).

However, large-scale multi-agent systems—where the number of agents is the
principal scale factor—pose a number of challenges to the ability of agents to mon­
itor each other, and thus to handle failures. Two of these challenges are: (i) Limited
connectivity, where agents become physically and logically separated, and thus less
able to monitor each other; and (ii) a combinatorial complexity of possible failures,
as the number of possible failures grows with the number of all possible interactions
between failures.

This paper discusses these challenges in depth, and explores their significance in
large-scale multi-agent systems. We also discuss the implications of these challenges
with respect to existing approaches to failure detection. We find in the literature two
approaches to failure detection. Some investigations take an approach based on fault-
models, where possible faults are enumerated at design time and recognized at run­
time. Other investigations take a model-based approach where agents detect failures
at run-time as deviations from a model of the normative coordination in the system.

To illustrate, we focus on the example of detecting disagreements—a principal
failure in multi-agent teamwork—to show the evolution of existing methods in recent
years to address large-scale systems. We show how an analysis of the monitoring
requirements of disagreement detection can lead to improved, reduced, bounds on
the connectivity of team-members. We also discuss relevant model-based detection
work, which can represent the state of multiple agents together, and can therefore be
utilized for highly-scalable disagreement detection.

This chapter is organized as follows. Section 2 provides motivation for this work
by showing concrete examples of limited connectivity and combinatorial failure
complexity in monitoring for disagreements. Section 3 focuses on limited connec­
tivity, and discusses a general approach in which only specific key agents must be
monitored, while detection is guaranteed. Section 4 focuses on the exponential com­
plexity of the number of possible coordination failures. Finally, Section 5 concludes.

2 IVIotivation and Background

Teamwork literature, addressing human and synthetic teams, has often emphasized
the importance of team-members being in agreement on various features of their
state, such as goals, plans, and beliefs^. Teamwork theory often defines agreement as
a state of mutual belief, where agents reason to infinite recursion about their beliefs
and their beliefs in others' beliefs in a proposition. For instance, SharedPlans theory
requires team-members to mutually believe in a shared recipe [9] during the planning
and execution phases of the task; the Joint Intentions framework emphasizes mutual
belief in the team goals' selection, as well as in team-members' beliefs about the
goals' achievability and relevance [2, 26]. Other investigations of agent teams have

^ Of course, the literature also addresses other critical features of teamwork aside from agree­
ment. But agreement is a repeating theme in recent work.

Handling Coordination Failures in Large-Scale Multi-Agent Systems 275

emphasized agreement on team plans to be jointly executed by team-members [16],
on hierarchical team operators [35], on tasks to be executed collectively [28, 6, 21],
etc. Investigations of human teamwork have not only emphasized agreement on the
joint task, but also agreement on features of the environment that are important to
the task being carried out by the team [1].

However, the literature also recognizes that achieving and maintaining agreement
can be difficult. Teamwork theory recognizes that attainment of agreement by mutual
belief is undecidable [10] and must therefore be approximated in practice. Such ap­
proximations frequently involve assumptions of trustworthiness of team-members, of
foolproof communications [16], of team-members being able to observe each other
[14], and/or of a mutually-visible environment [8]. As is often the case with ap­
proximations, they sometimes fail in practice (e.g., due to communications failures,
sensing differences due to different physical locations of agents, etc.), and therefore
team-members may find themselves in disagreement with each other. Such disagree­
ments are often catastrophic, due to the unique importance of agreement in collabo­
ration.

It is therefore critical that teams are monitored to detect such disagreements. A
monitoring agent that identifies the state of team-members can compare the state of
different team-members and detect differences on state features that, by design or by
selection, should have been agreed upon [24]. However, as the number of monitored
agents is scaled up, two challenges arise: (i) difficulty to observe or communicate
with all agents, due to latency, range, occlusion and other separation factors (Section
2.1); and (ii) an exponential number of possible coordination failures (Section 2.2).

2.1 Limited Connectivity

As the number of agents grows, agents become logically and physically distributed,
and cannot maintain continuous contact with each other. This may occur due to phys­
ical separation factors, such as occlusion and limited sensor range; or it may occur
due to logical separation, such as limited communication reliability, interference,
latency, or bandwidth. We use the term limited connectivity in a general sense to
describe this phenomenon. Limited connectivity thus denotes both limited ability to
observe a particular agent's actions as well as limited ability to communicate with
the agent.

The challenge of limited connectivity is of course only of limited concern in
small-scale systems. Given a few cycles, the agents can typically integrate multiple
attempts at communications and sensing of the world, over time, to form a fairly co­
herent mental picture of what their peers are up to. However, as the number of agents
grows, the ability to integrate such information over time diminishes rapidly. For in­
stance, existing peer-to-peer (P2P) include millions of simultaneously-active nodes.
Yet not one node is able to communicate directly with all of its peers at once, due to
both bandwidth and processing power issues. Even spreading the efforts over time
will not be sufficient, as the duration of time required is too long for any practical
interest.

276 Kaminka

2.2 Combinatorial Failure Complexity

A different concern with large scale system is the number of potential coordination
failures it may get into. Suppose each of Â agents may be in one of k internal states.
Then the number of possible joint states is k^. In loosely-coupled systems, each agent
is essentially independent of its peers, and may select between its k possible states
freely. In such systems, the vast majority of joint states—if not all—are considered
valid states.

However, in a coordinated multi-agent system, the selection of an internal state
by an agent is conditional by the selection of its peers' internal state. In other words,
agents move between joint states together. Typically, only a limited portion of these
states would be valid coordinated states, from the designer's perspective. Thus most
joint states may in fact be invalid from a coordination point of view.

Disagreements are a good example of this. Suppose a team of Â agents agrees
that their selection of internal state would be synchronous, i.e., for every selected
state of one agent, all others must be in some agreed-upon internal state. For sim­
plicity in notation, we describe this case as mutual selection of states 1.../:, i.e.,
all all agents select the same state. There would be 0{k) valid agreement joint states,
and the rest of the /c" joint states would be considered invalid—coordination failure—
states.

Note that the number of possible coordination failure states grows exponentially
in the number of agents. Thus large-scale systems where agents coordinate may have
to face an exponential number of possible faults.

3 Monitoring Graphs for Limited Connectivity

As the number of monitored team-members increases, it becomes increasingly dif­
ficult to monitor all of them (Section 2). Thus a key question is how to guarantee
failure-handling results while limiting the number of agents that must be monitored.

The approach we take to this involves the construction and analysis of monitoring
graphs, which represent information about which agent can monitor whom. We show
that for disagreement detection, one can set conditions on the structure of the graph
which, when satisfied, guarantee that detection is complete and sound. Complete
detection guarantees all failures will be detected (i.e., no false negatives). Sound
detection guarantees only failures will be detected (i.e., no false positives). Using
the conditions we explore in this section, one can guarantee sound and complete
detection of disagreements while setting conditions on the connectivity of agents.

Definition 1. A monitoring graph of a team T is a directed (possibly cyclic) graph in
which nodes correspond to team-members ofT, and edges correspond to monitoring
conditions: If an agent A is able to monitor an agent B (either visually or by com­
municating with it), then an edge {A^B) exists in the graph. We say that monitoring
graph is connected, if its underlying undirected graph is connected.

Handling Coordination Failures in Large-Scale Multi-Agent Systems 277

If the monitoring graph of a team is not connected, then there is an agent which is
not monitored by any agent, and is not monitoring any agent. Obviously, a disagree­
ment can go undetected in such a team: If the isolated agent chooses an internal state
different from what has been agreed upon with its peers, it would go undetected.

It is easy to see that if the graph is connected, and each agent knows exactly the
selection of its monitored peer, than sound and complete detection is possible, in a
distributed fashion. Each agent A monitors at least one other agent B (or is monitored
by another agent B).lfA selects an internal state different from B, than at least one
of them would detect the disagreement immediately. For instance, if A monitors B—
and knows with certainty B's state—than simple comparison with A's selected state
is all that is needed.

In the general case, however, coimectivity is insufficient. Suppose an agent A
has selected state Pi, and is monitoring another agent B that has selected state P2.
A disagreement exists here since agent B should have selected Pi. However, since
the internal state of B may not be known to A with certainty, A may have several
interpretations ofB's chosen state. The set of these interpretations may contain Pi, in
which case A may come to incorrectly believe that B is not in a state of disagreement
with A.

To treat this formally, let us use the following notation when discussing agent A's
hypotheses as to the state of an agent B: Suppose B's state is P (for instance, P is a
plan selected by B). We denote by M{A,B/P) the set of agent-monitoring hypotheses
that A constructs based on communications from B, or inference from 5's observable
behavior (i.e., via plan recognition). In other words, M{A,B/P) is the set of all A's
hypotheses as to i?'s state, when B's state (e.g., selected plan) is P. Note that when A
monitors itself, it has direct access to its own state and so M{A,A/P) = {P}.

We make the following definitions which ground our assumptions about the un­
derlying monitoring process that implements M:

Definition 2, Given a monitoring agent A, and a monitored agent B, we say that
A's monitoring of B is complete if for any state P that may be selected by B,
P € M{A,B/P). If A is monitoring a team of agents B\,...,Bn, we say that A's
team-monitoring of the team is complete if A's monitoring of each of B\,... ,Bn is
complete.

Monitoring completeness is commonly assumed (in its individual form) in plan-
recognition work, (e.g., [34, 4, 15]), and generally holds in many applications. It
means that the set M{A,B/P) includes the correct hypothesis P, but will typically
include other matching hypotheses besides P. Using this notation, we can now for­
mally explore disagreement detection under uncertainty in monitoring.

Centralized Disagreement Detection

In general, as discussed above, the condition of monitoring graph coimectivity is
necessary, but insufficient, to guarantee complete and sound detection. Indeed, in
[23], Kaminka and Tambe show that if a single centralized monitoring agent monitors

278 Kaminka

all others, it can guarantee either sound or complete detection of disagreements, but
not both (Figure 1-a).

However, Kaminka and Tambe found that if certain key agents exist, then it may
be possible to reduce the monitoring requirements in the system. Key agents have the
property that their behavior, when selecting one of two given states, is sufficiendy
unambiguous, such that any agent that monitors them and has selected either one of
the two states can identify with certainty whether a disagreement exists between it
and the key agents. We repeat here the formal definition of key agents from [24]:

Definition 3. Let P\, Pi be two agent states. Suppose an agent A is monitoring
an agent B. If M{A^B/P\) r\M{A^B/P2) = Q for any agent A, we say that B has
observably-different roles in P\ and P2, and call B a key agent in {^1,̂ 2}- ^^ as­
sume symmetry so that if two states are not observably different, then M{A,B/P\) fi
M{A,B/P2)D{PiP2}.

The key-agent is the basis for the conditions under which a team-member A1 will
detect a disagreement with a team-member A2. This is done by preferring maximally-
coherent hypotheses as to the state of the monitored agent. Maximally-coherent hy­
potheses are optimistic—they are hypotheses that minimize the number of disagree­
ments between the two agents. The use of such hypotheses leads to sound disagree­
ment detection [23, 24].

An agent A1 (selecting state Pi) will detect a disagreement with a team-member
A2 (selecting a different state P2) if A2 is a key agent for the plans Pi, P2 [24, Lemma
1]. Ai knows that it has selected Pi. If A2 has selected P2, and is a key-agent in Pi
and P2, then Ai is guaranteed to notice that a disagreement exists between itself and
A2, since A2 is acting observably different than it would if it had selected Pi. Ai can
now alert its teammate, diagnose the failure, etc.

When key agents exist in a team, it is sufficient for a single agent to monitor them
to guarantee sound detection in the centralized case [20]. More accurately, if the team
is observably-partitioned, i.e., a key agent exists for any pair of internal states poten­
tially selected by team-members, then it is sufficient for a single agent to monitor
only the key agents, to guarantee sound detection of disagreements. However, all
key agents must be monitored (Figure 1-b).

Distributed Disagreement Detection

We now consider the case of distributed monitoring settings, where team-members
monitor each other. First, in [23] Kaminka and Tambe have shown that if at least a
single key agent exists for every pair of plans (i.e., the team employs an observably-
partitioned set of team plans), and if all team-members monitor all agents, then de­
tection is not only sound, but also complete (see Figure 2-a for illustration). Later
on [24, Theorem 4], the result was clarified: All agents must monitor the key agents
only—all of them—and the key agents must monitor each other (Figure 2-b). Guar­
anteed sound and complete detection here means that at least one team-members will
detect a disagreement if one occurs, and no false detections will take place.

Handling Coordination Failures in Large-Scale Multi-Agent Systems 279

(a) Centralized moni­
toring, sound or com­
plete, but not both, in
[24].

(b) Centralized moni­
toring, sound, in [20].

Fig. 1. Illustration of centralized monitoring graphs. Non-filled dots indicate key agents.

(a) Distributed moni­
toring, in [23].

(b) Distributed moni­
toring, in [24].

(c) Distributed moni­
toring, in [20].

Fig. 2. Illustration of distributed monitoring graphs. Non-filled dots indicate key agents. All
cases allow for sound and complete disagreement detection.

This result is of particular interest to building practical robust teams, and fortu­
nately the conditions for it are often easy to satisfy: Teams are very often composed
such that not all agents have the same role in the same plan, and in general, roles
do have observable differences between them. Often, the set M{A,B/P) can be com­
puted offline, in advance; this allows the designer to identify the key agents in a
team prior to deployment. Furthermore, any agent can become a key-agent simply
by communicating its state to the monitoring agent and therefore eliminating ambi­
guity; thus a team can use highly-focused communications to guarantee detection.

However, the requirement that all key-agents be monitored prohibits deployment
of scaled-up applications: First, as the size of the team grows, limited connectivity
becomes more common, since agents become more physically and logically dis­
tributed. Thus not all agents, and in particular key agents, are going to be visible.

280 Kaminka

Second, the monitoring task itself would need to process observations of each agent.
Thus reducing the number of observed agents can improve monitoring run-time in
practice.

The theorem below takes a step towards addressing this issue by providing more
relaxed conditions on the connected nature of the monitoring graph, in particular with
respect to the connectivity of the nodes representing key agents. These conditions
are: (i) every non-key agent selecting a state P monitors a single key agent for each
possible pair of plans involving P (i.e., for each pair of plans, where one of the plans
is P)\ and (ii) the monitoring sub-graph for all key agents for a given pair of states
forms a clique (i.e., key agents are fully connected between themselves). This case
is illustrated in Figure 2-c.

Theorem 1. Let Tbea team in which: (i) Each team-member A, selecting a state P\,
who is not a key agent for P\, P2 monitors one key agent for P\, P2; (ii) all key agents
for a pair of states X,Z monitor all other key agents for X^Z (forming a bidirectional
clique in the underlying monitoring graph); (Hi) the team is observably-partitioned;
and (iv) all monitoring carried out is complete, and uses maximal-coherence. Then
disagreement detection in T is sound and complete.

Proof By induction on the number of agents in T. The full proof is provided in [19].

This theorem allows teams to overcome significant connectivity limitations,
without sacrificing detection quality. The theorem translates into significant free­
dom for the designer or the agents in choosing whom (if any) to monitor; when a
monitored agent is unobservable, an agent may choose to monitor another: Non-key
agents need monitor only a single key agent, rather than all key agents (for every pair
of states). The upper-bound the theorem provides is more general than may seem at
first glance. First, the theorem holds for any state feature of interest—beliefs about
a shared environment, goals, etc.; it is up to the designer to pick a monitoring tech­
nique that acquires the needed information for constructing the monitoring hypothe­
ses. Second, the theorem does not depend at all on the method by which monitoring
occurs, whether by communications or by observations. Thus the connectivity of a
monitoring graph does not have to be maintained visually. Some or all of the edges
in the monitoring graph may actually correspond to communication links between
agents.

Though this theorem represents a significant advance in lowering the bound on
the number of agents that must be monitored, all key agents must still monitor each
other. This is a critical constraint in practice. For instance, we have reconstructed the
visual monitoring graph in thousands of RoboCup game situations, to find that even
with this new bound, sound and complete disagreement detection would have been
possible without communications only in small percentage (approximately 5%) of
a game. Typically, each RoboCup player can only see 2-3 key agents, this means
that key agents cannot typically monitor all others. To illustrate. Figure 3 shows the
monitoring graph of two teams overlayed on a screen-shot of an actual game situa­
tion. For both teams, the monitoring graph does not guarantee sound and complete
disagreement detection under the known bound, despite the fact that it is connected.

Handling Coordination Failures in Large-Scale Multi-Agent Systems 281

This empiric constraint raises the bar on the challenge to find a lower bound on the
number of agents that must be monitored to guarantee detection.

Y • - •"

^̂ ^̂ .̂

#j^-

i

k

~>Av.

11 ' ' y""^^

/ /' / . . ^ 1^ • 1

~-x />^^'"'
V- '

VJ

i ,//
>

^'

f^

Fig. 3. Monitoring graphs in a RoboCup simulation-league game situation.

4 Model-Based Disagreement Detection

There are, in general, two approaches for detecting (and later, diagnosing) failures
[11]. The first is called a consistency-based approach (and sometimes, model-based).
A model of the correct behavior of the system is utilized to make predictions as to
the observed output of the system in question. When these predictions fail, a fault is
detected. Provided that the model is sufficiendy detailed, it may be used to identify
the exact nature of the failure by a process of model-based diagnosis. The second ap­
proach is fault-model-based (fault-based, for short). Here, models of possible faults
are matched against the observed behavior of the system. When the observed behav­
ior matches the models, an alarm is triggered. Often, fault-models are used together
with prescribed resolution procedures, which are called into action to resolve the
faults that were detected.

The same two approaches can be found in literature addressing coordination fail­
ure detection and diagnosis. On one hand, investigations such as [22, 23, 24, 20, 29]
focus on using models of the correct behavior of agents to detect failures as devia­
tions from the model, while others take a fault-based approach [25, 13, 3, 12, 38].

282 Kaminka

4.1 Detection Based on Fault-Models

We begin by examining the use of fault models to detect coordination failures. Del-
larocas and Klein [25, 3] have proposed a centralized approach to detecting failures
(which they refer to as exceptions) in coordination. Their work utilizes agent sen­
tinels, which monitor agents to identify their state or actions, and report on it to a
centralized fault detection system. The system then matches the reported informa­
tion against a database of known coordination failures, for detection.

An important facet to this work is the population of the fault database. Unlike
standard fault-model approaches, where fault models are closely tied to the domain
and task at hand, Klein and Dellarocas propose to use general coordination fault-
models. These are generated offline, before the deployment of the system, by manual
analysis of domain-independent coordination models.

A different—distributed—approach is taken by Horling et al. [13, 12]. They
present an integrated failure-detection and diagnosis system for a multi-agent sys­
tem in the context of an intelligent home environment. The system uses the TAEMS
domain-independent multi-agent task-decomposition and modeling language to de­
scribe the ideal behavior of each agent. The agents are also supplied with additional
information about the expected behavior of the environment they inhabit under dif­
ferent conditions, and their role within the multi-agent organization. A distributed
diagnosis system, made of diagnosis agents that use fault-models, is used to identify
failures in components (such as erroneous repeated requests for resources) and ineffi­
ciencies (such as over- or under-coordination). The fault-models are used in planning
monitoring actions, in identifying failures responsible for multiple symptoms, and in
guiding recovery actions. Multiple diagnosis agents may use communications to in­
form each other of their actions and diagnoses.

A key issue with fault-model approaches is their scalability, given that the num­
ber of possible faults in large-scale multi-agent systems is likely to be exponential.
Models that attempt to be specific to agents (e.g., "If A does X and B does Y then that
is a failure", "If A does X and C does Z then that is a failure") are not likely to scale
well. On the other hand, fault models that can utilize some abstraction or capture
general failure conditions may do better.

As an example, Wilkins, Lee, and Berry [38] offer an execution monitoring
approach which encompasses both coordination and task-execution failures. Their
work introduces a taxonomy of generic failure types, which must be adapted and
specialized to the domain and task. Agents responsible for monitoring rely on com­
municated state reports from the monitored agents to identify failures. While experi­
ments with the system were carried out only on relatively small multi-agent systems,
the modeling of the failures shows example of how fault-models can be sufficiendy
non-specific so that they may be reused in larger-scale systems. For instance, the fault
models included distance failures (units getting too close), which are triggered when
an adversary gets closer to a friendly unit). It does not matter who the adversary or
friendly units are, nor their specific location, etc.

A common theme running through all of the above works is that they mosdy
ignore the issue of uncertainty in monitoring, and utilize communications or direct

Handling Coordination Failures in Large-Scale Multi-Agent Systems 283

observations to acquire knowledge as to the state of monitored agents. This is a
potentially limiting factor in their use in large-scale networks, where limited connec­
tivity will necessarily lead to uncertainty in monitoring.

4.2 Model-Based Detection

Our own work—and those of others—took a different approach to detecting failures.
This consistency-based approach utilizes a model of ideal behavior (in terms of the
relationships), not a model of how failure symptoms relate to possible failure diag­
noses. The model-based approach has the advantages of generality and model re-use
[11]. In particular, fault models, as described above, are anticipatory; they are only
able to capture failures which the designer has been able to anticipate in advance. A
consistency-based approach to diagnosing failures is not limited in this respect.

We focus here on disagreement detection. In order to detect disagreements, the
monitoring agent must first know which internal states are ideally to be agreed upon.
Executable teamwork models such as STEAM [35] or GRATE* [16] allow the de­
signer to specify hierarchical team plans whose execution must be synchronized
across agents. To detect a disagreement, we compare the team plans selected by
different agents. If they do not match, then a disagreement has occurred [24].

The seeming simplicity of the task is misleading. In the general monitoring case,
there can be multiple hypotheses as to the plan selected by each individual. As a
result, there can be an exponential number of hypotheses for the team as a whole. To
address this, the techniques described in the previous section can guarantee detection
results, as long as we select maximally-coherent hypotheses. However, this would
seem to require going over the exponential number of hypotheses.

Fortunately, this is not the case. Initial work used the RESL plan-recognition
algorithm to represent—implicitly—all possible hypotheses [24]. The savings here
were significant, as each agent was modeled individually, and so memory use was
0{NL) where Â is the number of agents, and L the size of all possible plans for a
single agent. However, run-time was still essentially 0{L^), as the algorithm still had
to go through multiple hypotheses.

Recently, this result was improved, with the YOYO algorithm [20]. YOYO rep­
resents all agents in a single structure, which can only represent fully-coherent hy­
potheses, i.e., no disagreements. The key observation here is that if something is not
representable in YOYO, than it must indicate a disagreement. Thus YOYO detects
failures essentially by trying to interpret their actions as if they are not in disagree­
ment. If there is no way to do it, then a disagreement must have occurred. YOYO
is thus maximally coherent, and perfectly suited to the monitoring techniques dis­
cussed in the previous section. Its space requirements are 0{N-^L) and runtime is
0{N + L). We refer the interested reader to [20] for additional details.

5 Discussion and Future Work

Multi-agent literature has often emphasized that an agent must monitor other agents
in order to carry out its tasks. However, as the numbers of agents in deployed teams

284 Kaminka

is scaled up, the challenges of limited connectivity and an exponential number of
potential failures are raised. This paper has discussed recent approaches addressing
these challenges, in the context of a critical monitoring task—detection of critical
disagreements between teammates.

However, many open challenges exist in monitoring large-scale multi-agent sys­
tems. One important challenge is in reducing the load on the monitoring agent. Dur-
fee [7] discussed decision-theoretic and heuristic methods for reducing the amount of
knowledge that agents consider in coordinating. The methods include pruning nested
(recursive) models, using communications to alleviate uncertainty, using hierarchies
and abstractions, etc. This work is complementary to the methods discussed above.
We focus on monitoring in teams of cooperating (rather than self-interested) agents,
allowing exploitation of the fact that agents are coordinating, both to limit connec­
tivity, as well as to use model-based techniques in detection. Thus, while Durfee's
work focuses on reducing computational loads in monitoring each single agent, our
work focuses on reducing the number of monitored agents, and on savings possible
only when monitoring teams together.

Recent work on model-based diagnosis has also begun to address limited con­
nectivity, though indirectly, and only to a limited extent. Work by Roos et al. [32, 33]
has examined the use of model-based diagnosis by agents diagnosing a distributed
system. While the methods describe do not address coordination failures, they are
certainly relevant in terms of discussing the type of connectivity assumptions re­
quired for the diagnosis to work. Our recent preliminary work [18] on the use of
model-based diagnosis of disagreements also limits connectivity: A key focus is on
using only a handful of agents to represent all others in the diagnosis process, thus
limiting runtime and communication load.

Acknowledgment

This work was partially supported by BSF grant #2002401. We thank Michael Bowl­
ing, Michael Lindner, and Meir Kalech for useful discussions. As always, thanks to
K. Ushi.

References

1. John J. Bums, Eduardo Salas, and Janis A. Cannon-Bowers. Team training, mental mod­
els, and the team model trainer. In Advancements in Integrated Delivery Technologies,
Denver, CO, 1993.

2. Philip R. Cohen and Hector J. Levesque. Teamwork. Nous, 35, 1991.
3. Chrysanthos Dellarocas and Mark Klein. An experimental evaluation of domain-

independent fault-handling services in open multi-agent systems, pages 95-102, Boston,
MA, 2000. IEEE Computer Society.

4. Mark Devaney and Ashwin Ram. Needles in a haystack: Plan recognition in large spatial
domains involving multiple agents, pages 942-947, Madison, WI, 1998.

Handling Coordination Failures in Large-Scale Multi-Agent Systems 285

5. M. Bernadine Dias, R. Zlot, M. Zinck, J. P. Gonzalez, and Anthony Stentz. A versatile
implementation of the traderbots approach for multirobot coordination. 2004.

6. M Bemardine Dias and Anthony (Tony) Stentz. A free market architecture for dis­
tributed control of a multirobot system. In 6th International Conference on Intelligent
Autonomous Systems (IAS-6), pages 115-122, July 2000.

7. Edmund H. Durfee. Blissful ignorance: Knowing just enough to coordinate well, pages
406-413, 1995.

8. Maier Fenster, Sarit Kraus, and Jeffrey S. Rosenschein. Coordination without commu­
nication: Experimental validation of focal point techniques, pages 102-108, California,
USA, June 1995.

9. Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group actions. 86:269-
358, 1996.

10. J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed envi­
ronment, distributed computing, 31 (3):549-5Sl, 1990.

11. Walter Hamscher, Luca Console, and Johan de Kleer, editors. Readings in Model-Based
Diagnosis. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

12. Bryan Horling, Brett Benyo, and Victor Lesser. Using self-diagnosis to adapt organiza­
tional structures, pages 529-536, May 2001.

13. Bryan Horling, Victor R. Lesser, Regis Vincent, Ana Bazzan, and Ping Xuan. Diagno­
sis as an integral part of multi-agent adaptability. Technical Report CMPSCI Technical
Report 1999-03, University of Massachusetts/Amherst, January 1999.

14. Marcus J. Huber and Edmund H. Durfee. Deciding when to commit to action during
observation-based coordination, pages 163-170, 1995.

15. Stephen S. Intille and Aaron F. Bobick. A framework for recognizing multi-agent action
from visual evidence, pages 518-525. AAAI Press, July 1999.

16. Nicholas R. Jennings. Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. 75(2): 195-240, 1995.

17. Meir Kalech and Gal A. Kaminka. On the design of social diagnosis algorithms for
multi-agent teams. 2003. socially-attentive monitoring, diagnosis, plan-recognition, be­
lief ascription.

18. Meir Kalech and Gal A. Kaminka. Diagnosing a team of agents: Scaling-up. In Proceed­
ings of the International Workshop on Principles of Diagnosis (DX 2004)y 2004.

19. Gal A. Kaminka and Michael Bowling. Towards robust teams with many agents. Techni­
cal Report CMU-CS-01-159, Carnegie Mellon University, 2001.

20. Gal A. Kaminka and Michael Bowling. Robust teams with many agents. 2002.
21. Gal A. Kaminka, Yehuda Elmaliach, Inna Frenkel, Ruti Click, Meir Kalech, and Tom Sh-

pigelman. Towards a comprehensive framework for teamwork in behavior-based robots.
2004.

22. Gal A. Kaminka and Milind Tambe. What's wrong with us? Improving robustness
through social diagnosis, pages 97-104, Madison, WI, 1998. AAAI Press.

23. Gal A. Kaminka and Milind Tambe. I'm OK, You're OK, We're OK: Experiments in
distributed and centralized social monitoring and diagnosis, pages 213-220, Seattle, WA,
1999. ACM Press.

24. Gal A. Kaminka and Milind Tambe. Robust multi-agent teams via socially-attentive mon­
itoring. 12:105-147,2000.

25. Mark Klein and Chris Dellarocas. Exception handling in agent systems. ACM Press, May
1999.

26. Sanjeev Kumar, Philip R. Cohen, and Hector J. Levesque. The adaptive agent architecture:
Achieving fault-tolerance using persistent broker teams, pages 159-166, Boston, MA,
2000. IEEE Computer Society.

286 Kaminka

27. Neal Lesh, Charles Rich, and Candace L. Sidner. Using plan recognition in human-
computer collaboration. Banff, Canada, 1999.

28. Lynne E. Parker. ALLIANCE: An architecture for fault tolerant multirobot cooperation.
IEEE Transactions on Robotics and Automation, 14(2):220-240, April 1998.

29. David Poutakidis, Lin Padgham, and Michael Winikoff. Debugging multi-agent systems
using design artifacts: The case of interaction protocols. 2002.

30. Jeff Rickel and W. Lewis Johnson. Animated agents for procedural training in virtual
reality: Perception, cognition, and motor control. Applied Artificial Intelligence, 13:343-
382, 1999.

31. Jeff Rickel and W. Lewis Johnson. Virtual humans for team training in virtual reality. In
Proceedings of the Ninth International Conference on Artificial Intelligence in Education,
pages 578-585. lOS Press, 1999.

32. Nico Roos, Annette ten Teije, Andre Bos, and Cees Witteveen. An analysis of multi-agent
diagnosis, in Proceedings of Autonomous Agents and Multi Agent Systems (AAMAS-02),
July 2002.

33. Nico Roos, Annette ten Teije, and Cees Witteveen. A protocol for multi-agent diagnosis
with spatially distributed knowledge, in Proceedings of Autonomous Agents and Multi
Agent Systems (AAMAS-03), pages 655-661, July 2003.

34. Milind Tambe. Tracking dynamic team activity. August 1996.
35. Milind Tambe. Towards flexible teamwork. 7:83-124, 1997.
36. Milind Tambe, W. Lewis Johnson, Randy Jones, Frank Koss, John E. Laird, Paul S.

Rosenbloom, and Karl Schwamb. Intelligent agents for interactive simulation environ­
ments. AI Magazine, 16(1), Spring 1995.

37. Milind Tambe, Gal A. Kaminka, Stacy C. Marsella, Ion Muslea, and Taylor Raines. Two
fielded teams and two experts: A robocup challenge response from the trenches, volume 1,
pages 276-281, August 1999.

38. D. E. Wilkins, T Lee, and P. Berry. Interactive execution monitoring of agent teams.
18:217-261, March 2003.

Towards Flexible Coordination of Large Scale
Multi-Agent Teams

Yang Xu^ Elizabeth Liao^, Paul Scerri^, Bin Yu^, Mike Lewis^ Katia Sycara^

^ School of Information Sciences, University of Pittsburgh
{yxu, ml}@sis.pitt.edu

^ School of Computer Science, Carnegie Mellon University
{eliao, pscerr i , byu, katia}@cs.cmu.edu

Summary. As a paradigm for coordinating cooperative agents in dynamic environments,
teamwork has been shown to be capable of leading to flexible and robust behavior. How­
ever, when teamwork is applied to the problem of building teams with hundreds of members,
its previously existing, fundamental limitations become apparent. In this paper, we address the
limitations of existing models as they apply to very large agent teams. We develop algorithms
aimed at flexible and efficient coordination, applying a decentralized social network topology
for team organization and the abstract coordination behaviors of Team Oriented Plans (TOPs).
From this basis, we present a model to organize a team into dynamically evolving subteams,
in order to flexibly coordinate the team. Additionally, we put forward a novel approach to
sharing information within large teams, which provides for targeted, efficient information de­
livery with a localized reasoning process model built on previously incoming information. We
have developed domain- independent software proxies, with which we demonstrate teams of
an order of magnitude larger than those previously discussed in known published work. We
implement the results of our approach, demonstrating its ability to handle the challenges of
coordinating large agent teams.

1 Introduction

When a group of agents coordinates via teamwork, they can flexibly and robustly
achieve joint goals in a distributed, dynamic and potentially hostile environment[7,
12]. Using basic teamwork ideas, many systems have been successfully imple­
mented, including teams supporting human collaboration[4, 26], teams for disaster
response[19], for manufacturing[12], for training[28] and for games[14]. While such
teams have been very successful, their sizes have been severely limited. To address
larger and more complex problems, we need teams that are substantially larger, yet
retain the desirable properties of teamwork.

The key to the success of previous teamwork approaches is the explicit, de­
tailed model each agent has of the other agents and the joint activity of the team.
Team members use these models to reason about actions that will aid the achieve­
ment of joint goals[ll, 28]. However, when the size of a team is scaled up, it be-

http://tt.edu
http://cmu.edu

288 Xu, Liao, Scerri, Yu, Lewis and Sycara

comes unfeasible to maintain up-to-date, detailed models of all other teammates,
or even of all team activities. Specifically, the communication required to keep the
models up to date does not scale well with the number of agents. Without these
models, key elements of both the theory and operationalization of teamwork break
down. For example, without accurate models of team activities, STEAM's commu­
nication reasoning[28] cannot be applied, nor can Joint Intention's reasoning about
committments[11].

In this paper, we present a model of teamwork that does not rely on the accurate
models of the team that previous approaches to teamwork use. By not requiring ac­
curate models, we limit the required communication and thus make the approach ap­
plicable to very large teams. However, giving up the accurate models means that the
cohesion guarantees provided by approaches such as Joint Intentions can no longer
be provided. Instead, our algorithms are designed to lead to cohesive, flexible and
robust teamwork with high probability.

The basic idea is to organize the team into dynamically evolving, overlapping
subteams that work on sub-goals of the overall team goal. Members of a subteam
maintain accurate models of each other and the specific subgoal on which they are
working. To ensure cohesion and minimize inefficiency across the whole team, we
connect all agents of the whole team into a network. By requiring agents to keep
their neighbors in the network informed of the subgoals of subteams they are mem­
bers of, there is high probability that inefficiencies can be detected and subsequently
addressed. Using this model we have been able to develop teams that were effective,
responsive and cohesive despite having 200 members. We identify three ideas in the
model as being the keys to its success.

The first idea is to break the team into subteams, working on subgoals of the
overall team goal. The members of a subteam will change dynamically as the overall
team rearranges its resources to best meet the current challenges, respond to failures
or sieze opportunities. Within these subteams, the agents will have accurate models
of each other and the joint activity, in the same way a team based on the STEAM
model would. Thus, using techniques developed for small teams, the subteam can be
flexible and robust. Moreover, we identify two distinct groups within the subteams:
the team members actually performing roles within the plan; and team members who
are not, e.g., agents involved via role allocation. The fidelity of the model maintained
by the role performing agents is higher than that of the non-role performing agents,
which is in turn higher than other agents in the wider team. Because models are
limited to subteams, communication overhead is limited.

To avoid potential inefficiencies due to subteams working at cross purposes, our
second idea is to introduce an acquaintance network. This network connects all
agents in the team and is independent of any relationships due to subteams. Specif­
ically, the network is a small world network [30](see figure 1), so that any two team
members are separated by a small number of neighbors. Agents share information
about their current activities with their direct neighbors in the network. Although the
communication required to keep neighbors in the acquaintance network informed is
low, due to the small world properties of the network, there is high probability for
every possible pair of plans. Some agents will know both, and thus, can identify in-

Towards Flexible Coordination of Large Scale Multi-Agent Teams 289

efficiencies due to conflicts among the plans. For example, it may be detected that
two subteams are attempting to achieve the same goal or one subteam is using plans
that interfere with the plans of another subteam. Once detected by any agent the sub-
teams involved can be notified and the inefficiency rectified. Moreover, in this paper
we investigate the influences of other social network properties to the efficiency of
coordinating large scale teams.

When limiting models of joint activities to the members of a subteam, the overall
team loses the ability to leverage the sensing abilities of all its members. Specifically,
an agent may locally detect a piece of information unknown to the rest of the team but
does not know which members would find the information relevant[8, 33]. For ex­
ample, in a disaster response team, a fire fighter may detect that a road is impassable
but not know which other fire fighters or paramedics intend to use that road. While
communication in teams is an extensively studied problem, [5, 13, 21, 32], current
algorithms for sharing information in teams either require infeasibly accurate models
of team activities, e.g., STEAM's decision theoretic communication[28], or require
that centralized information brokers are kept up to date[27, 3], leading to potential
communication bottlenecks. Our solution for information sharing among large teams
is to perform distributed information sharing without the cost of maintaining accurate
models of all the teammates. An agent can easily know what information it needs,
but it will not know who has the information, while another agent has the informa­
tion but does not know who needs it. By allowing the agents to simply forward the
information to an acquaintance in a better position to make the decision, we spread
the reasoning across the team, leveraging the knowledge of many agents. We also
leverage the idea that information is always interrelated and a received piece of in­
formation can be useful in deciding where to send another piece of information, if
there is a relationship between two pieces of information. For example, when coordi­
nating an agent group in urban search and rescue, if agent a tells agent b about a fire
at 50 Smith St, when agent b has the information about the traffic condition of Smith
St, sending that information to agent a is a reasonable thing to do, since a likely either
needs the information or knows who does. By utilizing the interrelationship between
pieces of information, agents can more quickly route new information through the ac­
quaintance network. Moreover, agents do not model information, rather they model
the acquaintances to which they send information. It may take several hops for a mes­
sage to get to an agent that needs the information. Since each piece of information
informs the delivery of other pieces and models are updated as the message moves,
as the volume of information to be shared among the team increases, the amount of
effort required per piece of information actually decreases. Moreover, since agents
need to only know about their acquaintances, the approach scales as the number of
agents in the team increases.

To evaluate our method for building large teams, we have implemented the above
approach in software proxies[22] called Machinetta. A proxy encapsulating coordi­
nation algorithm works closely with a "domain level" agent and coordinates with
other proxies. Although Machinetta proxies build on the successful TEAMCORE
proxies[28] and have been used to build small teams[24], they were not able to scale
to large teams without the fundamentally new algorithms and concepts described

290 Xu, Liao, Scerri, Yu, Lewis and Sycara

above. In this paper, we report results of coordinating teams of 200 proxies that ex­
hibit effective, cohesive team behavior. Such teams are of an order of magnitude
larger than previously discussed in known published work proxy-based teams[24],
hence they represent a significant step forward in building large teams. To ensure
that the approach is not leveraging peculiarities of a specific domain for its improved
performance, we tested the approach in two distinct domains using identical prox­
ies.^

2 Toward Flexible Team Coordination

In this section, we provide a detailed model of the organization and coordination of
the team. At a high level, the team behavior can be understood as follows: A team
is organized as a social network and team members detect events in the environment
that result in plans to achieve the team's top-level goal. The team finds subteams to
work on those plans and within the subteams the agents communicate to maintain
accurate models to ensure cohesive behavior. Across subteams, agents communicate
the goals of the subteams so that interactions between subteams can be detected and
conflicts resolved. Finally, agents share locally sensed information on the associates'
network to allow the whole team to leverage the local sensing abilities of each team
member.

2.1 Building Large Scale Teams

A typical large scale team meets the following basic characteristics: there are large
number of widely distributed team members with limited communication bandwidth.
As a part of a large team, agents coordinate closely only with a subset of the total
agents of the team. Based on these characteristics, we can define a logical model
of the team organized as an acquaintance network. The acquaintance network is a
directed graph G= {A,N), where A is the team of agents and N is the set of links be­
tween any two agents. Specifically, for < a,,aj >G Â for any two agents a/, a; G A
denotes that a/ and a; are acquaintances able to exchange tokens. Specifically, n{a)
is defined as all the acquaintances of agent a. Note that the number of each agent's
acquaintances is much less than the size of the agent team |A|. We additionally re­
quire that the acquaintance network be a small world network. Such networks exist
among people and are popularized by the notion of "six degrees of separation" [18].
When agents are arranged in a network, having a small number of neighbours rela­
tive to the number of members in the team, the number of agents through which a
message must pass to get from any agent to any other, going only from neighbour to
neighbour, is typically very small. A subset of a typical acquaintance network for a
large team is shown as Figure 1. In the Figure, each node represents an agent mem­
ber in the team. When pairs of agents are connected, they can directly communicate
with each other as acquaintances.

A small amount of code was changed to interface to different domain agents.

Towards Flexible Coordination of Large Scale Multi-Agent Teams 291

Fig. 1. Relationship between subteams and the acquaintance network

2.2 Team Oriented Plans

Team Oriented Plans (TOPs) are the abstraction that define team behavior. The TOPs
provide the mapping from team level goals to individual roles that are performed by
individual team members. Suppose the team A has a top level goal, G. The team
commits, with the semantics of STEAM to G [28]. Achieving G requires achieving
sub-goals, gi, that are not known in advance but are functions of the environment. For
example, sub-goals of a high-level goal to respond to a disaster could be to extinguish
a fire and provide medical attention to particular injured civilians. To achieve sub-
goals, the team follows plan templates represented in a library. These templates are
parameterized while instantiated plans contain the specific details [23]. For example,
when a particular fire in a building is detected by a team member, the plan will be
instantiated because it matches a template for disaster response.

Each sub-goal is addressed with a plan, plant —< gi, recipei, wlesi.di.mi >, that
matches a plan template in the library. The overall team thus has plans Plans(t) ^
{plan\,..., plann}. Individual team members will not necessarily know all plans. To
maximize the responsiveness of the team to changes in the environment, we allow
any team member to commit the team to the execution of a plan, when it detects
that subgoal gi is relevant. Team members can determine which sub-goals are rel­
evant by the plan templates specified in the library. Recipei is a description of the
way the sub-goal will be achieved[l 1] including the execution order of the compo­
nents in the plan. Rolest = {n, r2, o , ...r^} are the individual activities that must be
performed to execute recipei. di is the domain specific information pertinent to the
plan. For convenience, we write perform{r,a) to signify that agent, a, is working
on role, r. Subteami includes any agents working on plant and their neighbors in
the acquaintance network. The identities of those agents involved in role allocation
is captured with allocate{plani). In the cases where either a conflict or synergy is
detected, all but one of the plans must be terminated. The domain specific knowledge
of a termination of a plan can be defined as ^^'^^recipei.

292 Xu, Liao, Scerri, Yu, Lewis and Sycara

We can think about TOPs as active objects in a distributed database. Each TOP
'̂object" captures the state of a particular team plan. Team members involved in

the execution of that plan need to have up-to-date versions of the TOP "object",
e.g., knowing which team members are performing which roles and when TOPs are
complete. Information needs to be shared to ensure there is synchronization across
the same object held by different team members. Viewed in this manner, coordination
can be thought of as a set of algorithms to fill in fields on the TOP objects and ensure
synchronized objects across the team. For example, some coordination algorithms
are triggered when there are open roles in the TOP objects and other algorithms are
triggered when the post-conditions on the plan are satisfied.

2.3 Subteams

Although individual agents commit the team to a sub-goal, it is a subteam that will
realize the sub-goal. The subteams formation process commences when an individ­
ual agent detects all the appropriate preconditions that matches a plan template in the
library and subsequently instantiates a plan, plant. For each of the rolesi in plani,
a role token is created to be allocated to the team. We are using LA-DCOP for role
allocation[6], which results in a dynamically changing subset of the overall team
involved in role allocation. This works as follows: the token is passed from one
team member to the next until an agent finally accepts the role. Once accepted, the
agent becomes a member of the subteam and makes a temporary commitment to per­
form the role represented by the token. Note that agents can accept multiple tokens
and therefor can perform more than one role and thus, belong to multiple subteams.
Since allocation of team members to roles may change due to failures or changing
circumstances, the members of a subteam also change. One example of this is when
a member decides to drop a role for a more suitable task. This will lead to the best
use of team resources because team members will execute roles that they are most
capable of doing.

All subteam members, agents performing roles and their informed acquaintances,
must be kept informed of the state of the plan, e.g., they must be informed if the plan
becomes irrelevant. This maximizes cohesion and minimizes wasted effort. Typically
\subteami\ < 20, although it may vary with plan complexity and notice that typically,
subtearui D subtearrij 4^ 0 where / ^ y. In the experiments that follow, a simple plan
contains 1-2 roles and 1-2 preconditions compared to a complex plans that have 4-5
roles and 9-10 preconditions. This occurs because agents can accept more than one
role and usually belong to more than one subteam due the acquaintance network.
These subteams are the basis for our coordination framework and leads to scalability
in teams.

2.4 Plan Deconfliction

In this section, we describe how to resolve plan conflicts. When using distributed plan
creation, two problems may occur. Upon detecting the appropriate preconditions,
different team members may create identical plans or plans with the same pg but

Towards Flexible Coordination of Large Scale Multi-Agent Teams 293

different Precipe- To reduce the need for plan deconfliction, we need to choose a rule
for plan instantiation to reduce the number of plans created with the same pg. These
instantiation rules include always instantiate, probabilistic and local information.
The choice of the plan instantiation rule will vary with the domain setting.

If two plans, plani and planj have some conflict or potential synergy, then we
require subteami fi subteamj 9̂ 0 to detect it. There must be a common team mem­
ber on both subteams to maintain mutuals beliefs of the plans and hence detect the
conflict. A simple probability calculation reveals that the probability of a non-empty
intersection between subteams, i.e., the probability of an overlap between the teams,
is:

where aCh denotes a combination, n = number of agents, k = size of subteamt and m
= size of subteamj.

Hence, the size of the subteams is critical to the probability of overlap. For exam­
ple, if \subteami\ = \subteamj\ — 20 and |A| = 200, then P{overlap) = 0.88, despite
each subteam involving only 10% of the overall team. Since the constituents of a
subteam change over time, this is actually a lower bound on the probability that a
conflict is detected.

After a conflict is detected, the plan needs to be terminated; the same follows
with completion of goals or recipes and irrelevant or unachievable plans. We cap­
ture the domain specific knowledge that defines these conditions with ^^^^Precipe- In
exactly the same way as STEAM, when any a e subteami detects any conditions in
^^^^Precipes it is obliged to ensure that all other members oi subteami also know that
the plan should be terminated. In this way, the team can ensure that plani C plans{t),
i.e., no agent believes the team is performing any plan that it is not performing.

2.5 Plan Instantiation Rules

In distributed plan instantiation, an agent can create a plan when all preconditions
have been fulfilled and the plan matches a template in a library. However, since
this may increase the total number of plans created, agents can only create a plan
using one of three rules for instantiating plans. These rules differ in terms of the
information needed to compute whether the instantiation conditions apply. The first
rule, the always instantiate rule, is used as a baseline for the other instantiation rules.
An agent is allowed to create a plan when it knows of all the preconditions necessary
for the plan.

The second rule, the probabilistic instantiation rule, requires no knowledge of
other team members. This method requires that team members wait a random amount
of time before creating the plan. If during that time, it has not been informed by an in­
formed acquaintance that another teammate is creating the same plan, it will proceed
and create the plan. Thus plans will only be created during the time it takes for all
team members to hear of the plan. The advantage of this rule is that no information
is required of other team members. There are two disadvantages. First, there may be
conflicting plans which must be later resolved. Second, there may be a significant

294 Xu, Liao, Scerri, Yu, Lewis and Sycara

delay between detection of the preconditions and the instantiation of the plan. These
disadvantages can be traded off in the following manner. By increasing the length of
time a team member can wait, the number of conflicts will be reduced, but the delay
will be increased.

We can use information about who locally senses information to define another
rule. This rule, which we refer to as the local information rule, requires that a team
member detect some of the plan's preconditions locally in order to instantiate the
plan. Although this will lead to conflicting plans when multiple agents locally sense
preconditions, it is easier to determine where the conflicts might occur and resolve
them quickly. The major disadvantage of this rule is that when a plan has many
preconditions, the team members that may detect specific preconditions may never
get to know all the preconditions and thus the plan will never be created.

3 Toward Efficient Communication in Large Scale Teams

Information is important in coordinating large scale multi-agent teams because each
team member has to adjust its activity according to the changes in its team, team­
mates, and the environments. Communication is difficult because the members only
have a partial views of the environment and a team member may have a piece of valu­
able information but not know who needs the information [31]. In this section, we
explain our objective of efficient communication in terms of providing high quality
information with targeted information delivery.

3.1 Information fusion

Each of the agents, when working in physical working plate, can be deemed as mo­
bile sensors and the team can be deemed as a sensor network. We first look at the
problem of information fusion in large scale teams, which not only observe physical
phenomena, but also conduct high-level information processing tasks, e.g., attacking
a target in a battlefield. In large teams, the sensor data generated by a single agent
usually has low confidence. The low confidence sensor data cannot be used directly
for coordinating plans and actions and needs to be fused with other relevant data
in the team [25]. Many power-aware protocols and algorithms have been developed
for static sensor networks, but very limited research has been done for the design of
routing algorithms for information fusion [1, 35]. For example, in directed diffusion
and geographic routing [9, 15], each source agent does not send the data back to the
sink until it receives a query from the sink. For this reason, these routing protocols
are called reactive protocols.

Reactive protocols are mainly designed for static sensor networks and are not
appropriate for large scale teams, which are mobile sensor networks. Specifically,
there are two key reasons. 1. The location of the data is not correlated with existing
positions of mobile sensors., i.e., agent b previously knew agent a has the data in
one location, but when his query comes, agent a has moved to another location. 2.

Towards Flexible Coordination of Large Scale Multi-Agent Teams 295

Sinks agents usually do not know when source agents will have the data, so they have
always sent out volume of query.

In this section we present a proactive protocol for information fusion in large
scale team based on our acquaintance network model. In proactive protocols, there is
no querying process and each source agent, when sensing a piece of data, can proac-
tively deliver the data to other nodes in the network. Without the querying process,
the source agent has to reason about who might have other relevant data and can fuse
its sensor data. In order to minimize the traffic and redundant data in the network,
each node forwards the sensor data to only one of its neighbors. Without centralized
control, the agent has to intelligently deliver data for fusion solely based on itself
and its neighbors. The challenge, with various decisions being made by the individ­
ual agents, is how to maximize the probability that relevant data will be fused in the
network, e.g., fused by at least one node in the network.

Random walks are a simple algorithm for information fusion. In random walks,
when an agent receivessensor data it randomly choses a neighbor to send to. Once the
neighbor receives the data, it repeats the same process until the events are success­
fully fused or the data reaches the stop condition. However, random walks are not
efficient for information delivery when more than two agents detect the same event
on the ground and there is a need to fuse them together. We propose an efficient and
failure-resistant localized algorithm — path reinforcement algorithm [34], in which
each node learns routing decisions from past information delivery processes. The
logic behind the algorithm is that relevant information is likely to be fused earlier if
agents follow a path they have followed earlier. In the algorithm, a agent a may pass
the event to neighbor b'lia has passed b relevant events before.

The experiments show that controlled information flows significantly increase the
probability of relevant information being fused in the network, such that the proba­
bility could be improved by 2 - 5 times for the same hops of information propagation
in comparison with random walks [34]. Our experiments indicate that the probability
of fusion is surprisingly high even with limited local knowledge of each node and
relatively small hops.

3.2 Information Sharing

In the previous section, we showed how requiring mutual beliefs only within sub-
teams acting on specific goals can dramatically reduce the communication required
in a large team. However, individual team members will sometimes get domain level
information, via local sensors, that is relevant to members of another subteam. Due
to the fact that team members do not know what each other subteam is doing, they
will sometimes have locally sensed information, while not knowing who requires
it. In this section, we present an approach to sharing such information, leveraging
the small world properties of the acquaintance network. The basic idea is to forward
information to the acquaintance in the acquaintance network who is most likely to
either need the information or have a neighbor who does.

The key to the algorithm is the model that the agent maintains of its acquain­
tances. Pa is a matrix where Pa[iM —> [0,1],Z? € N{a)J G / represents the probability

296 Xu, Liao, Scerri, Yu, Lewis and Sycara

that acquaintance b is the best to send information / to. To obey the rules of probabil­
ity, we require V/ G I,J,beN{a)K[^^^] = 1- ^^^ example, if Pa[i,b] = 0.7, then a will
usually forward / to agent Z? as ^ is very likely the best of its neighbors to send to.
This situation is illustrated in Figure 4. The more accurate the model of Pa, the more
efficient the information sharing because the agent will send information to agents
that need it more often and more quickly. Pa is inferred from incoming messages and
thus the key to our algorithm is for the agents to build the best possible model of Pa.

Information is encapsulated in messages, with some supporting information
which is helpful for information sharing. Specifically, a message consists of two
parts, M =< i,path > . / G / is the information being communicated, path records
the track over which the message has been taken in the network, last (path) denotes
the last agent to which the message was sent previous to current agent recipient, via
acquaintance network. To ensure that messages do not travel indefinitely around the
network, we stop the message when \path\ >MAX-STEPS.

When a message arrives, the agent state, Sa, is updated by the transition function,
5, which has three parts, 5//, 5A:, 5/> . First, the message is appended to the history,
5//(m,//«) ==HaUm. Secondly, the information contained in the message is added to
the agent's local information knowledgeKa, 5//(m,Ka) = KaUm.i.^ Finally, and most
critically for the purpose of the algorithm, dp is used to update agent's probability
matrix, to help route future message. (We described 5p in the next section.)

Each agent in the team runs the following algorithm when receiving message m:
Algorithm 1: Information Share (Sa)
(1) While{true)
(2) m <— getMsg
(3) Sa ^ 5(m, So)
(4) ifm,\path\ < MAX.STEPS
(5) APPEND{self, m.path)
(6) next ^ CHOOSE{P[i,m.j])
(7) SEND{next,m)

In Algorithm 1, when an agent gets a message, it updates its state according to
function 8. If an agent finds that the message does not meet the stop condition (line
4), then the function CHOOSE (line 6) selects an acquaintance, according to the prob­
abilities in matrix to pass the message to. Notice, CHOOSE can select any acquain­
tance, with the likelihood of choosing a particular acquaintance being proportional
to their probability of being the best to send to.

The key to our algorithm is for the agent to often pass information to an ac­
quaintance who either needs it or knows who does. These models are created based
on previously received information. This requires us making use of the relationship
between pieces of information and then mapping it into a mathematic description,
i.e. via Bayes Rule. We define the relationships between pieces of information as
rel{ij) -^ [0, l]JJe /, where rel{ij) > 0.5 indicates that an agent interested in /
will also be interested in j , while rel{i, j) < 0.5 indicates that an agent interested in /

^ In this paper, we ignore difficult issues related to contradictory information.

Towards Flexible Coordination of Large Scale Multi-Agent Teams 297

is unlikely to be interested in j . If rel{ij) = 0.5 then nothing can be inferred. Since
rel relates two pieces of domain level information, we assume that it is given (or can
be easily inferred from the domain).

Our information sharing algorithm defined an action of dp for each piece of rela­
tive information / when a received message containing j can be described as follows:
assuming information j arrives to agent a from b, then agent a will first decrease the
probabihty of sending this information back to b because clearly b already knows
that information. Then Ha should be searched for to find any relevant former infor­
mation. For each piece of relevant information /, j should be additional evidence for
a to make a decision about sending /, and the probability of sending / to b should be
strengthened.

The update of agent a's P^based on an incoming message m containing j which
is received from c can be achieved by leveraging Bayes Rule as follows:

\/iJ eI,b£N{a) 5p{Pa[i,b],m=<j,path>,d =

first{N{a),m.path))

^Pa[iM xrel{ij)x ^ [fUzj^b^d

Pa[i.b]x\k\ if ii^j^bi^d
e if i = j,b em.pathnN{a)

Then P must be normalized to ensure \/i e f,'LbeN{a)K[^^^] — 1- ̂ ^^ ^̂ ^̂ case
in our equation is the most interesting. It updates the probability that the agent that
just sent some information is the best to send other information to, based on the
relationships of other pieces of information to the one just sent. Please note, to avoid
potential path detours, the message path is determined not according to who directly
sent the message, but rather according to the fact that it was a's acquaintance who
first got the message. The latter condition changes the probability of sending that
information to agents other than the sender in a way that ensures the normalization
works. Finally, the third case encodes the idea that you typically would not want to
send a piece of information to an agent that sent it to you.

To see how 5p works, consider the following example at some point doing exe­
cution:

b c d e
"0.6 0.1 0.2 0.1"

Pa=j
k

0.4 0.2 0.3 0.1
0.4 0.4 0.1 0.1

The first row of the matrix shows that if a gets information / it will likely send
it to agent b, since P[i,b] = 0.6. We assume that agents wanting information / also
probably want information j but those wanting k definitely do not want j . That is,
rel{ij) = 0.6 and rel{kj) = 0.2. Then a message m =< y, {,, J,,/?} > with infor­
mation j arrives from agent b. Applying 5p to Pa we get the following result:

b c d e

298 Xu, Liao, Scerri, Yu, Lewis and Sycara

k

0.5769 0.096 0.2308 0.096
e 0.67 e 033

0.4255 0.4255 0.0426 0.1064

The effects on P can be inferred as follows: (i) j will likely not be sent back to d
and b who previously have gotten 7, i.e., Pa[i, b] = e; (ii) the probability of sending /
to d is increased because agents wanting j probably also want /; (iii) the probability
of sending /: to J is decreased, since agents wanting j probably do not want k. Notice
a knows nothing of the network topology beyond its acquaintances n{a).

3.3 Effects of Network Topology on Sharing Efficiency

As noted by social scientists, information sharing efficiency will be impacted by
network topology. We have found that in order to share information among large-
scale teams, agents adopt the same manners as exhibited by humans operating in
social groups.

The properties of social network structures have been comprehensively studied
[2, 17]. According to such research, there are several parameters that are impor­
tant for helping us to understand or predict the behavior of information sharing in
large-scale teams. Key factors include the small-world effect, degree distributions,
clustering, network correlations, random graph models, models of network growth
and preferential attachment, and dynamical processes taking place on networks [11].
Most of them are interrelated. For the purpose of this paper, we specifically focus
on only three properties: average distance, degree distribution and average acquain­
tance.

• Average distance: (commonly studied as "small world effect" [30]. The average
distance/ •= x / Z distance{ai,aj), wherefz = \A\ anddistance{ai,aj)

represents the minimum number of agents «/, aj that a message must pass
through one agent to another via acquaintance network. For example, if agent
fliand ̂ 2 are not acquaintances but share an acquaintance, distance{a\,a2) = 1.

• Degree distribution: (Commonly studied as "scale free effect") The frequency of
agents having different number of acquaintances. The distribution can be repre­
sented as a histogram where the bins represent a given number of acquaintances
and the size of a bin is how many agents have such number of acquaintances [2].

• Average acquaintances: is the average number of acquaintances that agents have
in the teams. Its value can be used to infer how many choices agents may have
when delivering a message.

Well-known types of social networks can be described using these properties. For
example, a random network has the "flat" degree distribution. While grid network
is distinct in that all nodes have the same degree (e.g, four is the only degree in a
two dimension grid network). Small World Network and Scale Free Network [2] are
two important types of social network topologies and research has shown that each
of them possesses some interesting properties. Small world networks have much
shorter average distances as compared with regular grid networks. We hypothesize

Towards Flexible Coordination of Large Scale Multi-Agent Teams 299

that the low average distance will improve information sharing efficiency because
information can potentially take less "hops" to reach a defined destination. A scale-
free network is a specific kind of network in which the degree distribution forms a
power-law, i.e, some nodes are very connected hubs and connect to other nodes much
more than ordinary nodes. The hubs in scale-free networks give the advantages of
centralized networks, in which the distribution provides the advantages of centralized
approaches.

4 Machinetta

A number of algorithms work together to achieve the teamwork, given the framework
described above. There are algorithms for allocation roles[6], instantiating plans[16],
sharing information[31], human interaction[20] and resource allocation. To avoid re­
quiring a reimplementation of the algorithms for each new domain, the coordination
algorithms are encapsulated in 2iproxy[l0, 29, 21, 24]. Proxies are becoming a stan­
dard mechanism for building heterogeneous teams. Each team member works closely
with a single proxy that coordinates with the other proxies to implement the team­
work. The basic architecture is shown in Figure 2. The proxy communicates via a
high-level, domain-specific protocol with the robot, agent or person it is representing
in the team. Most of the proxy code is domain-independent and can be readily used
in a variety of domains requiring distributed control. Our current proxy code, known
as Machinetta, is a substantially extended and updated version of the TEAMCORE
proxy code[29]. Machinetta proxies are in the public domain and can be downloaded
from http://teamcore.usc.edu/doc/Machinetta.

Communication

Proxy h
i

,
i

i
*

Control
Code

Proxy

— p

'

I
*

Proxy

'
m

Control
Code

IW

,
Control
Code

Fig. 2. The basic system architecture showing proxies, control code and Unmanned Aerial
Vehicles (UAVs) being controlled.

In a dynamic, distributed system, protocols for performing coordination need to
be extremely robust. When we scale the size of a team to hundreds of agents, this be-

http://teamcore.usc.edu/doc/Machinetta

300 Xu, Liao, Scerri, Yu, Lewis and Sycara

comes more of an issue than simply writing bug-free code. Instead we need abstrac­
tions and designs that promote robustness. Towards this end, we are encapsulating
"chunks" of coordination in coordination agents. Each coordination agent manages
one specific piece of the overall coordination. When control over that piece of co­
ordination moves from one proxy to another proxy, the coordination agent moves
from proxy to proxy, taking with it any relevant state information. We have coor­
dination agents for each plan or subplan (PlanAgents), each role (RoleAgents) and
each piece of information that needs to be shared (InformationAgents). For exam­
ple, a RoleAgent looks after everything to do with a specific role. This encapsulation
makes it far easier to build robust coordination.

CK

ENV. ENV.

CK CK

ENV.

Fig. 3. High level view of the implementation, with coordination agents moving around a
network of proxies.

Coordination agents manage the coordination in the network of proxies. Thus, the
proxy can be viewed simply as a mobile agent platform that facilitates the functioning
of the coordination agents. However, the proxies play the additional important role
of providing and storing local information. We divide the information stored by the
proxies into two categories, domain specific knowledge, K, and the coordination
knowledge of the proxy, CK. K is the information this proxy knows about the state
of the environment. For example, the proxy for a UAV knows its own location and
fuel level as well as the the location of some targets. This information comes both
from local sensors, reported via the domain agent, and from coordination agents
(specifically InformationAgents, see below) that arrive at the proxy. CK is what the
proxy knows about the state of the team and the coordination the team is involved in.
For example, CK includes the known team plans, some knowledge about which team
member is performing which role, and the TOP templates. At the most abstract level,
the activities of the coordination agents involve moving around the proxy network,
adding and changing information in C and CK for each agent. The content of K as
it pertains to the local proxy, e.g., roles for the local proxy, govern the behavior of

Towards Flexible Coordination of Large Scale Multi-Agent Teams 301

that team member. The details of how a role is executed by the control agent, i.e., the
UAV, are domain- (and even team member-) dependent.

5 Experimental Results

In this section, we present empirical evidence of the above approach with a combi­
nation of high and low fidelity experiments.

(a) (b)
Fig. 4. Coordinating 200 agents in (a) disaster response simulation (average on y-axis
extinguished, conflicts and messages per agent on x-axis); and (b) the number of fires
guished by 200 fire trucks versus threshold.

(a) (b)
Fig. 5. Simulated coordinating 200 UAVs in a battlespace (a) time vs the number of targets hit
and (b) the number of targets hit versus threshold.

5.1 Machinetta

In Figures 4 and 5, we show the results of an experiment using 200 Machinetta prox­
ies running the coordination algorithms described in Section 3. These experiments
represent high fidelity tests of the coordination algorithms and illustrate the overall

302 Xu, Liao, Scerri, Yu, Lewis and Sycara

effectiveness of the approach. In the first experiment, the proxies control fire trucks
responding to an urban disaster. The trucks must travel around an environment, lo­
cate fires (which spread if they are not extinguished) and extinguish them. The top
level goal of the team, G, was to put out all the fires. A single plan requires that an
individual fire be put out. In this experiment, the plan included only one function,
which was to put out the fire. We varied the sensing range of the fire trucks ("Tar"'
and "'Close"') and measured some key parameters. The most critical thing to note
is that the approach was successful in coordinating a very large team. The first col­
umn compares the number of fires started. The '"Close"' sensing team required more
searching to find fires, and as a result, unsurprisingly, the fires spread more. However,
they were able extinguish them slightly faster than the '"Far"' sensing team, partly
because the '"Far"' sensing team wasted resources in situations where there were
two plans for the same fire (see Column 3, '"Conflicts'"). Although these conflicts
were resolved it took a nontrivial amount of time and slightly lowered the team's
ability to fight fires. Resolving conflicts also increased the number of messages re­
quired (see Column 4), although most of the differences in the number of messages
can be attributed to more fire fighters sensing fires and spreading that information.
The experiment showed that the overall number of messages required to effectively
coordinate the team was extremely low, partially due to the fact that no low- level
coordination between agents was required (given the one fire truck per plan). More­
over, we varied the thresholds corresponds to the maximum distances the truck will
travel to a fire and 4(b) shows increasing thresholds initially improves the number of
fires extinguished, but too high a threshold results in a lack of trucks accepting tasks
and a decrease in performance.

In the second domain, Figure 5(a) shows high level results from a second domain
using exactly the same proxy code. The graph shows the rate at which 200 simulated
UAVs, coordinated with Machinetta proxies, searched a battle space and destroyed
targets. Moreover, Figure 5(b) shows while we have effectively allocated tasks across
a large team, thresholds (correspond to the maximum distances UAVs can hit a target)
are of no benefit. Taken together, the experiments in the two domains show not only
that our approach is effective at coordinating very large teams, but it also suggests
that it is reasonably general.

5,2 Information Sharing

We test our information sharing algorithm by using a team with 400 agents and each
of them has, on average, four acquaintances. One agent is randomly chosen as the
source of some information and another is randomly picked as the sink for that infor­
mation. The sink agent first sends out 20 messages containing relative information j ,
each with MAX_STEPS=50. Then the source agent sends out a message with infor­
mation / with rel{i, j) varied. We measure how many steps or messages that it takes /
to be encapsulated into message and sent to get to the sink agent. In our experiments,
four different types of acquaintance network topologies are involved: two dimension
grid networks, random networks, small world networks, and scale free networks. The
small world network is based on the grid network with 8% links randomly changed.

Towards Flexible Coordination of Large Scale Multi-Agent Teams 303

The key difference between the random network and the scale free network is that
the random has a "flat" degree distribution but the scale free network has a power
law distribution. Each point on each graph is based on the average of 1000 runs in a
simple simulation environment.

Information sharing with different information relevance

350 x

0.5 0,55 0.6 0,65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fig. 6, The number of messages dramatically reduces as the association between information
received and information to be sent increases.

We first verify our basic algorithm in different types of acquaintance network
topologies. In Figure 6, we show the average number of steps taken to deliver / as
we varied the strength of the relationship between the information originally sent
out by the sink agent and the information / sent by the source agent from 0.5 to
1. As expected, our algorithm works on the four different acquaintance networks;
further, the stronger the relationship between originally sent information and the new
information the more efficient is the information delivery.

Information sharing with different number of previous messages

Next, we look in detail at exactly how many messages must be sent by the source to
make the delivery from the sink efficient. We use the same settings as above except
the number of messages the sink sends out is varied and the relationship between
these messages and i, rel (i, j) is forced at 0.9. Notice that only a few messages are
required to dramatically impact the number of messages required. This result also
shows us that a few messages is enough for agents to make a "precise guess" about
where to send messages.

The influence of average acquaintances

In next experiment, we looked in detail at exactly how the number of acquain­
tances can help to make the information sharing efficient. We run experiments with

304 Xu, Liao, Scerri, Yu, Lewis and Sycara

5 10 15 20 25 30 35 40

Number of Messages from Source

-Grid- - Small World~»~- Random -

Fig. 7. The number of messages reduces as the related previous messages increased.

4 6

Average Number of Acquaintances

-Grid- - Small World"*-"- Random - - Scale Free

Fig. 8. The number of messages increases sligthly if each agent has more average acquain­
tances in acquaintance networks.

rel{ij) ==0.8 and in acquaintance networks in which each agent has an average of
from 2 to 8 acquaintances. The result in Figure 8 shows that the greater the number
of acquaintances, the more messages that are necessary to deliver /. This means that
information sharing cannot be enhanced by connecting agents with more acquain­
tances. Moreover, in our experiment, we don't consider the limitation of communi­
cation breadth for agent members.

Algorithm efficiency among different size teams

To investigate the influence of team scale on information sharing performance,
as shown in Figure 9, we ran experiments using different sizes of agent teams,
from 100 to 550 with rel(i,j)=0.7. The information sharing efficiency is measured
as the percentage of agents involved for information sharing use percentage =
""^'ToMT/Jgl^^^^^ ' The experiment result shows that with different team sizes.

Towards Flexible Coordination of Large Scale Multi-Agent Teams 305

100 150 200 250 300 350 400 450 500 550

- Grid - » - Small Worid- ••- Random ik- Scale Free

Fig. 9. Information sharing algorithm works even slightly better on large scale teams according
to the measure of percentage.

the efficiency of information sharing is almost the same. This indicates that the team
size is not a factor for information sharing efficiency.

5.3 Plan Deconfliction

Parameter
Number of Team Members
Number of Plan Templates
Roles Per Team Member
Total Preconditions
Preconditions Per Plan
Roles Per Plan
Number of Capability Types
Percent Capable
Instantiate Rate
New Precondition Rate
Precondition Detection Rate
Associate Network Density
Information Token
Instantiation Rule*
Percentage Possible
Reward
Messages per agent

Minimum
10
1
1

20
1
1
2

0.1
0

0.0020
0.0020

2
1
1
0

0.00
0.10

Maximum
999
20
1

219
10
5

21
1.1
1

0.5020
0.2020

16
10
3

100
85.35

1977.38

Parameter Type
Domain Dependent
Domain Dependent
Domain Dependent
Domain Dependent
Domain Dependent
Domain Dependent
Domain Dependent
Domain Dependent

Input (Free Parameter)
Domain Dependent
Domain Dependent

Input (Free Parameter)
Input (Free Parameter)
Input (Free Parameter)

Output
Output
Output

*lnstantiation Type(1-Always 2-Local 3-Probabalistic)

Fig. 10. Parameter Table

We use TeamSim, a simple simulator, to analyze the effect our acquaintance
model with dynamically changing subteams. TeamSim, which runs the coordina­
tion algorithm without simulating time intensive communication, quickly evaluates

306 Xu, Liao, Scerri, Yu, Lewis and Sycara

different combinations of parameter settings on the order of thousands. These param­
eters settings, which correspond to various domains, include free parameters based
on our model and domain parameters. Free parameters are specific to our algorithm
and include the acquaintance network density, and plan instantiation rule. A few of
the domain parameters included team size, total preconditions, and roles per plan
(see Figure 10). Our algorithm is based on the fact that the acquaintances network
will detect conflicts with a high probability. As team size is scaled, we can assume
that the number of duplicate plan will also increase. This is shown in Figure 11 where
the average number of plans increases with respect to team size using the probabilis­
tic instantiation rule. In the graph, both the actual and expected conflicts are shown.
Figure 12 shows a non-linear relationship between an input parameter, team size and
an output parameter, and messages per agent.

10 20 30 40

Number of Agents

Fig. 11. The average number of plan conflicts increases with respect to team size

10 110 210 310 410 510 610 710 810 910
Team Size

Fig. 12. Messages per Agent as Team Size is increased

Towards Flexible Coordination of Large Scale Multi-Agent Teams 307

6 Summary

In this paper, we have presented an approach to building large teams that has al­
lowed us to build teams of an order of magnitude larger than those discussed in pre­
viously published work. To achieve these unprecedented scales, fundamentally new
ideas were developed and new, more scalable algorithms were implemented. Specif­
ically, we presented an approach to organizing the team based on an acquaintance
network with dynamically evolving subteams. Potentially inefficient interactions be­
tween subteams were detected by sharing information across a network independent
of any subteam relationships. We leveraged the social network properties of these
networks to very efficiently share domain knowledge across the team. While much
work remains to be done to fully understand and be able to build large teams, this
work represents a significant step forward.

Acknowledgments

This research was supported by AFSOR grant F49620-01-1-0542 and AFRL/MNK grant
F08630-03-1-0005.

References

1. Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A survey
on sensor networks. IEEE Communication Magazine, 2002.

2. Albert-Laszla Barabasi and Eric Bonabeau. Scale free networks. Scientific American,
pages 60-69, May 2003.

3. Mark H. Burstein and David E. Diller. A framework for dynamic information flow in
mixed-initiative human/agent organizations. Applied Intelligence on Agents and Process
Management, 2004. Forthcoming.

4. Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina Lerman, Jean Oh, David V.
Pynadath, Thomas A. Russ, and Milind Tambe. Electric Elves: Agent technology for
supporting human organizations. AIMagazine, 23(2):ll-24, 2002.

5. Eithan Ephrati, Martha Pollack, and Sigalit Ur. Deriving multi-agent communication
through filtering strategies. In Proceedings oflJCAI '95, 1995.

6. Alessandro Farinelli, Paul Scerri, and Milind Tambe. Building large-scale robot systems:
Distributed role assignment in dynamic, uncertain domains. In Proceedings of Workshop
on Representations and Approaches for Time-Critical Decentralized Resource, Role and
Task Allocation, 2003.

7. Joseph Giampapa and Katia Sycara. Coversational case-based planning for agent team
coordination. In Proceedings of the fourth International coference on Case-based Rea­
soning, 2001.

8. C. V. Goldman and S. Zilberstein. Optimizing information exchange in cooperative multi-
agent systems. In Proceedings of the Second International Conference on Autonomous
Agents and Multi-agent Systems, 2003.

9. Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion:
a scalable and robust communication paradigm for sensor networks. In MobiCom, pages
56-67, 2000.

308 Xu, Liao, Scerri, Yu, Lewis and Sycara

10. N. Jennings. The archon systems and its applications. Project Report, 1995.
11. N. R. Jennings. Specification and implementation of a belief-desire-joint-intention ar­

chitecture for collaborative problem solving. Intl. Journal of Intelligent and Cooperative
Information Systems, 2(3):289-318, 1993.

12. Nick Jennings. Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence, 15:195-240, 1995.

13. Kam-Chuen Jim and C. Lee Giles. How communication can improve the performance of
multi-agent systems. In Proceedings of the fifth international conference on Autonomous
agents, 2001.

14. Hiraoki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, and Hitoshi
Matsubara. RoboCup: A challenge problem for AI. AI Magazine, 18(l):73-85, Spring
1997.

15. Yong-Bae Ko and Nitin H. Vaidya. Location-aided routing (LAR) in mobile ad hoc net­
works. In MobiCom, pages 66-75, 1998.

16. Elizabeth Liao, Paul Scerri, and Katia Sycara. A framework for very large teams. In
AAMAS04 Workshop on Coalitions and Teams, 2004.

17. M.E.J.Newman. The structure and function of complex networks. SIAM Review, Vol.
45, No. 2, 2003.

18. S. Milgram. The small world problem. In Psychology Today, 22, 1967.
19. R. Nair, T. Ito, M. Tambe, and S. Marsella. Task allocation in robocup rescue simulation

domain. In Proceedings of the International Symposium on RoboCup, 2002.
20. K. Sycara P. Scerri and M Tambe. Adjustable autonomy in the context of coordination.

In AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, 2004.
21. David Pynadath and Milind Tambe. Multiagent teamwork: Analyzing the optimality and

complexity of key theories and models. In First International Joint Conference on Au­
tonomous Agents and Multi-Agent Systems (AAMAS'02), 2002.

22. David V. Pynadath and Milind Tambe. An automated teamwork infrastructure for hetero­
geneous software agents and humans. Journal of Autonomous Agents and Multi-Agent
Systems, Special Issue on Infrastructure and Requirements for Building Research Grade
Multi-Agent Systems, page to appear, 2002.

23. D.V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Toward team-oriented program­
ming. In Intelligent Agents VI: Agent Theories, Architectures, and Languages, pages
233-247, 1999.

24. P. Scerri, D. V. Pynadath, L. Johnson, Rosenbloom P., N. Schurr, M Si, and M. Tambe. A
prototype infrastructure for distributed robot-agent-person teams. In The Second Interna­
tional Joint Conference on Autonomous Agents and Multiagent Systems, 2003.

25. Paul Scerri, Yang Xu, Elizabeth Liao, Justin Lai, and Katia Sycara. Scaling teamwork to
very large teams. InAAMAS, pages 888-895, 2004.

26. Katia Sycara and Micheal Lewis. Team cognition. In Chapter Intelligent Agents into
Human Teams, Erlbaum Publishers, 2003.

27. Katia Sycara, Anandeep Pannu, Mike Williamson, and Keith Decker. Distributed in­
telligent agents. IEEE Expert: Intelligent Systems and thier applications, 11(6):36^5,
December 1996.

28. Milind Tambe. Agent architectures for flexible, practical teamwork. National Conference
on AI (AAAI97), pages 22-28, 1997.

29. Milind Tambe, Wei-Min Shen, Maja Mataric, David Pynadath, Dani Goldberg, Prag-
nesh Jay Modi, Zhun Qiu, and Behnam Salemi. Teamwork in cyberspace: using TEAM-
CORE to make agents team-ready. In ALAJH Spring Symposium on agents in cyberspace,
1999.

Towards Flexible Coordination of Large Scale Multi-Agent Teams 309

30. Duncan Watts and Steven Strogatz. Collective dynamics of small world networks. Nature,
393:440-442, 1998.

31. Yang Xu, Mike Lewis, Katia Sycara, and Paul Scerri. Information sharing in large scale
teams. In In AAMAS 2004 workshop on Challenges in the Coordination of Large Scale
Multi Agents Systems, 2004.

32. P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent cooper­
ation: Model and experiments. In Proceedings of the Fifth International Conference on
Autonomous Agents, 2001.

33. J. Yen, J. Yin, T. R. loerger, M. S. Miller, D. Xu, and R. A. Volz. Cast: Collaborative
agents for simulating teamwork. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1135-1142, 2001.

34. Bin Yu, Paul Scerri, Katia Sycara, Yang Xu, and Michael Lewis. Proactive information
delivery and fusion in mobile sensor networks. In submitted to IPSN, 2005.

35. Feng Zhao and Leonidas Guibas. Wireless Sensor Networks: An Information Processing
Approach. Morgan Kaufmann Publishers, 2004.

Techniques for Robust Planning in Degradable
Multiagent Systems

Ping Xuan

Clark University pxuanQclarku. edu

1 Introduction

While computer systems are designed to achieve their intended purposes and attain
the expected performance level when things are going as plarmed, there are often
situations and/or scenarios that the anticipated conditions are not satisfied and there­
fore the intended performance level may not be attained. In some mission-critical
applications (such as missile launch processes), such events are outright failures -
the performance is either success or failure - and therefore the system designer's job
is to make sure that there are no unexpected events, i.e. to prevent possible failures
from occurring. However, in most applications, system performance is not a boolean
value but could vary in a range of performance levels. In those systems, even when
the anticipated conditions are not met and therefore the intended performance level
cannot be achieved, the system should be able to adapt to the change and perform
at a lower (i.e. degraded) performance level instead of simply quitting. For those
degradable systems, the designer's job is to implement mechanisms for the system
to detect failures/unexpected events and to adapt to the changes (by switching to
a different course of action) when those events occur. Both failure prevention and
failure detection/adaptation are important topics in real-time and fault-tolerant com­
puting, where the goal is to build systems that are dependable/reliable, predictable,
and fault-tolerant [22].

Evidently, multiagent systems are a type of computer systems that frequendy
needs to deal with the same kind of issues: the environment in which an agent is op­
erating is changing constandy and thus the problem of uncertainty/unexpectedness
is even more paramount. And in general, we can say that multiagent systems need
to be a kind of degradable computing systems - the system should certainly adapt
to changes and unexpected events in the environment and try its best to maintain
acceptable performance levels. This would be a key element in any "intelligent"
system. In fact, the development of multiagent systems presents both opportunities
and challenges to fault-tolerance techniques. On one hand, a multi-agent approach
to fault-tolerance can further extend the research on fault-tolerant systems, and al­
lows the integration of performance and reliability into a unified framework. On the

312 Xuan

other hand, in a multi-agent system, the notion of fault may be different from that
of traditional systems, and to enhance reliability in multi-agent systems means that
we need to extend the scope of fault-tolerance and have new types of fault-tolerance
techniques. We believe that a systematic study on the design of degradable multia-
gent systems is very urgent in order to associate words such as ^'reliable" and "de­
pendable" with multiagent systems (at the moment, such associations are rare, if not
nonexistent), and it is time for agent designers to explicitly consider the reliability
issue of the multiagent systems.

In this article we will focus on cooperative multiagent systems and discuss the
techniques that may be used to enhance the planning and coordination aspect of the
agents when facing changes and unexpected events. Up to date, the research effort in
this area has been largely focused on handling nondeterminism in the multiagent en­
vironment. For example in Decker and Lesser's TAEMS framework, different possi­
ble outcomes (such as duration and quality) of a task can be modeled in a probability
distribution [8]. Approaches for addressing environment nondeterminism generally
view it within the scope of planning under uncertainty, such as using Markov deci­
sion processes (MDPs) [4,25,1,20] to model sequential decision making in stochas­
tic environments, and using an extended model for agent commitments and applying
contingency planning [24]. While these approaches provide good foundations for
handling uncertainties in multiagent cooperation, due to the assumptions and limi­
tations of the frameworks and also their complexity, they have limited applicability,
especially in systems with a large number of agents. Typically, in those approaches,
a system is completely specified (as some types of stochastic processes), therefore
it is possible to apply the principle of maximizing expected utility (MEU) and use
the expected utility as the metric. However, expected utility alone is not indicative
of the reliability of the system - we not only want to achieve the best utility but
also want to ensure that the system degrades gracefully when unexpected events oc­
cur. Moreover, a completely specified model is really an approximation of the actual
system, with many assumptions, simplifications, and omissions - it is impossible to
accurately model all aspects of systems and specify all its parameters, after all. Thus,
while improving the expected utility is very important, we cannot neglect the relia­
bility issue and need to ensure that the system implements mechanisms to enhance
its robustness.

Of course, reliability issue is hardly a new issue in computer systems, as it has
been studied in some classical fields such as distributed computing, fault-tolerance.
There are already an abundant arsenal of techniques developed for this purpose, and
much of the techniques that are going to be presented here are based on the same
ideas, but applied to multiagent systems. It should be noted that because multia­
gent systems differs significandy from traditional distributed systems, they present
some challenges to traditional fault-tolerance: while in traditional distributed sys­
tems, fault-tolerance techniques often involve the (low-level) implementation of cer­
tain FT algorithms across the network, in multiagent systems we are more concerned
about the high-level decision making process toward the use of redundancy. As such,
in typical FT computing, the use of FT techniques is treated as a part of the system
infrastructure and low level control problem - such as task scheduling and resource

Techniques for Robust Planning in Degradable Multiagent Systems 313

allocation in the OS, but in multiagent systems, FT is really part of the agent decision
making and involves planning, coordination, and cooperation.

In particular, we will discuss several techniques that could be used in degradable
multiagent system to increase its robustness, with a focus on the multiagent planning
aspect. First, we will present a framework for representing agent plans and try to
formalize the reliability issue, and then discuss how to apply FT techniques in agent
planning and coordination. We also discuss the issue of fault-tolerance for agent
organizations, because failure can occur not only at agent activity level, but also at
organizational level, as an agent may fail to assume its organizational role due to its
failures.

2 An Integrated View of Performance and Reliability in MAS

Compared to traditional systems, multiagent systems offer a new perspective in prob­
lem solving: there are a number of characteristics of MAS that would have important
impact on the ways of problem solving:

• Autonomy. Agents are autonomous and each agent is an independent decision
maker and not mandated/controlled by external entities. Agent activities are re­
sults of its own decisions. This does not mean that agents are self-contained —
agents can interact with other agents if they choose to do so. This autonomy im­
plies that in general, an agent only has a partial knowledge of the other agents,
and the agent makes decisions based on its subjective view of the system. Agent
interactions expand or modify an agent's subjective view thus produces influ­
ences on its decision making, but still the decision making process is local in
each agent. Also, autonomy implies that a multi-agent system is inherently de­
centralized, and team activities are based on coordination and cooperation rather
than being implied by a distributed algorithm.

• Explicit reasoning of utility. Agent decision making is explicitly based on the
agent's model of utility. A rational agent will try to maximize its utility when
making a choice. This, of course, does not mean that all agents are self-interested.
The utility model of an agent can indeed reflect a group/team interest, and thus
making the agents cooperative. The use of a utility model implies that an agent's
decision making are inherently an optimization problem rather than a satisfaction
problem, and the agent's decisions have to be rationalized - they should not be
bound to fixed protocols or routines, but are always changing according to the
current utility assessments.

• Uncertainty. Agents need to deal with many sources of uncertainty in its prob­
lem solving. The partial knowledge of other agents and the rest of the system
introduces uncertainty in agent decision making. The actions of the agents may
produce uncertain outcomes, which require dynamic changes in agent actions,
and also leads to the dynamic changes in the agent's subjective view. Hence,
multi-agent problem solving is dynamic in nature, as agents need to adapt to the
changes in the system from time to time. As such, agent communication, coordi­
nation, and cooperation are the key for multi-agent problem solving.

314 Xuan

These characteristics lead to new challenges in the convergence of FT comput­
ing and multi-agent problem solving. FT mechanisms that are implemented as dis­
tributed algorithms imply some decision rules for team activities, but for autonomous
agents these algorithms need to be justified, and need to be implemented via explicit
coordination and cooperation. Thus, FT considerations should be an integral part in
agent decision making and coordination, and we should model reliability/FT require­
ments as part of the utility structure.

Although reliability and performance are often regarded as two orthogonal is­
sues, in fact they are very much inter-dependent. To evaluate a system, the most im­
portant metric is often based on an overall, stochastic performance measure, rather
than the highest level of performance based on one problem solving episode. The
overall performance of a system must take into account the possibility of failures
and the loss of performance because of such failures. If the effect of failures can be
controlled or contained, the system becomes more reliable, and this would lead to
better overall performance. Thus, the effectiveness of FT techniques must reflect the
changes in overall system performance.

Given that failures occur at a certain probability, a probabilistic model can be
used for evaluating overall, or, expected performance. As such, there is no need to
use separate metrics for performance and reliability, but rather we can use a com­
bined metric that reflects the distribution of performance. Such a metric, called per-
formability, should serve as the basis of agent utility. As such, to achieve reliability
becomes an integral part for improving overall system performance (and performa-
bility), and hence the implementation of FT techniques become an integral part of
the general problem solving and decision making in multi-agent systems.

From the problem solving perspective, the possible occurrence of failures is an­
other form of the uncertainty in multi-agent problem solving, and fault-tolerance
techniques offer alternative ways of achieving the goal/doing the same task, each
with a different profile of uncertainty. By introducing uncertainty in problem solv­
ing, we can model failures into the agent's problem solving model, and with the
introduction of performability measure, we can evaluate the impact of FT techniques
on the performability, as well as the resource constraints imposed by the FT tech­
niques. Thus, this source of uncertainty can be represented and be integrated into the
agent's constraint optimization process.

A systematic research on FT in multi-agent systems, thus, must establish a frame­
work for multi-agent problem solving that includes performability, agent utility, a
model of faults in terms of uncertainty in addition to other uncertainty sources, and
agent coordination and cooperation. Based on this framework we can then define the
decision problem for optimizing overall performance, and provide solutions for the
problem.

In the following sections we present a 3-layer approach for modeling multia-
gent problem solving and introducing FT techniques. Each layer corresponds to a
different level of abstraction and also different level of formalness. At the bottom
layer is a formal framework that describes the decision problem for multi-agent sys­
tems - a multi-agent extension to the Markov decision process (MDP) to model the
multi-agent decision making problem. The middle layer studies the approximation

Techniques for Robust Planning in Degradable Multiagent Systems 315

methods for solving the decision problems, and discuss the implication to agent co­
ordination. The purpose of this layer is to provide theoretical foundation for agent
coordination strategies, so that we can map them in terms of agent decision mak­
ing policies, and then quantitatively evaluate them. Finally in the top layer we con­
sider various fault-tolerance techniques, integrate them into agent problem solving
by transforming them into coordination mechanisms. While going up the layers, the
problem solving becomes more and more coarse-grained, and this naturally means
the increase of the degree of approximation. In terms of the level of abstractness and
formalness, at the MDP layer we are dealing with abstract state representations of the
multi-agent systems, and then moving up in to the coordination layer we are dealing
with tasks and commitments, and finally in the FT layer we are going to deal with
structured heuristic mechanisms.

3 The Computation Model

Before describing the approach in details, however, we need to first discuss the com­
putation model, i.e., our agent model, the nature of the agent's activities, and the
environment where the multi-agent system operates.

3.1 Agent Model

First, let's define the notion of agent used here. We view an agent as an autonomous
problem solver. As such, to specify an agent, we need to first describe the problem
solving knowledge in an agent. This knowledge base can be specified in three parts:

1. Capabilities — this is a list of the things/tasks/problems that an agent is capable
of doing. Note that this does not mean that the agent can do it single-handedly.
To be precise, it means that the agent has the knowledge of how to approach
this problem, i.e., that the agent can do the task locally, or that the agent knows
how to sub-divide the problem into sub-problems. Such a hierarchical structure
allows the specification of complex problems/tasks. At the bottom level (leaf
nodes) of the hierarchy are either locally capable tasks, or nodes of inability,
i.e., the tasks that the agent has no knowledge how to perform or sub-divide.
Obviously, the agent has to negotiate with other agents for the tasks it cannot do.

2. Relationships/Constraints — Often the tasks are not independent to each other.
For example, sub-problems may have to follow a particular sequence. Or, tasks
use the same resources and therefore may potentially be mutually exclusive.

3. Utility structure — a utility structure is defined for each task and relationship to
specify how the agent's utility is affected. Similar to the hierarchical structure of
the tasks, the utility structure defines the hierarchical composition of utility for
doing a task. Again, the utility structure could involve tasks/relationships that the
agent has no knowledge about them, but need to perform dynamic exploration
in order to be able evaluate the utility dynamically.

316 Xuan

Here in Figure 1 we show a task represented through agent capabiUty structures. It
shows the capabihty hierarchy for both agents x and y. Note that some capabihties
are unique to one agent, such as B and E. In these cases they are inabilities to other
agents. One enables relationship is shown between F and C, which means that F must
finish before C can start.

• both's capability

x's capability

y's cabability

(duration:
(reward 0
(outcome

(duration 10 100%)
(reward 25 80% 0 20%)

(duration 5 100%)
(reward 5 70% 0 30%)

100%)
1 60% 2 25% 4 15%)

(duration 3 100%)
(reward 0 100%)
(outcome 3 70% 4 30%)

(duration 10 100%)
(:1 reward 60 100%)
(:2 reward 30 50% 0 50%)
(:3 reward 30 60% 0 40%)
(:4 reward 0 100%)

Fig. 1. An Example Task, with Agent Capabilities

A key characteristic in our agent knowledge base is uncertainty. There are sev­
eral aspects of uncertainty. First, this means that tasks or relationships may have
nondeterministic outcomes, and therefore the utility structure would need to define
distributions rather than single value. This type of uncertainty originates from the
stochastic nature of the problem solving, and the knowledge about the uncertainty is
static and can be obtained offline. However, uncertainty can also originate from lack
of static knowledge. For example, if an agent does not have a capability, it does not
have the knowledge of how much effort or resource is needed before hand, but rather,
it needs to perform dynamic exploration and discover the information it needs. Ob­
viously, such information depends on the nature of other agents in the same system,
and therefore is dynamic and cannot be specified offline.

Also, since agents are distributed and autonomous, an agent generally does not
know all the events happening in other agents, and therefore it only has a partial view
of the system, e.g., a partial view of the problem solving structure, a partial view of
the utility structure, a partial view of the progress, i.e., runtime information about
problem solving, and a partial view of the plans of the other agents.

In our definition of an agent, we hold it as a prerequisite that the agents are
capable of communicating with each other, therefore be able to explore, discover,
negotiate, and coordinate. The exact low level details of the underlying network.

Techniques for Robust Planning in Degradable Multiagent Systems 317

language, and format for communication among agents, although a very important
part in actual implementation, are not the core subject of this study. Instead, in this
research the communication is studied at the knowledge level.

We further assume that the agents are rational, that is, the agent would choose
the actions that are of its best interest. The decisions of the choices are made to all
aspects of its problem solving, including exploration of nonlocal information, local
reasoning or planning, negotiation with other agents, and execution.

3.2 The Computation Model

A multi-agent system consists of several networked agents. The agents could be ho­
mogeneous or heterogeneous. As described above, each agent has its own knowl­
edge base, and utility structure, but only has a limited view of the whole system. The
agents can have streams of internal tasks to perform, i.e., internal periodic tasks, or
have tasks received from outside the system, or both. There may be variations of the
rate at which the tasks arrive to the system. The tasks correspond to the capabilities
of one or more agents, and therefore the agents know how to perform them. In ad­
dition, there are constraints or requirements associated with each task. For example,
time-critical tasks may impose deadline constraints.

When a task arrives the system, the agents would try to solve it according to
its requirements, spend the necessary resources (e.g., time, money), in return for
some type of reward. Note that, this assumption of per-task reward does not restrict
ourselves to that kind of problems. In fact, rewards based on long-term, statistical
behavior of the system (such as average throughput, annual earnings, etc.) can also
be used since they can be interpreted through averaging over per-task values.

Based on how well a task is performed by the agents, there are different reward
levels, therefore the problem solving is inherendy a constraint optimization problem.
However, we note that even when the reward is fixed regardless how the agents com­
plete it (if they complete it at all), the problem is still an optimization problem since
the agents would like to spend as little resource as possible.

According to the way utilities are received by the agents, there are two types of
multi-agent systems: one that the agents are self-interested and one that the agents
are cooperative. The difference between them is that for self-interested agents, each
agent tries to maximize its own utility and there is no notion of global utility. But
for cooperative agents, they share the same utility function — the global utility func­
tion, and their goal is to collectively maximize the global utility. In general, though,
agents' utility structures can actually be very complex and there may not be a clear
line between self-interested agents and cooperative agents. Thus the agents may be
cooperating based on the sharing of parts of utility functions [23]. This means that
coordination and cooperation becomes even more important for cooperative systems,
since the agents must coordinate in order to know the impact of their local actions.

Our work will mainly focus on cooperative systems since we are interested in
overall system performance, which indicates a global utility.

318 Xuan

Given this computation model, in the following we will describe how we specify
our model of agent problem solving in each of the layers in our approach, and more
importandy, how to solve the problem.

4 The Bottom Layer: Decentralized Multi-agent MDP

The purpose of this layer is to provide a formal footing for cooperadve multi-agent
problem solving. As in any formal studies, we need a suitable mathematical rep­
resentation of the problem. As such, high level representations such as capabili­
ties and relationships have difficulty conforming to a rigorous mathematical model.
To solve this problem we use a state representation, and try to model the problem
solving process into a decision process. There, Markov decision processes are used
as a tool for decision making under uncertainty, but to study the decision process
in cooperative multi-agent systems, we need to develop an extension to the stan­
dard Markov decision process. To date, there are several flavors of such extensions
[25, 1, 20, 13, 12, 14], but the DEC-MDP/POMDP model [1] is the common the­
oretical model used in most approaches. However, although this model is general
enough, it does not distinguish agent coordination activities from agent domain ac­
tions, and thus solving a DEC-MDP/POMDP offers litde insight toward developing
coordination strategies. For this reason, in the following we will use the model in
[25], in which the communication decisions and agent domain actions are separated.
This allows us to model high level structures such as commitments and coordina­
tion mechanisms on top of this representation, and also facilitates the construction of
approximation methods and heuristics.

4.1 Model Agent Meta-level Communication

In this model, an agent X's local actions and local state transitions can be modeled
by a Markov process M :̂ local state space S^, local action set A^, and local state
transition probabilities p^{s^j\s^,a^). However, this is not a standard MDP because
there is no local utility function. Instead, there is a global utility function that is
based on the global states and joint actions.

The agents have partial view of the global state - the local state is really a partial
observation of the global state. However, they can choose to communicate among
themselves and obtain the local state information at other agents. In the more gen­
eral DEC-MDP/POMDP framework, these communication actions as well as local
actions can be viewed as partial observations of the global state, and it is proven
that these DEC-MDP/POMDP have NEXP-complete complexity [2]. Thus, solving
these problems optimally is generally very hard, although some subclass of DEC-
MDP/POMDP can have a lower complexity level [12].

A solution (e.g. policy) to a DEC-MDP/POMDP consists of a set of local
policies, which maps local information sets to local actions. However, the DEC-
MDP/POMDP does not distinguish the agent's local outcome (something locally
observable) and communication (must be done with other agents). If we treat each

Techniques for Robust Planning in Degradable Multiagent Systems 319

stage of agent problem solving as two substages, then we can separate a policy into
two parts: at first substage, the agent observes local outcome of previous action and
decides if communication is needed (the communication policy), and perform com­
munication if so. Then, at the next stage, the agent decides which action is optimal
given the information available (include the information just obtained through com­
munication) - the local action policy. In this sense, communication can be viewed as
an information gathering process. Figure 2 shows the sequence of the substages and
the events occurring in one stage.

current state

.
Previous rh ^

Stage 1 f

Communication
finishes /

Communication
Sub-Stage

7
/

Decide whether to communicat e or not

/ .

T
Action
Sub-Stage

Stage t

1

Decide which action
t 0 perfoi rm

Action
finisnes

u M

next state

/
^ Next

Stage

Fig. 2. Communication substage

To model communication, we use messages to represent the information ex­
change between agents. Local state information is the content of a message, and
in particular, if an agent chooses not to communicate, its message will be null. Each
agent can initiate communicate independently, we assume that the message format is
mutually understood and that no message is lost/changed during communication.

Exactly how the information is shared after the communication clearly depends
on the nature of communication, for example, tell is a type of communication in
which one agent simply voluntarily tells its current local state to the other agent, i.e.,
information going outward; and query refers the type in which one agent sends a
query (about other agent's local state) and receives the information back, i.e. infor­
mation going inward; and another type, sync, is the combination of the above two,
in that when an agent performs a sync communication, it reveals its own state to the
other agent, and at the same time obtain the other agent's local state. As a result of
sync (regardless of which agent initiates the communication), both agents now know
the each other's local state, and also the knowledge that the other agent knows the
same. Note that in actual implementations, more than one messages may be needed,
but in our model it is sufficient to symbolize the process into one message commu­
nication.

Under this framework, we can easily establish the connection between DEC-
MDP policies with agent planning and coordination strategies. Roughly speaking,
the local action policy corresponds to the local planning process, which will em­
ploy a local planner to decide what domain action to perform; and the communi­
cation policy corresponds to the coordination process, which begins with establish

320 Xuan

common knowledge and uses meta-level communication to coordinate the agents'
activities. Thus, this model offers a theoretical underpinning for the study of plan­
ning algorithms and coordination mechanisms: they are simply the two components
in an agent's local decision-theoretic policy, and therefore they can be viewed as a
way to construct agent policies. This gives us one approximation/heuristic method
for solving DEC-MDP/POMDP.

5 The Middle Layer: Approximation Methods

In this layer we discuss approximation methods for solving decentralized multi-agent
MDP. Although to solve the decision problem in the bottom layer exactly is computa­
tionally infeasible in most cases, the evaluation of heuristic policies is quite straight­
forward. This is because that since the policy tells which actions to choose at each
state, we can iteratively enumerate all possible episodes and the state transition prob­
ability functions. The actual computation is similar to the policy evaluation method
used in standard policy iteration algorithm for solving standard MDP, also known
as backward-induction or dynamic programming. Thus, given a predefined policy,
to evaluate its performance, i.e., expected total reward, is not a hard problem. How­
ever, traditionally, the research on multi-agent problem solving strategies often uses a
task representation, not a low-level state-based representation. The reason is that task
level representation is more intuitive and convenient for describing agent goals, in­
tentions, and utilities than a state representation which is based on states, actions, and
rewards. Therefore, in order to gain insight into the design of multi-agent problem-
solving strategies, it is very important that we have a way of translating task-level
strategies to state-level policies.

At task level, this representation is more coarse-grained than at state level, and
this implies some approximation and simplification of the model of problem solving.
At local level, the translation from task models to state models is fairly simple: each
task is an action, and for each task a we can use a vector to represent all possible
outcomes of the task. Then the local state space is simply a subset of all the combi­
nations of the task outcome sequences. Such a state representation has an advantage
of including the local action history information into the state model, although it does
not reflect the communication history. Figure 3 shows part of the state space derived
from the example task shown in Figure 1 for both agents x and y.

Next, we want to translate approximation policies, often in terms of agent co­
ordination strategies in a task-based system. The key problem is to represent agent
coordination. To achieve this we use commitments as the vehicle for agent coordina­
tion.

5.1 Definition of Commitments

By definition, a commitment specifies a pledge to do a certain course of action [16].
A number of commitment semantics have been proposed, for example, the "Dead­
line" commitment C{T, Q.tdi) in [7], means a commitment to do (achieve quality Q

Techniques for Robust Planning in Degradable Multiagent Systems 321

V ' \ X
\ \ ^
\ \
\ \ '\ S \

c
D

•< 'E '
1̂

Fig. 3. State Space Representation for Tasks

or above for) a task 7 at a time t so that it finishes before a specified deadline, r̂ /.
When such a pledge is offered, the receiving agent can then do its own reasoning
and planning based on this commitment, and thus achieves coordination between the
agents. In recent years, the notion of commitment has emerged, among many re­
search groups [5, 6, 7, 15], as the bridge for multi-agent coordination and plarming.
An agent's problem solving strategy, then, can be described as two parts: first, how
to decide what commitments to make, and second, how to fulfill the commitments.
Of course, due to the dynamic nature of problem solving, an agent also needs to
monitor the problem solving and make changes to the commitments and the ways
to achieve commitments when necessary, and this also part of the agent problem
solving strategy.

Such a definition of commitments naturally leads to its state-level description.
Specifically, a commitment reflects the agent's promise to be in a certain state (having
a proper value for the outcome of a local task) at some future time. The strategy for
choosing commitments can be characterized as a function F based on the agent's
information. Remember in our framework the agents can choose to communicate and
thus gain information during the communication sub-stage, F for agent X is defined
for both //f'̂ and H^'^. Similarly, the strategy for achieving the commitment can
also be characterized as a function G, which define which actions (communication
actions or task actions) is needed in order to fulfill the commitment. The G function
is also defined on both H^'^ and H^'^. Obviously, the F and G functions are simply
a different way of expressing the agent policy TT, and to solve the optimal F and G

322 Xuan

functions is the same as solving the optimal policy 71. However, the use of F and G
functions can allow us to effectively describe heuristic methods.

First, the G function is based on the result of F, Intuitively, the result of F repre­
sents a goal of the agent. When a new goal is established, the way to achieve the goal
based on current situation typically can be represented through a search process, and
does not depend on history. Also, since the time-frame for the G function is limited to
the time-frame indicated in the result of F function, G often has a short time-frame.
This indicates that G often represents a Markov decision process with short horizon,
and therefore is fairly easy to calculate. More importantly, if the goal indicated by F
remains the same for a period of time, the G function simply reflects the progress of
the same Markov decision process, and therefore requires little additional reasoning.

Second, the F function represents commitments, and in turn the commitments
reflect the goals of the agent. Naturally, although commitments and goals could be
dynamic, in typical problem solving they are not to be changed very often [11, 10].
It is often convenient, then, to introduce an additional function v to represent the
monitoring process, where v decides if F needs to be evaluated again based on the
new information since the last time F is evaluated. In other words, v is a boolean
function that checks whether or not new commitments need to be established. This
way, F needs not to be evaluated all the time. Since the evaluation of F, i.e., deciding
what commitments to make, is often a complex reasoning process, the use of v can
significandy reduces the complexity and computational costs.

5.2 Uncertainty in Commitments

Implied in our state model for commitments is that commitments are uncertain. Due
to the stochastic nature of problem solving, a promise of reaching a certain state
in some future time often cannot be guaranteed. There could be several sources of
uncertainty associated with a commitment. Sometimes, a task has an undesired out­
come that causes the promise to be broken. This type of uncertainty can often be
calculated when the commitment is made, because a stochastic process is defined by
the G function, which is based on the result of F function. Another source of uncer­
tainty is due to the possible change of commitments. Because of the dynamic nature
of the system, an agent's view of the system is different from the view it had when
the commitment was established. This may mean a different result of F and hence
different commitments.

To deal with these uncertainties, two methods can be applied: one is to define
statistical guarantee semantics to a commitment. This means that when describing a
commitment, we need to also specify its reliability characteristics. This can be in the
form of a distribution (often multivariate because a commitment involves potentially
several uncertain parameters), or expressions regarding estimations of bounds and
ranges. The description of a commitment can also include information regarding the
dynamics of the reliability profile, for example when the success rate of a commit­
ment may change and by how much. By planning ahead using these information,
the agents can have a more complete picture about the future role of the commitment

Techniques for Robust Planning in Degradable Multiagent Systems 323

and thus reduce the chance of having unexpected failure events in the future that may
cause ineffective coordination.

The other method is to monitor the commitment in the runtime and react to
changes in the commitments. The monitoring function v is the key to this method.
Based on the events occurred in the system since the F function is evaluated, i.e., the
outcomes of the tasks and the communication messages the agent sent or received,
V calculates the impact to the current commitments and therefore let the agents to
decide if the commitments need to be changed.

5.3 System-wide Policy and Per-agent Policy

Based on the choices of F, G, and v functions (for each agent), we have an approxi­
mation to a multi-agent MDP policy. These functions are sufficient for the evaluation
of this approximation policy. However, we need to make the distinction between the
design of policies for all agents and the design of one-agent policies.

The design of policies for all agents, i.e., a system-wide policy, is based on the
understanding of the global state space. In other words, the input for the this system-
wide policy is the whole decision problem, including the global state space, utility
function, and communication mechanisms. From an individual agent perspective, an
agent can reason for a system-wide policy if knowledge about the global state space
information is given, however, in that case, each agent has to follow the same system-
wide policy, i.e., to assume that the other agents would reach the same system-wide
policy, and therefore each agent knows the policies of other agents. This can be
done, for example, by implementing the same system-wide policy produced by the
system-designer in each agent. Under such a system-wide policy, the actual reason­
ing process does not occur within the agent. Rather, it is decided by the global state
space alone.

However, if the system is an open one, or it contains heterogeneous or legacy
agents, an agent cannot in general have a clear picture of the global state informa­
tion necessary to reason about a system-wide policy. In some cases, even if an agent
knows the global state space (thus it can reason about a system-wide policy), it can­
not assume that the other agents are using the same reasoning techniques (cannot
predict other agents' policies), and therefore it cannot simply derive the system-wide
policy and follow that policy alone. Instead, the agent has to rely on partial knowl­
edge of the whole system, and has a local reasoning process, and produce its own
policy. This policy is not a system-wide policy but rather just for this agent only, al­
though this policy does interact with other agents' policies. This means that, during
the design of the one-agent policy, we cannot assume that we know the policy in other
agents, nor assume that we can control the policy of the other agent. This is a practi­
cal assumption when designing agents for open systems. In these systems, an agent
has only partial knowledge of other agents' state spaces, and also partial knowledge
of other agents' policies. These partial knowledge forms the basis of the interaction
among agent policies. In typical multi-agent coordination, to obtain the information
about nonlocal state space and policies is a significant part of a coordination pro­
tocol. Again, commitment is the key in the interaction of the individual policies. A

324 Xuan

commitment indicates the agent's intention of reaching certain goals, thereby reveals
partial information about the agent's policy. In our model, commitments are dynamic
and therefore have uncertainties associated with them. To the agents who receive this
commitment, dealing with these uncertainties often resembles the decision making
under a partially-observable Markov process.

This distinction between a system-wide policy and a per-agent policy does not
affect the evaluation of the policies, which is based on complete knowledge of the
system no matter which type of policy is used. However, a system-wide policy is
based on the complete view of the structure of the system, the so-called objective
view. In comparison, a per-agent view is based on a partial view of the structure,
i.e., the subjective view. Obviously, in many systems the subjective view does not
equal the objective view. Moreover, when the system evolves during runtime, the
subjective view can also evolve.

Having a subjective view means that, when designing per-agent policies, the
choices of these functions are constrained, since they need to reflect the reasoning
process based on a partial global view of the system, and therefore cannot use in­
formation unavailable to the agent. In particular, if an agent A only has a partial
knowledge of the state space of some other agent B, to understand B's commitment,
i.e., B's promise of being in a certain local state at a certain time, would be difficult.
Rather, a commitment can be about some feature of the state rather than the state
itself. This is quite natural in a task-based representation, where a state naturally
contains information about the outcomes of various tasks. For example, a feature of
the state may means that a certain task T is finished with a certain outcome. This is
exacdy the task-based semantics used in the work of Decker and Lesser [7].

Partial knowledge of some other agent's state space also leads to difficulties in
understanding the other agent's policy. In particular, since commitments are uncer­
tain, an agent needs to know not only which commitments are made, but also what
can happen to these commitments. Typically, protocols often rely on explicit commu­
nication to make sure that the commitments are mutually understood among involved
agents. In [26], we studied the additional information needed in order to deal with
these uncertainties in commitments. This information is meant to be shared through
communication. By the exchange of policy information, such as intentions, plans,
schedules, actions, the agents do not need to have the global state space informa­
tion needed in order to reason about other agents' policies. This can clearly make
the agent's reasoning much simpler. Clearly, here the notion of communication is
different from the primitive communication mechanism defined in our multi-agent
decision process, which is limited to the exchange of state information. However,
we note that this does not affect our evaluation of the policies (which is based on
the objective view), but rather extends our definition of F, G, and v functions, such
that these functions can use the policy information made available through these ex­
changes. In other words, such communication can be characterized as part of the
dynamic expansion of the subjective view during problem-solving, so that more in­
formation is available to the agent.

Techniques for Robust Planning in Degradable Multiagent Systems 325

5.4 Communication of Commitments

In the above discussion we indicated that communication of policy-related informa­
tion can be part of the agent coordination. This is very important when agents cannot
reason about other agents' policies because of the lack of knowledge about the global
state space. However, note that, in our formal model, communication is limited to the
sharing of nonlocal state information, and we argue that such communication may
incur a cost. For policy information, though, it is often not feasible to impose a for­
mal cost measure. One possible way to address this problem is to view policy-related
information as an add-on to state information, so that the communication message
contains not only state information but also some policy-related information, such as
commitments, plans, and actions. Obviously, this restricts the communication of pol­
icy information to occur at the same time as the communication of state information.

Obviously, if communication is free, agents can exchange all state information at
all times and thus a centralized approach (just study the optimal joint action for any
global state) may be possible. In many coordination protocols, however, although
communication is free, it is still prohibitive to communicate all information due to
the system limitations. Thus, our decentralized model is very important even when
communication is cost-free. In these systems, which information is to be commu­
nicated, and how much communication has occurred, are still important aspects of
protocol design.

At the center of policy-related information is agent commitments. Commitments
reveal agents' intentions, and the fulfillments of commitments is the key to successful
coordination. Communication can ensure mutual understanding of the commitments,
and can also specify the uncertainty in commitments. Also, communication has two
roles in the dynamics of commitments. Communication is very important for the
agent to decide what commitment to make since it provides the information it needs
and reduces the uncertainty in agent reasoning process. At the same time, communi­
cation also allows the monitoring of the multi-agent problem solving, and therefore
the agents can have the non-local information needed to decide whether or not the
commitment needs to be revised. Since commitments are dynamic objects, a coordi­
nation protocol could also specify the communication for changes of commitments.

The mutual understanding of a commitment is not limited to the understanding
of the promised state, but also the uncertainty associated with the commitment. The
key to the handling of the uncertainty is the guarantee semantics of a commitment.
Clearly, due to the stochastic nature of the system, the guarantee is a statistical one,
not a 100% guarantee. Since other agents often lack the information needed in or­
der to reason about the reliability of the commitment, communication is often also
needed in order to explicitly tell what can happen to the commitment, and at what
rate.

Using the same example task in Figure 1, suppose one heuristic method gen­
erates the following policy for the two agents. For x, the commitment it makes to y
is that it finishes task C. The task of y is to complete task D so that task G is satis­
fied, and in turn task H is satisfied. However, since C may fail, y has a commitment
to perform E if that happens. This covers the F function part. The G function part

326 Xuan

describes how x completes C, i.e., x shall perform A, and if the outcome is not 4,
do C. Otherwise, x shall do B next, then do C. Communication is needed if C fails,
in that case y start to fulfill its commitment of E. The v function here simply moni­
tors x's commitment of C: if B fails, the commitment of C cannot be fulfilled. This
policy is shown in Figure 4. It tells which action to take for both agents, and also
communications between the agents (the dotted links).

c r—"^

m ^4.
C

^ reward̂ p

Fig. 4. An Example PoHcy

The key to the evaluation of this policy is the evaluation of the commitments. Ob­
viously, the commitment about C offers only a statistical guarantee: C will succeed,
i.e., obtain nonzero reward at 78.8% of the times. It is more interesting, however,
to look at the dynamics of this commitment. Specifically, before A is finished, the
success rate is 78.8%. After A completes, however, the rate can be 100% (if outcome
is 1), 50% (outcome 2), or 42% (outcome 4, since B will be performed.) Similarly
we can get updated expectations after B is completed. This information is useful for
agents to dynamically adjust its policy. For example, if A finishes with outcome 1, we
can see that C is now 100% guaranteed, hence }̂ 's commitment of E can be canceled
if explicit communication for canceling the commitment is used, thereby improves
this policy.

6 The Top Layer: Coordination Mechanisms for FT

In the two lower layers we defined the framework for multi-agent problem solving
and heuristic methods. The key there is to define the underlying decision problem
and to decide what information to share and what heuristic functions to use.

Through these two layers we can develop the whole agent policy from scratch.
However, since a policy is often quite complex and cumbersome, we still need fur­
ther approximation methods when the system scales up. To do this we need to have
ways to describe a policy (or a partial policy) not at the detailed state level or task
level, but at a higher level. This way, we can readily adopt many protocols and mech­
anisms developed previously in the context of planning and coordination. This way,
we can pre-define a set of alternative mechanisms, and simplify the agent's reasoning
process by selecting from these alternatives instead of using a search process. These

Techniques for Robust Planning in Degradable Multiagent Systems 327

pre-defined mechanisms are often very efficient and not computationally intensive,
and at the same time provide good performance. Another important benefit of using
pre-defined mechanisms is that although a detailed, low-level policy may achieve
better performance, it is often not intuitive enough to give us direct insight, while
the use of pre-defined mechanisms can help us understand the patterns of policy and
the textures of the solution. For large, complex systems, such insight is crucial in the
design of agent coordination policies.

Therefore, in this layer we shall study how to develop and use pre-defined alter­
natives in our framework. In this work, we focus on how fault tolerance is achieved
by this approach. Fault-tolerance mechanisms have been extensively studied in the
past, and we shall study how we can develop pre-defined mechanisms to adopt them
into our multi-agent problem solving framework. First, we now introduce performa-
bility in terms of a measure of utility levels.

6,1 Performability

Formally, performability is based on the levels of accomplishments achieved by the
system activities [19]. For finite horizon problems, problem solving is limited to a
particular time interval [7^,7/], where Ts is the start time and 7/ is the finish time.
Let's also assume that time is discrete.

Let QLJ to be the set of finishing states of the system. These finishing states reflect
the different levels of accomplishments achieved by the system activities during the
problem solving period.

Let the function J : Q/ —> [0,1] specify a probability measure of Q/, i.e.,
Y,d{si\si G Q.f) — L In other words, d specifies the probability distribution on the
set Q.f. For example, if Q.f ={pass,fail}, then this d function: ^(pass) — 0.8 and
J(fail) = 0.2 means a distribution of 80% chance in state pass and 20% chance in
state fail. Clearly, each d reflects an accomplishment level. Typically, system design­
ers can have an evaluation function to compare if one distribution is better or more
preferable than another distribution. Such evaluation function on the accomplishment
profile is known as \ht performability measure of the system.

If a given policy n results in a finishing state distribution d, the performability
of 71 is the same as the evaluation of d. Note that in a utility based model such as
our MDP, there is a difference between d and the utility distribution resulted from
7C, and the performability measure is not necessarily equivalent to the evaluation of
the expected utility of 71. However, in many utility based models the states are distin­
guished by their utility values, and the utility structure can be engineered in such a
way that the performability measure is simply the average expected utility. For sim­
plicity, we will assume the equivalence of the performability measure and the utility
measure in this work, and therefore finding the policy with best utility is equivalent
to finding the policy with best expected utility.

Given our Markov model, under a fixed policy 71, we can also evaluate the ex­
pected utility for any global state, which is simply the value of the same policy except
assuming the starting state to be the current state. Clearly, under the optimal policy,
the expected utility of a global state reaches its upper-bound. Notice that if a state s

328 Xuan

has a higher upper-bound than another state s', it does not mean that s is always more
preferable than s', since it often depends on the policy being used.

Using the same example task and policy illustrated by Figure 1 and Figure 4,
x's policy produces a performability prospectus as such: 60% chance reward 60 and
duration 18, 12.5% chance reward 30 and duration 18, 6.3% chance reward 30 and
duration 21, 12.5% chance reward 0 and duration 18, 4.5% chance reward 0 and du­
ration 11, and 4.2% chance reward 0 and duration 21. In the last three cases (21.2%
chance), y need to perform E. Similarly we can calculate y's performability profile.
These performability profiles allow us to calculate the performability measures, in
our case expected utility values. Note that utility is not necessarily the same as re­
ward. In our example, the utility could be the reward/duration ratio instead of the
total reward, thus implies that there is cost for processing time, which is not part of
the reward structure.

Like the commitments, the performability profile changes during the problem
solving process, and the same for the utility expectations. Furthermore, calculations
about the probabilistic outcomes of commitments can be used for performability
estimations, and vice versa. In our framework, performability is the key that connects
commitments with utility measures.

6.2 Fault Tolerance Mechanisms

Clearly, given our performability model, a failure refers to an undesirable accom­
plishment level. A failure can also occur during the problem solving. Intuitively, if
an agent moves from a state with higher expected utility to a state with lower ex­
pected utility, that means some undesired event has occurred, and this transition can
arguably be called a failure. It is arguable since these expected utility values are based
on a particular policy, under another policy there could be different values, or such
move cannot be made at all. In a task-based system, such a failure could be defined
as a task having an undesirable outcome.

In fault-tolerance terms, the type of faults we are modeling is task fault. A task
fault is transient, stochastic, and localized to this task only. It can be described
through a failure probability (this corresponds to our transition probability). Histori­
cally, metrics such as MTBF (mean time between failures) and MTTF (mean time to
failure) are often used to describe the reliability of an agent doing continuous tasks.
By assuming that occurrence of failures follows a particular probability distribution
(Poisson distribution is an often used one), these metrics can be translated as per-task
failure probability as well.

To handle these faults, there are many FT techniques:

• Checkpoints: when a task spans a long duration or consists a series of subtasks,
checkpoints can be inserted and the results up to these checkpoints are saved.
This way, when a failure occurs, the agent only need to repeat the work (roll
back) after the latest checkpoint.

• Primary-backup (PB): when a task (the primary task) is to be performed, a
backup task, which is a duplication of the primary task, is also planned. If the

Techniques for Robust Planning in Degradable Multiagent Systems 329

primary task succeeds, the backup task would be canceled. The task fails only
when both primary task and the backup fails.

• Primary-exception (PE): this is essentially the same as primary-backup, except
that the backup need not be a duplication, but rather a task capable of the solving
the same work in a different way. Usually the backup task requires less effort but
has lower performance, and hence the name.

• Triple-modular-redundancy (TMR): this technique requires parallel execution of
three copies of the same task. However, unlike the techniques we listed above,
here we cannot tell the result of a task is right or wrong, i.e., we can know the
probability of having the right answer, but there is uncertainty regard the cor­
rectness of the result. Thus, in this technique, there is a simple voter procedure
that compares the three results: if the majority of the three show the same result,
that result is considered as correct, e.g., less likely to be wrong. Otherwise (all
three are different from each other), a failure is concluded. This mechanism is not
only a redundancy technique that improves reliability, but also a fault-detection
technique.

• N-copy: here the number of copies can be A'̂ instead of 2 or 3. This can be viewed
as a generalization of PB and TMR.

• Self-checked pair (SCP): this technique changes TMR a little bit: instead of per­
forming three copies (which requires a lot of resource), two copies are performed
first, followed by a comparison procedure, which decides if the two results are
identical. If so, the result is considered correct and the third copy need not to be
performed. Otherwise, the third copy is performed and then the voter decides if
a failure has occurred. Logically it is equivalent to TMR, but it is adaptive since
there is a good chance that the third copy needs not to be performed.

In an intelligent system, a key feature is that an agent often knows several ways of
achieving the same task. This allows us to execute several strategies at the same time,
or choose an alternative way when one strategy fails. This is a natural generalization
to redundancy techniques such as primary-backup and primary-exception.

The introduction of redundancy tasks further complicates the agent problem solv­
ing. Since a task can be executed more than one times, and more than one alternative
can be applied, an agent now has much more choices in its decision making. The
state space can potentially grow drastically compared to the case that an agent can
only execute a task once. As such, to develop pre-defined mechanisms to reduce the
size of the state space and the complexity in the search for solutions becomes even
more important.

Such pre-defined mechanisms are not only used in multi-agent coordination, but
also in single-agent planning. For example, primary-backup technique can be used
either across two agents, with one doing the primary task and the other doing the
backup copy, ot within a single-agent, making it completely local processing.

As an example, let us study how to translate the PE technique (a generalized one)
into a pre-defined mechanism. Assuming the goal is G and two alternatives for this
goal are A and B, and the two agents involved are X and F. The mechanism PE(A,5)
can be specified as:

330 Xuan

• Agent X makes a commitment about A. The parameters to be decided include
when A would finish, and a threshold to decide if A is failed.

• At the same time Y need to make a commitment about B, and decide when B
should finish. Another parameter could be its start time, since B usually needs
not start before A finishes.

• A communication policy to ensure that Y understands the result of A. A simple
strategy would be to let X tell F if A succeeded or not. Other communication
strategy can also be used, for example, Y can assume A succeeded if it does not
hear from X before some previously agreed-upon time.

• Y decommits B if it knows A has succeeded. Otherwise the commitment is kept
and B will be performed.

As we can see, there are some parameters to be decided in this mechanism, and
by varying these parameters there could be some variations to the PE technique. For
example, Y can start B quite early, when A has not finished (or even started). Logi­
cally, there is no difference from the original PE technique, but here this mechanism
can have more flexibility. In addition, X and Y could be the same agent, and in this
case both commitment are local ones.

This mechanism provides a pre-defined package for the agents to understand
each other's roles involving a series of activities. By using these mechanisms, agents
can reduce their overhead in reasoning and communication, therefore improves ef­
ficiency. Of course, these mechanisms only defines a small part of the agent policy,
and they cannot completely replace agent reasoning. For example, in PE, if B also
fails, the agents then have to rely on the rest of the policy to reason and handle the
failures so as to ensure a graceful degradation.

Similarly, for SCP, assuming the task is A, the mechanism SCP(A) can be defined
as:

• Agents X and Y both make a commitment regarding task A.
• Agent Z also makes a commitment about A, but with a later start time and finish

time.
• A communication mechanism between X and Y to compare their outcomes. Fur­

thermore, if the results are the same, Z will be notified, otherwise both outcomes
are transmitted to Z.

• Z can decommit if X and Y have the same outcome. Otherwise, A is performed,
and the result is compared to X and F's results. If one of them is the same as Z's
result, Z's outcome is regarded as correct. Otherwise, all three results are distinct,
a failure result is considered.

As an example, let us look at the policy illustrated in Figure 4. This policy ex­
hibits some patterns that can be compacdy represented via mechanisms, by noting
that tasks A and B forms a PE mechanism for task F, and task E also serves as the
exception method for task G, which consists of A, B, C, and D. Figure 5 illustrates
these two cases of PE mechanism. Note that a mechanism can be applied intra-agent
(like A and B) or inter-agent (like G and E), the difference is that the latter involves
possible communications.

Techniques for Robust Planning in Degradable Multiagent Systems 331

V

' » > • " ~i;M-
Exception

Fig. 5. Mechanisms

The use of mechanisms not only identifies common patterns in policies, but also
simplifies the evaluation process. For example, the outcome profile for PE mecha­
nism can be easily computed given the outcome profiles of both the primary and the
exception tasks, even though both tasks could be complex structures on their own: if
A's chance of failure outcomes is p, i.e., B is invoked at chance p, then the outcome
profile of PE mechanism consists of all A's outcomes that does not result in failure,
plus all B's outcomes with their chances multiplied by p.

Many more mechanisms can be defined based on a variety of existing coordina­
tion strategies. A family of mechanisms are needed, not only on fault-tolerance, but
also on other aspects of problem solving, such as dealing with inter-relationships and
handling uncertainties. The reason for a family of mechanisms is that mechanisms
are highly situation-specific. Through the study of the mechanisms, we can gain in­
sight into the characteristics of the problems and recognize when it is effective to
apply certain mechanisms and when it is not.

7 Organization-Related Failures

So far we presented a framework in which FT mechanisms can be integrated in mul­
tiagent planning to handle tasks failures or underarchievements. However, these are
not the only types of failures. While many multiagent planning research do address
the issue of dealing with uncertainty and handling failures, the scope and extent of
the problems that have been addressed so far is rather limited. The types of failures
and events that a large scale multiagent system have to deal with not only include
task failures, broken communications, violated commitments, etc. but also must in­
clude agent failures, changed agent organizations, even agent deaths. Robustness in
multiagent operations must be a priority in the system design. This, however, is an
immensely complex problem and has not been adequately addressed so far. It is easy
to envision the kinds of problems or even catastrophes that may result if we do not
address the issue of robustness:

332 Xuan

• A single or central point-of-failure that would lead the whole system to total mal­
function. It is widely recognized that even if the central point is heavily guarded
(very expensive to do), the existence of such central failure point is a vulnerabil­
ity.

• Fixed group control hierarchy that cannot adapt to organizational changes. For
example, when agents enter or leave the group, the control structure may be seg­
regated, broken, or disintegrated.

• Central control/planning that stores planning information or organizational in­
formation in one agent. This would cause the other agents not able to recover or
resume the joint goal in the event of the failure or death of the central agent.

• Poor scalability that caused the planning algorithms to perform poorly. For ex­
ample, agent may need to take extended reasoning time when many agents are
involved, the algorithm may time out or become interrupted when agents dynam­
ically enter or leave the group.

In order for existing planning frameworks (that are designed for a fixed (and often
small-sized) group of agents) to work in large scale systems, we must develop mech­
anisms to complement them and avoid potential pitfalls. Here, we attempt to address
the robustness problem by focusing on the issue of plan adaptation in the event of
agent failures. We introduce several techniques to enhance the plan robustness, in
particular with regard to agent deaths.

The focus here is to investigate the organizational means for piecing together
the otherwise fragile and unrobust local planning frameworks to provide a level of
robustness at the global level. It should be noted that the small-scale solutions (the
local planning part) remain to be fragile, and the global plan (as a loose ensemble of
local plans) may not be perfectly consistent at any moment. Our major concern is to
contain the effects of local failures and prevent the failures from affecting the global
system, by limiting the scope of the small-scale solutions and providing dynamic
adaptation and organization. There is a large body of work on how to enhance plan
robustness per se in classic literature in reliability of distributed systems and robust­
ness in robotic systems. These and other related studies would undoubtedly benefit
our approach, but at this moment they are not our main concern.

7.1 The Minesweeping Problem

To better understand the issues involved in plan adaptation, let us use the following
multiagent cooperation problem as an example and focus our discussion around it:

Suppose that there is a minefield that needs to be swept. The exact number and
positions of the mines are unknown. To do this, we will air-drop a batch of robotic
minesweepers (hundreds or thousands of them) onto that field. Each robot is capable
of roaming the field and detecting mines. A robot (i.e. an agent) can also blow itself
up - by doing so it can destroy all the mines within a certain radius to itself. Each
robot has some wireless communication equipment for communicating with nearby
peers and they should cooperate with each other to maximize the performance -
identify the existence of the mines and also destroy them as much as possible.

Techniques for Robust Planning in Degradable Multiagent Systems 333

In addition, let's assume that all robots have positioning capability (such as GPS
receivers) so that they can know their own positions. Also suppose that the map is
known to all robots before the operation. For modeling purpose, we can divide the
minefield into small square units and the task would be to find out if the squares
contain mines and to destroy them. In practice, there will also be other constraints,
such as the agent's power, range, mobility in different terrains, etc, but for simplicity
let us not consider those problems for now. This problem has some resemblance to
problems of swarm intelligence [3], however, our agents are not simple organisms but
they do have complex planning ability and are able to communicate with each other,
even at meta level. Thus, their group or organizational level behaviors are results of
deliberation, rather than swarm intelligence.

Since minesweeping is inherently a dangerous operation, an agent could invol­
untarily step on a mine and thus be destroyed (when that happens, all mines as well
other robots within a certain radius will also be destroyed.) Also, a robot could be
damaged during the operation. Thus, agent deaths are quite possible - either planned
or unexpected.

It is conceivable that one may pre-program the robots with a predetermined plan.
For example, one could divide the region into many pieces and assign each robot to
sweep a different region. However, it is easy to see that there may be drawbacks. First
of all, the setup may be fairly time consuming. Second, there is little control when
air-dropping the robots, so the robots would not be placed in their targeted regions.
Finally, due to the uncertainties and the probabilities of failures, the plan may become
rather ineffective. Thus, some form of dynamic planning would be needed.

We will not focus on the specifics of the planning approach here, rather, we are
more interested at the problem of how to maintain the plan across the agent organi­
zation. Based on the characteristics of this problem, the viable planners must be able
to implement some form of subgrouping coordination among the agents, so that the
agents would form groups to cooperatively explore parts of the field. The following
issues need to addressed to ensure robustness:

• Because of the number of agents involved, it would be infeasible for any one
agent to establish/compute a global plan. Plus this would mean that if that agent
dies, the plan is lost.

• It is also infeasible to allow direct negotiation among all agents, not only be­
cause of the scale of the negotiation, but also because of the limit bandwidth and
possible interference in agent communication.

• Since the agents are air-dropped to a new environment, there is no external ser­
vices or infrastructures that the agents can utilize. Thus, the agents need to per­
form self-organization and self-service.

• Thus, agents would need to form groups to cooperatively explore parts of the
map. This 3-level architecture (individual agent level, group level, and the whole
organization level) is the key in organizational theory and is critical in large scale
multiagent systems. However there has been little work so far in the multiagent
planning research society that explicitly deals with this architecture. In addition,

334 Xuan

we need to address issues such as group formation (and division as well), agent
location, and group interaction.

• Since an agent may die at any moment, this may cause problem to the group: an
agent may leave the group at any moment (agent death can be seen as a special
case of agent leaving.) Thus, the group status need to be constantly monitored.

• Also, if the agent leaving the group is the group leader (who is at least partially
in charge of maintaining the group plan), there is a need for the group to be
re-formed, and the plan need to be recovered. In some cases, when the agent vol­
untarily chooses to die, there could be a process for a new leader to be elected; in
other cases, the group would need to discover the exit of the leader, and recon­
struct a group if possible.

In the next sections we will first discuss the mechanisms for establishing groups
and joint plans among the agents discuss the mechanisms for intra-group and inter-
group coordination, then discuss how to maintain or monitor group status, and finally
discuss how to recover plans when a group manager agent (group leader) dies.

7.2 Group Formation and Plan Composition

Although coalition formation [21, 17] is an active research subject, much of the em­
phasis has been put in the game-theoretic aspect rather than in the organizational
aspect. In our application scenario, the agents are inherendy cooperative and they
share an ultimate joint goal, which is to achieve the overall minesweeping mission as
a whole. In other words, this represents a top level goal. Let us define a membership
relationship between a goal and any agent subscribed to this goal, i.e. member(g)
defines the set of agents that share the intent to pursue this goal g collectively. In this
sense, a goal defines a group organization. For the top level goal, its member set is
simply the set of all agents.

At the bottom level, each individual agent has its own local goal, and only this
agent alone subscribes to this goal. Thus, the member set for the local goal contains
only the agent itself.

For a large scale system to work, there needs to be intermediate level goals, and
those goals can form a goal network which specifies the goal hierarchy similar to
a goal search tree [16, 18], with the top level organization goal at the root of the
hierarchy and agent local goals as the bottom leaf nodes. A group can be viewed as
the member set of a goal. Thus, if the agent is subscribed to a set of goals, it also
has the membership to all the corresponding groups. Ideally, the goals are perfecdy
decomposed so lower level goals completely satisfy the high level goals. Also, the
subgoals should be perfectly coordinated to maximize performance and minimize
resource usage and overlap of goals. However, in reality, the goals may not be com­
plete or even coordinated. In this minesweeping problem, we can view each goal as
the intention to have all its members to cooperatively sweep a certain region. How­
ever, the goals may not cover the whole map, and there could be overlapping regions.
Figure 1 shows an example of such goal hierarchy. On the top is the map of the re­
gion and the ovals and boxes show the intended sweep area for each goal (different

Techniques for Robust Planning in Degradable Multiagent Systems 335

N

a

&

M ^

K /'^~i^ ^
(D ^

- . ^

(\)

\E JJ
F)

^

K

J

A B C D E F G H I

Fig. 6. Groups and the Incomplete Composition of Goals

shapes indicate different levels). On the bottom is the corresponding goal hierarchy.
Clearly, the subgoals of N does not cover the whole region, and there are some over­
laps between peer groups J and M. Note that although the figure shows a three level
hierarchy, this does not necessarily mean that a 3-level hierarchy is sufficient. As the
number of agent grows, there would certainly be more levels.

The basic group formation process for this problem can be viewed as similar to
a hierarchical clustering process: we can start with each agent itself as a group, and
then adjacent groups could be merged together to form larger groups. Those larger
groups would also define their goals (i.e. the area the group intend to investigate.)
For the mechanism to be scalable, we want to apply group size constraints so that
the groups would not contain an unmanageable member size. In some cases, a large
group may be divided into smaller groups, so that the groups are more manageable.
The exact process of choice for this problem is not the focus of this work, but in the
end we shall obtain a hierarchy like the one shown in Figure 1. Thus, for each agent,
the set of goals in which this agent is a member can be decided by tracing up the goal
hierarchy. The paths can be maintained in the agent and the agent thus is aware of its
group memberships.

336 Xuan

Group planning and coordination is a continuous process throughout the prob­
lem solving. There are three types of planning/coordination activities that may be
involved in order to dynamically respond the the changes in the environment and the
action outcomes:

1. Group planning: once a group is formed, the group leader would assume the role
of the group planner, as modify the group intention accordingly (this means to
decide on a different area to sweep, move the group to a new area, etc.

2. Intra-group coordination: the group members (i.e. the subgroups) should coordi­
nation with each other to optimize the plan, for example, to negotiate their areas
of responsibility.

3. Inter-group coordination: one group should coordinate with other groups to op­
timize their common goal. For example, the groups may try to reduce the over­
lapping region.

This type of coordination discussed here is somewhat related to the partial global
planning framework [9] where a division of nodes, acquaintances, and the whole
system is made and a dynamic architecture is proposed. Note that since group mem­
bership information is distributed and therefore is not a central point of failure. The
different levels of goals also have different level of stability or flexibility: at the root
level the organization is almost fixed, and so it the goal; while at lower levels the
groups are more and more volatile and the same is true for agents' local goals.

7.3 Group Maintenance

Each group should contain a group leader that represents the group members, man­
ages/designs the plans for each group member, and interacts with the other groups.
As such its role is quite important. The leader of the group should be able track the
group members and the group members should be able to be connected with the
leader. The leader of the group should be elected or decided by the members - some
criteria would include to select the agent that is most convenient for the organization
and optimize resource usage, as well as to select the agent that is most stable (in the
sense that the agent would have a long lifetime with the group.)

Since agent failure can happen at any time, we should not implement hard con­
strains or commitments among the agents. Rather, the plans are inherently '*best-
effort" plans, with no hard guarantee semantics. Each agent can decide to enter or
leave a group at any time, and the group leader can decide to remove any member as
well.

A key problem for the groups is to find out if any group member has left the
group. When an agent leaves a group voluntarily, it is conceivable that the agent
may announce its intention before its departure (that includes blow up itself, since
the agent won't be around any more). However, when an agent involuntarily leave
the group, we definitely need to have a mechanism to find out. (Involuntary leaves
may include being destroyed by a mine, agent internal breakdown, and also com­
munication failures.) We propose a simple "heartbeat" mechanism to detect agent
departure:

Techniques for Robust Planning in Degradable Multiagent Systems 337

• When the group is estabhshed and the leader is identified, each member would
periodically communicate with the leader, i. e. send the ''heartbeat message" to
indicate "I am here." If the leader does not receive the heartbeat messages for
some duration, the leader can assume that the member is no long in the group.

• Similarly, the group leader periodically broadcast to other group members. If a
member does not receive heartbeat message for some duration, the member can
assume that the leader has left.

Of course, being able to send heartbeat messages does not mean that the agent
is actually in good condition (maybe the communication component is working but
other components are not). Thus, additional communications for sharing agent action
outcomes may be needed (but at a less frequent rate.)

The heartbeat mechanism is often used in fault-tolerant systems for tracking the
status of distributed entities and fault detection [22]. It requires a fixed amount of
communication bandwidth - the larger the group is, the more bandwidth would be
needed. This would impose a constraint on the size of the group. However, as we
indicated before, we intentionally limit the group size so that we would not encounter
a group with many members. Instead, a multi-level hierarchy can be used to deal with
large scale organizations.

Note that the decision of sending a heartbeat message or not is entirely within the
agent: even if the communication channel is open, the agent may decide not to send
heartbeat messages - and therefore effectively disengages itself from the rest of the
group (or fake death in some sense). Likewise, an agent may decide to keep mem­
bership in more than one groups at the same time. As such, this mechanism is not
failure-proof, in particular when facing malicious failures (from agents that deliber­
ately act to harm the organization.) This seems to lead to a system for establishing
trust and reputation for solving this types of problems, but at present it is beyond our
scope.

7.4 Plan Recovery

The loss of a non-leader member in a group would cause the group plan to be partially
inconsistent, but the group leader, acting as the group planner, would be able to
perform replanning and this at least partially address the problem. However, if the
leader dies, the group is left without the planner, and some of plan information would
be lost. For the rest of the group to continue to adapt to the environment, we need to
establish a plan recovery mechanism, so that the rest of the group can reconstitute a
plan and a new leader would emerge to inherit the responsibility.

One possible technique is to implement some redundancy in the group, so that
the leader has a backup, or even more than one backups. Once the leader dies, the
backup can take over. This way, the plan (actually, just the plan information alone)
can be perfectly recoverable.

However, this adds some complexity to the organization structure and adds over­
head because the backups need to be constantly synchronized with the leader. Note

338 Xuan

that the information that the backups keep is the exact copy of the leader's informa­
tion, and thus the original plan would be restored when the leader dies. However, if
we can relax the requirement so that it is not completely necessary to restore to the
plan (or really, just to retrieve the old plan information) before the leader's death, we
don't actually need backups, instead we can come up with an alternative plan based
on the information in the rest of the group members - a form of imperfect recovery.

In fact, because the leader just died, the original plan before the leader's death
would be somewhat obsolete anyway, so the need for keeping backups (perfect re­
covery) is indeed questionable.

According to the monitoring mechanisms described in the previous section, we
know that when the leader dies the other members would notice the event. Thus, it
is possible for any one of the other members to announce that the it is going to take
over as the new maintainer of the original group goal. Other members can notice that
the new announcer is announcing the same goal which the old leader maintained, and
can respond with their current plans. Therefore, the new leader can collect current
plan information and be able to reconstitute the old plan except the old leader's local
plan - this part of information is lost when the old leader dies. The new leader would
thus be able to replan for the new group.

8 Summary

We discussed the issue of planning in a degradable multiagent system and pre­
sented a framework in which FT techniques can be integrated into agent plan­
ning/coordination to handle uncertainty in domain problem solving as well as or­
ganizational change. Our framework starts at the decision-theoretic level to formally
define performability in multiagent problem solving, then moves on to the agent
planning and coordination level, and finally at the organizational level. Our ultimate
goal, evidently, is to create fault-tolerant multiagent systems, and to allow simple
translation or application of the many FT techniques that have been design for tradi­
tional systems in multiagent systems. The real challenge, is not about applying a few
techniques that address the reliability concern of some aspects of the system, but to
incorporate robustness into every aspect of the system design. At this point, a lot of
work remains to be done in order to prove that those mechanisms indeed work and
that the framework does allow easy integration of FT techniques in MAS.

Another important aim of this research is to enhance and extend existing plan­
ning frameworks - so that these planning frameworks can still find their applications,
but with the proposed mechanisms they can implement some FT mechanisms and
also form a large solution by piecing together smaller solutions. In both cases, coor­
dination is really the key toward enhancing the robustness of the system - to handle
both task failures as well as organizational failures. The FT techniques involved in
the proposed mechanisms are not new - they have been used in the context of dis­
tributed systems or fault-tolerant computing, but new meanings are being developed
in the context of autonomous agent systems and robust organizations.

Techniques for Robust Planning in Degradable Multiagent Systems 339

References

1. D. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decen­
tralized control of markov decision processes. Mathematics of Operations Research,
27(4):819-840, November 2002.

2. Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman. The complexity of decen­
tralized control of markov decision processes. In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence (UAI-2000), 2000.

3. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artifi­
cial Systems. Oxford University Press, 1999.

4. C. Boutilier. Sequential optimality and coordination in multiagent systems. In Proceed­
ings of the Sixteenth International Joint Conferences on Artificial Intelligence (IJCAI-99),
July 1999.

5. C. Castelfranchi. Commitments: from individual intentions to groups and organiza­
tions. In Aland theories of groups & organizations: Conceptual and Empirical Research.
Michael Prietula, editor AAAI Workshop Working Notes., 1993.

6. Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3):213-261, 1990.

7. Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning algorithm.
International Journal of Intelligent and Cooperative Information Systems, 1992.

8. Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex computational
task environments. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pdigts2\4-2\l, 1993.

9. Edmund H. Durfee and Victor R. Lesser. Using partial global plan to coordinate dis­
tributed problem solvers. In Proceedings of the Tenth International Conference on Artifi­
cial Intelligence, 1987.

10. Edmund H. Durfee and Victor R. Lesser. Predictability versus responsiveness: Coordi­
nating problem solvers in dynamic domains. In Proceedings of the Seventh National
Conference on Artificial Intelligence, pages 66-71, 1988.

11. S. Fujita and V. Lesser. Centralized task distribution in the presence of uncertainty and
time deadlines. In Proceedings of the Second International Conference on Multi-Agent
Systems, pages 87-94, 1996.

12. C. V. Goldman and S. Zilberstein. Decentralized control of cooperative multi-agent sys­
tems: Categorization and complexity analysis. Journal of Artificial Intelligence Research,
2004.

13. Carlos Guestrin, Shobha Venkataraman, and Daphne Koller. Context specific multiagent
coordination and planning with factored mdps. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI-2002), 2002.

14. Eric Hansen, Daniel Bernstein, and Shlomo Zilberstein. Dynamic programming for par­
tially observable stochastic games. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence (AAAI-04), pages 709-715, San Jose, California, 2004.

15. N. R. Jennings. Commitments and conventions: The foundation of coordination in multi-
agent systems. The Knowledge Engineering Review, 1993.

16. N. R. Jennings. Coordination techniques for distributed artificial intelligence. In G.M.P.
O'Hare and N.R. Jennings, editors. Foundations of Distributed Artificial Intelligence.
John Wiley, 1996.

17. K. Lerman and O. Shehory. Coalition formation for large-scale electronic markets. In Pro­
ceedings of the International Conference on Multi-Agent Systems (ICMAS'2000), 2000.

18. V. R. Lesser. A retrospective view of fa/c distributed problem solving. IEEE Transactions
on Systems, Man, and Cybernetics, 21, 1991.

340 Xuan

19. John F. Meyer. On evaluating the performability of degradable computing systems. IEEE
Transactions on Computers, C-29(8):720-731, 1980.

20. D. Pynadath and M. Tambe. The communicative multiagent team decision problem: An­
alyzing teamwork theories and models. JAIR, 16:389-423, 2002.

21. O. Shehory and S. Kraus. Task allocation via coalition formation among autonomous
agents. In Proceedings of the International Joint Conference on Artificial Intelligence,
1995.

22. John A. Stankovic and Krithi Ramamritham, editors. Advances in Real-Time Systems,
IEEE Computer Society, December, 1993.

23. Thomas Wagner and Victor Lesser. Relating quantified motivations for organizationally
situated agents. In N.R. Jennings and Y. Lesp6rance, editors, Intelligent Agents VI —
Proceedings of the Sixth International Workshop on Agent Theories, Architectures, and
Languages (ATAL-99), Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin,
2000.

24. Ping Xuan and Victor Lesser. Incorporating uncertainty in agent commitments. In In­
telligent Agents VI: Agents, Theories, Architectures and Languages (ATAL), Proceedings
of The Sixth International Workshop on Agent Theories, Architectures, and Languages
(ATAL-99), Lecture Notes in Artificial Intelligence 1757. Springer-Verlag, 1999.

25. Ping Xuan, Victor Lesser, and Shlomo Zilberstein. Communication decisions in multi-
agent cooperation: Model and experiments. In Proceedings of the Fifth International Con­
ference on Autonomous Agent (AGENTS 01), pages 616-623, Montreal, Canada, 2001.

26. Ping Xuan and Victor R. Lesser. Incorporating uncertainty in agent commitments. In
N.R. Jennings and Y. Lesp^rance, editors. Intelligent Agents VI — Proceedings of the
Sixth International Workshop on Agent Theories, Architectures, and Languages (ATAL-
99), Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, 2000.

Index

Adaptable system, 57
Adjustable Autonomy, 62
Adopt, 19,21,121,196,298, 326-327
Agent marshaling, 235
Agent society, distributed coordination,

99-126
coalition deal efficiency, 112-113
coalition deal negotiation, 105-114
coalition deal negotiation for services,

113-114
coalition deal utility, 111-112
commitment-based coordination protocol,

119-121
commitments, 114-119
commitments in plan revision, 121-123
coordination problem, 99-100
modeling, 101-102
multiple-issue negotiation, 107-108
negotiated agreements on commitment

promises, 117-119
negotiated commitments, 103-105
obligations, 114-119
representation, 101-102
research issues, 103-105
service-oriented computing environment,

100-101
single-issue negotiation, 106-107
theorem. 111

Agent utility design, 173-190
agent utility performance, 180-182
estimated difference utility, 176
expected difference utility, 178
experimental results, 179-185
imperfect devices, combination of,

177-179
private utihty functions, 176-177
problem definition, 177-178
robustness, 183-185
scaling characteristics of utilities, 182-183
utihty functions, properties of, 176
wonderful life utility, 177-179

Aglets, 244-245,247
Air traffic control, 160
Airspace deconfliction, 63
Ausation encoding, 261

Authority, 4, 7,16,76, 80, 82, 97,119-120,
123,145,241

Authority relationships, 119
Autonomy, 62,75,117,174,258, 313

Bayes Rule, 296-297
Bayesian netw ôrk, 4,6, 8
BDI, 101,123-124,217
Behavior based approach, 29
Belbnan equations, 20
BioWar, 255,257,265-266
Blackboards, 63
Boltzmann Distribution, 180
Bounded rationality, 256,259
Broadcasting,78,135,178
Brokers, 289

Centibots,61,63,69
challenges, 64
dispatching, 56-57, 59
evaluation, 67
traffic control in, 66

Centrahzed disagreement detection, 277-278
Coalition deal efficiency, 112-113
Coalition deal negotiation for services,

105-114
Coalition deal utility, 111-112
Coalition formation, 76, 80,97,191-201,

203-205,207,209,211-214, 334
scalable, organizational context, 191-216

{See also Scalable coahtion
formation)

Coalitions, 75-80, 95-96,134,145,
192-194,197-198,200,204,212

Combinatorial complexity, 274
Combinatorial failure complexity, 276
Commitments, 99-103,105,107,109, 111,

113-117,119-124,153,164,167,200,
218,312, 315, 318, 320-326, 328, 331,
336

Communication protocols, 236,248
Comparison of approaches, large-scale

coordination, 53-74
algorithms, 58-60
centibots, 61,63,69
centibots challenges, 64

342 Index

centibots dispatching, 56-57, 59
centibots evaluation, 67
challenges, unexpected, 63-65
cooperative mediation, 57-58,60-69
debugging, 69
evaluation, 66-68
evaluation runs, results, 68
machinetta, 55-56
metrics, 66-68
novel ideas, 60-62
open problems, 65-66
principles, 58-60
software, 62-63
teamwork, 55-56, 58-67,69
testing, 69
traffic control in centibots, 66

Computational geometry, 31
Computational Tree Logic, 123
Conflict dampening, 61-62
Conflict propagation, 61-62
Contingency planning, 312
Contract nets, 78
Convergence, 129,131,143,145,154,161,

168,180,314
Cooperative, 4,12,53, 55, 57,60,104,175,

186,287, 312-313,317-318,334
Cooperative mediation, 57-58,60-69
Coordination failures, 273-286

centralized disagreement detection,
277-278

combinatorial failure complexity, 276
connectivity, 275
definitions, 276-278
distributed disagreement detection,

278-281
fault-models, detection based on, 282-283
model-based detection, 283
model-based disagreement detection,

281-283
monitoring graphs for, 276-281
motivation, 274-276
theorem 1,280-281

Coordination flexibility, 287-310
building of large scale teams, 290
communication, 294-299

information fusion, 294-295
information sharing, 295-298
network topology, 298-299

different size teams, algorithm efficiency
among, 304-305

experimental results, 301-307
information sharing, 302-305

with different information relevance,
303

with different number of previous
messages, 303

machinetta, 299-302
plan deconfliction, 292-293, 305-306
plan instantiation rules, 293-294
subteams, 292
team oriented plans, 291-292

Coordination graphs, 4
Coordination key, 147,154-161,164
Coordination sets, 153-154,168
COORDINATORS, 161-169
Critical point, 33, 37,41

DARPA, 24, 56-57,67,147,169,191,268
DBA (Distributed Breakout Algorithm), 131
DCOP, 127,129

graphical-game-based algorithms for,
127-146 (See also
Graphical-game-based algorithms)

Debugging, 53, 55,69
DEC-MDP,318,320
Decentralized multi-agent Markov decision

processes, 318-320
Decentralized partner fmding, 75-98

broadcasting, 78
centralized directory, 79
controlling agent execution, 91-92
decentralized information exchange,

79-80
decision-making frameworks, 77-78
distributed partner finding, 84-90
distributed partner finding experiment,

90-96
environment modeling, 78-79
experimental results, 94-96
experimental setup, 93-94
flooding mode, 89-90
message types, 92
metrics, 92-93
modeUng agents, 80-82
motivation, 76-80
multiple message request mode, 88-89
network model, 91
operation modes, 88-90
peer-to-peer systems, 82-84
single message request mode, 88
time-to-Uve, 86-88
timeouts, 86-88

Decision-Making Frameworks, 76-77
Degradable multiagent systems, robust

planning, 311-340

343 Index

agent model, 315-317
approximation methods, 320-326
autonomy, 313
capabilities, 315
commitments

communication of, 325-326
definition of, 320-322
uncertainty in, 322-323

computation model, 315-318
coordination mechanisms for, 326-331
decentralized multi-agent Markov

decision processes, 318-320
explicit reasoning of utility, 313
fault tolerance mechanisms, 328-331
model agent meta-level communication,

318-320
organization-related failures, 331-338

group formation and plan composition,
334-336

group maintenance, 336-337
minesweeping problem, 332-334
plan recovery, 337-338

performabiUty, 327-328
relationship/constraints, 315
system-wide policy and pre-agent policy,

323-324
uncertainty, 313
utihty structure, 315

Deploying, 55,66,237,249
Directory, 79, 92-95,97,245
Disagreement detection, 274,276-281,283
Disaster response, 56,61-63,255,289,291,

301
Dispatcher, 59,61,63-64
Distributed constraint optimization problem,

127,129
graphical-game-based algorithms for,

\21-U6 {See also
Graphical-game-based algorithms)

Distributed CSPs, 127
Distributed disagreement detection, 278-281
Distributed Matchmaking, 80
Distributed spacecraft, 127
DSA (Distributed Stochastic Algorithm), 131
Dynamic, partial centralization, 54
Dynamic environments, 29, 31,127,287
Dynamic programming, 205,320

E-commerce, 103,117
Eavesdropping, 61
Emergent behavior, 55
Emergent properties, 54
EquiUbria, 19-23,133,143-145

Estimated difference utility, 176
Existing coordination approaches, scaling,

73-189
Expected difference utility, 178

Failure detection, 274, 311
Fault-models, detection based on, 282-283
Fault-tolerance, 311-315, 327-328, 331
Finite state machines, 63
Flexibihty for large scale coordination,

271-340
Flexibility in coordination, 287-310. See

also Coordination flexibihty
Flooding, 84, 88-89, 94, 96
Foraging, 29-38,40-45,47-49

Game-theoretic, 19,130, 334
GPGP, 149,154,164-165
Graph coloring, 127,133,139,141,143,145
Graphical-game-based algorithms,

distributed constraint optimization
problems, 127-146

algorithm with coordination, 133-139
algorithms without coordination, 130-133
corollary 1,139
experiments, 139-143
games, 129-130
meeting scheduling, 138
proofs, 130-131,134,136,139
propositions, 129-138
related work, 143-145
traffic hght game, 132

Graphical games, 128,145
Graphical multiagent Markov decision

processes, 3-26
acyclic dependency graphs, 16-17
additive rewards, 18-23
algorithm 1,17

cyclic dependency graphs, 17-18
algorithm 2,18
assumption 1,10-11
assumptions, 10-11
corollary 1,11
definition 1,9-10
definition 2,10
maximizing own welfare, 14-18
maximizing social welfare, 12-14
observation 1,9
observation 2,20
proofs, 11,13-14,20-23
properties of, 8-12
proposition 1,11-12
proposition 2,13-14

file:///21-U6

344 Index

propositions, 14-16
transitivity, 11-12

GRATE, 29,283
Grid, 79,191,226,228,249,298,302-305

Hierarchical dispatching, 58-59,61

Interference, 27-28,35-41,43,45,47-49,
275, 333

Interference resolution mechanisms, 40

Joint action, 5,134,175,179,325
Joint Intentions, 29,217,274,288
Joint resources, 35
Joint states, 276

K-coordinated algorithms, 145
Key agent, 278,280
Key-based coordination, 147,149,151,153,

155,157,159,161,163,165,167-169
scalability issues, 147-172

aircraft service team coordination, 149
appUcation, 149,161-164
coordination via commitment value,

164-165
coordination via don't commitments,

153-160
evaluation, 165-167
first response coordination, 161-168
future work, 168-169
readiness, 150-153
TAEMS, 149-150
TAEMS agents, 149-150

LA-DCOP, 60-61,292
Languages, mobile agent, 237-238
Large-scale multiagent systems

agent utihties, designing, 173-190
coordination approaches, comparisons,

53-74
coordination failures in, 273-286
decentralized partner finding, 75-98
degradable multiagent systems, 311-340
distributed coordination of agent society,

99-126
graphical-game-based algorithms,

127-146
Markov decision processes, locality, 3-26
mobile agents, 231-254
open environments, 217-230
robotic teams, scalability properties, 27-52
scalability issues, 147-172
scalable coalition formation, 191-216

teams coordination, 287-310
WIZER, 255-270

Law of Diminishing Returns, 31
Law of Marginal Returns, 28, 33
Limited Connectivity, 274-276,279,

283-284
Load balancing, 249
Logging, 69

Machinetta, 55, 58,60, 62-63,65-^7,69,
289,299,301-302

MANET, 217-219,222,228
Markov, 3-5,9-12,16-17,204-205,220,

312,314,318,322,327
Markov decision processes, 3-26,220

acyclic dependency graphs, 16-17
additive rewards, 18-23
algorithm 1,17

cyclic dependency graphs, 17-18
algorithm 2,18
assumption 1,10-11
assumptions, 10-11
corollary 1,11
definition 1,9-10
definition 2,10
maximizing own welfare, 14-18
maximizing social welfare, 12-14
observation 1,9
observation 2,20
proofs, 11,13-14,20-23
properties of, 8-12
proposition 1,11-12
proposition 2,13-14
proposition 3,14-16
transitivity, 11-12

Markov games, 17
Measure of coordination, 35,66
Mediation, cooperative, 57-58, 60-69
MGM (Maximum Gain Message), 131
Migration, 233-242,244-249
Minesweeping problem, 332-334
Mobile agents, 231-254

advantages of, 231-233
agent execution management, 238
agent TCL, 242-243
aglets, 244-245

lifecycle events, 245
applications, 248-252

active documents, 250
active networking, 251
load balancing, 249-250
mobile computing, 250
network management, 249

345 Index

remote infoimation retrieval, 248-249
software testing, 251-252
ubiquitous computing, 251

asynchronous execution, 232
communication costs, 232
development of distributed application,

232
direct manipulation, 232
distribution, mobility and, 233-234
FarGo, 246
functions available in agents, 238
inter-agent communication, 238
locating mobile agents, 239-240
mobile agent languages, 237-238
mobileSpaces, 247-248
remote procedure call, 235-237

agent marshaling, 235-236
agent migration, 236
strong migration vs. weak migration,

236-237
security, 240-241
telescript, 241-242
Voyager, 245-246

Model-based detection, 283
Model-based disagreement detection,

281-283
Model checker, 123
Monitoring graphs, 276,279,281
Monotonicity, 127,131-132,143,145
Monte Carlo simulation, 259
Multiagent influence diagrams, 4
Multiple-issue negotiation, 107-108
Mutual beliefs, 29,295

Nashequihbrium,20,22,129-131,133-134
Negotiation, 76,99-101,103-114,117-119,

124,127-128,191,317,333
Network service, 61,63
Neural nets, 199,204,206,214
New approaches, large scale coordination,

189-270
Non-Markov, 10-11
NP-complete, 177

Objective view, 324
ObUgations, 99,114,116-117,121,123-124

See also Agent society, 99-126
coaUtion deal efficiency, 112-113
coalition deal negotiation, 105-114
coalition deal negotiation for services,

113-114
coalition deal utility, 111-112

commitment-based coordination
protocol, 119-121

commitments, 114-119
commitments in plan revision, 121-123
coordination problem, 99-100
modeling, 101-102
multiple-issue negotiation, 107-108
negotiated agreements on commitment

promises, 117-119
negotiated commitments, 103-105
obHgations, 114-119
representation, 101 -102
research issues, 103-105
service-oriented computing

environment, 100-101
single-issue negotiation, 106-107
theorem. 111

operations on, 116-117
Open environments, 217-230

communication selectivity, 219
coordination evaluation, 225-226
example, 222-227
experimental evaluation, 226-227
information sharing, 219
intention/action loop, algorithm, 220
joint intentions, 217-219
methodology, 219-221
Open-MAS approach, 219-221
policy search, 224-225
prey/predator example, 223
problem modeling, 221-222
related work, 227
role allocation, 218
role allocation strategy, 223-224
synchronization of beliefs, 218
team formation, 218

Optimization, 4, 9,12-14,16,18-23, 56,
60,104,124,127-128,130,153,159,
162,168, 174,177,214,220,223-224,
257,313-314,317

Organization Structure, 206, 337
Organizational theory, 54,333
Oscillation, 64-65

Partial connectivity, 77
Partial knowledge, 77,313, 323-324
Partner finding, decentralized, 75-98

broadcasting, 78
centralized directory, 79
controlling agent execution, 91-92
decentralized information exchange,

79-80
decision-making frameworks, 77-78

346 Index

distributed partner finding, 84-90
distributed partner finding experiment,

90-96
environment modeling, 78-79
experimental results, 94-96
experimental setup, 93-94
flooding mode, 89-90
message types, 92
metrics, 92-93
modeling agents, 80-82
motivation, 76-80
multiple message request mode, 88-89
network model, 91
operation modes, 88-90
peer-to-peer systems, 82-84
single message request mode, 88
time-to-live, 86-88
timeouts, 86-88

Peer-to-peer, 75,80,82,85, 93, 95,148,
153-154,217,275

Personal assistant agents, 127
Physics, 31
Plan revision, 121
POMDP,220,318,320
Price value, 112
Proactive protocols, 295
Probabilistic reasoning, 69
Productivity, 27-38,40^3,45,47-48
Programming, 55,205,237,255,257,260,

320
Proxies, 55,60-62,67,69,246,287,

289-290,299-302

Q function, 20-21

Reactive protocols, 294
Reinforcement learning, 173,179,192,

204-206,212-213,217,219-220,224
Repulsion schema, 30
Resource allocation, 53,57,220,299
RFID,251
Risk-neutral, 19
RoboCup, 280-281
Robotic soccer domain, 30
Robotic teams, scalability properties in,

27-52
composite coordination methods, 42-45
coordination combination, 41^8
group coordination methods, 32-35
interference, 35-38
performance drop, 35-41
scalability, 45-48
spatial resources, 38-40

spatial restrictions, 40-41
Robustness for large scale coordination,

271-340
Roles, 31, 58, 60-61,67,117,120,218,

221-224,258,278-279,288,291-292,
300, 306, 325,330

Satisficing, 56
Saturation, 36
Scalability issues, key-based coordination

strategies, 147-172
aircraft service team coordination, 149
application, 149,161-164
coordination via commitment value,

164-165
coordination via don't commitments,

153-160
evaluation, 165-167
first response coordination, 161-168
future work, 168-169
readiness, 150-153
TAEMS, 149-150
TAEMS agents, 149-150

Scalability properties, robotic teams, 27-52
composite coordination methods, 42-45
coordination combination, 41-48
group coordination methods, 32-35
interference, 35-38
performance drop, 35-41
scalability, 45-^8
spatial resources, 38-40
spatial restrictions, 40^1

Scalable coalition formation, organizational
context, 191-216

abstraction, 201-203
allocateCoalition, algorithm, 201
architecture, 199-200
complexity, 193-194
control, 194-196
decomposeTask, algorithm, 203
examples, 197-198
experiments and results, 207-211
learning, 204-206
local decision, 200-201
multi-dimensional Knapsack problem,

193-194
neural nets, 206
organization structure, 206-207
problem definition, 192-194
related work, 211-213
results, 209-211
setup, 207-209
solution, proposed, 196-207

347 Index

task decomposition, 203-204
theorem, 193-194

Scale Free Network, 298, 303
Scaling characteristics of utilities, 182-183
Search-and-rescue, 56,67
Self-interested, 4,17,20,23,100,113,284,

313,317
Service-oriented computing, 99-101,111
Service providers, 100,103
Service seekers, 100,115
Severe weather tracking, 63
Simulation, 32,55-56,63,67,69, 91-93,

95,150-151,157,163,166,173,179,
183,208,222,226,255-268,281, 301,
303

Single-issue negotiation, 106-107
Single point of failure, 76
SmaU world network, 288,290,298,302
SOAP, 103
Social ability, 75
Social Welfare, 4, 8,12,14,18,23,104
Spatial Resources, 38,41
State abstraction, 201,213
State consistency, 194-195,202
STEAM, 29,283,288,291,293
Stochastic, 3,16,100,127,131,135,145,

220-221,225,257,259,264, 312, 314,
316,322,325,328

Subjective view, 313, 324
Supply chains, 103,123
Swarm, 29,260,333

Team Oriented Plans (TOPs), 287,291
TEAMCORE,62,289,299
Teams, robotic, scalability properties in,

27-52
TeamSim, 305
Teamwork, 29,33,55-56, 58-67,69,192,

217-220,223,227-228,273-275,283,
287-288,299

Temporal semantics, 121
Temporally coordinated, 57
Territorial arbitration scheme, 30
Testing, 55,67,69, 97,207,251,258,262
Thrashing, 65
Time-outs, 63
Time-to-live, 83,86, 89,221
Traffic control, 65-66,160

Ubiquitous Computing, 251
UDDI, 103
Uncertainty, 152,161,203,205,220,227,

262,268,277,282-284, 311-314, 316,
318,322,325,329,331,338

Utmty function, 81,106,108,110,135,145,
175-177,317-318

Voronoi, 59

Web services, 103
Wireless network, 56, 64
WIZER, 255-270
Wonderful life utility, 177-179

TAEMS, 102,154,165,260,282,312
Task decomposition, 203,213

YOYO, 283

