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Preface 

The increased availability of low-cost, high-power computation has made it feasible 
to consider building distributed systems on a previously unimagined scale. For exam­
ple, in domains such as space exploration, military planning and disaster response, 
groups with hundreds or thousands of intelligent agents, robots and people that work 
together can revolutionize the achievement of complex goals. To effectively and ef­
ficiently achieve their goals members of a group need to cohesively follow a joint 
course of action while remaining flexible to unforeseen developments in the environ­
ment. Such coordination entails a new set of challenges that have not been adequately 
addressed by previous coordination research. 

It is becoming increasingly clear that many algorithms, theories and infrastruc­
tures developed for smaller groups of agents have serious limitations or weaknesses 
when the size of the group is scaled above 10-20 agents. For example, establishing 
and maintaining joint commitments between a thousand agents is infeasible, likewise 
existing multi-agent programming languages, e.g., Taems, do not provide an appro­
priate level of support for programming large groups. On the other hand, established 
techniques specifically designed for coordinating very large numbers of agents, pri­
marily swarm based groups, do not provide developers with the required level of 
control needed to ensure coherent behavior of the group as a whole. 

The key assumption drawing together the chapters in this book is that meeting 
the challenges of very large scale coordination will likely require new theories, ab­
stractions, tools and algorithms. The goal of this book is to present some of the most 
recent insights and approaches used by researchers working or thinking about very 
large groups of coordinating agents. By bringing together key ideas, the field can 
progress towards establishing a sound theoretical and experimental basis for coordi­
nating many agents. Eventually, we hope that methods for designing, implementing, 
and understanding large-scale coordination will have the same level of maturity that 
has been already achieved for smaller groups. 

This book is broken down into four main parts. In Part I - "Effects of Scaling Co­
ordination", we present work from various researchers who have developed systems 
that operate on a large scale. Each of these systems demonstrate behaviors which 
only occur when the systems are scaled beyond the size of a few or several. Part 
II - "Scaling Exisiting Coordination Approaches", presents a number of interesting 
attempts at scaling exisiting small-scale methods to operate on large volume prob­
lems. Part III - "New Approaches for Large Scale Coordination" presents algorithms 
specifically designed for large scale coordination. Finally, Part IV - "Robustness and 
Flexibility for Large Scale Coordination" presents novel methods for ensuring that 
large scale systems remain stable when faced with failures and changes that become 
increasingly common when large numbers of agents are involved. 

We hope that this book represents the first step towards a science of large scale 
coordination that one day forms the basis for revolutionary systems that change the 
planet for the better. 

Paul Scerri, Roger Mailler and Regis Vincent. 
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The Effects of Locality and Asymmetry in Large-Scale 
Multiagent MDPs 

Dmitri A Dolgov^ and Edmund H Durfee^ 
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^ University of Michigan; Ann Arbor, MI 48109; durf ee©uinich. edu 

Summary. As multiagent systems scale up, the complexity of interactions between agents 
(cooperative coordination in teams, or strategic reasoning in the case of self-interested agents) 
often increases exponentially. In particular, in multiagent MDPs, it is generally necessary to 
consider the joint state space of all agents, making the size of the problem and the solution 
exponential in the number of agents. However, often interactions between the agents are only 
local, which suggests a more compact problem representation. We consider a subclass of mul­
tiagent MDPs with local interactions where dependencies between agents are asymmetric, 
meaning that agents can affect others in a unidirectional manner. This asymmetry, which often 
occurs in large-scale domains with authority-driven relationships between agents, allows us to 
make better use of the locality of agents' interactions. We discuss a graphical model that ex­
ploits this form of problem structure and use it to analyze the effects of locality and asymmetry 
on the complexity and structure of optimal policies. For problems where the solutions retain 
some of the compactness of problem representation, we present computationally-efficient al­
gorithms for constructing optimal multiagent policies. 

1 Introduction 

Markov decision processes [2, 17] are widely used for devising optimal control poli­
cies for agents in stochastic environments. Moreover, MDPs are also being applied 
to multiagent domains [3, 18, 19]. However, a weak spot of traditional MDPs that 
subjects them to "the curse of dimensionality" [1], and presents significant computa­
tional challenges, is the flat state space model, which enumerates all states the agent 
can be in. This is especially significant for large-scale multiagent MDPs, where, in 
general, it is necessary to consider the joint state and action spaces of all agents. 
Because of this, as the number of agent in a multiagent system increases, the size of 
the flat MDP representation increases exponentially, which means that very quickly 
it becomes impossible to even model the problem, let alone solve it. 

Fortunately, there is often a significant amount of structure to MDPs, which can 
be exploited to devise more compact problem and solution representations, as well as 
efficient solution methods that take advantage of such representations. For example, a 
number of factored representations have been proposed [4,5,10] that model the state 
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space as being factored into state variables, assume the reward function is additive, 
and use dynamic Bayesian network [8] representations of the transition function to 
exploit the locality of the relationships between variables. 

In this work, we focus on multiagent MDPs and on a particular form of prob­
lem structure that is due to the locality of interactions between agents. Central to 
our problem representation are dependency graphs that describe the relationships 
between agents. The idea is very similar to other graphical models, e.g., graphi­
cal games [12], coordination graphs [10], and multiagent influence diagrams [13], 
where graphs are used to more compacdy represent the interactions between agents 
to avoid the exponential explosion in problem size. Similarly, our representation of 
a multiagent MDP is exponential only in the degree of the dependency graph, and 
can be exponentially smaller than the size of the flat MDP defined on the joint state 
and action spaces of all agents. A distinguishing characteristic of the graphical rep­
resentation that we study in this work is that it makes more fine-grained distinctions 
about how agents affect each other: we distinguish between agents' effects on other 
agents' reward functions from their effects on other agents' transition functions. 

We focus on asymmetric dependency graphs, where the influences that agents 
exert on each other do not have to be mutual. Such interactions are characteristic of 
large-scale multiagent domains with authority-based relationships between agents, 
i.e., low-authority agents have no control over higher-authority ones. As we discuss 
below, there are problem classes where this asymmetry has important positive impli­
cations on the structure of optimal multiagent policies and the problem complexity. 

For any compact problem representation, an important question is whether the 
compactness of problem representation can be maintained in the solutions, and if so, 
whether it can be exploited to devise more efficient solution methods. We must an­
swer the same question for the graphical model discussed in this work. To that end, 
we analyze the effects of optimization criteria and shapes of dependency graphs on 
the structure of optimal policies, and for problems where the compactness can be 
maintained in the solution, we present algorithms that make use of the graphical rep­
resentation. The main contribution of this work is that it answers, for several classes 
of multiagent MDPs, the question of whether optimal policies can be represented 
compacdy. However, we analyze the structure and complexity of optimal solutions 
only, and the claims do not apply to approximation techniques that exploit compact 
MDP representations (e.g., [10, 6, 7, 20]). As such, this work provides complexity 
results and can serve as a guide to where it is necessary to resort to approximate 
algorithms for large-scale multiagent policy optimization problems. 

The rest of the paper is organized as follows. Section 2 briefly discusses Markov 
decision processes and introduces the graphical MDP representation that is the basis 
of our study. Section 3 discusses the properties of the graphical model and estab­
lishes some results that facilitate the analysis of the following sections, where the 
properties of optimal policies and solution algorithms are discussed. In Section 4, 
we focus on cooperative agents that maximize the social welfare of the group, and in 
Section 5, we analyze the case of self-interested agents, each of whom maximizes its 
own payoff. Section 6 makes further assumptions about the structure of the agents' 
influence on each others' rewards and analyzes their effects on optimal policies. We 
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conclude by summarizing our results and discussing some unanswered questions in 
Section 7. 

2 Model and Background 

In this section, we briefly review some background and introduce our compact rep­
resentation of multiagent MDPs. 

2.1 Markov Decision Processes 

A single-agent fully-observable MDP can be defined as a n-tuple (5, J^,P,/?), where: 

• 5 == {/} is a finite set of states an agent can be in. 
• Jl = {a} isa. finite sets of actions the agent can execute. 
• P : 5 x j ^ x 5 t - > [ 0 , 1 ] defines the transition function; the probability that the 

agent goes to state j if it executes action a in state / is P{i,aJ), 
• R:S ^-^R defines the rewards; the agent gets a reward of R{i) in state i? 

A solution to a MDP is a policy defined as a procedure for selecting an action. It is 
known [17] that, for such fully-observable MDPs, there always exist policies that are 
uniformly-optimal (optimal for all initial conditions), stationary (time independent), 
deterministic (always select the same action for a given state), and Markov (history-
independent); such policies (TI) can be described as mappings of states to actions: 
7 i : 5 t - ^ ^ . 

Let us now consider a multiagent environment with a set of n agents 0\{ = {m} 
(\9\{\ = n), each of whom has its own set of states Sm = {im} and actions ^ = {am}. 
The most straightforward and also the most general way to extend the concept of 
a single-agent MDP to the fully-observable multiagent case is to assume that all 
agents affect the transitions and rewards of all other agents. Under these conditions, 
a multiagent MDP can be defined simply as a large MDP {S(]^,^<J^,PCJ^,R(M), where 
the joint state space Sg^ is defined as the cross product of the state spaces of all 
agents: Sg^ = S\x ...xSn, and the joint action space is the cross product of the action 
spaces of all agents: J^g^ = J^i x ...x J^. The transition and the reward functions 
are defined on the joint state and action spaces of all agents in the standard way: 
Pg^ : Sri^ X J^g^ X Sr^f ^ [0,1] and Rr^'^Sr^^ R. 

This representation, to which we refer SiS flat, is the most general one, in that, by 
considering the joint state and action spaces, it allows for arbitrary interactions be­
tween agents. However, the weak spot of this representation is that the problem (and 
solution) size grows exponentially with the number of agents, making it unacceptable 
for large-scale multiagent systems. 

Let us note that, if the state space of each agent is defined on a set of world 
features, there can be some overlap in features between the agents, in which case 

^ Often, rewards are said to also depend on actions and future states. For simplicity, we define 
rewards as function of current state only, but our results can also be extended to the more 
general case. 
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Fig. 1. Agent dependency graph 

the joint state space would be smaller than the cross product of the state spaces 
of all agents, and would grow as a slower exponent. For simplicity, we ignore the 
possibility of overlapping features, but the results are directly applicable to that case 
as well. 

2.2 Graphical Multiagent MDPs 

In many multiagent domains, the interactions between agents are only local, meaning 
that the rewards and transitions of an agent are not directly influenced by all other 
agents, but rather only by a small subset of them. To exploit the sparseness in agents' 
interactions, we use a compact representation that is analogous to the Bayesian net­
work representation of joint probability distributions of several random variables. 
Given its similarity to other graphical models (e.g., [11, 12]), we label the represen­
tation a graphical multiagent MDP (graphical MMDP). 

Central to the definition of a graphical MMDP is a notion of a dependency graph 
(Figure 1), which shows how agents affect each other. The graph has a vertex for 
every agent in the multiagent MDP. There is a directed edge from vertex k to vertex 
m if agent k has an influence on agent m. The concept is very similar to coordination 
graphs [10], but we distinguish between two ways agents can influence each other: 
(1) an agent can affect another agent's transitions, in which case we use a solid 
arrow to depict this relationship in the dependency graph, and (2) an agent can affect 
another agent's rewards, in which case we use a dashed arrow in the dependency 
graph. For example, if an agent is trying to go through a doorway, and a second 
agent is controlling the state of the door, the transition probabilities of the first agent 
are affected by whether the door is open (state of the second agent), in which case we 
use a solid transition-related arrow from the second agent to the first. In a different 
scenario, if the door is always open, but the second agent sometimes rewards agents 
for going through the doorway, the transition probabilities of the first agent are not 
affected by the second one, but the reward that the first agent gets depends on the 
state of the second agent. In this case, we use a dashed reward-related arrow from 
the second agent to the first. 

To simplify the following discussion of graphical multiagent MDPs, we also 
introduce some additional concepts and notation pertaining to the structure of the 
dependency graph. Consider an agent m ^ M and its neighbors. Let us label all 
agents that directly affect m's transitions as 9{^ (P) (parents of m with respect to 
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transition function P), and all agents whose transitions are directly affected by m 
as 0\[^{P) (children of m with respect to transition function P). Similarly, we use 
0\(^{R) to refer to agents that directly affect m's rewards, and 0^{R) to refer to 
agents whose rewards are directly affected by m. Thus, in the graph shown in Fig-
ure 1, 9{^{P) = {1,4}, 0^{R) = {1,2}, ^{P) = {3}, and !1^{R) = {4}. We 
use the terms "transition-related" and "reward-related" parents and children to dis­
tinguish between the two categories. Sometimes, it will also be helpful to talk about 
the union of transition-related and reward-related parents or children, in which case 
we use lACr = ^ " ( ^ ) U ^ ~ W and 9\Q- - 1A4+(P)U^^(^). Furthermore, let us 
label the set of all ancestors of m (all agents from which m is reachable) with respect 
to transition-related and reward-related dependencies as 0~{P) and 0~{R), respec­
tively. Similarly, let us label the descendants of m (all agents reachable from m) as 
0+(P) and 0+(/?), with O- = 0-{P)(jO-{R) and 0+ - 0+(P)UO+(/?) referring 
to the unions of all ancestors and descendants, respectively. 

We define a graphical MMDP with a set of agents Oi{ as follows. Associated 
with each agent m G fAf is a n-tuple {Sm^-%iyRmiRm)^ where the state space Sm and 
the action space J^ are defined exactly as before, but the transition and the reward 
functions are defined as follows: 

Rm • *^%;{P) >< ^m X •%! X Sm^-^ [0,1] 

where S^fp\ and Sri^fj^\ are the joint state spaces of the transition-related and 
reward-related parents of m, respectively. In other words, the transition function of 
agent m specifies a probability distribution over its next states Sm as a function of its 
own current state Sm^ the current states of all of its parents 5 ^ (p\, and its own action 
j ^ . That is P{ir;^fp\Jm^^mJm) is the probability that agent m goes to state jm if it 
executes action a^ when its current state is /^ and the states of its transition-related 
parents are ^V- (p) - The reward function is defined analogously on the current states 
of the agent itself and the reward-related parents (i.e., R{i^ fp\, im) is the reward that 
agent m gets when it is in state /^ and its parents are in states ̂ V-(/?))• 

Notice that, in (eq. 1), the transition function of m does not depend on actions of 
m's parents, but only on their current states. This is done for notational convenience 
and to simplify the discussion. It does not limit the generality of our model, as (eq. 
1) can be used to model the more general case, by encoding the information about 
the last executed action in the state. Such an encoding might not be desirable for 
efficiency reasons, in which case the alternative is to modify our model, which should 
not present any fundamental difficulties. 

Also notice that we allow cycles in the agent dependency graph, and moreover 
the same agent can both influence and be influenced by some other agent (e.g., agents 
4 and m in Figure 1). We also allow for asymmetric influences between agents, i.e., it 
could be the case that one agent affects the other, but not vice versa (e.g., agent m in 
Figure 1 is influenced by agent 1, but the opposite is not true). This is often the case in 
domains where the relationships between agents are authority-based. It turns out that 
the existence of such asymmetry has important implications on the compactness of 
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the solution and the complexity of the solution algorithms. We return to a discussion 
of the consequences of this asymmetry in the following sections. 

It is important to note that, in this representation, each transition and reward func­
tion only specifies the rewards and transition probabilities of agent m, and contains 
no information about the rewards and transitions of other agents. This implies that 
the reward and next state of agent m are conditionally independent of the rewards 
and the next states of other agents, given the current action of m and the state of m 
and its parents fA^. Therefore, this model does not allow for correlations between 
the rewards or the next states of different agents. For example, we cannot model the 
situation where two agents are trying to go through the same door and whether one 
agent makes it depends on whether the other one does; we can only represent, for 
each agent, the probability that it makes it, independently of the other. This is anal­
ogous to the commonly-made simplifying assumption that variables in a dynamic 
Bayesian network are independent of other variables within the same time slice. This 
limitation of the model can be overcome by "lumping together" groups of agents that 
are correlated in such ways into a single agent as in the flat multiagent MDP formula­
tion. In fact, we could have allowed for such dependencies in our model, but it would 
have complicated the presentation. Instead, we assume that all such correlations have 
already been dealt with, and the resulting problem only consists of agents (perhaps 
composite ones) whose states and rewards have this conditional independence prop­
erty. 

It is easy to see that the size of a problem represented in this fashion is expo­
nential in the maximum number of parents of any agent, but unlike the flat model, 
it does not depend on the total number of agents. Therefore, for large-scale multia­
gent problems where each agent has a small number of parents, space savings can 
be significant. In particular, this can lead to exponential (in terms of the number of 
agents) savings for domains where the number of parents of any agent is bounded by 
a constant. 

3 Properties of Graphical Multiagent MDPs 

Given the compact representation of multiagent MDPs described above, two impor­
tant questions arise. First, can we compactly represent the solutions to these prob­
lems? And second, if so, can we exploit the compact representations of the problems 
and the solutions to improve the efficiency of the solution algorithms? Positive an­
swers to these questions would be important indications of the value of this graphical 
problem representation. However, before we attempt to answer these questions and 
get into a more detailed analysis of the related issues, let us lay down some ground­
work that will simplify the following discussion. 

First of all, let us note that a graphical multiagent MDP is just a compact rep­
resentation, and any graphical MMDP can be easily converted to a flat multiagent 
MDP, analogously to how a compact Bayesian network can be converted to a joint 
probability distribution. For example, for a problem where all agents in a graphical 
MDP are maximizing the social welfare of the team (sum of rewards of all agents). 



The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 9 

this graphical MMDP is equivalent to the following flat MDP: 

J><^ = J)i X . . . X j ) ^ , 

yi(j^ = J%\ X . . . X J%iy 

^fA/lW)"^ Z, ^^(^H^{R)^^^)^ (2) 

Therefore, all properties of solutions to flat multiagent MDPs (e.g., stationarity, 
history-independence, etc.) also hold for equivalent problems that are formulated as 
graphical MMDPs. However, in general, it is not possible to convert a flat multiagent 
MDP to a graphical MMDP without "lumping" together all agents into one by taking 
cross products of their state and action spaces. This suggests that it might be possible 
to more compactly represent the class of policies that are optimal for problems that 
are representable as graphical MMDPs. 

Let us make the following simple observation that defines the notation and sets 
the stage for the following discussion. 

Observation 1 For a graphical MMDP {Sm^-%i^Pm^^m)» m^My with an optimiza­
tion criterion for which optimal policies are Markov, stationary, and deterministic, "^ 
such policies can be represented as Tim '- Sxm ^~^ -^» where Sx^ ^^ ^ cross product of 
the state spaces of some subset of all agents (X^i C !M). 

Clearly, this observation does not say much about the compactness of policies, 
since it allows ; ^ = fW, which corresponds to a solution where an agent has to con­
sider the states of all other agents when deciding on an action. If that were always the 
case, using this compact graphical representation for the problem would not (by it­
self) be beneficial, because the solution would not retain the compactness and would 
be exponential in the number of agents. However, for some problems, Xm can be sig­
nificantly smaller than 9i{, Thus we are interested in determining, for every agent m, 
the minimal set of agents whose states m's policy has to depend on: 

Definition 1 In a graphical MMDP, a set of agents X^ is a minimal domain of an 
optimal policy Km : Sxn, ^~^ - ^ of agent m if and only if, for any set of agents y and 
any policy K!^'- S<y ^-^ ^ , the following implications hold: 

where U{n) is the payoff that is being maximized. 

In words, any policy that is defined on the states of a subset of the minimal domain 
Xtn will be stricdy worse than 71 ,̂ and no policy defined on a superset of X^n can be 
better than Tim. 

^ We will implicitly assume that optimal policies are Markov, stationary, and deterministic 
from now on. 
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In essence, this definition allows us to talk about the sets of agents whose joint 
state space is necessary and sufficient for determining optimal actions of agent m. 
From now on, whenever we use the notation Km ' Sxm -̂̂  - ^ , we implicitly assume 
that Xfn is the minimal domain of 7Ĉ . 

3.1 Assumptions 

As mentioned earlier, one of the main goals of the following sections will be to char­
acterize the minimal domains of agents' policies under various conditions. We will 
be interested in analyzing the worst-case complexity of policies (i.e., the structure 
of policies for the most difficult examples from a given class of multiagent MDPs). 
One way to perform such an analysis is by studying examples of such worst-case 
scenarios. However, we take a different route which we believe is more illustrative: 
we first make some assumptions about properties of minimal domains that allow us 
to rule out some non-interesting degenerate special cases, and then rely on these as­
sumptions to derive our complexity results. As such, these assumptions do not limit 
the general complexity results that follow, as the latter only require that there exist 
some problems for which the assumptions hold. In the rest of the paper, we implicitly 
assume that they hold. 

Central to our future discussion will be an analysis of which random variables 
(rewards, states, etc.) depend on which others. It will be very useful to talk about the 
conditional independence of future values of some variables, given the current values 
of others. 

Definition 2 We say that a random variable X is Markov on the joint state space 
5<y of some set of agents ^ if given the current values of all states in S<y, the future 
values ofX are independent of any past information. If that property does not hold, 
we say that X is non-Markov on 3<y. 

We make the following assumptions: 

Assumption 1 For a minimal domain X^ of agent m's optimal policy, and a set of 
agents % the following hold: 

1. Xfn is unique 

2. meXm 

3. I E Xfn =^ Si is Markov on Sx^ 

4. Sm is Markov on Sry <=^ !/ 2 - ^ 

The first assumption allows us to avoid some special cases where there are sets of 
agents whose states are 100% correlated, and equivalent policies can be constructed 
as functions of either of the sets. 

The second assumption states that the domain of an optimal policy of an agent 
should include its own state, which is true for all but the most trivial cases. 

The third assumption says that the state space of any agent / that is in the minimal 
domain of m must be Markov on the state space of the minimal domain. Since the 
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state space of agent / is in the minimal domain of m, it must influence m's rewards in 
a non-trivial manner. Thus, if 5/ is non-Markov on Sx^,' agent m will, in general, be 
able to increase its payoff by expanding the domain of its policy to make 5/ Markov 
(since that will allow it to better predict future rewards). 

The fourth assumption says that the agent's state is Markov only on supersets of 
its minimal domain. Indeed, if there exists a smaller domain Zc Xm such that the 
agent's state space Sm is Markov on Z, the agent should be able to implement the 
same policy on Z, contradicting the definition of the minimal domain. Conversely, 
Sm niust be Markov on the minimal domain, since if the opposite were true, the agent 
would, in general, benefit from expanding the domain of its policy to better predict 
future rewards. Clearly, if Sm is Markov on Jl^, it must be Markov on any superset 

These assumptions are slightly redundant (e.g., 4 could be deduced from weaker 
conditions), but we use this form for brevity and clarity. 

We can combine Assumptions 1.1 and 1.4 into the following useful result. 

Corollary 1 For a minimal domain Xm of agent m's optimal policy and a set of 
agents % such that y 2 -^> the following holds: Sm ^s non-Markov on S<y. 

Indeed, if the above did not hold, meaning that Sm were Markov on S<y, by Assump­
tion L4, y would be a superset of some minimal domain X^i^ Xm, which would 
violate the uniqueness assumption L L 

3.2 Transitivity 

Using the assumptions of the previous sections, we can derive an important property 
of minimal domains that will significandy simplify the analysis that follows. 

Proposition 1 Consider two agents mje M, where the optimal policies ofm and 
I have minimal domains ofXm and Xi, respectively (Km * Sxn, '~^ - ^ ' ^/ * ^Xi ^-^ -^)-
Then, under Assumption I, the following holds: 

I ^ Xfn ==> Xi C Xm^ 

Le,, if the minimal domain X^ of agent m's policy includes agent I, then X,n i^ust also 
include the minimal domain of I. 

Proof: We will show this by contradiction. Let us consider an agent from /'s minimal 
domain: k£ Xi. Let us assume (contradicting the statement of the proposition) that 
I e Xfn, but k^ Xfn. Consider the set of agents that consists of the union of the two 
minimal domains ^ and X/, but with agent k removed: 

7'm = Xm\J{Xi\k). 

Then, since Tm^ Xi, Assumption L4 implies that Si is non-Markov on 5%,. Thus, 
Assumption L3 implies / ^ A^, which contradicts our earlier assumption. • 

Essentially, this proposition says that the minimal domains have a certain "tran­
sitive" property: if agent m needs to base its action choices on the state of agent /, 
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then, in general, m also needs to base its actions on the states of all agents in the min­
imal domain of /. As such, this proposition will help us to establish lower bounds on 
policy sizes. 

Intuitively, the proposition says that since m's policy depends on /'s state, and the 
trajectory of /'s state depends on Xi, it makes sense for agent m to base its actions 
on the states of all agents in Xi, Otherwise, the evolution of m's own state might not 
be Markov and agent m might not be able to predict the future as well as it could, 
leading to suboptimal policies. To illustrate, let us once again refer to our doorway 
example, where one agent, m, needs to go through a doorway that is being controlled 
by a second agent, /. Naturally, the optimal action of the first agent, m, depends on 
the state of the second agent, /, implying that / G X^ (second agent is in the minimal 
domain of the first one). Now, suppose that the door-opening policy of the second 
agent / depends on the state of a third agent k (perhaps the third agent controls the 
power to the building), which by definition means that keXi, Under these conditions 
the first agent m should base its action choices on the state of agent /: (e.g., no sense 
pursuing a policy that requires going through the door if there is no power and no 
chance of the door opening). Thus, agent m should expand its domain to include all 
the external factors which affect the policy of the door-controlling agent /. 

In the rest of the paper, we analyze some classes of problems to see how large 
the minimal domains are under various conditions and assumptions, and for domains 
where minimal domains are not prohibitively large, we outline solution algorithms 
that exploit graphical structure. In what follows, we focus on two common scenarios: 
one, where the agents work as a team and aim to maximize the social welfare of the 
group (sum of individual payoffs), and the other, where each agent maximizes its 
own payoff. 

4 Maximizing Social Welfare 

The following proposition characterizes the structure of the optimal solutions to 
graphical multiagent MDPs under the social welfare optimization criterion, and as 
such serves as an indication of whether the compactness of this particular represen­
tation can be exploited to devise an efficient solution algorithm for such problems. 
We demonstrate that, in general, when the social welfare of the group is considered, 
the optimal actions of each agent depend on the states of all other agents (unless 
the dependency graph is disconnected). Let us point out that this scenario where all 
agents are maximizing the same objective function is equivalent to a single-agent 
factored MDP, and our results for this case are analogous to the fact that the value 
function in a single-agent factored MDP does not, in general, retain the structure of 
the problem [14]. 

The implication of these results is that for large-scale cooperative MDPs where 
all agents are maximizing the social welfare of the group, the complexity and size of 
optimal solutions very quickly becomes prohibitive. Therefore, for such problems it 
is necessary to resort to approximate solution methods [10, 6, 7, 20]. 
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Fig. 2. Illustration for Proposition 2 
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Fig. 3. Assembly line example. 

Proposition 2 For a graphical MMDP with a connected (ignoring edge direction­
ality) dependency graph, under the optimization criterion that maximizes the social 
welfare of all agents, an optimal policy Km of agent m, in general, depends on the 
states of all other agents, i.e., Um : Sg^ ^-^ ^ . 

Proof (Sketch): Agent m must, at the minimum, base its action decisions on the 
states of its immediate (both transition- and reward-related) parents and children (as 
illustrated in Figure 2). Indeed, agent m should worry about the states of its transition-
related parents, fA/^(P), because their states affect the one-step transition probabili­
ties of m, which certainly have a bearing on m's payoff. Agent m should also include 
in the domain of its policy the states of its reward-related parents, 9{^{R), because 
they affect m's immediate rewards and agent m might need to adjust its behavior de­
pending on the states of its parents. Similarly, since the agent cares about the social 
welfare of all agents, it will need to consider the effects of its actions on the states 
and rewards of its immediate children, and must thus base its policy on the states of 
its immediate children 9Q (P) and 9\Q {R) to potentially "set them up" to get higher 
rewards. 

Having established that the minimal domain of each agent must include the im­
mediate children and parents of the agent, we can use the transitivity property from 
the previous section to extend this result. Although Proposition 1 only holds under 
the conditions of Assumption 1, for our purpose of determining the complexity of 
policies in general, it is sufficient that there exist problems for which Assumption 1 
holds. It follows from Proposition 1 that the minimal domain of agent m must include 
all parents and children of m's parents and children, and so forth. For a connected 
dependency graph, this expands the minimal domain of each agent to all other agents 
infAf. • 
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The above result should not be too surprising, as it makes clear, intuitive sense. 
Indeed, let us consider a simple example, shown in Figure 3, that has a flavor of 
a commonly-occurring production scenario. The agents are operating an assembly 
line, where several tasks have to be done in sequence to build the output product. 
Each agent has to perform two operations in order for the whole process to succeed 
(e.g., in Figure 3, agent 2 has to perform operations 2 and 7). Furthermore, each agent 
can choose to participate in the assembly line, yielding a very high reward if all agent 
cooperate, or it can concentrate on a local task that does not require the cooperation of 
other agents, but which has a much lower social payoff. The interactions between the 
agents in the assembly line are only local, i.e., each agent receives the product from 
a previous agent, modifies it, and passes it on to the next agent. Let us now suppose 
that each agent has a certain probability of breaking down, and if that happens to at 
least one of the agents, the assembly line fails. In such an example, the optimal policy 
for the agents would be to act as follows. If all agents are healthy, participate in the 
assembly line. If an agent fails and the current production item is not "blocked" by 
the failed agent, finish processing the current item and then switch to the local task. 
If the agent that fails blocks the ongoing process, switch to local task immediately. 
Clearly, in this example, agents' policies are functions of the states of all other agents. 

The take-home message of this section is that, when the agents care about the 
social welfare of the group, even when the interactions between the agents are only 
local, the agents' policies depend on the joint state space of all agents. The reason 
for this is that a state change of one agent might lead all other agents to want to 
immediately modify their behavior. Therefore, the compact problem representation 
(by itself and without additional restrictions) does not lead to compact solutions. 

5 Maximizing Own Welfare 

In this section, we analyze problems where each of the agents maximizes its own 
payoff. Under this assumption, unlike the discouraging scenario of the previous sec­
tion, the complexity of agents' policies is slighdy less frightening. The following 
result characterizes the sizes of the minimal domains of optimal policies for prob­
lems where each agent maximizes its own utility. It states that the policy of every 
agent depends on the states of all of its ancestors. 

Proposition 3 For a graphical MMDP with an optimization criterion where each 
agent maximizes its own reward, the minimal domain of m 's policy consists of m 
itself and all of its transition- and reward-related ancestors: Xm = ^^, where we use 
^m — ^ U ^m —^U^m (^) U ̂ m W ^^ ̂ ^f^^ ^^ ^ ^^^ ^^^ ^f ^^^ ancestors. 

Proof (Sketch): To show the correctness of the proposition, we need to prove that, 
(1) the minimal domain must include at least m itself and its ancestors (Xm 2 ^m)' 
and (2) that Xtn does not include any other agents (X^ C ̂ E"). 

We can show (1) by once again applying the transitivity property. Clearly, an 
agent's policy should be a function of the states of the agent's reward-related and 
transition-related parents, because they affect the one-step transition probabilities 
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and rewards of the agent. Then, by Proposition 1, the minimal domain of the agent's 
policy must also include all of its ancestors. 

We establish (2) as follows. We assume that it holds for all ancestors of m, and 
show that it must then hold for m. We then expand the statement to all agents by 
induction. 

Let usjfix the policies n^ of all agents except m. Then, consider the tuple 
(5r£- ,J^,P^-,R^-), where P^;- and R^- are functions with the following domains 
and ranges: 

^£^ • -̂z;;̂  X j ^ X S^- ^ [0,1] 
(3) 

and are defined as follows: 

^!£^ (^£^ ' ^w' JT^ ) ~^f^V'0^(P)' ^^' ^fn5 jm) 

Ylj'k[%-{Py^k^'^k{i<E-)Jk) (4) 
keo;;r 

The above constitutes a fully-observable MDP on S<^- and J^ with transition func­
tion Pm and reward function /?^. Let us label this decision process MDP\. By prop­
erties of fully-observable MDPs, there exists an optimal stationary deterministic so­
lution 71̂  of the form nj^: 5 ^ -̂̂  ^ . 

Also consider the following MDP on an augmented state space that includes the 
joint state space of all the agents (and not just m's ancestors): MDP2 = {Sr\{, J4m,P^jRgi{), 
where Pg^ and 7?^ are functions with the following domains and ranges: 

(5) 
P:So^xJ^xSg^^ [0,1] 

R'.Sg^^R 

and are defined as follows: 

/:GfJ^\(mUO^) 

Basically, we have now constructed two fully-observable MDPs: MDP\ that is 
defined on 5<r-, and MDPi that is defined on Sc}^, where MDP\ is essentially a "pro­
jection" of MDP2 onto 5^;- • We need to show that no solution to MDP2 can have a 

(6) 
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higher value^ than the optimal solution to MDPi. Let us refer to the optimal solu­
tion to MDPi as 71 .̂ Suppose there exists a solution 7î  to MDP2 that has a higher 
value than nj^. The policy 71̂  defines a stochastic trajectory for the system over the 
state space 5 ^ (for any fixed initial distribution over the state space). Let us label 
the distribution over the state space at time t as p{if^(,t) and its projection onto S<^-
as p{i^,t). Under our assumptions we can always construct a non-stationary ran­
domized policy nj^{t): S^ x J ^ -̂̂  [0,1] for MDP\ that yields the same distribution 
p{i^-,t) over the state space S^ as the one produced by 71 .̂ Thus, there exists a 
randomized non-stationary solution to MDP\ that has a higher payoff than 7X̂ , which 
is a contradiction, since we assumed that nj„ was optimal for MDP\. 

We have therefore shown that, given that the policies of all ancestors of m depend 
only on their own states and the states of their ancestors, there always exists a policy 
that maps the state space of m and its ancestors (S^-) to m's actions (j^) that is 
at least as good as any policy that maps the joint space of all agents (Sgi{) to m's 
actions. Then, by using induction, we can expand this statement to all agents (for 
acyclic graphs we use the root nodes as the base case, and for cyclic graphs, we use 
agents that do not have any ancestors that are not simultaneously their descendants). 
• 

The intuition behind the above result is very simple: if an agent is maximizing 
its own welfare, it should not worry about the state of agents that have no bearing on 
its future rewards and transitions (the descendants). It does, however, need to worry 
about all of its reward and transition-related ancestors, because otherwise the agent's 
state or reward sequence might not be Markov on the state space of its minimal 
domain, in which case its policy will, in general, be suboptimal. 

The implication of the above proposition is that, for situations where each agent 
maximizes its own utility, the optimal actions of each agent do not have to depend 
on the states of all other agents, but rather only on its own state and the states of its 
ancestors. In contrast to the conclusions of Section 4, this result is more encourag­
ing. For example, for dependency graphs that are trees (typical of authority-driven 
organizational structures), the number of ancestors of any agent equals the depth of 
the tree, which is logarithmic in the number of agents. Therefore, if each agent max­
imizes its own welfare, the size of its policy will be exponential in the depth of the 
tree, but only linear in the number of agents. 

5.1 Acyclic Dependency Graphs 

Thus far we have shown that problems where agents optimize their own welfare can 
allow for more compact policy representations. We now describe an algorithm that 
exploits the compactness of the problem representation to more efficiently solve such 
policy optimization problems for domains with acyclic dependency graphs. 

It is a distributed algorithm where the agents exchange information, and each 
one solves its own policy optimization problem. The algorithm is very straightfor-

^ The proof does not rely on the actual type of optimization criterion used by each agent and 
holds for any criterion that is a function only of the agents' trajectories. 
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Algorithm 1: Solving acyclic multiagent MDPs. 
Function SolveAcyclicMDP() 
in : (Jw,J^,Pw,/?w)-MDP of agent m 

: 9{^ - parents of agent m 
: 9sQ - children of agent m 

out: optimal policy Km for agent m 
wait for policies Uu of all ancestors {ke 0~) from parents 9{^ 
form MDPU={5T ,̂J^n.P -̂J^ -̂) per (eq. 4) 
7t̂  ̂  solve MDP (J^-, ;^ , F ;̂̂ ,/?2;̂ ) 
send own policy Km and Uj^ to children 9{^ 

ward and works as follows. First, the root nodes of the graph (the ones with no 
parents) compute their optimal policies that are simply mappings of their own states 
to their own actions. Once a root agent computes a policy that maximizes its wel­
fare, it sends the policy to all of its children. Each child waits to receive the policies 
Uk, k e 9{^ from its ancestors, then forms a MDP on the state space of itself and 
its ancestors as in (eq. 4). It then solves this MDP {S<^,J^,P<^-,R^) to produce 
a policy 7î  : 'E^ i-> J^, at which point it sends the policy and the policies of its 
ancestors to its children. The process repeats until all agents compute their optimal 
policies. Essentially, this algorithm performs, in a distributed manner, a topological 
sort of the dependency graph, and computes a policy for every agent. Let us note that 
parents have no incentive to hide their policies from the children, since the children 
cannot influence the parents' utility, because of to the asymmetry. 

5.2 Cyclic Dependency Graphs 

We now turn our attention to the case of dependency graphs with cycles. Note that 
the complexity result of Proposition 3 still applies, because no assumptions about the 
cyclic or acyclic nature of dependency graphs were made in the statement or proof 
of the proposition. Thus, the minimal domain of an agent's policy is still the set of 
its ancestors. 

The problem is, however, that the solution algorithm of the previous section is 
inappropriate for cyclic graphs, because it will deadlock on agents that are part of 
a cycle, since these agents will be waiting to receive policies from each other. In­
deed, when self-interested agents mutually affect each other, it is not clear how they 
should go about constructing their policies. Moreover, in general, for such agents 
there might not even exist a set of stationary deterministic policies that are in equi­
librium, i.e., since the agents mutually affect each other, the best responses of agents 
to each others' policies might not be in equilibrium. 

A careful analysis of this case falls in the realm of Markov games (e.g., [21, 
16, 15]), and is beyond the scope of this paper. However, if we assume that there 
exists an equilibrium in stationary deterministic policies, and that the agents in a 
cycle have some "black-box" way of constructing their policies, we can formulate 
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Algorithm 2: Solving cyclic multiagent MDPs. 
Function SolveCyclicMDP() 
in : (5m,-^,^m,^w)-MDPof agentm 

: 0\(^ - parents of agent m 
: 9{^ - children of agent m 

out: optimal policy Km for agent m 
^m ^ find all your peers 
wait for policies nic of all ancestors not in Qm 
P^ ̂  local transition function from Pm and {uk} 
form a joint MDP {S<E^ , Ag^ ,Pg^,RgJ 
Km <r- solve joint MDP {Sg^,J^g^,Pg^,RgJ 
send own policy Km to children 9^ 

an algorithm for computing optimal policies, by modifying the algorithm from the 
previous section as follows. The agents begin by finding the largest cycle they are 
a part of, and then, after the agents receive policies from their parents who are not 
also their descendants, the agents proceed to devise an optimal joint policy for their 
cycle, which they then pass to their children. 

Notice that the algorithm relies on a way for each agent m to find all other agents 
that are a part of a cycle that contains m. Since the set of agents that are in a cycle 
with m is the intersection of the ancestors and descendants of m, finding all peers 
of an agent can be done in polynomial time (in the number of agents) via a simple 
algorithm that performs a traversal of the dependency graph. 

6 Additive Rewards 

In our earlier analysis, a reward function /?,„ of an agent could depend in an arbitrary 
way on the current states of the agent and its parents (eq. 1). In fact, this is why 
agents, in general, needed to adjust their behavior depending on the states of their 
parents (and children in the social welfare case), which, in turn, was why the effects 
of reward-related dependencies propagated just as the transition-related ones did. 

In this section, we consider a subclass of reward functions for which locality is 
better maintained. Namely, we focus on additively-separable reward functions: 

Rmvg^i^Ryim) — l^mmy'm)'^ 2^ ^mkVk)', U) 

where r^nk is a function (r^/^: 5/: -̂̂  R.) that specifies the contribution of agent k to m's 
reward. In words, we assume that a reward of agent m can be expressed as a sum of 
several terms, each of which depends on the state of only one agent. 

Furthermore, the results of this section are only valid under certain assumptions 
about the optimization criteria the agents use. Let us say that if an agent receives 
a history of rewards ^{r) = {r{t)} = {r(0),r(l),...}, its payoff is U{iH{r)) = 



The Effects of Locality and Asymmetry in Large-Scale Multiagent MDPs 19 

1 \n^:S^-^A 

^̂ ^ 

F" 

m^ 

71,: S^->/l, 

2 n^: 8^x82-^A^ 

(a) (b) (c) 

Fig. 4. Additive rewards. Two-agent problems. 

f/(r(0),r(l),...). Then, in order for our results to hold, U has to be linear addi­
tive: 

umn + r2)) = uWn)) + umr2)) (8) 
Notice that this assumption holds for the commonly-used risk-neutral MDP opti­
mization criteria, such as expected total reward, expected total discounted reward, 
and average per-step reward, and is, therefore, not greatly limiting. 

In the rest of this section we examine problems with reward functions that are 
subject to these conditions. We begin by analyzing some important special cases 
with only two agents (shown in Figure 4) and then discuss whether and how these 
results can be extended to problems with more than two agents. 

First, let us observe that all problems in Figure 4 have cyclic dependency graphs. 
Therefore, if the reward functions of the agents were not additively-separable, per 
our earlier results of Section 5, there would be no guarantee that there would exist an 
equilibrium in stationary deterministic policies. The problem in Figure 4a has a cycle 
in transition-related dependencies, and our assumptions about the reward functions 
will not help us with the existence of equilibria. Therefore, in this section, we will 
only consider problems where there are no cycles due to transition-related dependen­
cies. Under these conditions, as we show below, our assumption about the additivity 
of the reward functions ensures that an equilibrium always exists for problems such 
as the ones in 4b and 4c. 

Let us consider the case in Figure 4b. Clearly, the policy of neither agent affects 
the transition function of the other. Thus, given our assumptions about additivity of 
rewards and utility functions, it is easy to see that the problem of maximizing the 
payoff is separable for each agent. For example, for agent 1 we have: 

maxt/i(i^(/?i(/i,/2))-maxC/(i^(rii(/i)))+max^(:^(r2i(/2))) (9) 
7li,7l2 n\ 7C2 

Thus, regardless of what policy agent 2 chooses, agent 1 should adopt a policy 
that maximizes the first term in (eq. 9). In game-theoretic terms, each of the agents 
has a (weakly) dominant strategy, and will adopt that strategy, regardless of what the 
other agent does. This is what guarantees the above-mentioned equilibrium. 

Now that we have demonstrated that, for each agent, it suffices to optimize a 
function of only that agent's own states and actions, it is clear that each agent can 
construct its optimal policy independently. Indeed, each agent has to solve a standard 
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MDP on its own state and action space with a slightly modified reward function: 
^mi^m) = f'fnm{im)^ which differs from the original reward function (eq. 7) in that it 
ignores the contribution of m's parents to its reward. 

Let us now analyze the case in Figure 4c, where the state of agent 1 affects the 
transition probabilities of agent 2, and the state of agent 2 affects the rewards of 
agent 1. Again, without the assumption that rewards are additive, this cycle would 
have caused the policies of both agents to depend on the cross product of their state 
spaces S\ x Si, and furthermore the existence of equilibria in stationary determinis­
tic policies between self-interested agents would not be guaranteed. However, when 
rewards are additive, the problem is simpler. Indeed, due to our assumptions, we can 
write the optimization problems of the two agents as: 

max/7i (...)== max f/i (i^(rii)) 4-max/7i (i^(ri2)) 
7^1,712 ^1 711,712 . ^ . 

max (/2(. ..) = max 6^2(^(^21))+ niax ^2(^(^22)) 
n\ ,7l2 ^1 ^1 )^2 

Notice that here the problems are no longer separable (as they were in the previous 
case of Figure 4b), so neither agent is guaranteed to have a dominant strategy. 

However, we can make an additional assumption about the structure of agents' 
rewards that will guarantee an existence of a Nash equilibrium in stationary deter­
ministic policies. Namely, let us assume that agents' reward functions are subject to 
the following condition: 

rmk{k) = lmk{rkk{k)), (11) 

where Imk is a positive linear function {lmk{^) = ou;-fP, a > 0 , P > 0 ) . This condition 
implies that agents' preferences over each other states are positively (and linearly) 
correlated, i.e., when an agent increases its local reward, its contribution to the re­
wards of its reward-related children also increases linearly. 

Under that assumption, (eq. 10) will always have an equilibrium solution in sta­
tionary deterministic policies. This is due to the fact that a positive linear trans­
formation of the reward function of a MDP does not change its optimal policy, as 
demonstrated below (for concreteness we show this for MDPs with the total expected 
discounted reward optimization criterion, but the statement is true more generally). 

Observation2 Consider two MDPs: A = {S,J^,R,P) andM = {3,^,R\P), R'{i) = 
(xR{i)-\- p, where a > 0 and (3 > 0. Then, a policy n is optimal for A under the total 
expected discounted optimization criterion if and only if it is optimal for A', 

Proof: Let us consider how the linear transformation of the reward function will 
affect the Q function of the MDP. It is easy to see that the linear transformation 
R^(^i) = a/?(/) -f P of the reward function will lead to a linear transformation of the Q 
function, where Q'{i,a) ^ aQ{i,a) H- P(l - Y)~^ where y is the discount factor. 

Indeed, suppose that this is true. Then, the new Bellman equations for the trans­
formed MDP A' will have the form: 

Q'{i,a)=R'{i)+yJ^P{i,aJ)maxQ'{j,a) 
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Fig. 5. Multiagent problems, additive rewards: existence of equilibrium strategies. 

or, under our hypothesis about the transformation of the Q function: 

ae(/,a) + y ^ - aR{i) + ^-^yJ^P{i,aJ)m^x (aQU.a) + j^) 

After a trivial algebraic manipulation, the above can be expressed as 

Qii,a)=Rii)+jyii,aJ)m^QiJ,a) + l + ^ ^ - ^ ^ , 

where the last terms cancel out, yielding exactly the Bellman equation for the original 
MDPA: 

Q{i,a) = R{i)+yYP{i,aJ)m^xQU,a) 
. a 

J 

Therefore, since the agent computes the optimal policy as 

n{i) = mdixQ!{i,a) = maxaG(/,a)H-P(l -y)"^ = max2(/,fl), 
a a a 

a policy n is optimal for A if and only if it is optimal for A'. • 
Observation 2 implies that, for any policy n\, a policy ni that maximizes the 

second term of U\ in (eq. 10) will be simultaneously maximizing (given n\) the 
second term of U2 in (eq, 10). In other words, given any 7Ci, both agents will agree 
on the choice of m. Therefore, agent 1 can find the pair (711,712) that maximizes its 
payoff U\ and adopt that TCi. Then, agent 2 will adopt the corresponding 712, since 
deviating from it cannot increase its utility because 712 is simultaneously maximizing 
the second terms in (eq. 10) for both agents. 

Let us now consider whether these results carry over to problems with more than 
two agents. Unfortunately, there is no trivial extension of the analysis to problems 
with arbitrary numbers of agents and general dependency graphs, because the ques­
tion of the existence of equilibria in stationary deterministic strategies becomes more 
complicated. To illustrate the issue, let us consider a few more special cases shown 
in Figure 5. 

Consider the dependency graph in Figure 5a. The optimization problems the 
agents face are as follows. 
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max/7i (...) = max L̂ i (i^(rii)) 4-max t/i (:^(ri3)) 
n\ 7Ci ,713 

maxf/2(...) = maxf/2(i^(r22)) + maxt/2(:^(r23)) (12) 
7l2 ^2?^3 

maxf/3(...)== max t/3(:^(r33)) 
7li ,7ll ,7C3 

It is easy to see that the existence of a Nash equihbrium is not guaranteed in this 
case, because agents 1 and 2 might want agent 3 to behave in different ways and 
there might not exist a set of stationary, deterministic strategies {K\,712,113) that are 
in equilibrium (i.e., one of the agents might want to deviate). The problem with this 
example is due to the fact that agent 3 has multiple transition-related parents, which 
suggests that problems with tree-like transition dependency graphs might be better-
behaved. 

Let us, therefore, consider the example in Figure 5b, whose transition depen­
dency graph is a tree. The optimization problems of the agents are: 

max(/i(...) = maxt/i(i^(rii))+ max Ui{iH{ri3)) 

max^2(...) = max 6^2(^(^22)) (13) 

max^3(...)=^ max ^3(^(^33)) 

Here, the existence of an equilibrium is also not guaranteed because, even though 
agents 1 and 3 will always agree on TC3 (given any Tii), agents 1 and 2 might not have 
an equilibrium. In other words, given a 7Ci (which defines the transition function and 
thus the optimization problem of agent 2) agent 2 can find its best policy 7I2 (TCI ) — 
argmax7C2 ̂ 2(^(^22)). However, given n^, agent 1 might want to change its TCi to 
improve its reward. Here, the problem is due to the fact that agent 2 has control of 
agent 3 who does not contribute to 2's rewards directly, but does effect the rewards 
of a parent of 2. 

The above suggest that perhaps limiting reward loops to immediate transition-
related children and parents (as in the case of two agents) might lead to equilibria. 
To investigate, let us consider the example from Figure 5c. The agents' optimization 
problems are: 

max ̂ 1 (...) = max t/i (:^(rii)) +max (/i (:^(ri2)) 

maxt/2(-..) ^niax(72(i^(r22))+ max 6^2(^(^23)) (14) 
711,7^2 Tlj ,712,713 ^ -̂  

max(/3(...)= max ^3(^(^33)) 

Alas, here a Nash is also not guaranteed, because once again the interests of agents 1 
and 2 might conflict (for example, the term L̂ i {^{rn)) might be the most important 
for agent 1, whereas agent 2 might want to choose 712 to increase 6̂2 (-^(^23)) above 
all else). 

A condition that does ensure the existence of an equilibrium is illustrated by the 
example in Figure 5d, where the optimization problems of the agents are: 
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maxf/i(...)=maxl7i(:7/'(rii)) + maxL^i(:^(ri2))+ max U\{!^{ri3)) 

max(/2(...)==max/72(:^(r22))+ max U2{^{r23)) (15) 
7li,7l2 Til ,712,713 ^ ^ 

max/73(...)= max 6/3(^(^33)) 

Here, an equilibrium exists, because each agent maximizes a subset of reward terms 
that its parent is maximizing, i.e., given any 711 and 712, all three agents will agree on 
the choice of 713; similarly, given a 711 the agents will agree on the choice of K2 and 
713. 

Thus, just like in the two-agent problems discussed earlier, if the contributions 
of agents to each other's rewards are aligned (as in (eq. 11)), and the maximization 
problem of each agent includes reward terms that are a subset of the terms of each 
of its parents, an equilibrium strategy profile exists. In this case, the agents can for­
mulate their optimal policies via algorithms similar to the ones described in Section 
5.1. 

An interesting question is whether this is a necessary condition for the existence 
of equilibria in stationary deterministic strategies for problems with arbitrary de­
pendency graphs and numbers of agents, or whether weaker assumptions would be 
sufficient. An analysis of this issue is one of the directions of our current and future 
work. 

7 Conclusions 

We have analyzed the use of a particular compact, graphical representation for a 
class of multiagent MDPs with local, asymmetric influences between agents. As is 
the case with other graphical models, the representation studied in this work can lead 
to exponential savings in problem representation. However, in general, because the 
effects of agents' influences on each other propagate with time, the compactness of 
the problem representation is not fully preserved in the solution. We have shown 
this for multiagent problems with the social welfare optimization criterion, which 
are equivalent to single-agent problems, and for which similar results are known 
[14]. Because optimal policies for such problems do not retain any of the structure 
of the original problem (agents' policies depend on the states of all other agents), 
exact solution methods are infeasible, and approximate solution techniques appear 
well-justified. 

We have also analyzed multiagent problems with self-interested agents, and have 
shown the complexity of solutions to be less prohibitive in some cases (acyclic de­
pendency graphs). We have demonstrated that under further restrictions on agents' 
effects on each others' rewards (additively-separable, positive linear functions), lo­
cality is preserved to a greater extent. Under these conditions, equilibria in stationary 
deterministic strategies can exist even for graphs with reward-related cycles. 

Our future work will combine the graphical representation of multiagent MDPs 
with other forms of problem factorization, including constrained multiagent MDPs 
[9]. 
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Another direction of our future work includes analyzing problems where re­
distribution of rewards is possible, which might cause agents to negotiate policies 
with their children. 
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A Study of Scalability Properties in Robotic Teams'̂  

Avi Rosenfeld, Gal A Kaminka, Sarit Kraus 
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Summary. In this chapter we describe how the productivity of homogeneous robots scales 
with group size. Economists found that the addition of workers into a group results in their 
contributing progressively less productivity; a concept called the Law of Marginal Returns. We 
study groups that differ in their coordination algorithms, and note that they display increas­
ing marginal returns only until a certain group size. After this point the groups' productivity 
drops with the addition of robots. Interestingly, the group size where this phenomenon occurs 
varies between groups using differing coordination methods. We define a measure of interfer­
ence that enables comparison, and find a high negative correlation between interference and 
productivity within these groups. Effective coordination algorithms maintain increasing pro­
ductivity over larger groups by reducing the team's interference levels. Using this result we are 
able to examine the productivity of robotic groups in several simulated domains in thousands 
of trials. We find that in theory groups should always add productivity during size scale-up, 
but spatial limitations within domains cause robots to fail to achieve this ideal. We believe that 
coordination methods can be developed that improve a group's performance by minimizing in­
terference. We present our findings of composite coordination methods that provide evidence 
of this claim. 

1 Introduction 

Teams of robots are likely to accomplish certain tasks more quickly and effectively 
than single robots [9, 12, 23]. To date, only limited work has been performed on 
studying how performance scales with the addition of robots to such groups. Should 
one expect linear, exponential, or decreasing changes in productivity as the group 
size grows? Previous work by Rybski et al. [23] demonstrated that groups of identi­
cal robots do at times demonstrate marginal decreasing returns. As such, their pro­
ductivity curves resembled logarithmic functions; the first several robots within their 
group added the most productivity per robot and each additional robot added succes­
sively less. In contrast, Fontan and Mataric [26] found that robotic groups reached 

This material is based upon work supported in part by the NSF under grant #0222914 and 
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a certain group size, a point they call "critical mass", after which the net productiv­
ity of the group dropped. Similarly, Vaughan et al. [29] wrote that the rule of "too 
many cooks" applies to their groups and adding robots decreases performance after 
a certain group size. 

Economists have studied the gains in productivity within human groups. Accord­
ing to their Law of Marginal Returns, if one factor of production is increased while 
the others remain constant, the overall returns will relatively decrease after a certain 
point [4]. As the size of the group becomes larger, the added productivity by each 
successive worker is likely to become negligible, but never negative. This classical 
model contains no reference to a concept similar to a "critical mass" group size after 
which the added worker decreases the total productivity of the group. 

Our research goal is to understand when the marginal returns predicted by the 
economic model would be consistently realized as work by Rybski [23] found they 
were, and when adding robots would decrease performance as Fontan and Vaughan 
[26, 29] described. Towards this goal, we first analyze several existing group coor­
dination algorithms and empirically observe the different groups' productivity with 
the addition of robots. We observe that the different coordination techniques affect 
the productivity graphs of these groups during scale up. 

To determine the cause for the differences between coordination algorithms, we 
define a measure of interference that facilitates comparison, and find a high negative 
correlation between group interference and productivity. Effective coordination al­
gorithms maintain marginal productivity over larger groups by reducing interference 
levels. Using this result we are able to examine robotic group productivity in several 
simulated domains in thousands of trials. We find that groups in theory always pro­
duce marginally, but that competition over space causes robots to deviate from this 
ideal. 

We believe this result can aid in studying the scalability qualities of robots. First, 
our interference metric is useful post-facto, for understanding the scalability quali­
ties within robotic groups. The effectiveness of a coordination method can be judged 
based on its ability to minimize interference. A team's ability to scale will be ham­
pered if interference is not kept in check. Additionally, we believe interference can 
be used in an online fashion to increase the group's productivity and scalability. We 
present preliminary results of composite coordination methods that indicate that our 
interference metric can be used to adapt a group's coordination activities to the needs 
of the domain. For future work, we plan to further study the use of this metric in im­
proving the scalability, and performance qualities of robotic groups. 

2 Related Work 

The study of robotic groups is quite important for several reasons. Certain tasks 
require groups of robots. For example, a large hazardous item might require the 
combined strength of several robots to physically move it. Other tasks can be ac­
complished through groups of robots more quickly and robustly. Rybski et al. [23] 
demonstrated that groups of robots are likely to finish certain collection tasks faster 
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than one robot. Groups of inexpensive robots are also useful in certain domains 
where there is a high probability damage will be incurred by any single robot. Thus, 
tasks such as mine clearing are well suited for groups of inexpensive robots. In this 
work we study the scalability qualities of these type of robotic tasks, but many of our 
results are likely to be useful for other categories of robotic activity as well. 

We study methods for improving upon the productivity of robotic groups through 
improving the coordination methods in these groups. At the logical level, various 
formal frameworks for teamwork have been proposed such as the joint intentions 
theory of Cohen and Levesque [5], Grosz and Kraus' SharedPlans [11], and Joint 
Intentions [14] have been presented for creating a cohesive team unit. Several practi­
cal teamwork implementations have been proposed for dynamic environments based 
on these models. The GRATE* teamwork method [14] is based on creating Joint 
Recipes based on the needs of a specific domain. The STEAM [28] teamwork en­
gine is based on creating a set of domain independent team rules. All of these frame­
works revolve around having the members of the group agreeing to and maintaining 
a mutual beliefs among all members of the group. These beliefs are often explicitly 
communicated, and team members require robust sensing and communication capa­
bilities. Finally, a behavior based approach, Alliance [20], operates through members 
of a robot team using impatience and acquiescence behaviors to create teamwork. 
This approach does not explicitly model teamwork and relies on using team behav­
iors within each robot to create team cohesion. 

A second model of group behavior revolves around swarm group behaviors, 
instead of formalized teamwork. Swarm behaviors typically involve homogeneous 
groups of members with limited processing and operating ability. Often these models 
are inspired from group activity of animals [17, 21]. Such approaches are typically 
best suited for domains where large groups are available, the task does not require 
tight cooperation between group members, and robust sensing and communication 
abilities do not exist in group members. Dudek et al. [6] present a taxonomy of these 
and other possible categories. 

Between these extremes lies numerous possibilities. Swarms could be created 
with high level reasoning and sensing abilities. These large groups could use high 
level team reasoning skills. For example, Scerri et al. [25] presents a scalable ap­
proach where large teams are based on dynamically evolving subteams. This work 
presents the challange of creating effective coordination methods that can scale. 
Novel coordination approaches are needed in addressing this issue. 

Our research goal in this work is to understand how to increase the effective­
ness of robotic groups' coordination during scale-up. Previous work by Fontan and 
Mataric [26] noted that proper coordination lies at the root of effective group be­
havior. As such, the creation of effective coordination is critical for achieving high 
productivity within a group. Our first step was to study how adding robots effects the 
groups' productivity. We wished to ascertain when adding foraging homogeneous 
robots hurt group performance as [26] and [29] predict they will after a certain team 
size, and when these robots continuously adds to the team's performance as Rybski 
etal. found [23]. 
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Several coordination methods have been developed for use within the foraging 
domain. This domain is formally defined as locating target items from a search region 
S, and delivering them to a goal region G [10]. We began by studying this domain 
because of the wealth of existing research conducted within this environment [9, 10, 
19, 23, 26, 29]. 

The foraging domain is characterized by a limited field of operation where spatial 
conflicts between group members are likely to arise. Many other robotic domains 
such as waste cleanup, search and rescue, planetary exploration and area coverage 
share this trait. In fact, this paper demonstrates that our foraging results were equally 
applicable within a second search domain. 

We first studied the interplay between the success of group's coordination and 
the corresponding productivity during group scale up. Several coordination methods 
have been developed for use within the foraging domain. For the sake of simplifying 
the comparison, we initially only contrasted methods that operate on homogeneous 
robots, do not require prior knowledge of the domain, and do no require any commu­
nication. Arkin and Balch [1] describe a system of using repulsion schema any time a 
robot projects it is in danger of colliding. It additionally adds a noise element into its 
direction vector to prevent becoming stuck at a local minima. Vaughan et al. [29] de­
scribe an algorithm that uses Aggression to resolve possible collisions by pushing its 
teammate(s) out of the way. They posit that possible collisions can best be resolved 
by having the robots compete and having only one robot gain access to the resource 
in question. A third approach, is a dynamic Bucket Brigade mechanism [19]. In this 
method, a robot drops the item it is carrying when it detects another robot nearby. In 
theory, the next closest robot should retrieve the recently dropped object and carry it 
closer to the goal. While this last method may be effective in foraging, it is limited to 
certain domains. This coordination method is not appropriate for certain tasks such 
as searching. It also requires the robot to drop and retrieve its target without cost - an 
assumption that is not necessarily true in domains such as toxic cleanup. 

Other foraging coordination algorithms exist that require advance knowledge of 
physical details of the operating domain and/or use groups of heterogeneous robots. 
Examples of these algorithms include the territorial allocation method developed 
by Fontan and Mataric [26] and the territorial arbitration scheme in Goldberg and 
Mataric [9]. Both methods limit each foraging robot to a specific area or zone and 
thus prevent collisions. Thus, these methods assume that improved performance can 
be achieved by specializing the robots to operate only within portions of the field. 
Another group of algorithms preassigns values so that certain robots inherently have 
a greater priority to resources than others. This group of coordination methods is 
similar to the Aggression method mentioned [29], but it preassigns robots to be ag­
gressive or meek. The fixed hierarchy system within Vaughan et al. [29] and the caste 
arbitration algorithm in Goldberg and Matarid [9] implemented variations of this idea 
on foraging robots. 

Other variations of these coordination methods exist within other domains. For 
example, Jager and Nebel [12] presented an algorithm that can dynamically create 
limiting areas of operation for robots in a vacuuming domain, but require the robots 
to communicate locally. Within the robotic soccer domain, various groups have been 
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created that rely on allocating each group member to a role. Communication is then 
needed to allocate and reallocate these roles. One example of this idea is within 
Marsellaet. al. [18]. 

Because the first group of algorithms require no communication, they seem more 
suitable to scale to larger groups of robots. As they do not require prior knowledge 
of the domain, they seem better suited for working with unknown or dynamic en­
vironments. More generally, a survey work done by Kraus [16] presented various 
multi-agent coordination schemes and states that those requiring large overheads are 
typically unable to scale beyond small groups. Similarly, Jones and Mataric [15] 
point out that minimal robots, or those with low requirements for communication 
or sensor input from teammates are more suited to scale to large swarms of robots. 
Minimalistic methods have been used in collection tasks [10] and formation control 
[8]. 

To date, only limited work exists on improving robot group scalability. The work 
by Fontan and Mataric [26] found that groups of 3 robots performed best within their 
foraging domain. Adding more robots only hurt performance when using their ter­
ritorial coordination method. Jager and Nebel [13] presented a collision avoidance 
technique for use in trajectory planning among robot groups that requires local com­
munication. They noted that their coordination method will not scale beyond groups 
of 4 robots. Rybski et al. [23] found increasing marginal productivity up to groups 
of 5 foraging robots, but did not study larger sizes. 

Within the general agent community, Shehory et al. [27] presented a scalable 
algorithm for a package delivery domain suitable for groups of thousands of agents. 
He based his algorithm on concepts borrowed from physics. Later work by Sander et 
al. [24] studied how computational geometry techniques could be applied to groups 
in the same domain. Both found that group productivity did scale marginally with the 
addition of agents and that a point existed where adding agents did not significantly 
improve the productivity of their system. Their agents did not compete over physical 
space, and they never found that adding agents hurt group performance. Specific to 
the search domain, work by Felner et al. [7] studied the scalability qualities of their 
PHA* algorithm, and found that their algorithm yields marginally better results with 
the addition of agents. Our research goal is to understand when robotic teams would 
similarly scale. 

The Law of Marginal Returns, also often called the Law of Diminishing Returns, 
is well entrenched as a central theory within economics. Most economic domains 
have spatial limitations and other finite production resources. These limiting factors 
cause the groups' performance to typically increase marginally with the addition of 
labor. Brue [4] demonstrated that economists from the Enlightenment Period until 
modem times often did not provide empirical evidence for their theories. He con­
cluded, "more empirical investigation is needed on whether this law is operational" 
within new domains, and "conjectures by 19th century economists about input and 
outputs ... simply won't do!" The first goal of this paper was to provide this robust 
study for robotic groups. 
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3 Comparing Group Coordination Methods 

In this section we present our initial study of scalability within groups of forag­
ing robots. In order to minimize the factors involved in this experiment, we limited 
our study to groups of homogeneous robots without communication where only the 
coordination methods differed between groups. We were surprised to find that the 
coordination method strongly impacted the scalability qualities of the group. While 
every group demonstrated diminishing positive marginal gains up to a certain group 
size, the shape of this graph varied greatly between groups. 

3.1 Initial Experiment Setup 

We implemented a total of eight coordination methods for use on foraging robots. 
The Noise, Bucket Brigade and Aggression methods were based on previously pub­
lished methods described in the previous section. Our implementation for the Noise 
team was included as the default team in the Teambots distribution [3]. The Bucket 
Brigade coordination behavior was initiated once a robot detected a teammate within 
2 robot radii. Then, these robots would drop the target being carried, move backwards 
for 25 cycles, and finally revert to the random walk behavior. The Aggression group 
was based on the random function of aggressive behaviors described in Vaughan et 
al. [29]. For every cycle a robot found themselves within 2 robot radii of a teammate, 
it selected either an aggressive or timid behavior. In order to decide, we had each 
robot choose a random number between 1 and 100. If the random number was lower 
than fifty, it became timid and back away for 100 cycles. Otherwise it proceeded 
forward, mimicking the aggressive behavior. As all robots within two radii choose 
whether to continue being aggressive every cycle, one or both of the robots assumed 
the timid behavior before a collision occurred. 

Our remaining five methods were based on variations of existing methods. Sim­
ilar to the Aggression group, the Repel Fix group backtracked for 100 cycles but 
mutually repelled like the Noise group. The Repel Rand group moved backwards 
for a random interval uniform over 1 - 200 and also mutually repelled. The Gothru 
and Stuck groups both removed all coordination behaviors. The Gothru group was 
allowed to ignore all obstacles, and as such spent no time engaged in coordination 
behaviors. This "robot" could only exist in simulation as it simply passes through 
obstacles such as other robots. However, this group was still not allowed to exit the 
boundaries of the field. We used this group to benchmark ideal performance with­
out productivity lost because of teammates. At the other extreme, the Stuck group 
also contained no coordination behaviors but simulated a real robot. As such, this 
group was likely to become stuck when another robot blocked its path. Like the 
Stuck group, the Timeout group contained no repulsion vector to prevent collisions. 
However, these robots did add noise to the direction vector after a certain threshold 
had been exceeded where their position did not significantly change. The Timeout 
group moved with a random walk for 150 cycles once these robots did not signifi­
cantly move for 100 cycles. If the timeout threshold was set too low, the robot may 
consider itself inactive while approaching a target or its home base. However, if this 
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value was set too high, it did not successfully resolve possible collisions in a timely 
fashion. We experimented with various values until we found that this combination 
seemed to work well. 

We used a well-tested robotic simulator, Teambots [3], to collect data on groups 
of these foraging robots. We strongly preferred using a simulator as it allowed us 
the ability to perform thousands of trials of various team sizes and compositions. 
The sheer volume of this data allowed us to make statistical conclusions that would 
be hard to duplicate with manually setup trials of physical robots. Using a simulator 
also allows us to research behaviors, such as Gothru's, that cannot exist with physical 
robots. 

In this experiment, Teambots [3] simulated the activity of groups of Nomad N150 
robots. The field measured approximately 5 by 5 meters. Our implementation of 
foraging followed Balch's [2] multi-foraging task in which the robots attempt to 
retrieve two or more types of objects. There were a total of 40 such target pucks, 
20 of which where stationary within the search area, and 20 moved randomly. Each 
trial measured how many pucks were delivered by groups of 1 - 30 robots within 
9 minutes. For statistical significance, we averaged the results of 100 trials with the 
robots being placed at random initial positions for each run. Thus, this experiment 
simulated a total of 24,000 trials of 9 minute intervals. 

The simulated robots we studied were based on the same behaviors. The only 
software differences between the robots lay within their implementation of the pre­
viously described teamwork coordination behaviors. Each robot had three common 
behaviors: wander, acquire, and deliver. In the wander phase, the robots originated 
from a random initial position, and proceeded in a random walk until they detected 
a resource targeted for collection. This triggered the acquire behavior. While per­
forming this second behavior, the robots prepared to collect the puck by slowing 
down and opening up their grippers to take the item. Assuming they successfully 
took hold of the object, the deliver behavior was triggered. At times the puck moved, 
or was moved by another robot, before the robot was able to take it. Once this tar­
get resource moved out of sensor range, the robot reverted once again to the wander 
behavior. The deliver behavior consisted of taking the target resource to the goal 
location which was in the center of the field. 

3.2 Initial Results 

Figure 1 graphically represents the results from this experiment. Our X-axis repre­
sents the various group sizes ranging from 1 to 30 robots. The Y-axis depicts the 
corresponding average number of pucks the group collected over its 100 trials. 

According to the economic Law of Marginal Returns, marginal returns will be 
achieved when one or more items of production are held in fixed supply while the 
quantity of homogeneous labor increases. In this domain, the fixed number of pucks 
acted as this limiting factor of production. Consequently, one would expect to find 
production graphs consistent with marginal returns. However, only the Gothru group 
demonstrated this quality over the full range of group sizes. All other groups con­
tained a critical point (CPl) where maximal productivity was reached. After the 
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Fig. 1. Comparing Foraging Productivity Results during Group Size Scale-Up 

group size exceeded this point, productivity often dropped precipitously. Eventu­
ally, the groups reached a level (CP2) where the addition of more robots ceased to 
significantly negatively effect the groups' performance. 

With the exception of the Aggression, Repel Fix, and Repel Rand groups, all 
groups' productivity graphs differed significantly. For example, the Stuck group 
reached its CPl point with an average of only 20.94 pucks collected with groups 
of 3 robots. The Aggression group reached a maximum of 30.84 pucks collected in 
groups of 10 robots. Even among equally sized groups, the differences were large. 
When comparing foraging groups of 10 robots, the Stuck group gathered only 8.58 
pucks - far fewer than Gothru's 35.62 pucks, while the Aggression group collected 
30.52 pucks, only 5.2 fewer than Gothru. Large differences between the level of CP2 
also existed between groups. Notice how the Bucket Brigade group maintained a 
CP2 level near 12 pucks, while the Stuck and Noise group's CP2 level was near 4 
pucks. The Bucket Brigade mechanism was more effective even in large group sizes. 

Our resulting research was motivated by these results. The Gothru group was 
the only group capable of realizing marginal gains throughout the entire range of 
30 robots. However, many groups demonstrated the positive quality of maintaining 
increasing productivity over a larger range of robots. For example, the Noise group 
only kept marginal gains until groups of seven robots, while the Aggression group 
kept this quality through groups of 10 robots. We also found that the positive qualities 
of improved performance and maintaining marginal performance over larger groups 
are not always synonymous. The Noise group kept positive marginal performance 
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over a smaller range than the Aggression group, yet performed better in groups sized 
seven or less. A closer look at the various coordination models was needed to draw 
lessons about how to create groups with both properties. 

4 Why does Performance Drop? 

We needed a mechanism for understanding why certain coordination methods were 
more effective than others during size scale-up. We posited that differences among 
robotic groups were often sparked from clashes in spatial constraints. Specific to 
foraging, conflicts arose over which robot in the group had the right to go to the home 
base first. As the group size grew, this problem became more common. This caused 
the groups to deviate from the ideal marginal productivity, depicted by the Gothru 
group, by greater amounts. The length of time robots clashed with their teammates 
because of joint resources, such as the home base location, served as the basis in 
comparing coordination models within any domain. 

Previous work by Goldberg and Mataric [9] found a connection between the 
level of interference a group demonstrated and its corresponding performance. They 
defined interference as the length of time robots collide, and we began by using this 
definition to equate between our coordination algorithms. This measure sufficed for 
some robots, such as those simulated by the Stuck group, because they did not engage 
in any other coordination behaviors. However, this metric of interference could not 
explain the differences between all groups. Many robots, such as those simulated by 
the Aggression group, never collided. If one takes the position that only collisions 
constitute interference within robotic groups, these robots do not interfere. Yet we 
clearly observed how the addition of robots detracted from the groups' productivity 
after its maximal productivity point. 

In this section we present our measure of interference. We describe scale up ex­
periments in foraging and search domains that are characterized by resources that 
lend themselves to group conflicts. We find that interference and productivity are 
strongly negatively correlated in such domains, and use this metric to explain dif­
ferences in productivity between all teams. We posit that in the absence of spatial 
conflicts, all teams should consistently demonstrate marginal gains during scale up. 
We confirm this idea by easing the "space crunch" in our domains and notice how 
all groups consistendy demonstrate marginal returns. We conclude that any domain 
with group spatial conflicts will suffer from deviations in marginal performance once 
the causes of interference cannot be resolved. 

4.1 Interference: Measure of Coordination 

We define interference as the length of time an agent is involved with, either phys­
ically or computationally, projected collisions, real or imaginary, from other robots 
and obstacles. This period of involvement often extends well beyond the actual col­
lision between two robots. Any time spent before a supposed collision in replanning 
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and avoidance activities must also be recorded. Similarly, all post-collision resolu­
tion activity must be included as well. Thus, according to our definition, the Gothru 
group has zero interference because it never engages in any interference resolution 
behaviors and represents idealized group performance. The Aggression group en­
gages in interference resolution behaviors before a collision ever happens. Its vari­
ous timid and aggressive behaviors to avoid collisions all constitute interference by 
our definition. The Bucket Brigade group demonstrates that interference can exist 
after a collision is prevented. For this group, one needs to measure the productivity 
lost by handing off the resource from one robot to the next. Many times this group 
lost productivity during this process because the second robot never properly took 
the dropped target. Only this measure takes into the account the total interference 
resolution process. 

According to our hypothesis, we expected to see a negative correlation between 
levels of interference and productivity in three respects. We reasoned that the degree 
to which a group deviates from the idealized marginal gains is proportional to the 
amount of average interference within the group. This can impact where the group 
hits maximal performance. Those groups which reached CPl with a small number 
of robots spiked high levels of interference much faster than those where this point 
was delayed. Second, even before groups hit their maximum productivity point, we 
hypothesized that the more productive groups have lower levels of interference than 
their peers. Finally, we expected that differences in where the productivity of the 
groups eventually plateau can be attributed to the group's saturation level of interfer­
ence. Those robots that more effectively deal with interference even in large groups 
will have CP2 values at higher levels. 

In order to confirm this hypothesis, we reran our eight foraging groups and logged 
their interference levels according to our definition. The Gothru group never regis­
tered any interference. For all remaining groups, we used the simulator to measure 
the number of cycles the robots in the groups collided. For all groups other than 
the Stuck and Gothru groups, we additionally measured the number of cycles the 
robots triggered interference resolution behaviors when they were not colliding. In 
the Noise and repulsion groups, this represented the number of cycles spent in re­
pelling activities. In the Aggression group, it was the number of cycles spent in timid 
and aggressive behaviors. In the Timeout group, this was the cycles spent trying to 
resolve a collision once the robot timed out. In the Bucket Brigade group, inter­
nal behaviors alone did not suffice to measure interference by our definition. We 
only recorded cycles spent when the robots came close to another and consequently 
dropped the resource they were carrying. However, we could not measure the time 
lost when the second robot did not effectively take that resource as we did not have 
onmipotent knowledge of such events. As a result, our measurement for interference 
for this group did not necessarily represent an exact measurement, but an underesti­
mate. 

Figure 2 represents the result from this trial. The X-axis once again represents 
the group size, and the Y-axis represents the average number of interference cycles 
that each robot within the group registered over the 100 trials. 
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Fig. 2. Interference Levels in Foraging Domain 

We found that CPl typically occurred for all groups when the average inter­
ference level within each robot of the group reached a level between 1500 and 2500 
cycles. The longer the group was able to maintain classically diminishing returns, the 
more cycles of interference were needed to cause the critical point. This is because 
CPl will only be reached once the productivity lost due to interference is larger than 
the total marginal productivity of the group. Before this point, the total production of 
the group increases, albeit marginally. For example, the Stuck group, which reached 
its critical point with only four robots, needed closer to only 1500 cycles to cause 
this critical point. The Aggression group hit CPl with 10 robots, and consequently 
needed approximately 2200 cycles to counter the productivity of more robots. 

Even when viewing the differences between productivity among equally sized 
groups, interference differences were significant. We found a very strong average 
negative correlation of -0.94 between the groups' performance and their interfer­
ence level over the entire range of 1 to 30 robots. For example, the Noise group most 
closely followed the idealized Gothru productivity graph for groups up until 7 robots, 
and registered significantly less interference than the other groups. This interference 
resolution mechanism had litde overhead, and needed fewer cycles to resolve a pos­
sible collision. However, this method didn't scale well beyond this point. When the 
group size became larger than seven, its interference levels grew exponentially and 
the group's performance quickly decayed. In contrast, the Aggression and other re­
pelling groups had significant levels of interference from the onset, but interference 
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levels only grew linearly with respect to the group size. As a result, this group proved 
more effective with larger group sizes. 

We also found that the eventual performance plateau (CP2) was strongly cor­
related with interference. Some groups leveled off at significantly smaller interfer­
ence levels than other groups. For example, even in group sizes above 20 robots, the 
Bucket Brigade group registered an average interference level of 400 fewer cycles 
less than the Stuck group. Consequently, it collected on average over 5 pucks more 
than this group at this level. 

As one would expect, most groups performed equally well with one robot, as 
coordination behaviors should only be triggered in groups of two robots or more. 
The one exception was the Timeout group which collected on average 8.7 pucks with 
one robot, or about 2 pucks fewer than the other groups. As we defined interference 
as the time spend on resolving collisions, or even perceived collisions, such a result 
is quite plausible. At times these robots timed out while slowing down to pick up a 
puck or avoid an obstacle even by themselves. As we defined such internal reasoning 
as interference, these robots interfered with themselves in the amount of about 1000 
average cycles per trial. 

Two of our groups have slight underestimates for interference; however, this did 
not change our overall results. As previously mentioned, the Bucket Brigade group 
interfered if a second robot did not successfully receive the resource handed off to 
it. We found that this did occur at times when there were relatively small groups 
of these robots. Thus, the correlation between their productivity and that of other 
groups' among groups of 2-6 robots dropped to -0.80. By discounting this range, the 
average overall correlation reached almost -0.97. However, after 6 robots we found 
that there were enough robots in the area to ensure a second robot would quickly 
take the resource, and the amount of this underestimate was less significant. The 
Noise group also registered an underestimate for interference. These robots actually 
used two repulsion fields for collision resolution. They triggered a strong repulsion 
field when they sensed another robot or obstacle 0.1 meters away. We only measured 
the number of times this repulsion field was triggered. However, a second, much 
weaker repulsion field was triggered from 1.5 meters away. In this instance, our 
underestimate did not seem to significantly statistically detract from our results. With 
or without the data from this group, the average correlation between groups was 
-0.94. 

4.2 Competing over Spatial Resources 

We proceeded to study if our results were limited to foraging or were a general phe­
nomenon seen when robotic groups are faced with restriction production resources. 
We created a new spatially limited search domain where the task goal was to find 
the exit out of the room as quickly as possible. We placed groups of robots within a 
room of 1.5 by 1.5 meters with one exit 0.6 meters wide. We reasoned a critical pro­
ductivity point would once again form in this domain. Too few robots would result in 
a long search time until the exit was found. However, too many robots would cause 
interference as the exit was only physically wide enough for one robot. 
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We ran simulated trials of seven of our eight foraging groups ranging in sizes 
from 1 - 23 robots (the room holds 23 robots) and averaged the results from 100 trials 
for statistical significance. We omitted the Bucket Brigade group as this coordination 
method was not relevant to this domain. We then measured the length of time it took 
the first robot from each group to completely exit the room. We ended the trial at that 
point and recorded the time elapsed. Thus, this experiment constitutes over 16,000 
trials of variable length. 

Figure 3 presents our productivity graphs and corresponding interference levels 
from this experiment. The X-axis in both graphs depict the size of our groups. In the 
upper section, we flipped the Y-axis to represent the search time of zero as the highest 
point. As in our foraging graphs, we represent better performance as higher values 
in this graph. In the lower graph the Y-axis represents our average measurement of 
interference per robot in the group. 

We found that the time to complete the search task was strongly negatively corre­
lated in our new domain as well. We observed that with the exception of the Gothru 
group, all groups ceased to demonstrate marginal returns at some point. In the Repel 
Fix group this point occurred with only 5 robots, while the Noise group reached this 
point with 10. The Noise group had the lowest level of interference through groups 
of 13 robots, and was able to most closely approximate Gothru's performance un­
til this group size. After this point the Timeout group fared the best. We found that 
certain interference resolution mechanisms work best in specific domains. While the 
repulsion methods were quite effective in foraging, the interference levels in these 
groups grew exponentially in this domain. Overall, the average statistical correla­
tion for groups of 1-23 robots between the time elapsed to exit the room and their 
corresponding interference level was -0.94. 

4.3 Easing Spatial Restrictions 

According to our hypothesis, deviations of productivity in robot groups are strongly 
correlated with interference. Once our foraging and search groups ceased to effec­
tively resolve interference they reached their critical group sizes. Adding more robots 
only hurt the groups' performance. We posit that the physical space limitations ex­
istent within many robotic groups often cause this interference. The one home base 
area within the foraging domain and the one exit within the search domain create a 
competition over space between robots that cannot always be properly resolved. 

We were able to confirm that our robotic groups always demonstrated marginal 
returns once restrictions over physical space were eased. We changed the foraging 
group requirement of returning the pucks to one centralized home base location. 
Instead, they were allowed to consider the pucks to be in the home base immediately. 
With the exception of the Bucket Brigade group, we reused all 8 previously studied 
foraging groups. Once again, we omitted this method because it was not applicable 
to our new domain. We left all other environmental factors such as the number of 
trials, the size and shape of the field and the targets to be delivered identical. Thus, 
Teambots [3] simulated 21,000 trials of 9 minute intervals in this experiment. 
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As figure 4 shows, all groups did indeed always achieve marginal returns in the 
modified foraging domain. While Gothru still performed the best, the differences be­
tween it and other groups' coordination methods were not as pronounced. The level 
of interference all groups demonstrated was also minimal, and thus not displayed. 
We concluded that not every foraging domain needed to have a critical point for 
productivity where marginal gains during scale up ceased. 

Within the search domain, we hypothesized that limitations in the room size and 
width of the exits created the large amounts of interference during scale up. In order 
to ease this restriction, we doubled the size of the room to become approximately 3 
by 3 meters, and widened the exit to allow free passage out of the room by more than 
one robot. Once again, we measured the time elapsed (in seconds) until the first robot 
left the room and averaged 100 trials for each point. This experiment also constituted 
over 16,000 trials of varying lengths. Figure 5 graphically shows that our modified 
domain consistently realized marginal increases in faster search times with respect to 
group size. Once again, interference levels were also negligible in our new domain. 
Thus, we concluded that achieving marginal productivity gains was always possible 
once competition over spatial resources was removed. 

5 Improved Scalability through Coordination Combination 

Our next step was to apply lessons based on our understanding of the coordination 
methods we studied towards creating methods with improved productivity and scal­
ability properties. In this section we present our Composite Coordination Methods. 
We found that it was possible to combine methods with different scalability prop-
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Fig. 5. Productivity of Groups in Modified Search Domain during Size Scale-Up 

erties to create a new composite method. This method achieved higher productivity 
levels in the foraging and search domains we studied. Surprisingly, we found that 
our new composite method at times far exceeded the productivity levels of even the 
that highest levels of productivity from the groups they were based on. We believe 
that using multiple methods in tandem allowed robots to more effectively deal with 
the spatial limitations that characterized their operating domain. This allowed for the 
gains we found in these groups' scalability properties. 

5.1 Composite Coordination Methods 

Our composite coordination methods combined the two best coordination methods 
for any given domain. Our previous study demonstrated that it possible to order coor­
dination methods based on groups sizes where they are most effective. In the foraging 
domain, the Noise group had the highest productivity in small groups, while the Ag­
gression group had higher productivity in larger groups. In the search domain, the 
Noise group again had the highest productivity in the small groups with the Timeout 
group faring better in larger group sizes. In both domains, our implementation for the 
composite method was based on allowing these two simpler methods to be triggered 
under different domain conditions. 

Our implementation of the composite method in the foraging domain revolved 
around using two different methods to attempt to prevent collisions. Robots first 
used the Noise method, but if this method proved insufficient opted for the more ro­
bust Aggression method. Once a robot detected that another teammate came within 
two robot radii away, it attempted to resolve a possible collision by inserting a slight 
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repulsion and noise element into its trajectory. In cases when the probability of col­
lisions was low, as was the case in small group sizes, this behavior alone sufficed. 
However, at times the spatial conflicts in the domain could not be resolved through 
this simple coordination behavior. For example, in large group sizes, the probabil­
ity that two or more robots mutually blocked became substantial. In these cases, the 
robots continued to move closer despite the use of this method. Once the robots came 
within a second, closer threshold, which we set to one robot radii, the second, more 
robust Aggression method was triggered. The timid and aggressive behaviors in this 
method were more successful in resolving spatial conflicts than the simpler behaviors 
in the Noise method. However, the interference overhead in the Aggression behavior 
was higher, and not justified in situations where the simpler behavior sufficed. Thus, 
by two different thresholds we attempted to match the correct collision prevention 
behavior to the domain conditions. 

We found this approach to be very effective within our foraging domain. Figure 6 
displays the productivity of the composite foraging group. Noise -t- Aggression, com­
pared to the two methods it is based on. In the top portion of the graph we display 
the average number of pucks retrieved (Y-axis) over different group sizes (X-axis). 
The bottom graph displays the varying interference levels (Y-axis) as a function of 
the group size. Notice how the composite group significantly outperformed the two 
groups it was based on. We performed the two-tailed t-test between our composite 
group and the two static ones it was based on. Both p-scores were well below 0.05 
needed to establish the statistical significance, with the higher score of 0.003 found 
between the Aggression group and the composite one. We also found that the re­
lationship between interference and productivity applies to this new group with a 
strong negative correlation of -0.92 between all three group's productivity and the 
corresponding interference level averaged over the interval of 1 - 30 robots. 

Our motivation in the search domain was similar, but our composite coordination 
method was implemented slightly differently. In this domain we also created our 
composite method between two methods - Noise and Timeout. These two methods 
resolve collisions with different mechanisms. The Noise method attempts to prevent 
collisions before they occur through repulsion. In contrast, the Timeout behavior was 
purely reactive in nature and its behavior only was triggered after collisions already 
occurred. Thus, a composite coordination method between these two methods was 
able to created without two different distance thresholds. The Noise method behavior 
was fully implemented to attempt to prevent collisions. The Timeout behavior was 
also fully implemented. In cases when the Noise behavior did not prevent a collision, 
this second behavior was effective in then resolving the conflict. 

We also found that this approach yielded marked improvement in performance 
and scalability properties for our search domain. Figure 7 displays the productivity 
of the composite foraging group. Noise + Timeout, compared to the two methods it 
is based on. In the top portion of the graph we display the average time to complete 
the search task (Y-axis) over the different group sizes (X-axis). The bottom graph 
displays the varying interference levels (Y-axis) as a function of the group size. No­
tice how the composite group again significantly outperformed the two groups it was 
based on, especially in larger group sizes. We performed the two-tailed t-test between 
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our composite group and the two static ones it was based on. Both p-scores were well 
below 0.05 needed to establish the statistical significance, with the higher score of 
0.004 found between the Noise group and the composite one. We also confirmed that 
the relationship between interference and productivity applies to this new group with 
a strong negative correlation of -0.98 between the three groups' productivity levels 
and their corresponding interference levels over the interval of 1 - 23 robots. It is im­
portant to note that the composite method in the search domain was able to eliminate 
the critical group size that existed in every group we studied except for the theoretical 
Gothru group. As such, this group demonstrated the best scalability quality from all 
methods we studied - the group's average productivity never significantly dropped 
with the addition of robots. Further study was needed to understand why these com­
posite groups had significantly better productivity and scalability qualities than the 
methods they were based on. 

5.2 Studying How to Improve Scalability 

Our interference metric was useful for understanding why the composite methods we 
created were able to significantly outperform the simpler methods they were based 
on. These composite methods had significantly lower levels of interference, allowing 
marginal gains and larger productivity over larger groups. However, we believe that 
coordination methods can be developed to improve the scalability capabilities of 
robots. It is possible that our interference metric is not only useful post-facto, but can 
facilitate online adaptation to improve performance even in dynamic and changing 
environments. We have begun to study how to create adaptive methods based on 
interference and have presented our initial results in [22]. 

We believe coordination methods that respond to the triggers of interference can 
minimize the time spent resolving those instances. Throughout the course of one 
trial, many spatial conflicts are likely to occur. The speed with which the robots 
resolve these conflicts will determine the success of the robots to achieve higher 
productivity and scalability properties. As such, we posit that a causal relationship 
exists between a robot's interference level and the corresponding productivity that 
robot is able to contribute to its group. The more time spent on resolving coordination 
conflicts, the less time will be left to perform the desired action. Thus, if robots could 
reduce their interference levels, they will consequently be able to achieve higher 
productivity. 

Our working hypothesis is that groups that effectively deal with interference 
episodes are going to improve their productivity levels. While coordination behav­
iors themselves constitute interference, at times they are needed for achieving co­
hesive group behavior. Effective behaviors cannot realistically eliminate interfer­
ence. Optimal coordination methods behaviors can only minimize interference levels 
given domain conditions. For example, in the foraging domain we studied, the Noise 
method's simpler coordination method contained little overhead. However, as col­
lisions within the domain became frequent, this method did not suffice, and robots 
were not capable of successfully resolving space conflicts and thus loss productivity. 
The Aggression method had an overhead that made it more effective in larger group 
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sizes, but the larger interference overhead in this method made it less effective in 
smaller group sizes. 

We believe that our composite methods outperformed the static method because 
of their improved ability to effectively match their coordination efforts to the needs of 
their domain. This allowed these robots to change the time spent on resolving coordi­
nation conflicts based on the needs of the domain. Figure 8 demonstrates the ability 
of our composite method to resolve conflicts in a more timely fashion. The graph 
represents the percentage of foraging robots that on average collided throughout the 
course of three trials (540 simulated seconds) in groups of 20 robots. The X-axis in 
this graph represents the number of seconds that elapsed in the trial (measured in 
ten second intervals), while the Y-axis measures the percentage of robots colliding at 
that time in the Noise, Aggression, and Noise + Aggression methods. Notice that the 
Noise group was ineffective in resolving collision instances in this group size and 
thus throughout the trial nearly all robots were exclusively engaged in collision res­
olution behaviors. As a result, this group had the highest interference levels and the 
poorest productivity. The Aggression group was able to more effectively deal with 
collisions, but on average consistently spent more than half of their time resolving 
spatial conflicts. In contrast, robots in the composite group were able, on average, to 
resolve conflicts and thus reduce their interference levels. This resulted in the signif­
icantly higher productivity levels in this group over the two static ones it was based 
upon. 
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When viewing spatial conflicts on a per trial basis, the fluctuations in the in­
stances of interference and the robot's ability to react to those fluctuations are even 
more pronounced. We posit that the composite method used the Aggression method 
in reaction to collisions becoming more frequent within the domain. To support this 
claim we viewed the internal state of these robots over the course of our trials. Figure 
9 displays three individual foraging trials of the composite group, again in groups of 
20 robots. In the upper graph we mapped the percentage of robots that were engaged 
in resolution behaviors (Y-axis) over the course of the trials (the Y-axis). The bottom 
graph represents the internal coordination state of these robots as a number between 
1 and 2. A value of 1 represents all robots being engaged in the Noise behavior, and 
a value of 2 corresponds to all robots in the Aggression behavior. Groups on average 
typically have a value between these extremes with robots autonomously choosing 
different states based on how close its closest teammate is at that moment. Notice the 
relationship between these two graphs with the composite robots using the Aggres­
sion behavior (an average state closer to 2) when collisions are more frequent. On 
average over the entire time period, we found a strong negative correlation of -0.90 
between these two graphs. This supports our claim that changes in interference can 
be sensed autonomously by robots. We believe this allowed the composite groups 
to achieve such a strong improvement in the productivity and scalability qualities of 
these teams. 

6 Conclusion and Future Work 

In this paper we presented a comprehensive study on the productivity of robotic 
groups during scale-up. As the size of robotic groups increased, effective coordina­
tion methods were critical towards achieving effective team productivity. The limited 
space inherent in many environments, such as the foraging and search domains we 
studied, makes this task difficult. Using our novel, non-domain specific definition of 
interference, we were able to equate between the effectiveness of various existing co­
ordination algorithms. Our interference metric measured the total time these robots 
dealt with resolving team conflicts and found a strong negative correlation between 
this metric and the corresponding productivity of that group. Groups demonstrated 
marginal gains only when their interference level was low. If the new robot added 
too much interference into the system, it detracted from the group's productivity 
and marginal productivity gains would cease. Gains during scale-up would always 
be achieved if interference was not present. We present our composite coordination 
methods as an example of how to achieve improved scalability through minimizing 
interference. 

Many robotic domains also contain the limited space and production resources 
that our foraging and search domains exemplify. We predict robotic groups involved 
with planetary exploration, waste cleanup, area coverage in vacuuming, and planning 
collision-free trajectories in restricted spaces will all benefit from use of our interfer­
ence metric. We plan to implement teams of real robots in these and other domains 
in the future. 
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Fig. 9. Fluctuations in Collisions over Time and the Corresponding Foraging Method 

We demonstrated in our paper that the spatial restrictions within robotic domains 
often prevented marginal gains from being realized as group sizes grew. The corol­
lary of this hypothesis is that marginal returns will always be achieved in domains 
that do not clash over resources. It is not surprising that groups of agents should 
therefore always realize marginal returns during scale up once group interference 
issues have be resolved or are not applicable. 

Many applications and extensions to our interference metric are possible. For fu­
ture work, we hope to address several directions for possibly extending our metric. 
This paper limited its study to homogeneous robots without communication. Ad­
ditionally, we did not study coordination methods which require pre-knowledge of 
their domain or algorithms that use other forms of preprocessing. We leave the study 
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of how to widen our metric to allow contrasting robots with differing capabilities 
such as communication, foreknowledge of domains, and preprocessing requirements 
for future work. We are hopeful that our interference metric will be useful for a range 
of applications. 
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Summary. Coordination of large groups of agents or robots is starting to reach a level of ma­
turity where prototype systems can be built and tested in realistic environments. These more 
realistic systems require that both algorithmic and practical issues are addressed in an inte­
grated solution. In this chapter, we look at three implementations of large-scale coordination 
examining common issues, approaches, and open problems. The key result of the comparison 
is that there is a surprising degree of commonality between the independently developed ap­
proaches, in particular the use of partial, dynamic centralization. Conversely, open issues and 
problems encountered varied greatly with the notable exception that debugging was a major 
issue for each approach. 

1 Introduction 

Coordinating large groups of intelligent robots to perform a complex task in a com­
plex environment requires meeting a range of challenges in an integrated solution. 
These challenges range from well-known algorithmic issues, e.g., managing the com­
putational complexity of task and resource allocation, to more practical issues, e.g., 
initialization and deployment of a large number of robots. In the past few years, 
a small number of systems have been developed that are capable of demonstrating 
real coordination between large numbers of robots in realistic domains. While ex­
tensively leveraging the large body of previous work, these systems required new 
techniques to deal with the practical complexity of coordinating a large group of 
robots. In this chapter, we look at three successful approaches to coordination to find 
commonalities and differences in the techniques used. The aim is to identify ideas 
that generalize across approaches as well as issues that appear to come up regardless 
of the approach used. 

Each of the applications and approaches described in this chapter involves at 
least 100 completely unselfish and cooperative group members. One application re­
quired coordination of simulated agents for a complex task, one involved 100 robots 
on an exploration and, tracking task and another involved hundreds of sensors for 
a montoring task. The group members are relatively homogeneous, although there 
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is always some heterogeneity due to location. Thus despite being relatively homo­
geneous in design, the agents were not always easily interchangeable. The complex 
tasks on which the teams were working were relatively decomposable, although con­
straints (either resource or spatial or both) existed between the decomposed subtasks. 
In all cases, the coordination algorithms had to deal with many of the issues faced by 
any multi-agent system, as well as complications due to scale. Since the applications 
involve at least somewhat realistic environments, the approaches were required to 
address a full spectrum of issues, including many practical challenges often ignored 
in the multiagent literature. Some of these practical challenges are well known, e.g., 
dealing with lossy communication or building reliable software, while others were 
more novel, e.g., working out how 100 robots can enter a building in a reasonable 
amount of time. 

While the approach to each application was developed independently of the oth­
ers and was underpinned by a diverse set of philosophies and constraints, there was a 
surprising amount of commonality in both the solutions and the open problems. Two 
specific, major commonalities were of particular interest. The first was that each 
approach used some form of dynamic, partial centralization to reduce the overall 
complexity. In particular, some decision-making responsibility for a small group of 
agents was dynamically assigned to an agent particularly able to make those deci­
sions. The form of the centralization varied greatly, from dynamic subteams to dis­
patchers to mediation. In each case, only a small subset of the team was involved in 
the centralization, and the agents involved, as well as the "center", were not chosen 
in advance. The reason for this commonality appears to stem from a need to balance 
the complexity of key algorithms and the practical limitations of time and commu­
nication resources. In situations where coordinated decision making involved a large 
percentage of the group, developers resorted to various heuristics for controlling re­
source requirements, and when a small percentage of the group was involved, partial 
centralization was used. Although the reason for it is unclear, it is noteworthy that 
no optimal completely distributed algorithms were used, perhaps because in cases 
where they were applicable partial centralization was more efficient. 

Most likely related to the dynamic localized centralization, the second notable 
commonality between the three approaches was that the coordination was neither 
simple and relying on emergent properties nor highly structured with top-down guid­
ance. While the lack of top-down structure was at least partially due to the decom-
posibility of the task, there was more structure to the coordination than the task, 
indicating that the coordination was not simply designed to mirror the task. Interest­
ingly, none of the approaches were inspired by any particular organizational theory, 
human or biological. Structure limited the decisions that could be made by an in­
dividual, including who that individual could communicate with about what, what 
tasks the individual could perform, and protocols for making coordinated decisions. 
For example, in one of the approaches, the notion of a subteam was strictly defined 
and carried certain responsibilities that were often not required for best coordinated 
behavior, but simplified the possible organizations that could occur. Although not 
explicit in any of the designs, it appears that each approach carefully balanced im­
posed structure for making the coordination intelligible to a human and flexibility 
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for allowing the group to find the best way to complete a task. The need for intelligi­
bility was key when programming, testing, deploying and improving the system, but 
the additional structure limited the potential of the team. Future development tools 
may open the possibility to decrease the amount of structure and, thus, increase the 
potential of the group. 

In contrast to the high degree of commonality between the approaches used, the 
problems encountered and the major open problems were varied. In two of the ap­
proaches, determining appropriate parameters for heuristics was identified as a prob­
lem. In two approaches, there was unwanted emergent behavior. In one approach, 
sharing information was a problem. It does not appear that any of the approaches are 
immune to the problems encountered by the others, only that the specific problems 
were not induced by the specific applications. This diversity of problems and open is­
sues is especially interesting since the approaches had so much in common. However, 
it is unclear what to conclude from this, since one might come to the mutually exclu­
sive conclusions that the basic approach was poor and problems manifested them­
selves in different ways or that the approach was fundamentally good and time was 
spent on more detailed issues. More applications are required for a definitive conclu­
sion. In each approach, debugging was found to be a major difficulty with only the 
most rudimentary support available for debugging extremely complex, distributed 
applications. The most stunning evidence of this problem is that all approaches re­
ported that major bugs went unnoticed for extended periods of time, before being 
discovered by chance. The bugs went unnoticed because the overall behavior was 
not accurately predicted in advance, so disappointing performance was attributed to 
causes other than faulty software. 

In the remainder of this chapter, we briefly describe the way each of the three 
approaches addresses a variety of problems. By showing in detail the commonalities 
and differences, we provide a fair comparison of the approaches. Finally, open, im­
portant problems, identified in the development of the systems, are described to help 
shape the research agenda for large-scale coordination. 

2 Applications and Assumptions 

Each of the applications involves at least 100 cooperative entities and has been tested 
either in hardware or realistic simulation of hardware. Although specific communi­
cation restrictions differ, communication is identified as a much bigger limitation 
than computation. None of the applications requires optimal performance; instead, 
the focus is on doing a large task robustly. 

2.1 Teamwork and Machinetta 

Machinetta software proxies are used to develop teams where the members are as­
sumed to be completely cooperative and willing to incur costs for the overall good of 
the team [20]. Typically, team members will be highly heterogeneous, ranging from 
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simple agents and robots to humans. When a group of agents coordinates via team­
work they can flexibly and robustly achieve joint goals in a distributed, dynamic and 
potentially hostile environment [7, 9]. Key teamwork algorithms have evolved from 
an extensive body of work on both the theory and practice of teamwork [23, 8, 3]. 
Teams of heterogeneous actors have potential applications in a wide variety of fields, 
ranging from supporting human collaboration [1, 22] to disaster response [16] to 
manufacturing [9] to training [23] to games [10]. To date we have demonstrated 
teams of 500 software agents [21], in both a UAV simulation [19] and a disaster 
response simulation, but teams of as many as 200,000 agents are envisioned. 

Given the complexity of the domains, tasks, and heterogeneity of the team, we 
typically assume that optimality is not an option. Instead, we look for satisficing 
solutions, that can achieve the goals rapidly and robustly. The assumption is that 
doing something reasonable is a very good start. For example, in a disaster response 
domain, we assume that it is better to have fire trucks on reasonable routes to fires, 
than to delay departure with computationally expensive optimization. While the team 
will be able to leverage reasonably high bandwidth communication channels, we 
assume that the bandwidth is not sufficiently high to allow centralized control. The 
team will need to achieve complex goals in a complex, dynamic domain. We assume 
that some decomposition of the complex task into relatively independent subtasks 
can take place. 

2.2 Centibots Dispatching 

Funded by DARPA, the CENTIBOTS project is aimed at designing, implementing, 
and demonstrating a computational framework for the coordination of very large 
robot teams, consisting of at least 100 small, resource-limited mobile robots (CEN­
TIBOTS, see Figure 1), on an indoor search-and-rescue task. In this project, commu­
nication was limited and unreliable, and any coordination mechanisms had to deal 
with the limitations. There are two types of agents in the Centibots system; hence, 
heterogeneity is not an issue. Similarly, optimality is infeasible, so having a reactive, 
"good enough" system was the primary aim. 

In the scenario, the CENTIBOTS are deployed as a search-and-rescue team for 
indoor missions. A first set of mapping-capable CENTIBOTS surveys the area of in­
terest to build and share a distributed map highlighting hazards, humans, and hiding 
places. A second wave of robots, with the capability of detecting an object of interest 
(e.g. biochemical agents, computers, victims), is then sent. The key goal of the sec­
ond wave is to reliably search everywhere and report any findings to the command 
center. These robots are then joined by a third wave (possibly the same robots used 
during the second wave) of tracking robots that deploy into the area, configuring 
themselves to effectively sense intruders and share the information among them­
selves and a command center [11]. 

Communication is done using an ad-hoc wireless network, which has a maximum 
/̂za re J bandwidth of 1 Mpbs. Communication is not guaranteed because as the robots 

move to achieve their own missions, links between the agents are created and lost. 
Because the robots fail, break, and get lost, planning the entire mission ahead of 
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Fig. 1. 100 Robots used during the January 2004 evaluation. 

time is not possible. Essentially, there is no chance that all the robots will finish 
the mission. In addition, resources (i.e. robots) and goals can be added, removed, or 
disabled at any time, making an adaptable system crucial. 

2.3 Cooperative Mediation 

Scalable, Periodic, Anytime Mediation (SPAM) [12] is a cooperative-mediation-
based algorithm that was designed to solve real-time, distributed resource allocation 
problems (RTDRAP). SPAM was developed to coordinate the activities of hundreds 
to thousands of agents that controlled sensors within a large sensor network as part 
of the DARPA Autonomous Negotiating Teams (ANTS) program (see figure 2). 

In this project, sensors were randomly placed in the environment and had to co­
ordinate their internal schedules in order to discover and track moving targets. Each 
of the sensor platforms had three Doppler-radar-based sensor heads capable of re­
turning amplitude and frequency shift information for objects within their 20-foot 
range and 120-degree viewable arc. Because of this, multiple, temporally coordi­
nated measurements from different sensors within the network were needed in order 
to triangulate the precise position of a target at any given time. In addition, each of 
the sensor platforms was controlled by a Basic stamp micro-controller that was ca­
pable of processing the incoming sensor data from only one head at a time. These 
two factors when combined together formed the basis of a difficult, distributed re­
source allocation problem that was further complicated by dynamics created by the 
movement of the targets. 

Adding to the complexity of this problem, communications varied from 100 
Mbps TCP-based wired networks to 14.4 kbps half duplex, RF-based, multichannel 
wireless communications. In the latter, message passing was very unreliable and loss 
rates of 50% were not uncommon. The communication restrictions combined with 
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Fig. 2. Researchers work on a demonstration involving 36 sensors and 3 mobile targets. 

the real-time coordination needs made complete centralization out of the question 
and traditional distributed techniques inadequate. 

SPAM has been tested in real-world hardware environments with 36 sensors and 
in simulated environments with more than 500 sensors. 

3 Key Algorithms and Principles 

Although distinct approaches are used, i.e., teamwork, hierarchical dispatching and 
cooperative mediation, each approach imposes some limited, flexible structure on the 
overall group. Notice that a central aim of each approach is to efficiently, robustly, 
and heuristically allocate and reallocate tasks and resources. 

3.1 Machinetta and Teamwork 

A key principle in teamwork is that agents have both models of teamwork and mod­
els of other team members [21]. The models are used to reason about which actions 
to take to achieve team goals. Having explicit models with which the agents can rea­
son leads to more robustness and flexibility than fixed protocols. The key abstraction 
in our implementation of teamwork is a Team Oriented Plan, which breaks a com­
plex joint activity down into individual roles, with constraints between the roles [18]. 
Typically, a large team will be executing many team-oriented plans at any time. Dy­
namically changing subteams form to execute each of the plans. Small amounts of 
communication occur across subteams, to ensure that sub-teams do not act at cross 
purposes or duplicate efforts. 

Scalable algorithms required to perform the teamwork were designed with two 
key ideas in mind. First, we use probabilistic models of team activity and state to 
inform key algorithms. This actually leverages the size of the team because the prob­
abilistic models tend to be more accurate with a large number of agents, since local 
variation gets canceled out more effectively. The teamwork algorithms are designed 
to leverage the probabilistic models to make very rapid decisions that are likely to be 
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at least "reasonable". Second, we note that when there are very many team members, 
Murphy's Law"̂  applies, simply because everything happens so many times. Creating 
efficient, lightweight software that is simple enough to be implemented reasonably 
quickly, yet robust enough to be used in teams with thousands of agents, is as much 
a function of the algorithms as it is of the actual code. Significant emphasis must 
be placed on designing algorithms that are sufficiently simple to be straightforward 
to implement in a very robust maimer. Specifically, most key algorithms use tokens 
to encapsulate "chunks" of coordination reasoning [19]. A good example of these 
principles is in our algorithm for ensuring that the team is not working on conflict­
ing plans. That algorithm uses tokens, for robustness, and the associates network to 
ensure, with high probability, that the team is not working at cross purposes. 

These two principles are embodied in the role allocation process that uses a prob­
abilistic model of the current capabilities and tasks of the team to calculate a thresh­
old capability level that a team member performing a role would have in a good 
overall allocation, and then uses a token that moves around the team until an avail­
able team member is found with capability above the threshold [5]. 

3.2 Centibots Dispatching 

Once the Centibots have produced a map as a bitmap image, an abstraction is needed 
so search goals can be created to ensure that all space is searched. The abstraction 
is done by building a Voronoi diagram from the map, and then the Voronoi skeleton 
is abstracted into a graph. This abstraction is solely based on the sensor capabilities 
of a robot. Once we have all the goals generated, coordination is required to allocate 
them to a pool of robots. 

To coordinate the robots' activities, we use a hierarchical dispatching system, 
where robots can register with multiple dispatching agents, one of which is consid­
ered "preferred". Teams of robots are formed by a commander, and for each team, 
a manager or dispatcher is selected. The manager selection is unimportant as known 
solutions can be used. The commander assigns a set of goals to each team and the 
teams' dispatchers assign these to individual robots. When a robot has finished its 
assigned goals, it notifies the dispatcher, making itself available, and asks for a new 
goal. 

A key problem for Centibots was the strategy used by a dispatcher to assign goals 
to robots. Since all robots started from the same position, the problem is to minimize 
the search time. This allocation is in theory similar to a multiple traveling salesman 
problem except that there is no a priori notion of how many salesmen you might have, 
and a salesman can fail at any time during the traveling. Given these constraints, we 
found, after trying several techniques, that the best strategy for the dispatcher is to 
send the robot the farthest away for the first goal and then minimize its movement by 
taking the closest goals after the first one. 

Anything that can go wrong will go wrong. 
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3.3 Cooperative Mediation 

SPAM works by having one or more agents concurrently take on the role of media­
tor. An agent decides to become a mediator whenever it identifies a conflict with a 
neighbor (both scheduled a sensor for use at the same time) or it recognizes a sub-
optimality in its allocation (it could achieve higher utility if it changed its sensor 
assignment). As a mediator, an agent solves a localized portion (or subproblem) of 
the overall global problem. In SPAM, this subproblem entails the agents with which 
the mediator shares sensor resources. As the problem solving unfolds, the mediator 
gathers preference information, from the agents within the session, which updates 
and extends its view and overlaps the context that it uses for making its local deci­
sions with that of the other agents. By overlapping their context, agents understand 
why the agents within the session have chosen a particular value that allows the sys­
tem to converge on mutually beneficial assignments. 

This technique represents a new paradigm in distributed problem solving. Un­
like current techniques that attempt to limit the information the agents use to make 
decisions in order to maintain distribution [28, 27], SPAM and more generally coop­
erative mediation centralize portions of the problem in order to exploit the speed of 
centralized algorithms. 

4 Key Novel Ideas 

New ideas were required to overcome weaknesses in the principles as approaches 
were scaled from small numbers of agents to the large numbers needed for the coor­
dination. 

4.1 Machinetta and Teamwork 

There are a variety of novel ideas in the Machinetta proxies. To maintain cohesion 
and minimize conflicted effort, the whole team is connected via a static, scale free 
associates network [21]. As well as the obligation to communicate information to 
members of its dynamically changing subteam, as required by teamwork, an agent 
must keep its neighbors in the associates network appraised of key information. The 
network allows most conflicted or duplicated efforts to be quickly and easily detected 
and resolved. Movement of information around the team, when team member(s) re­
quiring the information are not known in advance, also leverages the associates net­
work. Every time information is communicated, the agent receiving the information 
updates a model of where it might send other information, based on information 
received to date [26]. Because of a phenomenon known as small worlds networks, 
information passed around a network in this manner can be efficiently sent to the 
agent(s) requiring the information. 

Allocating roles in team-oriented plans to best leverage the current skill set of 
the team is accomplished by a novel algorithm called LA-DCOP [5]. LA-DCOP 
extends distributed constraint optimization techniques in several ways to make it 
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appropriate for large, dynamic teams. Most important, LA-DCOP uses probabilistic 
models of the skills of the team and the current roles to be filled to estimate the 
likely skill of an agent filling a role in a "good" allocation. To take advantage of 
human coordination reasoning, when it is available, we represent all coordination 
tasks explicitly as coordination roles and allow the proxy to meta-reason about the 
coordination role [20]. For example, in a disaster response domain, there may be a 
role for fighting some particular fire that no firefighter is able to fill. The proxies can 
recognize this and send the role to some person and allow that person to determine 
what action to take. 

4.2 Centibots 

The hierarchical dispatching model offers two key interesting qualities. The com­
munication is minimal since the dispatcher is eavesdropping on the status message. 
Assuming the status message is required, then using a centralized dispatching will 
outperform any distributed methods. The drawback is the need of communication 
between the team of robots and the dispatcher. We assume that the dispatcher is a 
network service that resides physically anywhere on the network. The dispatcher 
can be running on any team member, and would require only local communication. 
The second quality is a natural hierarchy can be created to handle a large number 
of robots. In this configuration, we could have a hierarchy of dispatchers, each re­
sponsible for an area of the map, using a subteam of robots. Each robot can already 
subscribe to several dispatchers. If a dispatcher has completed all its goals, then it 
can release its assets for other dispatchers to use, achieving a load-balancing sys­
tem. Like the SPAM system, the Centibots architecture leverage the power of the 
mediation by centralizing a sub portion of the problem. 

4.3 Cooperative Mediation 

The key principle that allows SPAM to be scalable is the heuristic restriction of the 
size of the subproblem that the mediators are able to centralize. Mediators in SPAM 
are only allowed to conduct sessions including agents with which they directly share 
resources. Although this prevents the search from being complete, in all but the most 
tightly constrained problem instances, this technique limits the amount of communi­
cation and computation that must occur within any single mediator. The downside to 
this heuristic approach, however, is that the mediators have less information and are 
often unaware of the consequences of their actions on other agents. To combat this 
effect, SPAM incorporates the use of conflict propagation and conflict dampening. 

As the name implies, conflict propagation occurs whenever a mediator causes 
conflicts for agents that are outside of one of its sessions. It easy to envision this 
as the mediator pushing the conflicts onto agents over which it has no control (or 
responsibility). The key goal of the propagation is to find regions within the global 
resource problem that are under-constrained and can absorb the conflict. The actual 
propagation occurs when one the agents that has the newly introduced conflict takes 
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over the role of mediator. These agents can then either absorb the conflict (by find­
ing a satisfying assignment to their subproblem) or can push the conflict onto other 
agents, which may push it even further. 

It is easy to see that conflict propagation alone would have disastrous conse­
quences if it were not for conflict dampening. Conflict dampening is very similar 
to the min-conflict heuristic presented in [13]. When an agent mediates, it gathers 
information about the impact of particular assignments from each of the agents in­
volved in the session. This allows the mediator to choose solutions that minimize the 
impact on agents outside of its view. Overall the effects of conflict propagation and 
dampening can be visualized as ripples in a pond that eventually die down because 
of the effects of friction and gravity. 

SPAM also incorporates a number of resource-aware mechanisms that prevent 
it over-utilizing communication. In particular, SPAM monitors the state of the com­
munications links between itself and other agents and when it notices that one of 
the agents in the session has become overburdened, it is dropped from the session. 
In addition, if an agent notices that it has become a communication hotspot, then it 
avoids taking the role of mediator until the situation resolves itself. Overall, these 
mechanisms allow SPAM to tradeoff utility for scalability of communications. 

5 Software 

We describe the major pieces of technology, specifically software, that are used for 
the coordination in each of the approaches. 

5.1 Machinetta and Teamwork 

The teamwork algorithms are encapsulated in domain-independent software proxies 
[17]. Each member of the team works closely with its own proxy. The proxy handles 
all the routine coordination tasks, freeing the agent to focus on specific domain-level 
tasks. The proxy communicates with the domain-level agent (or robot or person) via 
an agent-specific, high-level protocol. Adjustable autonomy reasoning is applied to 
each decision, allowing either the agent or the proxy to make each coordination deci­
sion [20]. Typically, all decisions are made by the proxy on behalf of agents or robots, 
but when the proxy is working with a person, key decisions can be transferred to that 
person. The current version of the proxies is called Machinetta and is a lightweight 
Java implementation of the successful SOAR-based TEAMCORE proxies [21]. The 
proxies have been successfully tested in several domains including coordination of 
UAVs, disaster response, distributed sensor recharge, and personal assistant teams. 
The proxy code can be freely downloaded from the Web. The application-dependent 
aspects of the proxies, specifically the communication code and the interface to the 
agents, are implemented as "pluggable" modules that can be easily changed for new 
domains, thus improving the applicability of the proxies. The proxy software is freely 
available on the Internet. 
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5.2 Centibots 

The Centibots software makes an extensive use of the Jini [24] architecture. Each 
robot and each key algorithm is a network service that registers, advertises and inter­
acts independently of its physical location. We have services like the map publisher 
that aggregates data from the mappers and publishes a map for the other robots, and 
like the dispatcher that allocates tasks to robots or even the user interface. The result 
is a very modular, scalable infrastructure. Each robot has its own computer where it 
runs localization, navigation, path plarming, and vision processing algorithms. 

5.3 Cooperative Mediation 

The SPAM protocol is implemented both within simulation and as part of more com­
plex agents designed to work on sensor hardware. The protocol itself is composed of 
several finite state machines (FSMs) that are written in Java. Each state in the FSM 
encapsulates a nondecomposable decision point within the protocol. Transitions be­
tween states are event driven and allow the protocol to specify state transitions based 
on time-outs, message traffic, specific execution conditions, and so on. This allows 
the protocol to be time and resource aware, modifying its behavior based on the 
current environmental conditions. SPAM is currently being considered for use in a 
number of domains, including real-time airspace deconfliction and the control of 
sensors for severe weather tracking. 

6 Key Unexpected Challenges 

Challenges were encountered during development that were not expected at the out­
set. Each approach ran into different, unexpected problems, ranging from sharing 
information to controlling oscillations. 

6.1 Machinetta and Teamwork 

Two main unexpected challenges occurred during the development of large teams. 
First, it was often the case that some team member had information that could be 
relevant to some other member of the team, but did not know to which other team 
member the information was relevant. For example, in a disaster response domain, 
an agent may get information about chemicals stored in a particular factory, but not 
know which firefighters will be attending that fire. Restricting knowledge of current 
activities to within a subteam provides scalability but reduces the ability of other 
team members to provide potentially relevant information. Previous approaches, in­
cluding blackboards, advertisement mechanisms and hierarchies, do not immediately 
solve this problem in a manner that can effectively scale. To address this problem we 
made use of the fact that the associates network connecting team members had a 
small worlds property and allowed an agent to push information to its neighbor most 
likely to be able to make use of that information or know who would [26]. 
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The second unexpected problem encountered was that there were many algo­
rithm parameters that interact with one another in highly nonlinear ways. Moreover, 
slightly different situations on the ground require substantially different configura­
tion of the algorithm parameters. Determining appropriate values for all parameters 
for a given domain is as much art as science and typically requires extensive experi­
mentation. When the situation changes significantly at runtime, an initially appropri­
ate configuration of algorithm parameters can end up being poor. We are currently 
developing techniques that use neural networks to model the relationships between 
parameters and assist the user in finding optimal settings for specific performance 
requirements and tradeoffs. 

6.2 Centibots Challenges 

The two main challenges we had to face are the instability of the communications and 
the number of goals to be assigned per agent. In this project, the communication was 
coordinated assuming a very conservative range for the wireless network. Unfortu­
nately, we have encountered more than once parts of buildings where this conserva­
tive distance was not working. In this case, any robot that enters this communication 
dead zone will not be able to contact the centralized dispatcher. Our solution was to 
have the dispatcher living on close-by robots , which was a good improvement but 
did not completely solve the problem. As a result, we had to implement a low-level 
behavior where the robot, after waiting a known timeout, will return to its original 
starting position if it could not contact the dispatcher. In this case, at least we would 
retrieve it. 

The second challenge was to determine the number of goals to assign to a robot. 
There was no way to know a priori how many robots would be part of the mission; 
therefore, a fair division of the number of goals was not possible. In section 5.2 
we have shown that the most effective dispatching would require an assignment of 
several close-by goals; the key question is how many. Since the number of robots 
assigned to the mission is unknown (robots assigned will break and the commander 
may reassign others in the middle of the mission), the solution we use is an empirical 
function. The number of goals assigned varies (one to seven) depending on the num­
ber of goals left to be assigned. At the end of each run we collect the number of goals 
fulfilled by each robot and we collect each ending time; if there is a large variation 
(meaning some robots were under-utilized and others were overutilized) we vary the 
total number of goals to be assigned. 

6.3 Cooperative Mediation 

Because the SPAM protocol operates in a local manner, a condition known as os­
cillation can occur. Oscillation is caused by repeated searching of the same parts of 
the search space because of the limited view that the agents maintain throughout the 
problem solving process. 

During the development of the SPAM protocol, we explored a method in which 
each mediator maintained a history of the sensor schedules that were being mediated 
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whenever a session terminated. By doing this, mediators were able determine if they 
previously may have been in a state that caused them to propagate in the past. To stop 
the oscillation, the propagating mediator lowered its solution quality to force itself to 
explore different areas of the solution space. It should be noted that in certain cases 
oscillation was incorrectly detected by this technique, which resulted in having the 
mediator unnecessarily accept a lower-quality solution. 

This technique is similar to that applied in [14], where a nogood is annotated 
with the state of the agent storing it. Unfortunately, this technique does not work 
well when complex interrelationships exist and are dynamically changing. Because 
the problem changes continuously, previously explored parts of the search space need 
to be constantly revisited to ensure that an invalid solution has not recently become 
valid. 

In the final implementation of the SPAM protocol, we allowed the agents to enter 
into potential oscillation, maintaining almost no prior state from session to session 
and relied on the environment to break oscillations through the movement of the 
targets, asynchrony of the communications, timeouts, and so on. 

7 Open Problems 

As with the unexpected problems, each approach has different open problems. Even 
though most of the problems appear to be reasonably approach independent, e.g., 
traffic control in Centibots, neither of the other approaches has specific solutions to 
that problem, suggesting that the problems may be general. 

7.1 Machinetta and Teamwork 

Despite its successes, Machinetta has some critical limitations. Most critically, Ma­
chinetta relies on a library of predefined team-oriented plan templates. While some 
constructs exist for expressing very limited structure in the plans, these constructs 
are hard to use. In practice, to write successful Machinetta plans, the domain must be 
easily decomposable into simple, relatively independent tasks. The ability to write 
and execute more complex plans is a pressing problem. 

While the probabilistic heuristics used by Machinetta are typically effective and 
efficient, occasionally an unfortunate situation happens and the resulting coordina­
tion is very poor. Sometimes the coordination will be unsuccessful or expensive be­
cause the situation is particularly hard to handle, but sometimes it will be that the 
particular heuristic being used is unsuited to the specific situation. Critically, the 
agents themselves cannot distinguish between a domain situation that is difficult to 
handle and a case where the coordination is failing. For example, it is difficult for a 
team to distinguish between reasonable role allocation due to a dynamic and chang­
ing domain and "thrashing" due to a heuristic not being suited to the problem. While 
individual problems, such as thrashing, can be solved on an ad hoc basis, the gen­
eral problem of having the team detect that the coordination is failing is important 
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before deploying teams. If such a problem is detected, the agents may be able to re­
configure their algorithms to overcome the problem. However, as mentioned above, 
determining how to configure the algorithms for a specific situation is also an open 
problem. 

7.2 Traffic Control in Centibots 

Linked to the goal assignment, traffic control for several dozen robots in a small 
environment is a huge challenge. The assignment should take into consideration the 
schedule in which each robot will do its tasks to prevent deadlocks. For a robot, a 
doorway is a very narrow choke point, and only one robot can go through at one 
time. When more than two robots try to enter and exit the same room at the same 
time, you have a conflict. Currently we are not managing this problem; luck and local 
avoidance is how we solve it. We have seen in our dozens of real-life experiments 
some conflicts becoming literally traffic jams and blocking permanently one access 
of an area. The only way to reason about the choke point is as resource and solve the 
conflict during the assignment by using a method such as SPAM. 

7.3 Cooperative Mediation 

The most interesting open questions for the SPAM protocol deal with the when, 
why, and whom for extending the view of the mediators given different levels of en­
vironmental dynamics and interdependency structures. Because the optimality and 
scalability of the protocol are strongly tied not only to the size, but to the charac­
teristics of the subproblem that the mediators centralize, a detailed study needs to 
be conducted to determine the relationship between these two competing factors. 
Some work has already been done that preliminarily addresses these questions. For 
example, the whom and why to link questions were in part addressed in the texture 
measures work of Fox, Sadeh, and Baycan [6]. In addition, recent work on phase 
transitions in CSPs [2, 4, 15] in part addresses the question of when. It is clear that a 
great deal of work still needs to be done. 

8 Evaluation and Metrics 

We agree that evaluating the algorithms and the metrics used to measure performance 
is an immature and difficult science. Clearly, useful and comparable metrics will need 
to be developed, if sensible comparison is to be performed. 

8.1 Machinetta and Teamwork 

Evaluating teamwork is very difficult. While success at some particular domain-level 
task is clearly a good sign, it is a very coarse measure of coordination ability, and 
thus it is only one aspect of our evaluation. To ensure that we are not exploiting 
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some feature of the domain when evaluating the algorithms, we have endeavored to 
use at least two distinct domains for testing. Moreover, typically it is infeasible to 
test head to head against another approach; hence, we are limited to varying param­
eters in the proxies. For the larger teams, a single experiment takes on the order of 
an hour, severely limiting the number of runs that can be performed. Unfortunately, 
because of the sheer size of the environment and the number of agents, there tends 
to be high variation in performance, implying that many runs must be performed to 
get statistically significant results. Even determining what to measure in an exper­
iment is a difficult decision. We measure things like number of messages, number 
of plans created, roles executed and scalability, although it is not clear how some of 
these numbers might be compared to other algorithms. Typically, we measure global 
values, such as the overall number of messages rather than local values such as the 
number of messages sent by a particular agent. 

Since there are no modeling techniques available for mathematically analyzing 
the algorithms'performance, we have developed a series of simple simulators that 
allow specific algorithms to be tested in isolation and very quickly. These simulators 
typically also allow comparison against some other algorithms. Currently, we have 
simple simulators for role allocation, subteam formation, and information sharing. 
Performing very large numbers of experiments with these simulators, we are able 
to understand enough about the behavior of the algorithms to perform much more 
focused experimentation with the complete Machinetta software. 

8.2 Centibots Evaluation 

This project was driven by the challenge problem set by DARPA and in this sense 
the evaluation was independently done by a DARPA team that has measured the be­
haviors of the Centibots software to solve the search-and-rescue mission, not purely 
the coordination. For a week in January 2004, the Centibots were tested at a 650m^ 
building in Ft. A.P. Hill, Virginia. They were tested under controlled conditions, with 
a single operator in charge of the robot team. 

For searching, the evaluation criteria were time to locate object of interests 
(OOIs), positional accuracy, and false detections. There were four evaluation runs, 
and the results, in the Table 1, show that the team was highly effective in finding the 
object and setting up a guard perimeter. Note that we used very simple visual detec­
tion hardware and algorithms, since we had limited computational resources on the 
robots - false and missed detections were a failure of these algorithms, rather than 
the spatial reasoning and dispatching processes. 

The results were not focused on the coordination portion but measured the overall 
performance of the system to solve the search-and-rescue mission. As explained in 
the next section, extracting meaningful data from such a system is not an easy task. 

8.3 Cooperative Mediation 

The SPAM protocol was implemented and tested within a working sensor network, 
but most of the development and analysis of the protocol was done in simulation. 
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Run 

1 
2 
3 
4 

Avg. 

Mapping Time 

22min 
26min 

17 min (2 robots) 
19 min (2 robots) 

21 min 

Map 
Area 
96% 
97% 
95% 
96% 
96% 

Search 
Robots 

66 
55 
43 
42 
51 

Search Time 
False Pos 
34 min / 0 
76 min /1 
16 min/O 
Missed / 2 

30 min / 0.75 

Position Error / 
Topo Error 

11 cm / none 
24 cm / none 
20 cm / none 

NA 
14 cm / none 

Table 1. Results of the four evaluation runs. 

The primary metrics used to measure SPAM were the number of targets being 
effectively tracked during a fixed period of time, the number of messages being used 
per agent, and the social utility being obtained. For this problem, social utility is 
defined as the sum of the individual utilities for each target with penalties assigned 
for ignoring objects. 

Targets 

Fig. 3. Percentage of optimal utility for SPAM and greedy solutions. 

We implemented two alternative methods for comparison. The first, which are 
called greedy, involved having each agent request all possible sensing resources to 
track its target, potentially overlapping with the requests of other agents. The utility 
calculation treated these overlaps as subdivided sensor time for each of the tracks. 
We also implemented algorithms to calculate the optimal utility and optimal number 
of tracks. Because these algorithms took so long to find the optimal solution however, 
we were forced to restrict the size of the problems to less than 10 targets. Overall, 
SPAM performed nearly optimally under various amounts of resource contention 
(see Figure 3). Independent analysis of the protocol was also conducted in [25], 
which verified these findings. 
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9 Testing and Debugging 

Testing and debugging of the approaches is perhaps the most unexpectedly difficult 
area. Despite the sophisticated basic approaches and the relatively straightforward al­
gorithms used, debugging always degenerated into a process of pouring over logfiles, 
which is clearly inappropriate if such systems are to be widely used. 

9.1 Machinetta and Teamwork 

Testing and debugging Machinetta teams is extremely difficult. Probabilistic reason­
ing and complex, dynamic domains lead to occasional errors that are very hard to 
reproduce or track down. We have extensive logging facilities that record all the de­
cisions the proxies make, but without tool support determining why something failed 
can be extremely difficult and time-consuming. Simple simulators play a role in al­
lowing extensive debugging of protocols in a simplified environment, but the benefit 
is limited. We believe that development tools in general, and testing and debugging 
support specifically, may be the biggest impediment to the deployment of even larger 
teams. 

9.2 Centibots 

Debugging is especially difficult because overall the system is behaving correctly. 
In one experiment, we had 66 robots in use at one time, producing over 1 MB of 
logs and debugging information per minute. We ran our experiment for more than 2 
hours. In Centibots, we have a very sophisticated logging mechanism that writes ev­
ery event, every message and information in an SQL database. By using the database, 
it is possible to replay an entire experiment. We also built SQL scripts that can extract 
statistics such as average running time per robot, average traveling time per robot, 
and number of goals fulfilled per robot that are very useful to the debugging process. 
Unless the system is performing very strangely, noticing the presence of bugs is ex­
tremely hard. In fact, one bug persisted for more than a year before being detected 
and fixed, leading to a dramatic improvement in performance. 

9.3 Cooperative Mediation 

Even with specialized simulation environments, testing and debugging coordination 
protocols that operate in the large is very difficult. On reasonably small problems 
involving tens of agents, noncritical problems often went unnoticed for long periods 
of time. We encountered a number of problems in trying to debug and test SPAM. 

In the end, countless hours were spent pouring over many large log files, adding 
additional debugging text, rerunning, and so on. We did develop several graphical 
displays that helped to identify pathologies (or emergent behaviors) that could be 
witnessed only by viewing the system's performance from a bird's eye perspective. 
It is clear that a combination of macro and micro debugging methods is essential to 
developing systems of this type. 
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10 Conclusion 

We have presented three initial attempts at performing large-scale coordination 
among robots or agents. We have shown striking similarities between the approaches 
that raise interesting scientific questions that must be addressed in a principled way. 
Critically, design of the coordination seems to be driven more by the difficult chal­
lenge of developing the software to implement it than by principles or theory. It will 
be important, for the field to move forward, to balance (or mitigate) development 
complexity with algorithmic performance in a better way than has been done so far. 
If these challenges can be met, the promise of large-scale coordinating is very excit­
ing. 
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One of the most compelling characteristics of multi agent systems is the ability to 
form coalitions to share their resources, create plans, share execution of tasks, etc. 
The work presented in this article offers scalable methods for finding potential coali­
tion partners when not all agents in a large multi-agent system are known to the 
agents in need of help to achieve their goals. A new algorithm for finding partners 
in a MAS, based on concepts inspired by peer-to-peer networks, is described. The 
proposed algorithm design aims to provide a new, completely decentralized scheme 
that can be used by agents to gather information needed to make decisions about po­
tential partners. The proposed algorithm is competitive with centralized approaches 
in smaller multi-agent systems and provides better scalability for larger systems. 

1 Introduction 

Multi-Agent Systems (MAS) are a particular field of distributed systems research, 
where nodes that comprise the system, termed Agents [20], have characteristics such 
as reactivity, autonomy, pro-activeness and social ability. These systems are some­
times referred to as Distributed Artificial Intelligence [8], since the agents in these 
systems often borrow ideas from the field of artificial intelligence to achieve their 
goals. 

Among the characteristics of an agent system is the ability of different agents 
to work together to solve problems. Often when working on a goal, agents will dis­
cover that they lack the needed resources to accomplish that goal, or that work could 
be done more efficiently if other agents were helping by providing access to the re­
sources they have available. By forming partnerships, agents can make use of the new 
resources provided by the partners to more efficiently work towards their objectives. 
There are several ways in which agents can cooperate [16]. These include but are not 
restricted to load-balancing (distributing the task of working on large computations), 
resource sharing (allowing other agents to use your resources if they need them to 
accomplish their objectives) and action coordination (agents planning together and 
deciding on a set of actions, aiming at maximizing the outcome of some effort). 

mailto:vanzin@lips.utexas.edu
mailto:barber@mail.utexas.edu
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There is no single solution to the problem of how to find information about these 
other agents in the system, and which resources they have. Different approaches 
have been proposed for forming coalitions [1, 14, 15]. The work presented in this 
article provides a method and algorithm for finding and evaluating information about 
agents in open, large, distributed systems where knowledge about or connectivity to 
potential information sources may not be available. This research aims to improve on 
the qualities of existing approaches while avoiding some of the shortcomings these 
approaches, such as having a single point of failure or depending on some specific 
network functionality that may not be available to the agents. 

Finding partners is only the first part in the process of forming a coalition. Af­
ter or as a part of the coalition formation process, there are a number of issues re­
garding the scope of the coalition and the organizational structure of the members. 
For this research, coalition scope is defined by the goals the members will seek to 
achieve jointly. Organizationally, it must be determined which coalition members 
are making decisions about which goals and which members are taking actions to 
accomplish these goals. Therefore, we need a representation to identify decision­
making responsibility and execution authority within the coalition organization, giv­
ing agents a means to find and establish a coalition to best meet their goals. The 
representation used to capture a coalition's organizational structure is based on the 
concept of Decision-Making Frameworks (DMF) developed by Martin [7], which 
will be introduced briefly in a later section. 

2 Motivation 

The problem of coalition formation can be viewed as a composition of two separate 
problems: 

1. Finding partners: agents must determine what are their needs regarding their 
current goals, and, when not able to accomplish the goals by themselves, decide 
on a group of agents with whom they are interested in working. 

2. Forming the coalition: once enough knowledge exists about possible partners 
to form a coalition, the agent communicates its desires to those possible part­
ners and starts a negotiation that leads to having all the agents agree on some 
coordination protocol to carry out the different tasks. 

This research assesses the first step of the coalition formation process, finding 
partners in a MAS. In the scope of this research, the term "partners" will be used to 
refer to any agent in the system that can provide needed information or resources to 
an agent trying to achieve its goals. 

When looking for potential coalition partners, an agent must have enough infor­
mation about other agents in the system to be able to identify which agents con­
tain the resources needed to complete the tasks leading to the accomplishment of 
the agent's goals. This information is not available to the agent a priori: the agent's 
knowledge base has to be built in some manner. In an information rich environment, 
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it is crucial for an agent to have the ability to search for and evaluate potential part­
ners quickly and efficiently. 

Multi-Agent systems present several challenges for the agents in this respect. 
These include, but are not limited to: 

Opeimess: agents may enter and leave the system at any time, changing the distri­
bution of resources in the system. 

Scale: as more agents enter the system, agents looking for partners are faced with a 
huge amount of information about potential partners. 

Distribution: agents working in these systems are independent of each other. The 
implications of this are that agents make their own decisions when working to 
achieve their goals and do not have direct influence on the actions other agents 
take. 

Partial knowledge: related to the scale problem, this means that it is unfeasible for 
the agents to hold data about everything in the environment, for several reasons 
that will be discussed in more detail below. 

Partial cormectivity: agents will only be able to talk directly to a small subset of 
the agents currently in the system. This also means that communicating with 
different agents incurs different costs in terms of latency and number of hops 
needed to reach a respective agent. 

Addressing these challenges is important as agent systems become more com­
plex. Below the concept of Decision-Making Frameworks used to represent coali­
tions in the scope of this research is briefly introduced. Also, an analysis of current 
methods applied to solve the problem at hand is presented, showing the advantages 
and shortcomings of each approach and providing some examples of systems that 
employ these techniques. 

2.1 Decision-Making Frameworks 

Agents in a coalition need some representation to capture the organizational struc­
ture of the coalition. One possible representation is a Decision-Making Framework 
(DMF) [7]. A DMF is represented by a tuple, defined as: 

DMF= (D,G,C) , where: 
D : The set listing the agents acting as decision makers for the goals in G. 
G : A non-empty set of goals to which the coalition is committed. 
C : The set of agents that perform actions based on the decisions made by 

agents in the set D. 

Regardless of how the process of reaching agreements with the resulting mem­
bers of D and C is conducted, it is assumed that the agents already have enough 
knowledge about the system to be able to choose a set of partners for a new coali­
tion. While it is important to separate the process of finding the possible partners and 
the process of negotiating and establishing partnerships in order to enhance the sys­
tem's flexibility, finding the potential partners is an important step in the process of 



78 Vanzin and Barber 

forming the coalitions. The need for a scalable algorithm for finding this information 
about potential partners in an open, dynamic multi-agent environment is the main 
incentive for this research. 

2.2 The Problem of Finding Partners 

Looking for the potential partners for a coalition requires the agent to have enough 
information about other agents in the system to be able to identify which ones provide 
the resources required for its tasks. This information is not available to the agent a 
priori: the agent's knowledge base has to be built in some manner. 

Information about other agents in the system can come from many different 
sources. Some approaches to retrieving information about the environment are pre­
sented next. 

Broadcasting 

When searching for potential partners, agents could broadcast a request for a partner. 
Broadcasting involves sending a message that can be received by many, and possibly 
all, agents in the system. This may be done by using a communication infrastructure 
that allows broadcasting, or by sending the same message to several destinations, 
emulating the effect of a real broadcast domain. Once having received a message, 
the agents may choose to reply or not to the requests made in the message. The re­
questing agent then analyzes all the replies to form its internal model of the other 
agents and decide on possible partnerships. The main advantage of a system based 
on broadcasting messages is its simplicity in the case where a network infra-structure 
that supports broadcasting exists. On the other hand, its simplicity is also its disad­
vantage. 

The first problem is that it becomes non-trivial to emulate a broadcast domain 
over networks that do not support broadcast messages. Especially when considering 
wireless ad-hoc networks, broadcasting is not trivial and can be very expensive [19]. 
This is unfortunate, since this kind of setup is very interesting for the deployment of 
agents, as it does not require any existing network infra-structure to be available. 

Also, broadcasting makes it more difficult to protect the content of the messages, 
since all agents within reach of the message can read its contents. Cryptography may 
be used to allow only a subset of agents to read the message, but using this approach 
would require a complex key management scheme. 

Contract Nets [17] employ a protocol that uses broadcasting to find potential 
partners for possible partnerships. 

Environment Modeling 

The agents may maintain information about other agents in the system based on their 
interactions with those agents. 

The main advantage of this approach is reusing the information created by work­
ing with other agents in the system. The downside is that such information may not 
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form an accurate and up-to-date model: the models will be dated by the date of the 
interactions, which will vary depending on the agent. 

Also, requiring an agent to model the whole environment may be infeasible when 
the system is large or changes too quickly. In many cases, agents will have only 
limited memory and computational resources, limiting the amount of data they can 
hold and process at any time. Quickly changing systems pose a different challenge 
in this case: the changes may be occurring faster than the agent can notice these 
changes and update its model of the system, resulting in incorrect models that can 
negatively impact the work of the agent. 

Centralized Directory 

Using a central directory for information retrieval is common practice in several ap­
plications, due to its simplicity. Agents publish their information to a directory, and 
send a request to the directory when they need information about other agents, keep­
ing the agent implementation very trivial. Centralized systems also make scalability 
rather easy, by simply adding more directories to the system to handle the larger 
number of requests that might be made by the agents. 

The problems with the directory approach are the same as with other centralized 
systems. First of all, the system becomes reliant on a single entity, or a small number 
of nodes that act as a directory, allowing agents with malicious intent to easily attack 
the system and interfere with the work of other agents. Also, as the system grows, 
maintaining up-to-date information in the directory becomes harder, a problem that 
is even more difficult to solve when several directories are employed. In the case of 
multiple directories, there is also the problem of synchronizing information stored in 
the various directories. 

Another concern related to agent operations is trust. In a heterogeneous environ­
ment it may be the case that a single directory is not trusted by all the agents in 
the system. In such a case, agents may not be willing to release information about 
themselves to a directory, or may not want to use a particular directory to retrieve 
information they need. This is a concern that exists for every approach that might be 
chosen, but a centralized system makes it especially harder to solve: the agents have 
no other information source to rely on aside from the directories. 

An example of a centralized system would be one that uses the CoABS Grid [5] 
to find services. The CoABS Grid, while using more than one directory to hold infor­
mation, is still based on requiring agents to publish their information to a directory 
and retrieve information from agents designed to be directories in the system, thus 
still suffering from the shortcomings discussed above. 

Decentralized Information Exchange 

A different approach is a system where explicit communication between the agents 
is used to exchange information such as resource availability, coalitions or any other 
information that may be useful for the agents. 
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Some work has been done in the area of finding partners using a peer-to-peer 
approach, such as the Distributed Matchmaking (DM) work conducted by Ogston 
[9, 10, 11]. The work described herein, while sharing some characteristics with DM, 
has some fundamental differences. First, this research will not rely on a central au­
thority to maintain any kind of information, while DM still uses a central agent to 
hold information about the coalitions that are formed in the MAS. This research also 
expands the problem of finding partners in a MAS into the area of coalition forma­
tion, an area that is not explored by DM currently. 

In the next section we examine how the agents can efficiently model the environ­
ment and how they can collaborate with each other when constructing those models, 
leading to a decentralized solution for the problem of finding partners in a large 
MAS. 

3 Modeling Agents 

The first step towards having an efficient partner finding algorithm is to maintain a 
consistent model of the other agents in the system, creating an Environment Model. 
This model must capture enough information about the agents to allow the holder 
to decide on trying to form a partnership or not, given its purposes. Also, the envi­
ronment model needs to be regularly updated, since working with out-of-date infor­
mation in a dynamic environment may lead to wasted time, such as agents trying to 
form coalitions with other agents that may not anymore be suitable for the tasks for 
which they were wanted. 

To better understand how the modeling is done in the scope of this research, some 
clarification about how the agents represent their goals in the scope of this research 
is needed. A goal is defined as being a top-level task, comprised of a list of tasks that 
need to be executed by one agent. Tasks can be of two kinds: they can be atomic, 
meaning they cannot be decomposed and thus have to be executed by a single agent, 
or they can be decomposable, consisting of a list of other tasks (of either kind), 
meaning that if an agent cannot execute the task on its own, the task can be broken 
down and a group of agents can work to accomplish the respective task. 

Tasks require certain resources to be executed. It is assumed that the resources 
cannot be used remotely. Instead, the task requiring a set of resources needs to be 
assigned to an agent that has those resources. If the agent does not have all resources 
needed to accomplish the task, and the task is not decomposable, then it is said 
that the agent cannot execute the task. If the task is decomposable, each sub-task 
is analyzed individually, recursively. One assumption is made about the nature of 
decomposable tasks, though. Let's say that a decomposable task t\ needs a set of 
resources, /? == {ri, r2,..., r„}. It is assumed that for any task ti{ii^\) that is a subtask 
of ri, the set of resources needed by ti is a subset of /?, and is not equal to /?, and the 
union of all sets of resources needed by the subtasks of ri is equal to R. In summary: 
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^"^ {^u4^'"^4} ' set of subtasks of task r̂  
/?/ = {ri, r2,..., r„} : set of resources needed by ti 

U {Ri)=RkmdRiCRk 
i=l...n 

Agents build models of other agents in the MAS based on interactions. Gener­
ally, the agent will explicitly ask another agent for information, updating its internal 
model with the information received in return. But other kinds of interactions may 
also contribute to update the state of the internal model; for example, when trying to 
form a partnership, the agent being contacted may realize that it carmot execute some 
task anymore (e.g., because some resource it once had is not available anymore), so it 
may choose to send updated information about itself to the agent requesting the part­
nership and indicate another agent it knows about who can help with that particular 
problem. 

As discussed before, having the agent hold information about every other agent 
and the resources thos agents currently hold can lead to scalability issues and lots of 
wasted resources, from memory space to communication needed to maintain those 
models. In this research, agents can work with a limited amount of models and com­
municate with each other in case some needed information is not in their local knowl­
edge base. 

The approach taken for modeling other agents in the system is to maintain a 
mapping between the resources the agent knows about in the system and the agent(s) 
that provide those resources. Building from this, two other features have been built 
into the model allowing an agent to easily manage information about a group of 
agents that share some commonality: Similar Agent Groups and Complementary 
Agent Groups. 

Similar Agent Groups model a group of agents that provide similar resources. 
An agent orders similar agents internally according to an utility function. Similar 
agents can be used interchangeably for tasks that require the resources they share 
in common. This model can greatly simplify the work of searching for partners that 
provide a resource: a whole list of agents is readily available, in an arbitrary order 
defined by the agent. If the first agent in the list denies a partnership for some reason, 
it is easy for the agent to just choose the next one on the list, using the list as a 
"queue" of possible partners. 

Complementary Agent Groups (CAGs) define agents that, together, can work on 
solving a set of tasks.An agent can use the CAG information when it carmot work 
alone on a goal, and needs some way to keep track of which agents can help accom­
plish the tasks that comprise that goal. CAGs are flexible with regard to matching of 
agents to tasks. Depending on the needs of the agent building the model, the choice 
of which agent will be assigned to which task may be done in different ways, such 
as: 

• Minimize the number of agents in a coalition, in which case preference will be 
given to the agent that can execute a larger number of different tasks when choos­
ing among assignees for a task. 
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• Reduce the total cost of communication among the members in the partnership, 
thus giving preference to agents with which it can communicate more efficiently 
when looking for coalition partners. 

The experiments performed during this research used the "minimize coalition 
size" approach, meaning that the agents will choose the partners that can execute the 
most tasks, even if that incurs higher communication costs. 

4 Searching for Partners 

This section introduces an algorithm than can be used by agents to find partners in a 
large MAS. This algorithm has the following characteristics: 

1. It is completely decentralized, meaning that there is no need for a central author­
ity in the system during any part of the partner finding process of looking for 
partners. 

2. It allows an agent to have only limited information about its environment, and 
assures that any information available in the environment can be reached. 

It is assumed that the agents know enough information about the environment to 
at least maintain communication with one or more other agents, and use this capa­
bility to build a more complete environment model. 

The algorithm is heavily influenced by peer-to-peer networks, so a brief intro­
duction of such systems is presented next. 

4.1 Brief overview of peer-to-peer systems 

Peer-to-peer (P2P) systems have grown in popularity in the last few years, partic­
ularly because of their ability to easily provide to their users access to lots of in­
formation. The big advantage of P2P systems, though, is its decentralized nature: a 
desirable feature is that there is no central server where information resides. Every 
peer connected to the network can aid other peers in the process of searching for 
information and retrieving it. 

P2P systems are sometimes also called "content addressable networks", since in­
stead of providing a server from which information will be taken, the users provide 
the information they are looking for and the network provides facilities for discover­
ing where the requested information is available. There are two main functions a P2P 
system provides for its nodes. The first one is discovery of other peers in the network, 
so that the node joining the network can have an initial set of information about how 
to connect to other nodes and start to look for and retrieve information. This is gen­
erally done using servers that cache node addresses (called "GWebCaches" [3] in 
the Gnutella network, for example), which send subsets of the information they hold 
to newly connected nodes, which then use that information to bootstrap their set of 
neighbors in the network. 
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This research is interested in content location, since this functionality can en­
able agents to discover the location of the resources they need to achieve their goals. 
In P2P networks, users will generally provide some keywords and receive a list of 
possible matches containing that keyword. The method used to retrieve this informa­
tion varies from network to network: Gnutella, for example, floods the query to all 
known peers, which in their turn propagate the messages even further by re-sending 
the requests to their neighbors up to a certain time-to-live value for the request. This 
approach can make the search quite slow in a very large network but is acceptable 
for the purposes for which the system was developed. Other systems provide better 
algorithms for searching, in exchange for more complex protocols for maintaining 
the network in a consistent state. 

A system that provides an interesting way of addressing content is the Chord [ 18] 
lookup protocol. Chord works by having nodes in the network choose an identifier, 
and mapping content to nodes based on a hash value (or key), which is used as the 
information's identifier in the network. Both nodes and information share the same 
identifier namespace, and information is assigned to the first node in the network 
whose identifier is equal to or higher than the information's computed hash value. 
Nodes can enter and leave the network at any time, triggering a reassignment of 
the information that was mapped to the leaving node, or the assignment of some 
information currently mapped to a neighboring node to the new node joining the 
network. 

Chord uses what it calls a "finger table" to create links between nodes in the 
network. In this table, an entry at position / in node n's table means that the node is 
the first one that succeeds n by at least 2/ — 1 on the identifier circle. This property 
makes searching for a key in the circle an 0{log n) operation, where n is the number 
of nodes in the ring. This is possible because each step in the querying process will, 
at least, halve the distance from the node making the query to the node containing 
the sought information. Figure 1 illustrates one query in a Chord ring. 

The query depicted in Figure 1 works as follows: node n\ is looking for infor­
mation i\9, and the only other node it knows in the network is node ^lO. This causes 
n\ to send a request for i\9 to ^lO, even though i\9 would not be assigned to n\0 
in this ring, since its identifier is higher than the node's identifier. Node ^lO knows 
about node ^25 (but not about node AZ20), and according to its view of the system, 
information i\9 should be assigned to node ^25, so it sends the request to this node. 
Node ^25, however, knows about ^20, which means that i\9 should be assigned to it, 
and redirects the query to niO. Node niO then replies to node n\ with the requested 
information, causing n\ to update its finger table to contain the new node /t20. 

Chord's main benefit is enabling efficient searching with only limited amounts of 
information stored locally in each node. On the other hand. Chord does not support 
keyword queries, although such a system could be built using Chord at the expense 
of efficiency. Chord also has a more robust protocol for updating the ring state when 
peers join and leave the network. 

Many other algorithms have been created to enable efficient lookups in peer-
to-peer networks, many of them inspired by Chord. One of these algorithms is the 
one by Plaxton et al [13], referred to as PRR (after the names of the authors: Plax-
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Fig. 1. Request propagation for a lookup of information il9 

ton, Rajaraman and Richa) or Plaxton Mesh in some papers. PRR has a more com­
plex structure when compared to Chord, dependent on the topology of the network 
and distances between nodes, but has more predictable behavior when performing a 
search, leading to tighter bounds for the needed number of messages and cost to find 
some information in the network. The Simplified PRR (SPRR) [6] algorithm is an 
enhancement of PRR, and very similar to Chord in the complexity of queries. The 
main advantage introduced by SPRR is that at the cost of more complexity to con­
struct the identifier rings (SPRR can have many overlapping rings), the queries are 
guaranteed to follow a shortest path (relating to cost of communication) to the node 
holding information about the key. 

Koorde [4] is another distributed hash table and lookup protocol, based on Chord, 
which provides degree-optimality (i.e., optimal number of hops to find the needed 
information given the degree of the hash table - the number of neighbors with which 
each node has to maintain contact). This is achieved by using de Bruijn graphs [2] 
instead of the standard Chord finger table to propagate requests in the ring. 

4.2 Distributed Partner Finding (DPF) 

Analyzing the different algorithms commonly used in P2P networks, some of which 
were presented in the previous section, it is not hard to notice that none of the ap­
proaches exactly matches the needs of a multi-agent system. 

Keyword-based P2P networks generally are targeted at finding the information, 
with minimum regard to efficiency. Flooding the network with requests is a common 
technique, creating large numbers of messages going around the network. This works 
acceptably when you have fixed nodes with reliable, fast communication channels. 
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which is generally the case in these networks. Such an approach would not work well 
in a MAS that does not have this kind of communication infra-structure in place, 
though. 

Lookup algorithms such as Chord and Koorde work well when the agents know 
exactly what information they seek. This may not be the case in a MAS: agents may 
be looking for resources or combinations of different resources, making it impracti­
cal to create a distributed index of what are all the possible resource combinations 
available and where those resources are located. Even more importantly, keeping this 
distributed index up-to-date in an open, dynamic environment is a very difficult task, 
not to say impractical. 

The proposed solution is to make a compromise between the two approaches: 
improving the efficiency of keyword-based queries by using concepts from systems 
that use indexing. The following sections described how the characteristics of dif­
ferent peer-to-peer systems were used to create a new Distributed Partner Finding 
algorithm for finding partners in a MAS. 

Finding Partners 

Given that the agents will not always have enough information available in their 
knowledge base to be able to find all the necessary partners to accomplish their tasks, 
an algorithm to find this information in the MAS is necessary. The algorithm must 
define how the agents will create these requests for information and propagate them 
to the other known agents, until the sought information can be found or the agent 
gives up finding the information. 

The DPF algorithm works by using the current list of an agent's models describ­
ing other agents in the system as a finger table for requests, in the same manner that 
nodes in a Chord ring maintain a finger table of other nodes in the network. As we 
have discussed, the agent can not make the request based on the hash value of the 
information it is searching, so a more conservative request propagation strategy is 
necessary. 

Some assumptions about the way communication works in the system are made: 

• It is assumed that every agent in the system can communicate with at least one 
other agent. 

• Communication is assumed to be asynchronous, meaning that the agent will send 
a message and not wait for an immediate reply. It will keep on working on its 
tasks until the other agent replies to its message. It may be the case also that no 
reply will ever come, due for example to an agent having problems and not being 
able to reply to a message that was received, so the algorithm must plan for this 
possibility. 

The following is a description of the algorithm run by the agent issuing a request: 

1. Send the request to the closest known agent in the system. 
2. If nt reply arrives within a certain timeout period, re-send the request to a known 

agent further away than the previous, doubling the timeout period. 
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3. Repeat 2 until all of the agent's known peers are queried. 
4. When the list of known agents is exhausted, the agent may choose to issue an 

error or restart the algorithm. 

Agents receiving requests from other agents must also perform some operations, 
which are described next: 

1. If an agent that fulfills the request is known, return information about that agent 
to the requesting agent. 

2. If no agent is found to fulfill the requirements of the request, check if the time-
to-live for the message has not expired. 

3. If the time-to-live has not expired, decrease the time-to-live counter, then deter­
mine the set of agents that are closest. Propagate the request to one chosen agent 
from that set, or to the whole set of agents depending on the operation mode of 
the algorithm. 

The algorithm relies on timeouts and time-to-live of messages to operate. These 
concepts and how each is implemented in the algorithm are described in the next 
section. 

Timeouts and Time-to-Live 

Timeouts and time-to-live are the main features used by the agents to determine 
how and when the requests should be re-sent. Basically, every time an agent sends 
a request, it determines the time it thinks it will take other agents to reply to that 
request. The agent then sets up a timer to execute after this period and re-process the 
request. Each request also has a maximum lifetime inside the MAS, the time-to-live 
value, so that it is not propagated forever if no one is able to respond to it. 

The two concepts are borrowed from TCP/IP networks. The TCP protocol defines 
a timeout mechanism in which if a node does not receive an acknowledgement of a 
packet within a certain time period, it will re-send the packet and double the time 
it will wait for the acknowledgement. This is meant to allow the nodes to adapt to 
changing conditions in the network, such as routes changing during the lifetime of a 
connection, or congestion occurring in the network. 

The IP protocol defines a property called time-to-live, or TTL, for packets. This 
property is an integer number that defines how many devices the packet can traverse 
in the network before being dropped. Each device that processes the packet in the IP 
routing process to the destination decreases the TTL counter, and if it ever reaches 
zero, the packet is discarded even if it has not reached the destination. TTL values 
are used mainly for ICMP (Internet Control Message Protocol) messages, since they 
are useful for discovering the topography of the network. 

While TTL values are not used in regular IP traffic, the timeouts are one of the 
basic features of TCP connections. Timeout estimates are kept on a per-connection 
basis, meaning that they provide an estimate of the expected round-trip time of a 
message to its destination. To calculate this estimate, the Jacobson/Karels algorithm 
[12] is used. The algorithm works by maintaining two variables: the timeout estimate 
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and a measure of the deviation of the sample round-trip times measured by the node. 
The following operations are then performed on the values when a new sample is 
obtained: 

Difference = SampleRTT — EstimatedRTT 

EstimatedRTT = EstimatedRTT + (5 x Difference) 

Deviation = Deviation + d{\Difference\ — Deviation) 

Having the estimated round-trip time and the deviation updated, the timeout value 
to be used is calculated as follows: 

Timeout = jjx EstimatedRTT -\-^x Deviation 

For the DPF algorithm, the values used for jj and O are 1 and 4, respectively. 
These are the values typically used in TCP implementations, based on experience 
acquired by the implementors of the different versions of the protocol. 5 is a number 
between 0 and 1, and 0.125 is used by the DPF implementation of the algorithm. 
The design of the algorithm is such that if large variations in the sampled round-trip 
time are measured, these variations will have more influence on the new value of the 
timeout. For lower variations, the estimated value for the timeout has larger impact 
on the timeout value. 

While using the same algorithm for timeout calculations, the value of the esti­
mate does not hold the same meaning in the DPF algorithm. The timeout estimate is 
not maintained per connection in DPF, since there is no notion of a long-lived con­
nection between two agents as in the case of TCP. Consequently, only one estimate 
is maintained by each agent for all communication, providing a measurement of the 
expected time for a request to be replied to in the system regardless of the recipients 
of the request. 

The management of the TTL value is simpler: the value is incremented by a 
certain amount at every timeout and decremented by the same amount when a reply 
is received. This means that if the agent needed several retransmissions to receive 
a reply, the TLL will grow, and if no retransmissions were needed it will shrink a 
little, until a minimum is reached. The minimum value for the TTL is one of the 
parameters than can be used to tune the algorithm. 

The intent of maintaining a good estimate of the timeout and TTL values is to 
pursue a balance between the time needed to find the information that is being sought 
and the number of messages that are sent in the network. A low timeout value means 
that the agent will be re-sending requests too early, increasing the work load of other 
agents unnecessarily. A value that is too large means the agent will be waiting for 
a long time before considering a request as lost, and may miss the opportunity to 
re-send the request and receive a reply earlier. 

The same reasoning can be applied to the TTL values: low values mean that the 
request will not be propagated much further into the MAS, meaning less probability 
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of reaching an agent that has the wanted information. Large TTL values would incur 
in requests having a long lifetime in the system, meaning that the requests would still 
be alive and wasting agents' resources even after being successfully replied by some 
agent in the system. 

Operation Modes 

Having introduced the Distributed Partner Finding (DPF) algorithm, there can be 
different ways for the agent to route requests in the MAS. Three different modes of 
operation of the algorithm are described next. These modes only dictate the behavior 
of the agents creating requests - the propagation of received requests still follows the 
rules described in section 4.2 regardless of the mode of operation. The three differ­
ent modes of operation are the Single Message Request Mode (DPFl), the Multiple 
Message Request Mode (DPF2) and the Flooding Mode (DPF3). 

The Single Message Request Mode (DPFl) 

This is the mode that exactly matches the description of the algorithm provided in 
section 4.2. In this mode of operation, the agent will choose the closest agent from 
the list of known agents and send the request to it. When a timeout occurs, the agent 
will look for one agent that is further away than the agent previously chosen, and 
re-send the request one more time. 

This mode of operation is the most conservative in terms of the number of mes­
sages used by the algorithm: only one message is sent by the agent that created the 
request at every timeout. Figure 2 shows an example of a request using this mode, 
where ro means the time when the request process was initiated by the source (SRC), 
and to means the initial timeout value used for that request. "Local networks" define 
how far away agents are from each other. If a group of agents is in the same "local 
network", they are perceived to be at the same distance from some other agent in the 
system. This means that, in Figure 2, agents A4, A5, A6 and Al are all at the same 
distance from agent A1, for example. 

The Multiple Message Request Mode (DPFl) 

The Multiple Message Request Mode is an extension of the Single Message Request 
Mode described above. When operating in this mode, the agent will send the request 
to every known agent at the chosen distance threshold at the same time. Thus, the 
first requests will be sent to all agents that are deemed by the agent as its "closest 
neighbors". After a timeout occurs, the agent will look for agents at a greater distance 
threshold, and send the same request to every agent at that threshold, and so forth. 
Figure 3 shows the message flow of a request using this mode of operation. 

In Figure 3 it can be seen that since the source agent (SRC) knows agents A1 and 
Al already, it will send the request to both at the same time. A3, which is not known 
to the source, will only receive the request after A1 checks that it can not answer it 
and decides to propagate it. The same behavior can be seen regarding agents A4 and 
A7, after the first timeout occurs. 
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^ reply to src's request 

Fig. 2. Example of request using DPFl - Single Message Request Mode 

The goal of this mode is to send the request to more agents more quickly, avoid­
ing the extra latency caused by waiting for other agents to propagate the request to 
their neighbors, at the cost of an increase in the number of sent messages. 

The Flooding Mode (DPF3) 

In this mode of operation, agents do not care about the distances to other agents. 
Requests are sent to every known agent when they are created, and re-sent to every 
known agent at every timeout. 

This is the less conservative mode in terms of number of messages. Agents are 
expected to send a lot more messages than when using the other two modes until 
they find the information they are seeking. 

This mode is intended to be used as a way to analyze the performance of the 
other two modes: how the timeout / time-to-live mechanism and the propagation of 
requests by the agents receiving the requests affect the efficiency of the algorithm. 
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Fig. 3. Example of request using DPF2 - Multiple Message Request Mode 

5 The DPF Experiment 

The domain chosen for the experiment is a distributed sensing problem using Un­
manned Aerial Vehicles (UAVs). The UAVs are small flying devices that have lim­
ited capabilities and various constraints on what kind of work they can do. The UAVs 
may carry a limited number of sensors, which might not be suitable to analyze their 
targets under every possible situation encountered. For example, if light conditions 
change, the UAVs that do not carry an infra-red sensor might not be able to analyze 
their targets correctly. In these cases, they must search in the system for other UAVs 
that have the appropriate sensors and can perform the necessary tasks to collect in­
formation about the targets. 

The UAVs also cannot hold a lot of information at one time, and have limited 
processing capabilities. Sensors in the UAVs may fail during the operation of the 
vehicle, and it may not be possible to notify other UAVs of these problems. Thus, 
the UAVs must be able to locate other UAVs that are carrying the necessary sensors 
on demand, without the need to hold information about all the UAVs currently in the 
environment. 
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Relying on a central server to provide information is not a desirable solution, 
since the server may be out of the range of communication from the UAV, and also 
would provide a single location for an opponent to attack and try to sabotage the 
work of the UAVs. Having a limited range for communication also discards the pos­
sibility of using simple broadcast messages, since a request might not reach an agent 
that contains the requested resources unless a more complicated broadcast scheme is 
used. 

The agents are distributed in several different "local networks" based on commu­
nication range. Within the same network, communication between the nodes has the 
same cost. Traffic leaving the local network needs to be routed in some way (which 
is not relevant to this research at this point), incurring a cost penalty and leading to 
longer delays for the arrival of messages. 

Each UAV aims to achieve one goal, "Target Analysis", once a target is detected. 
Before working on its goals, the UAV is required to find the other UAVs that hold 
the necessary resources for performing the different tasks required by each goal. 

5.1 Network Model 

In the experiments, communication between agents is handled by the simulation en­
vironment using a simple network layer. This communication layer does not imple­
ment all the different layers that are generally part of the network stack in a real 
application, such as the physical layer and logical link layer. This means that there 
is no simulation of the possible issues that can occur in these other layers, such as 
congestion or delays caused by detecting a carrier signal in the physical layer. 

The only feature provided by the communication layer is message delay. This 
delay is based on the distance between the agents in the system, and does not change 
over time. Similarly, there is no simulated message loss. 

The goal of having such a simple network layer is to study the performance of 
the algorithm in a "best case" scenario, so that it is easier to detect shortcomings in 
the DPF algorithm without having to worry about issues in the other layers affecting 
the performance of the algorithm. 

There are four types of messages exchanged among the agents during the simu­
lation. Messages are stored in a priority queue in each agent until each is processed. 
For example, messages related to current goals of the agents are given higher prior­
ity, to speed up the process of working on goals. Table 1 shows the message types 
used in the experiment and their respective priorities. 

ModelUpdate messages are given medium priority if those messages are replies 
to queries made by other agents. Otherwise, they are given low priority. Agents may 
choose to send un-requested model updates to other agents in the system in some 
circumstances, such as a change in the availability of resources. 

5.2 Controlling Agent Execution 

The experiment is run in discrete time, so it is important to define how much work 
an agent can do during one time step. Some assumptions are made here: mainly. 
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Table 1. Message Types 

Message Type Priority 

ModelRequest LOW 
ModelUpdate LOW or MEDIUM 
TaskAssignment HIGH 
TaskCompleted HIGH 

the assumption that receiving messages and adding messages to the agent's message 
queue is cheap compared to processing the information the message contains. The 
same assumption is made for queuing messages for delivery to other agents. 

The agents are allowed to do one unit of work each time step. A unit of work 
is defined as one unit of work for a task (the tasks have costs defined in "units of 
work") or processing one message from the waiting queue. The agents also make 
use of a timer facility to execute tasks at certain time steps or after some interval 
of time; the implementation is careful not to break the "unit of work" restriction by 
using the timers only to send new messages to other agents, and not for doing work 
or performing model updates. 

A configuration option allows the central agent directory to have the number of 
units of work at each time step specified. This allows the agent directory to have an 
advantage over the other agents. This feature also tries to compensate for the fact that 
the directory will have to process messages from all the agents, while this work is 
distributed when the agents are working using DPF. Allowing more units of work per 
time step also serves as emulation of a "load-balancing" directory structure, although 
in this experiment the directory is still only one agent, meaning that agents will not 
be able to direct their queries to different directories based, for example, on distance. 

5.3 Metrics 

During each execution of the simulation scenario, the following metrics were ob­
served and used to compare the different approaches: 

Average number of messages sent : the average number of messages, of any kind, 
that an agent will send in the system during the simulation. This is intended to 
measure the overhead created by the use of the DPF algorithm instead of using 
a central directory. 

Average time to start of goal execution : time elapsed between the assignment of a 
goal to an agent and the time the agent has found all partners that will help it 
achieve its goal. The average is weighed based on the number of tasks associated 
with the goal. The more tasks the goal has, the higher the probability the agent 
will need more requests for partners before the goals tasks can be executed, thus 
having a larger weight. This measures how fast an agent can find the partners to 
accomplish its tasks in the various tested configurations. 
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Average goal execution time : the time between the start of the execution of the goal, 
after finding all partners, and the time the goal has been accomplished (all tasks 
finished). The measurements are weighed based on the total cost of the goal. 
This is intended to measure how much the overhead the DPF algorithm imposes 
on the agents affects their ability to work on their goals. 

The goals are always created and assigned randomly during the simulation. To 
reduce the effects of the randomness in the results, each different configuration was 
run five times. The average of these five runs was then taken to create the results 
presented below. 

5.4 Experimental Setup 

The experiment described above was partially implemented, with the goal of ana­
lyzing the characteristics of the proposed communication model for finding partners. 
The peer-to-peer approach was tested against the central directory approach, and 
some metrics were analyzed in the process. 

Table 2 shows the different MAS configurations used by the research experi­
ments. Each configuration tries to capture the characteristics of a real world scenario, 
where a large MAS would mean having more agents actively working on goals at the 
same time. 

Table 2. MAS Configurations 

1. Agents 2. Concurrent Goals 3. Max. held models 4. Dir. Work 5. Initial Msgs 

10000 
7500 
5000 
2500 
1000 
100 

1000 
750 
500 
250 
100 
10 

45 
43 
44 
36 
30 
15 

{4,8} 
{4,8} 
{4,8} 
{3,6} 
{3,6} 
{2,4} 

20 
19 
18 
17 
15 
10 

Column 3 (maximum number of models) and column 5 (number of initial mes­
sages) only refer to the peer-to-peer simulations, since in the central directory sim­
ulations agents do not need to keep information unrelated to their current working 
goals. Column 5 shows the number of messages sent by each agent at the start of the 
simulation, trying to build an initial environment model. 

Column 4 (directory work per time step) applies only to the central directory sim­
ulations, and shows the number of messages that the directory is allowed to process 
during a single time step. A total of five different simulations were run for each MAS 
configuration: one for each P2P mode, and two for the central directory mode. 

Some simulations were also run to verify the scalability of the system with regard 
only to the number of concurrent goals in the system. These experiments have the 



94 Vanzin and Barber 

same configuration as the 1000-agent MAS described in Table 2, but also use 50,150 
and 500 for the number of concurrent goals in the system. 

The simulations were allowed to run until all goals were accomplished, or up to 
50000 time steps, whichever occurred first. The measured time averages are weighted 
based on the total cost of the goals (for the execution time) and the number of tasks 
per goal (for the average time for the start of execution), and the results are the 
average of five runs. The results are presented next. 

5.5 Experimental Results 

Below we present several graphs showing the results obtained from the different 
simulations. The legend in the graphs refer to the following configurations: 

DPFl : agents using the DPFl mode of the Distributed Partner Finding algorithm. 
DPF2 : agents using the DPF2 mode of the Distributed Partner Finding algorithm. 
DPF3 : agents using the DPF3 mode of the Distributed Partner Finding algorithm. 
Dir:Base : system using a central directory with the low value for the directory work 

parameter as shown in Table 2, e.g., 2 for the system with 100 agents. 
Dir:2x : system using a central directory with the high value for the directory work 

parameter as shown in Table 2, e.g., 4 for the system with 100 agents. 

Average Number of Messages Sent per Agent 

• DPF1 

• DPF2 

A DPF3 

• DJnBase 

• Dir:2x 

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000 
0 

Number of Agents 

Fig. 4. Average number of message sent by agents 

Figure 4 shows the communication overhead caused by the use of the Distributed 
Partner Finding algorithm instead of a central directory solution. For the DPFl and 
DPF2 modes, the average number of messages an agent sends is larger, but still 
reasonable. DPF3 (flooding) shows a large increase in the number of messages with 
the growth of the system. 
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The information presented on Figure 4 related to the configurations that use a 
central directory needs to be analyzed more closely, since the data presented here 
is a little bit misleading. In these cases, a significant portion of the total number 
of messages is created by a single agent - the directory. The average number of 
messages sent by the other agents is much lower than in the simulations using DPF, 
at the cost of an overload of the directory agent, which must analyze a large number 
of incoming messages and reply to them. 

Figure 5 shows how quickly agents can find partners to execute a goal using the 
different approaches. As the system grows, the number of concurrent queries sent 
to the directories results in a large message queue, leading to delays in the replies, 
while peer-to-peer configurations show more consistent performance. 

Average Time to Start of Goal Execution 

2200 

• DPF1 

• DPF2 

A DPF3 

V Dir:Base 

• Dir:2x 

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000 
0 

Number of Agents 

Fig. 5. Average time to start of goal execution 

Although the data is not presented here, analysis of the quality of the solution 
shows that there is not a significant difference among the different approaches. The 
use of the priority queue to deliver messages allows mode DPF3 to perform as well 
as the others, in spite of the larger number of messages that must be processed by the 
agents. 

It is interesting to notice that the central directory simulation has an "optimal" 
result in this case, at least in terms of communication cost, since the directory will 
find the nearest partner that can help the agent. However, the directory does not check 
how much work that agent is doing, so the solution cannot be considered optimal 
since the agent may be doing work for lots of coalitions. 

Figure 6 shows results with varying numbers of concurrent goals for a fixed num­
ber of agents (1000). The configurations using DPF show better scalability, and all 
modes are able to surpass the performance of all directory-based approaches as the 
number of concurrent goals increase. 
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Average Time to Start of Goal Execution 

• DPF1 
• DPF2 
A DPF3 

T Dir:Base 

• Dir:2x 

150 200 250 300 350 400 

Numb«r of Concurrent Goals 

450 500 

Fig. 6. Average time to start of goal execution versus number of concurrent goals 

Comparing the different modes of operation of the P2P systems, we can see 
that DPF3 shows consistently better performance when compared to the DPFl and 
DPF2 modes. This difference can be explained by the timeout strategy used for these 
modes, described in section 4.2. 

By using just one value for the expected round-trip time of a request, the timeout 
may cause agents using DPFl or DPF2 to wait longer for messages that were sent to 
agents close by, since the timeout becomes an average for all the requests, no matter 
how many retries were made by each request to find the sought information. This 
causes requests to take more time to reach further regions of the MAS. Since DPF3 
does flooding to all known agents, it does not suffer from this problem. 

To solve this issue, a different timeout mechanism should be used, taking into 
account the factors cited above. Nonetheless, the performance measured for DPFl 
and DPF2 is still acceptable, and the system scales well even with the shortcomings 
identified above. 

6 Conclusions and Future Work 

Being able to efficiently find information about other agents in a multi-agent system 
is one of the main requirements in any modem agent system. The ability to find part­
ners to form coalitions means that agents can more easily and/or efficiently achieve 
their goals when they do not have the appropriate resources or time to accomplish all 
the tasks related to their goals. 

No single solution to this problem exists, and different solutions provide different 
compromises from which the system designer must choose. Different systems may 
benefit from different characteristics of these approaches. 
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The Distributed Partner Finding (DPF) algorithm was presented, leveraging peer-
to-peer network research to create a new, completely decentralized scheme that can 
be used by agents to efficiently find information about potential coalition partners. It 
is the first step towards a revised scheme for explicit coalition formation, explicitly 
determining coalition membership as well as the coalition organizational structure, 
given by the allocation of decision-making responsibility and execution authority of 
the coalition's goals. 

The experimental results show that it is feasible to use the DPF algrithm in place 
of a directory-based approach with reasonable performance penalties and better scal­
ability. 

However, more work is needed to analyze the robustness of the algorithm and 
its responsiveness to several different environmental characteristics. Testing larger 
agent systems and using a different network models are initial steps to be taken in 
this regard. 
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Summary. This chapter discusses coordination from a commitment basis. Typically, com­
mitments are established via a process of negotiation between the parties—the debtor and 
creditor—involved in the commitment. We define obligations to be those commitments, some­
times termed norms or social commitments, without a clearly identifiable creditor. The estab­
lishment of a commitment occurs in response to the adoption of a goal or the acceptance and 
performance of a task. Using a service-oriented computing (SOC) context, we describe an 
efficient negotiation process for establishing commitments. We then show how commitments 
and obligations can be used to monitor and control the aggregate behavior of a group of agents 
to yield coordinated progress towards the agents' overall objective. 

1 Introduction 

In service-oriented multiagent environments, the participating agents are distin­
guished by the services they provide, the services they seek and the negotiated service 
agreements to which they commit. As an example, participants in typical real-world 
business environments interact by exchanging goods and providing services to each 
other. In seeking and providing services, they form associations by negotiating on 
service agreements, make promises, commit to products, quality, and service levels, 
fulfill what they promised, and attempt to achieve their intended goals. 

The coherent behavior of systems in such an environment is governed by inter­
actions among the agents, and we believe that commitments and obligations are the 
proper abstraction to characterize the interactions for monitoring and control of the 
systems. We hypothesize that a commitment is an appropriate abstraction for man­
aging, monitoring, and assuring large-scale distributed coordination. 

1.1 The Coordination Problem 

Coordination is a ubiquitous problem for distributed systems, where the objective 
is to achieve coherent and efficient operation while making rapid progress toward 
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system-wide goals. The problem can appear in many forms, ranging from manag­
ing access to shared resources to engaging the expertise of multiple participants in 
reaching an overall goal. 

In this chapter, we make several assumptions to limit the scope of the coordina­
tion problem that we are considering. First, we assume that the problem can be cast in 
terms of a known set of agents performing a dynamic set of tasks to reach a globally 
known goal. Second, we assume that there might be thousands of individual tasks 
that need to be coordinated, but not millions and not just a few. Third, we assume 
that the time and resources needed to perform an individual task are generally avail­
able (not scarce). Fourth, we assume that the time needed to perform an individual 
task is much less than the time needed to reach the goal, allowing time for tasks to 
be created, modified, redone, cancelled, or reassigned. The individual tasks might be 
discrete (e.g., the task to remove an obstacle) or continuous (e.g., the task to prevent 
the introduction of an obstacle). Fifth, we assume that the tasks are organized into 
a workflow, which may evolve as commitments are made, resources are expended, 
and tasks are decomposed and performed. Sixth, we assume that the agents are each 
aware of and have accepted the global goal, but are otherwise self-interested and au­
tonomous. (Sen [21] has shown that societies of purely selfless agents are inefficient.) 
Finally, we assume that the environment where the coordinated behavior takes place 
has the following characteristics. 

1.2 A Service-Oriented Computing Environment 

A typical real-world multiagent service-oriented environment is partially observable, 
stochastic, sequential, dynamic, and continuous. This environment consists of two 
classes of agents: participating agents and non-participating agents. 

The participating agents either play the role of a service provider or that of a ser­
vice seeker. These service providers and service seekers negotiate and reach a service 
agreement. Negotiation is a process by which agents communicate and compromise 
to reach an agreement on matters of mutual interest while maximizing their utilities. 
We believe that these negotiated agreements associate or bind these participating 
agents with each other and that this association can be best represented as the binary 
relationship of commitments. 

In addition to this class of participating agents, there is another class of non-
participating agents in this environment; these are agents that act more like impartial 
arbiters. The nonparticipating agents provide the context to a commitment relation­
ship, termed a Sphere of Commitment (SoCom) [25]. Every agent in the environment 
is autonomous, hence at any point in time any agent may choose to either abide by 
its commitment or stray from it. The nonparticipating arbiters can be used to capture 
a participating agent's behavior with regard to its commitments. Historical informa­
tion about a participating agent's behavior can be utilized to measure its commitment 
adherence for future interactions. 

We assume that the service providers and service seekers have already identified 
each other. How service seekers and service providers locate each other, how they 
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identify compatible providers or seekers and what structure of communication and 
protocol they use are questions beyond the scope of this chapter. 

It is further assumed that in this commitment-driven service-oriented environ­
ment the partial view that an agent has is governed solely by the commitment rela­
tionships in which it participates. In other words, agents have knowledge of other 
agents with whom they are associated via commitment relationships. Furthermore, 
it is assumed that the knowledge about a commitment relationship is governed by 
commitment operations, i.e., an agent has knowledge about a commitment associ­
ation only through operations that affect that commitment. For example, when a 
service-seeking agent and a service-providing agent participate in a commitment re­
lationship, each will have knowledge of the other agent's commitment actions and 
each will have knowledge of when the commitment gets created, fulfilled, revoked, 
etc. However, knowledge such as how that commitment is fulfilled, why it was not 
fulfilled, or why it was canceled is not available to the participating agents. 

The typical environment for commitments is dynamic and nondeterministic; 
hence its temporal dimension is best represented as branching time. The underlying 
temporal parameter moves forward and branches out like a tree. Also, an agent's 
beliefs, desires and intentions define its internal state of mind. We use Rao and 
Georgeff's BDI framework [19], Emerson's CTL framework [5], Singh and Huhns's 
definitions for commitments and operations on them [24], and Shrotri and Huhns's 
definitions of commitments in terms of BDI [22]. 

2 IModeling and Representation 

Goals are achieved via interleaved phases of planning and execution. Planning, which 
may be done by humans or by the agents responsible for goal achievement, yields 
sets of executable tasks and the dependencies among them. The dependencies will 
be primarily temporal, e.g., one task must be performed before another, but they 
also might be conditional, e.g., one task must be performed only if another fails. 
The resultant ordering of the tasks is a workflow, which can exist at several levels 
of generality as tasks are either aggregated into composite tasks or decomposed into 
subtasks. 

Each task has associated with it a number of attributes that are used by an agent to 
perform the coordination. Each task will have a latest finish time (deadline) by which 
the task must be completed, earliest start time, expected duration, priority, and worth. 
Temporal values allow the agent to reason about when a task can be performed. A 
task's priority and worth represent the value of the task to the goal. Task assignment 
to a particular agent leads to determination of values of several additional attributes: 
expected quality of a result, expected cost, and expected risk. 

Tasks are associated with agents via a process of negotiation as described in Sec­
tion 4. The resultant assignments, especially when dependent tasks are assigned to 
different agents, are monitored via commitments. A commitment is a well-defined 
data structure with an algebra of operations that have a formal semantics. A commit­
ment has the form C{a; b\p\ G), where a is its creditor, b is its debtor, p the condition 
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the debtor will bring about, and G the organizational context for the given com­
mitment. The operations on commitments are create, discharge, delegate, assign, 
cancel, and release. Commitments capture the dependencies among the agents with 
regard to the tasks. 

Note that tasks, interactions, and commitments are not completely known a pri­
ori, but can enter the system dynamically. We do not assume that each agent knows 
a priori all the possible tasks that it might be asked to perform. When it has been 
assigned and authorized to perform a task, then its commitment is formed. The dy­
namic nature of task assignment necessitates the ability of the system to reason about 
commitments in a principled way, thus enabling the agents to have optimized ways 
of dynamically forming and breaking commitments as new tasks enter the system. 

Explicit representation of commitments helps coordination in the following two 
ways: 

1. Commitment is an abstraction that explicitly refers to inter-agent dependencies, 
either through task temporal dependencies, task preconditions, or through con­
tingencies (i.e., alternative ways of performing a task), thus allowing agents to 
recognize focus points in the revision process where coordination with other 
agents is needed; focusing the distributed search this way benefits the efficiency 
of coordination. 

2. During the process of revising its local plan, an agent first tries to revise task 
timings that do not involve commitments; this heuristic modularizes the revision 
as much as possible, making it more scalable. 

The following structures for tasks, goals, and task performers (agents) are con­
sistent with the above assumptions, and also consistent with the TAEMS formula­
tion [9]: 

Task: a unit of work to be performed in furtherance of an overall goal 
• duration (time needed to perform) 
• effort required 
• deadline (when task must be finished) 
• resources required (consumable and non-consumable) 
• utility, including cost and quality 
• revocable? 
• compensation (if result of task must be revoked and it is not revocable) 

Agent: a performer of one or more tasks 
• capabilities, including access to resources 
• limitations 

Goal: an overall mission or objective to be achieved 
• workflow or goal decomposition 
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3 Negotiated Commitments 

In supply chains, e-commerce, and Web services, the participants negotiate contracts 
and enter into binding agreements with each other by agreeing on functional and 
quality metrics of the services they request and provide. The functionality of a ser­
vice is the most important factor, especially for discovering services. Once discov­
ered, however, services are engaged, composed, and executed by the participants' 
negotiating over QoS metrics to maximize their profits. 

Negotiation is a process by which agents communicate and compromise to reach 
agreement on matters of mutual interest while maximizing their individual utilities. 
Negotiation for QoS-aware services is currently limited to primitive QoS verifica­
tion methods or sorting and matching algorithms. We extend current techniques by 
presenting an optimal negotiation procedure that considers the cost to reach an agree­
ment for QoS-aware service engagement and contracting. 

3.1 Research Issues 

Semantic Web services, as envisioned by Bemers-Lee, are intended to be applied 
not statically by developers, but dynamically by the services themselves through 
automatic and autonomous selection, composition, and execution. Dynamic selection 
and composition first require service requestors to discover service providers that 
satisfy the requestors' functional requirements. Second, the requestors and providers 
negotiate non-functional requirements (QoS), including cost and qualities such as 
response time, accuracy, and availability. 

In general, negotiation is the technique for reaching mutually beneficial agree­
ment through communication among agents. Negotiation in QoS-aware services in­
volves a sequence of information exchanges between parties to establish a formal 
agreement among them, whereby one or more parties will provide services to one or 
more other parties. The agreement typically involves QoS issues [26]. By QoS, we 
refer to the non-functional properties of services, such as performance, cost, relia­
bility, and security. To meet the requirements of service requestors, multiple issues, 
including both functional and non-functional, need to be taken into account during 
service advertisement, discovery, composition, and delivery. Preist [17] discussed 
how negotiation plays an important role in reaching a service agreement for a ser­
vice. 

Current standards for Web services do not support QoS negotiations. As a result, 
several researchers have attempted to merge negotiation from the MAS domain into 
QoS-aware Web services. Ran [18] proposes to enrich current UDDI registries by 
extending the SOAP message format and the UDDI data structures to describe QoS 
information. Petrone [16] proposed a conversation model to enrich the communica­
tion and coordination capabilities of Web services by adapting agent-based concepts 
to the communications among services and users. In [18, 8] researchers extend the 
Web service model by introducing a third party broker, certifier, or QoS manager 
for QoS enactment and enforcement. Their work includes simple QoS verification or 
match algorithms and permission for the broker to negotiate and make decisions on 
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behalf of the requestors. This is problematic, especially in situations where price and 
payment issues are involved. 

Maximilien and Singh [13] propose a Web service agent framework (WSAF) 
with a QoS ontology. When a service consumer needs to use a service, WSAF will 
create a service agent that can capture a consumer's QoS preference and select the 
most suitable service. 

Negotiating for services involves both functional and non-functional issues. We 
can not apply existing multiple-issue negotiation models to service negotiation and 
contracting directly, because existing models often make the limiting assumption that 
agents know the private information of their opponents, and their theoretic models 
do not take computational cost into consideration. Therefore, these models do not fit 
the environment of on-line QoS negotiation for services. 

Many researchers have investigated multiple-issue negotiation [10, 14, 6]. Fa-
tima et al. [6] presented an optimal agenda and procedure for two-issue negotiation 
by introducing two negotiation procedures: issue-by-issue negotiation eind package 
deal. For ^-issue negotiation where n> 2, which is common in negotiation over 
QoS issues, the computational cost to reach a package deal might exceed the ben­
efits obtained by optimizing the participants' utilities. By considering both utility 
optimization and computational efficiency, Dang and Huhns [2] propose the coali­
tion deal that is suitable for multiple-issue negotiation, especially in the case of QoS 
negotiation for services. 

In [ 10] agents know the incomplete preference information about their opponents 
and exploit this information to reach negotiation efficiency. This work is thus limited 
to cooperative negotiation, where agents care about not only their own utilities, but 
also equity and social welfare, which is not common in most application environ­
ments. 

The outcome of multiple-issue negotiation depends on not only strategies, but 
also the procedure by which issues will be negotiated. Different procedures yield dif­
ferent outcomes. Based on an incomplete information assumption, Fatima et al. [6] 
discussed two procedures for multiple issue negotiation: issue-by-issue and package 
deal. For two-issue negotiation, they determined the equilibrium strategy for these 
procedures and analyzed the optimal agenda and procedure. Since their analysis is 
limited to two-issue negotiation, they concluded that the package deal is the proce­
dure that provides agents with optimal utilities; they did not address the computa­
tional cost. However, the computational cost becomes crucial when more issues are 
involved. We focus on the optimal strategy of efficiently negotiating multiple QoS 
issues to reach an agreement that gives both the requestor and the provider their 
maximum utilities. 

We hypothesize that a coalition deal negotiation can overcome these limitations. 
As shown in [2], this is the optimal strategy for service negotiation over multiple is­
sues when computation cost is considered. The coalition deal mitigates the computa­
tional cost problem by making a trade-off between optimal utility and computational 
efficiency. This chapter makes four contributions to the advancement of QoS-aware 
service negotiation and contracting. First, it describes the coalition deal negotiation 
for reaching utility optimization and computational efficiency. Second, it generalizes 
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the analysis of an optimal negotiation procedure to multiple-issue negotiation over 
more than two issues. Third, it tailors negotiation components to fit QoS-aware nego­
tiation. Fourth, it focuses on agents' own information; no agent has any information, 
such as reserve price, about its opponent. 

3.2 QoS Scenario for Negotiation 

In order to illustrate the coalition deal for n-issue negotiation over the QoS metrics 
of a service, we present a motivating scenario. Consider how one site, a requestor, 
might arrange to get a stock quote from a service provider. In this scenario, a service 
requestor a (a.k.a. the creditor if a commitment is established) locates a GetStock-
Quote Web service provided by b (a.k.a. the debtor if a commitment is established) 
that meets its functionality requirements. The GetStockQuote service takes the re­
questor's inquiring stock number as an input and a currency symbol as an argument, 
and provides a stock quote. 

During the procedure of service selection, QoS becomes an important factor to 
both a and h. Before reaching a service contract, they need to negotiate over (1) pay­
ment method indicates the way a user pays for inquiries (e.g., pay per inquiry and 
pay for bundle); (2) inquiry cost indicates the cost per inquiry; (3) update interval 
represents how often the stock quote information is updated; (4) response time is the 
round-trip time between sending an inquiry and receiving the response; (5) availabil­
ity represents the probability that this service is available and ready for immediate 
use; (6) service plan cost is the plan cost for service with agreed-upon quality. 

Agents a and b could negotiate each issue individually using issue-by-issue ne­
gotiation, but some issues are related to each other and isolating them will degrade 
the utility and increase the risk of a conflict deal. A package deal allows both a and 
b to make trade-offs among all six issues, but the computation is intractable with 
exponential cost. By using a coalition deal, we can partition six issues into two par­
titions where strongly related issues are in the same partition. For example, payment 
method, inquiry cost and update interval belong to partition one, while response time, 
availability, and service plan cost belong to partition two. a and b can negotiate two 
partitions in parallel, where each partition is settled as a package deal and indepen­
dently of other partitions. By pursuing a coalition deal, agents can reach a service 
agreement while optimizing their utilities with efficient computation. The coalition 
deal is explored in the next section. 

4 Coalition Deal Negotiation 

A service is what an agent performs when it works on and completes a task. Ne­
gotiating for tasks has four components: (1) a negotiation set, which represents the 
possible proposal space for both functionality and QoS metrics of a service; (2) a 
protocol, which defines the legal proposals that an agent can make, as defined in 
a service description and constrained by negotiation history; (3) a strategy, which 
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determines what proposals the agents will make, decided by an agent's private pref­
erence and affected by the service discovery result; and (4) a rule enforced by a 
mediator to determine when a deal has been struck and what the agreement is. We 
focus on the negotiation procedure of multiple-issue negotiation for services, which 
adopts Rubinstein's alternating offers protocol. 

As described in our motivating scenario, let a denote the service requestor and 
b the service provider. From a service viewpoint, a has a task and tries to find a 
service to perform it. From a task viewpoint, b has a service and is capable of fulfiling 
certain tasks, so b tries to find a task to work on. We assume that each agent only 
has complete information about its own negotiation parameters. For some private 
information, such as the opponent's deadline, we can use the negotiation protocol 
in [20] to make truth-telling about a negotiation deadline the dominant strategy. We 
use Sa (Sh) to denote the set of negotiation parameters for agent a {b) and describe 
the negotiation model similarly to that in [6]. 

4.1 Single-Issue Negotiation 

Consider a and b negotiating over an issue set /, where I = A and A is one issue, say, 
the inquiry price. The agents' parameter sets are defined as 

Sh^{li,U^,T,\8t) (1) 

where P^, U^,T^, and 6^ denote agent a's reserve price over issue A, utility function 
over issue A, bargaining deadline, and time discounting factor, respectively. Agent 
b's negotiation parameters are defined analogously. The agents' utilities at price p 
and at time t are defined as in [6]: 

-p){5^y if t<Ta 
if t>Ta 

^h[p^n i n ift>n ^^ 

The value for 5^ is > 1 when agent a is patient and gains utility with time, < 1 
when a is impatient and loses utility with time, and = 1 when a's utility is indepen­
dent of time. The same holds for agent b. We only consider 5^ < 1, which is common 
in a service-oriented environment. 

In single-issue negotiation, the preferences of the agents are symmetric, in that a 
deal which is more preferred from one agent's point of view is guaranteed to be less 
preferred from the other's point of view. At the beginning of the negotiation, an agent 
makes an offer that gives it the highest utility and then incrementally concedes as the 
negotiation progresses by offering its opponent a proposal that gives it lower utility. 
Because of the symmetric preference of agents, agents have to concede to offer deals 
that are more likely to be accepted by their opponents if they prefer reaching an 
agreement to the conflict deal. An outcome is individual rational if it gives an agent 
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a utility that is no less than its utility from the conflict outcome. The maximum 
possible utility that agent a (b) can get from an outcome over issue A is denoted 
U^ax,a (^mca,b^ ^^^ ^^ ^^ individual rational to both agents. 

Agent a's strategy (denoted o«) is a mapping from the previous negotiation pro­
posals Pa/<t and Sa to the action Aca^t that it takes at time r: a^ : Pa/<t ^Sa—^ Aca^t 
is defined as: 

{ Quit ift>Ta 

Accept if ^a^KpO > ^ ,^ (<+i , r+1) (3) 
Offer/T^^ î att+1, otherwise. 

where p^^ is the offer made by agent b over issue A at time t. p^^^i is defined 
analogously. Let P^^ denotes the offer that agent a makes at time t in equilibrium, 
drawn from agent a's equilibrium strategy. P^^ is determined by: 

/̂ ,, = (t/-M^((l-<r)xt/^^^) (4) 

where y^j is agent a's yield-factor [6] at time t. 

4,2 Multiple-Issue Negotiation 

We next consider multiple-issue negotiation over issue set I of k issues, where / = 
{/i ,/2,... ,4} . The agents' parameter sets can then be defined as follows: 

S, = {PluinA) (5) 

where P^ = {P^ \ i ^ f} denotes agent a's reserve prices over / and P̂  denotes a's 
reserve price over issue /, U^ — {U^ \ i e 1} denotes agent a's utility functions over 
/, Ta, and 5^ denote agent a's bargain deadline and discount factor. Agent ^'s nego­
tiation parameters are defined analogously. We assume that an agent's utility from 
issue set / is the sum of its utilities from all issues, then we have: 

iel iel 

Two procedures for multiple-issue negotiation have been discussed [6]: package 
deal and issue-by-issue negotiation. For a package deal, an offer includes a value for 
each issue under negotiation. Thus for k issues an offer is a package oik values, one 
for each issue. This allows trade-offs to be made between issues. Agents can either 
accept a complete offer or reject a complete offer. For issue-by-issue negotiation, 
each issue is settled separately and an agreement can take place either on a subset of 
issues or on all of them. 

We first describe the procedure for a package deal. Assume that the agents use 
the same protocol as described in the previous section for single issue negotiation, 
but instead of making an offer on a single issue, an agent offers a set of offers (an 
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offer consists of a set of values for issues from /, all of which give it equal utility). 
This is because when there is more than one issue, an agent can make trade-offs 
across issues, resulting in a set of offer sets, all of which give it equal utility. As an 
example. Figure 1(a) illustrates the utility for ^-issue negotiation with two package 
deals of two issues each. Here, we focus on the utility frontiers for the issue set 
I = {A,B}.ln this figure the agents' utilities are measured along two axes, and the 
origin represents the conflict outcome. The segment AA' is the utility frontier for 
issue A and BB' that for issue B. The utility frontier for / is A"B"C'D'' (i.e., the 
sum of all possible utilities from issue A and issue B). The points along LL' are 
pairs of values for issue A and issue B that give equal utility to agent a, but different 
utilities to agent b. L is Pareto-optimal since it is the only one, from all possible pairs 
along LL', that lies on the segment A''J5''C"D''. Because an agent does not know its 
opponent's utility function, it does not know which of the possible pairs along LL' is 
Pareto-optimal. Therefore, agent a makes trade-offs across A and B, and then offers 
a set of pairs that correspond to points along LL'. The slopes of segments AA' and 
BB' represent how the agents value the issues A and B. Agent a is said to value issue 
A more (less) than b if the increase in a's utility for a unit change for issue A is 
higher (lower) than the increase in Z?'s utility for a unit change for issue A. Therefore, 
the slope of the segment represents the agents' utility preference for a issue, and is 
named comparative interest in [6]. 

We define P^^ == \f*a\t^fa,t^"-ifa,t) ^s agent a's current optimal utility offer 

for agent b that satisfies Ul{PL) = argmax Ul{p^ ^) where p^^ G Pt{^i^t ) ^^^ 

PMJ) = {{p'l,^---A)\V'a{p'ln---A<^t) = ^'aj}- Therefore, agent a's ac-
tion Aca^t for the package deal procedure is defined as 

{ Quit '\ft>Ta 

Accept ifUl{Py)>uU (7) 
Offer Pf+i(/7^̂ ^_ /̂) att+1, otherwise. 

Agent a is playing its equilibrium strategy if C/̂ ^̂ j = (1 -y^at-^\)^max,a^ where 
^max.a ^^ ĥc maximum possible utility agent a can get from issue set / [6]. The 
equilibrium strategy for agent b is defined analogously. We now turn to the issue-by-
issue procedure. Agent a's action Aca^t is defined as follows and proved in [6]: 

{ Quit '\it>Ta 

i o r ^ s ^ i e l i ^ f ^M^^VLM,.^) (8) 
[ Offer/7^̂ _ ĵ otherwise. 

where p^ ̂  satisfies the constraints for the equilibrium strategy described in Section 
4.1. 
4.3 Coalition Deal Negotiation 
We discussed two negotiation procedures: issue-by-issue negotiation and package 
deal. The outcome of negotiation depends on different negotiation strategies and 
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procedures. For our example GetStockQuote, issue-by-issue negotiation and package 
deal may produce different negotiation outcomes and give agents different utilities. 
We assume that both a and b prefer agreement to the conflict deal for every issue. 
In issue-by-issue negotiation, for example, agents agree on the issue of payment 
method with pay for bundle, and they also reach agreement that p is the inquiry cost. 
Since agents negotiate these issues independently, it is possible that p is too high to 
a if a chooses to pay for the bundle as its payment method. That means issue-by-
issue negotiation may degrade agents' utilities. In package deal negotiation, agents 
can make a set of values over six issues and propose offers and counter offers by 
crossing over issues. Agents may combine different payment methods with different 
inquiry costs to reach mutually beneficial agreement over the two issues. However, 
the package deal also leads to an exponential growth in the computation cost to 
generate the offer sets. Most tasks (services), of course, are more complex than our 
example, and when they are composed this computation problem is significant. To 
make negotiating for tasks both optimum and efficient, we introduce the coalition 
deal. 

Definition and Negotiation Model 

We define coalition deal negotiation, which makes a better trade-off between issue-
by-issue negotiation and the package deal procedure, to provide agents approxi­
mately optimized utilities with minimized computation costs. 

Definition 1. For a coalition deal, all negotiation issues are partitioned into disjoint 
partitions and each partition is negotiated independently of other partitions. Like the 
package deal, issues inside the same partition are negotiated as a whole and an offer 
includes a value for each issue in this partition. Furthermore, there is more than one 
partition in a coalition deal and at least one partition that has more than one issue. 

From this definition, we can see that issue-by-issue negotiation is a specific case of a 
coalition deal where one issue per partition. The package deal is also a coalition deal, 
where there is only one partition for all issues. Coalition deal negotiation provides 
(a) better utility, (b) less computational cost, (c) more flexible negotiation, and (d) 
better management of QoS metrics for services. 

Consider multiple-issue negotiation with issue set I of k issues, where / = 
{/i ,/2,... ,4} . From the definition, we know that there exists a partition IP of size s 
over /, where IP — {IPj \l < j <s}.IP satisfies th6 constraint: \/\ <m<s,\ <n< 
s.m^n, we have IPm C\IPn = ^ and DjeiP ^lej i = -̂ Similarly, agents' parameter sets 
can be defined as follows: 

Sh = {Pi'',Ul'jb,h) (9) 

where Plf = {p^^ \ i G jj G IP] denotes agent a's reserve prices set over partitions 
of issue set / and pĵ  denotes a's reserve price over issue /, which belongs to partition 
y, Ulf = {{ŷ  I / G IP] denotes agent a's utility functions over partition IP where 
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U^ denotes agent a's utility function over one partition / from IP, Ta and 5^ denotes 
agent a's bargaining deadline and discount factor. Agent b's negotiation parameters 
are defined similarly. An agent's utility from partition IP of issue set / is the sum of 
its utilities from all partitions, so then we have 

f^f = I t/i = I IK' ^L,a = I lu!„a.,a dO) 
jelP jelPiej jefPiej 

For a coalition deal, each partition is negotiated independently of other partitions. An 
agreement can take place either on some or all of the partitions. For each partition, 
an offer includes a value for each issue inside the partition that would be the same as 
the package deal for this partition. This allows trade-offs to be made between issues 
inside the partition. An agreement has to take place either on all or none of the issues 
inside the partition. 

For each partition, we assume the agents use the same protocol as for the package 
deal, but instead of making a set of offers over issue set /, an agent makes a set 
of offers over issues from this partition. An agent can make trade-offs only across 
issues in the same partition, resulting in a set of offer sets, all of which give it equal 
utility. As an example, Figure 1(a) illustrates the utility frontiers for issue set / where 
/ = {A,B,C,D}. There exists a partition IP for / where IP = {{A,B}, {C,D}}. Let 
IPi = {A, 5}, and IP2 = {C,D}. The utility frontier for I Pi is A^'B^'C'D'^ and the 
utility frontier for IP2 is S"T"V"U". For IP\, the points along LLl are pairs of values 
for IP\ that give equal utilities to agent a but different utilities to agent b. The points 
along RR" are pairs of values for IP\ that give equal utilities to agent b but different 
utilities to agent a. The utility for IP is the sum of the utilities from IP\ and I Pi 
after these partitions are negotiated independently. If we only consider the optimal 
outcome from both negotiations over IP\ and I Pi, All optimal outcomes for IP\ lie 
on the segment MB"K, and all optimal outcomes for I Pi lie on the segment XT"Y 
as we described for the package deal. Therefore, the possible utility frontier for IP is 
represented by region 0M"P"QQ!P in Figure 1(b). For a partition IPi of hi issues, we 
define P^J = (PaJ ? • • • ? PaJ ) ^s agent a's current optimal utility offer for agent 
b that satisfies f//̂ ' {PH^j) = argmax Up {pfj), where pfj e Pr (^i?) and Pt{ul,^') = 

i \Pa,t i"">Pa,t I I ^a \Pa,t ? • • • >Pa,t ) — ^a,t j • 

Pf^i {U^IJ^^ ) is defined analogously. For a coalition deal, each partition is considered 
using the package deal negotiation protocol. Agent a's action Aca^t for the coalition 
deal procedure is defined as follows: 

rQuit ifr>7:, 

Aca^t = \ Accept package deal for/P/ if f/f ' (P̂ ^̂ ') > ^i^V/ (H) 
[ Offer P̂ +i {Ull^l^^) for IPi at t+1, otherwise. 

Similarly, we define agent a as playing its equilibrium strategy for the package deal 
over a partition if t/^^^i = (1 -y^fl^i)u!J^^a, where t/iSx,̂  is the maximum possible 
cumulative utility agent a can get from partition IPi. The equilibrium strategy for 
agent a and agent b over other partitions is defined analogously. 
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Coalition Deal Utility 

In previous sections, we discussed three different negotiation procedures: issue-by-
issue, package deal, and coalition deal. These three procedures can generate different 
outcomes, and consequently give different utilities to the agents. To decide the op­
timal procedure that gives the agents highest utilities, we need to compare agents' 
utilities from these procedures for n-issue negotiation. Fatima et al. [6] introduced 
the zone of agreement for individual issues where both agents prefer agreement over 
no deal. An issue has a zone of agreement if its utility frontier lies in quadrant g l . 
We discuss the common scenario of service-oriented computing (SOC) in which both 
agents are individual rational (i.e., all issues have a zone of agreement ensured by 
the service description and the discovery procedure). 

Lemma 1. each agent's utility from the package deal is no worse than its utility from 
issue-by-issue negotiation for two-issue negotiation. 

Lemma 1 has been proven in [6]. In a service-oriented environment, there are 
many issues concerning functionality and quality that need to be negotiated during 
service engagement. Can we generalize Lemma 1 to cover more than two? Here, 
we compare agents' utilities from package deal and issue-by-issue negotiation for 
n-issue negotiation. 

Theorem 1. Each agent's utility from the package deal is no worse than its utility 
from is sue-by-is sue negotiation for n-issue negotiation, where n>2. 

Theorem 1 has been proven in [2] by induction. From this theorem, we know 
that a package deal gives agents better utilities than issue-by-issue negotiation does. 
As stated in the previous section, a coalition deal provides approximately optimized 
utilities to agents. Then we prove that a coalition deal give agents utilities better than 
issue-by-issue negotiation does. 

Theorem!. Each agent's utility from a coalition deal is no worse than its utility 
from issue-by-issue negotiation for n-issue negotiation, where n> 2. 

Theorem 2 has been proved by combining Theorem 1 and our assumption of 
additive utilities [2]. Both package deal and coalition deal give agents utilities better 
than issue-by-issue negotiation does. The remaining question is which procedure, 
package deal or coalition deal, gives agents better utilities. To answer this question, 
we first prove that the package deal gives agents utilities better than a coalition deal 
of two partitions. 

Lemma 2. Each agent's utility from the package deal is no worse than its utility from 
i-by-j negotiation for n-issue negotiation, where i> \J> l,n> 2, and i-h j = n. 

We have proven that the package deal gives agents utilities better than a coalition 
deal of two partitions for n-issue negotiation in [2]. For QoS negotiation for tasks, 
we need to extend Lemma 2 to the coalition deal with more than two partitions. 

Theorem 3. Each agent's utility from a coalition deal is no better than its utility from 
the package deal for n-issue negotiation, where n> 2 [2]. 
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Fig. 1. Agents' utilities for4-issue negotiation 

Coalition Deal Efficiency 

From Theorems 1, 2 and 3, we know that each agent's utility from the package deal 
is better than its utility from a coalition deal and issue-by-issue negotiation. There­
fore, we should choose the package deal negotiation to maximize agents' utilities. 
However, we need to consider the computational costs, which can be the primary 
factor when negotiating for tasks. 

Given an issue set / = {/i, /2, . . . , 4} and a partition IP = {IP\ JP2,...JPk} over 
/, we define the unit computational cost for generating a price value for one issue as a 
constant. We assume that every issue in issue-by-issue negotiation can be negotiated 
in parallel and every partition in a coalition deal can also be negotiated in parallel. 
To compare the computational efficiency, we only need to compare the computa­
tional cost of generating an offer in each round of three different procedures. If we 
suppose agents need almost the same rounds of negotiation to reach an agreement 
in these three negotiation procedures, we can compare their computational costs by 
comparing the cost of generating an offer in each round. 

An n-issue negotiation can be viewed as a distributed search through an n-
dimensional space, where each issue has a separate dimension associated with it. 
In issue-by-issue negotiation, each issue is negotiated separately, Based on the above 
equilibrium strategy, agents will compute a value for each issue. Therefore, the com­
putational cost in one round is 0{n), where n is the size of the issue set. In the 
package deal, an offer is a set including a value for each issue under negotiation. In 
each round, an agent can make trade-offs across all n issues to offer a set of offers 
that give it the same utilities. In the worst case, the computational cost in one round 
is O(m^), where we assume each issue may have m possible values. 

The computation problem of generating an offer set is equivalent to searching 
in an n-dimensional space for all combinations of possible distributions of given 
utility value among all n issues with a utility constraint. This problem is intractable 
and takes 0{m^) time in the worst case. Even worse, we have to solve this problem 
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every round during the package deal negotiation procedure. It means that it will be 
infeasible for an agent to consider every possible offer given a utility constraint. 
In coalition deal negotiation, issues are partitioned into k disjoint partitions and each 
partition is settled independently of the other partitions. Like the package deal, issues 
inside the same partition are negotiated as a whole and an offer includes a value for 
each issue in this partition. Therefore, the computation problem is reduced to the 
sum of k searches where the /-th search is in an ^/-dimension space, where ni « n 
and Xf î Hi = n. This problem takes 0(km^') time in the worst case, where ris = 
argmax ni. Moreover, we can limit the maximum size of a partition to a constant C. 
Therefore, the computational cost of a coalition deal reduces to 0{nnf). The time 
complexity will be 0{rrf) if we have several agents, one for each partition, work 
together to generate a coalition deal. 

In our GetStockQuote service scenario, we divide six issues into two partitions. 
The computational cost is 6 in each round for issue-by-issue negotiation. In package 
deal, agents need to search through all possible offers in a 6-dimensional space to 
meet the given utility constraint. The computational cost is 0{a^) in the worst case, 
where a is the size of possible value per issue. In a coalition deal, the computational 
cost is 0{a^) in the worst case. 

Coalition Deal Negotiation for Services 

With much lower computational cost than that for the package deal, agents earn 
greater utilities from the coalition deal than from issue-by-issue negotiation. Besides 
computational cost and agent utility, another advantage of the coalition deal is that 
it is natural to partition issues into different categories and deal with each category 
separately. For example, in bilateral negotiation of a labor dispute, it would be easier 
if money issues such as salary and bonus are negotiated in a partition separately from 
issues such as working condition and healthcare. Of course, it is possible that both 
sides would benefit if they could deal with all issues as a package, but the negotiation 
might become infeasible. 

In QoS-aware service contracting, self-interested service agents negotiate with 
each other over multiple issues besides QoS attributes to reach an agreement while 
maximizing their utilities. The optimal negotiation strategy for the coalition deal is: 
(1) Agents reveal their deadlines; honesty about their real deadline is enforced by the 
negotiation protocol. For example, the agent that has the latest deadline will receive 
better payoff at the time right before its deadline. (2) Each agent estimates individu­
ally the rounds this negotiation should have before the earliest deadline. (3) Agents 
are identified by their time discount factors (< 1) from their own utility functions. 
Agents choose either the Boulware or conceder discount functions by mapping their 
discount factor to different parameters. (4) Agents compute the expected cumulative 
utility by their Boulware/conceder functions and generate a set of offers, all of which 
give them equal utility, by crossing over multiple issues inside one partition. 

Since all partitions can be negotiated in parallel and independently, the fourth 
steps can be executed in parallel for each partition. A service agent can breed sev­
eral negotiation agents, each for one partition. These negotiation agents cooperate to 
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reach a service agreement with distributed computation. The coahtion among these 
negotiation agents provides the framework for a possibly more flexible negotiation 
procedure in the future. 

5 Commitments and Obligations 

Now that we have described efficient multiple-issue negotiation, in this section we 
define commitments and obligations and describe various operations that the partici­
pating agents can perform on them. We briefly revisit earlier formalisms of commit­
ments and their operations [24, 22], and then define an extension useful for coordi­
nation. 

5.1 Commitments 

Social commitments are legal abstractions associating one entity with another. These 
commitments are accessible publicly and represent an interaction between two par­
ticipating entities. Commitments are binary relationships that bind two agents: a 
"debtor agent" that promises to provide a particular service for a ''creditor agent." 
For example, service level agreements, QoS agreements, online purchases, and ser­
vice contracts are all real-world instances of commitments. 

Earlier works have treated all the information about a commitment as publicly 
available or accessible. It is more realistic to treat some of the information as partially 
accessible and some as private. To do this, we refine the commitment structure in [24, 
22] with the key properties of accessibility. 

First, the commitment properties that are publicly accessible are 

Multiagency: Commitments associate one agent with another. The agent that promises 
or commits to satisfying a condition is called the debtor agent and the agent that 
wants the condition to be fulfilled by the debtor is called the creditor agent. Each 
commitment is directed from its debtor to its creditor. 

Scope: Commitments have a well-defined scope, also known as a Sphere of Com­
mitment (SoCom), which gives context to the commitment. 

Manipulability: Commitments are modifiable. They can become fulfilled, breached, 
active, suspended, or revoked, which is public information about their current 
status. 

The following two additional parameters are not properties of a commitment per 
se, but represent an agent's attitude towards its commitments. These are also public. 

Commitment Adherence Rating: Agents may choose to respect or ignore their com­
mitments. For effective coordination, fulfilling promises is critical and deter­
mines an agent's reputation. A participating agent's history of commitment ad­
herence can be captured and translated into a this rating, which represents the 
agent's reputation in a domain. Nonparticipating arbiters can be used to measure 
and maintain this parameter. 
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Utility Weighting: This is a numerical coefficient in the range (0,1] that represents 
the relative importance of the committed promise on the overall utility that is de­
sired by the creditor agent. This commitment property is used for multiple-issue 
commitments. For single-issue commitments, the value is always 1. It cannot be 
0, as that would represent an issue on which the creditor agent is completely 
agnostic. 

The next (partially-accessible) property is accessible to the debtor of the com­
mitment and to the nonparticipating arbiters, defined as follows: 

Utility Coefficient: Imagine a scenario where a debtor agent makes false promises 
to many service seekers and then does nothing to fulfill the promises. In the real 
world there are checks and measures in place to discourage such behavior. The 
Utility Coefficient, which represents the affect of debtor's behavior on its utility, 
provides similar discouragement. Its value in the range [0,1] captures whether a 
debtor receives all of the utility associated with a commitment (value 1) or none 
of the utility (value 0). 

Lastly, we revisit two key commitment properties [22] and redefine them as prop­
erties that represent an agent's private or internal information. 

Life: Commitments have a life cycle; they are created, remain active, and at some 
point cease to exist. Continuous commitments are beyond the scope of this for­
malism and are a subject of future research. 

Degree: We believe that when active, commitments do not necessarily remain in one 
constant state; they might age by becoming more or less important. This notion 
of commitment aging is captured by what we define as the degree of commit­
ment. We believe that for a service-oriented coordination environment, the de­
gree of commitment changes with changing beliefs, desires, and intentions. Also, 
specifically in the case of commitment cancellation or revocation, the commit­
ment might not go from an active state to an inactive state instantaneously, but 
gradually decrease its degree until it becomes inactive. 

Commitments are represented by a predicate C. The partially accessible commit­
ment properties are represented inside angle brackets "( . . . )" and the private proper­
ties are represented inside square brackets "[. . . ]". Commitments have the form C(i, 
a, b, p, S, W, (ju), [d]), where 

/: is a unique identifier, 
a\ is the creditor agent, 
b: is the debtor agent, 
p\ is the promise or the condition that the debtor will bring about, 
S\ is the context, also known as the sphere of commitment, 
W\ is the utility weighting, 
H'. is the utility coefficient, 
d\ is the age or degree of commitment. 
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In this chapter, we do not use all of these properties, but mention them wherever 
pertinent. Throughout the rest of this chapter we refer to the creditor entity as a and 
the debtor entity as b. 

5.2 Obligations 

We believe that obligations are closely tied to the notions of duty and responsibility. 
An obligation is a promise that one makes to oneself; it is driven by the demand 
of ones own conscience or custom or socially accepted norms and it binds one to a 
specific course of action. We believe that obligations may also exist between a debtor 
agent and an abstract creditor agent, which cannot be represented as one concrete 
creditor, for instance society or say one's country. In this chapter however, we will 
consider only those obligations that represent promises one makes to oneself. 

We believe that obligations can be represented as a special case of commitments. 
Obligations, unlike commitments, are best described as unitary and private in nature. 
In the described service-oriented environment, obligations are the abstractions of 
bindings that an agent imposes on itself. These obligations or internal bindings are 
visible only to the agent and are driven solely by agent's internal state of mind i.e. 
beliefs, desires and intentions. We believe that commitments' claim over a promise 
is stronger than that of obligations. 

As we are dealing only with unitary obligations, the Multiagency and Utility 
Weighting properties are inapplicable. R and jn have special values set by the debtor 
agent itself. The other properties of Scope, Manipulability, Life, and Degree are 
treated the same as they are for commitments. 

Obligations are represented by a predicate O, with their private properties inside 
square brackets "[. . . ]". ObUgations have the form: 0{i,b,p,S,ju, [d]), where 

/: is a unique identifier, 
b: is the debtor agent, 
p: is the promise or the condition that the debtor will bring about, 
S: is the context, also known as the sphere of commitment, 
ju: is the utility coefficient, 
d: is the age or degree of obligation. 

5.3 Operations on Commitments and Obligations 

As described above, our service-oriented environment is commitment-driven and 
participating agents' knowledge is governed solely by commitment operations. In 
this section, we describe commitment operations [23, 12] and their extension 
[22]. Commitments are treated as abstract data types that associate debtor, creditor, 
promise, and context. The seven fundamental commitment operations are 

1. Create (b, C(i, a, b, p, S)): This operation establishes a commitment C in the 
situation S. This operation can only be performed by C's debtor. 



Agent Coordination via Negotiated Commitments 117 

2. Discharge(b, C(i, a, b, p, S)): This operation indicates that the inherent promise 
in the commitment C has been fulfilled; hence the commitment C has been sat­
isfied. 

3. Revoke(b, C(i, a, b, p, S)): This operation cancels the commitment C and can 
only be performed by C's debtor. This operation also reflects the autonomy of 
the participating entity. 

4. Release(a, C(i, a, b, p, S)): This operation captures the situation where a creditor 
no longer wishes its debtor to fulfill its committed promise and releases it of its 
commitment. It can only be performed by C's creditor. 

5. Assign(a, z, C(i, a, b, p, S)): This operation enables a commitment's creditor to 
designate another entity as the creditor. It can only be performed by C's creditor 
and replaces a with z as C's creditor. 

6. Delegate(b, z, Qi, a, b, p, S)): This operation enables C's debtor to transfer its 
commitment promise to another agent. This operation can only be performed by 
C's debtor and replaces b with z as C's debtor. 

7. Suspend(b, C(i, a, b, p, S)): This operation can only be performed by C's debtor, 
and describes a situation where the debtor has put its promised commitment on 
hold. 

We use predicates to describe whether the commitment C has been satisfied, re­
voked, breached, or still holds, written as satisfied(C), revoked(C), breached(C), and 
active(C), respectively. 

For obligations, only the following four of the above operations are applicable: 
Create(b, C (i, b, p, S)), Discharge(b, C (i, b, p, S)), Revoke(b, C (i, b, p, S)), and Sus-
pend(b, C (i, b, p, S)), Obligations are unitary, internal, and private in nature; hence, 
assignment and delegation is not applicable. Because obligations can be treated as a 
special case of commitments, in the remainder of this chapter we use commitments 
as the basic abstraction for both binary and unitary agent bindings. 

5.4 Negotiated Agreements as Commitment Promises 

As described in Section 1, in service-oriented environments the participating agents, 
which play the roles of a service provider and a service seeker, negotiate and commit 
to a service agreement about the execution and completion of a task. During the ne­
gotiation, the agents communicate and compromise to reach an agreement on matters 
of mutual interest while maximizing their utilities. In this section we will describe 
how the negotiated agreements, which associate or bind these participating agents 
with each other, can be best encapsulated as commitment promises. 

Let b denote the service provider or the debtor agent and a denote the service 
seeker or the creditor agent as described in Section 4.3. Both a and b negotiate on 
issues related to the service and come to an agreement. How they communicate and 
their particular negotiation strategy is beyond the scope of this section. 

We first consider agreements over a single issue. Specifically, a and b have nego­
tiated and agreed upon an issue set I = A, where A represents one issue, such as the 
product price in an e-commerce transaction. 
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Expanding on the agents' negotiation parameters as defined in Section 4, we 
define the agents' agreement parameters as 

Sb={Pa.Ut)^ (12) 

where, Pa = Pt, = Pagreed is the agreed price or the agreed parameter over issue A. 
This is public information. 

Ua and Ub are utihties of the respective participating agents. The utihties are 
associated with the negotiated agreement on A. It is partially accessible information 
known to the owner agent and the non-participating arbiters. Note that the actual 
utility, Uactuai = jux U, is awarded to the agent once the commitment C reaches 
finality. 

The negotiated agreement between agents a and b over issue A is a commitment 
in which the agreed parameter over A is the commitment promise. From section 
5.1, and because this is a single-issue agreement so that W = 1, the commitment is 
represented as C{i,a,b,Pagreed^S,\,(ju), [degree,age]). 

We now consider multiple-issue negotiated agreements. As an example, an on­
line transaction between an online bookseller and a buyer would involve agreement 
from both sides on the multiple issues of book price, book condition (new or used), 
delivery method, etc. All these are sub-issues of the main issue of "buying a book." 

Let there be an issue set I of k issues, where / = {/i,/2,... ,4} . Expanding on 
the agents' negotiation parameters as defined in Section 4, the agents' agreement 
parameter sets are defined as: 

^a = Yai^a) I 

Sb = {Pb.Ub)j (13) 

where. Pa = ItefPa^ ^^^ similarly, Pb = ILieiPb 
This means that the overall agreed price or agreed parameter over issue /, which 

comprises k sub-issues, is the summation of the agreed price or the agreed parame­
ter of all the sub-issues. Since a and b are in agreement, Pa = Pb — Pagreed^ it is the 
overall agreed price or the overall agreed parameter over the issue A. This is pub­
lic information, which is available to all the participants and the non-participating 
arbiters. 

Ua and Ub are overall utilities of the respective participating agents. This util­
ity is associated with the negotiated agreement on the issue /. This is partially ac­
cessible information, which means that it is known to the owner agent and the non-
participating arbiters. Note that the actual utility, Uactmi =l^xU and will be awarded 
to the agent once the commitment C reaches some kind of finality. We know that 
Ua = Y^iei^l' Similarly, Ub = Y^iei^l' Which means that the overall utility for an 
agent to have an agreement on a parameter over issue set /, which comprises k sub-
issues is the summation of utilities it gains on having an agreement on all the sub-
issues. 

Now we describe the concept of W in greater detail. As described above, the 
overall utility of the debtor agent b over the issue set / is the sum all the utilities 
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("sub-utilities") it gains over all the k sub-issues that make up the issue set /. We 
theorize that in the issue set / all of the sub-issues do not necessarily have an equally 
significant effect on its overall utility. In our book-selling example, let us assume 
that a service provider b and a service seeker a enter into a commitment relationship 
in which b promises to deliver a book to a. Of the many sub-issues that make up 
the complete transaction, the "color of the book cover" may not have as significant 
an impact on b's overall utility as does the "condition of the book" or the "delivery 
time". W represents the relative significance of sub-issues that make up an issue set. 

Considering the negotiated agreement between agents a and b over the issue set / 
as a commitment relationship, the relationship between a and b can be represented as: 
Qz? = Y^iei^ab' which means that the commitment relationship between a and b over 
negotiated agreements on the issue set /, which comprises k sub-issues, is the sum­
mation of all the commitments on all the k sub-issues. Note that X/e/ ̂ 1? = 1- Thus, 
service-oriented environments where participating agents are involved in negotiated 
agreements over single or multiple issues can be modeled by our commitment-driven 
approach. 

6 Commitment-Based Coordination Protocol 

Organizational control is needed to ensure that the appropriate information is com­
municated among the coordinating agents, so that they can make effective decisions 
to advance the overall objective. The key information being communicated is of three 
types: 

1. Static information, such as authority relationships 
2. Dynamic information, such as policies, standard operating procedures, and com­

munication protocols 
3. Contextual information, such as the current state of the overall workflow or plan 

and the states of the relevant agents. 

An important aspect of our approach is that it treats organizational control as an 
integral aspect of planning, particularly for coordinating in the face of exceptions. 
This is a reasonable approach, because the flexibility of an organization reflects the 
complexity of its plans, the dynamism of its environment, and the risks faced by 
its plans. Thus heuristic techniques for encoding and using coordination strategies 
are naturally extended into strategies that accommodate organizational structure and 
control. 

Moreover, organizational structure can be used to control the complexity both 
of the design and configuration of agent systems and of the execution by individual 
agents. This improves scalability. Well-designed organizations naturally yield narrow 
interfaces so that changes are not unnecessarily propagated and the right information 
flows at the right time. We cast the problem of organization design as a natural next 
step to the representation and design of agent heuristics, where the heuristics are se­
lected so as to capture and exploit organizational structure. For example, we could 
have heuristics to report exceptions or anticipated exceptions to a supervisory role; 
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to delegate a commitment to a subordinate; to request a peer to accept a delegate; 
to assign a resource not needed to a peer; and so on. In this manner, the general 
approach for verifying correctness could be made more elaborate to take advantage 
of organizational structure. Moreover, a model of the agents' organization, policies, 
and authority can be integrated with coordinated decision making to ensure the com­
pliance of decisions to organizational policies. 

To make this discussion concrete, let's outline how inter-agent control and intra-
agent control mesh: 

1. One or more agents perceive or are notified of an event. 
2. Each agent perceiving the event decides (a) whether the event changes its lo­

cal plan, and (b) whether to communicate the change (by itself or along with 
additional results of its reasoning) to another agent. 

3. If an agent decides the event does not affect it or any one of its dependent agents, 
then it filters out the event and continues on its prior execution path. If an agent 
decides that the event does not affect its own plan, but could possibly affect plans 
of its dependent agents, then it communicates the event to the affected agents. 

4. If an agent decides that the change affects its own plan, it reconsiders its com­
mitments and begins a renegotiation of those that cannot be met. 

5. The actions proposed to meet commitments are subjected to a "filter" that detects 
any that are in opposition to policies. All agents have an obligation to act in 
accordance with appropriate and applicable policies. 

6. If the coordinated commitment-revision process encounters difficulties, the agent 
who has the most severe difficulty is given its preference and the coordination 
continues. 

The above process can be captured in a general and flexible manner through 
the use of commitments. As explained in Section 5, commitments provide a natu­
ral abstraction to encode relationships among autonomous, heterogeneous parties. 
Commitments are important for organizational control, because they provide a layer 
that mediates across the declarative semantics of organizations from the operational 
behavior of the team members. Organizational control based on commitments by a 
reasoner in an agent has the advantages that: 

1. Commitments can be assigned to roles, so that any unit that fills the role of 
"transport troops" will, e.g., inherit a commitment assigned to the role to move 
troops from location A to location B. 

2. Commitments can be delegated, so that a captain who has the commitment to 
"transport troops" can delegate the commitment to Helicopter Unit 1. 

3. Commitments can be reassigned. For example, if Helicopter Unit 1 fails to meet 
its commitment (the helicopters break down) then the captain can release Unit 1 
from the commitment and delegate it to Unit 2. 

4. Commitments can be negotiated. The captain might ask another captain (a peer) 
to take over a commitment that could not otherwise be met. 

5. Commitments can fail to be met, in which case the failure can be communicated 
to an agent with the authority to release the original commitment and reassign it. 
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Commitments to follow required policies are a kind of obligation, and are man­
aged by a deontic reasoner. An organizational model based on obligations and rights 
can enable agents to represent and reason about the relationship between the respon­
sibilities of the agent or group being coordinated and applicable policies, decision­
making constraints, authorities, and overall objectives. This feature decides which 
organizational policies apply for the current situation and marks as unacceptable any 
intended actions that are inappropriate. 

7 Commitments in Plan Revision 

It is clear from the above that coordination is not a one-shot effort that can be sat­
isfied through one round of planning, but must be carried out repeatedly. Further, 
coordination includes challenges such as unexpected events and changing situations, 
and must respect not only physical constraints, but also organizational challenges. 

One aspect of commitments involves scheduling algorithms so that an agent can 
manage multiple commitments in the face of external events. Each agent applies 
classification to identify the general class of an event, then the classification is used 
to choose heuristics most likely to lead to effective coordinated behavior. Each agent 
maintains the consistency of formally represented commitments leading to robust, 
yet flexible coordination reasoning. 

This relies upon a temporal semantics for commitments, which naturally leads to 
heuristics for ensuring that tasks that can be scheduled are satisfactorily scheduled 
given the emerging constraints. Another aspect involves reasoning about commit­
ments more directly at the level of coordination as it relates to communication. To 
this end, it helps to develop additional representations based on commitments. Such 
representations can be thought of as patterns of coordination relationships. 

Heuristic Classification Heuristic Classification 

Abstract Plan Failiiras 

Delayed resource 
Unavailable resource 
Insufficient resource 

Contingencies 

Alternative resource 
Additional resource 
Accelerated 
compensation 
Cancel task 
Delay task 
Reduce task scope 

noorriinatinn StratfiqJRS 

Propagate delay based on 
dependencies 
Request help based on commitments 

Request help from peers 
Request help from superior 

Propagate resource consumption data 
Adopt task 

Fig. 2. Elements of a simple domain-independent mechanism for coordinating a response to 
conflicts and failures in plans 
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Commitments provide us with a basis for creating techniques that are generic and 
reusable. It is helpful to frame these as first-order patterns of interaction as well as 
second-order patterns of how other patterns are modified. These patterns would be 
indexed according to different situations and potential threats such as lost commu­
nications, ineffective participants, and so on. Figure 2 illustrates examples of how 
certain coordination strategies can be associated with potential plan failures. This is 
an example of heuristic classification in the sense of [1]. In our approach, this heuris­
tic classification is supported by our semantics for commitments. Commitments are 
formally modeled via temporal logic; each agent's behavior is modeled via a simple 
finite-state machine (FSM). 

Ignore Exceptions 

\ Replan Subplan Complete . 

Consider Exceptions 

"v Replan Subplan Complete ^ 

Exceeded(Deadline) / ^ 
Send(ReminderRequest) 

Receive(ConfiiTmtion) / 
Send(Trooppestination) 

Set Deadline 
Alarm 

Send(TroopTranjsportRequest) Send(TroopTrar»sportRequest) 

Fig. 3. Operationalizing commitments: an example of a finite-state machine for a coordinator 
that handles a delayed resource 

To operationalize a commitment, we represent it as an FSM that processes com­
mitments. The FSMs corresponding to different patterns can be combined with each 
other to yield the desired composite structure for the different agents. Figure 3 illus­
trates an example of a heuristic for handling a delayed resource. On the left is a part 
of an agent's FSM behavior where it deals with obtaining a resource from another 
party. An agent implemented according to this FSM would wait for the resource to 
arrive and then process it according to its current plan. However, such an agent would 
not be robust under certain kinds of enactment failures, specifically if the resource 
fails to materialize on time. The FSM on the right is an alternative for the same func­
tional behavior. An agent implemented according to this FSM would be robust under 
the above failure, because it would time-out and generate reminders for the missing 
resource. 

The above heuristic is promising, but has an obvious shortcoming in that, if 
the resource is dead rather than merely delayed, the agent will keep generating re-
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minders, whereas it should drop the current plan altogether. As agents are designed 
for a rich variety of scenarios, more such heuristics v̂ ill be needed. They might be 
invented at run-time via machine learning or during configuration when a team of 
agents is deployed. 

We can validate if a set of agents will function together in a manner to produce the 
right behaviors. It is known that checking the correctness of a distributed system of 
complex components is not tractable. The FSM representation of the heuristics hides 
irrelevant detail and enables the correctness verification known as model checking. 
Examples of the kinds of errors that can be detected early via model checking are: 
(1) if all the agents in a system are implemented according to the simple FSM on 
the left in the figure above, then such a system will hang when a resource dies, and 
(2) when resource sharing, if the receiver of a resource is implemented according to 
the FSM on the right, then we can confirm that reminders will be generated in case 
of a delay, but there might still be unnecessary delays because the resource provider 
cannot notify the resource consumer and the resource consumer will be unable to 
terminate its current plan if the resource is in fact dead. Similarly, we can create 
additional sets of FSMs and verify their correctness. Previous work on this problem 
used a Computational Tree Logic (CTL) model checker to create FSMs that would 
guarantee specified combinations of commitment patterns [28, 27]. 

In simple terms, the methodology combines the power of heuristics and the learn­
ing of agent behaviors, while providing a sound underpinning in terms of commit­
ments and their formal semantics. Heuristic classification is essential for practical 
knowledge acquisition and implementation; formalization gives us the essential guar­
antees of robustness and reliability that are necessary for mission-critical situations. 

8 Conclusions 

Commitments are a powerful representation for modeling intelligent interactions 
among agents distributed within an organizational structure. Previous approaches 
have considered the semantics of commitments and how to check compliance with 
them. However, for large-scale applications such as supply chains or military oper­
ations, these approaches do not capture implicit temporal task dependencies or the 
organizational authority and responsibilities among the participating entities. Our 
use of negotiated commitments for coordination lets us capture realistic task depen­
dencies and avoid ambiguities. Consequently, it enables us to reason about whether, 
and at what point, a commitment is satisfied or breached, and whether it is or ever 
becomes unenforceable when replanning must be done. 

Our use of deadlines for agent plans is similar to that for commitment life-
cycles [7], which explains how operations can create, modify, delete, and satisfy 
commitments. This work operationalizes commitments, and we extend it to yield 
agent-internalized BDI semantics for temporal commitments. 

The use of policy and organizational reasoning for coordination requires ad­
vances in the representation of policies in terms of commitments and obligations and 
an associated deontic reasoning mechanism. A temporal deontic logic for specifying 
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obligations so that interaction protocols can take deadlines into account has been de­
veloped [4]. Other work on obligations [11] used them to represent and reason about 
policies, but did not incorporate commitments, as we do. 

The choice of commitments as a basic data type for coordination enables the 
monitoring of performance by recording the satisfaction of prior commitments. This 
can be used to predict an agent's computational resource needs, and can be used to 
determine when an agent is not meeting expectations. 

This chapter also investigates the coalition deal as a strategy for QoS-aware ne­
gotiation over commitments. Using equilibrium strategies, we prove that it makes 
better tradeoffs between utility optimization and computational efficiency than ei­
ther the package deal or issue-by-issue negotiation. 

Many real world systems are becoming service-oriented. In a service-oriented 
multiagent system, commitments represent agent associations and interactions. In 
such an environment, a participant agent's beliefs, desires, and intentions about the 
commitments in which it is involved are critical to modeling its behavior. By formal­
izing commitments in terms of BDI, we have provided the basic framework on which 
a more comprehensive commitment-driven coordination theory could be developed. 
The advantage of this framework is that it blends two established formalisms— 
BDICTL [3] and commitments—that together can model a service-oriented multi-
agent system. Our future research involves exploration of how agents decide what to 
commit (integrating earlier works on "capability" [15] with commitments), when to 
revoke a commitment, how a commitment ages, and how historical information of 
an agent's commitment adherence can be utilized to predict agent behavior. 
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Summary. This paper addresses the application of distributed constraint optimization prob­
lems (DCOPs) to large-scale dynamic environments. We introduce a decomposition of DCOP 
into a graphical game and investigate the evolution of various stochastic and deterministic al­
gorithms. We also develop techniques that allow for coordinated negotiation while maintaining 
distributed control of variables. We prove monotonicity properties of certain approaches and 
detail arguments about equilibrium sets that offer insight into the tradeoffs involved in lever­
aging efficiency and solution quality. The algorithms and ideas were tested and illustrated on 
several graph coloring domains. 

1 Introduction 

A distributed constraint optimization problem (DCOP) [8, 12] is a useful formalism 
in settings where distributed agents, each with control of some variables, attempt to 
optimize a global objective function characterized as the aggregation of distributed 
constraint utility functions. DCOP can be applied to many multiagent domains, in­
cluding sensor nets, distributed spacecraft, disaster rescue simulations, and software 
personal assistant agents. For example, sensor agents may need to choose appropriate 
scanning regions to optimize targets tracked over the entire network or personal as­
sistant agents may need to schedule multiple meetings in order to maximize the value 
of their users' time. As the scale of these domains become large, current complete 
algorithms incur immense computation costs. A large-scale network of personal as­
sistant agents for instance, would require DCOP global optimization over hundreds 
of agents and thousands of variables, which is currently very expensive. On the other 
hand, if we let each agent or variable react on the basis of its local knowledge of 
neighbors and constraints utilities, we create a system that removes the necessity for 
tree-based communication structures and scales up very easily and is far more robust 
to dynamic environments. 

Recognizing the importance of local search algorithms, researchers initially in­
troduced DBA[13] and DSA[1] for Distributed CSPs, which were later extended 
to DCOPs with weighted constraints [14], We refer to these as algorithms without 
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coordination or 1-coordinated algorithms. While detailed experimental analyses of 
these 1-coordination algorithms on DCOPs is available[14], we still lack theoretical 
tools that allow us to understand the evolution and performance of such algorithms 
on arbitrary DCOP problems. Our fundamental contribution in this paper is the de­
composition of a DCOP into an equivalent graphical game. Current literature on 
graphical games considers general reward functions [3, 11] not necessarily tied to 
an underlying DCOP setting. This decomposition provides a framework for analysis 
of 1-coordinated algorithms and furthermore suggests an evolution to k-coordinated 
algorithms, where a collection of k agents coordinate their actions in a single negoti­
ation round. 

The paper is organized as follows. In Section 2, we present a formal model of the 
DCOP framework. In Section 3, we introduce a decomposition of the DCOP into a 
game, where the players are the variables whose utilities are aggregates of their out­
going constraint utilities. We prove that the optimal solution of the DCOP is a Nash 
equilibrium in an appropriate game. In Section 4, two algorithms that consider only 
unilateral modifications of values are presented. We prove monotonicity properties of 
one approach and discuss its significance. In Section 5, we devise two extensions to 
the unilateral algorithms that support coordinated actions and prove the monotonicity 
of one of the extensions, which indicates justification for improved solution quality. 
In Section 6, we discuss experiments and results and we conclude in Section 8. 

2 DCOP: Distributed Constraint Optimization 

We begin with a formal representation of a distributed constraint optimization prob­
lem and an exposition to our notational structure. Let V = {v/j^j denote a set of 
variables, each of which can take a value v/ = x/ G X/, / G lÂ  = {1, . . . A }̂. Here, X/ 
will be a domain of finite cardinality Mi G lÂ . Interpreting each variable as a node in a 
graph, let the symmetric matrix E characterize a set of edges between variables/nodes 
such that Eij — Eji = 1 if an edge exists between v/ and Vj and Eij = Eji = 0, oth­
erwise (Eii = 0 V/). For each pair (ij) such that Eij = 1, let Uij{xi,Xj) = Uji{xj,Xi) 
represent a reward obtained when v/ = xi and Vj — Xj. We can interpret this as a utility 
generated on the edge between v/ and vj, contingent simultaneously on the values of 
both variables and hence referred to as a constraint. The global or team utility U{x) 
is the sum of the rewards on all the edges when the variables choose values according 
to the assignment xeX = X\ x -" XXN. Thus, the goal is to choose an assignment, 
X* G X, of values to variables such that 

X* G argmaxL^(x) = argmax ^ Uij{xi,Xj) 
xex xex ij-E-j^i 

wherex/ is the /-th variable's value under an assignment vectors G X. This constraint 
optimization problem completely characterized by {X,E,U), where U is the collec­
tion of constraint utility functions, becomes distributed in nature when control of the 
variables is partitioned among a set of autonomous agents. For the rest of this paper, 
we make the simplifying assumption that there are Â  agents, each in control of a 
single variable. 



A Family of Graphical-Game-Based Algorithms for DCOP 129 

3 DCOP Games 

Various complete algorithms [8] have been developed to solve a given DCOP. 
Though heuristics that significantly speed up convergence have been developed [6], 
the complexity is still prohibitive in large-scale domains. The tree-based communi­
cation structures are not robust to dynamics in problem structure. Finding a solution 
to a slightly modified problem requires a complete rerun which is expensive and may 
never terminate if the time-scale of the dynamics are faster than the time-scale of the 
complete algorithm. 

Thus, we focus on non-hierarchical variable update strategies based on local in­
formation consisting of neighbors' values and constraint utility functions on outgoing 
edges. We remove the need to establish a parent-child relationship between nodes. 
Essentially, we are creating a game where the players are the variables, the actions 
are the choices of values and the information state is the context consisting of neigh­
bor's values. The key design factor is how the local utility functions are constructed 
from the constraint utility functions. We present a particular decomposition of the 
DCOP (or equivalently a construction of local utility functions) below. 

Let Vj be called a neighbor of v/ if Eij = 1 and let 9^= {j \ j ^ ^,Eij = 1} 
be the indexes of all neighbors of the /-th variable. Let us define x-i = [xj^ • • -Xj^.], 
hereby referred to as a context, be a tuple which captures the values assigned to tne 
Ki = \0\[i\ neighboring variables of the /-th variable, i.e. Vĵ  = Xjj^ where ^j^LiJk — ^ • 
We now define a local utility for the /-th agent (or equivalently the /-th variable) as 
follows: 

Ui{xi\x-i) = ai Y, Uij{xi,Xj) 

where a/ > 0. We now have a DCOP game defined by (X,E,u) where w is a collection 
of local utility functions. For simplicity, we will assume a, = 1 V/ G 1A(̂  in the rest of 
this paper, but all the results hold for arbitrary positive choice if a/. This is the case 
because scaling the utility functions uniformly across all outgoing links does not 
change the global payoffs of any strategy, where a strategy is defined as a mapping 
from information state to action that maximizes local utility. 

A Nash equilibrium assignment is a tuple of values x e X where no agent can 
improve its local utility by unilaterally changing its value given its current context: 

Xi e argmaxw/(x/;i_/), V/ G 0\C. 
xjeXj 

Given a DCOP game (X,E,u), let X̂ v̂  C X be the subset of the assignment space 
which captures all Nash equilibrium assignments: 

XNE = {xeX :xie argmaxw/(x/;i_/), V/ G 9{}-
xjeXj 

Proposition 1. The assignment x* which optimizes the DCOP characterized by 
{X,E,U) is also a Nash equilibrium with respect to the graphical game {X,E,u). 
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Proof. Let us assume that x* optimizes the DCOP (X,£, C/) yet is not a Nash equi-
hbrium assignment. Then, some agent can improve its local utility by altering the 
value of its variable. For some ne 9^ and JCn 9̂  x*, we have 

Leti = [x\ • • -x*.! Xn x*^i • • -XIJ]. Then, 

i,j:Eij=l 

X Uij{xi,Xj)+ X ^nj{Xn,Xj)-\- ^ ^m(^/>-^n) 

"= X ^U i^i' -̂ 7 ) + 2W/ {Xn ;X-n) 
i,j\ii^njtn,Eij^\ 

> S ^U (^i' -̂ 7 ) + 2w/ (x*; X*_^ ) 
iJ:ii'nJi^n,Ejj=\ 

£ Uij{x*,x*) + 2uiix:;x*_„) 

ij\ii^njtn,Eij=\ 

iJ\Eij=\ 
which implies that 

X* ^ arg max Y C/n {xt, x ,•) 

which is a contradiction. • 
Because we are optimizing over a finite set, we are guaranteed to have an assign­

ment that yields a maximum. By the previous proposition, an assignment that yields 
a maximum is also a Nash equilibrium, thus, we are guaranteed the existence of a 
pure-strategy Nash equilibrium. This claim cannot be made for any arbitrary graph­
ical game [3, 11]. Though it has been shown to exist in congestion games without 
unconditional independencies [10, 9], we have shown that the games derived from 
DCOPs have this property in a setting with unconditional independencies. The map­
ping to and from the underlying distributed constraint optimization problem yields 
additional structure. If there were only two variables, the agents controlling each 
variable would be coupled by the fact that they would receive identical payoffs from 
their constraint. In a general graph, DCOP-derived local utility functions reflect the 
amalgamation of multiple such couplings which reflects an inherent benefit to coop­
eration. 

4 Algorithms without Coordination 

Given this game-theoretic framework, how will agents' choices for values of their 
variables evolve over time? In a purely selfish environment, agents might be tempted 
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to always react to the current context with the action that optimizes their local utility, 
but this behavior can lead to an unstable system [5]. Imposing structure on the dy­
namics of updating values can lead to stability and to improved rates of convergence 
[4]. We begin with algorithms that only consider unilateral actions by agents in a 
given context. The first is the MGM (Maximum Gain Message) Algorithm which 
is a modification of DBA (Distributed Breakout Algorithm) [13] focused solely on 
gain message passing. DBA cannot be directly applied because there is no global 
knowledge of solution quality which is necessary to detect local minima. The second 
is DSA (Distributed Stochastic Algorithm) [1], which is a homogeneous stationary 
randomized algorithm. Our analysis will focus on synchronous applications of these 
algorithms. 

Let us define a round as the duration to execute one run of a particular algorithm. 
This run could involve multiple broadcasts of messages. Every time a messaging 
phase occurs in a round, we will count that as one cycle and cycles will be our 
performance metric for speed, as is common in DCOP literature. Let x^^^ e X denote 
the assignments at the beginning of the n-ih round. We assume that every algorithm 
will broadcast its current value to all its neighbors at the begirming of the round 
taking up one cycle. Once agents are aware of their current contexts, they will go 
through a process as determined by the specific algorithm to decide which of them 
will be able to modify their value. Let M^^"^ C 9\C denote the set of agents allowed 
to modify the values in the n-th round. For MGM, each agent broadcasts a gain 
message to all its neighbors that represents the maximum change in its local utility if 
it is allowed to act under the current context. An agent is then allowed to act if its gain 
message is larger than all the gain messages it receives from all its neighbors (ties 
can be broken through variable ordering or another method). For DSA, each agent 
generates a random number from a uniform distribution on [0,1] and acts if that 
number is less than some threshold p. We note that MGM has a cost of two cycles 
per round while DSA only has a cost of one cycle per round. Through our game-
theoretic framework, we are able to prove the following monotonicity property of 
MGM, 

Proposition 2. When applying MGM, the global utility U{x^^'^) is strictly increasing 
with respect to the round (n) until x^"^ G X^E-

Proof. We assume M̂ '̂ ^ 9̂  0, otherwise we would be at a Nash equilibrium. When 
utilizing MGM, if / G M "̂) and Eij =- 1, then ; ^ M^"). If the i-th variable is al­
lowed to modify its value in a particular round, then its gain is higher than all its 
neighbors gains. Consequently, all its neighbors would have received a gain message 
higher than their own and thus, would not modify their values in that round. Because 
there exists at least one neighbor for every variable, the set of agents who cannot 
modify their values is not empty: M "̂) 9̂  0. We have x\^'^ ^ i^ xf^ V/ G M̂ ^̂  and 
J.n-\-\) ^ ^{n) ^. ^ ^(,)^ ^ j^^^ w,-(4'''̂ ^̂ ;jcL"î ) > Uiix^^'^'j!^]) V/ G M^"), otherwise the 
i-th player's gain message would have been zero. Looking at the global utility, we 
have 
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[7(x("+')) 

I ^,(.r",.r'0 

i,j:ieM^"\ ij:im^''\ ij\im^"\ 

jm^""! ,Eij - 1 JGM(" ) ,Eij=1 J$?M(") ,£:/̂ - =: 1 

jm^''\Eij=\ 

j^M^"\Eij=^\ 

iJ:ieM'^"\ iJ-MM^"\ iJ-MM^''\ 
jm^"\Eij=\ jeM^"\Eij=\ jm'^"\Eij=\ 

= I7(;c(")). 

The second equality is due to a partition of the summation indexes. The third equality 
utilizes the properties that there are no neighbors in M̂ '̂ ^ and that the values for 
variables corresponding to indexes not in M̂ ^̂  in the (^4- l)-th round are identical 
to the values in the n-th round. The strict inequality occurs because agents in M^^"^ 
must be making local utility gains. The remaining equalities are true by definition. 
Thus, MGM yields monotonically increasing global utility until equilibrium. • 

Why is monotonicity important? In anytime domains where communication may 
be halted arbitrarily and existing strategies must be executed, randomized algorithms 
risk being terminated at highly undesirable assignments. Given a starting condition 
with a minimum acceptable global utility, monotonic algorithms guarantee lower 
bounds on performance in anytime environments. Consider the following example. 

Example 1. The Traffic Light Game. Consider two variables, both of which can 
take on the values red or green, with a constraint that takes on utilities as follows: 
U{red, red) == 0, U {red, green) = U {green, red) — l,U {green, green) = —1000. Turn­
ing this DCOP into a game would require the agent for each variable to take the utility 
of the single constraint as its local utility. If {red, red) is the initial condition, each 
agent would choose to alter its value to green if given the opportunity to move. If 
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both agents are allowed to alter their value in the same round, we would end up in 

the adverse state {green,green). When using DSA, there is always a positive proba­

bility for any t ime horizon that {green, green) will be the resulting assignment. 

In domains such as independent path plaiming of trajectories for UAVs or rovers, 

in environments where communication channels are unstable, bad assignments could 

lead to crashes whose costs preclude the use of methods without guarantees. This is 

illustrated in Figure 1 which displays sample trajectories for M G M and DSA with 

identical starting conditions for a high-stakes scenario described in Section 6. The 

performance of both M G M and DSA with respect to a various graph coloring prob­

lems are investigated and discussed in Section 6. 
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Fig. 1. Sample Trajectories of MGM and DSA for a High-Stakes Scenario 

5 Algorithms with Coordination 

When applying algorithms without coordination, the evolution of the assignments 
will terminate at a Nash equilibrium point within the set X^E described earlier. One 
method to improve the solution quality is for agents to coordinate actions with their 
neighbors. This allows the evolution to follow a richer space of trajectories and al­
ters the set of terminal assignments. In this section we introduce two 2-coordinated 
algorithms, where agents can coordinate actions with one other agent. Let us re­
fer to the set of terminal states of the class of 2-coordinated algorithms as XIE, i.e. 
neither a unilateral nor a bilateral modification of values will increase sum of all 
constraint utilities connected to the acting agent(s) if x G XIE- We will call XIE the 
set of 2-equilibria and XJ^E the set of 1-equilibria. Clearly the terminal states of a 
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coordinated algorithm will depend on what metric the coordinating agents will use 
to determine if a particular joint action is acceptable or not. In a team setting (and in 
our analysis), a joint action that increases the sum of the utilities of the acting agents 
is considered acceptable, even if a single agent may see a loss in utility. This would 
be true in a purely selfish environment as well, if agents could compensate each other 
for possible losses in utility. An alternative choice would be to make a joint action 
acceptable only if both agents see utility gains. We consider the former notion of an 
acceptable joint action and define the terminal states as follows: 

X2E = \x: {xi,Xj) = argmax [ui{xi\iA-i{xj,x-ij)) 

-\-Uj{xj\id-j{xi,x-ji))], V/,y e^,ii^j\ 

where x-ij is a tuple consisting of all values of variables except the /-th and y-th 
variable, and^_/(xy,x_j/) is a function that converts its arguments into an appropriate 
vector of the form of x-t described earlier, i.e. n-i takes values from the variables 
indexed by {y} U {lA^\ {/U7}} to a vector composed of the variables indexed by 

Propositions. For a given DCOP {X,E,U) and its equivalent game {X,E,u), we 
have X2E Q XNE-

Proof. We show this by proving the contrapositive. Suppose x ^ XME- Then, there 
exists a variable / such that w/(i/;x_/) > Ui{xi\x-i) for some Jc/ 9̂  xi. This further 
implies that there exists some variable j G lA/£, for which Uij{xi,Xj) > Uij{xi,Xj). We 
then have 

i^i{xr,H-i{xj,x-ij)) > ui{xi\n-i[xj,x-ij)) and uj{xj\^-j{xi,x-ji)) > uj{xj\n-j{xux-ij)) 

which implies that x ^ XIE- • 
Essentially, we are saying that a unilateral move which improves the utility of 

a single agent must improve the constraint utility of at least one link which fur­
ther implies that the local utility of another agent must also increase given that the 
rest of its context remains the same. The interesting phenomenon is that our defi­
nition of X2E above is sufficient to capture both unilateral and bilateral deviations 
within the context of bilateral deviations. This is due to the underlying DCOP struc­
ture and would not be true in a general game. If we wanted the terminal set of 2-
coordinated assignments to be a strict subset of the Nash equilibrium set in a general 
game, we would have to augment the definition of X2E to specifically include the 
Xi G argmaXjc/GX, Ui{xi\x-i), \/i G 0\C condition, as it is possible that there exists a lo­
cal utility improvements due to a unilateral action that does not lead to a combined 
utility improvement for the acting agent and any neighbor. 

It has been proposed that coordinated actions be achieved by forming coalitions 
among variables. In [2], each coalition was represented by a manager who made 
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the assignment decisions for all variables within the coalition. These methods in­
herently undermine the distributed nature of the decision-making by essentially re­
placing multiple variables with a single variable in the graph. It is not possible in 
all situations for this to occur because utility function information and the ability 
to communicate with the necessary neighbors may not be transferable (due to in-
feasibility or preference). We introduce two algorithms that allow for coordination 
while maintaining the underlying distributed decision making process and the same 
constraint graph: MGM-2 (Maximum Gain Message-2) and SCA-2 (Stochastic Co­
ordination Algorithm-2). 

Both MGM-2 and SCA-2 begin a round with agents broadcasting their current 
values. The first step in both algorithms is to decide which subset of agents are al­
lowed to make offers. We resolve this by randomization, as each agent generates a 
random number uniformly from [0,1] and considers themselves to be an offerer if the 
random number is below a threshold q. If an agent is an offerer, it cannot accept of­
fers from other agents. All agents who are not offerers are considered to be receivers. 
Each offerer will choose a neighbor at random (uniformly) and send it an offer mes­
sage which consists of all coordinated moves between the offerer and receiver that 
will yield a gain in local utility to the offerer under the current context. The offer 
message will contain both the suggested values for each player and the offerer's lo­
cal utility gain for each value pair. Each receiver will then calculate the global utility 
gain for each value pair in the offer message by adding the offerer's local utility gain 
to it's own utility change under the new context and (very importantly) subtracting 
the difference in the link between the two so it is not counted twice. If the maximum 
global gain over all offered value pairs is positive, the receiver will send an accept 
message to the offerer with the appropriate value pair and both the offerer and re­
ceiver are considered to be committed. Otherwise, it sends a reject message to the 
offerer, and neither agent is committed. 

At this point, the algorithms diverge. For SCA-2, any agent who is not committed 
and can make a local utility gain with a unilateral move generates a random number 
uniformly from [0,1] and considers themselves to be active if the number is under a 
threshold p. At the end of the round, all committed agents change their values to the 
committed offer and all active agents change their values according to their unilat­
eral best response. Thus, SCA-2 requires three cycles (value, offer, accept/reject) per 
round. In MGM-2 (after the offers and replies are settled), each agent sends a gain 
message to all its neighbors. Uncommitted agents send their best local utility gain for 
a unilateral move. Committed agents send the global gain for their coordinated move. 
Uncommitted agents follow the same procedure as in MGM, where they modify their 
value if their gain message was larger than all the gain messages they received. Com­
mitted agents send their partners a go message if all the gain messages they received 
were less than the calculated global gain for the coordinated move and send a no-go 
message, otherwise. A committed agent will only modify its value if it receives a go 
message from its partner. We note that MGM-2 requires five cycles (value, offer, ac­
cept/reject, gain, go/no-go) per round. Given the excess cost of MGM-2, why would 
one choose to apply it? We can show that MGM-2 is monotonic in global utility. 
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Proposition 4. When applying MGM-2, the global utility U{x^^^) is strictly increas­
ing with respect to the round (n) until x^^^ G X2E' 

Proof. We begin by introducing some notation. At the end of the n-th round, let 
C(") c 0\C denote the set of agents who are committed, M "̂) C 0\C denote the set of 
uncommitted agents who are active, and 5̂ "̂  = {Ĉ "̂  UM '̂̂ ^}^ c 9\C denote the un­
committed agents who are inactive. Let p(/) G Ĉ ") denote the partner of a committed 
agent / G C^"\ The global utility can then be expressed as: 
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f7(x(«+')) 

iJ'Eij=\ 

/GCW /GCW;GfA/^\{/7(/)} 
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- I f̂ M -̂Sr^"') + I t/,(xW,4«)) 
jGCW U:/G5W, 

7G5W,£,7=1 

The first equality is by definition. The second equality partitions the indexes into up­
date class, eliminating cross indexes of M "̂̂  with anything other than 5 "̂̂ . In the third 
equality, we simplify the summations involving committed agents using expressions 
for partners and neighbors, we insert a zero value term in parenthesis, and transform 
the summations involving active agents into local utilities. In the fourth equality, 
we modify the round index for those agents who are inactive. In the fifth equality, 
we transform the summations involving committed agents into local utilities. The 
inequality is due to the fact that the global utility on the links of the committed part­
ners and the local utility of the active agents must increase due to the positive gain 
messages. The key is that by setting j = p{i) in the second and third summations, 
we recover the gain message of the committed teams. Note the subtraction of the 
utility gain on the link between partners to avoid double counting. The final equal­
ity can be achieved by reversing the transformation to yield the global utility at the 
previous round. Thus, MGM-2 yields monotonically increasing global utility until 
equilibrium is reached. • 

Example 2. Meeting Scheduling. Consider two agents trying to schedule a meet­
ing at either 7:00 AM or 1:00 PM with the constraint utility as follows: /7(7,7) = 
1,/7(7,1) - ^(1,7) = -100,/7(1,1) = 10. If the agents started at (7,7), any 1-
coordinated algorithm would not be able to reach the global optimum, while 2-
coordinated algorithms would. 

It is not obvious that 2-coordinated algorithm will yield a solution with higher 
quality than a 1-coordinated algorithm in all situations. In fact, there are DCOPs 
and initial conditions for which a 1-coordinated algorithm will yield a better solution 
than a 2-coordinated algorithm. The complexity lies in that we cannot predict exactly 
what trajectory the evolution will follow. However, due the proposition above we can 
have some confidence that 2-coordinated algorithms will perform better on average 
as outlined in the following corollary. 
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Corollary 1. For every initial condition xo G XJ^E \ XIE* MGM-2 will yield a better 
solution than either MGM or DSA. 

Proof. Since XQ G XJ^E^ neither MGM nor DSA will move and the solution quality 
will be that obtained at the assignment XQ. However, since xo ^ XIE^ M G M - 2 will 
continue to evolve from XQ until it reaches an assignment in X2E' Because MGM — 2 
is monotonic in global utility, whatever solution in reaches in X2E will have a higher 
global utility than XQ. • 

Thus, MGM-2 dominates DSA and MGM for initial conditions in XME \ XIE 
and is identical to DSA and MGM on X2E (as neither algorithm will evolve from 
there). The unknown is the behavior on X \ X^^E- It is difficult to analyze this space 
because one cannot pinpoint the trajectories due to the probabilistic nature of their 
evolution. If we assume that iterations beginning in X \ XJ^E are taken to points in 
Xj^E in a relatively uniform manner on average with all algorithms, then we might 
surmise that the dominance of MGM-2 should yield a better solution quality. The 
performance of both MGM-2 and SCA-2 with respect to a various graph coloring 
problems are investigated and discussed in Section 6. 

6 Experiments 

We considered three different domains for our experiments. The first was a standard 
graph-coloring scenario, in which a cost of one is incurred if two neighboring agents 
choose the same color, and no cost is incurred otherwise. Real-world problems in­
volving sensor networks, in which it may be undesirable for neighboring sensors to 
be observing the same location, are commonly mapped to this type of graph-coloring 
scenario. The second was a fully randomized DCOP, in which every combination of 
values on a constraint between two neighboring agents was assigned a random re­
ward chosen uniformly from the set {1 , . . . , 10}. In both of these domains, we con­
sidered ten randomly generated graphs with forty variables, three values per variable, 
and 120 constraints. For each graph, we ran 100 runs of each algorithm, with a ran­
domized start state. The third domain was chosen to simulate a high-stakes scenario, 
in which miscoordination is very costly. In this enviroment, agents are negotiating 
over the use of resources. If two agents decide to use the same resource, the result 
could be catastrophic. An example of such a scenario might be a set of unmanned 
aerial vehicles (UAVs) negotiating over sections of airspace, or rovers negotiating 
over sections of terrain. In this domain, if two neighboring agents take the same 
value, there is a large penalty incurred (-1000). If two neighboring agents take dif­
ferent values, they obtain a reward chosen uniformly from {10,..., 100}. Because 
miscoordination is costly, we introduced a safe (zero) value for all agents. An agent 
with this value is not using any resource. If two neighboring agents choose zero as 
their values, neither a reward nor a penalty is obtained. In such a high-stakes scenario, 
a randomized start state would be a poor choice, especially for an anytime algorithm, 
as it would likely contain many of the large penalties. So, rather than using random­
ized start states, all agents started with the zero value. However, if all agents start 
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Fig. 2. Comparison of the performance of MGM and DS A 

at zero, then DSA and MGM would be useless, since no agent would ever want to 
move alone. So, a reward of one was introduced for the case where one agent has the 
zero value, and its neighbor has a nonzero value. In the high-stakes domain, we also 
performed 100 runs on each of 10 randomly generated graphs with forty variables 
and 120 constraints, but due to the addition of the safe value, the agents in these 
experiments had four possible values. 

For each of the three domains, we ran: MGM, DSA with/?G {0.1,0.3,0.5,0.7,0.9}, 
MGM-2 with q e {0.1,0.3,0.5,0.7,0.9} and SCA-2 with all combinations of the 
above values of p and q (where q is the probability of being an offerer and p is the 
probability of an uncommited agent acting). Each table shows an average of 100 runs 
on ten randomly generated examples with some selected values of p and q. Although 
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each run was for 256 cycles, most of the graphs display a cropped view, to show the 
important phenomena. 

Figure 2 shows a comparison between MGM and DSA for several values of p. 
For graph coloring, MGM is dominated, first by DSA with p = 0.5, and then by DSA 
with p = 0.9. For the randomized DCOP, MGM is completely dominated by DSA 
with p = 0.9. MGM does better in the high-stakes scenario as all DSA algorithms 
have a negative solution quality (not shown in the graph) for the first few cycles. This 
happens because at the beginning of a run, almost every agent will want to move. As 
the value of p increases, more agents act simultaneously, and thus, many pairs of 
neighbors are choosing the same value, causing large penalties. Thus, these results 
show that the nature of the constraint utility function makes a fundamental difference 
in which algorithm dominates. Results from the high-stakes scenario contrast with 
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[14] and show that DSA is not necessarily the algorithm of choice when compared 
with DBA across all domains. 

Figure 3 shows a comparison between MGM and MGM-2, for several values ofq. 
In all domains, MGM-2 eventually reaches a higher solution quality after about thirty 
cycles, despite the algorithms' initial slowness. The stair-like shape of the MGM-2 
curves is due to the fact that agents are changing values only once out of every five 
cycles, due to the cycles used in communication. Of the three values of q shown in 
the graphs, MGM-2 rises fastest when q ^ 0.5, but eventually reaches its highest 
average solution quality when 7̂ = 0.9, for each of the three domains. We note that, 
in the high-stakes domain, the solution quality is positive at every cycle, due to the 
monotonic property of both MGM and MGM-2. Thus, these experiments clearly 
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verify the monotonicity of MOM and MGM-2, and also show that MGM-2 reaches 
a higher solution quality as expected. 

Figure 4 shows a comparison between DSA and SCA-2, for p ^ 0.9 and several 
values of q. DSA starts out faster, but SCA-2 eventually overtakes it. The result of 
the effect of q on SCA-2 appears inconclusive. Although SCA-2 with q = 0.9 does 
not achieve a solution quality above zero for the first 65 cycles, it eventually achieves 
a solution quality comparable to SCA with lower values of q. 

Figure 5 contains a graph and a pie-chart for each of the three domains, providing 
a deeper justification for the improved solution quality of MGM-2 and SCA-2. The 
graph shows a probability mass function (PMF) of solution quality for three sets of 
assignments: the set of all assignments in the DCOP (X), the set of 1 -equilibria (XME), 

and the set of 2-equilibria (X2E)' Here we considered scenarios with twelve variables, 
36 constraints, and three values per variable (four for the high-stakes scenario to 
include the zero value) in order to investigate tractably explorable domains. In all 
three domains, the solution quality of the set of 2-equilibria (the set of equilibria 
to which MGM-2 and SCA-2 must converge) is, on average, higher than the set of 
1-equilibria. In the high-stakes DCOP, 99.5% of assignments have a value less than 
zero (not shown on the graph.) 

The pie chart shows the proportion of the number of 2-equilibria to the number 
of 1-equilibria that are not also 2-equilibria. Notice that in the case of the randomized 
DCOP, most 1-equilibria are also 2-equilibria. Therefore, there is very little differ­
ence between the PMFs of the two sets of equilibria on the corresponding graph. 
We also note that the phase transition mentioned in [14] (where DSA's performance 
degrades for /? > 0.8) is not replicated in our results. In fact, our solution quality gets 
better as p > 0.8, though with slower convergence. 

7 Related Work 

Algorithms for solving DCOPs are generally divided into two categories. Complete 
algorithms, such as Adopt[8] and OptAPO[7], are guaranteed to converge to an opti­
mal solution. However, their comparatively long runtime, as well as other properties, 
such as Adopt's requirement that agents be organized in a depth-first-search tree or 
OptAPO's requirement that all agents reveal all their constraints to their neighbors, 
ensures that incomplete DCOP algorithms, including those presented here, will be 
preferred in many domains. 

For incomplete DCOP algorithms, this paper provides a complement to recent 
experimental analysis of DSA and DBA[14] on graph coloring problems. The cited 
work provides insight into the effects of the choice between randomized and deter­
ministic 1-coordinated algorithms on solution quality and convergence time, show­
ing randomized algorithms to be the preferred choice in general. In contrast, this 
paper provides theoretical justifications for both monotonicity and 2-coordination, 
as well as providing new 2-coordinated algorithms, based on DSA and DBA, and 
experimental analysis of the new algorithms' performance. In addition, we show that 
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randomized algorithms, while efficient, are not ideal for all domains, particularly in 
high-stakes, anytime scenarios. 

In [7] and [2], coordination was achieved by forming coalitions represented by 
a manager or mediator who made the assignment decisions for all variables within 
the coalition. These methods require high-volume communication to transfer util­
ity function information and the abdication of authority from one agent to another, 
which can be infeasible or undesirable in many distributed decision-making envi­
ronments. Furthermore, in [2], the cost of forming a coalition may discourage rapid 
commitment and detachment from teams. MGM-2 and SCA-2, however, allow for 
coordination while maintaining the underlying distributed decision-making process 
and allowing dynamic teaming in each round. 

Finally, also related is research in general graphical games, which has focused on 
centralized algorithms for finding mixed-strategy Nash equilibria [3, 11]. In contrast, 
distributed algorithms based on DCOP games are guaranteed to result at least in 
pure-strategy Nash equilibria (1-equilibria), but may also introduce 2-coordination 
and hence 2-equilibria. 

8 Conclusions 

The key contributions of this paper include: (i) a decomposition of a DCOP into an 
equivalent graphical game, (ii) the proof of monotonicity for MGM, a 1-coordinated 
algorithm, (ii) the development of 2-coordinated algorithms that maintain distributed 
control of variables, (iii) the proof of monotonicity of MGM-2, (iv) a theoretical anal­
ysis and comparison of the equilibria sets of algorithms of differing degrees of coor­
dination, and (v) experimental verification and discovery when applying these algo­
rithms to a variety of graph coloring problems. The key theoretical idea is that break­
ing a DCOP down to a game can lead to algorithms where we can guarantee strict 
improvement in global solution quality over time which is critical in anytime appli­
cation in high-stakes environments. Also important is the idea of ^-coordinated al­
gorithms leading to progressively nested sets of equilibria, which yield both a higher 
average solution quality and a higher likelihood of obtaining the globally optimal 
solution. Through our experiments, we are able to show that randomized algorithms 
though very efficient are not ideal for all environments. Initial results imply that the 
nature of the constraint utility function makes a fundamental difference in the solu­
tion structure rather than the graph structure. Future work will entail development 
of distributed /^-coordinated algorithms and deeper analysis of stochastic schemes 
to obtain analytic reasoning for choosing particular update rates. Also, it would be 
interesting to see if convergence rates can be reduced with the use of heterogeneous 
dynamic randomized algorithms. 
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Summary. We describe a key-based approach to multi-agent coordination, where certain co­
ordination decisions are done only when the agent holds a coordination key. This approach 
is primarily decentralized, but has some centralized aspects, including synchronization of co­
ordination decisions and schedule information sharing. The approach is described within the 
context of the application requirements that motivated its development. Finally, its scalability 
properties are discussed. 

1 Introduction 

In this paper we examine an approach to multi-agent coordination in the context 
of two different multi-agent applications and discuss their response to scaling in 
the three coordination dimensions identified by Durfee [4]: agent population, task 
environment, and solution. 

In the first application, agents with heterogeneous and interacting capabilities are 
coordinated. In the other, agents with homogenous capabilities are coordinated. The 
coordination solution to both problems is distributed. However, the use of a coordi­
nation "key" passed between agents introduces elements of centralization, including 
partial global sharing of schedule information and synchronization of coordination 
decisions. 

Before we delve into the applications and specifics of their coordination proto­
cols, it is worthwhile to ask the basic question of "what is coordination and when 
do we need it?" Typically a multi-agent systems (MAS) model of development is 
pursued when distributed processing and distributed control are required. As with 
other distributed processing models, one important problem of MAS research is how 
to obtain globally coherent behavior from the system when the agents operate au­
tonomously and asynchronously. In general, when the agents share resources or the 
tasks being performed by the agents interact, the agents must explicitly work to co­
ordinate their activities. Consider a simple physical example. Let two maintenance 
robots, Rl and R2, be assigned the joint task of moving a long table from one room 
to another. Let both robots also have an assortment of other independent activities 
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that must be performed, e.g., sweeping the floor. Assume that neither robot can lift 
the table by him/herself. In order for the robots to move the table together they must 
coordinate their activities by 1) communicating to determine when each of the robots 
will be able to schedule the table moving activity, 2) possibly negotiating over the 
time at which they should move the table together, 3) agreeing on a time, 4) show­
ing up at the table at the specified time, 5) lifting the table together, and so forth. 
This is an example of communication-based coordination that produces a temporal 
sequencing of activities enabling the robots to interact and carry out the joint task 
(over a shared resource - the table). Without the coordination process, it is unlikely 
that the table would ever be moved as desired unless the robots randomly decided 
to move the table at the same moment in time. Note that if the robots are designed 
to "watch" each other and "guess" when the other is going to move the table that 
this is an instance of coordination by plan inference and still counts as a coordina­
tion episode. In general, achieving global coherence in a MAS where tasks interact 
requires coordination. 

In the robot/table example, the coordination episode is peer-to-peer. Imagine now 
a room full of maintenance robots, each having multiple joint tasks with other agents 
and all sharing physical resources such as tools and floorspace or XA" coordinates. 
Without coordination said room full of robots would have much in common with a 
preschool "free play session" with robots moving about, unable to perform tasks due 
to obstacle avoidance systems always diverting them from their desired directions 
or due to the lack of a required tool. There are two primary ways to coordinate 
this room full of robots - either in a distributed peer-to-peer (or group to group) 
fashion or in a centralized fashion. When coordination is distributed each agent is 
responsible for determining when to interact with another agent and then having a 
dialog to determine how they should sequence their activities to achieve coherence. 
When coordination is centralized generally one agent plans for the others or manages 
a shared resource. Note that in the example above coordination focuses on when to 
perform a given task. Coordination can also be about which tasks to perform, what 
resources to use, how to perform a task, and so forth. 

While the robot domain is good for illustrating conceptually the coordination 
problem, the need for coordination is not limited to robots. Software agents, humans, 
and systems composed of mixes of agents, humans, and robots [10] all have a need 
for some kind of coordination. When the tasks or activities of different parties inter­
act, in a setting where control is distributed (parties are autonomous), coordination 
is needed. 

We now examine two MAS applications, the coordination protocols that are used 
to achieve global coherence, and the scalability properties of each. One application, 
Dynamic Readiness and Repair Service, is a system for dynamic coordination of dis­
tributed aircraft service teams. The other application is a system for coordination of 
First Responder teams. Coordination requirements in these two systems are similar 
- achieve global coherence and do this in "real-time" (response time fast enough for 
the application). However, in these two systems the coordination solutions imple­
mented are different and these differences are driven by the different characteristics 
of the underlying problem spaces. 
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Fig. 1. A Single T/EMS-based Agent Ready to Coordinate Its Activities With Other Agents 

2 Aircraft Service Team Coordination 

2.1 The Application 

We describe an agent-based solution to aircraft service team coordination called Dy­
namic Readiness and Repair Service[14]. For this application we employed GPGP-
based [3,2, 6] agent technologies to coordinate the aircraft service team activity. We 
compared the performance of the algorithm to a centralized scheduling oracle that 
generates optimal schedules for the teams. 

2.2 T^MS and T/EMS Agents 

By establishing a domain independent language (T^EMS) for representing agent ac­
tivity, we have been able to design and build a core set of agent construction com­
ponents and reuse them on a variety of different applications (mentioned above). 
TiEMS agents are created by bundling our reusable technologies with a domain spe­
cific component, generally called a domain problem solver, that is responsible for 
knowing and encapsulating the details of a particular application domain. 

It is sufficient to understand that Ti^MS agents have components for scheduling 
and coordination that enable them to 1) reason about what they should be doing 
and when, 2) reason about the relative value of activities, 3) reason about temporal 
and resource constraints, and 4) reason about interactions between activities being 
carried out by different agents. A high-level view of a T^MS agent is shown in 
Figure 1; everything except for the domain problem solver is reusable code. Note 
that each module is a research topic in its own right. The agent scheduler is the 
Design-to-Criteria [9,13, 16] scheduler and the coordination module is derived from 
GPGP [2]. Other modules, e.g., learning, can be added to this architecture in a similar 
(conceptual) plug and play fashion. 
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Table 1. Tasks Interactions Indicated by NLE for Non-Local Effect, In this paper, NLEs are 
all mutual exclusion where tasks that interact cannot be performed on the same aircraft at the 
same time (spatial + temporal MUX). Other NLEs supported include effects like hindering 
where tasks can be performed together but will slow each other down in some quantified way. 

2.3 Dynamic Readiness and Repair Service 

For the Dynamic Readiness and Repair Service project we simulated aircraft return­
ing from an engagement and needing repairs and readiness operations to be per­
formed. Three types of aircraft are modeled in the prototype: F16s, A 10s, and C9 
surveillance craft. When an aircraft returns it is potentially in need of (to varying 
degrees): 1) fuel, 2) missiles, 3) repairs to engines, 4) repairs to cockpit avionics, or 
5) repairs to cockpit weapons controls. Each incoming aircraft is assigned a dead­
line which is its take-off time for redeployment. Mission Control is responsible for 
assigning the deadline and for identifying the areas of the aircraft that need service. 

There are five teams on the ground that repair, refuel and rearm the aircraft for 
their next mission. Each team is controlled by a coordination decision support agent 
that uses TiEMS agent technology to reason about what the team should be doing, 
when, and with which resources. In this scenario the following teams handle aircraft 
preparation: 1) refuel, 2) rearm (replaces depleted missiles), 3) avionics repair, 4) 
weapons controls repair, and 5) engines repair. As aircraft land the Mission Control 
agent notifies the service teams of the aircrafts' service needs and readiness dead­
lines. The agents then coordinate how best to select and sequence operations so that 
the most aircraft can be ready by their respective launch times. Not all problem in­
stances given to the MAS contained fully satisfiable constraints. 

The tasks required to repair an individual plane do not need to be performed 
in any specific sequence. However, there are sets of tasks that cannot be performed 
simultaneously because they involve the same spatial regions of the aircraft. For 
instance, the engines cannot be serviced while a plane is rearmed as both of these 
activities take place on or near the wings. In contrast, avionics can be serviced while 
an aircraft is rearmed because avionics reside in the cockpit region and the rearming 
takes place on or about the wings. A full specification of task interactions is shown 
in Table 1. 

This problem instance requires three classes of simulation activities: 1) simulat­
ing the outcome of the last mission in terms of aircraft condition, 2) simulating the 
activities of Mission Control and the initial damage assessment team, 3) simulating 
the activities of the repair crews. While detailed description is beyond the scope of 
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Fig. 2. Portions of the TvEMS Task Structures for Mission Control and Three of the Service 
Team Agents 

the paper, from a high level, the aerial battle is simulated using either a problem space 
generator or a human generator who selects aircraft from a palette and "breaks" the 
aircraft. The activities of Mission Control and the initial damage assessment team 
are captured in T^EMS task structures that are produced by the generation tools. In 
essence, the Mission Control agent is first notified that there is an aircraft requiring 
service when it lands. At that same time a description of the aircraft's service needs is 
transmitted to Mission Control in TiEMS format. Mission Control then disseminates 
the information to the service teams. The activities of the service teams are simulated 
using the T^MS agent simulation environment [12]. In this environment the agents, 
which are distributed on different machines and execute as different processes co­
ordinated simulated tasks. These tasks like real tasks, take a specified amount of 
time to execute and consume resources, e.g., replacing an avionics module of type 1 
consumes one type 1 avionics module. 

We will now discuss an example problem for this domain. Figure 2 shows por­
tions of Ti^MS task structures for Mission Control and three of the service teams. 
The Mission Control task structure is a hierarchical decomposition of a top level goal 
which is simply to Prepare and Launch Aircraft. The top level goal, or task, has 
two subtasks which are to Prepare and Launch Wingl and Prepare and Launch 
Wing2. Each of these tasks are decomposed into subtasks to service a particular air­
craft in the given wing, e.g., Prepare F16.1 For Launch, and finally into primi­
tive actions. Tasks are represented with oval boxes, primitive actions with rectangles. 
Note that most of the decompositions are omitted from the figure for clarity. The de­
tails are shown for the Prepare F16.1 For Launch task - it is decomposed into a 
single primitive action. Launch F16 .1 , which denotes the time required for Mission 
Control to launch the aircraft when the plane is ready. The operative word here is 
ready. In order for a given aircraft to be launched on its next mission, it must be 
serviced. The service activities are not carried out by Mission Control. In the figure, 
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Mission Contrors dependence on the activities of the service agents is denoted by 
the edges leading into Launch F16.1 from the actions of other agents. These edges, 
called enables in TiEMS, denote that the other agents must successfully perform 
their tasks before the Launch F16.1 activity can be carried out by Mission Control. 
These enables are non-local-effects (NLEs) and identify points over which the agents 
must coordinate. The time at which Mission Control can execute Launch F16.1 is 
dependent on when the other agents perform their tasks. A different type of NLE 
exists between the Weapons Controls Repair agent and the Avionics Repair agent -
the two F16.1 actions cannot be performed simultaneously and that is another point 
over which the agents must coordinate. In this problem, this spatial/temporal interac­
tion of the service teams is the coordination problem on which we focus. The former 
enabling-of-the-launch-task interaction only requires that the service agents notify 
Mission Control of when they plan to perform their activities because in this applica­
tion Mission Control sets and maintains deadlines and the other agents negotiate over 
the temporal/spatial MUX NLEs to satisfy the stated deadlines if possible. Note that 
within a task structure deadlines and earliest-start-times are inherited (unless those 
lower in the tree are tighter) so the temporal constraints on Prepare and Launch 
Wingl also apply to Launch F16.1. The same deadlines are propagated through the 
enables coordination to the service team agents - note that F16.1 's engines must be 
serviced by 240 also. 

Note that all of the primitive actions (leaf nodes) also have Q (quality), C (cost), 
and D (duration) discrete probability distributions associated with them. For sim­
plicity in this paper we do not use uncertainty and all values will have a density of 
100%. Repairing the engines of F16.1 thus takes 200 time units while servicing the 
engines of F16.2, which are less damaged, requires 150 time units. The two activ­
ities produce qualities of 12 and 9 respectively. The sum() function under most of 
the parent tasks is called a quality-accumulation-function or qaf. It describes how 
quality (akin to utility) generated at the leaf nodes relates to the performance of the 
parent node. In this case we sum the resultant qualities of the subtasks - other TiEMS 
functions include min, max, sigmoid, etc. Quality is a deliberately abstract concept 
into which other attributes may be mapped. In this paper we will assume that quality 
is a function of the importance of the repair. 

In the sample task structure there is also an element of choice - this is a strong 
part of the TiEMS construct and important for any dynamic environment in which 
resources or time may be constrained. The Repair Aircraft Engines task, for ex­
ample, has two subtasks joined under the sum () qaf. In this case the Engine Repair 
agent may perform either subtask or it may perform both depending on what activi­
ties it has time for and their respective values. The explicit representation of choice 
- a choice that is quantified by those discrete probability distributions attached to the 
leaf nodes - is how TiEMS agents make contextually dependent decisions. 

Space precludes a more detailed specification of tasks and attributes, however, it 
is important to note that different tasks require different resources, different amounts 
of resources, and require different time to perform. For instance, refueling an aircraft 
that is fully depleted requires more time and consumes more fuel (a resource). Other 
examples: repairing engines damaged to level 4 (heavily damaged) requires more 
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time than engines that are damaged to level 1 (lightly damaged), rearming four mis­
siles requires more time than rearming two missiles, etc. Similarly, different aircraft 
consume different resources and not all aircraft need a particular class of service. For 
instance, the C9 surveillance aircraft does not carry missiles and does not contain a 
weapons controls module. In contrast, both the A10 and the F16 carry missiles and 
both have weapons controls modules but the modules for the two aircraft are different 
and require different amounts of time to service. The teams themselves also maintain 
different resources, e.g., the refueling team is the only team that consumes the fuel 
resource. However, in the problem instance discussed in this paper the teams do not 
interact over consumable resources so the coordination problem is one of spatial and 
temporal task interaction. 

The characteristics of the solution to this particular application problem can be 
found in other problem domains. The underlying technical problem is to coordinate 
distributed processes that affect one another when the environment is dynamic and 
the coordination problem cannot be predicted offline / a priori but instead must be 
solved as it evolves. 

2.4 Coordination via Don't Commitments 

The goals of coordination in the Dynamic Readiness and Repair Service application 
are: 1) to adapt to a dynamic situation, 2) to maximize the number of planes that 
are completely repaired by their respective deadlines, 3) to provide mutual access to 
shared physical resources, 4) achieve global optimization of individual service team 
(agent) schedules through local mechanisms and peer-to-peer coordination. When 
examining the coordination problem, it became clear that this application domain 
has a unique property not generally found in TiEMS agent applications - for agents 
whose tasks interact, all of their tasks will interact. By way of example, all of the 
engine repair tasks interact with all of the refueling tasks interact with all of the 
rearming tasks. Similarly for the tasks that pertain to the cockpit. All avionics tasks 
interact with all weapons controls tasks. 

The implications of this property for coordination are that: 1) there is no rea­
son for a service team that operates on the wing region to interact with a team that 
operates in the cockpit and vice versa^, 2) agents that operate on the same spatial 
area (wing or cockpit) must always coordinate their activities. This translates into a 
discrete partitioning of the agents into coordination sets. 

Within each coordination set the tasks of the member agents form a fully con­
nected graph via TiEMS non-local-effects. This means that for any agent of a given 
set, e.g., the engine repair agent of Agent^ing^ to schedule a repair task it must dialog 

^ An indirect interaction occurs when the problem instance contains deadlines that cannot be 
met. In such cases both wing and cockpit agents should forgo work on selected planes in 
order to avoid having an entire fleet of aircraft that are partially complete, none of which are 
ready for their next mission. This interaction is dealt with using value for commitment sat­
isfaction and algorithms/experiments pertaining to that topic must be presented separately 
due to space limitations. 
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with the other agents to ensure that mutual exclusion over the shared resource, e.g., 
the wing on plane F16.1, is maintained. 

This coordination problem could be solved in typical GPGP [3, 2, 6] fashion. 
However, GPGP operates in Sipairwise peer-to-peer fashion. For agents in Agents^ing 
this means that coordination could require a significant amount of time to propagate 
and resolve the interacting constraints and it is unclear given the dynamics of the 
environment and the speed with which coordination must occur whether convergence 
on a reasonable, if suboptimal, solution would ever occur. This would also apply to 
other agent sets if the problem scaled in the number and type of mutually exclusive 
methods. Because of the strong interconnectedness of the tasks and the partitioning 
of agents into coordination sets, we developed a new algorithm for problem classes 
of this type. 

If (coordinationKey is not null) and 
(needCoordinate or coordianationKey.othersNeedCoordinate) { 

primarySchedule = evaluate(taems, 
coordinationKey.getPrlmaryDontCommltmentsO); 

if (coordinationKey.getSecondaryDontCommitmentsO interractWith taems.getDeadlineComnnitmentsO) { 
secondarySchedule = evaluate(taems, coordinationKey.getSecondaryDontCommitments()); 
if (primarySchedule.quality > secondarySchedule.quality) { 

preferredSchedule = primarySchedule; 
coordinationKey.discardSecondaryDontCommitmentsO; 

} else { 
preferredSchedule = secondarySchedule; 
coordinationKey.replacePrimaryDontCommitmentsWithSecondaryDontcommitmentsO 

} 
} else { 

preferredSchedule = primarySchedule; 

} 
taems.setSchedule(preferredSchedule); 
violatedDeadlines = taems.getViolatedDeadlines(preferredSchedule); 
newViolatedDeadlines = violatedDeadlines.getNewDeadlines(); 
whatifDontCommitments = coordinationKey.getPrimaryDontCommitments(); 
whatifDontCommitments.discardlnteractions(newViolated Deadlines); 
whatifSchedule = evaluate(taems, whatifDontCommitments); 
if (whatifSchedule != preferredSchedule) 

coordinationKey.addSecondaryDontCommltments(whatifSchedule); 
whatifViolatedDeadlines = taems.getViolatedDeadlines(whatifSchedule); 
taems.markAsOldDeadlines(whatifViolatedDeadlines) 

} 
oldViolatedDeadlines = violatedDeadlines.getOldDeadlines(); 
communicateDeadlineViolation(oldViolatedDeadlines); 

Fig. 3. Pseudo-code for an Individual Agent's GPGP protocol for Dynamic Readiness and 
Repair. 

The algorithm uses a coordination key data structure and concepts from token-
passing [11, 5] algorithms to coordinate the agents. The general operation of the 
algorithm is that there is one coordination key per coordination set that is passed 
from agent to agent in a circular fashion. When an agent is holding the coordination 
key for its coordination set, it can 1) declare its intended course of action / schedules, 
2) evaluate existing proposals from other other agents, 3) confirm or negate proposals 
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of other agents, 4) make its own proposals, or 5) read confirmations or negations of its 
own proposals by other agents. The coordination key itself is the vehicle by which 
this information is communicated. Each key contains intended courses of action, 
proposals, and proposal responses, and this information is modified as the agents 
circulate the given key. The pseudo-code of the algorithm is shown in Figure 3. 

Avionics F16.1 Weapon Ctrls 
F16.1 

Serv ice 

T a s k s 

T o Be 

Pe r f o rmed 

Earliest-start-time 10 
Deadline 105 
Duration 30 

Engines Level 2 
F16.1 

Earliest-start-time 10 
Deadline 105 
Duration 30 

Earliest-start-time 10 
Deadline 105 
Duration 100 

Engines Level 1 
F16.2 

Rearm Level 3 
F16.2 

Earliest-start-time 12 
Deadline 105 
Duration 50 

I Avionics I 
I A10.1 I 
Earliest-start-time 25 

Deadline 175 
Duration 35 

Earliest-start-time 12 
Deadline 105 
Duration 60 

I Weapon Ctrls 
I A i d 
Earliest-st$rt-time 25 

Deadline 175 
Duration 35 

Rearm Level 4 
A10.1 

Earliest-start-time 25 
Deadline 175 
Duration 80 

: 
Rearm Level 4 

Aircraft i 
Earliest-start-time 

Deadline.. 
Duration.. 

I Avionics F16.1 
Avionics Is busy Weapon Ctrls is 

elsewhere. busy ielsewhere. 

\ Aircraft .-^^ ^ Earliest start Time for F16.1 = 10 Deadline for F16.1 = 105 
r i b . l 

I Wing Region 
I Schedule 
\ Cockpit ; 

Schedule | 

Aircraft p̂ g 2 

Wing Region I 
Schedule |__ 

Cockpit f 
Schedule 

Earliest Start Time for F16.2 - 12 Deadline for F 16.2 = 105 

Avionics is busy Avionics is busy Weapon Ctrls is 
elsewhere. elsewhere. busy elsewhere. 

Aircraft A10.1 Earliest Start Time for A10.1 = 25 Deadline for A10.1 = 175 

Wing Region 
Schedule 

Cockpit 
Schedule 

Aircraft = 

Avionics is busy 
elsewhere. 

Avionics 
A10.1 

Weapon Ctrls 
A10.1 

Constraints to maintain: 1) Service team on a single aircraft at a given instant in 

time. 2) One service team in each region at a given instant in time. 3) Earliest start 

times which denote when the aircraft lands. 4) Deadlines which denote when the 

aircraft is due for its next mission. 

Fig. 4. The Centralized Exhaustive Scheduling Oracle Has An Omnipotent View - Figure 
Shows One Scheduling Instance 

The coordination key algorithm is effective but approximate and heuristic. The 
crux of the matter is that in order for the agents to coordinate optimally over a single 
issue, e.g., when agent X should perform task Ti, the key must circulate through 
the coordination set multiple times. The number of times that each agent must hold 
the key is dependent on the changes made during each iteration. In the worst case 
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Exp 
Class 

A 
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C 
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32 
32 
32 
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Missing X Aircraft Deadlines 
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0 
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B 
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32 
32 
32 
28 
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1.13 
1.5 
2.1 
2.4 
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1.0 
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.97 
.98 
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%-tile 

1.0 
1.0 
1.0 
1.0 

ution Gen 
StdDev 

of %-tile 

0 
.12 
.08 
.04 

erated 
%-tile 
Same 

.80 

.58 

.38 

.26 

byCoc 
%-tile 
Better 

0 
.02 
.03 
.02 

)rdination Keys 
%-tile 
Worse 

.20 

.41 

.62 

.73 

Table 2. Results Comparing Coordination Keys to Exhaustive and Optimal Centralized Sched­
ule Generation 

each agent will have to re-sequence each of its n activities once for every change 
that is made, but these changes propagate to the other agents so the circulation-to-
convergence factor is 0{a^) rather than 0(rf), where a is the number of agents in a 
coordination set. The coordination key algorithm above multiplexes changes so that 
in a given pass through a coordination set multiple changes are considered by the 
agents at once. 

We hypothesized that in some problem instances the algorithm would fail to find 
an optimal solution but that in most problem instances it would perform well. To test 
this hypothesis we created a centralized global scheduler that creates schedules for 
all of the agent teams via exhaustive search. The centralized scheduling problem is 
exponential, however, for instances having less than 11 total repairs the exhaustive 
scheduler is responsive enough for experimentation.'̂  Because the problem instance 
presented here uses a subset of T^EMS features, the centralized scheduler is designed 
to solve a representation of exactly the subset needed, i.e., it does not perform de­
tailed TiEMS reasoning but instead maintains the required constraints (e.g., dead­
lines, earliest start times, service teams can only service one aircraft at a time, and 
only one service team can work in a cockpit or the wing region at a given point in 
time). The centralized scheduler algorithm is outlined in Figure 4. The function of the 
centralized scheduler is twofold. First, it determines the minimum number of aircraft 
deadlines that will be missed by an optimal solution. In some cases all deadlines can 
be met and in others aircraft deadlines represent unsatisfiable constraints. The sec­
ond role of the centralized scheduler is to determine the relative size of the different 
solution spaces. For instance, for a given problem there may be zero solutions that 

^ The centralized scheduler requires on the order of 10 minutes to schedule 11 repairs on a 
dual-processor Xenon 2Ghz linux workstation. A problem instance of that size will gener­
ate about 250,000 schedules, some subset of which are unique. 
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don't miss any deadlines, X (optimal) solutions that miss one aircraft deadline, Y 
solutions that miss two aircraft deadlines, Z solutions that miss three aircraft dead­
lines, etc. By tabulating this information we can determine a percentile ranking for 
the solutions produced by the distributed coordination key algorithm. The central­
ized scheduler does not compete with the distributed coordination key algorithm on 
a completely level playing field. The centralized scheduler sees all the repairs that 
will be needed for all planes on a given problem instance at time 0. The agents in the 
distributed system only see repairs as the aircraft land. Thus, for the instance shown 
in Figure 4, the service team agents will not see aircraft A 10.1 until time 25 (when 
it lands). At this time they may be committed to a suboptimal course of action that 
the centralized omnipotent scheduler will avoid because it can see AlO.l's repairs 
at time 0 along with all of the other repairs that will need to be scheduled. This dif­
ference is due to a need to keep the centralized scheduler development costs down 
and has its roots in design/implementation issues with the simulation environment. 
A related bias in favor of the centralized scheduler is that the distributed coordina­
tion mechanisms operate in the same simulated clock as the repairs themselves. This 
enables the simulation environment to control and measure coordination costs but 
causes a skew in terms of the apparent cost of coordination relative to domain tasks, 
e.g., in some cases the ten clicks (about 5 seconds in wall clock time) that the agents 
require to coordinate will take as much simulation time as it takes the service teams 
to rearm one missile on an aircraft. The skew is of primary relevance when compar­
ing the distributed algorithm to the centralized scheduler and is less of an issue when 
comparing different distributed algorithms. 

Table 2 presents the results of comparing the coordination key algorithm to the 
optimal and exhaustive centralized scheduler. Each row is the statistical aggregation 
of one set of trials where each set of trials is drawn from one difficulty class. The 
rows lower in the table represent increasingly more difficult problem instances - air­
craft having more repairs and tighter deadlines relative to their landing times and the 
time required for their repairs ^. All rows except for the last represent 32 random 
trials. Row D contains 28 because of the occasional exception thrown by the exhaus­
tive scheduler caused by running out of RAM. As the difficulty increases, note that 
the density of the solution space increases and shifts right. This is represented by the 
colunms X=0, X=7,..., which contain the mean number of solutions produced by the 
oracle that miss 0 deadlines, 1 deadline, etc., respectively. As the problem instances 
get harder more aircraft are likely to miss deadlines. Note that the coordination key 
algorithm generally performs well for all of the tested conditions. The Mean value 
denotes the average number of aircraft deadlines missed during a batch of trials. The 
more descriptive statistics are those about the percentile ranking of the solutions gen­
erated by coordination keys. This is because how well the keys algorithm performs is 
determined not by the absolute number of missed deadlines (the average of which is 
presented in the mean column) but instead by the solutions possible for a given trial. 

^ The seven trial parameters are: (1) land time, (2) takeoff time deadlines, (3) level of avionics 
damage, (4) level of weapons control damage, (5) level of engines damage, (6) level of 
rearm damage, and (7) refuel level. 
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For instance, in some trials the best solution possible may miss two deadlines. As the 
difficulty increases the mean value for the keys algorithm increases because there are 
more instances where the optimal solution is to miss one deadline, or two deadlines, 
etc. Looking at the percentiles, in experiment class A the keys algorithm performed 
in the 100th percentile, in experiment class B the 98th percentile, in experiment class 
C the 97th percentile, and in class D (the most difficult class), the 98th percentile. 
The percentile rating is computed as follows: 

• The centralized scheduler generates all of the unique schedules that exist for a 
given individual trial. 

• These schedules are binned according to the number of deadlines missed, e.g., 
in X of the schedules 0 aircraft miss a deadline, in Y of the schedules 1 aircraft 
misses a deadline, in Z of the schedules 2 of the aircraft miss a deadline, etc. 
Think of the centralized scheduler as producing a histogram of possible solutions 
where solutions are binned by the number of deadlines missed. 

• Let CKDLMi be the number of aircraft deadlines missed by the coordination key 
algorithm in trial i. 

• Let BinJCKi denote the histogram bin in which CKDLMi falls (the bin that per­
tains to CKDLMi missed deadlines). 

• Let DensityMt.or jabovei be the X of the densities of solutions that are in bins > 
or = to Bin.CKi. Bins > BinJOKi represent solutions that are worse because they 
entail missing more deadlines. 

• Let Percentile-Ranking i = Density Mt-orMbovei/TNi * 100, where TNi is the 
total number of solutions generated by the centralized scheduler for trail i. 
Percentile-Rankingi is the percentile ranking for the coordination key algorithm 
for trial i of the set of 32. 

• Let Overall-Percentile-Ranking = 
(Sfii Percentile JRankingi)132 be the overall percentile ranking for one batch of 
32 trials. 

In all cases the median percentile is 100% and the standard deviation is low. 
Because there are generally multiple solutions that perform as well as the solutions 
actually generated by the coordination keys, its percentile is broken down in the last 
three columns of Table 2. The column marked %-tile Same indicates the mean % of 
possible solutions that miss exacdy as many deadlines as the keys algorithm did. %-
tile Better indicates the number that performed strictly better (missing fewer aircraft 
deadlines) and %-tile Worse indicate the number that performed strictly worse. Note 
that as the problem space gets harder the number of solutions possible that are worse 
than those found by the keys algorithm increases. At the same time the band of 
solutions as good as those generated by keys narrows, as does the band of solutions 
that are strictly better than those found by the keys algorithm. 

While the data suggests that the algorithm performs well on average, there are 
circumstances where the algorithm performs less well. We examined several such in­
stances in detail and while we have intuitions about when the algorithm will perform 
in a suboptimal fashion, the experiments in which performance is suboptimal pertain 
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to a more basic issue. To illustrate let us assume a three-aircraft problem instance 
with the following characteristics: 

• Aircraft F16 arrives at time 15 with a deadline or take-off time of 400 and re­
quires repair of engines damaged to level 2 (the duration of this repair is 100). 

• Aircraft AlO arrives at time 18 with a deadline of 450 and requires complete 
refueling (the duration of this task is 100). 

• Aircraft C9 arrives at time 24 with a deadline of 240 and requires repair of en­
gines damaged to level 2 (the duration of this repair is 100) and refueling of a 
quarter tank (duration of this tank 25). 

The F16 lands at time 15 and the engine service team obtains the coordination 
key and schedules the engine repair of the F16 to run from time 17 to 117. The AlO 
lands at time 18 and at time 19 the refuel team gets the coordination key and sched­
ules refueling of the AlO to last from 19 to 119. When the C9 lands at time 24 the 
engine service team is thus occupied with the F16 until time 117 and the refueling 
team is occupied with the AlO until time 119. To respond to the C9's landing and 
repair needs, the engine service team obtains the coordination key at time 25 and 
schedules C9's repair to run from time 117 to time 217, At a subsequent time-step, 
the refueling team attempts to schedule C9's refueling, however, because both refu­
eling and engine repair are mutually exclusive tasks, the earliest time the refueling 
team can schedule the C9 is at time 217. This means it is impossible to service the C9 
by its deadline (take-off time) of 240. In response to this pending failure, the refuel 
service team attempts to negotiate with the engine service team via the coordination 
key to obtain a wing access slot between 119 and 217. However, the engine service 
team needs that time slot to complete its portion of the C9's engine repairs on time. 
The end result is that the C9's deadline cannot be met. For this same problem in­
stance, however, the centralized scheduler was able to produce a solution in which 
all of the deadlines are met. 

The underlying issue is that service activities are not interruptible in this problem 
instance - otherwise repair teams could run from aircraft to aircraft and the optimiza­
tion problem would be much simpler. If activities were interruptible, when the C9 
first landed either the engine service team or the refuel service team could disengage 
from their respective current activities (servicing the F16 or the AlO) and attend to 
the C9, which is the aircraft with the tightest deadline. The reason the centralized 
scheduler is able to produce a better solution in this problem instance - a solution 
which eludes the distributed coordination approach - is that the centralized oracle 
sees all of the repair tasks a priori. It thus considers the possibility of not servicing 
the Fl6 or AlO immediately upon arrival so that the C9 can be serviced by engines 
or refueling immediately upon its arrival and all deadlines can be met. 

This particular performance issue derives from the somewhat imbalanced playing 
field (discussed earlier) between the distributed algorithm and the centralized oracle. 
Interestingly, we can hypothesize two instances where the distributed algorithm will 
fail to perform well, even on a level playing field, but such instances occur infre-
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quently in randomly generated problem instances - even those with tight deadline 
constraints and numerous repairs per aircraft."̂  

One instance where the the coordination key algorithm will perform less well 
entails semi-independent coordination problems that occur simultaneously in the co­
ordination set of more than two agents. Imagine a coordination set of the rearm, 
refuel, and engine repair agents. Let the key pass from agent to agent in the fol­
lowing order: rearm to refuel to engine (then the cycle repeats). Now, let us assume 
that at time t the rearm agent needs a time slot that is held by the engine agent, and 
that refuel needs a time slot that is held by the rearm agent. The implications are 
that multiple unrelated proposals must reside on one key for part of the coordination 
set traversal, i.e., the proposal from rearm to engine and the proposal from refuel to 
rearm both reside on the key during the refuel to engine to rearm circuit. The key 
algorithm is designed with the assumption that, in general, multiple proposals will 
pertain to a single (sometimes multi-step) coordination process. Therefore, when the 
engine agent receives the coordination key it either accepts or rejects the set of cur­
rent proposals (from the rearm and refuel agents) en masse even though it may only 
be affected by the rearm agent's proposal. In this case, when the set of proposals ar­
rives and the engine agent determines that it cannot satisfy the rearm agent's request, 
it rejects the proposals en masse and the proposal from refuel to rearm is never evalu­
ated by the rearm agent. This may result in a missed opportunity for the refuel agent. 
The shortcoming described here can be fixed by making the agents more selective in 
proposal rejection. 

Another instance where the coordination key algorithm may perform less well is 
when a long chain of multi-step inter-locking resource releases are required. The fac­
tor at work is the algorithm's approximate limited-cycle-to-action model. However, 
as noted, neither class of problems occur frequently with random instances. We are 
currently exploring creating a generator and experiments to test performance under 
these circumstances. 

2.5 Scalability Issues 

The Dynamic Readiness and Repair Service application could conceivably be de­
ployed in a situation where dozens of agents needed to be coordinated. This is based 
on superficial studies of modem air support crew structures and responsibilities, 
which appear to typically be disparate in space and in time to utilize the airstrip to its 
maximum capacity. In such a scenario, an Air Traffic Control agent would hand off 
returning airplanes to the Mission Control agent, which would setup the coordination 
problems for the service team repair agents to solve. Thus, the problem's complexity 
as a function of scaling the number of agents could plausibly be controlled by infor­
mation hiding - agents would only be required to solve relatively small spatially and 
temporally local problems. 

Scaling in the task environment dimension for this application could mean in­
creasing the number and kind of repairs required for each aircraft and increasing 

"̂  If the repairs are spread over a large number of aircraft there is little spatial resource con­
tention and service teams can basically function in parallel. 
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the rate at which aircraft land. It could also mean increasing the number of pairs 
of service operations that are mutually exclusive. Scaling in this dimension would 
present a more significant problem for the protocol described above due to the afore­
mentioned worst case performance of key-circulation to convergence ratio. For each 
change introduced, it is 0(a"), where n is the number of tasks per agent and a is the 
number of agents in a coordination set. Obviously, in such degenerative cases, less 
optimal results could be tolerated, but ideally, we would like to at least bound the 
performance for a given problem type. This is an area of future research. 

This brings us quite naturally to consideration of the solution properties dimen­
sion which concerns solution quality, robustness, and overhead limitations. In the 
evaluation that we conducted, the key-based coordination protocol performed well, 
although it utilized a heuristic search. This was due to the fact that the relatively hard 
problems vis-a-vis the protocol we developed were sparse in the set of problems gen­
erated to test it. Whether these problems would be sparse in real-world setting was 
beyond the scope of our research. 

With respect to robustness in the face of uncertainty, to an extent we can rely 
on mechanisms built into the T^EMS task structure evaluation [9, 13, 16]. However, 
the precise manner by which uncertainty of task finish times and accrued quality are 
handled in commitment information between agents would need to be further de­
veloped. For instance, each agent would need to decided, based on its unique task 
environment, whether it could afford to choose a commitment with higher expected 
quality with uncertainty of finish time or one with lower expected quality and cer­
tainty of finish time. 

Finally, communication overhead limitations were not a consideration in the de­
velopment of the key-based coordination protocol. There are numerous obvious ways 
to compact the schedule information for each agent sent in the coordination key that 
we would need to implement in order to reduce the key size. Another aspect of this 
dimension is what would happen if one of the agents in a coordination set was dis­
abled. Again, we assumed that none would be disabled. At the very minimum, the 
loss of an agent in a coordination set would need to be detectable by at least one 
other agent in the coordination set, who could notify the other agents in the set. 
Also, a key-caching mechanism would need to be implemented to warrant against 
the loss of the key if the agent who was disabled possessed the key. 

3 First Response Coordination 

3.1 The Application 

COORDINATORS [18, 17] are coordination managers for fielded first responders. 
They provide decision support for first response teams and the incident commander 
by reasoning about mission structures, resource limitations, time considerations, and 
interactions between the missions of different teams to decide who should be doing 
what, and when, so as to get the best overall result. COORDINATORS provide global 
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Fig. 5. A Network of COORDINATORS Handling Task Coordination Between Responders 

team activity optimization - helping the teams to respond to the dynamics of the envi­
ronment and to act in concert, supporting one another, as appropriate for the current 
circumstances. When the situation changes, the COORDINATORS communicate, 
evaluate the implications of change, and potentially decide (or suggest, depending 
on their role) on a new course of action for the teams. Fiture 5 depicts the network of 
COORDINATOR-enabled teams performing activities. The two COORDINATOR-
first responder pairings on the left of the figure are connected to each other and to 
the COORDINATOR-incident commander pairing on the right by communications 
as well as task interrelationships. 

The underpinnings of COORDINATORS areT^EMS agents [3,7, 14,15] equipped 
with a new coordination module derived from the coordination keys [14] technology. 
This means that each distributed COORDINATOR is able to reason about complex 
mission task structures and communicate with other coordinators to determine who 
should be supporting whom, when, in order to save the most lives, make the best use 
of assets or resources, reduce risk to the response teams, and so forth. 

COORDINATORS are implemented and functioning and have been experimented 
with using staged first response exercises. However, this project and the work de­
scribed here is only the potential starting point for COORDINATORS and technology 
that supports human activity coordination. 

There are several characteristics of this problem instance that make it a hard 
problem: 

The situation is dynamic - it is not known with any detail at the time of the 911 call 
what sort of state the site or victims will be in when response teams arrive. Thus 
the agents must coordinate and decide which operations to perform in real-time. 
This is especially true when fire is involved; in an unmitigated average office 
fire, gas temperature inside the burning, enclosed space can easily reach 1200 
degrees Fahrenheit in less four minutes[8]. 

Agents must make quantified / value decisions - different tasks have different val­
ues and require different amounts of time and labor resources. It may be critical 
to provide water supply support to suppress fire spread until victims are discov­
ered during a search, at which point, priorities require adjustment. 
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Coordination is dynamic - the operations being performed by the first responder 
teams interact and the occurrence of the interactions are also not known a priori. 
For instance, until victims are found, it is not known whether ventilation in a 
hallway will be required. 

Deadlines are present - a fire suppression team will need to put out a fire in one area 
within a deadline in order for a rescue operation to be able to effectively com­
plete their evacuation operation. Deadlines require the agents to reason about 
end-to-end processes and to coordinate with other agents to optimize their activ­
ities. 

Tasks are interdependent - tasks interact in two different ways: 1) over shared re­
sources in a spatial/temporal fashion, 2) multiple tasks must be performed to 
accomplish a goal, e.g., a fire has not been met with a satisfactory response until 
all the people threatened by it have been evacuated, and it has been extinguished 
in the most effective maimer possible (though in T^EMS this generally pertains 
to degrees of satisfaction rather than a boolean or binary value). 

COORDINATORS have been constructed using off-the-shelf wireless PDAs and 
desktop PCs. COORDINATORS also leverage a Honeywell-proprietary asset loca­
tion technology to track the physical location of first response teams, victims, and 
important resources such as a wall cutting saw or a multi-story portable ladder. A 
screen snapshot of a the incident commander display as well as the PDA-based co­
ordinators running in simulation is shown in Figure 6. The left of the incident com­
mander display is a scrollable map of the area of concern - in our scenario our lab 
building. The map can display first responders moving about as well as situation in­
formation, such as the location and intensity of fire, smoke, or building damage as 
well as the location of first responder resources, such as saws or hoses. Below the 
map is a dispatch command bar that the incident commander can use to send teams 
to specific locations in the building to do situation assessment. In the center of the 
display are cameras that track the first responders through the building. There is one 
camera per team. Whenever the team enters a region that is covered by a camera, 
the incident commander display switches the team's camera view to the feed from 
the covering camera. To the right of the camera displays are the team Gantt displays 
which show the task schedules for each team. 

Note that herein we use the term "first responder" to mean personnel ranging 
from fire fighters to emergency medical teams. For the details of this project, how­
ever, we have focused primarily on the needs of the fire fighters and the incident 
commander because we were able to get domain expertise in that area. 

In this section we discuss the first response domain and the motivation for CO­
ORDINATORS. We then provide architectural and technical details of the agent tech­
nologies that make COORDINATORS possible and illustrate their role using a first 
response episode. Human-based first response exercises using COORDINATORS are 
then discussed, followed by important research directions and next steps for COOR­
DINATORS. 
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Fig. 6. The Incident Commander display and Simulated PDAs for the First Response Coordi­
nation application. 

3.2 Coordination via Commitment Value 

The goals of coordination in the COORDINATORS application are similar to those 
for the Dynamic Readiness and Repair Service application. However, since first re-
sponders are concerned with the safety of life and property, COORDINATORS at­
tempts to maximize the number of civilians that are saved while minimizing facility 
damage and risk to first responders.^ 

This application augments the decision-making powers first responders capable 
of performing any task in the domain. The implication homogeneous first responder 
capabilities for coordination is that agents do not have a partition of coordination 
based on task types that they had in the Dynamic Readiness and Repair Service ap­
plication. Each agent coordinates with every other agent. Each agent must maximize 
the quality of its local tasks performed, while cooperatively assisting other agents to 
maximize the quality of their local tasks performed. It does this by satisfying support 
needs. Figure 7 gives the high-level pseudocode for the key-based COORDINATOR 
protocol. 

The algorithm's coordination key is derived from the Dynamic Readiness and Re­
pair Service application data structure [14]. The general operation of the algorithm is 
that there is one coordination key for the entire application that is passed from agent 
to agent (fielded first responder agents only). As with the previous application of the 
key-based protocol, when an agent is holding the coordination key for its coordina­
tion set, it can evaluate, confirm, or negate existing or proposed commitments from 
other agents. However, the mechanism by which it does this is significantly changed. 
In this application, we used commitment value for the proposed support tasks instead 
of the avoidance of mutually exclusive activities to drive the coordination. When an 

^ Although risk-reward tradeoffs are supported by the DTC Ty^MS scheduler, we did not 
leverage these capabilities in our GPGP implementation. 
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if(coordination Key is not null) { 
if(needCoordinate or coordinationKey.othersNeedToCoordinate()){ 

coordinationKey.addNewCommitmentRequests(requests); 
needChoice = coordinationKey.setCommitments(taenfis, PRIMARY); 
primarySchedule=evaluate(taems); 
coordinationKey.determineSatisfiedCommitments(taems, primarySchedule, PRIMARY); 
if(needChoice is false) { 

preferredSchedule = primarySchedule; 
coordinationKey.setCommitments(taems, PROPOSAL); 
whatifSched = evaluate(whatlfCond); 
coordinationKey.determineSatisfiedCommitments(taems, whatifSched, PROPOSAL); 

} else { 
coordinationKey.setCommitments(taems, SECONDARY); 
secondarySchedule = evaluate(taems); 
coordinationKey.determineSatisfiedCommitments(taems, secondarySchedule, SECONDARY); 
if(coordinationKey.pickChoiceCommitments()) { 

preferredSchedule = firstBestSched; 
} else { 

preferredScheudle = secondarySchedule; 
generateNegotiationEventsO; 

Fig. 7. Pseudo-code for an Individual Agent's GPGP protocol for First Response Coordination. 

agent proposes tasks for other agents to commit to doing in its service, the commit­
ment value associated with task performance is associated with the value the overall 
task (requiring support). This leads to a global utility accounting irregularity, but this 
is a approximate, heuristic mechanism that, while not perfect, works well in practice. 

3.3 Evaluation 

Arguably, the most important overall evaluation question for COORDINATORS is 
whether they improve the performance of first responders. In a perfect world with 
unlimited resources, one might design a set of experiments in which first responders 
engage in a series of first response episodes both with and without COORDINATORS 
providing support. In each case, one would like to measure specific metrics like num­
ber of lives saved, number of assets saved, time required to perform the mission tasks, 
number of responders necessary to address the situation, amount of risk incurred by 
the responders and the civilians, etc. In this perfect world, one would have buildings 
to bum and the ability to recreate, verbatim, scenarios so that the measurement and 
comparison could be one-to-one. 

We elected to use a somewhat more economic approach. To evaluate COORDI­
NATORS from an application view, rather than simply evaluating the performance 
of the underlying technology (e.g., time required for coordination), we staged first 
response exercises and had human performers take the role of first responders. Note 
that the lessons learned from this process are anecdotal but are also more meaningful 
as an early viability test of the concept. 
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In the exercises there are four teams and an incident commander (IC). The sce­
nario is set in a petrochemical plant though the plant is mapped back onto the Honey­
well Lab's building. During the exercise, responders must move around the building, 
perform situation assessment tasks, respond to the situations they discover, and co­
ordinate to rescue civilians. The scenario is setup in such a way that teams must 
coordinate in order to rescue the civilians. Failure to do so results in (simulated) loss 
of life - a metric that can be tabulated. 

To assess the benefits of having COORDINATORS, we first deploy the teams 
on the first response exercise using walkie-talkies for communication (they are also 
equipped with stop-watches and building maps to make the simulation more com­
plete). After the walkie-talkie exercise, during which loss of (prop) life is recorded, 
the teams are rotated and the scenario run again, this time with COORDINATORS 
providing automated support. 

In doing this exercise, we rapidly discovered the degree to which humans are 
overwhelmed when faced with lots of temporal and task related data that is in a state 
of constant change. The initial plan was to host VIPs and to have a VIP take the role 
of incident commander - the individual who generally handles coordination in the 
walkie-talkie exercise. Not only was the IC task too difficult for the VIPs, it was too 
difficult for most of the research team members. In practice, only someone who had 
memorized the flow of events in the exercise could help the teams to rescue all the 
civilians. We resorted to this model in order to get human performers through the 
walkie-talkie exercise at all. 

Thus VIPs and visitors (with varying degrees of domain expertise) generally took 
the role of first response teams. At the start of the scenario, the teams are deployed 
by the IC and given situation assessment tasks. In enacting the scenario, at this point 
teams move throughout the building and go to assigned zones (generally conference 
rooms). To simulate the situation assessment task, we created a series of props repre­
senting the situation. For instance, a first response team might find fire props, debris 
props, and a civilian prop pinned by a girder prop. This would indicate that a civilian 
was trapped and that the fire needed to be put out and the debris cleared before the 
girder could be cut away. Cutting the girder also requires some other team (generally) 
to fetch a power saw from the simulated truck. In the exercise, props are reinforced 
by staging data sheets that describe the situation textually and explicitly cull out re­
source needs and potential temporal issues (e.g., "you must evacuate these civilians 
before the adjacent wall collapses at time T=40"). 

Because fielded first responders must coordinate while carrying out domain tasks, 
we also require our first response stand-ins to carry out simulated domain tasks. In 
general, this translates into putting props into one another and moving them physi­
cally throughout the building. For example, to extinguish the fire, it goes into Sifire 
extinguishment box and the box must then be carried to a staging area on a specific 
floor of the building. Similarly, evacuation of an injured civilian requires that the 
civilian prop be put into the gumey prop box, a box that must be fetched from the 
staging area, and then the gumey box must be put into a stairwell box (if that is the 
exit route chosen) and the stairwell box carried to the staging area. 
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Dynamics are introduced into the environment using secondary envelopes on 
which is printed a time at which they are to be opened. Thus teams may coordinate, 
decide on a course of action, then open an envelope and discover that the situation 
has changed (e.g., a ceiling fell-in) and then they must recoordinate to adapt to the 
new situation. 

As one might guess from the description, human performers generally fared 
poorly during this exercise. Only with an expert IC who knew the complete sce­
nario a priori and had figured out exactly who should be supporting whom, and 
when, could get both the teams and the cardboard civilians out of the facility in time. 
What is more interesting is that the stress incurred by the human performers during 
the exercise was pronounced and observable even to the non-expert. Trying to battle 
one's props while processing all the cross chatter on the walkie-talkie and interact 
with the IC proved to be a difficult task even without the heat, smoke, sound, and in­
herent danger of a crisis situation. Few performers were able to coordinate properly. 
Few were able to evaluate their mission structures properly. Not once did a guest 
team make it through the scenario with the optimal course of action chosen. Notable 
among our VIPs was a Honeywell VP who processed the temporal data without hand 
drawn Gantt charts and who carried the props with great vigor while barking com­
mands into his walkie-talkie. (Confidence in management rose a fraction during this 
episode.) 

In contrast to the walkie-talkie scenario, the run with COORDINATORS handling 
the activity coordination is almost boring - despite the scenario being run at a faster 
clock rate. In the COORDINATOR scenario, the teams perform situation assessment 
and describe their situation to the COORDINATORS. The COORDINATORS then 
handle all of the exchange of local information, the analysis, and the formation of 
commitments. Teams are then informed of what they should be doing, when, who 
will be supporting them, and so forth. 

After both exercises, the VIPs are then debriefed and shown a simplified Gantt 
chart of the major coordination points and support needs of the different teams. While 
the evidence gathered during these exercises is anecdotal, the reaction of our visitors, 
some with first response and military domain expertise, has served to reinforce our 
belief that this line of work is valuable. In practice, the "fog of war" caused by 
flames, screaming, smoke, etc., makes a set of tasks that humans have difficulty with 
under normal circumstances nearly impossible. Information exchange and coordi­
nation analysis should be off-loaded from the humans to automated assistants that 
are better equipped to reason precisely and respond in a (near) optimal and timely 
fashion. 

3.4 Scalability Issues 

Unlike the Dynamic Readiness and Repair Service application, the agent popula­
tion for this application could quite reasonably number in the hundreds or thousands 
- incorporating first response teams from local, state and federal police, fire, haz­
ardous materials, and other agencies. However, in the exercises that we ran, there 
were only five agents: one for the incident commander and four for each of the first 
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responders. The solution, although providing a good basis for further development, 
is currently not well suited to deployment in large-scale crisis response situations. 
There are a number of important issues related to crisis response management that 
are not addressed in the current application, including coordination between incident 
commander agents, coordination of domain-relevant resources such as hazardous 
materials cleanup kits, and a generally richer, more extensible model for situation 
assessment and information sharing. 

We can again hypothesize that information through hierarchical task abstraction 
and assignment can lessen the coordination burden on an individual COORDINA­
TOR as the number of COORDINATORS increases. However, we must still address 
the rate and complexity of tasks generated by interactions with the environment could 
affect the coordination protocol. Specifically, we would like to know how it affects 
the distributed solution convergence time. The rate of protocol convergence is depen­
dent on the rate and quantity of commitment requests from each agent for assistance 
with their local tasks. Each commitment request can mean the addition of one or 
more tasks to an agent's local task structure. So, as with the Dynamic Readiness and 
Repair Service application, in the worst case, for each change introduced, the key-
circulation to convergence ratio is 0{a"), where n is the number of tasks per agent 
and a is the number of agents in a coordination set. 

The solution dimension for COORDINATORS, including quality, robustness, and 
overhead limitations is further complicated by its mixed-initiative qualities. The 
baseline solution is human performance unmediated by COORDINATOR technol­
ogy, and humans are typically not very good at solving coordination problems with­
out optimization assistance. This brings up the problem of how best to enable a hu­
man user of COORDINATORS to interact with the coordination optimization pro­
tocols as the number of agents and rate and quantity of task change increases. Ab­
straction and information hiding based on natural problem decompositions (based on 
physical or other inherent problem constraints) seem to be again the best approach to 
addressing these problems. That is, ensuring that if a person is looking at a state-wide 
coordination problem via COORDINATORS, he will not be burdened by low-level 
resource information, like how many oxygen packs are stationed in a given municipal 
fire station. 

4 General Scalability Limitations and Future Work 

We have examined two different applications that use a key-based approach to co­
ordinate interactions of multiple agents and discussed its scalability properties in 
each along the three dimensions identified by Durfee [4]: agent population, task en­
vironment, and solution. We now discuss in general some of the limitations of the 
key-based coordination protocols and lay out directions for future work. 

One limitation of the current key-based implementation is a notion of hierarchy in 
the coordination protocol. For instance, coordination sets (the agents where one key 
circulates) can overlap, but the notion of a decision in one coordination set preempt­
ing the decision in another coordination set is not supported. This could be useful 
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especially in the COORDINATOR application, where the "upper management" of a 
crisis response could direct resources based on strategic priorities in a way that might 
contradict local resource needs or commitment requests. 

Another limitation of the key-based protocols when scaling in the rate of task 
change or arrival is that the decisions of a coordination set can be made no faster 
than its slowest member - the complexity of one agent's local coordination problem 
could bring the group's decision making to a stand-still. One way around this would 
be to enforce time-bounded computation at each agent. Each agent would then be 
required to gauge the level of heuristic analysis it does s based on the amount of time 
it has to compute and the complexity of the problem it must solve. 

Yet another direction we could take to make the solution more robust and quite 
possibly faster would be to switch to a centralized, black-board [1] mechanism. This 
would open up the possibility (and complexity) of asynchronous coordination deci­
sions. 
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Summary. Coordinating the behavior of a large number of agents to achieve a system level 
goal poses unique design challenges. In particular, problems of scaling (number of agents in 
the thousands to tens of thousands), observability (agents have limited sensing capabilities), 
and robustness (the agents are unreliable) make it impossible to simply apply methods devel­
oped for small multi-agent systems composed of reliable agents. To address these problems, 
we present an approach based on deriving agent goals that are aligned with the overall sys­
tem goal, and can be computed using information readily available to the agents. Then, each 
agent uses a simple reinforcement learning algorithm [26] to pursue its own goals. Because 
of the way in which those goals are derived, there is no need to use difficult to scale external 
mechanisms to force collaboration or coordination among the agents, or to ensure that agents 
actively attempt to appropriate the tasks of agents that suffered failures. 

To present these results in a concrete setting, we focus on the problem of finding the sub­
set of a set of imperfect devices that results in the best aggregate device [5]. This is a large 
distributed agent coordination problem where each agent (e.g., device) needs to determine 
whether to be part of the aggregate device. Our results show that the approach proposed in this 
work provides improvements of over an order of magnitude over both traditional search meth­
ods and traditional multi-agent methods. Furthermore, the results show that even in extreme 
cases of agent failures (i.e., half the agents failed midway through the simulation) the system's 
performance degrades gracefully and still outperforms a failure-free and centralized search al­
gorithm. The results also show that the gains increase as the size of the system (e.g., number of 
agents) increases. This latter result is particularly encouraging and suggests that this method 
is ideally suited for domains where the number of agents is currently in the thousands and will 
reach tens or hundreds of thousands in the near future. 

1 Introduction 

Coordinating a large number of agents to achieve complex tasks collectively presents 
new challenges to the field of multi-agent systems. The research issues in this area 
present significant departures from those in traditional multi-agent systems coordi­
nation problems where a handful of agents interact with one another. When dealing 
with a handful of agents, it is reasonable to assume that in many cases agents re­
act to one another, can model one another, and/or enter into contracts with one an-
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other [6, 8, 12, 21]. When dealing with thousands of agents on the other hand, such 
assumptions become more difficult to justify. At best each one can assume that the 
agents are aware of other agents as part of a background. In such cases, agents have 
to act within an environment that may be shaped by the actions of other agents, but 
cannot be interpreted as the the by-product of the actions of any single agent. 

This distinction is crucial and makes the coordination problem fundamentally 
different than that traditionally encountered in many domains, and thus requires new 
approaches. In this work, we focus on an agent coordination method that aims to 
handle systems which have the following four characteristics: 

1. The agents have limited sensing and decision making capabilities. Therefore, 
rather than rely on carefully designed agents, the interactions among the agents 
will be leveraged to achieve the complex task; 

2. The agents will not be able to model the other agents in the system. Therefore, 
they will "react" to the signals they receive from their environment; 

3. The agents will not necessarily perform reliably, and a non-negligible percentage 
of the agents will to fail during the life-cycle of the system. Therefore, the agents 
will not rely on other agents performing specific tasks at specific performance 
levels. 

4. The number of agents will be in the thousands. Therefore, the agents will need 
to act with local information and without direct regard for the full system per­
formance. 

To study such multi-agent systems within a concrete domain, we focus on the 
problem of imperfect device subset selection. This problem consists of a set of im­
perfect devices, and the task is to find the subset of those devices that results in the 
best aggregate device [5]. It can be viewed as an abstraction of what will likely loom 
as a major challenge in achieving coordination in large scale multi-agent systems 
(e.g., systems of nano or micro-scale components) meeting the four criteria listed 
above. This is a hard optimization problem, and brute force approaches cannot be 
used for any but its smallest toy instances [5, 10]. 

We propose addressing this problem by associating each device with an adaptive 
Reinforcement-Learning (RL) agent [15, 17, 26, 33]) that decides whether or not 
its device will be a member of the subset. In this problem, there is a well-defined, 
system-level objective function that needs to be achieved. As such we focus on how 
the agents' actions further that system-level goal (i.e., global utility). Furthermore, 
because we intend to scale this system to a large number of agents, the agents need 
to take their actions without actively soliciting information from other agents in the 
system. The design problem we face then, is to determine how best to set the private 
utility functions of the agents in a way that will lead to good values of the global 
utility, without involving difficult to scale external mechanism that ensure coopera­
tion among the agents. Note that though the agents have simple decisions to make, 
this is still fundamentally a multi-agent problem: Each agent autonomously makes a 
decision at each time step based on its estimate of the reward it will receive; and the 
system is fully distributed as each agent has full autonomy over its actions. 
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For the joint action of agents working in such a system to provide good values of 
the global utility, we must both ensure that the agents do not work at cross-purposes, 
and that each one has a learning problem that is relatively easy to solve. Typically 
these two requirements are in conflict with one another. For example, providing each 
agent with the system-level goal will ensure that they will not work at cross purposes. 
However, such a choice will leave the agents with a difficult problem: each of the 
agents' utilities will depend on the actions of all the other agents, making it all but 
impossible for the agents to determine the best actions to follow in most systems 
of interest. At the other extreme, providing each agent with a simple, local utility 
function will provide a clear signal, but may not necessarily lead the system to high 
values of global utility. 

The challenge is is to find the best trade-off between these two requirements. This 
design problem is related to work in many other fields, including multi-agent sys­
tems (MAS's), computational economics, mechanism design, computational ecolo­
gies and game theory [4, 20, 13, 18, 25]. However, because of issues related to the 
scale of the system, the reliability of the agents and the limited availability of in­
formation, they do not provide a full solution to this problem. (See [30] for a de­
tailed discussion of the relationship between these fields, involving hundreds of ref­
erences.) 

This chapter presents an agent utility based multi-agent coordination algorithm 
that is well-suited for large and noisy multi-agent systems where coordination among 
simple and coomperative agents is required. In Section 2 we summarize the back­
ground material for agent utility derivation and define the desirable properties an 
agent utility needs to possess for coordination in large multi-agent systems. In Sec­
tion 3 we present the imperfect device combination problem and derive the specific 
agent utilities for this domain. In Section 4 we describe the simulations and present 
results showing the performance of the various utilities, their scaling properties and 
their robustness to agent failures. Finally, in Section 5 we provide a summary and 
discuss the implications and general applicability of this work. 

2 Background 

In this work, we focus on multi-agent systems that aim to maximize a global utility 
function, G{z), which is a function of the joint move of all agents in the system, z. 
Instead of maximizing G{z) directly, each agent, /, tries to maximize its private util­
ity function gi{z). Our goal is to devise private utility functions that will cause the 
multi-agent system to produce high values of G{z) [2, 28, 34]. Because this method 
is based on assigning a utility function to each agent, it is better suited for inher­
ently cooperative distributed domains such as multi-rover coordination [1], or the 
imperfect device combination problem presented here. On the other hand, with some 
modifications, it is also applicable to more general domains such as data routing [32], 
job scheduling over heterogeneous servers [29] or multivariate search [35]. 

In this work, the notation Zi refers to the parts of z that are dependent on the 
actions of /, and z-i to refer to the components of z that do not depend on the actions 
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of agent /. Instead of concatenating these partial states to obtain the full state vector, 
we use zero-padding for the missing elements in the partial state vector. This allows 
us to use addition and subtraction operators when merging components of different 
states (e.g., z = z/ + z-/). 

2.1 Properties of Utility Functions 

Now, let us formalize the two requirements discussed above that a private utility 
should satisfy. First, the private utilities have to be aligned with respect to G, quan­
tifying the concept that an action taken by an agent that improves its private utility 
also improves the global utility. Formally, for systems with discrete states, the degree 
of factoredness for a given utility function gi is defined as: 

^ _lzlz'4i8i{z)-gi{z')){G{z)-G{z'))] 

for all z! such that z-/ = z!_i and where u[x] is the unit step function, equal to 1 if 
;c > 0, and zero otherwise. Intuitively, the higher the degree of factoredness between 
two utilities, the more likely it is that a change of state will have the impact on the 
two utilities (e.g., make both of them go up). A system is fully factored when jTg, = 1. 
As a trivial example, a system in which all the private utility functions equal G [7] is 
fully factored. 

Second, the private utilities have to have high learnability, intuitively meaning 
that an agent's utility should be sensitive to its own actions and insensitive to actions 
of others. Formally we can quantify the learnability of utility gi, for agent / at z: 

E^,^\gt{z)-gi{z-i+m ... 

where E[-] is the expectation operator, zj's are alternative actions of agent / at z, and 
z'_/s are alternative joint actions of all agents other than /. Intuitively, learnability 
provides the ratio of the expected value of gi over variations in agent /'s actions to 
the expected value of g/ over variations in the actions of agents other than /. So at a 
given state z, the higher the learnability, the more gi{z) depends on the move of agent 
/, i.e., the better the associated signal-to-noise ratio for /. Higher learnability means 
it is easier for / to achieve a large values of its utility. Note that, though a system 
where all agents' private utilities are set to G is fully factored, such a system will 
have low learnability since each agent's utility will depend on the actions of all the 
other agents in the system. 

2.2 Private Utility Functions 

Now, let us present two utilities that are fully factored and have high learnability. The 
Estimated Difference Utility is given by: 

EDUi = G{z)-E,.[G[z)\z-i] (3) 
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where E^i [G{z) \z-i] gives the expected value of G over the possible actions of agent /. 
Such a private utility for the agents is fully factored with G because the second term 
does not depend on agent /'s state [34] (these utilities are referred to as AU in [34]). 
Furthermore, because it removes noise from an agent's private utility, EDU yields 
far better leamability than does G [34]. This noise reduction is due to the subtraction 
which (to a first approximation) eliminates the impact of states that are not affected 
by the actions of agent /. 

The second utility we consider is the Wonderful Life Utility [34], given by: 

WLUi = G{z)-G{z-i). (4) 

The major difference between EDU and WLU is in how they handle z_/. EDU pro­
vides an estimate of agent /'s impact by sampling all possible actions of agent / 
whereas WLU simply removes agent / from the system WLU is also factored with 
G, because the second term does not depend on the actions of agent / [34]. In general, 
WLU also has better leamability than G, and in the next section we discuss this in 
more detail for this problem domain. 

3 Combination of Imperfect Devices 

We now explore the use of these private utility functions for the problem of com­
bining imperfect devices [5]. A typical example of this problem arises when many 
simple and noisy observational devices (e.g., nano or micro devices, low power sens­
ing devices) attempt to accurately determine some value pertinent to the phenomenon 
they're observing. Each device will provide a single number that is slightly off, sim­
ilar to sampling a Gaussian centered on the value of the real number. The problem 
is to choose the subset of a fixed collection of such devices so that the average (over 
the members of the subset) distortion is as close to zero as possible. 

3.1 Problem Definition 

Formally, the problem is to minimize 

where rij e {0,1} is whether device j is or is not selected, and there are Â  devices in 
the collection, having associated distortions {aj}. This is a hard optimization prob­
lem that is similar to known NP-complete problems such as subset sum or partition­
ing [5, 10], but has two twists: the presence of the denominator and that aj G R Vy. 
In this work we set the system-level utility function to G == - e (we do this so that 
the goal is to "maximize" G, which is more consistent with the concept of "utility" 
design). 

The system is composed of N agents, each responsible for setting one of the HJ. 
Each of those agent has its own private utility function, though the overall objective 
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is to maximize system level performance. The aim is to give those agents private 
utilities so that, as they learn to maximize their private utilities, they also maximize 
G. 

3.2 Expected Difference Utility 

For this application, the EDU discussed in the previous section becomes: 

EDUi{z) = - ' 7 - ^ ^^' 

where p{ni — 1) and p{ni = 0) give the probabilities that agent / set its ni to 1 or 
0 respectively. In what follows, we will assume that those two actions are equally 
likely (i.e., for all agents /, p{ni = l) = p{ni = 0) = 0.5). 

Depending on which action agent i chose (0 or 1), EDU can be reduced to: 

=\''j'^j EDUiiz) = 0.5—£ĵ ;̂  0.5-;̂ ^ ;̂̂  if W/ = 1 , (7) 
lL\^k-l lk=\^k 

or: 

\l%injaj + ai\ _^^\J^U^W\ 
SLi^^ + 1 ' Iti^k 

EDUiiz) = 0.5'^^-^ ' \ ^ -0.5' ^-^ ' '̂ if ni = 0, (8) 

Note that in this formulation, EDU provides a very clear signal. If EDU is posi­
tive, the action taken by agent / was beneficial to G, and if EDU is negative, the action 
was detrimental to G. Thus an agent trying to maximize EDU will efficiently max­
imize G, without explicitly trying to do so. Furthermore, note that the computation 
of EDU requires very little information. Any system capable of broadcasting G can 
be minimally modified to accommodate EDU. For each agent to compute its EDU, 
the system needs to broadcast the two numbers needed to compute G: the number 
of devices that were turned on (i.e., the denominator in Equation 5) and the associ­
ated subset distortion as a real number (i.e., the numerator in Equation 5 before the 
absolute value operation is performed. Based on those two numbers, the agent can 
compute its EDU. 

3.3 Wonderful Life Utility 

For this application, the WLU discussed in the previous section becomes: 

WLUiiz) = - '̂ ^V + S (9) 
lk=\^k Ik^irik 
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Note however, that unlike with EDU, the action chosen by agent / has a large 
impact on the WLU. If agent / chooses action 0, the two terms in Equation 9 are 
identical, resulting in a WLU of zero. Depending on which action agent i chose (0 or 
1), WLU can be reduced to: 

WLUi{z)=' ' ^ , - v^ i f n . - ^ l , (10) 

or: 

WLUi{z) = 0 ifn/ = 0. (11) 

In this formulation, unlike EDU, WLU provides a clear signal only if agent i had 
chosen action 1. In that case, a positive WLU means that the action was beneficial 
to G, and a negative WLU means that the action was detrimental for G. However, if 
agent / had chosen action 0, it receives a reward of 0 regardless of whether that action 
was good or bad for G. This means that on average half the actions an agent takes 
will be random as far as G is concerned. Considering leamability implications, this 
means that on average WLU will have half the leamability of EDU for this problem. 

4 Experimental Results 

In this work we purposefully used computationally unsophisticated and easy to build 
agents for the following reasons: 

1. To ensure that we remained consistent with our purpose of showing that a large 
scale system of potentially failure-prone agents can be coordinated to achieve 
a system level goal. Indeed, building thousands of sophisticated agents may be 
prohibitively difficult; therefore though systems that will scale up to thousands 
may use sophisticated agents, they cannot rely on such sophistication. 

2. To focus on the design of the utility functions. Having sophisticated agents can 
obscure the differences in performance due to the agent utility functions and the 
algorithms they ran. By having each agent run a very simple algorithm we kept 
the emphasis on the effectiveness of the utility functions. 

Each agent had a data set and a simple reinforcement learning algorithm. Each 
agents' data set contained time, action, utility value triplets that the agent stored 
throughout the simulation. At each time step each agent chose what action to take, 
which provided a joint action which in turn set the system state. Based on that state 
the system level utility, and the private utility of all the agents are computed. The 
new time, action take and utility value for agent / then gets added to the data set 
maintained by agent /. This is done for all agents and then the process repeats. 

To choose its actions, an agent uses its data set to estimate the values of the utility 
it would receive for taking each of its two possible move. Each agent / picks its action 
at a time step based on the utility estimates at that time. Instead of simply picking the 
largest estimate, to promote exploration it probabilistically selects an action, with a 
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higher likelihood of selecting the actions with higher utility estimates (e.g., it uses 
a Boltzmann distribution across the utility values). Because the experiments were 
run for short periods of time, the temperature in the Boltzmann distribution did not 
decay in time. However to reflect the fact that the environment in which an agent is 
operating changes with time (as the other agents change their moves), and therefore 
the optimal action changes in time, the two utility estimates are formed using expo­
nentially aged data: for any time step r, the utility estimate / uses for setting either 
of the two actions ni is a weighted average of all the utility values it has received at 
previous times t' that it chose that action, with the weights in the average given by an 
exponential of the values r — r'. Finally, to form the agents' initial data sets, there is 
an initialization period in which all actions by all agents are chosen uniformly ran­
domly, with no learning used. It is after this initialization period ends that the agents 
choose their actions according to the associated Boltzmaim distributions. 

For all learning algorithms, the first 20 time steps constitute the data set initial­
ization period (note that all learning algorithms must "perform" the same during that 
period, since none are actually in use then). Starting at r = 20, with each consecu­
tive time step a fixed fraction of the agents switch to using their learner algorithms 
instead, while others continue to take random actions. Because the behavior of the 
agents starting to use their learning algorithm changes, having all agents start learn­
ing simultaneously provides a sudden "spike" into the system which significantly 
slows down the learning process. This gradual introduction of the learning algo­
rithms is intended to soften the "discontinuity" in each agent's environment. In these 
experiments, for N = 50 and N = 100, three agents turned on their learning algo­
rithms at each time step, and for Â  = 1000, sixty agents turned on their learning 
algorithms at each time step. 

4.1 Agent Utility Performance 

Figures 1-3 show the convergence properties of different agent utilities and a search 
algorithm in systems with 50,100 and 1000 agents respectively. The results reported 
are based on 20 different {at} configurations, where each {«/} is selected from a 
Gaussian distribution with zero mean and unit variance. For each configuration, the 
experiments were run 50 times (i.e., each point on the Figures is the average of 20 x 
50 = 1000 runs). The graphs labeled G, EDU and WLU show the performance of 
agents using reinforcement learners with those reinforcement signals provided by G 
(team game), EDU and WLU respectively. S shows the performance of local search 
where new w/'s are generated at each step by perturbing the current state and selected 
if the solution is better than the current best solution (in the experiments reported 
here, 25% of the actions were randomly changed at each time step, though somewhat 
surprisingly, the results are not particularly sensitive to this parameter). Because the 
runs are only 200 time steps long, algorithms such as simulated aimealing do not 
outperform local search: there is simply no time for an annealing schedule. This 
local search algorithm provides the performance of an algorithm with centralized 
control. 
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Fig. 1. Combination of Imperfect Devices Problem, N=50. 
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Fig. 2. Combination of Imperfect Devices Problem, N=100. 

In all cases in which agents use the G utility, they have a difficult time learning. 
Even for 50 agents, the noise in the system is too large for such agents to learn how 
to select their actions. For 50 agents (Figure 1) both WLU and EDU outperform the 
centralized search algorithm. In this case, both utility functions sufficiently "clean­
up" the signal for the agents to perform well. For 100 agents (Figure 2), WLU starts 
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Fig. 3, Combination of Imperfect Devices Problem, N=1000. 

to suffer. Because agents only receive useful feedback when they take one of the two 
actions, the noise in the system is increasing. This "noise" becomes too much for 
systems with 1000 agents (Figure 3), where WLU is outperformed by the centralized 
algorithm. EDU, on the other hand, continues to provide a clean signal for all systems 
up to the largest we tested (1000 agents). 

Note that because agents turning on their learning algorithm changes the environ­
ment, the performance of the system as whole degrades immediately after learning 
starts (i.e., after 20 steps) in some cases. Once agents adjust to the new environment, 
the system setdes down and starts to converge. 

4.2 Scaling Characteristics of Utilities 

Figure 4 shows scaling results (the t = 200 average performance over 1000 runs) 
along with the associated error bars (differences in the mean). As Â  grows two com­
peting factors come into play. On the one hand, there are more degrees of freedom 
to use to minimize G. On the other hand, the problem becomes more difficult: the 
search space gets larger for 5, and there is more noise in the system for the learning 
algorithms. To account for these effects and calibrate the performance values as N 
varies, we also provide the baseline performance of the "algorithm" that randomly 
selects its action ("Ran"). Note that the difference between the performances of all 
algorithms and EDU increases when the system size increases, reaching a factor of 
twenty for S and over 600 for GfoYN= 1000. 

Also note that all algorithms but EDU have slopes similar to that of "Ran", show­
ing that they cannot use the additional degrees of freedom provided by the larger N. 
Only EDU effectively uses the new degrees of freedom, providing gains that are 
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proportionally higher than the other algorithms (i.e., the rate at which EDU's per­
formance improves outpaces what is "expected" based on the random algorithm's 
performance). 

4,3 Robustness 

In order to evaluate the robustness of the proposed utility functions for multiagent 
coordination, we tested the performance of the system when a subset of the agents 
failed during the simulation. At a given time (r = 100 in these experiments), a certain 
percentage of agents failed (e.g., were turned off) simulating hazardous condition in 
which the functioning of the agents caimot be ascertained. The relevance of this 
experiment is in determining whether the proposed utility functions require all or a 
large portion of the agents to perform well to be effective, or whether they can handle 
sudden changes to their environment. 

Figure 5 shows the performance of EDU, WLU, and G for 50 agents when 10% 
of the agents fail at time step t = 100. Similarly Figure 6 shows the performance of 
100 agents where 20% of them fail. The results of the centralized search algorithm 
with no failures ("S" from Section 4.1), is also included for comparison. 

In these experiments, none of the agent learning algorithms were adjusted to 
account for the change in the environment. In agents that continued to function, the 
learning proceeded as though nothing had happened. As a consequence, not only 
did the agents need to overcome the sudden change in their task but they had to 
do so with parameters tuned to the previous environment. Despite these limitations, 
EDU and WLU recover rapidly for the 50 agent case, whereas G does not. For the 
case with 100 agents and 20% agent failure, only EDU outperforms the centralized 
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Fig. 6. System performance for 100 agents, 20% of which fail at time t=100. 

search algorithnn. Note this is a powerful results: a distributed algorithm with only 
80% functioning agents, each tuned to a different environment outperforms a 100% 
functioning centralized algorithm. 

Figures 7 and 8 show the performance of EDU when the percentage of agent fail­
ures increases from 10 to 50% for 50 and 100 agents respectively. For comparison 
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Fig. 7. Effect of agent failures on EDU for 50 agents (S has no agent failures). 
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Fig. 8. Effect of agent failures on EDU for 100 agents (S has no agent failures). 

purposes, the search results (From Section 4.1) are also included. After the initial 
drop in performance when the agents stop responding, EDU trained algorithms re­
cover rapidly and even with half the agents outperform the fully functioning and 
centralized search algorithm. These results demonstrate both the adaptability of the 
EDU and its robustness to failures of individual agents, even in extreme cases. 
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5 Discussion 

The combination of imperfect devices is a simple abstraction of a problem that will 
loom large in the near future: How to coordinate a very large numbers of agents 
- many of which may have limited access to information and perform unreliably 
- to achieve a prespecified system-level objective. This problem is fundamentally 
different from traditional multi-agent problems in at least four ways: (i) the agents 
have limited sensing and decision making capabilities; (ii) the agent do not model 
the actions of other agents; (iii) the agents are unreliable and failure-prone; and (iv) 
the number of agents is in the thousands. 

The work summarized in this chapter is based on ensuring coordination while 
eliminating external mechanisms such as contracts and incentives to allow the sys­
tems to scale to large system. In the experimental domain of selecting a subset of 
imperfect devices, the results shows the promise of this method by providing im­
provements of up to twenty times better than a centralized algorithm and of nearly 
three orders of magnitude over a multi-agent system using a team game approach. 
Furthermore, when as many as half the agents failed during simulations, the proposed 
method still outperformed a fully functioning centralized search algorithm. 

This approach is well-suited for addressing coordination in large scale cooper­
ative multi-agent systems where the agents do not have pre-set and possibly con­
flicting goals, or when the agents do not need to hide their objectives. The focus is 
on ensuring that the agents do not inadvertently frustrating one another in achiev­
ing their goals. The results show that in such large scale, failure-prone systems, this 
method performs well precisely because it does not rely on the agents building an ac­
curate model of their surroundings, modeling the actions of other agents or requiring 
all agents in the system to reach a minimum performance level. 
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Agogino for his many comments, as well as the participants in the Coordination 
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1 Introduction 

Agents can benefit by cooperating to solve a common problem [2, 11]. For example, 
several robots may cooperate to move a heavy object, sweep a specific area in short 
time, etc. However, as the number of agents increases, having all agents involved in 
a detailed coordination/negotiation process will limit the scalability of the system. 
It is better to first form a coalition of agents that has enough resources to undertake 
the common problem. Then only the agents in this coalition coordinate and negotiate 
among themselves. 

This situation is common in domains where a task requires more than one agent 
and there are more than one task competing for resources. Computational grids and 
distributed sensor networks are examples of such domains. In computational grids 
a large number of computing systems are connected via a high-speed network. The 
goal of the grid is to meet the demands of new applications (tasks) that require large 
amounts of resources and reasonable responsiveness. Such requirements cannot be 
met by an individual computing system. Only subset of the available computing sys­
tems (aka a coalition) has enough resources to accomplish an incoming task. 

The work in [8] defined the coalition formation problem as follows (a formal 
definition is given in Section 2). The input is a set of agents, each controlling some 
amount of resources, and a set of tasks, each requiring some amount of resources and 
each worth some utility. The solution assigns a coalition of agents to each task, such 
that each task's requirements are satisfied and total utility is maximized. It should 

* This material is based upon work supported in part by the National Science Foundation un­
der Grant No. IIS-9988784 and the Defense Advanced Research Projects Agency (DARPA) 
and Air Force Research Laboratory Air Force Materiel Command, US AF, under agreement 
F30602-99-2-0525. The U.S. Government is authorized to reproduce and distribute reprints 
for Governmental purposes notwithstanding any copyright annotation thereon. Any opin­
ions, findings, and conclusions or recommendations expressed in this material are those of 
the author(s) and do not necessarily reflect the views of the National Science Foundation, 
the Defense Advanced Research Projects Agency (DARPA), Air Force Research Labora­
tory or the U.S. Government. 
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be noted that the coalition formation problem is not concerned with how agents in 
a coalition cooperate to actually executes its assigned task. Such cooperation can be 
achieved by other complementing frameworks such as teamwork [11]. 

In this chapter we propose a novel approach for solving the coalition formation 
problem approximately using an underlying organization to guide the formation pro­
cess. The intuition here is to exploit whatever knowledge is known a priori in order to 
make the coalition formation process more efficient. For instance, in many domains, 
agents' capabilities remain the same throughout the lifetime of the system. Addition­
ally, incoming tasks may follow some statistical pattern. Can we organize agents to 
exploit this knowledge (of their capabilities and task arrival patterns) to make the 
search for future coalitions more efficient? If so, will all organizations yield the same 
performance, or do some organizations perform better than others? In the remainder 
of this chapter we try to provide answers to these questions. The main contributions 
of this work are: 

• an organization-based distributed algorithm for approximately solving the coali­
tion formation problem 

• the use of reinforcement learning to optimize the local allocation decisions made 
by agents in the underlying organization 

The chapter is organized as follows. In Section 2 we define the problem for­
mally, laying out the framework we will use throughout the chapter. In Section 4 we 
present our approach. Section 5 describes our experimental results. We compare our 
approach to similar work in Section 6. Conclusions and future work are discussed in 
Section 7. 

2 Problem definition 

To focus on the coalition formation problem, some simplifying assumptions are 
made to avoid adding the scheduling problem to it.̂  We assume time is divided into 
episodes. At the beginning of each episode each agent receives a sequence of tasks.-̂  
Once a task is allocated a coalition, agents in that coalition can not be assigned to 
another task until the end of the episode. At the end of every episode all agents are 
freed and ready to be allocated to the next sequence of tasks. More formally: 

Let r = (7i, 72,..., r^) be the sequence of tasks arriving in an episode. Each task 
Ti is defined by the tuple {ui,rri^\,rri^2,"-->fn,m)y where Ui is the utility gained if 
task Ti is accomplished; and rq^k is the amount of resource k required by task 7]. Let 
/ = {/i, /2,...,/«} be the set of individual agents in the system. Each agent // is defined 
by the tuple (cr/j ,cr/,2, •••,cr/,;„), where crt^k is the amount of resource k controlled 
by agent//. 

The coalition formation problem is finding a subset of tasks SCT that maximizes 
utility while satisfying the coalition constraints, i.e.: 

^ In future we plan to integrate scheduling in our framework. 
^ Note that the overall system may receive more than one task at the same time but at different 

agents. 
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• and there exists a set of coalitions C = {Ci,..., C\s\}, where Q C / is the coalition 
assigned to task 7]-, such that V7]- eSyk: Y^I-^Q ^^j,k ^ fr^^ and V/ 9̂  j : C/ nC; = 
0 

In other words, each task is assigned a coalition capable of accomplishing it 
and any agent can join at most one coalition. This means if the resources controlled 
(collectively) by a coalition exceed the amount of resources required by the assigned 
task, the excess resources are wasted. Having more than one type of resource means 
that there will be trade-offs, where decreasing the excess of one resource type may 
increase the excess of another resource type. Next section shows that the coalition 
formation problem (as defined above) is NP-hard. 

2.1 Complexity 

In this section we prove that the Coalition Formation Problem (CFP), as we formu­
lated it, is NP-hard. We do so by reducing the multidimensional knapsack problem, 
which is known to be NP-hard, to CFP. 

The Multi-dimensional Knapsack Problem, MDKP 

The input of this problem consists of a set of constraints C = {ci,C2, ...,c^} and a 
set of objects O — {01 ,(̂ 2, ...,6>^}, where each object is defined by the tuple oi =< 
w/,vv/,i,w/,2,.-.,vVi> >, where w/ is its value and w/j is its weight for dimension j . 
The goal is to find a subset of objects S c O, s.t. ^aes^i is maximized, while Vc; G 

Theorem 1. Coalition Formation Problem, CFP, is NP-hard 

Proof, This is proved by reducing an MDKP instance to a CFP instance. This is done 
as follows. The decision version of the MDKP problem is: 

Ql: given a set of objects O and a set of constraints C, is there a valid subset of 
objects Sk that satisfy the constraints and has total utility of k or more? 

The mapping from MDKP to CFP is as follows. For each object oi =< w/, w/, 1,..., w/,^ > 
in MDKP, we define an agent«/ = < w/, 1,..., wt^m > and a task 7]- = < w/, w/, 1,..., w/,̂  >. 
We also add task T'^<U,Wu...,Wni>, where U = S^.^^ "/ and Wj = (Zo^go ̂ u) -
Cj (this amount can be viewed as the gap between the demand of a resource and its 
supply). As will be described shordy, T' encodes the constraints of the MDKP in­
stance such that the coalition assigned to this task corresponds to the set of objects 
left outside the knapsack. The CFP decision problem then becomes: 

Q2: given the set of tasks T and the set of agents A, is there a a valid set of 
Coalitions C that results inU -^k utility or more? 

To prove the theorem, we need to show that the answer to Q1 is yes iff the answer 
to Q2 is yes. Let Q = {Wi} ' oi ^Sk] be the set of coalitions corresponding to S^ 
(i.e. Q is a set of singular coalitions). Let C_^ = [at : oi ^ S^}, i.e. the coalition 
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corresponding to all objects not in S^. By definition, every coalition {at} e Q can be 
assigned to 7], resulting in k utility. The hard part is to prove that the constraints of 
the MDKP problem is not violated by this assignment. This is where 7' comes into 
play. If Sk satisfies the MDKP constraints, then 

i'.ojeO ojeSk i'.ojeO 

•••vy X ^ij>wj 

-Cj 

i.e., C-k is a valid coalition to undertake T', This means there exists a set of coalitions 
C = Q U [C-k] that yield k-^U utility. 

3 Control 

In a real multiagent system, which implements the coalition formation approach, 
a task may arrive at any agent. How can this agent know which agents have the 
right capabilities? We refer to the problem of locating and assigning an agent to a 
coalition as the control problem. While the control problem is crucial to the coalition 
formation process, it has received little attention in previous work that deals with 
coalition formation. This section tries to pin down the different approaches to solve 
this problem. 

Figure 1 illustrates three possible approaches to the control problem. The first ap­
proach is having a fully distributed control paradigm where every agent is a manager. 
Each manager knows about and controls every other agent. The other extreme is the 
fully centralized approach, where there is only one manager in the system. The third 
approach is having a hierarchy. In this case there is a tree of managers. Each man­
ager controls a fixed number of neighbors. The remainder of this section discusses 
the trade-offs between these three approaches in light of the following issues: state 
consistency, scalability, and reliability. 

Communication is needed when a new task arrives for two reasons. First to in­
form agents that are chosen in the coalition which task they are assigned to. Second, 
to inform other managers of the change of state in the system, i.e. maintaining state 
consistency. State consistency is the property that every manager in a system sees the 
same system's state. This is important to avoid conflicts among managers as early as 
possible. For example, assume manager m\ asks agent a\ to undertake task T\, a\ 
accepts and hence is no longer available to be assigned to another task. On the other 
hand, manager mi does not know of the change in a\ 's state, mi receives another 
task, decomposes it, and starts contracting subtasks, relying on its incorrect system 
state. After contracting and committing some subtasks, mi asks a\ to do subtask Ti, 
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Fig. 1. Different control structures: fully distributed (top left), fully centralized (top right), and 
hierarchy (bottom). 

ai rejects the request as it is still working on T\, mi fails to find a substitute for a\ 
and starts decommitting the subtasks already committed. 

Naturally, maintaining state consistency becomes a problem as the number of 
managers in a system increases. For example, in the fully distributed approach where 
every agent is itself a manager, the number of managers is maximum and maintain­
ing state consistency needs a lot of communication overhead."̂  This makes the fully 
distributed approach the least efficient. On the other hand, in the fully centralized ap­
proach there is only one manager in the system that handles all allocations, therefore 
maintaining state consistency is free. The hierarchical approach strikes a balance 
between the other two approaches (the overhead for maintaining state consistency 
depends on the number of managers in the system). 

Scalability is also an issue. A manager that needs to know the state of 1000 agents 
and control them is much more overloaded than a manager that needs to know the 
state of only 10 agents and control just these 10 agents. In both the centralized and 
the fully distributed approaches a manager is connected to all agents in the system. 

^ It is also possible to leave other managers have an old state of the system, hoping that no 
conflict will occur (e.g. they will never ask for the same agent, or even if they ask, the other 
agent will be already done from the old task.) This may lead to communication savings in 
some domains. We do not cover this approach in this chapter. 
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which significantly reduces these approaches scalability. The hierarchical approach 
that we adopt in this paper is more scalable than the other two approaches. 

Reliability is how the failure of a manager affects the performance of the sys­
tem as a whole. The fully distributed approach is the most reliable, where the failure 
of a manager minimally affect the system's performance. The centralized approach 
is naturally the least reliable, but it is possible to employ failure recovery mecha­
nisms, e.g. electing a new manager to replace the one that failed. The hierarchical 
approach is still not as reliable as the fully distributed approach, but having multiple 
managers means the system will still be functional even if one manager fails. This 
may lead to having multiple disconnected islands of agents, but each island can still 
function independently.^ Again failure recovery mechanisms can be employed in the 
hierarchical approach as well. 

Another control architecture that is not mentioned above is the network archi­
tecture. This is a generalization of the hierarchy approach, where cycles may exist 
between managers. Having cycles in the control architecture introduces some prob­
lems. Figure 2 shows an example of that. Manager A asks managers B and C to 
report how many resources they have available. Manager B reports the resources of 
its neighbors, which include the resources available at C. Similarly, C reports the 
resources available at 5. In the end, manager A will have a wrong view of what re­
sources are available, because resources of both B and C are counted twice. Even 
worse, both B and C also have wrong view of the resources available, as they both 
may ask A for its state (which wrongfully indicates that A has a lot of resources). 
Having cycles also requires care with contracting tasks. Without careful protocol 
design, a task may circulate indefinitely being continuously contracted. For these 
reasons we did not consider control structures that include cycles. 

* Most recent state of a neighbor 

[a] [b] 

Fig. 2. Problems with cycles in control architectures. 

4 Proposed Solution 

Because the coalition formation problem is NP-hard, an optimal algorithm will need 
exponential time in the worst case (unless NP = P). An approximation algorithm. 

^ Because islands are now disconnected, it is possible that some tasks that were achievable 
by the connected hierarchy are no longer achievable. 
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which can exploit information about the problem, is needed. If the environment (in 
terms of incoming task classes and patterns) does not follow any statistical model, 
and agents continually and rapidly enter and exit the system, there is little informa­
tion to be exploited. Luckily, in many real applications the environment does follow 
a model, and the system can be assumed closed. 

In such cases, it is intuitive to take advantage of this stability and organize the 
agents in order to guide the search for future coalitions. We chose to organize agents 
in a hierarchy, which is both distributed and scalable as discussed in Section 3. Figure 
3 shows a sample hierarchical organization. An individual (the leaves in Figure 3) 
represents the resources controlled by a single agent. A manager (shown as a circle 
in Figure 3) is a computational role, which can be executed on any individual agent, 
or on dedicated computing systems. A manager represents agents beneath it when it 
comes to interaction with other parts of the organization. 
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Fig. 3. An Organization Hierarchy 

Each manager M has a set of children, children{M), which is the set of nodes 
direcdy linked below it. So for instance, in the organization shown in Figure 3, 
children{M6) = {/12,/13}, while children{M3) = {M4,M5,M6}. Conversely, each 
child C has a set of managers managers{C). For example, managers{MA) = {M3}. 
For completeness, children of an individual are the empty set, and so are the man­
agers of a root node. 

Each agent A (either a manager or an individual) controls, either direcdy or indi-
recdy, a set of individuals, cluster{A) (i.e., the leaves reachable from agent A). In the 
example above, dw5r^r(M6) = {/12,/13},c/M5rer(M3)-{/7,78,79,/10,/11,/12,/13}, 
and cluster{16) = {76}. Also for each agent A, we define members{A) to be the set of 
all agents reachable from A. In the above example, members{M3) = {M3,M4,M5,M6, 
77,78,79,710,711,712,713}. Sections 4.3 and 4.6 show how agents in such organiza­
tions learn to work with each other. 

4.1 Example 

Figure 4 shows how a group of agents, organized in a hierarchy, can cooperate to 
form a coalition. A task T — {u= 100, rri = 50, rra = 150) is discovered by agent 
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M6. Knowing that members{M6) does not have enough resources to accompHsh 7, 
M6 sends task T to its manager M3. Since members{M3) has enough resources to 
achieve T, M3 uses its local policy to chose the best child to contribute in achieving 
7, which is M5. M3 partially decomposes T into subtask 75 = {us = 50,rrs^\ = 
0,rrs^2 = 100), and asks M5 to allocate a coalition for it. M5 returns a committed 
coalition CT^ = {/10,/11}. The process continues until the whole task T is allocated. 
Finally, M3 integrates all sub-coalitions into CT and sends it back to M6. 

[a] Agent M6 discovers a new task, T [b] Task T is beyond M6's capabilities, 
so it hands T to a higher manager, M3 

[c] Having more global view of the organzation, M3 
decides to decompose T into subtask T5 
and ask MS to allocate a coalition for it. 

[d] MS successfully allocate TS, and sends 
committed coalition back to M3 

^ - > 

[e] M3 decomposes the rest of T into 
subgoal T4 and ask another agent to allocate it. 

The process continues until all T is allocated 

[f] At the end. Task T is achieved. M3 integrates 
all subcoalition into C and sends it to 

the originating agent, M6. 

Fig. 4. An example of organization-based coalition formation. 
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4.2 Architecture 

In the system we developed, managers are concurrently and distributively learning 
their local policies. A local policy determines the order by which a manager decom­
poses a high-level task into subtasks and allocate these subtasks to its children. The 
combination of local policies constitutes a global hierarchical policy of the whole 
system. Figure 5 illustrates a block diagram of a manager's architecture in the sys­
tem. There is a handler for every child. Each handler includes a neural net, which 
approximates the value of choosing the corresponding child to form a sub-coalition 
(for the task at hand). The weights of a neural net are optimized using reinforcement 
learning, as Algorithm 3 shows (described in Section 4.3). To speedup learning using 
neural nets, the state encoder encodes the current state differently for the neural net 
of different children, depending on the amount of resources available at each child. 
More on learning in Section 4.6. 

from manager to manager 

Task 
Decomposer 

Local 
Decision 

Child l^s handler 

state 
Encoder 

Decomposed 
task 

State 
aggregator 

t 
Current State 

Child n's handler 

Decomposed Abstract 
state 

child 1 ' child n 

Fig. 5. A manager architecture. 

The state aggregator aggregates the state of a manager m before it is sent to 
higher managers managers{m). When a higher manager rrih receives the aggregated 
state from its child m, nth will store the aggregated state in the abstract state field 
of child m's handler. The current state of a manager is a combination of the abstract 
states of its children and the current status of the task at hand (i.e. the resources the 
task requires and not yet allocated and the utility to be gained if the remainder of 
the task is completed). The task decomposer stores arriving tasks. When the local 
policy chooses a child to form a sub-coalition, the task decomposer decomposes the 



200 Abdallah and Lesser 

task for this child (storing it in the child's handler). More details of the operation of 
a manager in Section 4.3. 

4.3 Local Decision 

Algorithm 3 describes the decision process used by manager A in the organization 
once it receives a task 7)\. Figure 6 illustrates the algorithm. Though in this figure TA 
comes from another agent, TA can also arrive directly from the environment as well. 
The algorithm works as follows. 

chUd chUd 

Fig. 6. The recursive decision process of a manager. 

LOCM is the list of coalitions committed by manager M for tasks that M received 
previously in the current episode. LOCM is reset at the beginning of each episode. 
M evaluates its current state SM (Section 4.4). M then selects an action a based on 
its policy (Section 4.6). Each action corresponds to a child M/ G children{M). Once 
a child is selected, a subtask 7]- of T is dynamically created based on M/'s state 
(Section 4.5). M then asks M/ to form a sub-coalition capable of accomplishing 7]. 
(The notion Mi.allocateCoalition{Ti) means that the function allocateCoalition is 
called remotely on agent Mi). Mi forms a sub-coalition Cy;. and sends a commitment 
back to M. M updates Cj and learns about this action. M updates its state, including 
the amount of resources to be allocated (URM) and the corresponding utility to be 
gained (UUM)-

M selects the next best child and the process continues as long as the following 
conditions hold (step 3): T requires more resources than currently allocated AND 
M still controls some unallocated resources that are required by 7. At the end, if 
enough resources are allocated to 7, M adds the formed coalition CT to its list of 
commitments LOCM and returns C7. Otherwise T is passed up the hierarchy. Also 
to simplify handling of multiple tasks, we do not allow coalition formation of a task 



Learning Scalable Coalition Formation in an Organizational Context 201 

to be interrupted. This means that if a new task Tnew arrives at manager M while 
M is still forming a coalition for an older task Tou, then M will finish forming the 
coalition for Toid before considering Tnew 

Algorithm 3: allocateCoalition(T) 
INPUT: taskr = {u,rr\,...,rrm) 
OUTPUT: coalition CT = {/i, ...,/|C^|} 

1: let CT = {],uu<^ u, UR <— {rr\, ...,rrm)y stop <— false, AR <r- the amount of available 
resources controlled by M = availableResourcesQ 
= totalResources{M) — Y,celjOCtotalResources{C) 

2: 5" <— encodeState( ww, UR) 
3: while UR>0 AND URAR > 0 AND stop = false do 
4: a <— selectAction( s ) 
5: let Mi be the child corresponding to a. 
6: Ti <r- decomposeTask( {UR, uu) , M/) 
7: CTI <- M/.allocateCoalition( 7]-) 
8: Cj <— CT UCŷ . 
9: UR^UR- total Resources {CTi ),uu<r- uu-uTi, and AR^AR- totalResources{CTi) 

10: r <r- time and communication costs of forming C7;. 
11: if UR = 0 /* 7 does not need more resources */ then 
12: r<r-r + u 
13: end if 
14: 5' <— encodeState( uu, UR) /* the next state */ 
15: learn(^,a,r,y) 
16: s^s' 
17: end while 
18: if C//? > 0 /* task T successfully allocated */ then 
19: LOC ^ LOCUCT /* to exclude agents in CT from next allocations */ 
20: return CT 
21: else 
22: if 3M' e managers{M) /* if not root */ then 
23: M'.allocateCoalition(T) /* pass T up */ 
24: else 
25: fail. 
26: end if 
27: end if 

4.4 State Abstraction 

For a manager M, the function encodeState encodes the current state at manager 
M to produce the current state of members{M). This encoding is then fed to neural 
nets to get action values, as discussed in Section 4.6. Since the higher the manager 
in the hierarchy the exponentially more individuals it controls, state abstraction is 
necessary to achieve scalability. Otherwise, one is effectively centralizing the prob­
lem. In this work, each manager M abstracts the state of its organization, through 
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the state aggregator (Section 4.2). This abstraction involves aggregating the states of 
underlying children recursively as described below. 

Due to the large state space and to facilitate recursive abstraction, we defined 
the state by a set of features. Each state feature of manager M is defined recur­
sively in terms of the features of M's children. For example, let the feature vector 
total Re source s{M) = {tr\,...,trm) be the total amount of resources controlled by 
manager M (where m is the number of different resource types). It can be defined 
recursively as follows: totalResources{M) — Y,cechiidren{M)^otalResources{c). That 
is, the total resources controlled by a manager is thesum of the total resources con­
trolled by its children. For an individual //, totalResources{Ii) = //. 

Some features cannot be defined recursively in a straightforward way. Instead, 
they are defined in terms of other recursive features. For example, let averageResources{M) 
be a feature vector of the average amount of resources controlled by any indi­
vidual in members{M). This feature can be defined as averageReources{M) = 
totalResources{M)Isize{M). totalResources{M) is described above, while size{M) 
is the total number of individuals in an organization and is recursively defined as 
size[M) =-Y.cechildren{M)size{c). 

The recursive features defined above are assumed constant throughout the system 
lifetime. For example, size{M) will return the number of individuals controlled by 
manager M, even if at a specific time none of these individuals is free. Clearly, for 
allocation purposes, one needs more dynamic features that reflect the current state of 
the system. For each static feature, a corresponding dynamic feature is defined pre­
ceded by the keyword avail. For example, the number of individuals not allocated to 
tasks = availSize{M) = size{M) - J,ceLOC{M) size{C), and their aggregated resources 

availTotalResources{M) = total Re source s{M) — ^ total Re source s{C) 
CeLOC{M) 

In our implementation, tasks allocation always starts from the root manager (even 
if a task is received/discovered at a lower manager it is propagated up the hierarchy 
to the root manager). This restriction and the strict tree control architecture sim­
plify communication and maintaining state consistency. The reason is that an agent 
can receive a request to do a task only from its manager. Since there is only one 
manager for each agent, each manager knows the state of its children through the 
request/response messages exchange. For example, manager M initially knows its 
child M\ has 100 of CPU resource. M asks M\ to form a coalition with at least 50 
CPU resource. Mi replies that it formed a coalition of 60 CPU resource (because, for 
example, M\ controls 5 agents of 20 CPU resource each). M now knows that M\ has 
only 40 CPU resource available. 

As a result, when a manager asks a child to form a coalition, the manager knows 
a priori that a capable coalition will be formed. What is not known is how much 
resources will be wasted. In the last example, manager M knows that its child Mi has 
100 units of CPU resource. When M asks M\ to form a sub-coalition with at least 
50 CPU units, M knows that M\ will commit a coalition with 50 or more CPU units, 
but M does not know exactly how much CPU units. For example, ifM\ controls only 
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one agent with 100 CPU units then this agent will be the formed coalition and 50 
extra CPU units might be wasted. 

As usual, nothing comes for free. While abstraction significantly enhances the 
scalability of the system, the price of abstraction is loss of information. A manager 
higher in the hierarchy "sees" fewer details about its organization. This leads to un­
certainty in the manager state, and hence makes the local decision process more 
difficult to optimize. Section 4.7 discusses how the hierarchy affect the quality of 
abstraction. 

4.5 Task Decomposition 

When a manager M selects a child M/ to be asked for resources (for an incoming task 
7), M partially decomposes T to 7] (using heuristics that will be described shordy). 
As described in Section 4.4, a manager M only sees abstract features of its child M/. 
Using this information, M needs to find 7] such that the expected excess of resources 
is minimized. What makes this difficult is that when a manager M decomposes T 
into Ti it does not know the exact state of M/, but only an abstraction of it. 

The partial decomposition heuristic we use, which is oudined in Algorithm 4, is 
to request from each child a multiple, a, of the average available resources it controls; 
.^^ a X ' ' ' ^ ' ^ " ; ; ; ( M 7 ^ ^ ' ^ ^ The intuition behind the heuristic is as follows. If all 
individuals controlled by M/ are identical, the heuristic is optimal. As individuals 
become more diverse in the resources they control, the heuristic still gives a good 
approximate decomposition that may succeed without wasting many resources. 

Let us elaborate at Algorithm 4 in more detail. Because agents can not partici­
pate in more than one coalition, the minimum of the ratio Ij (in the algorithm) over 
all resource types is selected and used for all other resource types. Also to ensure 
progress, a is at least 1. Finally, the utility of the decomposed task is proportional to 
the total of the decomposed resources. 

Algorithm 4: decomposeTask(r,M/) 
INPUT: task T = (M,rri,...,rr^) AND manager M/ 
OUTPUT: task 7]- = {ui,rr^,...,rri^rn) 

1: ARi <— availTotalResources{Mi) = {ari^\,,..,ari^fri) 
2: Zi ^ availsize{Mi) 

4: a^— minj{lj) 
5: a<—max(a, 1) 
6: rri J ^ mm (a x ^ , rrj) 

7: Ui ^ ux -^r-d^ 
^j ''j 

8: return 7] 

For example, let T — {u=\00, rr\ — 50, rr2 — 150), availTotalResources{M/[) = 
(ar4,i = 100,ar4,2 = 100), and availSize{M^) = 10. Using the algorithm below we 
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get a = 5 and hence T4 = {u4 = 50, rr4,i = 50, rr4,2 = 50). Note that asking M4 for 
as much as possible will result in wasted resources. For example, the decomposed 
task 74 = (W4 = 50,rr4 1 = 50,rr4 2 = 100) can only be satisfied if all individuals 
controlled by M4 are allocated, resulting in 50 units of resource type 1 being wasted. 

Note that the above heuristic algorithm is not optimal. In the previous example, 
if the whole organization only has 150 units of resource type 2 available, then the 
decomposed task T^ may be better than T4. Because of that, we allow each manager 
to select the same child more than once to fine tune the decomposition at the expense 
of more communication and time cost. 

4.6 Learning 

A key factor in the performance of our system is how a manager selects its actions 
(function select Act ion in Algorithm 3). In particular, in what order a manager should 
ask each child for its contribution. We modeled this as a Markov Decision Process, 
MDP, then used reinforcement learning (RL) techniques to learn a good local policy 
for each manager. This section briefly describes the MDP model and the RL algo­
rithm this work uses to learn the manager's policy. The section also describes how 
this work uses neural nets in conjunction with RL to cope with large state space. 
Before getting into the details of the model, some terms need to be defined: 

System/Environment. These terms are used interchangeably to refer to anything out­
side the agent. A state of manager M (when it receives task T) consists of the 
abstract states of each child M/ G children{M), the resources required by T and 
its utility. 

Action. Whatever an agent can do is an action. In a manager, there is an action 
corresponding to each child. 

Reward. A real number indicating the quality of the last executed action. In other 
words, the agent executes an action and then receives its immediate reward (util­
ity) from the system. From Algorithm 3, intermediate rewards are small negative 
rewards to reflect the communication and the processing costs of each additional 
step spent forming the coalition. Once a manager M successfully allocates a 
coalition to task 7, it gains a reward equal to 7's utility. Note that we can im­
plicitly indicate our preferences by modifying the reward function. For example, 
in [8] the author prefers coalitions of smaller size. This can be achieved by ad­
justing the reward function accordingly (e.g., dividing the utility gained by the 
size of the coalition formed). Note that even if 7 is a subtask of another task T', 
the rewards received by M are independent of whether the coalition formation 
for T' will succeed or not. This recursive optimality speeds up learning, while 
not affecting the quality of the formed coalitions. 

State. Ideally, the state of the system at a certain time should include every bit of 
detail about this system. However, for all practical purposes, only part of the 
system that would affect decision is important. If the state of an agent does not 
capture enough details of the real world, the agent may fail to learn an optimal 
policy and the best it can do is to learn a near optimal policy. 
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Policy. The policy K{S) is a table that specifies for every state the action that should 
be taken. The goal of a learning algorithm is to learn an optimal policy 7i* {s), i.e., 
a policy that specifies for every state the best action such that the total reward 
gained (by the agent) is maximized. 

Decision Cycle. When an agent starts in a given state s, executes an action a, re­
ceives a reward r, and moves to the next state s\ then this completes a decision 
cycle. This decision cycle is defined by the tuple (5, a, r, s^). 

The model used in this work is Markov Decision Process, or MDP. In this model, 
the agent starts in a certain state s. The agent decides which action to execute. Upon 
executing an action a, the agent receives a reward r and the system moves to an­
other state s'. The process continues until the system reaches a terminal state (if none 
exists, the process continues). An MDP model is completely defined by four compo­
nents: {S,A,P,R), where 

• 5 is the set of system states. 
• A is the set of actions available for the agent to choose from. 
• P{s,a,s') is a transition probability function, i.e., the probability that the system 

will transit from state s to state 5' if the agent executes action a. The uncertainty 
in coalition formation is due to the abstraction and the fact that a child might 
have allocated a task that its parent does not know about. Because it is difficult to 
analytically compute such transition probability, we used a model free learning 
algorithm as we discuss shordy. 

• R{s,a,s') is the expected reward function, if the system is in state s, the agent 
applies action a, and the system's next state is s' 

In the field of operations research, it is assumed that all four components of the 
MDP are known and the optimal policy can be found using dynamic programming 
techniques [10]. However, in real domains, the P and R components are usually un­
known. These two components together characterize the dynamics of the system in 
which the agent operates. They are called the environment model. 

Reinforcement learning algorithms can be used in these cases as they make no 
assumptions regarding the environment model, and hence they are model free. These 
algorithms use decision cycle tuples to approximate the P and R functions. Deci­
sion cycle tuples can be obtained by executing actions in the system and receiving 
rewards, i.e., an agent observes its current state s and executes the best action a ac­
cording to its policy, then observes the resulting reward r and next state s\ These 
four values constitute a decision cycle tuple. 

This work uses a well-known algorithm, Q-learn[lO] to automatically find the 
optimal policy. The main idea of the original algorithm is as follows. For every state 
and action pair {s,a), a real value Q{s,a) is stored. These values are initialized ran­
domly (or in any arbitrary way). They are then updated using the following equation 
(also known as Bellman's Equation): 

Q{s,a) ^ Q{s,a) -i-a[r-hymdxQ{s\a') - Q{s,a)] 
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Where {s,a,r,s^) is a decision cycle tuple; a and y are learning parameters and 
are called learning rate and discounting factor respectively. As the agent moves from 
state to state, executing actions and receiving rewards, the values stored in Q con­
verges and can be used to determine the optimal policy. Q-leaming learns in an 
incremental and interactive manner; as an agent gains more experience, its perfor­
mance improves. This is important in domains containing huge number of states, 
many of which will not be visited. The best action to perform in a given state s is 
a* •= n*{s) = argmaXaQ{s,a). The details explaining the intuition behind the algo­
rithm and a proof of its correctness is beyond the scope of this chapter and can be 
found in [10]. We used the Q-leaming algorithm with neural nets to approximate 
action values. 

It should be noted that for this algorithm (and any other Reinforcement Learning 
algorithm) to work correctly, the agent needs to try all actions at every state "a large 
enough" number of times. One way to achieve this is to select an action randomly 
e% of the time, and in the remaining 1 - e% pick the best action. This simple algo­
rithm is called E-greedy exploration algorithm [10] and e is called the exploration 
rate. Typically, e is initially large (to allow the agent to try more actions) and then 
decreases over time. We use a decaying exploration rate so that agents explore less 
as they gain more experience. We also tried using eligibility tracing, but the learning 
algorithm often diverged so this approach was dropped. 

Neural Nets 

Since the state of a manager includes the amount of available resources of each of 
its children and the amount of recourses required by the incoming task, the state 
space is very large. This prohibits the use of traditional Q-leaming algorithm which 
uses a table to store the value of every state and action pair. Altematively, functional 
approximators can be used. The idea here is to use a parametrized function instead 
of a table to approximate the values of actions (i.e. approximates Q{s,a)), In this 
case, Q-leaming algorithm is used to update the parameters of the function, which 
implicitly updates the value of the action. 

Here we use neural nets as the functional approximator. Q-leaming is used to up­
date the weights of the neural net. The details are beyond the scope of this document 
but can be found in [10]. A separate neural net is used to approximate the value of 
each action/child as shown in Figure 5. This uses more memory space (because of 
storing more neural nets), but provides better approximation as the weights of each 
neural net can be better fitted to the corresponding action/child. 

We explored several techniques to speed up the leaming further. One technique 
involved minimizing the input fed to each neural net. The key observation is that the 
value of choosing a child M/ depends mainly on M/'s state, and to a lesser extent on 
the other children's states. 

4.7 Organization Structure 

In this work, the underlying organization can be viewed as a search tree. Our dis­
tributed algorithm searches the same search tree several times for each task and for 
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each episode. Each time, the search has a different start state (where and when the 
task is discovered) and different goal state (the set of individuals — leaves — that 
form the coalition.) 

To optimize performance, not only does one need to learn a good search mecha­
nism, as we do here, but also to find an organization that for a specific environment 
model and agent population yields the best performance. The interesting question 
is whether by modifying the search tree can the search mechanism perform better. 
The closest analogue in classical AI is the use of macro operators, which adds edges 
to the search tree to speedup the search. In our case there is more flexibility, as the 
search tree can be modified in whatever way. 

While in this work we do not tackle the hard problem of optimizing the organi­
zation, we verify the effect of the underlying organization on the performance of the 
overall system. Our experiments verify this by testing different organization struc­
tures of the same agent population and same tasks distribution, as described in Sec­
tion 5. 

5 Experiments and Results 

5.1 Setup 

In our experiments we compare three possible policies: random, greedy, and learn­
ing. The random policy just picks a child at random. The greedy policy selects the 
child Mi with the highest preference value /?/ = Y!k=\ f^^f^{<^n,k^ffk)^ which measures 
how much resources Mi can contribute to the incoming task. For example, let the 
incoming task T — {u= 100, rr\ = 50, rr2 = 150) and let manager M has two possi­
ble children Mi and M2 where availTotalResources{M\) = {cr\^\ = 200,cr\^2 = 0), 
availTotalResources{M2) - (cr2,i = 0,cr2,2 = 200), p\ = 50 and p2 = 150. Thus M 
will select M2. 

The experiments try to evaluate the effect of both the underlying organization 
and learning the local policy on the system's performance. To do so, we compared 
the performance of the same agent population under five organizations and the three 
local policies described above. In the tested agent population, agents control two 
types of resources, and the fall into 6 types of agents: 

Type A controls {crA^i = 2,crA,2 = 2) resources 
Type B controls {crB^i = lO,crB^2 = 10) resources 
Type C controls (crc,i = 0,crc,2 = 30) resources 
Type D controls {crp,! = l,crz),2 = 10) resources 
Type E controls {crE^i = 20,crE,2 = 2) resources 
Type F controls (cr/r 1 = S,crf^2 = 0) resources 

These classes represent different specializations among agents. Four of the stud­
ied organizations are shown in Figure 7. Organization HOMOGEN is homogeneous. 
Agents of each type are clustered together, then similar types (e.g., A and B) are clus­
tered together. Organization SEMI — HOMOG is semi-homogeneous. Each couple 
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of agents of similar types are clustered together, then similar clusters are clustered 
together. Organization SHORT is similar to HOMOGEN, but one level of the hierar­
chy is omitted. Finally, organization RANDOM has the same "structure" of SHORT, 
but individual agents are assigned randomly to each cluster. 

manager 

individual type A 

individual type B 

individual type C 

individual type D 

O 
A 
A 
D 
H 

HOMOGEN SEMI-HOMOG 

SHORT RANDOM 

Fig. 7. Different Organization Structures. 

Because the above four organizations (unlike the fifth organization described be­
low) involve distributed decision making, we refer to the three local policies as: dis­
tributed learned policy (Distrib-Leam), distributed random policy (Distrib-Random), 
and distributed greedy policy (Distrib-Greedy), whenever we compare performance 
against the fifth organization. 

The fifth organization is the centralized organization, CENTRALIZED, where 
there is only one manager connected to every other agent. This organization is tested 
using the random policy (Center-Random) and the greedy policy (Center-Greedy). 
The learned policy is not tested for this organization because the state of the cen­
tralized manager is exponential in the number of individuals, which is 40 in our 
experiments. We use this organization as a base line for comparison. 

Results for every organization/technique combination were computed over 10 
simulation runs. Each simulation run consisted of 30,000 episodes. Seven tasks ar­
rive at every episode and are randomly picked from a bag of tasks. Tasks in the bag 
are generated randomly such that each task requires between 4 and 10 agents to be 
accomplished. Each task has an associated payoff, which is 1750 on average (it de­
pends on the amount of resources each task requests). At any episode, the resources 
required by arriving tasks exceed the resources available to the system. The cost of 
every message (requesting a coalition or responding with a formed coalition) costs 
-1. Each Decision cycle (i.e. a time-step in forming a coalition) costs -1. 
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Our experiments focused only on 40 individuals and 10 managers so we can 
easily hand code different organization structures and study their effect. However, 
to verify the scalability of our approach, we tested it in a population of 90 agents 
and 13 managers. Agents were organized in a way similar to organization H and 
were randomly generated (using 9 distributions to represent 9 different classes of 
agents). Tasks were also randomly generated (from two different distributions). We 
plan further experiments on even larger populations and on the use of clustering 
techniques to automatically generate different organizations. 

5.2 Results 

Figure 8 shows the average utility for different organizations and policies when 
things have stabilized (i.e. learned policy converged). As expected, Center-Random 
performed worst. Distrib-Random performed better than Center-Random.^ Center-
Greedy is better than both. Our approach, Distrib-Leam, outperformed all other 
policies for all organization structures, except when using a random organization 
structure. 

Figure 9 illustrates how the performance of our system improves as agents gain 
more experience (i.e., witness more episodes). Interestingly, Distrib-Greedy, per­
formed worse than Distrib-Random and Distrib-Leam in all organizations except 
RANDOM, where it performed better than both. We think this is due to the fact that 
the greedy policy is based on a heuristic, which might perform best in some contexts 
and worst in others. That is also why the greedy policy has the highest deviation. 
In our experiments with larger agent population (90 agents), Distrib-Leam was bet­
ter than other policies, achieving 35% more utility than Center-Random and at least 
20% better than Distrib-Random and Distrib-Greedy. 

More importantly, Distrib-Leam is more stable than other approaches as Fig­
ure 10 shows. The standard deviation (of achieved utility) using Center-Greedy is 
70% worse than Distrib-Leam with SE organization. Center-Random is 30% worse 
than Distrib-Leam. Also Distrib-Greedy was the worst for all organizations except 
RANDOM. We had similar results with the larger agent population. Distrib-Leam 
had the least standard deviation, which was around one third that of Distrib-Greedy. 

While it is expected that our approach performs better than distributed random 
and greedy policies, one might expect centralized policies to perform better than our 
approach, due to the inaccuracies (incurred by abstraction) and the limitations on 
managers' choices (imposed by the organization). We believe the reason our system 
performed better is the underlying organization, which implicitly encodes domain 
knowledge. In other words, limiting the actions of a manager is actually a good thing 
if these actions are the best actions this manager can take. This is also why a bad 
organization may lower performance. The underlying organization also affects the 
abstraction quality. A random organization contains more information, hence it will 
be abstracted poorly (the entropy principle). 

^ We believe this is due to the goal decomposition component of the organization, which 
encodes part of the domain knowledge. 
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Fig. 8. Average utility for random, greedy and learned policies and for different organizations. 

Fig. 9. Learning curve. 

Figure 11 compares the average number of exchanged messages per task. As 
expected this measure increases as the organization hierarchy gets taller. Central­
ized approaches exchange fewer messages. Still, learning the local decision re­
duces the number of exchanged messages. Finally, Figure 12 shows the average 
resources wasted. Center-Greedy wasted 20% more resources than Distrib-Leam, 
while Center-Random wasted 40% more. We got similar results for the larger agent 
population. 
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Fig. 10. Utility standard deviation for random, greedy and learned policies and for different 
organizations. 
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Fig. 11. Messages average for random, greedy and learned policies and for different organiza­
tions. 

6 Related work 

In [8], the authors presented a distributed algorithm for solving the coalition for­
mation problem. The algorithm requires exponential time but is optimal. It neither 
used learning nor an underlying organization. Our algorithm is an approximation 
algorithm that returns a solution in polynomial time. 
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Fig. 12. Average percentage of wasted resources for random, greedy and learned policies and 
for different organizations. 

The work in [6] introduced an anytime coalition structure generation algorithm 
(the term coalition structure refers to the solution of the coalition formation prob­
lem). As in [8], the work did not use any organization for guiding the coalition for­
mation search and assumed a black box function that given a feasible solution returns 
the value of such solution, while we evaluate the solution based on the total utility of 
the allocated tasks. 

The work in [9] used a multi-leveled learning scheme to form coalitions. Both 
reinforcement learning and case based reasoning were used. Unlike our work, they 
do not use an underlying organization, which limits the scalability of their approach 
(their experiments were limited to 4 agents). 

Though some extensions to the original contract net protocol [12] proposed the 
use of an underlying organization, none of these extensions (to our knowledge) pro­
vided a formal model of such an organization, nor evaluated the performance for 
different organizations, unlike our work here. 

In the brokering research area [4] not enough attention is given to scalability 
or coalition formation, the main focus of our work. In some sense, our use of an 
underlying organization can be viewed as a hierarchy of brokering agents. Integrating 
brokering techniques into our framework is an interesting future work direction. 

The coalition formation problem can be mapped to a multi-unit combinatorial 
auction. However, none of the algorithms developed for combinatorial auctions [7] 
make use of stable knowledge, which remains relatively unchanged throughout the 
system lifetime. This includes agents' capabilities (e.g., same bids repeat for consec­
utive auctions) and task patterns (e.g., consecutive auctions follow some statistical 
model). We on the other hand try to exploit this knowledge implicitly using an under­
lying organization and learning the local decision of each agent in the organization. 
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The work in [3] tried to provide a unified framework for coordination in MAS. 
In this framework each agent follows a set of behaviors that differ in their level of 
abstraction. As behaviors become more and more abstract, an (implicit) underlying 
organization becomes more and more apparent. The goal of such an organization is 
to optimize the immediate individual goals. In our work, the goal of the organiza­
tion is to optimize the coalition formation process, which indirectly optimizes the 
performance of the MAS as a whole. 

In [5], the authors proposed and analyzed a simplified and restricted model of 
an organization, which takes only processing and communication costs into account. 
While they tried also to analyze the performance of different organizations, unlike 
our work there was no notion of resources, individual capabilities, coalition capabil­
ities, task requirements, coalition formation, and learning. 

In our approach a group of agents co-learn to work together in an organization. 
This can be viewed as distributed learning of a hierarchical policy that targets recur­
sive optimality [1]. However, none of the work in hierarchical learning area (HRL) 
introduced the concepts of quantitative/dynamic state abstraction and task decompo­
sition. We defined these concepts to decouple agents' local decision problems while 
minimizing communication, and hence achieve scalability. Our work also quanti­
tatively evaluates how different action hierarchies affect the learning performance. 
Figure 13 illustrates the relationship between our work and HRL. HRL learns a pol­
icy for the whole action hierarchy in a single agent. In our approach each agent 
concurrently learn a sub-policy. Collectively, these sub-policies constitute a global 
hierarchical policy, but learning of sub-policies is distributed. 

Fig. 13. Relationship between Hierarchical Reinforcement Learning and our approach. 
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7 Conclusions and Future work 

In this work we defined a generic problem solving framework using an underlying 
organization, and applied it to the coalition formation problem. We provided an al­
gorithm for the local decision to be made by each agent, given state abstractions 
from other agents and its decomposed task. We used Q-leaming with neural nets 
as functional approximators to improve the local decision. Our initial results show 
that our approach outperformed both random and greedy policies for most of the or­
ganizations we studied. It achieved higher utility and more stability with a smaller 
percentage of wasted resources and fewer exchanged messages. The results also ver­
ify the scalability of our approach as it still outperforms the other approaches we 
studied for larger systems. 

In future, we aim to study a wider variety of organizations for different types 
of environments. We will also investigate further our abstraction and decomposition 
schemes, as we believe better schemes can considerably improve the learned policy 
performance. We also plan to study the optimization of the underlying organization 
and how this interacts with optimizing the hierarchical policy. 
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Summary. This paper proposes a new approach to multi-agent systems leveraging from re­
cent advances in networking and reinforcement learning to scale up teamwork based on joint 
intentions. In this approach, teamwork is subsumed by the coordination of learning agents. 
The intuition behind this approach is that successful coordination at the global level gener­
ates opportunities for teamwork interactions at the local level and vice versa. This unique 
approach scales up model-based teamwork theory with an adaptive approach to coordination. 
Some preliminary results are reported using a novel coordination evaluation. 

1 Introduction 

Open environments such as Peer-to-Peer (P2P) and wireless or Mobile AdHoc 
Networks (MANET) provide new challenges to communication-based coordina­
tion algorithms such SiS joint intentions[l3] as well as the opportunity to scale-up. 
Our framework is based on the proxy architecture of Machinetta[17] where proxy 
agents perform the domain-independent coordination task on behalf of real, domain-
dependent agents. This framework is extended with a coordination mechanism of 
individual actions based on reinforcement learning. This adaptive proxy agent ar­
chitecture is illustrated in Figure 1. In this approach, local teamwork outcomes pro­
vide the feedback for learning the coordination task on a larger scale. The teamwork 
theory of joint intentions and its associated problems in open environments are pre­
sented first and then our general approach, OpenMAS, is introduced with illustration 
from the prey/predator example[3]. An implementation addressing some of the issues 
is presented followed by conclusions for future work. 

2 Joint intentions and Open Environments 

Joint intentions[5, 13] form the cornerstone of teamwork theory of BDI (Belief, De­
sire, Intention) agents. It differentiates joint actions from individual actions by the 
presence of a common internal state (beliefs) and the joint commitment of achieving 
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Other 
Agents 

Fig. 1. Adaptive proxy agent architecture 

a goal. It is based on the communication of critical information among team mem­
bers. However, the mutual responsiveness expected of team members at a local level 
is difficult to achieve on a larger scale. Open environments are characterized by their 
dynamic nature and the heterogeneity of the agents as well as asynchronous and un­
reliable communication on a large scale. The problems addressed can be categorized 
as follows: team formation, role allocation, synchronization of beliefs, communica­
tion trade-offs, and information sharing. 

1. Team Formation. An open environment gives the opportunity to find teammates 
appropriate for a task instead of relying on a fixed group of agents. What is the 
best way to find teammates? When is the best time to find teammates? How to 
decide whether to join a team? In open environments, peers form "groups" by 
similarity of individual interests. Likewise, similarity of individual intentions is a 
necessary stepping stone for team formation in open environments. An intention 
is defined here[5] as the decision to do something in order to achieve a goal and 
can be construed as a partial plan. 

2. Role Allocation. While direct point-to-point communication with any node can 
be expensive and uncertain, access to neighbors is readily available in open envi­
ronments. P2P middleware, such as JXTA (Juxtapose)[l], provides the function­
ality needed to communicate reliably and cheaply with neighbors. In MANET, 
the possibility of disconnecting the network is another constraint in accepting a 
role requiring a change in location. Figure 2 describe the connection role that 
peers play in communication in MANET. In open environments, multiple teams 
are involved. How to adjust the connectivity role of the agents so that each team 
can accomplish its goals most effectively? 

3. Synchronization of Beliefs. The theory of joint commitments is based on the 
ability to synchronize beliefs regarding "who is doing what". Teamwork breaks 
down when roles do not match expected beliefs leading to coordinated attack 
dilemmas[14]. How to adjust gracefully to uncertainties in communication? 
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4. Communication Selectivity. The tradeoffs involve the robustness that redun­
dancy of messages can provide in open environments versus the costs of com­
munication to the network. When reliable communication cannot be assumed, 
selective communication of critical information might be detrimental to the co­
ordination task. 

5. Information Sharing. Sharing information is critical to the formation of a com­
mon internal state. The redundancy of messages from different sources provides 
corroborative evidence to support the information transmitted while conflicts 
undermine certainty. However, a problem in open systems is the unnecessary 
replication of messages from the same source through the network leading to 
false corroborative evidence. 

Synchronization of beliefs, communication selectivity and information sharing are 
areas that are complicated by open environments, while team formation as well as 
role allocation are the problems we are interested in addressing given these compli­
cating factors. 

Fig. 2. Multi-hop routing in a MANET 

3 OpenMAS Approach 

Our proactive approach consists of leveraging from the belief framework of cognitive 
agents at the local level but endowing the agents with the adaptative capabilities of 
reinforcement learners as an additional coordination mechanism at the global level 
where communication is unsure and unreliable. The objective is to find a contin­
uum between large-scale coordination and local teamwork. The overarching issues 
addressed in support of this objective are (1) how to integrate general models of co­
operation with reinforcement learning in distributed, open environments (2) what are 
good evaluation measures for the propagation of beliefs to heterogeneous agents and 
(3) how to integrate multiple teams. 

Methodology 

Through the propagation of beliefs, the agents have some knowledge of the global 
situation, albeit imperfect and decaying with time. This capability relaxes the in-
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validation of the Markov property for multi-agent reinforcement learning systems. 
Instead of committing to a non-local role, the agents just commit to the next individ­
ual step. This is a least-commitment approach that addresses the problems outlined 
above of teamwork in open environments. Local environmental beliefs on the other 
hand trigger a role allocation mechanism among neighbors sharing the same beliefs. 
Role allocation of mutually exclusive tasks among agents can be modeled with dis­
tributed resource allocation algorithms based on constraint satisfaction[24]. The joint 
actions generated are preferred over the individual actions generated by the coordi­
nation learning mechanism. Similarities between joint actions and individual actions 
produce the terminal rewards needed for the learning algorithm. In this approach, 
there is a tight integration between the local level of teamwork and the global level 
of coordination. The overall approach is described in Algorithm 5. Figure 3 illus­
trates the approach in the prey/predator example. 

Algorithm 5: Intention/Action loop 
INPUT: intentions 
OPENMAS-interpreter: 
do 

<information, intention> •«— receive-information() 
if similar-intentions(intention) 
accept-information() 
update-current-state() 

end if 
state-estimation() 
take-next-step 0 
reinforce-learn() 
propagate <next-step, intentions> 

forever 

The information received includes information communicated from peers and/or 
perceived local information from the environment 

The environment of agents acting under uncertainty can be conveniently mod­
eled as a POMDP (Partially-observable Markov Decision Process). POMDP can be 
reformulated as continuous-space Markov decision processes (MDPs) representing 
belief states[ 10] and solved using an approximation technique. When propagating lo­
cal environmental beliefs, the redundancy of messages reinforces current state beliefs 
through corroborative evidence while discrediting others. The most likely state of the 
global situation is then modeled as an MDP and the action to take determined by a 
stochastic policy approximated by a policy gradient method [19]. Through commu­
nication, the agents are able to construct a global, albeit imperfect, view of the world 
validating their assumption of the Markov property for independent autonomous 
decision-making based on trial and error. However, even assuming the same global 
knowledge of the world and optimization algorithm, coordination imposes the addi­
tional constraint that the agents choose the action leading to pareto optimality. For a 
deterministic policy, this constraint can be met through conventions or through the 
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•• Role Allocation 

• — • Propagation of Information 

• ^ Perception 

Fig. 3. Prey/predator example 
The agents propagate changes of position and changes in the prey's status to their neighbors 
recursively according to a time-to-live (TTL) parameter. The TTL parameter ensures that a 
message does not bounce around needlessly when the destination cannot be found and can also 
be used to disseminate information within a certain range. Role allocation strategies resolve 
local conflicts. 

transmission of knowledge. Another way to meet this coordination constraint is to 
learn a stochastic policy that approximates a mixed strategy. 

Role allocation endows the agents with a goal-driven behavior. In addition to ac­
complishing their roles and searching for possible role instantiations, agents in open 
environments have the additional implicit task of maintaining the connectivity of the 
network. It is necessary to balance those sometimes conflicting goals. The capabil­
ity to assume multiple roles is a characteristic of intelligent and flexible behavior. 
Instead of modeling each goal separately in an MDP given the state of the envi­
ronment, the goals themselves, as formulated by a role allocation strategy for each 
target, are part of the environment. This soft-subsumption architecture for multiple 
roles is illustrated in Figure 4. 

4 Problem Modeling 

The world is modeled as the problem space: 

where 

• S is the believed perceived local state of the world. 

• 5' is the believed global state of the world through propagation of information. 
A is the set of actions. 
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Fig. 4. Soft-subsumption architecture for multiple roles 

• T is the set of transition probabilities 

5 x A x 5 - > [0,1] 

• /?is the set of roles, 

and 

5' X A; -^ 9t 

where 

• Ai is the action determined to achieve a role. 
• Aj is the action determined by coordination in the believed state space S', 

A reward r is obtained if A/ = Aj. 
The goal of each agent is to find a policy n maximizing the sum of expected 

rewards such that: 

s'es' 
where 5' is the next state following the action prescribed by 71(5), r is the reward 

in state s, and y is the discount factor weighting the importance of future rewards. 

5 An Example 

An prototype evaluation of the OpenMAS general methodology has been con­
ducted with some simplifying assumptions with the RePast simulation tool[6]. Fur­
ther experiments are planned for a large-scale MANET simulation in ns-2[2] using 
P2PS[22], a P2P agent discovery infrastructure designed to work in ns-2 simulations. 
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5.1 Prey/Predator Example 

The prey/predator pursuit game is a canonical example in the teamwork literature[3, 
11] because one individual predator alone cannot accomplish the task of capturing a 
prey. Practical applications of the prey/predator pursuit game include, for example, 
unmarmed ground/air vehicles target acquisition, distributed sensor networks for sit­
uation awareness, and rescue operations. The original problem can be extended to 
multiple teams by including more than one prey. Prey/predators can sense each other 
if they are in proximity but do not otherwise communicate. Predators communicate 
with other predators individually or can broadcast messages through their neighbors. 
Four predators are needed to capture a prey by filling out four different roles: sur­
round the prey to the north, south, east and west. Those roles are independent of 
each other and can be started at any time obviating the need for scheduling. The only 
requirement is that they have to terminate at the same time either successfully when 
a capture occurs or unsuccessfully if no team can be formed. The predator agents are 
homogeneous and can assume any role but heterogeneity can be introduced by re­
stricting the role(s) an agent can assume. The prey and predators move concurrently 
and possibly asynchronously at different time steps. In addition to the four orthog­
onal navigational steps, the agents can opt to stay in place. In case of collision, the 
agents are held back to their previous position. Several escape strategies are possi­
ble for the prey. A linear strategy, i.e. move away in the same random direction, has 
been shown to be an effective strategy while a greedy strategy, i.e. move furthest 
away from the closest predator, can lead to capture situations[9]. 

The preference or utility w/y of predator agent / for a role j is inversely propor­
tional to the Manhattan distance d required to achieve the role. Other factors such 
as fatigue, speed, resources, etc. can affect the preference for a role and are grouped 
under a capability assessment C[16]. 

w / j ^ - x C / y (1) 
d 

The predators move in the direction of their target when assigned a role or ex­
plore the space according to a pre-defined strategy. The decision space for the role 
allocation of P predators and p preys is 0{p^) where T is the number of teams of 
size t that can be formed with P predators- .̂ This problem belongs to the most dif­
ficult class of problems for constraint satisfaction in multi-agent systems[15] due to 
the dynamic nature of the environment and the mutually-exclusive property of role 
allocation. 

5.2 Role Allocation Strategy 

An optimization algorithm can be used in parallel fashion by each agent based on 
sensed and communicated information from the other agents in the group to au­
tonomously determine which role to assume. It is assumed that the other agents 

3 P\ 
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reach the same conclusions because they use the same optimization algorithm[8]. 
The Hungarian algorithm[12] (see below) is used as the optimization method by 
each agent. Information necessary to determine the payoff of each role needs to be 
communicated. Therefore, it is the current local state within the perception range, 
or augmented with second hand information, that is communicated to the neighbors 
instead of the intended role in a trade-off between performance and privacy. 

This algorithm, also known as the bipartite weighted matching algorithm, solves 
constraint optimization problems such as the job assignment problem in polyno­
mial time. The implementation of this algorithm follows Munkres' assignment 
algorithm[4]. The algorithm is run over a utility matrix of roles x agents. The maxi­
mization of utilities is transformed to a cost minimization problem: 

cost = argmax^^w/j 

Minimize^{cost — utj) 

The algorithm consists of transforming the matrix into equivalent matrices until 
the solution can be read off as independent elements of an auxiliary matrix. While 
additional rows and columns with maximum value can be added to square the matrix, 
the optimality is no longer guaranteed if the problem is over-constrained, i.e. there 
are more roles to be filled than agents. A simple example is illustrated in Table 1. 

Table 1. A 4 x 4 assignment problem 

The optimal assignment is {r\,^3),(^2,^2), (o?-̂ 4)) {f4}^\) 

r\ 
ri 

0 
H 

X\ 

0.79 
0.29 
0.33 
0.92 

X2 

0.28 
0.51 
0.03 
0.14 

-̂ 3 

1.00 
0.83 
0.47 
0.82 

;c4 

0.89 
0.38 
0.91 
0.80 

When multiple teams are involved, an agent chooses the role in the team that 
has the maximum sum of utilities rather than maximizing the sum of utilities across 
teams, thereby ensuring team formation. 

5.3 Policy Search 

In reinforcement learning, there are two ways to search the state space of a problem. 
We can search the policy space which is a mapping from current state to actions 
or we can search the value space which is a mapping from possible states to their 
evaluation. Because there are only a limited number of actions that can be taken from 
a state, it is usually faster to search the policy space. Both methods however, should 
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converge to the optimal greedy strategy whether by taking the best state-action value 
or the action that leads to the best valued state as the expected sum of rewards. 

A function approximator generalizes to large state space. For gradient methods, 
it was shown that a small change in the parameter space can lead to large changes in 
the output space when searching for the value function while policy search where the 
output are action probabilities is assured locally optimal convergence[19]. Learning 
a stochastic policy has some advantages in dynamic and uncertain environments es­
pecially in pursuit games where the opponent might learn to escape a deterministic 
adversary. 

5.4 Coordination Evaluation 

Because coordination is an emergent property of interactive systems, it can only be 
measured indirectly through the performance of the agents in accomplishing a task 
where a task is decomposed in a number of goals to achieve. The more complex the 
task, the higher the number of goals needed to be achieved. While performance is 
ultimately defined in domain-dependent terms, there are some common characteris­
tics. Performance can be measured either as the number of steps taken to reach the 
goal, i.e. the time complexity of the task, or as the amount of resources required. 
An alternative evaluation for coordination is the absence of failures or negative in­
teractions such as collisions, lost messages, or fragmentation of the network when 
no messages are received. Figure 5 illustrates a taxonomy of coordination solution 
metrics. To show the scalability of a solution, the evaluation must vary linearly with 
the complexity of the task[7]. 

Coordination 
Solution 
Quality 

I I 
Performance Failures 

1 I I I I 
Goals, Resources Collisions, Unused 
Steps I Conflicts, Resources 

I ' I Fragmentations I 

Number of Number of Lost 
Messages Agents Messages 

Fig. 5. Taxonomy of coordination solution quality for communicating agents 

A combined coordination quality measure is defined as the harmonic mean of 
goals achieved g, net resources expanded r and collisions c as follows: 
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#PreysCaptur€d 
#Preys 

# Predators 
log2{#Messages Received) + ̂ Predators 

^Predators 
c = 

^Collisions + ̂ Predators (4) 

3grc 
coordination = (5) 

gr + rc + eg 
Although the message size required by the different predator strategies was 

roughly equivalent, further work should measure the number of information bits per 
message [20]. 

5.5 Experimental Evaluation 

In the prey/predator example, actions leading to collisions with other predators are 
negatively reinforced while actions leading to the capture of the prey are rewarded. 
Experiments were conducted on a 20x20 grid with 2 preys and a variable number 
of predators moving concurrently but synchronously at each time steps. The preys 
move to a random adjacent free cell 70% of the time except edge cells to avoid 
toroidal world ambiguities. The predators communicate their location and sensory 
information about the preys to their neighbors according to pre-defined communica­
tion and perception range. The probability of receiving a message vary according to 
a normal distribution based on (Euclidean) distance and the communication range of 
each agent. The current state is represented by the one-dimensional locations of the 
preys, the current location of the agent, and the location of the closest other three 
predators known. A feed-forward neural net was implemented with 54 binary input 
nodes, 7 hidden nodes and 5 output nodes to translate to the four possible orthogonal 
directions to move and an option to stay in place. Each output node ot represents the 
probability that the direction will lead to success. The sigmoid transfer function was 
used for all internal and output nodes. 

The agents learn to coordinate through trial and error in simulation using tempo­
ral difference learning between the value of the current direction in the output vector 
and the value of the direction in the last output vector. They train following the opti­
mized role allocation strategy (see 5.2) when available as their behavior policy. The 
direction to take is then conventionally derived according to the differences between 
the destination of the role assignment and the current location of the agent along the 
X-axis first and then the y-axis. When no role allocation is found, a softmax policy 
is followed where the direction / is selected stochastically according to the probabil­
ity P(/) = ^ ^ . A reward of 1.0 is received when a goal is reached or when a role 
allocation was found and a penalty of lE-6 is received when colliding. 

In the performance phase, the neural net from the most successful agent is se­
lected. Table 2 summarizes the different parameters used. Figure 6 shows coordina­
tion quality results averaged over 1000 runs comparing different policies followed 
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when restricting the optimized role allocation strategy above a certain utility thresh­
old comprising about 5% of the interactions. There is a significant difference be­
tween the results obtained following the greedy policy learned through reinforce­
ment learning and a random policy (t-test p-values were 2E-5, 0.0001, 0.004 for 7, 
8 and 9 predators respectively). The memory-based approach consists of moving 
to an adjacent cell that was not visited in the last 7 steps. Interestingly, although 
memory-based exploration performs better than random walk for a single reinforce­
ment learner agent[21], they rate worse for multi-agent coordination. Those experi­
ments have shown that learning from past experiences can produce a viable behav­
ioral policy on a larger scale that is conducive to teamwork on a local scale and 
that can produce domain-dependent coordination rules. Further application of state 
estimation techniques should enhance this approach. 

Table 2. Parameters 
Input nodes 54 

Hidden nodes 7 
Output nodes 5 

Learning rate a* 0.3 
Penalty lE-6 
Reward 1.0 

Role utility threshold 3.0 
Communication range 7 

Perception range 2 
Cycles 1000 
Tmax 3000 

*decreasing with time t at the rate T—̂  
1+ 7 

6 Related Work 

The dissemination of information enables agents to obtain some global, though im­
perfect, knowledge of the world. This capability is taken into account in scaling up 
teamwork approaches based on communication and our approach also takes this ca­
pability into account to enhance multi-agent learning. Our approach is different from 
the large-scale coordination of Machinetta proxies[ 18] because (1) individual actions 
lead to joint actions through on-line adaptation and (2) the uncertainty and ambiguity 
of information is taken into account through state estimation. Our least-commitment 
approach is however similar to a token-based approach to teamwork[16]. 

The importance of communication in solving decentralized Markov decision pro­
cesses was noted in [23] where the goal was to develop a communication policy in 
addition to the navigation policy. For agents in open environments, those policies 
overlaps since the location of the agent determines its communication range. 
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Fig. 6. Behavior policies 

7 Conclusions and Future Work 

Open environments such as P2P and MANET forces a reexamination of teamwork in 
large scale systems relying more on adaptive coordination than explicit cooperation 
requiring synchronization points. The capability to acquire global, albeit imperfect, 
knowledge through the propagation of information makes it possible to use indepen­
dent reinforcement learners for coordination tasks in multi-agent systems. Similarity 
of intentions can help relieve the burden placed on the network by selectively prop­
agating information while state estimation based on evidence reasoning calibrates 
incoming information. A local teamwork model drives the rewards of the overall 
coordination task. This proactive approach scales well to any dimensions and its 
precision can be modulated by the TTL parameter. Future experiments are plarmed 
for large MANET network simulations and P2P agent discovery of heterogeneous 
agents. 
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Summary. Mobile agent technology has been promoted as an emerging technology that 
makes it much easier to design, implement, and maintain distributed systems. It also pro­
vides an infrastructure for multi-agent computing. This chapter discusses the potential uses of 
mobile agents in distributed systems, lists their potential advantages and disadvantages. The 
body of the chapter has descriptions of technologies for executing, migrating, and implement­
ing mobile agents. It also presents several actual and potential applications of mobile agents. 
A brief review of other research in the area and prospects for the future conclude the chapter. 

1 Introduction 

Mobile agents are autonomous programs that can travel from computer to computer 
in a network, at times and to places of their own choosing. The state of the running 
program is saved, by being transmitted to the destination. The program is resumed 
at the destination continuing its processing with the saved state. They can provide 
a convenient, efficient, and robust framework for implementing distributed applica­
tions including mobile applications for several reasons, including improvements to 
the latency and bandwidth of client-server applications and reducing vulnerability 
to network disconnection. Although not all applications for distributed systems will 
need mobile agents, many other applications will find mobile agents the most effec­
tive technique for implementing all or part of their tasks. In fact, many mobile agent 
systems have been released over the last few years ([10, 9, 2, 23]). 

This chapter discusses the potential uses of mobile agents in distributed systems 
and presents a number of their potential advantages and disadvantages. It also de­
scribes technologies for executing, migrating, and implementing mobile agents and 
presents several actual and potential applications for them. A brief review of other 
research in the area and prospects for the future conclude the chapter. 

1.1 Advantages of Mobile Agents 

Mobile agents have several advantages in the development of various distributed 
applications. 
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• Reduced communication costs: Distributed computing needs interactions be­
tween different computers through a network. The latency and network traffic of 
interactions often seriously affect the quality and coordination of two programs 
running on different computers. As we can see from Figure 1, if one of the pro­
grams is a mobile agent, it can migrate to the computer the other is running on 
communicate with it locally. That is, mobile agent technology enables remote 
communications to operate as local communications. 

• Asynchronous execution After migrating to the destination-side computer, a 
mobile agent does not have to interact with its source-side computer. Therefore, 
even when the source can be shut down or the network between the destination 
and source can be disconnected, the agent can continue processing at the desti­
nation. This is useful within unstable communications. 

• Direct manipulation A mobile agent is locally executed on the computer it is 
visiting. It can directly access and control the equipments for the computer as 
long as the computer allows it to do so. This is helpful in network management, 
in particular in detecting and removing device failures. Installing a mobile agent 
close to a real-time system may prevent delays caused by network congestion. 

• Easy-development of distributed applications Most distributed applications 
consist of at least two programs, i.e., a client-side program and a server side pro­
gram and often spare codes for communications, including exceptional handling. 
However, since a mobile agent itself can carry information to another computer, 
we can only write a single program to define distributed computing. A mobile 
agent program does not have to define communications with other computers. 
Therefore, we can easily modify standalone programs as mobile agent programs. 

As we can see from Figure 2, mobile agents can save themselves through persis­
tent storage, duplicate themselves, and migrate themselves to other computers under 
their own control so that they can support various types of processing in distributed 
systems. 
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Fig. 1. Reduced communication 
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Fig. 2. Functions of mobile agents in distributed system 

Remarks 

Mobile agent technology may be treated as a type of software agent technology, but 
it is not always required to offer intelligent capabilities, e.g., reactive, pro-active, 
and social behaviors that are features of existing software agent technologies. This is 
because these capabilities tend to be large in terms of scale and processing, and no 
mobile agent should consume excessive computational resources, such as processors, 
memory, files, and networks, at its destinations. Also, all mobile agents must be as 
small as possible because their size seriously affects the cost of migrating over a 
network. 

1.2 Mobility and Distribution 

Fuggetta, et al [5] provided a description of mobile software paradigms for dis­
tributed applications. These are classified as client/server (CS), remote evaluation 
(REV), code on demand (COD), and mobile agent (MA) approaches. By decompil­
ing distributed applications into code, data, and execution, most distributed execu­
tions can be modeled as primitives of these approaches as we can see from Figure 
3. 

• The client-server approach is widely used in traditional and modem distributed 
systems (Figure 3 a)). The code, data, and execution remain fixed at computer 
A. Computer B requests a service from the server with some data arguments 
of the request. The code and remaining data to provide the service are resident 
within computer B. As a response, computer B provide the service requested by 
accessing computational resources provided in it. Computer B returns the results 
of the execution to computer A. 

• The remote evaluation approach assumes that the code to perform the execution 
is stored at computer A (Figure 3 b)). Both the code and data are sent to computer 
B. As a response, computer B executes the code and data by accessing compu­
tational resources, including data, provided in them. An additional interaction 
returns the results from computer B to computer A. 
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Fig. 3. Client/server, remote evaluation, code on demand, and mobile agent 

The code-on-demand approach is an inversion of the remote evaluation approach. 
(3 c)). The code and data are stored at computer A and execution is done at com­
puter B. Computer A fetches code and data from computer B and then executes 
the code with its local data as well as the imported data. An example of this 
is Java applets, which are Java codes that web-browsers download from remote 
HTTP servers to execute locally. 
The mobile agent approach assume that the code and data are initially hosted 
by computer A (Figure 3 d)). Computer A migrates the data and code it need to 
computer B. After it has moved to computer B, the code is executed with the data 
and the resources available on computer B. 

2 Mobile Agent System 

Mobile agent systems consist of two parts: mobile agents and runtime systems. The 
former defines the behavior of software agents. The latter are called agent platforms, 
agent systems, and agent servers, and support their execution and migration. The 
same architecture exists on all computers at which agents are reachable. That is, 
each mobile agent runs within a runtime systems on its current computer. When an 
agent requests the current runtime system to migrate itself, the runtime system can 
migrate the agent to a runtime system on the destination computer, carrying its state 
and code with it. Each runtime system itself runs on top of the operating system 
as a middleware. It provides interpreters or virtual machines for executing agent 
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programs, or the system themselves are provided on top of virtual machines, e.g., the 
Java virtual machine (JVM). 

2.1 Remote Procedure Call 

Agent migration is similar to RPC (Remote Procedure Calling) or RMI (Remote 
Method Invocation). RPC enables a client program to call a procedure for server 
programs running in separate processes, generally in different computers from the 
client [3]. RMI is an extension of local method invocation that allows an object to 
invoke the methods of the object on a remote computer. RPC or RMI can pass ar­
guments to a procedure or method of a program on the server and receives a return 
value from the server. The mechanism for passing arguments and results between 
two computers through RPC or RMI correspond to that for agent migration between 
two computers. Figure 4 shows flow for the basic mechanism of RPC between two 
computers. 
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Fig. 4. Remote procedure call between two computers 

Agent Marshaling 

Data items, e.g., objects and values, in a running program cannot be directly trans­
mitted over a network. They must be transformed into external data representation, 
e.g., a binary form or text form, before migrating them (Figure 5). Marshaling is the 
process of collecting data items and assembling them into a form suitable for trans­
mission in a message. Unmarshaling is the process of disassembling them on arrival 
to produce an equivalent collection of data items at the destination.^ The marshaling 
and unmarshaling processes are carried out by runtime systems in mobile agent sys­
tems. The runtime system at the left (at sender-side computer) of Figure 6 marshals 
an agent to transmit it to a destination through a communication channel or mes­
sage and then the runtime system at the right (at receiver-side computer) of Figure 6 
receives the data and unmarshals the agent. 

^ Note that marshaling and serialization are often used without any distinction between them. 
The latter is a process of flattening and converting an object, including its referring objects, 
into a sequence of bytes to be sent across network or saved on a disk. 
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Agent Migration 

Figure 6 shows the basic mechanism for agent migration between two computers. 

1) The runtime system on the sender-side computer suspends the execution of the 
agent. 

2) It marshals the agent into a bit-chunk that can be transmitted over a network. 
3) It transmits the chunk to the destination computer through the underlying network 

protocol. 
4) The runtime system on the receiver-side computer receives the chunk. 
5) It unmarshals the chunk into the agent and resumes the agent. 

Most existing mobile agent systems use TCP channels, SMTP, or HTTP as their 
underlying communication protocols. Mobile agents themselves are separated from 
the underlying communication protocols. 

Strong Migration vs. Weak Migration 

The state of execution is migrated with the code so that computation can be resumed 
at the destination. According to the amount of detail captured in the state, we can 
classify agent migration into two types: strong and weak. 

• Strong Migration: is the ability of an agent to migrate over a network, carry­
ing the code and execution state, where the state includes the program counter, 
saved processor registers, and local variables, which correspond to variables al­
located in the stack frame of the agent's memory space, global variables. These 

file:///Reference


Mobile Agents 237 

correspond to variables allocated in the heap frame. The agent is suspended, mar­
shaled, transmitted, unmarshaled and then restarted at the exact position where it 
was previously suspended on the destination node without loss of data or execu­
tion state. 

• Weak Migration: is the ability of an agent to migrate over a network, carry­
ing the code and partial execution state, where the state is variables in the heap 
frame, e.g., instance variables in object oriented programs, instead of its program 
counter and local variables declared in methods or functions. The agent is moved 
to and restarted on the destination with its global variables. The runtime system 
may explicitly invoke specified agent methods. 

Strong migration can cover weak migration, but it is a minority. This is because the 
execution state of an agent tends to be large and the marshaling and transmitting 
of the state over a network need heavy processing. Moreover, like the latter, the 
former cannot migrate agents that access the computational resources only available 
in current computers, e.g., input-and-output equipments and networks. The former 
unfortunately has no significant advantages in the development and operation of real 
distributed applications as discussed by Srasser et al. [2]. 

The program code for an agent needs to be available at the destination where the 
agent is running. The code must to be deployed at the source at the time of creation 
and at the destination to which it moves. Therefore, existing runtime systems offer 
a facility for statically deploying program code that is needed to execute the agent, 
for loading the program code on demand, or for transferring the program code along 
with the agent. 

2.2 Mobile Agent Languages 

Since mobile agents are programming entities, programming languages for defining 
mobile agents are needed. There has been a huge number of programming languages, 
but all of these are not available for mobile agents. Programming languages for mo­
bile agents must support the following functions. They should enable programs to be 
marshaled into data and vice versa. They should also download code from remote 
computers and link it at run-time. A few researchers have provided newly designed 
languages for defining mobile agents, e.g., Telescript [23], and most current mobile 
agent systems use existing general-purpose programming languages that can satisfy 
the above requirements, e.g., Java [1]. Telescript provides primitives for defining 
mobile agents, e.g, go operation, and enables a thread running on an interpreter to 
migrate to another computer. The Java language itself offers no support for the mi­
gration of executing code, but offers dynamic class loading, a programmable class 
loader, and a language-level marshaling mechanism, where these can be directly ex­
ploited to enable code mobility. Creating distributed systems based on mobile agents 
is a relatively easy paradigm because most existing mobile agents are object oriented 
programs, e.g., Java, and can be developed by using rapid application development 
(RAD) environments. 

Distributed systems are characterized by heterogeneity in hardware architectures 
and operating systems. To achieve heterogeneity, the state and code of an agent need 
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to be saved in a platform-independent representation. Hidden differences between 
platforms is provided at the language level, by using intermediate byte code rep­
resentation in Java or by relying on scripting languages such as Tcl/Tk. Therefore, 
Java-based mobile agents are executed on Java virtual machines and Tcl/Tk-based 
mobile agents on Tcl/Tk interpreters. The costs of running agents in a Java virtual 
machine on a device are decreasing by using just-in-compiler technologies. 

2.3 Agent Execution Management 

The runtime system manages execution and monitoring of all agents on a computer. It 
allows several hundred agents to be present at any one time on a computer. It also pro­
vide these agents with an execution environment and executes them independently 
of one another. It manages the life-cycle of its agents, e.g., creation, termination, and 
migration. 

Each agent program can access basic functions provided by its runtime system 
by invoking APIs (Table 1). The agent uses the go command to migrate from one 
computer to another with the destination system address (and its target agent's iden­
tifier) and does not need to concern itself with any other details of migration. Instead, 
the runtime system supports the migration of the agent. It stops the agent's execu­
tion and then marshals the agent's data items to the destination via the underlying 
communication protocol, e.g., tcp channel, HTTP (hyper text transfer protocol), and 
SMTP (simple mail transfer protocol). The agent is unpacked and reconstituted on 
the destination. 

Table 1. Functions available in agents 

command 
go 

terminate 
duplicate 

identify 
lookup 

communicate 

parameters 
destination address, agent-identifier 
agent-identifier 
agent-identifier 
agent-type 
agent-type, runtime system address 
agent-identifier 

function 
agent migration 
agent termination 
agent duplication 
identification 
discovery of available agents 
inter-agent communication 

2.4 Inter-agent communication 

Mobile agents can interact with other agents residing within the same computer or 
with agents on remote computers as other multi-agents. Existing mobile agent sys­
tems provide various inter-agent communication mechanisms, e.g., method invoca­
tion, publish/subscribe-based event passing, and stream-based communications. 
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2.5 Locating Mobile Agents 

Since mobile agents can autonomously travel from computer to computer, a mecha­
nism for tracking the location of agents is needed by the users to control their agents 
and for agents to communicate with other agents. Several mobile agent systems pro­
vide such mechanisms, which can be classified into three schemes: 

• A name server multicasts query messages about the location of an agent the to 
computers and receives a reply message from a computer hosting the agent (Fig­
ure 7 (a)). 

• An agent registers its current location at a predefined name server whenever it 
arrives at another computer (Figure 7 (b)). 

• An agent leaves a footprint specifying its destination at its current computer 
whenever it migrates to another computer to track the trails of the agent (Fig­
ure 7 (c)). 
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Fig. 7. Discovery for migrating agents 

In many cases, locating agents is application specific. For example, the first 
scheme is suitable for an agent moving within a local region. It is not suitable for 
agents visiting distant nodes. The second scheme is suitable for an agent migrating 
within a far away region; in the case of a large number of nodes, registering nodes are 
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organized hierarchically. However, it is not suitable for a large number of migrations. 
The third scheme is suitable for a small number of migrations; it is not appropriate 
for long chains. 

2.6 Security 

Security is one of the most important issues with mobile agent systems. Most secu­
rity issues in mobile agents are common to existing computer security problems in 
communication and the downloading of software. In addition, many researchers have 
explored mechanisms to enhance security with mobile agent systems. There are two 
problems in mobile agent security: the protection of hosts from malicious mobile 
agents and the protection of mobile agents from malicious hosts. It is difficult to ver­
ify with complete certainty whether an incoming agent is malicious or not. However, 
there are two solutions to protecting hosts from malicious mobile agents. The first 
is to provide access-control mechanisms, e.g., Java's security manager. They explic­
itly specify the permission of agents and restrict any agent behaviors that are beyond 
their permissions. The second is to provide authentication mechanisms by using dig­
ital signatures or authentication systems. They explicidy permit runtime systems to 
only receive agents that have been authenticated, have been sent from authenticated 
computers, or that have originated from authenticated computers. 

There have been no general solutions to the second problem, because it is im­
possible to keep agent private from runtime systems executing the agent. However, 
(non-malicious) runtime systems can authenticate the destinations of their agents, to 
check whether these are non-malicious, before they migrate the agents to these des­
tinations. While strong security features would not immediately make mobile agents 
appealing, the absence of security would certainly make mobile agents unattractive 
and unpractical. 

2.7 Remarks 

Several technologies have been presented for enabling software to migrate between 
computers, e.g., mobile code, process-migration, and mobile objects. Mobile agents 
differ from mobile codes, e.g., downloadable applets, in that mobile codes can main­
tain the states of running programs. As a result, they must start their initial states 
after they have been deployed at remote computers. 

One of the most important differences between mobile agents and traditional 
techniques, e.g., process-migration or mobile objects is in their acceptable levels of 
mobility-transparency. Introducing too much transparency can adversely affect other 
characteristics, such as complexity, or the scope of modifications made to the un­
derlying environment. For example, a solution allowing the migration of processes 
or objects at any time in response to a request from any other object would require 
significant changes to the underlying environment, e.g., balancing the processor load 
and escaping from a shutdown computer, whereas mobile agents can move where 
and when they choose, typically through a go statement. Similarly, solutions that in­
sist on continuous communication and name resolution could be achieved for naming 
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and open channel handling, but they would incur significant complexity in commu­
nication support and the naming model. Process-migration and mobile object tech­
nologies require fully transparent solutions at the operating system level to minimize 
complexity. For example, processes and objects still continue to access the com­
putational resources, e.g., file systems, database systems, and channels, that they 
accessed at their source-side computers, even after they have moved. With a reason­
able choice of transparency-requirements, mobile agents can access computational 
resources provided in current computers after mobile agents have moved to their des­
tinations. Although mobile agents are similar to mobile objects at the programming-
level, they contain threads and they are therefore active and can act autonomously, 
whereas most mobile objects are implemented as passive entities. 

3 Mobile Agent Agent Systems 

There have been a huge number of mobile agent systems. This section presents sev­
eral traditional mobile agent systems, which offer common functions to other ex­
isting mobile agent systems, and modem mobile agent systems for large-scale and 
dynamic distributed systems. 

3.1 Telescript 

Telescript is the first commercial mobile agent implementation developed by Gen­
eral Magic [23]. It provides an object-oriented language designed for mobile agents, 
which employs an intermediate, portable language across servers, and introduces 
three essential concepts for mobile agents: agents, places, and the go command. 
Places are essentially stationary agents that can contain other agents or places. 
Agents migrate to places, which reside at local or remote computers. Telescript sup­
ports strong migration so that the execution of a moving agent can be resumed after 
it arrives at the destination. Each agent and place has an associated authority. A place 
can query an incoming agent's authority and potentially deny entry to the agent or 
restrict its access rights. The agent receives a permit, which encodes its access rights 
and resource-consumption quotas. The system terminates agents that exceed their 
quota and raises exceptions when they attempt unauthorized operations. Agents in­
teract with the place or other agents at a meeting place by issuing a meet primitive. 

shopper: class (Agent, EventProcess) = { 
public 

see i n i t i a l i z e 
see meeting 

private 
see goHome 

property 
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List: Telescript class definition 

initialize: op ( 
desiredProduct: owned String; 
desiredPrice: Integer) = { 

clientName = sponsor.name.copy() 

}; 

goHome: op (homeName: Telename; 
homeAddress: Teleaddress) = { 

*.go(Ticket(homeName,homeAddress)); 

*.enableEvents(PartEvent(clientName)); 

here@MeetingPlace.meet(Petition(clientName)); 

*.getEvent(nil, PartEvent(clientName)) 

}; 

List: Telescript method definition 

Although Telescript was commercially unsuccessful, it has influenced other mobile 
agent systems. General Magic provided a Java-based system named Odyssey that 
used the same design framework. It did not feature strong migration. 

3.2 Agent TCL 

Agent Tel is a mobile-agent system developed at Dartmouth College [6]. It primarily 
supported the Tel scripting language (a later version, named DAgents, supported 
Java and Scheme as well as Tel). It provided an extended interpreter for Tcl-based 
agent programs and a server that received agents from other servers (Figure 9). 

Agent Tel supports the notion of strong migration, because, when an agent mi­
grate to another computer, the system captures the stack frame and program counters 
as well as the heap frame of the agent and sends these data items to the destina­
tion. It also extends the Tel scripting language with several primitives. For example. 
The agent_jump command captures the internal state of the agent and sends the 
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state information to the destination machine through SMTP. The server on the des­
tination machine restores the migrated agent's state information in this execution 
environment, and resumes the agent's execution at the statement immediately after 
the command is executed. 

proc who machines { 

global agent 

set list "" 

foreach m $machines { 

if ([catch {agent_jump $m} result]} { 

append list 

"$in:nunable to JUMP here ($result)nn" 

} else { 

set users [exec who] 

append list 

"$agent(local-server):n$usernn" 

} 

} 
agent_send $agent(root) 0 $list 
exit 

} 

List: Agent Tel Program 

The above is an Agent Tel program to migrate to another computer and then 
execute UNIX's who command. The agent continues this through its list of machines 
until it has visited them all. No agent has a reference is bound to other agents or 
components. 
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3.3 Aglets 

The Aglets system was created by IBM [10]. Mobile agents, called Aglets, are im­
plemented as Java objects that can move from one host on the Internet to another 
based on the notion of weak migration. Aglets runtime system itself is built on Java. 
It supports the notion of weak migration, because since Java, the underlying technol­
ogy, does not allow stack frames to be captured or thread objects to be marshaled. To 
solve this. Aglets (and other Java-based mobile agent systems) provides a callback 
mechanism for agents, like Java's Abstract Window Toolkit (AWT). That is, when 
the life-cycle state of an agent is changed, e.g., creation, destruction, and migration, 
specified methods for the agent's program are invoked by the runtime system so that 
a moving agent may close windows and file handles. The global variables are mar­
shaled and sent to the destination node. On arriving an event can be generated to 
instruct the agent to do something, e.g., set up resources. The following program is 
an agent in Aglets. 

public class SimpleAglet extends Aglet implements MobileListener { 

public String name; 
// onCreationO invoked after the agent is created, 
public void onCreation(Object init) { 
addMobilityListener(this); 
name = new String("Agent"); 
try { 

// dispatch 0 is a migration command 

dispatch("atp://some.where.com"); 

} catch (Exception e) {/* migration fail */} 

} 

// onDispatching() is invoked before migrating, 

public void onDispatching(MobiltyEvent e) { 

System.out.println(name+" is going to " 

+e.getLocation()); 

) 

// onArrivalO is invoked after arriving, 

public void onArrival(MobileEvent e) { 

System.out.println(name+" came from " 

+e.getLocation0); 

} 

// main program, 
public void run() { 

} 

} 

Figure 10 shows the execution of the agent defined in the above program. The 
onCreation() method is invoked before the agent is created and then the run() 
method is invoked to perform the agent's behavior with the Aglets runtime system. 
The MobileListener interface defines callback methods invoked when an agent 
migrates to another computer. The onDispatching () method is invoked before the 
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migration of the agent. After arriving at the destination, the onArr ival () method is 
invoked and then run () is invoked again. The Aglets system provides several prim­
itives for invoking methods of other agents, e.g., a one-way asynchronous message, 
a synchronous method call, and an asynchronous method call (future-based mecha­
nism). 

Creation 

onCreat ionO 

onDispatching() 

onArr iva l ( ) 

time 

Destination 

Fig. 10. Execution of Agent in Aglets system 

Table 2. Lifecycle events of Aglets 

lifecycle state 
creation 
migration 
termination 
duplication 

method invoked before 

onDispatching(URL) 
onDisposingO 
onCloningO 

method invoked after 
onCreation() 
onArrval() 

onClone() 

3.4 Voyager 

Voyager [9] is a Java-based Object Request Broker (ORB) system, which is not com­
patible with CORBA, developed by ObjectSpace Inc. It not only supports mobile 
agents but also distributed objects. It supports a universal naming service, univer­
sal directory, activation framework, publish-subscribe, and mobile agent technology. 
Runtime system can be used as an agent server to host objects as mobile agents. 
It provides a mechanism for the creation of distributed applications through the 
use of its core ORB so that a programmer wishing to deploy remote objects needs 
to first define the object's interface. It provides typical inter-agent communication 
primitives, such as Future (asynchronous), OneWay (no return value is required), 
OneWayMulticast (sending a one way message to a group of objects or to objects 
who satisfy a certainly criteria) and finally the default Sync (synchronous). Voyager 
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uses Java's standard object serialization and sockets for communication so that it 
can migrate agents to other computers based on the notion of weak migration. It can 
dynamically generate proxies which removes the need for stub generators to support 
the notion of mobility-transparency. That it, it enables an object to communicate 
other agents even after they have moved to remote computers. A mobile agent with 
Voyager is defined as follows: 

public class Traveler extends Agent { 

Sting name = null; 

// start0 is invoked by the Voyager runtime system 

public void start() { 

System.out.printIn(name+" is going to " 

+Voyager.getAddress()); 

// the migration command to migrate the agent itself to the destination 

// and specifies a user defined method to be invoked at the destination. 

moveTo("some.where.com", "method"); 

} 

// method is invoked after the agent arriving, 

public void method() { 

System.out.printIn(name+" am in " 

+Voyager.getAddress()); 

} 

There is a migration primitive, called moveTo (), which the programmer uses to spec­
ify a destination host or destination object; a call-back method is used to restart the 
object. 

3.5 FarGo 

FarGo is an infrastructure for Java-based distributed objects developed by the Israel 
Institute of Technology [8]. It supports Java-based mobile agents and migrate them 
between computers based on the notion of weak migration. Its goal is to separate the 
application logic of an object program from the dynamic deployment of the program 
since a developer is unlikely to know a priori how to an application can be structured 
in a way that best leverages the available infrastructure. Therefore, FarGo introduces 
the notion of complet references, which are proxies of objects that forward messages 
to their target objects. The references can explicidy specify the deployment policies 
of objects as relationships between the locations of two objects. If an object has a 
reference to another object, when the former object migrates to another computer, 
the latter migrates to the same destination or specified locations, according to the 
policy specified in the reference. This mechanism provides a dynamic application 
layout and elevates system scalability and adaptability 
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3.6 MobileSpaces 

MobileSpaces [14] is a Java-based mobile agent system like Aglets, Voyager, and 
FarGo, but is unique among other existing similar systems because it can dynami­
cally organize multiple mobile agents. The system introduces two concepts, agent 
hierarchy and group migration. The former means that each mobile agent can be 
a container of other mobile agents inside itself, and the latter allows mobile agents 
to move inside other mobile agents as well as inside other computers. These con­
cepts enable us to organize more than one mobile agent into a single mobile agent 
and they introduce agent migration as a meta mechanism of dynamically changing 
and extending mobile agent-based applications. Although existing software devel­
opment methodologies, including object orientation, construct large and complex 
mobile applications, such applications are essentially static and monolithic in the 
sense that they cannot be adapted adaptable. Moreover, a large-scale application soft­
ware program is often constructed as a collection of subcomponents. Consequently, 
a mobile application needs to be migrated as a whole with all its subcomponents. 
MobileSpaces can naturally use mobile agents as mobile software components and 
can easily construct a large-scale and adaptable mobile application as a compound 
mobile agent. 

Fig. 11. Agent Hierarchy and Inter-agent Migration 

The MobileSpaces runtime system is characterized by allowing a group of mo­
bile agents to be composed hierarchically and its architecture is structured based on 
agent hierarchy and group migration. For example, agent migration between different 
computers is offered by subcomponents, called transmitter mobile agents, instead of 
a runtime system. Transmitter agents are allocated on hosts. Each transmitter agent 
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can exchange its inner agents with one another through its favorite communication 
protocol as we can see in Figure 12. When a mobile agent is preparing for a trip, the 
agent migrates itself into an appropriate transmitter agent. The transmitter suspends 
the moving agent (including its nesting agents) and then serializes its state, classes, 
and destination address into a proper form for its communication protocol. It next 
transfers the serialized agent to a transmitter agent on the destination side. The trans­
mitter agent receives the data and then reconstructs the agent (including its nesting 
agents) according to the data. Each runtime system can be equipped with more than 
one transmitter agent to exchange agents through various communication protocols 
and networks, e.g., TCP, UDP, HTTP, and SMTP, studied by Satoh [14, 19]. 

The MobileSpaces system can dynamically change and evolve its facilities by 
migrating agents implementing these facilities. For example, while the system is 
running, it can add a new function to itself by migrating a new mobile agent which 
implements the function to the system. The system can be open to evolve and adapt 
itself to its execution environment and the requirements of visiting agents. 
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Fig. 12. Transmitter Mobile Agents 

4 Mobile Agent Applications 

Many researchers have stated that there are no killer applications for mobile agent 
technology [11], because almost everything you can do with MAs can be done with 
more traditional technologies. However, mobile agents make it easier, faster, and 
more effective to develop, manage, and execute distributed applications than other 
technologies. We describe typical applications of mobile agents as follows: 

4.1 Remote Information Retrieval 

This is one of the most traditional applications of mobile agents. If all informa­
tion were stored in relational databases, a client could send a message containing 
SQL commands to database servers. However, given that most of the world's data 
is in fact maintained in free text files on different computers, remote searching and 
filtering require the ability to open, read, and filter files. Since mobile agents can 
perform most of their tasks locally at the destination. Client can send its agents to 
database servers so that they locally perform a sequence of query or update tasks on 
the servers. Communications between the client and server can be minimized, i.e., 
the migration of a search agent to the server and the migration of an agent to the 
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client. Since agents contain program codes for filtering information that is of interest 
to their users from databases, they only need to carry wanted information back to 
the client to reduce communication traffic. Furthermore, agents can migrate among 
multiple database servers to retrieve and gather the interesting data from the servers. 
They can also determine the destinations based on information they have acquired 
from the database servers that they have thus far visited. 

4.2 Network Management 

Mobile agent technology provides a solution to the flexible management of network 
systems. Mobile agents can locally observe and control equipment at each node by 
migrating among nodes. Mobile agent-based network management has several ad­
vantages in comparison with traditional approaches, such as the client/server one. 

• As code is very often smaller than the data it processes, the transmission of mo­
bile agents to sources of data creates less traffic than transferring the data itself. 
Deploying a mobile agent close to the network nodes that we want to monitor 
and control prevents delays caused by network congestion. 

• Since a mobile agent is locally executed on the node it is visiting, it can easily 
access the functions of devices on this node. 

• The dynamic deployment and configuration of new or existing functionalities 
into a network system are extremely important tasks, especially as they poten­
tially allow outdated systems to be updated in an efficient manner. 

• Network management systems must often handle networks that may have various 
malfunctions and disconnections and whose exact topology may not be known. 
Since mobile agents are autonomous entities, they may be able to detect proper 
destinations or routings on such networks. 

Adopting mobile agent technology eliminates the need for administrators to con-
standy monitor many network management activities, e.g., the installation and up­
grading of software and periodic network auditing. There have been several attempts 
to apply this technology to network management tasks. Karmouch presented typi­
cal mobile agent approaches to network management [12]. Satoh proposed a frame­
work for building and operating agent itineraries for network management systems 
[16,20]. 

4.3 Load Balancing 

This is a legacy application of process migration and mobile agent technologies. In 
a distributed system, e.g., a grid computing system, computers tend to be heteroge­
neous so that their computational loads are different. Computers may also be dynam­
ically added to or removed from the system. Tasks should be dynamically deployed 
at computers which loads light rather than those lose with heavy loads. Since mobile 
agents can migrate to other computers, tasks that are implemented as mobile agents 
can be relocated at suitable computers whose processors can execute the tasks. This 
is practical in implementing massively multi agent systems that must operate a huge 
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number of agents, which tend to be dynamically created or which terminate, on a 
distributed system that consists of heterogeneous computers. 

4.4 Active Documents 

Mobile code technology is widely used in plug-in modules for rich internet applica­
tions (RIA) in web-browsers, e.g., Java Applet and Macromedia Flash. Such modules 
provide us with interactive user experiences because their virtual machines, e.g., Java 
virtual machines and Flash players, can locally execute and render them across mul­
tiple platforms and browsers without having to communicate with remote servers. 
However, it is not easy to save their results on local computers or remote servers, and 
to resume them with the previous results later, since their code can be transported 
but not their state. Mobile agents solve this problem and provide a next-generation 
RIA. Mobile agent-based modules for RIA can naturally carry both their code and 
state at client computers. For example, MobiDoc [15] is a mobile agent-based frame­
work for building mobile compound documents where a compound document can be 
dynamically composed of mobile agent-based components, which view or edit their 
contents, e.g., text, images, and movies. It can migrate itself over a network as a 
whole, with all its embedded components. Each component is self-contained in the 
sense that it maintains its content and program code for viewing and modifying the 
content inside it, and multiple components can be combined into an active and mo­
bile document. 

4.5 Mobile Computing 

Mobile agents use the capabilities and resources of remote servers to process their 
tasks. When a user wants to do tasks beyond the capabilities of his or her comput­
ers, the agents that perform the tasks can migrate to and be executed at a remote 
server. Mobile agents can also mask temporal disconnections in networks. Mobile 
computers are not always connected to networks, because their wired networks are 
disconnected before they are moved to other locations or wireless networks become 
unstable or non-available due to deteriorating radio conditions or are not uncovered 
by the area at all. A stable connection is only requested at the beginning to send 
the agent, and to take the agent back at the end of the task, but this is not requested 
during the execution of the whole application execution. Several researchers have ex­
plored mechanisms for migrating agents through unstable networks [4, 7,19]. When 
a mobile agent requests a runtime system to migrate itself, the system tries to trans­
mit the moving agent to the destination. If the destination cannot be reached, the 
system automatically stores the moving agent in a queue and then periodically tries 
to transmit the waiting agent to either the destination or another runtime system on 
a reachable intermediate node as close to the destination as possible. These relay 
runtime systems repeat the process until the agent arrives at its destination. 
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4.6 Active Networking 

There are two approaches to implementing active networks (for example, see [22]). 
The active packet approach replaces destination addresses in the packets of existing 
architectures with miniature programs that are interpreted at nodes on arrival. The 
active node approach enables new protocols to be dynamically deployed at interme­
diate and end nodes using mobile code techniques. Mobile agents are very similar to 
active networks, because a mobile agent can be regarded as a specific type of active 
packet, and an agent platform in traditional networks can be regarded as a specific 
type of active node. There have been a few attempts to incorporate mobile agent 
technology with active network technology (for example, see [12]). Of these, the 
MobileSpaces system [19] provides a mobile agent-based framework for integrating 
the both approaches. The framework enables us to implement network processing of 
mobile agents with mobile agent-based components, where the components are still 
mobile agents so that they can be dynamically deployed at computers to customize 
network processing. 

4.7 Ubiquitous Computing 

Ubiquitous computers often have limited resources, such as restricted levels of CPU 
power and amounts of memory. Mobile agents can help to conserve these limited re­
sources, since each agent only needs to be present at the computer when the computer 
needs the services provided by that agent. The SpatialAgent framework [13, 17] pro­
vides a bridge between the movement of physical entities, e.g., people and things, and 
the movement of mobile agents to support and annotate the entities using location-
tracking systems, e.g., RFID technology. It binds physical entities with mobile agents 
and navigate agents to stationary or mobile computers near the locations of the en­
tities and places to which the agents are attached, even after their locations have 
changed. Figure 13 (a) shows that a moving entity carrying an RF-tagged agent host 
and a space containing a place-bound RF-tag and RF reader. When the reader detects 
the presence of the RFID tag that is bound to the agent host, the framework instructs 
the agents attached to the tagged place to migrate to the visiting agent host to offer 
location-dependent services of for that place. Figure 13 (b) shows that an RF-tagged 
agent host and an RF reader have been allocated. When an RF-tagged moving entity 
enters the coverage area of the reader, the framework instructs the agents attached to 
the entity to migrate to the agent host within the same coverage area to offer entity-
dependent services to the entity. 

4.8 Software Testing 

Mobile agents are useful in the development of software as well as the operation of 
software in distributed and mobile computing settings. An example of these applica­
tions is testing methodology for software running on mobile computers, called Flying 
Emulator [18, 21]. Wireless LANs or 4G-networks incorporate wireless LAN tech­
nologies, and mobile terminals can access the services provided by LANs, as well as 
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global network services. Therefore, software running on mobile terminals may de­
pend on not only its application-logic but also on services within the LANs that the 
terminals are connected to. Effective software constructed to run on mobile termi­
nals for 4G wireless networks and wireless LANs must be tested in all networks to 
which the terminal could be moved and then connected to. Like existing approaches, 
this provides software-based emulators for mobile terminals for software designed to 
run on the terminals. It also constructs the emulators as mobile agents that can travel 
between computers. As we can see from Figure 14, these emulators can carry target 
software to networks that the terminals are cormected to and allow it to access ser­
vices. These services are provided by the networks in the same way as if the software 
had been carried by and executed on terminals cormected to the networks. 

5 Conclusion 

Mobile agents are just an implementation technique used in the development and 
operation of distributed systems, as other software agents, including multi-agents, are 
themselves not goals but tools for modeling and managing our societies and systems. 
Therefore, the future of mobile agents is not specifically as mobile agents. They 
will be used as essential technologies in real distributed systems, even though they 
will not be called mobile agents. In fact, although monolithic mobile agent systems 
were developed in the past decade to illustrate the concepts of mobile agents, recent 
several mobile agent systems have been developed based on several slighdy different 
semantics for mobile agents. 
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Summary. There has been a significant increase in the use of multi-agent social-network 
models due to their ability to flexibly model emergent behaviors in complex socio-technical 
systems while linking to real data. These models are growing in size and complexity which re­
quires significant time and effort to calibrate, validate, improve the model, and gain insight into 
model behavior. In this paper, we present our knowledge-based simulation-aided approach for 
automating model-improvement and our tool implementing this approach (WIZER). WIZER 
is capable of calibrating and validating multi-agent social-network models, and facilitates 
model-improvement and understanding. By employing knowledge-based search, causal anal­
ysis, and simulation control and inference techniques, WIZER can reduce the number of sim­
ulation runs needed to calibrate, validate, and improve a model and improve the focus of these 
runs. WIZER automates reasoning and analysis of simulations, instead of being a multi-agent 
programming language or environment. We ran a preliminary version of WIZER on BioWar 
a city-scale social agent network simulation of the effects of weaponized biological attacks on 
a demographically-realistic population within a background of naturally-occurring diseases. 
The results demonstrate the efficacy of WIZER. 

1 Introduction 

Currently, a paradigm shift is occurring in how we model and think about knowl­
edge, individuals, teams, groups, networks, organizations, markets, institutions, and 
other societal systems due to developments in the field of computational model­
ing and analysis [1][8][16][32][39][19][40]. Computational modeling and analysis 
has emerged as a useful scientific tool for addressing socio-technical problems with 
complex dynamic inter-related parts, such as natural disaster response and biological 
attacks. These problems do not occur in vacuum but within a context constrained by 
social, organizational, geographical, technological, regulatory, cultural, and financial 
factors. As opportunities and challenges emerge dynamically in, say tsunami relief, 
existing rescue and aid plans often need major adaptations. For members of a rescue 
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and aid team to cohesively follow a joint course action, it helps if the development in 
the environment, the consequent change of plans, and the effects of the intervention 
carried out according to the plans can be thought over and analyzed both in advance 
and in real/ongoing time. 

There has been a rapid increase in the use of multi-agent models [12] [26] [28] -
as well as social network analysis [41] - to address complex socio-technical prob­
lems. Model assessment determining how valid, how explainable, and how robust 
a model is is becoming a major concern [11]. Indeed, identifying reliable valida­
tion methods for complex systems such as electronic medical surveillance systems 
is a critical research area [34]. Calibration and validation serve as a foundation for 
model improvement through simulation and inference. 

Models contain both explicit and implicit assumptions about some portion of the 
real world. These assumptions form abstractions of reality and these abstractions 
may or may not be sound. Moreover, the real world changes continuously and in 
unexpected ways. A cohesive joint course action by a group(s) responding to ongoing 
socio-technical problems is crucial to the efficiency and success of the action. How to 
adapt existing plans in ongoing socio-technical environments and how to coordinate 
members of a group(s) depend on how valid the underlying models and assumptions 
are. It is also desirable to automate improvement of models and assumptions based 
on live empirical data. Validation and model-improvement serve as a foundation for 
the coordination of large number of agents and their distributed tasks, goals, and 
organizations to deal with live socio-technical problems. The required fidelity of the 
model varies as a function of the research, policy, and/or mission questions being 
asked. Calibration, validation, and model-improvement are hard due to the changes 
in the real world, altered goals, inherent assumptions and abstractions, and human 
cognitive limitations such as bounded rationality [38]. 

Information exploitation is a technique that has yet to be fully employed to deal 
with the problem of calibration, validation, and model improvement. (The term "val­
idation" will be used from now on to denote calibration, validation, and model-
improvement.) Few multi-agent simulations have exploited the depth and breadth of 
available knowledge and information for validation that resides in journals, books, 
websites, human experts, and other sources. Typically, simulation results are de­
signed solely for human analysis and validation is provided by subject matter ex­
perts announcing that the model "feels right" face validity. While this may be suf­
ficient for small-scale simulations, it is woefully inadequate for large-scale simu­
lations designed to inform decision-makers. In particular, automated help for val­
idation and analysis is crucial. However, little work to date probes the important 
aspect of automating validation and analysis (this is conventionally left to humans 
to perform: there is an invisible wall of separation between simulation and analy­
sis/knowledge inference). To successfully automate validation and analysis, domain 
knowledge must be exploited, for example by an expert systems inference engine. A 
simulation and inference engine that can do virtual experiments and knowledge infer­
ence in concert would facilitate focused search by using both the simulation engines 
search space and the inference engines knowledge space to arrive at better param­
eter and meta-model values for validation. This paper describes our approach for 
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doing knowledge-based simulation-aided validation in multi-agent social-network 
systems, embodied in a tool called WIZER (What-If AnalyZER). WIZER applies 
knowledge control of the simulation, inference and intelligent search in multi-agent 
social-network simulations. 

The results presented in this paper are based on WIZER runs using Bio War. 
Bio War is a city-scale multi-agent social-network simulator capable of modeling the 
effects of weaponized biological attacks on a demographically-realistic population 
within a background of naturally-occurring diseases [7] [6]. Bio War currently runs 
a few thousand to several million agents. Unlike traditional models that look at hy­
pothetical cities (such as the Brookings smallpox model [17] and the SARS model 
[22]), Bio War is configured to represent real cities by loading census data, school 
district boundaries, etc. It models both healthy and infected agents as they go about 
their lives, enabling observation of absenteeism, drug purchases, hospital visits, and 
other data streams of interest. 

2 Validation Experience 

The complexity of ensuring valid results of agent-based simulations is shown dur­
ing the validation of Bio War outputs. BioWar has many input and model parameters 
and these parameters can be stochastic. Brute-force search in the space of input and 
model parameters to fit the non-computational data is all but impossible. BioWar also 
has a complex response surface(s) and is knowledge intensive. Putting BioWar in 
specification can be viewed as a multi-dimensional numeric and symbolic optimiza­
tion problem, with the knowledge component (e.g., school district announcements). 
The validation experience shows that there is a need for: 

• Sophisticated analysis and response techniques to optimize the space over which 
parameters must be varied for correctness, and thus increase the number of pa­
rameters which can be studied. 

• Tools to semi-automatically create and execute parametric studies to minimize 
the manual intervention currently required for these studies. 

• New approaches to simulation scaling so as to reduce the size of the simulations 
which produce validated output streams. 

WIZER addresses the first two points above. 

3 Related Work 

Multi-agent systems are usually "validated" by strictly applying requirements engi­
neering. In software engineering terms [31], validation means the determination of 
the correctness of the final program or software produced with respect to the user 
needs and requirements not necessarily the empirical data or the real world. The 
usual emphasis in multi-agent system development is on language, programming. 
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and design principles such as agent autonomy, team work, roles/types, and interac­
tion protocols [12][28]. Formal methods [13] used in software engineering for con­
trol and understanding of complex multi-agent systems lack an effective means of 
determining if a program fulfills a given formal specification [15]. Complex societal 
problems contain "messy" interactions, dynamic processes, and emergent behaviors, 
so it is often problematic to apply requirements engineering and/or formal methods. 

Another validation method is evolutionary verification and validation or EVV 
[37][36], which utilizes evolutionary algorithms, including genetic algorithms and 
scatter search, for verification and validation. While EVV allows testing and ex­
ploitation of unusual combinations of parameter values via evolutionary processes, 
it employs knowledge-poor genetic and evolutionary operators, not the scientific 
method, for doing experiments, forming and testing hypotheses, refining models, 
and inference, precluding non-evolutionary solutions. 

Docking is another approach to validating multi-agent systems [2]. Docking is 
based on the notion of repeating a scientific experiment to confirm findings or to 
ensure accuracy. It considers whether two or more different simulation models align 
(produce similar results), which is used in turn as a basis to determine if one model 
can subsume another. The higher the degree of alignment among models, the more 
they can be assumed to be valid, especially if one (or both) of them has been pre­
viously validated. The challenges in applying docking are the limited number of 
previously validated models, the implicit and diverse assumptions incorporated into 
models and the differences in data and domains among models. 

One application of docking is to align complex multi-agent simulations against 
mathematical or system dynamics models. Bio War's anthrax simulation has been 
successfully docked against the IPF (Incubation-Prodromal-Fulminant) mathemat­
ical model, a variant for anthrax of the well-known SIR (Susceptible-Infected-
Recovered) epidemiological model [9] and BioWar's smallpox model has been 
docked against a SIR model of smallpox [10]. While aligning a multi-agent model 
with a widely used mathematical model can show the differences and similarities be­
tween these two models, the validity is limited by the type of data the mathematical 
model uses. For example, the IPF model mentioned above operates on population-
level data, so the result of the alignment will be only valid at the granularity of 
population-level data. Mathematical models also have difficulties representing non-
numerical (symbolic) knowledge, including the knowledge base underlying complex 
context-sensitive agent interactions. 

Validating complex multi-agent simulations by statistical methods alone [23] is 
problematic due to the coarse granularity required for statistical methods to operate 
properly and the insufficient representation of symbolic knowledge. Statistical meth­
ods are good at describing data and inferring distributional parameters from samples, 
but statistic methods alone are insufficient to handle the highly dynamic, symbolic, 
causal, heterogeneous, and emergent nature of societal systems. 

Complex multi-agent simulations are not normally validated using expert sys­
tems (such as OrgCon [5]) as it is thought that it is sufficient to let human experts 
alone perform the analyses, experiment design, and quantitative and symbolic rea-
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soning. This view is especially prevalent as most simulations are in the realm of 
purely numeric models. 

Human experts can do validation by focusing on the most relevant part of the sys­
tem and thinking about the problem intuitively and creatively. These subject matter 
experts (SMEs) have the knowledge needed to judge model performance in their spe­
cialized fields. Applying learned expertise and intuition, SMEs can exploit hunches 
and insights, form rules, judge patterns, and analyze policies. Managed and admin­
istered properly, SMEs can be effective. Pitfalls include bounded rationality, implicit 
biases, implicit reasoning steps, judgment errors, and others. 

Another approach to validation is direct comparison with real world data and 
knowledge. Validation can be viewed as experimenting with data and knowledge, us­
ing models as the lab equipment for performing computational experiments [20] [3]. 
Simulation models to be validated should reflect the real world and results from ex­
periments in simulation should emulate changes in the real world. If results from 
virtual or computational experiments are compared to real world data and match 
sufficiently, the simulation is sufficiently valid. Simulation [24][33] has an advan­
tage over statistics and formal systems as it can model the world closely, free of the 
artifacts of statistics and formal systems. 

There is related work in engineering design methods using Response Surface 
Methodology or RSM [27] and Monte Carlo simulations [35] to do direct validation, 
but only with numerical data and limited to a small number of dimensions. RSM is 
collection of mathematical and statistical techniques for the modeling and analysis 
of problems in which a response of interest is influenced by several variables. It can 
include virtual experiments using Monte Carlo simulation. It usually tests only a few 
variables and operates to find the best fit equation so that the correlation of equations 
predictions with real data is statistically significant. 

4 Our Approach: Knowledge-Based Simulation-Aided 
IVIodel-Improvement 

WIZER (What-If AnalyZER) is a coupled inference and simulation engine that im­
proves upon Response Surface Methodology to deal with the high dimensional, sym­
bolic, stochastic, emergent, and dynamic nature of multi-agent social-network sys­
tems. Viewing simulation systems as knowledge systems, WIZER is designed for 
controlling and validating them directly with empirical data and knowledge using 
pattern analyses and knowledge inferences (mimicking those of SMEs) and virtual 
experiments (mimicking those of RSM). 

WIZER integrates an inference engine and simulation virtual experiments to do 
calibration and validation for model-improvement and to provide explanations. It im­
proves on RSM features by performing knowledge-intensive data-driven search steps 
via an inference engine constrained by simulation outputs, instead of just doing sta­
tistical and mathematical calculations. WIZER facilitates knowledge-based simula­
tion control and simulation-assisted inference, enabling reasoning about simulations 
and simulation-assisted reasoning. It enables the management of model assumptions. 
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contradictory or incomplete data, and increases the speed and accuracy of model val­
idation and analysis. It is capable of explaining the reasoning behind inferences using 
both the simulation and inference engine. Search in WIZER is performed using both 
simulation and knowledge inference. The amount of search is reduced as the knowl­
edge inferences, empirical data and knowledge, and virtual experiments constrain 
the search space. 

WIZER seeks to emulate scientists doing experiments and analyses via the scien­
tific method, instead of simply emulating an experimental setup. While other toolkits 
such as Swarm (http://wiki.swarm.org), TAEMS [25], and Repast 
(http://repast.sourceforge.net) are designed with the goal of assisting the design and 
implementation of agent-based systems, WIZER is designed to help with scientific 
experimentation, validation, analysis, and model improvement. WIZER is conceptu­
ally able to run on top of any simulation system, including those constructed using 
Swarm and Repast toolkits. WIZER is basically a logical reasoning, experimentation, 
and simulation control engine with statistical and pattern recognition capabilities. 
This is similar to techniques scientists employ when designing, executing, and ana­
lyzing experiments. WIZER differs from Evolutionary Programming [18] as it does 
not need a population of mutation candidates and the mutation operator. Instead, 
WIZER applies knowledge inference to simulations to design the next simulation 
run, based on scientific experimental method. If the result of inferences mandates 
a radical change, a revolution would occur. WIZER also differs from Evolutionary 
Strategies and Genetic Algorithms [14] as it does not use recombination/crossover 
operators. In short, WIZER employs a unique logical reasoning, simulation control 
and scientific method for doing virtual experiments. Explaining what a simulation 
system does and what happens in simulation to SMEs is important from validation 
perspective. Utilizing its inference engine, WIZER can provide automated expla­
nation of the happenings and emergent behaviors within a multi-agent simulation 
system. 

As shown in Figure 1, Alert WIZER takes in the simulation output data and de­
termines which data streams of the simulation outputs do not fall within the empir­
ical data value ranges and how. The WIZER Inference Engine takes the simulators 
causal diagram of what parameter influences which output data and the empirical 
constraints and confidence intervals on parameters to make a judgment on which 
parameters to change and how (including causal links and the model or agent sub­
model itself, if necessary). This results in new parameters for the next simulation. 
This simulation in turn yields new outputs which are fed back into WIZER. 

This cycle repeats until a user-defined validity level is achieved. Thus, WIZER 
consists of: 

• A system for determining which outcome variables match or fall within the ac­
ceptable range of the real data Alert WIZER. This system will create an "alert" 
when there is not a match. Inputs to Alert WIZER include real and virtual data. 
Real data include various types of data such as subject matter experts (SMEs) 
estimation of behavior, V\ 2"^, and 3^^ order statistics for data streams at the 
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Fig. 1. WIZER Diagram 

yearly, seasonal, monthly, and day of week level, and actual streams of data. 
Alert WIZER includes statistical tools. 

• An intelligent system for identifying which of the "changeable" parameters 
should be changed and how to improve the fit of the virtual to the real data the 
WIZER Inference Engine. This component uses a database relating parameters 
to the variables and modules they impact. This includes assumptions about the 
expected range for parameter values (according to SMEs) or best guesses, thus 
placing confidence measures on parameters. 

• A local response surface analysis feature that can run simple virtual experiments 
for parametric studies. 

The knowledge bases in the inference engine are populated with the knowledge 
about the simulator, simulation outcomes, domain facts and knowledge, assumptions, 
ontology, problem solving strategies, information about statistical tools it employs 
and other data. The knowledge bases contain both knowledge (hard or certain rules 
and facts) and assumptions (soft or uncertain rules and facts). Simulation outcomes 
provide measurements of the degree-of-support an assumption has. These different 
types of knowledge are included to enable the inference engine to reason about its 
reasoning. For example, knowledge about the simulation allows the inference engine 
to back up its symbolic reasoning with simulation outcomes and also to reason about 
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the simulation. Part of the knowledge base is portable between simulations, but users 
need to provide the remainder. 

The emergence of causal links based on low-level interactions can be probed by 
the inference engine, including probes to see what an individual agent does in its 
life and what events affected this agent and why, in addition to sample based probes. 
For sample based probes, WIZER conducts inferences based on the application of its 
included statistical tests. 

The WIZER Inference Engine was inspired by the rule-based Probabilistic Argu­
mentation Systems (PAS) [21] for handling assumptions. While a rule-based system 
is sufficient if knowledge engineers are able to check the causal relations inherent in 
rules, for large knowledge bases manual checks are cumbersome and prone to errors. 
Thus, there is a need for automated and formal causal checking. Fortunately, causal 
analysis has been treated mathematically [30]. WIZER uses a novel probabilistic 
argumentation causal system (PACS), which utilizes the probabilistic argumentation 
[21] in causal analysis [29]. Users of WIZER specify which rules are causal in nature 
and WIZER is capable of suggesting causal links and performing empirical compu­
tations to provide justification for these causal links. Results from social network 
analysis form one silo of domain knowledge fed into the WIZER inference engine. 
The inference engine in turn, along with the execution of virtual experiments in sim­
ulations, provides knowledge-based grounding for the emergence and evolution of 
social networks from low-level agent behaviors and interactions. The causal mech­
anisms encoded in WIZER enable formal computation of interventions or actions, 
instead of mere observation. This allows WIZER to make changes in parameters, 
causal links, and meta-models, and to analyze the consequences. In other words, 
WIZER can emulate what scientists do by changing and analyzing experiments. 

Causal analysis involves mechanisms (stable functional relationships), interven­
tions (surgeries on mechanisms), and causation (encoding of behavior under inter­
ventions). Associations common in statistics can characterize static conditions, while 
causal analysis deals with the dynamics of events under changing conditions. Sim­
ply turning off some potential causal links and re-simulating is insufficient and while 
counterfactual testing - checking would happen if (true) facts were false - can un­
cover causal effects, the method can fail in the presence of other causes or when other 
causes are preempted and it ignores the sufficiency aspect. These weaknesses of this 
(global) counterfactual test can be addressed by sustenance, providing a method to 
compute actual causation [29]. Sustenance means minimally supporting an effect. 
Actual cause is computed by constructing causal beams and doing local counter-
factual test within the beams. Causal beams are causal links that have been pruned 
to retain a subset of causal links that sustains the occurrence of an effect. Dynamic 
beams are simply causal beams with a time dimension [29]. 

To account for the probability of causation, the causal model [30][29] specifies 
the use of Bayesian priors to encode the probability of an event given another event. 
It does not distinguish between different kinds of uncertainty. It is unable to model 
ignorance, ignores contradictions and is incapable of expressing evidential knowl­
edge without the use of the probability distribution format. Since the intended use of 
WIZER is to do validation in environments with incomplete, contradictory, and un-
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certain knowledge and because WIZER needs to clearly delineate between assump­
tions and facts, we need an improved causal model, built by borrowing concepts 
from the Probabilistic Argumentation Systems (PAS). Table 1 shows the encoding 
of facts, assumptions, and rules for rule-based systems using probabilistic argumen­
tation, while Table 2 shows the encoding of facts, assumptions, and causations for 
causal analysis enhanced with PAS-like assumption management. In both tables, let 
Pi be proposition /, at be assumption /, causes be the causation operator, and ^ be 
the implication operator. 

Table 1. Rule-Based Encoding 

Type of Knowledge Logical Representation Meaning 

A fact 
A rule 
An uncertain fact 
An uncertain rule 

PI 
PI =^P2 
a l ^ P l 
a2 => (PI => P2) 

PI is true 
PI implies P2 
If al is true then PI is true 
If a2 is true then PI implies P2 

Table 2. Causation Encoding 

Type of Knowledge Logical Representation Meaning 

A fact PI PI is true 
A rule PI causes P2 PI causes P2 
An uncertain fact al =4> PI If a 1 is true then PI is true 
An uncertain rule a2 =» (PI causes P2) If a2 is true then PI causes P2 

We call Table 2's formalism the probabilistic argumentation causal systems 
(PACS). WIZER includes both rule-based and causal formalisms. PACS algorith­
mic details are derived from both PAS [21] and causal analysis [30]. Simulation 
virtual experiments can be seen as a proxy for real world experiments when doing 
real world interventions would be unrealistic or unethical. Causal analysis uses com­
putations based on real-world experimental and non-experimental data. WIZER adds 
another dimension to causal analysis: allowing quasi-experimental that is, simulated 
data. 

The internal workings of the WIZER Inference Engine are complex, but its ba­
sic operations are simple. Let P = p\, ...,/?„ be propositions, A = a\, ..,, a^ be 
assumptions, h be the hypothesis and K = c\ fi ... Pi c« be the knowledge base of 
clauses, where c/ is an element of the set of all possible A and P clauses. Let a be the 
(conjunctive) arguments supporting h. We have 

anK=>h 
or equivalently 



264 Yahja and Carley 

or equivalently 
^(-^K Uh)=>-^a 

In other words, if we know K and /z, we can compute the supports, that is, the 
arguments supporting h. The hypothesis his a. clause produced by Alert WIZER after 
comparing simulation data streams with empirical data. After finding the arguments 
supporting /i, the degree of support can be found, defined as 

dsp(h, K) = proh(a support aofh is valid \ no contradiction, K) 
Similarly, the degree of plausibility can be found, defined as 

dpl(h, K) = prob(no support of-^h is valid \ no contradiction, K) 
These two measures are used to determine which arguments are the most relevant 

to the hypothesis at hand, pinpointing which parameter values, causal links, and/or 
submodels should be changed. In other words, hypothesis h is the input to WIZER 
Inference Engine and the arguments supporting h are the output, leading to changes 
in parameter and meta-model values. 

The operations described above are performed for both rule-based and causal 
clauses. Then, for clauses denoted as causal, additional operations are performed to 
see whether and to what degree the causal relations are empirically correct, partially 
based on the degree of support and the degree of plausibility. Sustenance, causal 
beams and actual cause are also computed. WIZER also performs virtual experiments 
as needed. 

The intertwining causal computation and virtual experimentation capability of 
WIZER enhances R\CS and is useful in simulations to: 

• Provide a formal computational means to convert simulation results or happen­
ings to user-friendly causal sentences and also a mechanism to arrive at proba­
bility distributions or profiles for assumption variables. 

• Allow probing of existing and potential causal assumptions and links and ex­
amination of the robustness of causal links using empirical data and quasi-
experimental data obtained by simulations based on other known mechanisms 
and empirical data. For example, a simulation may have modeled Washington 
DC and policy analysts would like to know the effects of quarantining certain 
city blocks or closure of some major roads to mitigate the spread of smallpox. 
The mechanisms, data values, and stochastic processes in the city model them­
selves do not contain direct answers to the above causal question. Utilizing causal 
computation would allow this question to be answered. 

• Allow the formal modeling of interventions in simulations. 
• Allow symbolic values/events to be considered in determining causal relations. 

For example, the recent shortage of flu vaccine caused the CDC to recommend 
restrictions on who received the vaccine, resulting in a stockpile of unused flu 
vaccine, partly because some eligible people believed that none were available 
due to the news. WIZER would be able to probe similar kinds of cause and effect 
relationships. 

• Allow experimentation and simulation control. As WIZER modifies, runs, re-
modifies, and re-runs simulations, it uses causal mechanisms to keep track of 
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and help inform what causes a certain series of modifications to work or fail and 
to suggest possible next steps. 
Allow better inference by letting the inference engine run simulations in the midst 
of causal inferences as needed. This allows the examination of the empirical 
claims of causal inferences. 
Provide a way to automatically tweak agent meta-models and individual agents 
so that they are both realistic and able to coordinate in a realistic environment. 

5 Run Setup and Empirical Data 

WIZER was used to validate BioWar. As mentioned earlier, Bio War [7] is a city-scale 
spatial multi-agent social-network model capable of bioattack simulations. BioWar 
has a large number of variables and interactions. Application of the Spiral Develop­
ment model [4] to BioWar code development means that any previous validation of 
model predictions may no longer apply to a new version. 

We have implemented Alert WIZER, which takes the empirical data on school 
absences, workplace absenteeism, doctor visits, emergency room visits, with addi­
tional emergency room visitation data from SDI (Surveillance Data Inc.), and over-
the-counter drug purchase data. It also uses the outputs of the BioWar simulator and 
conducts minimum bound checking, maximum bound checking and mean compari­
son. 

The following empirical data was used to compute the empirical bounds and 
means for the Alert WIZER: 

• NCES Indicator 17, 2002 (Year 2000 data), for calculating school absenteeism 
http://nces.ed.gov/programs/coe/2002/section3/indicatorl7.asp 

• CDC Advance Data, from Vital and Health Statistics, no. 326, 2002, for calcu­
lating ER visits http://www.cdc.gov/nchs/data/ad/ad326.pdf 

• CDC Advance Data, from Vital and Health Statistics, no. 328, 2002, for calcu­
lating doctor visits http://www.cdc.gov/nchs/data/ad/ad328.pdf 

• 1997 US Employee Absences by Industry Ranked for determining work absen­
teeism http://publicpurpose.com/lm-97absr.htm 

• Over-the-counter (OTC) Drug Sales extracted from Pittsburgh Supercomputing 
Centers "FRED" data containing pharmacy sales data. 

BioWar simulation outputs include the data streams matching the above empiri­
cal data such as daily absences for each school. 

6 Preliminary Results 

WIZER was run on "Challenge 3" and "Challenge 4" data from BioWar [6] using an 
implementation of Alert WIZER. Challenge 3 data consists of 4 data streams with 10 
simulation runs for each attack case (no attack, anthrax attack, and smallpox attack) 
for each of 4 cities. The city population and locations (buildings and facilities) were 

http://nces.ed.gov/programs/coe/2002/section3/indicatorl7.asp
http://www.cdc.gov/nchs/data/ad/ad326.pdf
http://www.cdc.gov/nchs/data/ad/ad328.pdf
http://publicpurpose.com/lm-97absr.htm
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scaled at 20%. The parameters were adjusted following an execution of preliminary 
inference engine steps based on a partial causal diagram of Bio War. We present the 
means from the four Challenge 3 simulation output data streams in Tables 3-6. 

Table 3 shows that the simulated means of school absenteeism rates for normal 
simulation cases (no bioattack) fall between lower and upper empirical bounds for 
the simulations of Norfolk, Pittsburgh, San Diego, and "Veridian Norfolk" (a part of 
Norfolk specified by Veridian, Inc.). For anthrax attack cases, the simulated means 
are higher than normal means but still lower than the empirical higher bounds. This 
is plausible as the empirical higher bound contains (contagious) influenza outbreaks 
and other disease cases. For smallpox attacks, however, the simulation mean for one 
city - San Diego - is higher than the empirical higher bound. Smallpox is highly 
contagious so this is also plausible. For other cities, the simulated means of school 
absenteeism remain within expected bounds. 

Table 3. School Absenteeism 

City, scale Lower bound Higher bound No attack Anthrax Smallpox 

Norfolk, 20% 3.C 
Pittsburgh, 20% 3.C 
San Diego, 20% 3.C 
Veridian Norfolk, 20% 3.04% 

5.18% 
5.18% 
5.18% 
5.18% 

3.45% 
3.52% 
3.78% 
3.73% 

3.75% 
4.67% 
3.81% 
4.05% 

3.55% 
4.46% 
5.57% 
4.31% 

For the workplace absenteeism (Table 4), the simulated means are within the 
empirical bounds for normal (no attack) cases for all the cities. In case of anthrax 
attack, the workplace absenteeism means are higher than those for normal cases; and 
in three of four cities, higher than the empirical higher bound. For smallpox attack, 
the simulated means are higher than those for normal cases, and higher than the 
empirical higher bound for one of the four cities. 

Table 4. Workplace Absenteeism 

City, scale Lower bound Higher bound No attack Anthrax Smallpox 

Norfolk, 20% 2.30% 
Pittsburgh, 20% 2.30% 
San Diego, 20% 2.30% 
Veridian Norfolk, 20% 2.30% 

4.79% 
4.79% 
4.79% 
4.79% 

2.72% 
2.77% 
3.26% 
3.16% 

4.65% 
5.79% 
4.99% 
5.50% 

2.82% 
3.99% 
5.78% 
3.81% 

Table 5 shows that for doctor visits the simulated means for the four cities fall 
within the empirical bounds for normal (no attack) cases. For anthrax attack cases, 
the simulated means are higher than those for normal cases for two cities, and slightly 
lower for two other cities. For smallpox attacks, the means are higher than those for 
normal cases for three cities and the same for one city. The results for attack cases 
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are imperfect but indicate correct trends. All means for anthrax and smallpox attacks 
are within the empirical bounds. 

Table 5. Doctor Visit per Person per Year 

City, scale Lower bound Higher bound No attack Anthrax Smallpox 

Norfolk, 20% 0.415 
Pittsburgh, 20% 0.415 
San Diego, 20% 0.415 
Veridian Norfolk, 20% 0.415 

1.611 
1.611 
1.611 
1.611 

0.499 
0.493 
0.726 
0.707 

0.476 
0.485 
0.753 
0.821 

0.499 
0.573 
0.796 
0.738 

For emergency room visits (Table 6), the simulated means for four cities fall 
within the empirical bounds for normal (no attack) cases. For anthrax attacks, the 
simulated means are higher than those of normal cases for two cities and slightly 
lower for two others. For smallpox attacks, the simulated means are higher than those 
for normal cases for three cities and the same for one city. The results for attack cases 
are imperfect but indicate correct trends. 

Table 6. Emergency Room Visit per Person per Year 

City, scale Lower bound Higher bound No attack Anthrax Smallpox 

Norfolk, 20% 0.056 
Pittsburgh, 20% 0.056 
San Diego, 20% 0.056 
Veridian Norfolk, 20% 0.056 

Challenge 4 data has 12 data streams: school absenteeism, work absenteeism, 
doctor visits, emergency room visits, emergency room visits using the Surveillance 
Data Inc. data, and seven drug type purchase data streams. Table 7 shows the per­
centage of validated data streams for six cities for the no attack case. 

Table 7. Percentage of "Challenge 4" Simulation Output Data Streams Validated 

0.232 
0.232 
0.232 
0.232 

0.112 
0.109 
0.149 
0.161 

0.108 
0.106 
0.159 
0.187 

0.112 
0.129 
0.188 
0.168 

City Data Streams Validated 

San Francisco 5 out of 12, or 41.67% 
San Diego 7 out of 12, or 58.33% 
Pittsburgh 7 out of 12, or 58.33% 
Norfolk 6 out of 12, or 50.00% 
Hampton 4 out of 12, or 33.33% 
Washington DC 4 out of 12, or 33.33% 
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7 Discussion 

Automation of simulation experiment control and analysis is rarely viewed as a crit­
ical feature of simulation systems; instead, experimental control, analysis, interven­
tion, validation, and model-improvement are left for humans to perform. Most sim­
ulation platforms aim to provide tools to ease the coding of simulation systems, 
rather than automating the analysis, control, validation, intervention, and model-
improvement. WIZER indicates that such automation can be very useful, especially 
when dealing with socio-technical and public health problems which have a high 
degree of uncertainty and interactions. Based on empirical data and knowledge, sim­
ulations can bound the inferences and allow the empirical claims of the inferences 
to be investigated. At the same time, knowledge-based inference and control of sim­
ulation can reduce the number of simulation searches and virtual experiments that 
need to be conducted. Simulations and inferences on them here act like a dynamic 
version space on both search and knowledge spaces. 

The results presented in this paper are preliminary. More WIZER and simulation 
runs are needed to get better statistics - such as the median and variance -, and to 
evaluate error margins, the effects of sample choices, search space traversal, and the 
performance of combined simulation and knowledge search, including the metrics 
for measuring the amount of search reduction in both search space and knowledge 
space. The performance of WIZER will be compared with that of human subject 
matter experts. 
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Robustness and Flexibility for Large Scale 
Coordination 



Handling Coordination Failures in Large-Scale 
Multi-Agent Systems 

Gal A. Kaminka 
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Summary. Agents monitor other agents to coordinate and collaborate robustly. The goals 
of such monitoring include detection of coordination failures. However, as the number of 
monitored agents is scaled up, two key challenges arise: (i) Agents become physically and 
logically unconnected (unobservable) to their peers; and (ii) the number of possible coordi­
nation failures grows exponentially, with all potential interactions. This paper examines these 
challenges in teams of cooperating agents. We provide a brief survey of the evolution of two 
key approaches to handling coordination failures in large-scale teams: Restricting the number 
of agents that must be monitored, and using model-based rather than fault-based detection 
methods. We focus on a monitoring task that is of particular importance to robust teamwork: 
detecting disagreements among team-members. 

1 Introduction 

Agents in realistic, complex, domains must monitor other agents to accomplish their 
tasks, detect failures, coordinate, and collaborate. Indeed, the importance of agent 
monitoring in deployed multi-agent systems has long been recognized in theory (e.g., 
[2, 7, 9]), and in practice. Monitoring has been discussed in the context of industrial 
systems (e.g., [16]), to virtual environments for training and research (e.g., [36, 37, 
30, 31]), to human-computer interaction (e.g., [27]), and multi-robot teams (e.g., 
[28, 5, 21]). Agent monitoring infrastructure is of particular importance in teams 
of cooperating agents, since the correct execution of teamwork mandates that team-
members come to agree on the task that is jointly executed by the team, and manage 
interdependencies among team-members [2, 9]. 

One specific goal of monitoring in teams is detection and resolution of teamv^ork 
and coordination failures [24, 29, 38]. These may occur because of unanticipated 
environment states—likely in complex, dynamic environments—or from communi­
cation, sensor, or actuator uncertainties. For instance, intermittent failures in com­
munications may cause a failure where one agent has sent a message, while its peers 
have not received it. 

Thus deployed multi-agent systems must include facilities for detecting, diagnos­
ing, and resolving failures. Indeed, a number of investigations have begun to explore 
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mechanisms for detecting failures in coordination and teamwork [23, 25, 24, 3, 29, 
38] and for diagnosing such failures [22, 32, 33, 12, 17]). 

However, large-scale multi-agent systems—where the number of agents is the 
principal scale factor—pose a number of challenges to the ability of agents to mon­
itor each other, and thus to handle failures. Two of these challenges are: (i) Limited 
connectivity, where agents become physically and logically separated, and thus less 
able to monitor each other; and (ii) a combinatorial complexity of possible failures, 
as the number of possible failures grows with the number of all possible interactions 
between failures. 

This paper discusses these challenges in depth, and explores their significance in 
large-scale multi-agent systems. We also discuss the implications of these challenges 
with respect to existing approaches to failure detection. We find in the literature two 
approaches to failure detection. Some investigations take an approach based on fault-
models, where possible faults are enumerated at design time and recognized at run­
time. Other investigations take a model-based approach where agents detect failures 
at run-time as deviations from a model of the normative coordination in the system. 

To illustrate, we focus on the example of detecting disagreements—a principal 
failure in multi-agent teamwork—to show the evolution of existing methods in recent 
years to address large-scale systems. We show how an analysis of the monitoring 
requirements of disagreement detection can lead to improved, reduced, bounds on 
the connectivity of team-members. We also discuss relevant model-based detection 
work, which can represent the state of multiple agents together, and can therefore be 
utilized for highly-scalable disagreement detection. 

This chapter is organized as follows. Section 2 provides motivation for this work 
by showing concrete examples of limited connectivity and combinatorial failure 
complexity in monitoring for disagreements. Section 3 focuses on limited connec­
tivity, and discusses a general approach in which only specific key agents must be 
monitored, while detection is guaranteed. Section 4 focuses on the exponential com­
plexity of the number of possible coordination failures. Finally, Section 5 concludes. 

2 IVIotivation and Background 

Teamwork literature, addressing human and synthetic teams, has often emphasized 
the importance of team-members being in agreement on various features of their 
state, such as goals, plans, and beliefs^. Teamwork theory often defines agreement as 
a state of mutual belief, where agents reason to infinite recursion about their beliefs 
and their beliefs in others' beliefs in a proposition. For instance, SharedPlans theory 
requires team-members to mutually believe in a shared recipe [9] during the planning 
and execution phases of the task; the Joint Intentions framework emphasizes mutual 
belief in the team goals' selection, as well as in team-members' beliefs about the 
goals' achievability and relevance [2, 26]. Other investigations of agent teams have 

^ Of course, the literature also addresses other critical features of teamwork aside from agree­
ment. But agreement is a repeating theme in recent work. 
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emphasized agreement on team plans to be jointly executed by team-members [16], 
on hierarchical team operators [35], on tasks to be executed collectively [28, 6, 21], 
etc. Investigations of human teamwork have not only emphasized agreement on the 
joint task, but also agreement on features of the environment that are important to 
the task being carried out by the team [1]. 

However, the literature also recognizes that achieving and maintaining agreement 
can be difficult. Teamwork theory recognizes that attainment of agreement by mutual 
belief is undecidable [10] and must therefore be approximated in practice. Such ap­
proximations frequently involve assumptions of trustworthiness of team-members, of 
foolproof communications [16], of team-members being able to observe each other 
[14], and/or of a mutually-visible environment [8]. As is often the case with ap­
proximations, they sometimes fail in practice (e.g., due to communications failures, 
sensing differences due to different physical locations of agents, etc.), and therefore 
team-members may find themselves in disagreement with each other. Such disagree­
ments are often catastrophic, due to the unique importance of agreement in collabo­
ration. 

It is therefore critical that teams are monitored to detect such disagreements. A 
monitoring agent that identifies the state of team-members can compare the state of 
different team-members and detect differences on state features that, by design or by 
selection, should have been agreed upon [24]. However, as the number of monitored 
agents is scaled up, two challenges arise: (i) difficulty to observe or communicate 
with all agents, due to latency, range, occlusion and other separation factors (Section 
2.1); and (ii) an exponential number of possible coordination failures (Section 2.2). 

2.1 Limited Connectivity 

As the number of agents grows, agents become logically and physically distributed, 
and cannot maintain continuous contact with each other. This may occur due to phys­
ical separation factors, such as occlusion and limited sensor range; or it may occur 
due to logical separation, such as limited communication reliability, interference, 
latency, or bandwidth. We use the term limited connectivity in a general sense to 
describe this phenomenon. Limited connectivity thus denotes both limited ability to 
observe a particular agent's actions as well as limited ability to communicate with 
the agent. 

The challenge of limited connectivity is of course only of limited concern in 
small-scale systems. Given a few cycles, the agents can typically integrate multiple 
attempts at communications and sensing of the world, over time, to form a fairly co­
herent mental picture of what their peers are up to. However, as the number of agents 
grows, the ability to integrate such information over time diminishes rapidly. For in­
stance, existing peer-to-peer (P2P) include millions of simultaneously-active nodes. 
Yet not one node is able to communicate directly with all of its peers at once, due to 
both bandwidth and processing power issues. Even spreading the efforts over time 
will not be sufficient, as the duration of time required is too long for any practical 
interest. 
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2.2 Combinatorial Failure Complexity 

A different concern with large scale system is the number of potential coordination 
failures it may get into. Suppose each of Â  agents may be in one of k internal states. 
Then the number of possible joint states is k^. In loosely-coupled systems, each agent 
is essentially independent of its peers, and may select between its k possible states 
freely. In such systems, the vast majority of joint states—if not all—are considered 
valid states. 

However, in a coordinated multi-agent system, the selection of an internal state 
by an agent is conditional by the selection of its peers' internal state. In other words, 
agents move between joint states together. Typically, only a limited portion of these 
states would be valid coordinated states, from the designer's perspective. Thus most 
joint states may in fact be invalid from a coordination point of view. 

Disagreements are a good example of this. Suppose a team of Â  agents agrees 
that their selection of internal state would be synchronous, i.e., for every selected 
state of one agent, all others must be in some agreed-upon internal state. For sim­
plicity in notation, we describe this case as mutual selection of states 1.../:, i.e., 
all all agents select the same state. There would be 0{k) valid agreement joint states, 
and the rest of the /c" joint states would be considered invalid—coordination failure— 
states. 

Note that the number of possible coordination failure states grows exponentially 
in the number of agents. Thus large-scale systems where agents coordinate may have 
to face an exponential number of possible faults. 

3 Monitoring Graphs for Limited Connectivity 

As the number of monitored team-members increases, it becomes increasingly dif­
ficult to monitor all of them (Section 2). Thus a key question is how to guarantee 
failure-handling results while limiting the number of agents that must be monitored. 

The approach we take to this involves the construction and analysis of monitoring 
graphs, which represent information about which agent can monitor whom. We show 
that for disagreement detection, one can set conditions on the structure of the graph 
which, when satisfied, guarantee that detection is complete and sound. Complete 
detection guarantees all failures will be detected (i.e., no false negatives). Sound 
detection guarantees only failures will be detected (i.e., no false positives). Using 
the conditions we explore in this section, one can guarantee sound and complete 
detection of disagreements while setting conditions on the connectivity of agents. 

Definition 1. A monitoring graph of a team T is a directed (possibly cyclic) graph in 
which nodes correspond to team-members ofT, and edges correspond to monitoring 
conditions: If an agent A is able to monitor an agent B (either visually or by com­
municating with it), then an edge {A^B) exists in the graph. We say that monitoring 
graph is connected, if its underlying undirected graph is connected. 
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If the monitoring graph of a team is not connected, then there is an agent which is 
not monitored by any agent, and is not monitoring any agent. Obviously, a disagree­
ment can go undetected in such a team: If the isolated agent chooses an internal state 
different from what has been agreed upon with its peers, it would go undetected. 

It is easy to see that if the graph is connected, and each agent knows exactly the 
selection of its monitored peer, than sound and complete detection is possible, in a 
distributed fashion. Each agent A monitors at least one other agent B (or is monitored 
by another agent B).lfA selects an internal state different from B, than at least one 
of them would detect the disagreement immediately. For instance, if A monitors B— 
and knows with certainty B's state—than simple comparison with A's selected state 
is all that is needed. 

In the general case, however, coimectivity is insufficient. Suppose an agent A 
has selected state Pi, and is monitoring another agent B that has selected state P2. 
A disagreement exists here since agent B should have selected Pi. However, since 
the internal state of B may not be known to A with certainty, A may have several 
interpretations ofB's chosen state. The set of these interpretations may contain Pi, in 
which case A may come to incorrectly believe that B is not in a state of disagreement 
with A. 

To treat this formally, let us use the following notation when discussing agent A's 
hypotheses as to the state of an agent B: Suppose B's state is P (for instance, P is a 
plan selected by B). We denote by M{A,B/P) the set of agent-monitoring hypotheses 
that A constructs based on communications from B, or inference from 5's observable 
behavior (i.e., via plan recognition). In other words, M{A,B/P) is the set of all A's 
hypotheses as to i?'s state, when B's state (e.g., selected plan) is P. Note that when A 
monitors itself, it has direct access to its own state and so M{A,A/P) = {P}. 

We make the following definitions which ground our assumptions about the un­
derlying monitoring process that implements M: 

Definition 2, Given a monitoring agent A, and a monitored agent B, we say that 
A's monitoring of B is complete if for any state P that may be selected by B, 
P € M{A,B/P). If A is monitoring a team of agents B\,...,Bn, we say that A's 
team-monitoring of the team is complete if A's monitoring of each of B\,... ,Bn is 
complete. 

Monitoring completeness is commonly assumed (in its individual form) in plan-
recognition work, (e.g., [34, 4, 15]), and generally holds in many applications. It 
means that the set M{A,B/P) includes the correct hypothesis P, but will typically 
include other matching hypotheses besides P. Using this notation, we can now for­
mally explore disagreement detection under uncertainty in monitoring. 

Centralized Disagreement Detection 

In general, as discussed above, the condition of monitoring graph coimectivity is 
necessary, but insufficient, to guarantee complete and sound detection. Indeed, in 
[23], Kaminka and Tambe show that if a single centralized monitoring agent monitors 
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all others, it can guarantee either sound or complete detection of disagreements, but 
not both (Figure 1-a). 

However, Kaminka and Tambe found that if certain key agents exist, then it may 
be possible to reduce the monitoring requirements in the system. Key agents have the 
property that their behavior, when selecting one of two given states, is sufficiendy 
unambiguous, such that any agent that monitors them and has selected either one of 
the two states can identify with certainty whether a disagreement exists between it 
and the key agents. We repeat here the formal definition of key agents from [24]: 

Definition 3. Let P\, Pi be two agent states. Suppose an agent A is monitoring 
an agent B. If M{A^B/P\) r\M{A^B/P2) = Q for any agent A, we say that B has 
observably-different roles in P\ and P2, and call B a key agent in {^1,̂ 2}- ^^ as­
sume symmetry so that if two states are not observably different, then M{A,B/P\) fi 
M{A,B/P2)D{PiP2}. 

The key-agent is the basis for the conditions under which a team-member A1 will 
detect a disagreement with a team-member A2. This is done by preferring maximally-
coherent hypotheses as to the state of the monitored agent. Maximally-coherent hy­
potheses are optimistic—they are hypotheses that minimize the number of disagree­
ments between the two agents. The use of such hypotheses leads to sound disagree­
ment detection [23, 24]. 

An agent A1 (selecting state Pi) will detect a disagreement with a team-member 
A2 (selecting a different state P2) if A2 is a key agent for the plans Pi, P2 [24, Lemma 
1]. Ai knows that it has selected Pi. If A2 has selected P2, and is a key-agent in Pi 
and P2, then Ai is guaranteed to notice that a disagreement exists between itself and 
A2, since A2 is acting observably different than it would if it had selected Pi. Ai can 
now alert its teammate, diagnose the failure, etc. 

When key agents exist in a team, it is sufficient for a single agent to monitor them 
to guarantee sound detection in the centralized case [20]. More accurately, if the team 
is observably-partitioned, i.e., a key agent exists for any pair of internal states poten­
tially selected by team-members, then it is sufficient for a single agent to monitor 
only the key agents, to guarantee sound detection of disagreements. However, all 
key agents must be monitored (Figure 1-b). 

Distributed Disagreement Detection 

We now consider the case of distributed monitoring settings, where team-members 
monitor each other. First, in [23] Kaminka and Tambe have shown that if at least a 
single key agent exists for every pair of plans (i.e., the team employs an observably-
partitioned set of team plans), and if all team-members monitor all agents, then de­
tection is not only sound, but also complete (see Figure 2-a for illustration). Later 
on [24, Theorem 4], the result was clarified: All agents must monitor the key agents 
only—all of them—and the key agents must monitor each other (Figure 2-b). Guar­
anteed sound and complete detection here means that at least one team-members will 
detect a disagreement if one occurs, and no false detections will take place. 
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(a) Centralized moni­
toring, sound or com­
plete, but not both, in 
[24]. 

(b) Centralized moni­
toring, sound, in [20]. 

Fig. 1. Illustration of centralized monitoring graphs. Non-filled dots indicate key agents. 

(a) Distributed moni­
toring, in [23]. 

(b) Distributed moni­
toring, in [24]. 

(c) Distributed moni­
toring, in [20]. 

Fig. 2. Illustration of distributed monitoring graphs. Non-filled dots indicate key agents. All 
cases allow for sound and complete disagreement detection. 

This result is of particular interest to building practical robust teams, and fortu­
nately the conditions for it are often easy to satisfy: Teams are very often composed 
such that not all agents have the same role in the same plan, and in general, roles 
do have observable differences between them. Often, the set M{A,B/P) can be com­
puted offline, in advance; this allows the designer to identify the key agents in a 
team prior to deployment. Furthermore, any agent can become a key-agent simply 
by communicating its state to the monitoring agent and therefore eliminating ambi­
guity; thus a team can use highly-focused communications to guarantee detection. 

However, the requirement that all key-agents be monitored prohibits deployment 
of scaled-up applications: First, as the size of the team grows, limited connectivity 
becomes more common, since agents become more physically and logically dis­
tributed. Thus not all agents, and in particular key agents, are going to be visible. 
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Second, the monitoring task itself would need to process observations of each agent. 
Thus reducing the number of observed agents can improve monitoring run-time in 
practice. 

The theorem below takes a step towards addressing this issue by providing more 
relaxed conditions on the connected nature of the monitoring graph, in particular with 
respect to the connectivity of the nodes representing key agents. These conditions 
are: (i) every non-key agent selecting a state P monitors a single key agent for each 
possible pair of plans involving P (i.e., for each pair of plans, where one of the plans 
is P)\ and (ii) the monitoring sub-graph for all key agents for a given pair of states 
forms a clique (i.e., key agents are fully connected between themselves). This case 
is illustrated in Figure 2-c. 

Theorem 1. Let Tbea team in which: (i) Each team-member A, selecting a state P\, 
who is not a key agent for P\, P2 monitors one key agent for P\, P2; (ii) all key agents 
for a pair of states X,Z monitor all other key agents for X^Z (forming a bidirectional 
clique in the underlying monitoring graph); (Hi) the team is observably-partitioned; 
and (iv) all monitoring carried out is complete, and uses maximal-coherence. Then 
disagreement detection in T is sound and complete. 

Proof By induction on the number of agents in T. The full proof is provided in [ 19]. 

This theorem allows teams to overcome significant connectivity limitations, 
without sacrificing detection quality. The theorem translates into significant free­
dom for the designer or the agents in choosing whom (if any) to monitor; when a 
monitored agent is unobservable, an agent may choose to monitor another: Non-key 
agents need monitor only a single key agent, rather than all key agents (for every pair 
of states). The upper-bound the theorem provides is more general than may seem at 
first glance. First, the theorem holds for any state feature of interest—beliefs about 
a shared environment, goals, etc.; it is up to the designer to pick a monitoring tech­
nique that acquires the needed information for constructing the monitoring hypothe­
ses. Second, the theorem does not depend at all on the method by which monitoring 
occurs, whether by communications or by observations. Thus the connectivity of a 
monitoring graph does not have to be maintained visually. Some or all of the edges 
in the monitoring graph may actually correspond to communication links between 
agents. 

Though this theorem represents a significant advance in lowering the bound on 
the number of agents that must be monitored, all key agents must still monitor each 
other. This is a critical constraint in practice. For instance, we have reconstructed the 
visual monitoring graph in thousands of RoboCup game situations, to find that even 
with this new bound, sound and complete disagreement detection would have been 
possible without communications only in small percentage (approximately 5%) of 
a game. Typically, each RoboCup player can only see 2-3 key agents, this means 
that key agents cannot typically monitor all others. To illustrate. Figure 3 shows the 
monitoring graph of two teams overlayed on a screen-shot of an actual game situa­
tion. For both teams, the monitoring graph does not guarantee sound and complete 
disagreement detection under the known bound, despite the fact that it is connected. 
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This empiric constraint raises the bar on the challenge to find a lower bound on the 
number of agents that must be monitored to guarantee detection. 
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Fig. 3. Monitoring graphs in a RoboCup simulation-league game situation. 

4 Model-Based Disagreement Detection 

There are, in general, two approaches for detecting (and later, diagnosing) failures 
[11]. The first is called a consistency-based approach (and sometimes, model-based). 
A model of the correct behavior of the system is utilized to make predictions as to 
the observed output of the system in question. When these predictions fail, a fault is 
detected. Provided that the model is sufficiendy detailed, it may be used to identify 
the exact nature of the failure by a process of model-based diagnosis. The second ap­
proach is fault-model-based (fault-based, for short). Here, models of possible faults 
are matched against the observed behavior of the system. When the observed behav­
ior matches the models, an alarm is triggered. Often, fault-models are used together 
with prescribed resolution procedures, which are called into action to resolve the 
faults that were detected. 

The same two approaches can be found in literature addressing coordination fail­
ure detection and diagnosis. On one hand, investigations such as [22, 23, 24, 20, 29] 
focus on using models of the correct behavior of agents to detect failures as devia­
tions from the model, while others take a fault-based approach [25, 13, 3, 12, 38]. 
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4.1 Detection Based on Fault-Models 

We begin by examining the use of fault models to detect coordination failures. Del-
larocas and Klein [25, 3] have proposed a centralized approach to detecting failures 
(which they refer to as exceptions) in coordination. Their work utilizes agent sen­
tinels, which monitor agents to identify their state or actions, and report on it to a 
centralized fault detection system. The system then matches the reported informa­
tion against a database of known coordination failures, for detection. 

An important facet to this work is the population of the fault database. Unlike 
standard fault-model approaches, where fault models are closely tied to the domain 
and task at hand, Klein and Dellarocas propose to use general coordination fault-
models. These are generated offline, before the deployment of the system, by manual 
analysis of domain-independent coordination models. 

A different—distributed—approach is taken by Horling et al. [13, 12]. They 
present an integrated failure-detection and diagnosis system for a multi-agent sys­
tem in the context of an intelligent home environment. The system uses the TAEMS 
domain-independent multi-agent task-decomposition and modeling language to de­
scribe the ideal behavior of each agent. The agents are also supplied with additional 
information about the expected behavior of the environment they inhabit under dif­
ferent conditions, and their role within the multi-agent organization. A distributed 
diagnosis system, made of diagnosis agents that use fault-models, is used to identify 
failures in components (such as erroneous repeated requests for resources) and ineffi­
ciencies (such as over- or under-coordination). The fault-models are used in planning 
monitoring actions, in identifying failures responsible for multiple symptoms, and in 
guiding recovery actions. Multiple diagnosis agents may use communications to in­
form each other of their actions and diagnoses. 

A key issue with fault-model approaches is their scalability, given that the num­
ber of possible faults in large-scale multi-agent systems is likely to be exponential. 
Models that attempt to be specific to agents (e.g., "If A does X and B does Y then that 
is a failure", "If A does X and C does Z then that is a failure") are not likely to scale 
well. On the other hand, fault models that can utilize some abstraction or capture 
general failure conditions may do better. 

As an example, Wilkins, Lee, and Berry [38] offer an execution monitoring 
approach which encompasses both coordination and task-execution failures. Their 
work introduces a taxonomy of generic failure types, which must be adapted and 
specialized to the domain and task. Agents responsible for monitoring rely on com­
municated state reports from the monitored agents to identify failures. While experi­
ments with the system were carried out only on relatively small multi-agent systems, 
the modeling of the failures shows example of how fault-models can be sufficiendy 
non-specific so that they may be reused in larger-scale systems. For instance, the fault 
models included distance failures (units getting too close), which are triggered when 
an adversary gets closer to a friendly unit). It does not matter who the adversary or 
friendly units are, nor their specific location, etc. 

A common theme running through all of the above works is that they mosdy 
ignore the issue of uncertainty in monitoring, and utilize communications or direct 
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observations to acquire knowledge as to the state of monitored agents. This is a 
potentially limiting factor in their use in large-scale networks, where limited connec­
tivity will necessarily lead to uncertainty in monitoring. 

4.2 Model-Based Detection 

Our own work—and those of others—took a different approach to detecting failures. 
This consistency-based approach utilizes a model of ideal behavior (in terms of the 
relationships), not a model of how failure symptoms relate to possible failure diag­
noses. The model-based approach has the advantages of generality and model re-use 
[11]. In particular, fault models, as described above, are anticipatory; they are only 
able to capture failures which the designer has been able to anticipate in advance. A 
consistency-based approach to diagnosing failures is not limited in this respect. 

We focus here on disagreement detection. In order to detect disagreements, the 
monitoring agent must first know which internal states are ideally to be agreed upon. 
Executable teamwork models such as STEAM [35] or GRATE* [16] allow the de­
signer to specify hierarchical team plans whose execution must be synchronized 
across agents. To detect a disagreement, we compare the team plans selected by 
different agents. If they do not match, then a disagreement has occurred [24]. 

The seeming simplicity of the task is misleading. In the general monitoring case, 
there can be multiple hypotheses as to the plan selected by each individual. As a 
result, there can be an exponential number of hypotheses for the team as a whole. To 
address this, the techniques described in the previous section can guarantee detection 
results, as long as we select maximally-coherent hypotheses. However, this would 
seem to require going over the exponential number of hypotheses. 

Fortunately, this is not the case. Initial work used the RESL plan-recognition 
algorithm to represent—implicitly—all possible hypotheses [24]. The savings here 
were significant, as each agent was modeled individually, and so memory use was 
0{NL) where Â  is the number of agents, and L the size of all possible plans for a 
single agent. However, run-time was still essentially 0{L^), as the algorithm still had 
to go through multiple hypotheses. 

Recently, this result was improved, with the YOYO algorithm [20]. YOYO rep­
resents all agents in a single structure, which can only represent fully-coherent hy­
potheses, i.e., no disagreements. The key observation here is that if something is not 
representable in YOYO, than it must indicate a disagreement. Thus YOYO detects 
failures essentially by trying to interpret their actions as if they are not in disagree­
ment. If there is no way to do it, then a disagreement must have occurred. YOYO 
is thus maximally coherent, and perfectly suited to the monitoring techniques dis­
cussed in the previous section. Its space requirements are 0{N-^L) and runtime is 
0{N + L). We refer the interested reader to [20] for additional details. 

5 Discussion and Future Work 

Multi-agent literature has often emphasized that an agent must monitor other agents 
in order to carry out its tasks. However, as the numbers of agents in deployed teams 
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is scaled up, the challenges of limited connectivity and an exponential number of 
potential failures are raised. This paper has discussed recent approaches addressing 
these challenges, in the context of a critical monitoring task—detection of critical 
disagreements between teammates. 

However, many open challenges exist in monitoring large-scale multi-agent sys­
tems. One important challenge is in reducing the load on the monitoring agent. Dur-
fee [7] discussed decision-theoretic and heuristic methods for reducing the amount of 
knowledge that agents consider in coordinating. The methods include pruning nested 
(recursive) models, using communications to alleviate uncertainty, using hierarchies 
and abstractions, etc. This work is complementary to the methods discussed above. 
We focus on monitoring in teams of cooperating (rather than self-interested) agents, 
allowing exploitation of the fact that agents are coordinating, both to limit connec­
tivity, as well as to use model-based techniques in detection. Thus, while Durfee's 
work focuses on reducing computational loads in monitoring each single agent, our 
work focuses on reducing the number of monitored agents, and on savings possible 
only when monitoring teams together. 

Recent work on model-based diagnosis has also begun to address limited con­
nectivity, though indirectly, and only to a limited extent. Work by Roos et al. [32, 33] 
has examined the use of model-based diagnosis by agents diagnosing a distributed 
system. While the methods describe do not address coordination failures, they are 
certainly relevant in terms of discussing the type of connectivity assumptions re­
quired for the diagnosis to work. Our recent preliminary work [18] on the use of 
model-based diagnosis of disagreements also limits connectivity: A key focus is on 
using only a handful of agents to represent all others in the diagnosis process, thus 
limiting runtime and communication load. 
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Summary. As a paradigm for coordinating cooperative agents in dynamic environments, 
teamwork has been shown to be capable of leading to flexible and robust behavior. How­
ever, when teamwork is applied to the problem of building teams with hundreds of members, 
its previously existing, fundamental limitations become apparent. In this paper, we address the 
limitations of existing models as they apply to very large agent teams. We develop algorithms 
aimed at flexible and efficient coordination, applying a decentralized social network topology 
for team organization and the abstract coordination behaviors of Team Oriented Plans (TOPs). 
From this basis, we present a model to organize a team into dynamically evolving subteams, 
in order to flexibly coordinate the team. Additionally, we put forward a novel approach to 
sharing information within large teams, which provides for targeted, efficient information de­
livery with a localized reasoning process model built on previously incoming information. We 
have developed domain- independent software proxies, with which we demonstrate teams of 
an order of magnitude larger than those previously discussed in known published work. We 
implement the results of our approach, demonstrating its ability to handle the challenges of 
coordinating large agent teams. 

1 Introduction 

When a group of agents coordinates via teamwork, they can flexibly and robustly 
achieve joint goals in a distributed, dynamic and potentially hostile environment[7, 
12]. Using basic teamwork ideas, many systems have been successfully imple­
mented, including teams supporting human collaboration[4, 26], teams for disaster 
response[19], for manufacturing[12], for training[28] and for games[14]. While such 
teams have been very successful, their sizes have been severely limited. To address 
larger and more complex problems, we need teams that are substantially larger, yet 
retain the desirable properties of teamwork. 

The key to the success of previous teamwork approaches is the explicit, de­
tailed model each agent has of the other agents and the joint activity of the team. 
Team members use these models to reason about actions that will aid the achieve­
ment of joint goals[ll, 28]. However, when the size of a team is scaled up, it be-

http://tt.edu
http://cmu.edu


288 Xu, Liao, Scerri, Yu, Lewis and Sycara 

comes unfeasible to maintain up-to-date, detailed models of all other teammates, 
or even of all team activities. Specifically, the communication required to keep the 
models up to date does not scale well with the number of agents. Without these 
models, key elements of both the theory and operationalization of teamwork break 
down. For example, without accurate models of team activities, STEAM's commu­
nication reasoning[28] cannot be applied, nor can Joint Intention's reasoning about 
committments[ 11 ]. 

In this paper, we present a model of teamwork that does not rely on the accurate 
models of the team that previous approaches to teamwork use. By not requiring ac­
curate models, we limit the required communication and thus make the approach ap­
plicable to very large teams. However, giving up the accurate models means that the 
cohesion guarantees provided by approaches such as Joint Intentions can no longer 
be provided. Instead, our algorithms are designed to lead to cohesive, flexible and 
robust teamwork with high probability. 

The basic idea is to organize the team into dynamically evolving, overlapping 
subteams that work on sub-goals of the overall team goal. Members of a subteam 
maintain accurate models of each other and the specific subgoal on which they are 
working. To ensure cohesion and minimize inefficiency across the whole team, we 
connect all agents of the whole team into a network. By requiring agents to keep 
their neighbors in the network informed of the subgoals of subteams they are mem­
bers of, there is high probability that inefficiencies can be detected and subsequently 
addressed. Using this model we have been able to develop teams that were effective, 
responsive and cohesive despite having 200 members. We identify three ideas in the 
model as being the keys to its success. 

The first idea is to break the team into subteams, working on subgoals of the 
overall team goal. The members of a subteam will change dynamically as the overall 
team rearranges its resources to best meet the current challenges, respond to failures 
or sieze opportunities. Within these subteams, the agents will have accurate models 
of each other and the joint activity, in the same way a team based on the STEAM 
model would. Thus, using techniques developed for small teams, the subteam can be 
flexible and robust. Moreover, we identify two distinct groups within the subteams: 
the team members actually performing roles within the plan; and team members who 
are not, e.g., agents involved via role allocation. The fidelity of the model maintained 
by the role performing agents is higher than that of the non-role performing agents, 
which is in turn higher than other agents in the wider team. Because models are 
limited to subteams, communication overhead is limited. 

To avoid potential inefficiencies due to subteams working at cross purposes, our 
second idea is to introduce an acquaintance network. This network connects all 
agents in the team and is independent of any relationships due to subteams. Specif­
ically, the network is a small world network [30](see figure 1), so that any two team 
members are separated by a small number of neighbors. Agents share information 
about their current activities with their direct neighbors in the network. Although the 
communication required to keep neighbors in the acquaintance network informed is 
low, due to the small world properties of the network, there is high probability for 
every possible pair of plans. Some agents will know both, and thus, can identify in-
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efficiencies due to conflicts among the plans. For example, it may be detected that 
two subteams are attempting to achieve the same goal or one subteam is using plans 
that interfere with the plans of another subteam. Once detected by any agent the sub-
teams involved can be notified and the inefficiency rectified. Moreover, in this paper 
we investigate the influences of other social network properties to the efficiency of 
coordinating large scale teams. 

When limiting models of joint activities to the members of a subteam, the overall 
team loses the ability to leverage the sensing abilities of all its members. Specifically, 
an agent may locally detect a piece of information unknown to the rest of the team but 
does not know which members would find the information relevant[8, 33]. For ex­
ample, in a disaster response team, a fire fighter may detect that a road is impassable 
but not know which other fire fighters or paramedics intend to use that road. While 
communication in teams is an extensively studied problem, [5, 13, 21, 32], current 
algorithms for sharing information in teams either require infeasibly accurate models 
of team activities, e.g., STEAM's decision theoretic communication[28], or require 
that centralized information brokers are kept up to date[27, 3], leading to potential 
communication bottlenecks. Our solution for information sharing among large teams 
is to perform distributed information sharing without the cost of maintaining accurate 
models of all the teammates. An agent can easily know what information it needs, 
but it will not know who has the information, while another agent has the informa­
tion but does not know who needs it. By allowing the agents to simply forward the 
information to an acquaintance in a better position to make the decision, we spread 
the reasoning across the team, leveraging the knowledge of many agents. We also 
leverage the idea that information is always interrelated and a received piece of in­
formation can be useful in deciding where to send another piece of information, if 
there is a relationship between two pieces of information. For example, when coordi­
nating an agent group in urban search and rescue, if agent a tells agent b about a fire 
at 50 Smith St, when agent b has the information about the traffic condition of Smith 
St, sending that information to agent a is a reasonable thing to do, since a likely either 
needs the information or knows who does. By utilizing the interrelationship between 
pieces of information, agents can more quickly route new information through the ac­
quaintance network. Moreover, agents do not model information, rather they model 
the acquaintances to which they send information. It may take several hops for a mes­
sage to get to an agent that needs the information. Since each piece of information 
informs the delivery of other pieces and models are updated as the message moves, 
as the volume of information to be shared among the team increases, the amount of 
effort required per piece of information actually decreases. Moreover, since agents 
need to only know about their acquaintances, the approach scales as the number of 
agents in the team increases. 

To evaluate our method for building large teams, we have implemented the above 
approach in software proxies[22] called Machinetta. A proxy encapsulating coordi­
nation algorithm works closely with a "domain level" agent and coordinates with 
other proxies. Although Machinetta proxies build on the successful TEAMCORE 
proxies[28] and have been used to build small teams[24], they were not able to scale 
to large teams without the fundamentally new algorithms and concepts described 
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above. In this paper, we report results of coordinating teams of 200 proxies that ex­
hibit effective, cohesive team behavior. Such teams are of an order of magnitude 
larger than previously discussed in known published work proxy-based teams[24], 
hence they represent a significant step forward in building large teams. To ensure 
that the approach is not leveraging peculiarities of a specific domain for its improved 
performance, we tested the approach in two distinct domains using identical prox­
ies.^ 

2 Toward Flexible Team Coordination 

In this section, we provide a detailed model of the organization and coordination of 
the team. At a high level, the team behavior can be understood as follows: A team 
is organized as a social network and team members detect events in the environment 
that result in plans to achieve the team's top-level goal. The team finds subteams to 
work on those plans and within the subteams the agents communicate to maintain 
accurate models to ensure cohesive behavior. Across subteams, agents communicate 
the goals of the subteams so that interactions between subteams can be detected and 
conflicts resolved. Finally, agents share locally sensed information on the associates' 
network to allow the whole team to leverage the local sensing abilities of each team 
member. 

2.1 Building Large Scale Teams 

A typical large scale team meets the following basic characteristics: there are large 
number of widely distributed team members with limited communication bandwidth. 
As a part of a large team, agents coordinate closely only with a subset of the total 
agents of the team. Based on these characteristics, we can define a logical model 
of the team organized as an acquaintance network. The acquaintance network is a 
directed graph G= {A,N), where A is the team of agents and N is the set of links be­
tween any two agents. Specifically, for < a,,aj >G Â  for any two agents a/, a; G A 
denotes that a/ and a; are acquaintances able to exchange tokens. Specifically, n{a) 
is defined as all the acquaintances of agent a. Note that the number of each agent's 
acquaintances is much less than the size of the agent team |A|. We additionally re­
quire that the acquaintance network be a small world network. Such networks exist 
among people and are popularized by the notion of "six degrees of separation" [18]. 
When agents are arranged in a network, having a small number of neighbours rela­
tive to the number of members in the team, the number of agents through which a 
message must pass to get from any agent to any other, going only from neighbour to 
neighbour, is typically very small. A subset of a typical acquaintance network for a 
large team is shown as Figure 1. In the Figure, each node represents an agent mem­
ber in the team. When pairs of agents are connected, they can directly communicate 
with each other as acquaintances. 

A small amount of code was changed to interface to different domain agents. 
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Fig. 1. Relationship between subteams and the acquaintance network 

2.2 Team Oriented Plans 

Team Oriented Plans (TOPs) are the abstraction that define team behavior. The TOPs 
provide the mapping from team level goals to individual roles that are performed by 
individual team members. Suppose the team A has a top level goal, G. The team 
commits, with the semantics of STEAM to G [28]. Achieving G requires achieving 
sub-goals, gi, that are not known in advance but are functions of the environment. For 
example, sub-goals of a high-level goal to respond to a disaster could be to extinguish 
a fire and provide medical attention to particular injured civilians. To achieve sub-
goals, the team follows plan templates represented in a library. These templates are 
parameterized while instantiated plans contain the specific details [23]. For example, 
when a particular fire in a building is detected by a team member, the plan will be 
instantiated because it matches a template for disaster response. 

Each sub-goal is addressed with a plan, plant —< gi, recipei, wlesi.di.mi >, that 
matches a plan template in the library. The overall team thus has plans Plans(t) ^ 
{plan\,..., plann}. Individual team members will not necessarily know all plans. To 
maximize the responsiveness of the team to changes in the environment, we allow 
any team member to commit the team to the execution of a plan, when it detects 
that subgoal gi is relevant. Team members can determine which sub-goals are rel­
evant by the plan templates specified in the library. Recipei is a description of the 
way the sub-goal will be achieved[l 1] including the execution order of the compo­
nents in the plan. Rolest = {n, r2, o , ...r^} are the individual activities that must be 
performed to execute recipei. di is the domain specific information pertinent to the 
plan. For convenience, we write perform{r,a) to signify that agent, a, is working 
on role, r. Subteami includes any agents working on plant and their neighbors in 
the acquaintance network. The identities of those agents involved in role allocation 
is captured with allocate{plani). In the cases where either a conflict or synergy is 
detected, all but one of the plans must be terminated. The domain specific knowledge 
of a termination of a plan can be defined as ^^'^^recipei. 
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We can think about TOPs as active objects in a distributed database. Each TOP 
'̂object" captures the state of a particular team plan. Team members involved in 

the execution of that plan need to have up-to-date versions of the TOP "object", 
e.g., knowing which team members are performing which roles and when TOPs are 
complete. Information needs to be shared to ensure there is synchronization across 
the same object held by different team members. Viewed in this manner, coordination 
can be thought of as a set of algorithms to fill in fields on the TOP objects and ensure 
synchronized objects across the team. For example, some coordination algorithms 
are triggered when there are open roles in the TOP objects and other algorithms are 
triggered when the post-conditions on the plan are satisfied. 

2.3 Subteams 

Although individual agents commit the team to a sub-goal, it is a subteam that will 
realize the sub-goal. The subteams formation process commences when an individ­
ual agent detects all the appropriate preconditions that matches a plan template in the 
library and subsequently instantiates a plan, plant. For each of the rolesi in plani, 
a role token is created to be allocated to the team. We are using LA-DCOP for role 
allocation[6], which results in a dynamically changing subset of the overall team 
involved in role allocation. This works as follows: the token is passed from one 
team member to the next until an agent finally accepts the role. Once accepted, the 
agent becomes a member of the subteam and makes a temporary commitment to per­
form the role represented by the token. Note that agents can accept multiple tokens 
and therefor can perform more than one role and thus, belong to multiple subteams. 
Since allocation of team members to roles may change due to failures or changing 
circumstances, the members of a subteam also change. One example of this is when 
a member decides to drop a role for a more suitable task. This will lead to the best 
use of team resources because team members will execute roles that they are most 
capable of doing. 

All subteam members, agents performing roles and their informed acquaintances, 
must be kept informed of the state of the plan, e.g., they must be informed if the plan 
becomes irrelevant. This maximizes cohesion and minimizes wasted effort. Typically 
\subteami\ < 20, although it may vary with plan complexity and notice that typically, 
subtearui D subtearrij 4^ 0 where / ^ y. In the experiments that follow, a simple plan 
contains 1-2 roles and 1-2 preconditions compared to a complex plans that have 4-5 
roles and 9-10 preconditions. This occurs because agents can accept more than one 
role and usually belong to more than one subteam due the acquaintance network. 
These subteams are the basis for our coordination framework and leads to scalability 
in teams. 

2.4 Plan Deconfliction 

In this section, we describe how to resolve plan conflicts. When using distributed plan 
creation, two problems may occur. Upon detecting the appropriate preconditions, 
different team members may create identical plans or plans with the same pg but 
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different Precipe- To reduce the need for plan deconfliction, we need to choose a rule 
for plan instantiation to reduce the number of plans created with the same pg. These 
instantiation rules include always instantiate, probabilistic and local information. 
The choice of the plan instantiation rule will vary with the domain setting. 

If two plans, plani and planj have some conflict or potential synergy, then we 
require subteami fi subteamj 9̂  0 to detect it. There must be a common team mem­
ber on both subteams to maintain mutuals beliefs of the plans and hence detect the 
conflict. A simple probability calculation reveals that the probability of a non-empty 
intersection between subteams, i.e., the probability of an overlap between the teams, 
is: 

where aCh denotes a combination, n = number of agents, k = size of subteamt and m 
= size of subteamj. 

Hence, the size of the subteams is critical to the probability of overlap. For exam­
ple, if \subteami\ = \subteamj\ — 20 and |A| = 200, then P{overlap) = 0.88, despite 
each subteam involving only 10% of the overall team. Since the constituents of a 
subteam change over time, this is actually a lower bound on the probability that a 
conflict is detected. 

After a conflict is detected, the plan needs to be terminated; the same follows 
with completion of goals or recipes and irrelevant or unachievable plans. We cap­
ture the domain specific knowledge that defines these conditions with ^^^^Precipe- In 
exactly the same way as STEAM, when any a e subteami detects any conditions in 
^^^^Precipes it is obliged to ensure that all other members oi subteami also know that 
the plan should be terminated. In this way, the team can ensure that plani C plans{t), 
i.e., no agent believes the team is performing any plan that it is not performing. 

2.5 Plan Instantiation Rules 

In distributed plan instantiation, an agent can create a plan when all preconditions 
have been fulfilled and the plan matches a template in a library. However, since 
this may increase the total number of plans created, agents can only create a plan 
using one of three rules for instantiating plans. These rules differ in terms of the 
information needed to compute whether the instantiation conditions apply. The first 
rule, the always instantiate rule, is used as a baseline for the other instantiation rules. 
An agent is allowed to create a plan when it knows of all the preconditions necessary 
for the plan. 

The second rule, the probabilistic instantiation rule, requires no knowledge of 
other team members. This method requires that team members wait a random amount 
of time before creating the plan. If during that time, it has not been informed by an in­
formed acquaintance that another teammate is creating the same plan, it will proceed 
and create the plan. Thus plans will only be created during the time it takes for all 
team members to hear of the plan. The advantage of this rule is that no information 
is required of other team members. There are two disadvantages. First, there may be 
conflicting plans which must be later resolved. Second, there may be a significant 
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delay between detection of the preconditions and the instantiation of the plan. These 
disadvantages can be traded off in the following manner. By increasing the length of 
time a team member can wait, the number of conflicts will be reduced, but the delay 
will be increased. 

We can use information about who locally senses information to define another 
rule. This rule, which we refer to as the local information rule, requires that a team 
member detect some of the plan's preconditions locally in order to instantiate the 
plan. Although this will lead to conflicting plans when multiple agents locally sense 
preconditions, it is easier to determine where the conflicts might occur and resolve 
them quickly. The major disadvantage of this rule is that when a plan has many 
preconditions, the team members that may detect specific preconditions may never 
get to know all the preconditions and thus the plan will never be created. 

3 Toward Efficient Communication in Large Scale Teams 

Information is important in coordinating large scale multi-agent teams because each 
team member has to adjust its activity according to the changes in its team, team­
mates, and the environments. Communication is difficult because the members only 
have a partial views of the environment and a team member may have a piece of valu­
able information but not know who needs the information [31]. In this section, we 
explain our objective of efficient communication in terms of providing high quality 
information with targeted information delivery. 

3.1 Information fusion 

Each of the agents, when working in physical working plate, can be deemed as mo­
bile sensors and the team can be deemed as a sensor network. We first look at the 
problem of information fusion in large scale teams, which not only observe physical 
phenomena, but also conduct high-level information processing tasks, e.g., attacking 
a target in a battlefield. In large teams, the sensor data generated by a single agent 
usually has low confidence. The low confidence sensor data cannot be used directly 
for coordinating plans and actions and needs to be fused with other relevant data 
in the team [25]. Many power-aware protocols and algorithms have been developed 
for static sensor networks, but very limited research has been done for the design of 
routing algorithms for information fusion [1, 35]. For example, in directed diffusion 
and geographic routing [9, 15], each source agent does not send the data back to the 
sink until it receives a query from the sink. For this reason, these routing protocols 
are called reactive protocols. 

Reactive protocols are mainly designed for static sensor networks and are not 
appropriate for large scale teams, which are mobile sensor networks. Specifically, 
there are two key reasons. 1. The location of the data is not correlated with existing 
positions of mobile sensors., i.e., agent b previously knew agent a has the data in 
one location, but when his query comes, agent a has moved to another location. 2. 
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Sinks agents usually do not know when source agents will have the data, so they have 
always sent out volume of query. 

In this section we present a proactive protocol for information fusion in large 
scale team based on our acquaintance network model. In proactive protocols, there is 
no querying process and each source agent, when sensing a piece of data, can proac-
tively deliver the data to other nodes in the network. Without the querying process, 
the source agent has to reason about who might have other relevant data and can fuse 
its sensor data. In order to minimize the traffic and redundant data in the network, 
each node forwards the sensor data to only one of its neighbors. Without centralized 
control, the agent has to intelligently deliver data for fusion solely based on itself 
and its neighbors. The challenge, with various decisions being made by the individ­
ual agents, is how to maximize the probability that relevant data will be fused in the 
network, e.g., fused by at least one node in the network. 

Random walks are a simple algorithm for information fusion. In random walks, 
when an agent receivessensor data it randomly choses a neighbor to send to. Once the 
neighbor receives the data, it repeats the same process until the events are success­
fully fused or the data reaches the stop condition. However, random walks are not 
efficient for information delivery when more than two agents detect the same event 
on the ground and there is a need to fuse them together. We propose an efficient and 
failure-resistant localized algorithm — path reinforcement algorithm [34], in which 
each node learns routing decisions from past information delivery processes. The 
logic behind the algorithm is that relevant information is likely to be fused earlier if 
agents follow a path they have followed earlier. In the algorithm, a agent a may pass 
the event to neighbor b'lia has passed b relevant events before. 

The experiments show that controlled information flows significantly increase the 
probability of relevant information being fused in the network, such that the proba­
bility could be improved by 2 - 5 times for the same hops of information propagation 
in comparison with random walks [34]. Our experiments indicate that the probability 
of fusion is surprisingly high even with limited local knowledge of each node and 
relatively small hops. 

3.2 Information Sharing 

In the previous section, we showed how requiring mutual beliefs only within sub-
teams acting on specific goals can dramatically reduce the communication required 
in a large team. However, individual team members will sometimes get domain level 
information, via local sensors, that is relevant to members of another subteam. Due 
to the fact that team members do not know what each other subteam is doing, they 
will sometimes have locally sensed information, while not knowing who requires 
it. In this section, we present an approach to sharing such information, leveraging 
the small world properties of the acquaintance network. The basic idea is to forward 
information to the acquaintance in the acquaintance network who is most likely to 
either need the information or have a neighbor who does. 

The key to the algorithm is the model that the agent maintains of its acquain­
tances. Pa is a matrix where Pa[iM —> [0,1],Z? € N{a)J G / represents the probability 
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that acquaintance b is the best to send information / to. To obey the rules of probabil­
ity, we require V/ G I,J,beN{a)K[^^^] = 1- ^^^ example, if Pa[i,b] = 0.7, then a will 
usually forward / to agent Z? as ^ is very likely the best of its neighbors to send to. 
This situation is illustrated in Figure 4. The more accurate the model of Pa, the more 
efficient the information sharing because the agent will send information to agents 
that need it more often and more quickly. Pa is inferred from incoming messages and 
thus the key to our algorithm is for the agents to build the best possible model of Pa. 

Information is encapsulated in messages, with some supporting information 
which is helpful for information sharing. Specifically, a message consists of two 
parts, M =< i,path > . / G / is the information being communicated, path records 
the track over which the message has been taken in the network, last (path) denotes 
the last agent to which the message was sent previous to current agent recipient, via 
acquaintance network. To ensure that messages do not travel indefinitely around the 
network, we stop the message when \path\ >MAX-STEPS. 

When a message arrives, the agent state, Sa, is updated by the transition function, 
5, which has three parts, 5//, 5A:, 5/> . First, the message is appended to the history, 
5//(m,//«) ==HaUm. Secondly, the information contained in the message is added to 
the agent's local information knowledgeKa, 5//(m,Ka) = KaUm.i.^ Finally, and most 
critically for the purpose of the algorithm, dp is used to update agent's probability 
matrix, to help route future message. (We described 5p in the next section.) 

Each agent in the team runs the following algorithm when receiving message m: 
Algorithm 1: Information Share (Sa) 
(1) While{true) 
(2) m <— getMsg 
(3) Sa ^ 5(m, So) 
(4) ifm,\path\ < MAX.STEPS 
(5) APPEND{self, m.path) 
(6) next ^ CHOOSE{P[i,m.j]) 
(7) SEND{next,m) 

In Algorithm 1, when an agent gets a message, it updates its state according to 
function 8. If an agent finds that the message does not meet the stop condition (line 
4), then the function CHOOSE (line 6) selects an acquaintance, according to the prob­
abilities in matrix to pass the message to. Notice, CHOOSE can select any acquain­
tance, with the likelihood of choosing a particular acquaintance being proportional 
to their probability of being the best to send to. 

The key to our algorithm is for the agent to often pass information to an ac­
quaintance who either needs it or knows who does. These models are created based 
on previously received information. This requires us making use of the relationship 
between pieces of information and then mapping it into a mathematic description, 
i.e. via Bayes Rule. We define the relationships between pieces of information as 
rel{ij) -^ [0, l]JJe /, where rel{ij) > 0.5 indicates that an agent interested in / 
will also be interested in j , while rel{i, j) < 0.5 indicates that an agent interested in / 

^ In this paper, we ignore difficult issues related to contradictory information. 
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is unlikely to be interested in j . If rel{ij) = 0.5 then nothing can be inferred. Since 
rel relates two pieces of domain level information, we assume that it is given (or can 
be easily inferred from the domain). 

Our information sharing algorithm defined an action of dp for each piece of rela­
tive information / when a received message containing j can be described as follows: 
assuming information j arrives to agent a from b, then agent a will first decrease the 
probabihty of sending this information back to b because clearly b already knows 
that information. Then Ha should be searched for to find any relevant former infor­
mation. For each piece of relevant information /, j should be additional evidence for 
a to make a decision about sending /, and the probability of sending / to b should be 
strengthened. 

The update of agent a's P^based on an incoming message m containing j which 
is received from c can be achieved by leveraging Bayes Rule as follows: 

\/iJ eI,b£N{a) 5p{Pa[i,b],m=<j,path>,d = 

first{N{a),m.path)) 

^Pa[iM xrel{ij)x ^ [fUzj^b^d 

Pa[i.b]x\k\ if ii^j^bi^d 
e if i = j,b em.pathnN{a) 

Then P must be normalized to ensure \/i e f,'LbeN{a)K[^^^] — 1- ̂ ^^ ^̂ ^̂  case 
in our equation is the most interesting. It updates the probability that the agent that 
just sent some information is the best to send other information to, based on the 
relationships of other pieces of information to the one just sent. Please note, to avoid 
potential path detours, the message path is determined not according to who directly 
sent the message, but rather according to the fact that it was a's acquaintance who 
first got the message. The latter condition changes the probability of sending that 
information to agents other than the sender in a way that ensures the normalization 
works. Finally, the third case encodes the idea that you typically would not want to 
send a piece of information to an agent that sent it to you. 

To see how 5p works, consider the following example at some point doing exe­
cution: 

b c d e 
"0.6 0.1 0.2 0.1" 

Pa=j 
k 

0.4 0.2 0.3 0.1 
0.4 0.4 0.1 0.1 

The first row of the matrix shows that if a gets information / it will likely send 
it to agent b, since P[i,b] = 0.6. We assume that agents wanting information / also 
probably want information j but those wanting k definitely do not want j . That is, 
rel{ij) = 0.6 and rel{kj) = 0.2. Then a message m =< y, {,, J,,/?} > with infor­
mation j arrives from agent b. Applying 5p to Pa we get the following result: 

b c d e 
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k 

0.5769 0.096 0.2308 0.096 
e 0.67 e 033 

0.4255 0.4255 0.0426 0.1064 

The effects on P can be inferred as follows: (i) j will likely not be sent back to d 
and b who previously have gotten 7, i.e., Pa[i, b] = e; (ii) the probability of sending / 
to d is increased because agents wanting j probably also want /; (iii) the probability 
of sending /: to J is decreased, since agents wanting j probably do not want k. Notice 
a knows nothing of the network topology beyond its acquaintances n{a). 

3.3 Effects of Network Topology on Sharing Efficiency 

As noted by social scientists, information sharing efficiency will be impacted by 
network topology. We have found that in order to share information among large-
scale teams, agents adopt the same manners as exhibited by humans operating in 
social groups. 

The properties of social network structures have been comprehensively studied 
[2, 17]. According to such research, there are several parameters that are impor­
tant for helping us to understand or predict the behavior of information sharing in 
large-scale teams. Key factors include the small-world effect, degree distributions, 
clustering, network correlations, random graph models, models of network growth 
and preferential attachment, and dynamical processes taking place on networks [11]. 
Most of them are interrelated. For the purpose of this paper, we specifically focus 
on only three properties: average distance, degree distribution and average acquain­
tance. 

• Average distance: (commonly studied as "small world effect" [30]. The average 
distance/ •= x / Z distance{ai,aj), wherefz = \A\ anddistance{ai,aj) 

represents the minimum number of agents «/, aj that a message must pass 
through one agent to another via acquaintance network. For example, if agent 
fliand ̂ 2 are not acquaintances but share an acquaintance, distance{a\,a2) = 1. 

• Degree distribution: (Commonly studied as "scale free effect") The frequency of 
agents having different number of acquaintances. The distribution can be repre­
sented as a histogram where the bins represent a given number of acquaintances 
and the size of a bin is how many agents have such number of acquaintances [2]. 

• Average acquaintances: is the average number of acquaintances that agents have 
in the teams. Its value can be used to infer how many choices agents may have 
when delivering a message. 

Well-known types of social networks can be described using these properties. For 
example, a random network has the "flat" degree distribution. While grid network 
is distinct in that all nodes have the same degree (e.g, four is the only degree in a 
two dimension grid network). Small World Network and Scale Free Network [2] are 
two important types of social network topologies and research has shown that each 
of them possesses some interesting properties. Small world networks have much 
shorter average distances as compared with regular grid networks. We hypothesize 
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that the low average distance will improve information sharing efficiency because 
information can potentially take less "hops" to reach a defined destination. A scale-
free network is a specific kind of network in which the degree distribution forms a 
power-law, i.e, some nodes are very connected hubs and connect to other nodes much 
more than ordinary nodes. The hubs in scale-free networks give the advantages of 
centralized networks, in which the distribution provides the advantages of centralized 
approaches. 

4 Machinetta 

A number of algorithms work together to achieve the teamwork, given the framework 
described above. There are algorithms for allocation roles[6], instantiating plans[16], 
sharing information[31], human interaction[20] and resource allocation. To avoid re­
quiring a reimplementation of the algorithms for each new domain, the coordination 
algorithms are encapsulated in 2iproxy[l0, 29, 21, 24]. Proxies are becoming a stan­
dard mechanism for building heterogeneous teams. Each team member works closely 
with a single proxy that coordinates with the other proxies to implement the team­
work. The basic architecture is shown in Figure 2. The proxy communicates via a 
high-level, domain-specific protocol with the robot, agent or person it is representing 
in the team. Most of the proxy code is domain-independent and can be readily used 
in a variety of domains requiring distributed control. Our current proxy code, known 
as Machinetta, is a substantially extended and updated version of the TEAMCORE 
proxy code[29]. Machinetta proxies are in the public domain and can be downloaded 
from http://teamcore.usc.edu/doc/Machinetta. 

Communication 

Proxy h 
i 

, 
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i 
* 

Control 
Code 

Proxy 

— p 
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I 
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' 
m 

Control 
Code 

IW 

, 
Control 
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Fig. 2. The basic system architecture showing proxies, control code and Unmanned Aerial 
Vehicles (UAVs) being controlled. 

In a dynamic, distributed system, protocols for performing coordination need to 
be extremely robust. When we scale the size of a team to hundreds of agents, this be-

http://teamcore.usc.edu/doc/Machinetta
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comes more of an issue than simply writing bug-free code. Instead we need abstrac­
tions and designs that promote robustness. Towards this end, we are encapsulating 
"chunks" of coordination in coordination agents. Each coordination agent manages 
one specific piece of the overall coordination. When control over that piece of co­
ordination moves from one proxy to another proxy, the coordination agent moves 
from proxy to proxy, taking with it any relevant state information. We have coor­
dination agents for each plan or subplan (PlanAgents), each role (RoleAgents) and 
each piece of information that needs to be shared (InformationAgents). For exam­
ple, a RoleAgent looks after everything to do with a specific role. This encapsulation 
makes it far easier to build robust coordination. 

CK 

ENV. ENV. 

CK CK 

ENV. 

Fig. 3. High level view of the implementation, with coordination agents moving around a 
network of proxies. 

Coordination agents manage the coordination in the network of proxies. Thus, the 
proxy can be viewed simply as a mobile agent platform that facilitates the functioning 
of the coordination agents. However, the proxies play the additional important role 
of providing and storing local information. We divide the information stored by the 
proxies into two categories, domain specific knowledge, K, and the coordination 
knowledge of the proxy, CK. K is the information this proxy knows about the state 
of the environment. For example, the proxy for a UAV knows its own location and 
fuel level as well as the the location of some targets. This information comes both 
from local sensors, reported via the domain agent, and from coordination agents 
(specifically InformationAgents, see below) that arrive at the proxy. CK is what the 
proxy knows about the state of the team and the coordination the team is involved in. 
For example, CK includes the known team plans, some knowledge about which team 
member is performing which role, and the TOP templates. At the most abstract level, 
the activities of the coordination agents involve moving around the proxy network, 
adding and changing information in C and CK for each agent. The content of K as 
it pertains to the local proxy, e.g., roles for the local proxy, govern the behavior of 
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that team member. The details of how a role is executed by the control agent, i.e., the 
UAV, are domain- (and even team member-) dependent. 

5 Experimental Results 

In this section, we present empirical evidence of the above approach with a combi­
nation of high and low fidelity experiments. 

(a) (b) 
Fig. 4. Coordinating 200 agents in (a) disaster response simulation (average on y-axis 
extinguished, conflicts and messages per agent on x-axis); and (b) the number of fires 
guished by 200 fire trucks versus threshold. 

(a) (b) 
Fig. 5. Simulated coordinating 200 UAVs in a battlespace (a) time vs the number of targets hit 
and (b) the number of targets hit versus threshold. 

5.1 Machinetta 

In Figures 4 and 5, we show the results of an experiment using 200 Machinetta prox­
ies running the coordination algorithms described in Section 3. These experiments 
represent high fidelity tests of the coordination algorithms and illustrate the overall 
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effectiveness of the approach. In the first experiment, the proxies control fire trucks 
responding to an urban disaster. The trucks must travel around an environment, lo­
cate fires (which spread if they are not extinguished) and extinguish them. The top 
level goal of the team, G, was to put out all the fires. A single plan requires that an 
individual fire be put out. In this experiment, the plan included only one function, 
which was to put out the fire. We varied the sensing range of the fire trucks ("Tar"' 
and "'Close"') and measured some key parameters. The most critical thing to note 
is that the approach was successful in coordinating a very large team. The first col­
umn compares the number of fires started. The '"Close"' sensing team required more 
searching to find fires, and as a result, unsurprisingly, the fires spread more. However, 
they were able extinguish them slightly faster than the '"Far"' sensing team, partly 
because the '"Far"' sensing team wasted resources in situations where there were 
two plans for the same fire (see Column 3, '"Conflicts'"). Although these conflicts 
were resolved it took a nontrivial amount of time and slightly lowered the team's 
ability to fight fires. Resolving conflicts also increased the number of messages re­
quired (see Column 4), although most of the differences in the number of messages 
can be attributed to more fire fighters sensing fires and spreading that information. 
The experiment showed that the overall number of messages required to effectively 
coordinate the team was extremely low, partially due to the fact that no low- level 
coordination between agents was required (given the one fire truck per plan). More­
over, we varied the thresholds corresponds to the maximum distances the truck will 
travel to a fire and 4(b) shows increasing thresholds initially improves the number of 
fires extinguished, but too high a threshold results in a lack of trucks accepting tasks 
and a decrease in performance. 

In the second domain, Figure 5(a) shows high level results from a second domain 
using exactly the same proxy code. The graph shows the rate at which 200 simulated 
UAVs, coordinated with Machinetta proxies, searched a battle space and destroyed 
targets. Moreover, Figure 5(b) shows while we have effectively allocated tasks across 
a large team, thresholds (correspond to the maximum distances UAVs can hit a target) 
are of no benefit. Taken together, the experiments in the two domains show not only 
that our approach is effective at coordinating very large teams, but it also suggests 
that it is reasonably general. 

5,2 Information Sharing 

We test our information sharing algorithm by using a team with 400 agents and each 
of them has, on average, four acquaintances. One agent is randomly chosen as the 
source of some information and another is randomly picked as the sink for that infor­
mation. The sink agent first sends out 20 messages containing relative information j , 
each with MAX_STEPS=50. Then the source agent sends out a message with infor­
mation / with rel{i, j) varied. We measure how many steps or messages that it takes / 
to be encapsulated into message and sent to get to the sink agent. In our experiments, 
four different types of acquaintance network topologies are involved: two dimension 
grid networks, random networks, small world networks, and scale free networks. The 
small world network is based on the grid network with 8% links randomly changed. 
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The key difference between the random network and the scale free network is that 
the random has a "flat" degree distribution but the scale free network has a power 
law distribution. Each point on each graph is based on the average of 1000 runs in a 
simple simulation environment. 

Information sharing with different information relevance 

350 x 

0.5 0,55 0.6 0,65 0.7 0.75 0.8 0.85 0.9 0.95 1 

Fig. 6, The number of messages dramatically reduces as the association between information 
received and information to be sent increases. 

We first verify our basic algorithm in different types of acquaintance network 
topologies. In Figure 6, we show the average number of steps taken to deliver / as 
we varied the strength of the relationship between the information originally sent 
out by the sink agent and the information / sent by the source agent from 0.5 to 
1. As expected, our algorithm works on the four different acquaintance networks; 
further, the stronger the relationship between originally sent information and the new 
information the more efficient is the information delivery. 

Information sharing with different number of previous messages 

Next, we look in detail at exactly how many messages must be sent by the source to 
make the delivery from the sink efficient. We use the same settings as above except 
the number of messages the sink sends out is varied and the relationship between 
these messages and i, rel (i, j) is forced at 0.9. Notice that only a few messages are 
required to dramatically impact the number of messages required. This result also 
shows us that a few messages is enough for agents to make a "precise guess" about 
where to send messages. 

The influence of average acquaintances 

In next experiment, we looked in detail at exactly how the number of acquain­
tances can help to make the information sharing efficient. We run experiments with 
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5 10 15 20 25 30 35 40 

Number of Messages from Source 

-Grid- - Small World~»~- Random -

Fig. 7. The number of messages reduces as the related previous messages increased. 

4 6 

Average Number of Acquaintances 

-Grid- - Small World"*-"- Random - - Scale Free 

Fig. 8. The number of messages increases sligthly if each agent has more average acquain­
tances in acquaintance networks. 

rel{ij) ==0.8 and in acquaintance networks in which each agent has an average of 
from 2 to 8 acquaintances. The result in Figure 8 shows that the greater the number 
of acquaintances, the more messages that are necessary to deliver /. This means that 
information sharing cannot be enhanced by connecting agents with more acquain­
tances. Moreover, in our experiment, we don't consider the limitation of communi­
cation breadth for agent members. 

Algorithm efficiency among different size teams 

To investigate the influence of team scale on information sharing performance, 
as shown in Figure 9, we ran experiments using different sizes of agent teams, 
from 100 to 550 with rel(i,j)=0.7. The information sharing efficiency is measured 
as the percentage of agents involved for information sharing use percentage = 
""^'ToMT/Jgl^^^^^ ' The experiment result shows that with different team sizes. 
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100 150 200 250 300 350 400 450 500 550 

- Grid - » - Small Worid- ••- Random ik- Scale Free 

Fig. 9. Information sharing algorithm works even slightly better on large scale teams according 
to the measure of percentage. 

the efficiency of information sharing is almost the same. This indicates that the team 
size is not a factor for information sharing efficiency. 

5.3 Plan Deconfliction 

Parameter 
Number of Team Members 
Number of Plan Templates 
Roles Per Team Member 
Total Preconditions 
Preconditions Per Plan 
Roles Per Plan 
Number of Capability Types 
Percent Capable 
Instantiate Rate 
New Precondition Rate 
Precondition Detection Rate 
Associate Network Density 
Information Token 
Instantiation Rule* 
Percentage Possible 
Reward 
Messages per agent 

Minimum 
10 
1 
1 

20 
1 
1 
2 

0.1 
0 

0.0020 
0.0020 

2 
1 
1 
0 

0.00 
0.10 

Maximum 
999 
20 
1 

219 
10 
5 

21 
1.1 
1 

0.5020 
0.2020 

16 
10 
3 

100 
85.35 

1977.38 

Parameter Type 
Domain Dependent 
Domain Dependent 
Domain Dependent 
Domain Dependent 
Domain Dependent 
Domain Dependent 
Domain Dependent 
Domain Dependent 

Input (Free Parameter) 
Domain Dependent 
Domain Dependent 

Input (Free Parameter) 
Input (Free Parameter) 
Input (Free Parameter) 

Output 
Output 
Output 

*lnstantiation Type( 1-Always 2-Local 3-Probabalistic) 

Fig. 10. Parameter Table 

We use TeamSim, a simple simulator, to analyze the effect our acquaintance 
model with dynamically changing subteams. TeamSim, which runs the coordina­
tion algorithm without simulating time intensive communication, quickly evaluates 
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different combinations of parameter settings on the order of thousands. These param­
eters settings, which correspond to various domains, include free parameters based 
on our model and domain parameters. Free parameters are specific to our algorithm 
and include the acquaintance network density, and plan instantiation rule. A few of 
the domain parameters included team size, total preconditions, and roles per plan 
(see Figure 10). Our algorithm is based on the fact that the acquaintances network 
will detect conflicts with a high probability. As team size is scaled, we can assume 
that the number of duplicate plan will also increase. This is shown in Figure 11 where 
the average number of plans increases with respect to team size using the probabilis­
tic instantiation rule. In the graph, both the actual and expected conflicts are shown. 
Figure 12 shows a non-linear relationship between an input parameter, team size and 
an output parameter, and messages per agent. 

10 20 30 40 

Number of Agents 

Fig. 11. The average number of plan conflicts increases with respect to team size 

10 110 210 310 410 510 610 710 810 910 
Team Size 

Fig. 12. Messages per Agent as Team Size is increased 
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6 Summary 

In this paper, we have presented an approach to building large teams that has al­
lowed us to build teams of an order of magnitude larger than those discussed in pre­
viously published work. To achieve these unprecedented scales, fundamentally new 
ideas were developed and new, more scalable algorithms were implemented. Specif­
ically, we presented an approach to organizing the team based on an acquaintance 
network with dynamically evolving subteams. Potentially inefficient interactions be­
tween subteams were detected by sharing information across a network independent 
of any subteam relationships. We leveraged the social network properties of these 
networks to very efficiently share domain knowledge across the team. While much 
work remains to be done to fully understand and be able to build large teams, this 
work represents a significant step forward. 
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1 Introduction 

While computer systems are designed to achieve their intended purposes and attain 
the expected performance level when things are going as plarmed, there are often 
situations and/or scenarios that the anticipated conditions are not satisfied and there­
fore the intended performance level may not be attained. In some mission-critical 
applications (such as missile launch processes), such events are outright failures -
the performance is either success or failure - and therefore the system designer's job 
is to make sure that there are no unexpected events, i.e. to prevent possible failures 
from occurring. However, in most applications, system performance is not a boolean 
value but could vary in a range of performance levels. In those systems, even when 
the anticipated conditions are not met and therefore the intended performance level 
cannot be achieved, the system should be able to adapt to the change and perform 
at a lower (i.e. degraded) performance level instead of simply quitting. For those 
degradable systems, the designer's job is to implement mechanisms for the system 
to detect failures/unexpected events and to adapt to the changes (by switching to 
a different course of action) when those events occur. Both failure prevention and 
failure detection/adaptation are important topics in real-time and fault-tolerant com­
puting, where the goal is to build systems that are dependable/reliable, predictable, 
and fault-tolerant [22]. 

Evidently, multiagent systems are a type of computer systems that frequendy 
needs to deal with the same kind of issues: the environment in which an agent is op­
erating is changing constandy and thus the problem of uncertainty/unexpectedness 
is even more paramount. And in general, we can say that multiagent systems need 
to be a kind of degradable computing systems - the system should certainly adapt 
to changes and unexpected events in the environment and try its best to maintain 
acceptable performance levels. This would be a key element in any "intelligent" 
system. In fact, the development of multiagent systems presents both opportunities 
and challenges to fault-tolerance techniques. On one hand, a multi-agent approach 
to fault-tolerance can further extend the research on fault-tolerant systems, and al­
lows the integration of performance and reliability into a unified framework. On the 
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other hand, in a multi-agent system, the notion of fault may be different from that 
of traditional systems, and to enhance reliability in multi-agent systems means that 
we need to extend the scope of fault-tolerance and have new types of fault-tolerance 
techniques. We believe that a systematic study on the design of degradable multia-
gent systems is very urgent in order to associate words such as ^'reliable" and "de­
pendable" with multiagent systems (at the moment, such associations are rare, if not 
nonexistent), and it is time for agent designers to explicitly consider the reliability 
issue of the multiagent systems. 

In this article we will focus on cooperative multiagent systems and discuss the 
techniques that may be used to enhance the planning and coordination aspect of the 
agents when facing changes and unexpected events. Up to date, the research effort in 
this area has been largely focused on handling nondeterminism in the multiagent en­
vironment. For example in Decker and Lesser's TAEMS framework, different possi­
ble outcomes (such as duration and quality) of a task can be modeled in a probability 
distribution [8]. Approaches for addressing environment nondeterminism generally 
view it within the scope of planning under uncertainty, such as using Markov deci­
sion processes (MDPs) [4,25,1,20] to model sequential decision making in stochas­
tic environments, and using an extended model for agent commitments and applying 
contingency planning [24]. While these approaches provide good foundations for 
handling uncertainties in multiagent cooperation, due to the assumptions and limi­
tations of the frameworks and also their complexity, they have limited applicability, 
especially in systems with a large number of agents. Typically, in those approaches, 
a system is completely specified (as some types of stochastic processes), therefore 
it is possible to apply the principle of maximizing expected utility (MEU) and use 
the expected utility as the metric. However, expected utility alone is not indicative 
of the reliability of the system - we not only want to achieve the best utility but 
also want to ensure that the system degrades gracefully when unexpected events oc­
cur. Moreover, a completely specified model is really an approximation of the actual 
system, with many assumptions, simplifications, and omissions - it is impossible to 
accurately model all aspects of systems and specify all its parameters, after all. Thus, 
while improving the expected utility is very important, we cannot neglect the relia­
bility issue and need to ensure that the system implements mechanisms to enhance 
its robustness. 

Of course, reliability issue is hardly a new issue in computer systems, as it has 
been studied in some classical fields such as distributed computing, fault-tolerance. 
There are already an abundant arsenal of techniques developed for this purpose, and 
much of the techniques that are going to be presented here are based on the same 
ideas, but applied to multiagent systems. It should be noted that because multia­
gent systems differs significandy from traditional distributed systems, they present 
some challenges to traditional fault-tolerance: while in traditional distributed sys­
tems, fault-tolerance techniques often involve the (low-level) implementation of cer­
tain FT algorithms across the network, in multiagent systems we are more concerned 
about the high-level decision making process toward the use of redundancy. As such, 
in typical FT computing, the use of FT techniques is treated as a part of the system 
infrastructure and low level control problem - such as task scheduling and resource 
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allocation in the OS, but in multiagent systems, FT is really part of the agent decision 
making and involves planning, coordination, and cooperation. 

In particular, we will discuss several techniques that could be used in degradable 
multiagent system to increase its robustness, with a focus on the multiagent planning 
aspect. First, we will present a framework for representing agent plans and try to 
formalize the reliability issue, and then discuss how to apply FT techniques in agent 
planning and coordination. We also discuss the issue of fault-tolerance for agent 
organizations, because failure can occur not only at agent activity level, but also at 
organizational level, as an agent may fail to assume its organizational role due to its 
failures. 

2 An Integrated View of Performance and Reliability in MAS 

Compared to traditional systems, multiagent systems offer a new perspective in prob­
lem solving: there are a number of characteristics of MAS that would have important 
impact on the ways of problem solving: 

• Autonomy. Agents are autonomous and each agent is an independent decision 
maker and not mandated/controlled by external entities. Agent activities are re­
sults of its own decisions. This does not mean that agents are self-contained — 
agents can interact with other agents if they choose to do so. This autonomy im­
plies that in general, an agent only has a partial knowledge of the other agents, 
and the agent makes decisions based on its subjective view of the system. Agent 
interactions expand or modify an agent's subjective view thus produces influ­
ences on its decision making, but still the decision making process is local in 
each agent. Also, autonomy implies that a multi-agent system is inherently de­
centralized, and team activities are based on coordination and cooperation rather 
than being implied by a distributed algorithm. 

• Explicit reasoning of utility. Agent decision making is explicitly based on the 
agent's model of utility. A rational agent will try to maximize its utility when 
making a choice. This, of course, does not mean that all agents are self-interested. 
The utility model of an agent can indeed reflect a group/team interest, and thus 
making the agents cooperative. The use of a utility model implies that an agent's 
decision making are inherently an optimization problem rather than a satisfaction 
problem, and the agent's decisions have to be rationalized - they should not be 
bound to fixed protocols or routines, but are always changing according to the 
current utility assessments. 

• Uncertainty. Agents need to deal with many sources of uncertainty in its prob­
lem solving. The partial knowledge of other agents and the rest of the system 
introduces uncertainty in agent decision making. The actions of the agents may 
produce uncertain outcomes, which require dynamic changes in agent actions, 
and also leads to the dynamic changes in the agent's subjective view. Hence, 
multi-agent problem solving is dynamic in nature, as agents need to adapt to the 
changes in the system from time to time. As such, agent communication, coordi­
nation, and cooperation are the key for multi-agent problem solving. 
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These characteristics lead to new challenges in the convergence of FT comput­
ing and multi-agent problem solving. FT mechanisms that are implemented as dis­
tributed algorithms imply some decision rules for team activities, but for autonomous 
agents these algorithms need to be justified, and need to be implemented via explicit 
coordination and cooperation. Thus, FT considerations should be an integral part in 
agent decision making and coordination, and we should model reliability/FT require­
ments as part of the utility structure. 

Although reliability and performance are often regarded as two orthogonal is­
sues, in fact they are very much inter-dependent. To evaluate a system, the most im­
portant metric is often based on an overall, stochastic performance measure, rather 
than the highest level of performance based on one problem solving episode. The 
overall performance of a system must take into account the possibility of failures 
and the loss of performance because of such failures. If the effect of failures can be 
controlled or contained, the system becomes more reliable, and this would lead to 
better overall performance. Thus, the effectiveness of FT techniques must reflect the 
changes in overall system performance. 

Given that failures occur at a certain probability, a probabilistic model can be 
used for evaluating overall, or, expected performance. As such, there is no need to 
use separate metrics for performance and reliability, but rather we can use a com­
bined metric that reflects the distribution of performance. Such a metric, called per-
formability, should serve as the basis of agent utility. As such, to achieve reliability 
becomes an integral part for improving overall system performance (and performa-
bility), and hence the implementation of FT techniques become an integral part of 
the general problem solving and decision making in multi-agent systems. 

From the problem solving perspective, the possible occurrence of failures is an­
other form of the uncertainty in multi-agent problem solving, and fault-tolerance 
techniques offer alternative ways of achieving the goal/doing the same task, each 
with a different profile of uncertainty. By introducing uncertainty in problem solv­
ing, we can model failures into the agent's problem solving model, and with the 
introduction of performability measure, we can evaluate the impact of FT techniques 
on the performability, as well as the resource constraints imposed by the FT tech­
niques. Thus, this source of uncertainty can be represented and be integrated into the 
agent's constraint optimization process. 

A systematic research on FT in multi-agent systems, thus, must establish a frame­
work for multi-agent problem solving that includes performability, agent utility, a 
model of faults in terms of uncertainty in addition to other uncertainty sources, and 
agent coordination and cooperation. Based on this framework we can then define the 
decision problem for optimizing overall performance, and provide solutions for the 
problem. 

In the following sections we present a 3-layer approach for modeling multia-
gent problem solving and introducing FT techniques. Each layer corresponds to a 
different level of abstraction and also different level of formalness. At the bottom 
layer is a formal framework that describes the decision problem for multi-agent sys­
tems - a multi-agent extension to the Markov decision process (MDP) to model the 
multi-agent decision making problem. The middle layer studies the approximation 
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methods for solving the decision problems, and discuss the implication to agent co­
ordination. The purpose of this layer is to provide theoretical foundation for agent 
coordination strategies, so that we can map them in terms of agent decision mak­
ing policies, and then quantitatively evaluate them. Finally in the top layer we con­
sider various fault-tolerance techniques, integrate them into agent problem solving 
by transforming them into coordination mechanisms. While going up the layers, the 
problem solving becomes more and more coarse-grained, and this naturally means 
the increase of the degree of approximation. In terms of the level of abstractness and 
formalness, at the MDP layer we are dealing with abstract state representations of the 
multi-agent systems, and then moving up in to the coordination layer we are dealing 
with tasks and commitments, and finally in the FT layer we are going to deal with 
structured heuristic mechanisms. 

3 The Computation Model 

Before describing the approach in details, however, we need to first discuss the com­
putation model, i.e., our agent model, the nature of the agent's activities, and the 
environment where the multi-agent system operates. 

3.1 Agent Model 

First, let's define the notion of agent used here. We view an agent as an autonomous 
problem solver. As such, to specify an agent, we need to first describe the problem 
solving knowledge in an agent. This knowledge base can be specified in three parts: 

1. Capabilities — this is a list of the things/tasks/problems that an agent is capable 
of doing. Note that this does not mean that the agent can do it single-handedly. 
To be precise, it means that the agent has the knowledge of how to approach 
this problem, i.e., that the agent can do the task locally, or that the agent knows 
how to sub-divide the problem into sub-problems. Such a hierarchical structure 
allows the specification of complex problems/tasks. At the bottom level (leaf 
nodes) of the hierarchy are either locally capable tasks, or nodes of inability, 
i.e., the tasks that the agent has no knowledge how to perform or sub-divide. 
Obviously, the agent has to negotiate with other agents for the tasks it cannot do. 

2. Relationships/Constraints — Often the tasks are not independent to each other. 
For example, sub-problems may have to follow a particular sequence. Or, tasks 
use the same resources and therefore may potentially be mutually exclusive. 

3. Utility structure — a utility structure is defined for each task and relationship to 
specify how the agent's utility is affected. Similar to the hierarchical structure of 
the tasks, the utility structure defines the hierarchical composition of utility for 
doing a task. Again, the utility structure could involve tasks/relationships that the 
agent has no knowledge about them, but need to perform dynamic exploration 
in order to be able evaluate the utility dynamically. 
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Here in Figure 1 we show a task represented through agent capabiUty structures. It 
shows the capabihty hierarchy for both agents x and y. Note that some capabihties 
are unique to one agent, such as B and E. In these cases they are inabilities to other 
agents. One enables relationship is shown between F and C, which means that F must 
finish before C can start. 

• both's capability 

x's capability 

y's cabability 

(duration: 
(reward 0 
(outcome 

(duration 10 100%) 
(reward 25 80% 0 20%) 

(duration 5 100%) 
(reward 5 70% 0 30%) 

100%) 
1 60% 2 25% 4 15%) 

(duration 3 100%) 
(reward 0 100%) 
(outcome 3 70% 4 30%) 

(duration 10 100%) 
(:1 reward 60 100%) 
(:2 reward 30 50% 0 50%) 
(:3 reward 30 60% 0 40%) 
(:4 reward 0 100%) 

Fig. 1. An Example Task, with Agent Capabilities 

A key characteristic in our agent knowledge base is uncertainty. There are sev­
eral aspects of uncertainty. First, this means that tasks or relationships may have 
nondeterministic outcomes, and therefore the utility structure would need to define 
distributions rather than single value. This type of uncertainty originates from the 
stochastic nature of the problem solving, and the knowledge about the uncertainty is 
static and can be obtained offline. However, uncertainty can also originate from lack 
of static knowledge. For example, if an agent does not have a capability, it does not 
have the knowledge of how much effort or resource is needed before hand, but rather, 
it needs to perform dynamic exploration and discover the information it needs. Ob­
viously, such information depends on the nature of other agents in the same system, 
and therefore is dynamic and cannot be specified offline. 

Also, since agents are distributed and autonomous, an agent generally does not 
know all the events happening in other agents, and therefore it only has a partial view 
of the system, e.g., a partial view of the problem solving structure, a partial view of 
the utility structure, a partial view of the progress, i.e., runtime information about 
problem solving, and a partial view of the plans of the other agents. 

In our definition of an agent, we hold it as a prerequisite that the agents are 
capable of communicating with each other, therefore be able to explore, discover, 
negotiate, and coordinate. The exact low level details of the underlying network. 
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language, and format for communication among agents, although a very important 
part in actual implementation, are not the core subject of this study. Instead, in this 
research the communication is studied at the knowledge level. 

We further assume that the agents are rational, that is, the agent would choose 
the actions that are of its best interest. The decisions of the choices are made to all 
aspects of its problem solving, including exploration of nonlocal information, local 
reasoning or planning, negotiation with other agents, and execution. 

3.2 The Computation Model 

A multi-agent system consists of several networked agents. The agents could be ho­
mogeneous or heterogeneous. As described above, each agent has its own knowl­
edge base, and utility structure, but only has a limited view of the whole system. The 
agents can have streams of internal tasks to perform, i.e., internal periodic tasks, or 
have tasks received from outside the system, or both. There may be variations of the 
rate at which the tasks arrive to the system. The tasks correspond to the capabilities 
of one or more agents, and therefore the agents know how to perform them. In ad­
dition, there are constraints or requirements associated with each task. For example, 
time-critical tasks may impose deadline constraints. 

When a task arrives the system, the agents would try to solve it according to 
its requirements, spend the necessary resources (e.g., time, money), in return for 
some type of reward. Note that, this assumption of per-task reward does not restrict 
ourselves to that kind of problems. In fact, rewards based on long-term, statistical 
behavior of the system (such as average throughput, annual earnings, etc.) can also 
be used since they can be interpreted through averaging over per-task values. 

Based on how well a task is performed by the agents, there are different reward 
levels, therefore the problem solving is inherendy a constraint optimization problem. 
However, we note that even when the reward is fixed regardless how the agents com­
plete it (if they complete it at all), the problem is still an optimization problem since 
the agents would like to spend as little resource as possible. 

According to the way utilities are received by the agents, there are two types of 
multi-agent systems: one that the agents are self-interested and one that the agents 
are cooperative. The difference between them is that for self-interested agents, each 
agent tries to maximize its own utility and there is no notion of global utility. But 
for cooperative agents, they share the same utility function — the global utility func­
tion, and their goal is to collectively maximize the global utility. In general, though, 
agents' utility structures can actually be very complex and there may not be a clear 
line between self-interested agents and cooperative agents. Thus the agents may be 
cooperating based on the sharing of parts of utility functions [23]. This means that 
coordination and cooperation becomes even more important for cooperative systems, 
since the agents must coordinate in order to know the impact of their local actions. 

Our work will mainly focus on cooperative systems since we are interested in 
overall system performance, which indicates a global utility. 
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Given this computation model, in the following we will describe how we specify 
our model of agent problem solving in each of the layers in our approach, and more 
importandy, how to solve the problem. 

4 The Bottom Layer: Decentralized Multi-agent MDP 

The purpose of this layer is to provide a formal footing for cooperadve multi-agent 
problem solving. As in any formal studies, we need a suitable mathematical rep­
resentation of the problem. As such, high level representations such as capabili­
ties and relationships have difficulty conforming to a rigorous mathematical model. 
To solve this problem we use a state representation, and try to model the problem 
solving process into a decision process. There, Markov decision processes are used 
as a tool for decision making under uncertainty, but to study the decision process 
in cooperative multi-agent systems, we need to develop an extension to the stan­
dard Markov decision process. To date, there are several flavors of such extensions 
[25, 1, 20, 13, 12, 14], but the DEC-MDP/POMDP model [1] is the common the­
oretical model used in most approaches. However, although this model is general 
enough, it does not distinguish agent coordination activities from agent domain ac­
tions, and thus solving a DEC-MDP/POMDP offers litde insight toward developing 
coordination strategies. For this reason, in the following we will use the model in 
[25], in which the communication decisions and agent domain actions are separated. 
This allows us to model high level structures such as commitments and coordina­
tion mechanisms on top of this representation, and also facilitates the construction of 
approximation methods and heuristics. 

4.1 Model Agent Meta-level Communication 

In this model, an agent X's local actions and local state transitions can be modeled 
by a Markov process M :̂ local state space S^, local action set A^, and local state 
transition probabilities p^{s^j\s^,a^). However, this is not a standard MDP because 
there is no local utility function. Instead, there is a global utility function that is 
based on the global states and joint actions. 

The agents have partial view of the global state - the local state is really a partial 
observation of the global state. However, they can choose to communicate among 
themselves and obtain the local state information at other agents. In the more gen­
eral DEC-MDP/POMDP framework, these communication actions as well as local 
actions can be viewed as partial observations of the global state, and it is proven 
that these DEC-MDP/POMDP have NEXP-complete complexity [2]. Thus, solving 
these problems optimally is generally very hard, although some subclass of DEC-
MDP/POMDP can have a lower complexity level [12]. 

A solution (e.g. policy) to a DEC-MDP/POMDP consists of a set of local 
policies, which maps local information sets to local actions. However, the DEC-
MDP/POMDP does not distinguish the agent's local outcome (something locally 
observable) and communication (must be done with other agents). If we treat each 
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stage of agent problem solving as two substages, then we can separate a policy into 
two parts: at first substage, the agent observes local outcome of previous action and 
decides if communication is needed (the communication policy), and perform com­
munication if so. Then, at the next stage, the agent decides which action is optimal 
given the information available (include the information just obtained through com­
munication) - the local action policy. In this sense, communication can be viewed as 
an information gathering process. Figure 2 shows the sequence of the substages and 
the events occurring in one stage. 

current state 

. 
Previous rh ^ 

Stage 1 f 

Communication 
finishes / 

Communication 
Sub-Stage 

7 
/ 

Decide whether to communicat e or not 

/ . 

T 
Action 
Sub-Stage 

Stage t 

1 

Decide which action 
t 0 perfoi rm 

Action 
finisnes 

u M 

next state 

/ 
^ Next 

Stage 

Fig. 2. Communication substage 

To model communication, we use messages to represent the information ex­
change between agents. Local state information is the content of a message, and 
in particular, if an agent chooses not to communicate, its message will be null. Each 
agent can initiate communicate independently, we assume that the message format is 
mutually understood and that no message is lost/changed during communication. 

Exactly how the information is shared after the communication clearly depends 
on the nature of communication, for example, tell is a type of communication in 
which one agent simply voluntarily tells its current local state to the other agent, i.e., 
information going outward; and query refers the type in which one agent sends a 
query (about other agent's local state) and receives the information back, i.e. infor­
mation going inward; and another type, sync, is the combination of the above two, 
in that when an agent performs a sync communication, it reveals its own state to the 
other agent, and at the same time obtain the other agent's local state. As a result of 
sync (regardless of which agent initiates the communication), both agents now know 
the each other's local state, and also the knowledge that the other agent knows the 
same. Note that in actual implementations, more than one messages may be needed, 
but in our model it is sufficient to symbolize the process into one message commu­
nication. 

Under this framework, we can easily establish the connection between DEC-
MDP policies with agent planning and coordination strategies. Roughly speaking, 
the local action policy corresponds to the local planning process, which will em­
ploy a local planner to decide what domain action to perform; and the communi­
cation policy corresponds to the coordination process, which begins with establish 
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common knowledge and uses meta-level communication to coordinate the agents' 
activities. Thus, this model offers a theoretical underpinning for the study of plan­
ning algorithms and coordination mechanisms: they are simply the two components 
in an agent's local decision-theoretic policy, and therefore they can be viewed as a 
way to construct agent policies. This gives us one approximation/heuristic method 
for solving DEC-MDP/POMDP. 

5 The Middle Layer: Approximation Methods 

In this layer we discuss approximation methods for solving decentralized multi-agent 
MDP. Although to solve the decision problem in the bottom layer exactly is computa­
tionally infeasible in most cases, the evaluation of heuristic policies is quite straight­
forward. This is because that since the policy tells which actions to choose at each 
state, we can iteratively enumerate all possible episodes and the state transition prob­
ability functions. The actual computation is similar to the policy evaluation method 
used in standard policy iteration algorithm for solving standard MDP, also known 
as backward-induction or dynamic programming. Thus, given a predefined policy, 
to evaluate its performance, i.e., expected total reward, is not a hard problem. How­
ever, traditionally, the research on multi-agent problem solving strategies often uses a 
task representation, not a low-level state-based representation. The reason is that task 
level representation is more intuitive and convenient for describing agent goals, in­
tentions, and utilities than a state representation which is based on states, actions, and 
rewards. Therefore, in order to gain insight into the design of multi-agent problem-
solving strategies, it is very important that we have a way of translating task-level 
strategies to state-level policies. 

At task level, this representation is more coarse-grained than at state level, and 
this implies some approximation and simplification of the model of problem solving. 
At local level, the translation from task models to state models is fairly simple: each 
task is an action, and for each task a we can use a vector to represent all possible 
outcomes of the task. Then the local state space is simply a subset of all the combi­
nations of the task outcome sequences. Such a state representation has an advantage 
of including the local action history information into the state model, although it does 
not reflect the communication history. Figure 3 shows part of the state space derived 
from the example task shown in Figure 1 for both agents x and y. 

Next, we want to translate approximation policies, often in terms of agent co­
ordination strategies in a task-based system. The key problem is to represent agent 
coordination. To achieve this we use commitments as the vehicle for agent coordina­
tion. 

5.1 Definition of Commitments 

By definition, a commitment specifies a pledge to do a certain course of action [16]. 
A number of commitment semantics have been proposed, for example, the "Dead­
line" commitment C{T, Q.tdi) in [7], means a commitment to do (achieve quality Q 
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or above for) a task 7 at a time t so that it finishes before a specified deadline, r̂ /. 
When such a pledge is offered, the receiving agent can then do its own reasoning 
and planning based on this commitment, and thus achieves coordination between the 
agents. In recent years, the notion of commitment has emerged, among many re­
search groups [5, 6, 7, 15], as the bridge for multi-agent coordination and plarming. 
An agent's problem solving strategy, then, can be described as two parts: first, how 
to decide what commitments to make, and second, how to fulfill the commitments. 
Of course, due to the dynamic nature of problem solving, an agent also needs to 
monitor the problem solving and make changes to the commitments and the ways 
to achieve commitments when necessary, and this also part of the agent problem 
solving strategy. 

Such a definition of commitments naturally leads to its state-level description. 
Specifically, a commitment reflects the agent's promise to be in a certain state (having 
a proper value for the outcome of a local task) at some future time. The strategy for 
choosing commitments can be characterized as a function F based on the agent's 
information. Remember in our framework the agents can choose to communicate and 
thus gain information during the communication sub-stage, F for agent X is defined 
for both //f'̂  and H^'^. Similarly, the strategy for achieving the commitment can 
also be characterized as a function G, which define which actions (communication 
actions or task actions) is needed in order to fulfill the commitment. The G function 
is also defined on both H^'^ and H^'^. Obviously, the F and G functions are simply 
a different way of expressing the agent policy TT, and to solve the optimal F and G 
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functions is the same as solving the optimal policy 71. However, the use of F and G 
functions can allow us to effectively describe heuristic methods. 

First, the G function is based on the result of F, Intuitively, the result of F repre­
sents a goal of the agent. When a new goal is established, the way to achieve the goal 
based on current situation typically can be represented through a search process, and 
does not depend on history. Also, since the time-frame for the G function is limited to 
the time-frame indicated in the result of F function, G often has a short time-frame. 
This indicates that G often represents a Markov decision process with short horizon, 
and therefore is fairly easy to calculate. More importantly, if the goal indicated by F 
remains the same for a period of time, the G function simply reflects the progress of 
the same Markov decision process, and therefore requires little additional reasoning. 

Second, the F function represents commitments, and in turn the commitments 
reflect the goals of the agent. Naturally, although commitments and goals could be 
dynamic, in typical problem solving they are not to be changed very often [11, 10]. 
It is often convenient, then, to introduce an additional function v to represent the 
monitoring process, where v decides if F needs to be evaluated again based on the 
new information since the last time F is evaluated. In other words, v is a boolean 
function that checks whether or not new commitments need to be established. This 
way, F needs not to be evaluated all the time. Since the evaluation of F, i.e., deciding 
what commitments to make, is often a complex reasoning process, the use of v can 
significandy reduces the complexity and computational costs. 

5.2 Uncertainty in Commitments 

Implied in our state model for commitments is that commitments are uncertain. Due 
to the stochastic nature of problem solving, a promise of reaching a certain state 
in some future time often cannot be guaranteed. There could be several sources of 
uncertainty associated with a commitment. Sometimes, a task has an undesired out­
come that causes the promise to be broken. This type of uncertainty can often be 
calculated when the commitment is made, because a stochastic process is defined by 
the G function, which is based on the result of F function. Another source of uncer­
tainty is due to the possible change of commitments. Because of the dynamic nature 
of the system, an agent's view of the system is different from the view it had when 
the commitment was established. This may mean a different result of F and hence 
different commitments. 

To deal with these uncertainties, two methods can be applied: one is to define 
statistical guarantee semantics to a commitment. This means that when describing a 
commitment, we need to also specify its reliability characteristics. This can be in the 
form of a distribution (often multivariate because a commitment involves potentially 
several uncertain parameters), or expressions regarding estimations of bounds and 
ranges. The description of a commitment can also include information regarding the 
dynamics of the reliability profile, for example when the success rate of a commit­
ment may change and by how much. By planning ahead using these information, 
the agents can have a more complete picture about the future role of the commitment 
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and thus reduce the chance of having unexpected failure events in the future that may 
cause ineffective coordination. 

The other method is to monitor the commitment in the runtime and react to 
changes in the commitments. The monitoring function v is the key to this method. 
Based on the events occurred in the system since the F function is evaluated, i.e., the 
outcomes of the tasks and the communication messages the agent sent or received, 
V calculates the impact to the current commitments and therefore let the agents to 
decide if the commitments need to be changed. 

5.3 System-wide Policy and Per-agent Policy 

Based on the choices of F, G, and v functions (for each agent), we have an approxi­
mation to a multi-agent MDP policy. These functions are sufficient for the evaluation 
of this approximation policy. However, we need to make the distinction between the 
design of policies for all agents and the design of one-agent policies. 

The design of policies for all agents, i.e., a system-wide policy, is based on the 
understanding of the global state space. In other words, the input for the this system-
wide policy is the whole decision problem, including the global state space, utility 
function, and communication mechanisms. From an individual agent perspective, an 
agent can reason for a system-wide policy if knowledge about the global state space 
information is given, however, in that case, each agent has to follow the same system-
wide policy, i.e., to assume that the other agents would reach the same system-wide 
policy, and therefore each agent knows the policies of other agents. This can be 
done, for example, by implementing the same system-wide policy produced by the 
system-designer in each agent. Under such a system-wide policy, the actual reason­
ing process does not occur within the agent. Rather, it is decided by the global state 
space alone. 

However, if the system is an open one, or it contains heterogeneous or legacy 
agents, an agent cannot in general have a clear picture of the global state informa­
tion necessary to reason about a system-wide policy. In some cases, even if an agent 
knows the global state space (thus it can reason about a system-wide policy), it can­
not assume that the other agents are using the same reasoning techniques (cannot 
predict other agents' policies), and therefore it cannot simply derive the system-wide 
policy and follow that policy alone. Instead, the agent has to rely on partial knowl­
edge of the whole system, and has a local reasoning process, and produce its own 
policy. This policy is not a system-wide policy but rather just for this agent only, al­
though this policy does interact with other agents' policies. This means that, during 
the design of the one-agent policy, we cannot assume that we know the policy in other 
agents, nor assume that we can control the policy of the other agent. This is a practi­
cal assumption when designing agents for open systems. In these systems, an agent 
has only partial knowledge of other agents' state spaces, and also partial knowledge 
of other agents' policies. These partial knowledge forms the basis of the interaction 
among agent policies. In typical multi-agent coordination, to obtain the information 
about nonlocal state space and policies is a significant part of a coordination pro­
tocol. Again, commitment is the key in the interaction of the individual policies. A 
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commitment indicates the agent's intention of reaching certain goals, thereby reveals 
partial information about the agent's policy. In our model, commitments are dynamic 
and therefore have uncertainties associated with them. To the agents who receive this 
commitment, dealing with these uncertainties often resembles the decision making 
under a partially-observable Markov process. 

This distinction between a system-wide policy and a per-agent policy does not 
affect the evaluation of the policies, which is based on complete knowledge of the 
system no matter which type of policy is used. However, a system-wide policy is 
based on the complete view of the structure of the system, the so-called objective 
view. In comparison, a per-agent view is based on a partial view of the structure, 
i.e., the subjective view. Obviously, in many systems the subjective view does not 
equal the objective view. Moreover, when the system evolves during runtime, the 
subjective view can also evolve. 

Having a subjective view means that, when designing per-agent policies, the 
choices of these functions are constrained, since they need to reflect the reasoning 
process based on a partial global view of the system, and therefore cannot use in­
formation unavailable to the agent. In particular, if an agent A only has a partial 
knowledge of the state space of some other agent B, to understand B's commitment, 
i.e., B's promise of being in a certain local state at a certain time, would be difficult. 
Rather, a commitment can be about some feature of the state rather than the state 
itself. This is quite natural in a task-based representation, where a state naturally 
contains information about the outcomes of various tasks. For example, a feature of 
the state may means that a certain task T is finished with a certain outcome. This is 
exacdy the task-based semantics used in the work of Decker and Lesser [7]. 

Partial knowledge of some other agent's state space also leads to difficulties in 
understanding the other agent's policy. In particular, since commitments are uncer­
tain, an agent needs to know not only which commitments are made, but also what 
can happen to these commitments. Typically, protocols often rely on explicit commu­
nication to make sure that the commitments are mutually understood among involved 
agents. In [26], we studied the additional information needed in order to deal with 
these uncertainties in commitments. This information is meant to be shared through 
communication. By the exchange of policy information, such as intentions, plans, 
schedules, actions, the agents do not need to have the global state space informa­
tion needed in order to reason about other agents' policies. This can clearly make 
the agent's reasoning much simpler. Clearly, here the notion of communication is 
different from the primitive communication mechanism defined in our multi-agent 
decision process, which is limited to the exchange of state information. However, 
we note that this does not affect our evaluation of the policies (which is based on 
the objective view), but rather extends our definition of F, G, and v functions, such 
that these functions can use the policy information made available through these ex­
changes. In other words, such communication can be characterized as part of the 
dynamic expansion of the subjective view during problem-solving, so that more in­
formation is available to the agent. 
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5.4 Communication of Commitments 

In the above discussion we indicated that communication of policy-related informa­
tion can be part of the agent coordination. This is very important when agents cannot 
reason about other agents' policies because of the lack of knowledge about the global 
state space. However, note that, in our formal model, communication is limited to the 
sharing of nonlocal state information, and we argue that such communication may 
incur a cost. For policy information, though, it is often not feasible to impose a for­
mal cost measure. One possible way to address this problem is to view policy-related 
information as an add-on to state information, so that the communication message 
contains not only state information but also some policy-related information, such as 
commitments, plans, and actions. Obviously, this restricts the communication of pol­
icy information to occur at the same time as the communication of state information. 

Obviously, if communication is free, agents can exchange all state information at 
all times and thus a centralized approach (just study the optimal joint action for any 
global state) may be possible. In many coordination protocols, however, although 
communication is free, it is still prohibitive to communicate all information due to 
the system limitations. Thus, our decentralized model is very important even when 
communication is cost-free. In these systems, which information is to be commu­
nicated, and how much communication has occurred, are still important aspects of 
protocol design. 

At the center of policy-related information is agent commitments. Commitments 
reveal agents' intentions, and the fulfillments of commitments is the key to successful 
coordination. Communication can ensure mutual understanding of the commitments, 
and can also specify the uncertainty in commitments. Also, communication has two 
roles in the dynamics of commitments. Communication is very important for the 
agent to decide what commitment to make since it provides the information it needs 
and reduces the uncertainty in agent reasoning process. At the same time, communi­
cation also allows the monitoring of the multi-agent problem solving, and therefore 
the agents can have the non-local information needed to decide whether or not the 
commitment needs to be revised. Since commitments are dynamic objects, a coordi­
nation protocol could also specify the communication for changes of commitments. 

The mutual understanding of a commitment is not limited to the understanding 
of the promised state, but also the uncertainty associated with the commitment. The 
key to the handling of the uncertainty is the guarantee semantics of a commitment. 
Clearly, due to the stochastic nature of the system, the guarantee is a statistical one, 
not a 100% guarantee. Since other agents often lack the information needed in or­
der to reason about the reliability of the commitment, communication is often also 
needed in order to explicitly tell what can happen to the commitment, and at what 
rate. 

Using the same example task in Figure 1, suppose one heuristic method gen­
erates the following policy for the two agents. For x, the commitment it makes to y 
is that it finishes task C. The task of y is to complete task D so that task G is satis­
fied, and in turn task H is satisfied. However, since C may fail, y has a commitment 
to perform E if that happens. This covers the F function part. The G function part 
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describes how x completes C, i.e., x shall perform A, and if the outcome is not 4, 
do C. Otherwise, x shall do B next, then do C. Communication is needed if C fails, 
in that case y start to fulfill its commitment of E. The v function here simply moni­
tors x's commitment of C: if B fails, the commitment of C cannot be fulfilled. This 
policy is shown in Figure 4. It tells which action to take for both agents, and also 
communications between the agents (the dotted links). 

c r—"^ 

m ^4. 
C 

^ reward̂ p 

Fig. 4. An Example PoHcy 

The key to the evaluation of this policy is the evaluation of the commitments. Ob­
viously, the commitment about C offers only a statistical guarantee: C will succeed, 
i.e., obtain nonzero reward at 78.8% of the times. It is more interesting, however, 
to look at the dynamics of this commitment. Specifically, before A is finished, the 
success rate is 78.8%. After A completes, however, the rate can be 100% (if outcome 
is 1), 50% (outcome 2), or 42% (outcome 4, since B will be performed.) Similarly 
we can get updated expectations after B is completed. This information is useful for 
agents to dynamically adjust its policy. For example, if A finishes with outcome 1, we 
can see that C is now 100% guaranteed, hence }̂ 's commitment of E can be canceled 
if explicit communication for canceling the commitment is used, thereby improves 
this policy. 

6 The Top Layer: Coordination Mechanisms for FT 

In the two lower layers we defined the framework for multi-agent problem solving 
and heuristic methods. The key there is to define the underlying decision problem 
and to decide what information to share and what heuristic functions to use. 

Through these two layers we can develop the whole agent policy from scratch. 
However, since a policy is often quite complex and cumbersome, we still need fur­
ther approximation methods when the system scales up. To do this we need to have 
ways to describe a policy (or a partial policy) not at the detailed state level or task 
level, but at a higher level. This way, we can readily adopt many protocols and mech­
anisms developed previously in the context of planning and coordination. This way, 
we can pre-define a set of alternative mechanisms, and simplify the agent's reasoning 
process by selecting from these alternatives instead of using a search process. These 
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pre-defined mechanisms are often very efficient and not computationally intensive, 
and at the same time provide good performance. Another important benefit of using 
pre-defined mechanisms is that although a detailed, low-level policy may achieve 
better performance, it is often not intuitive enough to give us direct insight, while 
the use of pre-defined mechanisms can help us understand the patterns of policy and 
the textures of the solution. For large, complex systems, such insight is crucial in the 
design of agent coordination policies. 

Therefore, in this layer we shall study how to develop and use pre-defined alter­
natives in our framework. In this work, we focus on how fault tolerance is achieved 
by this approach. Fault-tolerance mechanisms have been extensively studied in the 
past, and we shall study how we can develop pre-defined mechanisms to adopt them 
into our multi-agent problem solving framework. First, we now introduce performa-
bility in terms of a measure of utility levels. 

6,1 Performability 

Formally, performability is based on the levels of accomplishments achieved by the 
system activities [19]. For finite horizon problems, problem solving is limited to a 
particular time interval [7^,7/], where Ts is the start time and 7/ is the finish time. 
Let's also assume that time is discrete. 

Let QLJ to be the set of finishing states of the system. These finishing states reflect 
the different levels of accomplishments achieved by the system activities during the 
problem solving period. 

Let the function J : Q/ —> [0,1] specify a probability measure of Q/, i.e., 
Y,d{si\si G Q.f) — L In other words, d specifies the probability distribution on the 
set Q.f. For example, if Q.f ={pass,fail}, then this d function: ^(pass) — 0.8 and 
J(fail) = 0.2 means a distribution of 80% chance in state pass and 20% chance in 
state fail. Clearly, each d reflects an accomplishment level. Typically, system design­
ers can have an evaluation function to compare if one distribution is better or more 
preferable than another distribution. Such evaluation function on the accomplishment 
profile is known as \ht performability measure of the system. 

If a given policy n results in a finishing state distribution d, the performability 
of 71 is the same as the evaluation of d. Note that in a utility based model such as 
our MDP, there is a difference between d and the utility distribution resulted from 
7C, and the performability measure is not necessarily equivalent to the evaluation of 
the expected utility of 71. However, in many utility based models the states are distin­
guished by their utility values, and the utility structure can be engineered in such a 
way that the performability measure is simply the average expected utility. For sim­
plicity, we will assume the equivalence of the performability measure and the utility 
measure in this work, and therefore finding the policy with best utility is equivalent 
to finding the policy with best expected utility. 

Given our Markov model, under a fixed policy 71, we can also evaluate the ex­
pected utility for any global state, which is simply the value of the same policy except 
assuming the starting state to be the current state. Clearly, under the optimal policy, 
the expected utility of a global state reaches its upper-bound. Notice that if a state s 
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has a higher upper-bound than another state s', it does not mean that s is always more 
preferable than s', since it often depends on the policy being used. 

Using the same example task and policy illustrated by Figure 1 and Figure 4, 
x's policy produces a performability prospectus as such: 60% chance reward 60 and 
duration 18, 12.5% chance reward 30 and duration 18, 6.3% chance reward 30 and 
duration 21, 12.5% chance reward 0 and duration 18, 4.5% chance reward 0 and du­
ration 11, and 4.2% chance reward 0 and duration 21. In the last three cases (21.2% 
chance), y need to perform E. Similarly we can calculate y's performability profile. 
These performability profiles allow us to calculate the performability measures, in 
our case expected utility values. Note that utility is not necessarily the same as re­
ward. In our example, the utility could be the reward/duration ratio instead of the 
total reward, thus implies that there is cost for processing time, which is not part of 
the reward structure. 

Like the commitments, the performability profile changes during the problem 
solving process, and the same for the utility expectations. Furthermore, calculations 
about the probabilistic outcomes of commitments can be used for performability 
estimations, and vice versa. In our framework, performability is the key that connects 
commitments with utility measures. 

6.2 Fault Tolerance Mechanisms 

Clearly, given our performability model, a failure refers to an undesirable accom­
plishment level. A failure can also occur during the problem solving. Intuitively, if 
an agent moves from a state with higher expected utility to a state with lower ex­
pected utility, that means some undesired event has occurred, and this transition can 
arguably be called a failure. It is arguable since these expected utility values are based 
on a particular policy, under another policy there could be different values, or such 
move cannot be made at all. In a task-based system, such a failure could be defined 
as a task having an undesirable outcome. 

In fault-tolerance terms, the type of faults we are modeling is task fault. A task 
fault is transient, stochastic, and localized to this task only. It can be described 
through a failure probability (this corresponds to our transition probability). Histori­
cally, metrics such as MTBF (mean time between failures) and MTTF (mean time to 
failure) are often used to describe the reliability of an agent doing continuous tasks. 
By assuming that occurrence of failures follows a particular probability distribution 
(Poisson distribution is an often used one), these metrics can be translated as per-task 
failure probability as well. 

To handle these faults, there are many FT techniques: 

• Checkpoints: when a task spans a long duration or consists a series of subtasks, 
checkpoints can be inserted and the results up to these checkpoints are saved. 
This way, when a failure occurs, the agent only need to repeat the work (roll 
back) after the latest checkpoint. 

• Primary-backup (PB): when a task (the primary task) is to be performed, a 
backup task, which is a duplication of the primary task, is also planned. If the 
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primary task succeeds, the backup task would be canceled. The task fails only 
when both primary task and the backup fails. 

• Primary-exception (PE): this is essentially the same as primary-backup, except 
that the backup need not be a duplication, but rather a task capable of the solving 
the same work in a different way. Usually the backup task requires less effort but 
has lower performance, and hence the name. 

• Triple-modular-redundancy (TMR): this technique requires parallel execution of 
three copies of the same task. However, unlike the techniques we listed above, 
here we cannot tell the result of a task is right or wrong, i.e., we can know the 
probability of having the right answer, but there is uncertainty regard the cor­
rectness of the result. Thus, in this technique, there is a simple voter procedure 
that compares the three results: if the majority of the three show the same result, 
that result is considered as correct, e.g., less likely to be wrong. Otherwise (all 
three are different from each other), a failure is concluded. This mechanism is not 
only a redundancy technique that improves reliability, but also a fault-detection 
technique. 

• N-copy: here the number of copies can be A'̂  instead of 2 or 3. This can be viewed 
as a generalization of PB and TMR. 

• Self-checked pair (SCP): this technique changes TMR a little bit: instead of per­
forming three copies (which requires a lot of resource), two copies are performed 
first, followed by a comparison procedure, which decides if the two results are 
identical. If so, the result is considered correct and the third copy need not to be 
performed. Otherwise, the third copy is performed and then the voter decides if 
a failure has occurred. Logically it is equivalent to TMR, but it is adaptive since 
there is a good chance that the third copy needs not to be performed. 

In an intelligent system, a key feature is that an agent often knows several ways of 
achieving the same task. This allows us to execute several strategies at the same time, 
or choose an alternative way when one strategy fails. This is a natural generalization 
to redundancy techniques such as primary-backup and primary-exception. 

The introduction of redundancy tasks further complicates the agent problem solv­
ing. Since a task can be executed more than one times, and more than one alternative 
can be applied, an agent now has much more choices in its decision making. The 
state space can potentially grow drastically compared to the case that an agent can 
only execute a task once. As such, to develop pre-defined mechanisms to reduce the 
size of the state space and the complexity in the search for solutions becomes even 
more important. 

Such pre-defined mechanisms are not only used in multi-agent coordination, but 
also in single-agent planning. For example, primary-backup technique can be used 
either across two agents, with one doing the primary task and the other doing the 
backup copy, ot within a single-agent, making it completely local processing. 

As an example, let us study how to translate the PE technique (a generalized one) 
into a pre-defined mechanism. Assuming the goal is G and two alternatives for this 
goal are A and B, and the two agents involved are X and F. The mechanism PE(A,5) 
can be specified as: 
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• Agent X makes a commitment about A. The parameters to be decided include 
when A would finish, and a threshold to decide if A is failed. 

• At the same time Y need to make a commitment about B, and decide when B 
should finish. Another parameter could be its start time, since B usually needs 
not start before A finishes. 

• A communication policy to ensure that Y understands the result of A. A simple 
strategy would be to let X tell F if A succeeded or not. Other communication 
strategy can also be used, for example, Y can assume A succeeded if it does not 
hear from X before some previously agreed-upon time. 

• Y decommits B if it knows A has succeeded. Otherwise the commitment is kept 
and B will be performed. 

As we can see, there are some parameters to be decided in this mechanism, and 
by varying these parameters there could be some variations to the PE technique. For 
example, Y can start B quite early, when A has not finished (or even started). Logi­
cally, there is no difference from the original PE technique, but here this mechanism 
can have more flexibility. In addition, X and Y could be the same agent, and in this 
case both commitment are local ones. 

This mechanism provides a pre-defined package for the agents to understand 
each other's roles involving a series of activities. By using these mechanisms, agents 
can reduce their overhead in reasoning and communication, therefore improves ef­
ficiency. Of course, these mechanisms only defines a small part of the agent policy, 
and they cannot completely replace agent reasoning. For example, in PE, if B also 
fails, the agents then have to rely on the rest of the policy to reason and handle the 
failures so as to ensure a graceful degradation. 

Similarly, for SCP, assuming the task is A, the mechanism SCP(A) can be defined 
as: 

• Agents X and Y both make a commitment regarding task A. 
• Agent Z also makes a commitment about A, but with a later start time and finish 

time. 
• A communication mechanism between X and Y to compare their outcomes. Fur­

thermore, if the results are the same, Z will be notified, otherwise both outcomes 
are transmitted to Z. 

• Z can decommit if X and Y have the same outcome. Otherwise, A is performed, 
and the result is compared to X and F's results. If one of them is the same as Z's 
result, Z's outcome is regarded as correct. Otherwise, all three results are distinct, 
a failure result is considered. 

As an example, let us look at the policy illustrated in Figure 4. This policy ex­
hibits some patterns that can be compacdy represented via mechanisms, by noting 
that tasks A and B forms a PE mechanism for task F, and task E also serves as the 
exception method for task G, which consists of A, B, C, and D. Figure 5 illustrates 
these two cases of PE mechanism. Note that a mechanism can be applied intra-agent 
(like A and B) or inter-agent (like G and E), the difference is that the latter involves 
possible communications. 
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Fig. 5. Mechanisms 

The use of mechanisms not only identifies common patterns in policies, but also 
simplifies the evaluation process. For example, the outcome profile for PE mecha­
nism can be easily computed given the outcome profiles of both the primary and the 
exception tasks, even though both tasks could be complex structures on their own: if 
A's chance of failure outcomes is p, i.e., B is invoked at chance p, then the outcome 
profile of PE mechanism consists of all A's outcomes that does not result in failure, 
plus all B's outcomes with their chances multiplied by p. 

Many more mechanisms can be defined based on a variety of existing coordina­
tion strategies. A family of mechanisms are needed, not only on fault-tolerance, but 
also on other aspects of problem solving, such as dealing with inter-relationships and 
handling uncertainties. The reason for a family of mechanisms is that mechanisms 
are highly situation-specific. Through the study of the mechanisms, we can gain in­
sight into the characteristics of the problems and recognize when it is effective to 
apply certain mechanisms and when it is not. 

7 Organization-Related Failures 

So far we presented a framework in which FT mechanisms can be integrated in mul­
tiagent planning to handle tasks failures or underarchievements. However, these are 
not the only types of failures. While many multiagent planning research do address 
the issue of dealing with uncertainty and handling failures, the scope and extent of 
the problems that have been addressed so far is rather limited. The types of failures 
and events that a large scale multiagent system have to deal with not only include 
task failures, broken communications, violated commitments, etc. but also must in­
clude agent failures, changed agent organizations, even agent deaths. Robustness in 
multiagent operations must be a priority in the system design. This, however, is an 
immensely complex problem and has not been adequately addressed so far. It is easy 
to envision the kinds of problems or even catastrophes that may result if we do not 
address the issue of robustness: 
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• A single or central point-of-failure that would lead the whole system to total mal­
function. It is widely recognized that even if the central point is heavily guarded 
(very expensive to do), the existence of such central failure point is a vulnerabil­
ity. 

• Fixed group control hierarchy that cannot adapt to organizational changes. For 
example, when agents enter or leave the group, the control structure may be seg­
regated, broken, or disintegrated. 

• Central control/planning that stores planning information or organizational in­
formation in one agent. This would cause the other agents not able to recover or 
resume the joint goal in the event of the failure or death of the central agent. 

• Poor scalability that caused the planning algorithms to perform poorly. For ex­
ample, agent may need to take extended reasoning time when many agents are 
involved, the algorithm may time out or become interrupted when agents dynam­
ically enter or leave the group. 

In order for existing planning frameworks (that are designed for a fixed (and often 
small-sized) group of agents) to work in large scale systems, we must develop mech­
anisms to complement them and avoid potential pitfalls. Here, we attempt to address 
the robustness problem by focusing on the issue of plan adaptation in the event of 
agent failures. We introduce several techniques to enhance the plan robustness, in 
particular with regard to agent deaths. 

The focus here is to investigate the organizational means for piecing together 
the otherwise fragile and unrobust local planning frameworks to provide a level of 
robustness at the global level. It should be noted that the small-scale solutions (the 
local planning part) remain to be fragile, and the global plan (as a loose ensemble of 
local plans) may not be perfectly consistent at any moment. Our major concern is to 
contain the effects of local failures and prevent the failures from affecting the global 
system, by limiting the scope of the small-scale solutions and providing dynamic 
adaptation and organization. There is a large body of work on how to enhance plan 
robustness per se in classic literature in reliability of distributed systems and robust­
ness in robotic systems. These and other related studies would undoubtedly benefit 
our approach, but at this moment they are not our main concern. 

7.1 The Minesweeping Problem 

To better understand the issues involved in plan adaptation, let us use the following 
multiagent cooperation problem as an example and focus our discussion around it: 

Suppose that there is a minefield that needs to be swept. The exact number and 
positions of the mines are unknown. To do this, we will air-drop a batch of robotic 
minesweepers (hundreds or thousands of them) onto that field. Each robot is capable 
of roaming the field and detecting mines. A robot (i.e. an agent) can also blow itself 
up - by doing so it can destroy all the mines within a certain radius to itself. Each 
robot has some wireless communication equipment for communicating with nearby 
peers and they should cooperate with each other to maximize the performance -
identify the existence of the mines and also destroy them as much as possible. 
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In addition, let's assume that all robots have positioning capability (such as GPS 
receivers) so that they can know their own positions. Also suppose that the map is 
known to all robots before the operation. For modeling purpose, we can divide the 
minefield into small square units and the task would be to find out if the squares 
contain mines and to destroy them. In practice, there will also be other constraints, 
such as the agent's power, range, mobility in different terrains, etc, but for simplicity 
let us not consider those problems for now. This problem has some resemblance to 
problems of swarm intelligence [3], however, our agents are not simple organisms but 
they do have complex planning ability and are able to communicate with each other, 
even at meta level. Thus, their group or organizational level behaviors are results of 
deliberation, rather than swarm intelligence. 

Since minesweeping is inherently a dangerous operation, an agent could invol­
untarily step on a mine and thus be destroyed (when that happens, all mines as well 
other robots within a certain radius will also be destroyed.) Also, a robot could be 
damaged during the operation. Thus, agent deaths are quite possible - either planned 
or unexpected. 

It is conceivable that one may pre-program the robots with a predetermined plan. 
For example, one could divide the region into many pieces and assign each robot to 
sweep a different region. However, it is easy to see that there may be drawbacks. First 
of all, the setup may be fairly time consuming. Second, there is little control when 
air-dropping the robots, so the robots would not be placed in their targeted regions. 
Finally, due to the uncertainties and the probabilities of failures, the plan may become 
rather ineffective. Thus, some form of dynamic planning would be needed. 

We will not focus on the specifics of the planning approach here, rather, we are 
more interested at the problem of how to maintain the plan across the agent organi­
zation. Based on the characteristics of this problem, the viable planners must be able 
to implement some form of subgrouping coordination among the agents, so that the 
agents would form groups to cooperatively explore parts of the field. The following 
issues need to addressed to ensure robustness: 

• Because of the number of agents involved, it would be infeasible for any one 
agent to establish/compute a global plan. Plus this would mean that if that agent 
dies, the plan is lost. 

• It is also infeasible to allow direct negotiation among all agents, not only be­
cause of the scale of the negotiation, but also because of the limit bandwidth and 
possible interference in agent communication. 

• Since the agents are air-dropped to a new environment, there is no external ser­
vices or infrastructures that the agents can utilize. Thus, the agents need to per­
form self-organization and self-service. 

• Thus, agents would need to form groups to cooperatively explore parts of the 
map. This 3-level architecture (individual agent level, group level, and the whole 
organization level) is the key in organizational theory and is critical in large scale 
multiagent systems. However there has been little work so far in the multiagent 
planning research society that explicitly deals with this architecture. In addition, 
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we need to address issues such as group formation (and division as well), agent 
location, and group interaction. 

• Since an agent may die at any moment, this may cause problem to the group: an 
agent may leave the group at any moment (agent death can be seen as a special 
case of agent leaving.) Thus, the group status need to be constantly monitored. 

• Also, if the agent leaving the group is the group leader (who is at least partially 
in charge of maintaining the group plan), there is a need for the group to be 
re-formed, and the plan need to be recovered. In some cases, when the agent vol­
untarily chooses to die, there could be a process for a new leader to be elected; in 
other cases, the group would need to discover the exit of the leader, and recon­
struct a group if possible. 

In the next sections we will first discuss the mechanisms for establishing groups 
and joint plans among the agents discuss the mechanisms for intra-group and inter-
group coordination, then discuss how to maintain or monitor group status, and finally 
discuss how to recover plans when a group manager agent (group leader) dies. 

7.2 Group Formation and Plan Composition 

Although coalition formation [21, 17] is an active research subject, much of the em­
phasis has been put in the game-theoretic aspect rather than in the organizational 
aspect. In our application scenario, the agents are inherendy cooperative and they 
share an ultimate joint goal, which is to achieve the overall minesweeping mission as 
a whole. In other words, this represents a top level goal. Let us define a membership 
relationship between a goal and any agent subscribed to this goal, i.e. member(g) 
defines the set of agents that share the intent to pursue this goal g collectively. In this 
sense, a goal defines a group organization. For the top level goal, its member set is 
simply the set of all agents. 

At the bottom level, each individual agent has its own local goal, and only this 
agent alone subscribes to this goal. Thus, the member set for the local goal contains 
only the agent itself. 

For a large scale system to work, there needs to be intermediate level goals, and 
those goals can form a goal network which specifies the goal hierarchy similar to 
a goal search tree [16, 18], with the top level organization goal at the root of the 
hierarchy and agent local goals as the bottom leaf nodes. A group can be viewed as 
the member set of a goal. Thus, if the agent is subscribed to a set of goals, it also 
has the membership to all the corresponding groups. Ideally, the goals are perfecdy 
decomposed so lower level goals completely satisfy the high level goals. Also, the 
subgoals should be perfectly coordinated to maximize performance and minimize 
resource usage and overlap of goals. However, in reality, the goals may not be com­
plete or even coordinated. In this minesweeping problem, we can view each goal as 
the intention to have all its members to cooperatively sweep a certain region. How­
ever, the goals may not cover the whole map, and there could be overlapping regions. 
Figure 1 shows an example of such goal hierarchy. On the top is the map of the re­
gion and the ovals and boxes show the intended sweep area for each goal (different 
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Fig. 6. Groups and the Incomplete Composition of Goals 

shapes indicate different levels). On the bottom is the corresponding goal hierarchy. 
Clearly, the subgoals of N does not cover the whole region, and there are some over­
laps between peer groups J and M. Note that although the figure shows a three level 
hierarchy, this does not necessarily mean that a 3-level hierarchy is sufficient. As the 
number of agent grows, there would certainly be more levels. 

The basic group formation process for this problem can be viewed as similar to 
a hierarchical clustering process: we can start with each agent itself as a group, and 
then adjacent groups could be merged together to form larger groups. Those larger 
groups would also define their goals (i.e. the area the group intend to investigate.) 
For the mechanism to be scalable, we want to apply group size constraints so that 
the groups would not contain an unmanageable member size. In some cases, a large 
group may be divided into smaller groups, so that the groups are more manageable. 
The exact process of choice for this problem is not the focus of this work, but in the 
end we shall obtain a hierarchy like the one shown in Figure 1. Thus, for each agent, 
the set of goals in which this agent is a member can be decided by tracing up the goal 
hierarchy. The paths can be maintained in the agent and the agent thus is aware of its 
group memberships. 
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Group planning and coordination is a continuous process throughout the prob­
lem solving. There are three types of planning/coordination activities that may be 
involved in order to dynamically respond the the changes in the environment and the 
action outcomes: 

1. Group planning: once a group is formed, the group leader would assume the role 
of the group planner, as modify the group intention accordingly (this means to 
decide on a different area to sweep, move the group to a new area, etc. 

2. Intra-group coordination: the group members (i.e. the subgroups) should coordi­
nation with each other to optimize the plan, for example, to negotiate their areas 
of responsibility. 

3. Inter-group coordination: one group should coordinate with other groups to op­
timize their common goal. For example, the groups may try to reduce the over­
lapping region. 

This type of coordination discussed here is somewhat related to the partial global 
planning framework [9] where a division of nodes, acquaintances, and the whole 
system is made and a dynamic architecture is proposed. Note that since group mem­
bership information is distributed and therefore is not a central point of failure. The 
different levels of goals also have different level of stability or flexibility: at the root 
level the organization is almost fixed, and so it the goal; while at lower levels the 
groups are more and more volatile and the same is true for agents' local goals. 

7.3 Group Maintenance 

Each group should contain a group leader that represents the group members, man­
ages/designs the plans for each group member, and interacts with the other groups. 
As such its role is quite important. The leader of the group should be able track the 
group members and the group members should be able to be connected with the 
leader. The leader of the group should be elected or decided by the members - some 
criteria would include to select the agent that is most convenient for the organization 
and optimize resource usage, as well as to select the agent that is most stable (in the 
sense that the agent would have a long lifetime with the group.) 

Since agent failure can happen at any time, we should not implement hard con­
strains or commitments among the agents. Rather, the plans are inherently '*best-
effort" plans, with no hard guarantee semantics. Each agent can decide to enter or 
leave a group at any time, and the group leader can decide to remove any member as 
well. 

A key problem for the groups is to find out if any group member has left the 
group. When an agent leaves a group voluntarily, it is conceivable that the agent 
may announce its intention before its departure (that includes blow up itself, since 
the agent won't be around any more). However, when an agent involuntarily leave 
the group, we definitely need to have a mechanism to find out. (Involuntary leaves 
may include being destroyed by a mine, agent internal breakdown, and also com­
munication failures.) We propose a simple "heartbeat" mechanism to detect agent 
departure: 
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• When the group is estabhshed and the leader is identified, each member would 
periodically communicate with the leader, i. e. send the ''heartbeat message" to 
indicate "I am here." If the leader does not receive the heartbeat messages for 
some duration, the leader can assume that the member is no long in the group. 

• Similarly, the group leader periodically broadcast to other group members. If a 
member does not receive heartbeat message for some duration, the member can 
assume that the leader has left. 

Of course, being able to send heartbeat messages does not mean that the agent 
is actually in good condition (maybe the communication component is working but 
other components are not). Thus, additional communications for sharing agent action 
outcomes may be needed (but at a less frequent rate.) 

The heartbeat mechanism is often used in fault-tolerant systems for tracking the 
status of distributed entities and fault detection [22]. It requires a fixed amount of 
communication bandwidth - the larger the group is, the more bandwidth would be 
needed. This would impose a constraint on the size of the group. However, as we 
indicated before, we intentionally limit the group size so that we would not encounter 
a group with many members. Instead, a multi-level hierarchy can be used to deal with 
large scale organizations. 

Note that the decision of sending a heartbeat message or not is entirely within the 
agent: even if the communication channel is open, the agent may decide not to send 
heartbeat messages - and therefore effectively disengages itself from the rest of the 
group (or fake death in some sense). Likewise, an agent may decide to keep mem­
bership in more than one groups at the same time. As such, this mechanism is not 
failure-proof, in particular when facing malicious failures (from agents that deliber­
ately act to harm the organization.) This seems to lead to a system for establishing 
trust and reputation for solving this types of problems, but at present it is beyond our 
scope. 

7.4 Plan Recovery 

The loss of a non-leader member in a group would cause the group plan to be partially 
inconsistent, but the group leader, acting as the group planner, would be able to 
perform replanning and this at least partially address the problem. However, if the 
leader dies, the group is left without the planner, and some of plan information would 
be lost. For the rest of the group to continue to adapt to the environment, we need to 
establish a plan recovery mechanism, so that the rest of the group can reconstitute a 
plan and a new leader would emerge to inherit the responsibility. 

One possible technique is to implement some redundancy in the group, so that 
the leader has a backup, or even more than one backups. Once the leader dies, the 
backup can take over. This way, the plan (actually, just the plan information alone) 
can be perfectly recoverable. 

However, this adds some complexity to the organization structure and adds over­
head because the backups need to be constantly synchronized with the leader. Note 
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that the information that the backups keep is the exact copy of the leader's informa­
tion, and thus the original plan would be restored when the leader dies. However, if 
we can relax the requirement so that it is not completely necessary to restore to the 
plan (or really, just to retrieve the old plan information) before the leader's death, we 
don't actually need backups, instead we can come up with an alternative plan based 
on the information in the rest of the group members - a form of imperfect recovery. 

In fact, because the leader just died, the original plan before the leader's death 
would be somewhat obsolete anyway, so the need for keeping backups (perfect re­
covery) is indeed questionable. 

According to the monitoring mechanisms described in the previous section, we 
know that when the leader dies the other members would notice the event. Thus, it 
is possible for any one of the other members to announce that the it is going to take 
over as the new maintainer of the original group goal. Other members can notice that 
the new announcer is announcing the same goal which the old leader maintained, and 
can respond with their current plans. Therefore, the new leader can collect current 
plan information and be able to reconstitute the old plan except the old leader's local 
plan - this part of information is lost when the old leader dies. The new leader would 
thus be able to replan for the new group. 

8 Summary 

We discussed the issue of planning in a degradable multiagent system and pre­
sented a framework in which FT techniques can be integrated into agent plan­
ning/coordination to handle uncertainty in domain problem solving as well as or­
ganizational change. Our framework starts at the decision-theoretic level to formally 
define performability in multiagent problem solving, then moves on to the agent 
planning and coordination level, and finally at the organizational level. Our ultimate 
goal, evidently, is to create fault-tolerant multiagent systems, and to allow simple 
translation or application of the many FT techniques that have been design for tradi­
tional systems in multiagent systems. The real challenge, is not about applying a few 
techniques that address the reliability concern of some aspects of the system, but to 
incorporate robustness into every aspect of the system design. At this point, a lot of 
work remains to be done in order to prove that those mechanisms indeed work and 
that the framework does allow easy integration of FT techniques in MAS. 

Another important aim of this research is to enhance and extend existing plan­
ning frameworks - so that these planning frameworks can still find their applications, 
but with the proposed mechanisms they can implement some FT mechanisms and 
also form a large solution by piecing together smaller solutions. In both cases, coor­
dination is really the key toward enhancing the robustness of the system - to handle 
both task failures as well as organizational failures. The FT techniques involved in 
the proposed mechanisms are not new - they have been used in the context of dis­
tributed systems or fault-tolerant computing, but new meanings are being developed 
in the context of autonomous agent systems and robust organizations. 
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