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The interaction of TCRs with MHC peptide ligands can be highly flexible, so that many different peptides are recognized by the
same TCR in the context of a single restriction element. We provide a quantitative description of such interactions, which allows
the identification of T cell epitopes and molecular mimics. The response of T cell clones to positional scanning synthetic combi-
natorial libraries is analyzed with a mathematical approach that is based on a model of independent contribution of individual
amino acids to peptide Ag recognition. This biometric analysis compares the information derived from these libraries composed
of trillions of decapeptides with all the millions of decapeptides contained in a protein database to rank and predict the most
stimulatory peptides for a given T cell clone. We demonstrate the predictive power of the novel strategy and show that, together
with gene expression profiling by cDNA microarrays, it leads to the identification of novel candidate autoantigens in the inflam-
matory autoimmune disease, multiple sclerosis. The Journal of Immunology, 2001, 167: 2130–2141.

T he CD8� and CD4� T lymphocytes recognize short pep-
tides of 8–10 and 12–16 aa in the context of self MHC
class I and class II molecules, respectively (1, 2). During

the last 15 years, this central process of cellular immune responses
has received enormous attention and has been dissected using a
vast array of different immunological and biochemical techniques.
A quantitative analysis of the interaction between TCR and their
MHC peptide ligands would be an important basis for the design
of vaccines and therapeutic approaches to immune-mediated, in-
fectious, and neoplastic diseases.

Because it has been difficult to describe the trimolecular com-
plex in its entirety, experiments initially focused on the interaction
between peptide and MHC molecules. Structural studies of MHC
class I and class II molecules complexed with antigenic peptides
disclosed that the latter bind in a linear fashion (3). Sequencing of

peptide pools and of individual self peptides eluted from MHC
molecules (4, 5) together with systematic binding analyses (6, 7)
have provided experimental data for the definition of MHC-bind-
ing motifs (8–12) and the development of MHC peptide-binding
models. A combination of positive and negative influences from
amino acid side chains in the antigenic peptide has been shown to
determine the interaction between peptide and MHC molecules
(13). Indeed, the assumption of independent contribution of each
amino acid side chain in the peptide sequence to MHC binding has
been used to develop quantitative methods that predict peptide
binding to MHC alleles (8, 14–16). More recently, elegant neural
network approaches have been used to further refine the prediction
of peptide binding to MHC (17–20). Based on the fact that a subset
of MHC-binding peptides are also T cell epitopes (21, 22), MHC
binding has been used to predict candidate T cell epitopes in bulk
T cell populations, such as those contained in the peripheral blood
(12, 19). However, to dissect and predict precisely the interaction
of all three components of the trimolecular complex has until now
been a difficult undertaking. Therefore, the quantitative study of
MHC peptide recognition by single TCR has remained a largely
unsettled issue.

The specificity of the trimolecular complex interaction has been
studied using individual substitution analogues. Although initial
studies showed that some amino acids in the antigenic peptide
sequence are necessary for recognition by the TCR (primary TCR
contacts) and others can tolerate conservative substitutions (sec-
ondary contacts) (23, 24), the systematic use ofsingle and multiple
amino acid-substituted peptides has shown that all amino acid side
chains can contribute to peptide recognition in a largely independent
manner (25). In extreme cases, this can lead to recognition of peptides
with entirely different amino acid sequences by the same TCR (25).

The development of soluble- and bead-bound combinatorial
peptide libraries in various formats representing millions to tril-
lions of peptides has emerged as a powerful approach to both T
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cell epitope determination and the analysis of TCR specificity and
flexibility, as recently reviewed (26, 27). Recent studies (28 –32)
of T cell clones (TCC)5 demonstrated the efficacy of using
positional scanning synthetic combinatorial libraries (PS-SCL)
for identifying target Ags and highly active peptide mimics. How-
ever, it was technically impossible to fully use this technology
without the development of quantitative methods for predicting the
stimulatory potential of peptides based on data from these complex
libraries.

We report in this study a new strategy that combines data ac-
quisition with PS-SCL and analysis with a quantitative scoring
matrix to identify agonist peptides for clonotypic TCR of known
and unknown specificity. Peptides can be identified from database
searches with unprecedented efficiency and ranked according to a
score that is predictive of their stimulatory potency. To our knowl-
edge, this is by far the most efficient available approach to identify
stimulatory peptides for individual TCR and predict their actual
stimulatory potency with relatively high accuracy. While further
improvements of this strategy will be pursued, we have developed
a tool for the identification of potential T cell epitopes, the design
of vaccines, and the quantitative analysis of TCR degeneracy. Fi-
nally, we demonstrate how the search results from the above pre-
diction strategy can be related to tissue-specific expression profiles
determined by cDNA microarray assays to identify candidate pep-
tides that are derived from proteins that are overexpressed in a
diseased tissue, i.e., the brain in multiple sclerosis (MS), and are
thus available for the expansion of autoreactive T cells.

Materials and Methods
T cell clones

TCC were established from peripheral blood or cerebrospinal fluid (CSF)
lymphomononuclear cells by a split-well technique, as previously de-
scribed (33, 34). TCC GP5F11 was established from PBMC of a patient
with MS using influenza virus hemagglutinin (HA) peptide (306–318)
(PKYVKQNTLKLAT, single letter amino acid code) as an Ag. The TCC
is restricted by DRB1*0404. TCC TL3A6 was established with myelin
basic protein (MBP) from PBMC of a patient with MS and recognizes the
immunodominant epitope MBP87–99 (VHFFKNIVTPRTP) in the context
of DR2a (DR� � DRB5*0101). The TCC has been extensively charac-
terized for recognition of numerous altered peptides derived from
MBP87–99 as well as other molecular mimics (25, 31, 32, 35, 36). The TCR
usage is TCRAV18 and TCRBV5S1. TCC CSF-3 was established with a
lysate of Borrelia burgdorferi from the CSF of a patient with chronic Lyme
disease, as described (34). The TCC recognizes several B. burgdorferi-
derived as well as human peptides in the context of DR2b (DR� �
DRB1*1501). The TCR usage is TCRAV13S2 and TCRBV14S1.

Peptides and peptide combinatorial libraries

Peptides were synthesized by the simultaneous multiple peptide synthesis
method (37) and characterized using HPLC and mass spectrometry. A syn-
thetic N-acetylated, C-amide L-amino acid combinatorial peptide library in
a positional scanning format (PS-SCL; 200 mixtures in the OX9 format, in
which O represents one of the 20 L-amino acids, and X represents all of the
natural L-amino acids, except cysteine) was prepared as described (38).

Proliferative assays

The proliferation of TCC in response to PS-SCL or individual peptides was
tested by seeding in duplicate 2 � 104 T cells, 5 � 104 irradiated PBMC
with or without mixtures from PS-SCL or peptide. Proliferation was mea-
sured by [3H]thymidine (Amersham, Arlington Heights, IL) incorporation
(32).

Statistical analysis and model building

A positional scoring matrix was generated by assigning a value of the
stimulatory potential to each of the 20 defined amino acids in each position.
The score Sij for each amino acid i at each position j was calculated as
follows:

Sij �
Lij � B

��std�Lij��
2 � �std�B��2

where L equals the mean of replicate experimental measurements (cpm), B
stands for background noise, std(Lij) denotes the smoothed estimate of the
SD for each measurement using a locally weighted regression smoothing
technique (S-plus package) based on the assumption that the SD is depen-
dent on level of response. We call this the Z-index score due to its simi-
larity to statistical Z ratios of means divided by their SE values.

In an alternative score called stimulation index (S-index), we generated
the score in each position by using the mean of duplicate cpm values in the
presence of mixtures from the PS-SCL fractions divided by the mean of
duplicate values in the absence of mixtures from the PS-SCL. The S-index
score appeared preferable when the PS-SCL spectrum of the cpm value
was more clearly defined.

Under the assumption of independent contribution to stimulation, the
predicted stimulatory potential of given peptide is the sum of the scores in
each position. A 10-mer peptide sequence can be represented by a 20 � 10
matrix of 0s and 1s ( pij), where pij � 1 if the ith amino acid (using the same
order as for the rows of the scoring matrix) is in position j. Let Sij denote
the components of the positional scoring matrix. Then the score for the
peptide is:

S � �
i�1

20 �
j�1

10

pijSij

Database search

We wrote a Perl script to systematically search the GenPept database. A
window with the same length of peptide as used in the PS-SCL was applied
to slide over the available translated protein-coding sequences. The sum of
the scores within the window was used as a ranking criterion. All peptides
with scores higher than a threshold were output into a file. The threshold
was chosen based on the statistical significance of the peptide score, com-
pared with that for a random peptide. Those peptides were then sorted.
Redundant peptides were removed. The database search can also be re-
stricted to specific organisms (e.g., Homo sapiens or Influenza virus).

Statistical significance

We developed a statistical significance test of the hypothesis that the score
for a peptide is no greater than would be expected if the peptide were
obtained from 10 random draws of amino acids. Under the null hypothesis,
it is not assumed that all amino acids are equally likely, but rather the
relative frequencies f1, f2, . . . f20 are derived from the database being
searched. Under the null hypothesis, the distribution of S will be approx-
imately normally distributed. The mean and the variance of this null dis-
tribution can be expressed as

m � �
i�1

20

fi �
j�1

10

Sij

var � E�S2� � m2

The variance can be shown to equal:

var � �
i�1

20

fi �
j�1

10

Sij
2 � 2 �

j�1

9 �
j��j�1

10

mjmj� � m2

where mj � �
j�1

20

fiSij.

The statistical significance of any score S can be approximated as

p � � �m � S

�var
�,

in which � denotes the standard normal distribution function. However,
this significance level does not account for the number of 10-mer se-
quences contained in the database.

5 Abbreviations used in this paper: TCC, T cell clone; PS-SCL, positional scanning
synthetic combinatorial libraries; CSF, cerebrospinal fluid; HA, hemagglutinin; MBP,
myelin basic protein; MS, multiple sclerosis; S-index, stimulation index.
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Analysis of gene expression using cDNA microarrays

Brain tissue was obtained at autopsy from two MS patients. Patient W was
a 46-year-old male with primary progressive MS (39); patient R was a
46-year-old female with relapsing-remitting MS. Normal white matter was
dissected, postmortem, from three nondiseased brains. RNA extracted from
these three normal white matter samples was pooled, in equal amounts, for
use in hybridization experiments. Lesions were identified by H&E and
Luxol fast blue-periodic acid Schiff staining of paraffin-embedded sections.
Further characterization of lesions was performed using immunohisto-
chemistry for cell-specific Ags. All staging of lesions was performed as
previously described (40). From the first patient, patient W, one acute (W1)
and one chronically active lesion (W2) were studied. From the second
patient, R, 16 chronic lesions were studied. These lesions had inflammatory
cells present, but the inflammatory cells were not participating in any form
of ongoing demyelination.

The detailed methodology of cDNA microarray analysis has been
described in detail elsewhere (41) Arrays for this study contained 2889

human cDNAs that were primarily derived from I.M.A.G.E. consortium
cDNA libraries (42). A list of genes present on the arrays can be found
at http://intra.ninds.nih.gov/Biddison/cDNA_microarray.asp. [33P]dCTP-
labeled cDNAs were produced by reverse transcriptase from RNAs
obtained from individual MS lesions, pooled normal white matter, exper-
imental allergic encephalomyelitis, and normal mouse brains, and hybrid-
ized to the cDNA microarrays. Hybridizations of RNA obtained from MS
lesions and experimental allergic encephalomyelitis brains were performed
in two independent experiments, except for lesions R10, R11, and R16, in
which enough RNA was obtained for only one hybridization. Quantitation
of radioactivity bound to the arrays was performed on a Molecular
Dynamics STORM PhosphorImager (Molecular Dynamics, Sunnyvale,
CA) at 50 �m resolution. All data were analyzed from the PhosphorImager
images using Pscan (Ref. 43, see also http://abs.cit.nih.gov/pscan). Pscan
calculates spot intensities and compares spot intensities between samples,
giving a ratio of gene expression between comparative samples. Using
Pscan, spot intensities between arrays were automatically normalized to the

FIGURE 1. Proliferative response of TCC GP5F11 (A) and TL3A6 (B) to the 200 mixtures of a decapeptide PS-SCL in which each position has one
defined amino acid (20 for each of the 10 positions; the single letter amino acid code is used). Proliferation is shown as cpm induced by each mixture of the
PS-SCL (mean and SD values of duplicate wells). �, Proliferation in the absence of peptide mixtures. TCC GP5F11 is specific for an influenza virus HA-derived
peptide, Flu-HA308–317; TCC TL3A6 is specific for a MBP-derived peptide. The corresponding sequences of HA308–317, YVKQNTLKLA, and MBP89–98,
FFKNIVTPRT, are indicated by diamonds at the top of each panel. Proliferation in the absence of Ag was 124 � 42 cpm (A) and 1453 � 493 cpm (B).
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median of all spot intensities on each individual array. Ratios of gene
expression that were greater than 2-fold were considered significant based
on a 99% confidence interval (44).

Results
Data obtained with combinatorial peptide libraries suggest
different levels of TCR degeneracy for different CD4� TCC

In this study, we sought to develop an approach that would com-
bine the information generated from the screening of a decapeptide
PS-SCL with all protein sequences in public databases. This strat-
egy should allow the identification of the entire spectrum of stim-
ulatory peptide ligands for a given TCC and the ranking of natu-
rally occurring peptides with regard to predicted stimulation. The
ultimate goal is to develop a methodology for identifying biolog-
ically relevant peptides for TCC of unknown specificity that have
been isolated, e.g., from a tissue.

Three CD4� TCC were tested in proliferative assays with the
200 mixtures of the decapeptide PS-SCL. Two TCC had known
specificity, one specific for influenza HA (Flu-HA) (306–318)
(TCC GP5F11), and one for MBP83–99 (TCC TL3A6). We also

studied one clone of unknown specificity that recognizes B. burg-
dorferi, the causative organism of Lyme disease (TCC CSF-3).

Data obtained with combinatorial peptide libraries suggest different
levels of TCR degeneracy for different CD4� TCC. The stimulation
profiles for TCC GP5F11 and TL3A6 are shown in Fig. 1, A and B,
respectively. The profile for CSF-3 is shown previously (34). The
profile of TL3A6 shows that more than one mixture in several posi-
tions of the PS-SCL generated a clear proliferative response. The
amino acids of MBP89–98 are marked by diamonds (FFKNIVTPRT).
Although the target amino acids correspond to the defined amino acid
in the most stimulatory mixtures in most positions, this is not ob-
served in certain positions, such as N in position 4 and P in position
8. In contrast, the profiles for GP5F11 and CSF-3 show a very dif-
ferent pattern with fewer, but more differential activity between stim-
ulatory and not stimulatory mixtures.

Limitations of motif searches

Motif searches are widely used to search protein databases in a
nonquantitative manner. However, this approach was not success-
ful for identifying the known target peptides of the TL3A6 and

FIGURE 1. (continued)
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GP5F11 clones. Motifs searches are generated from screening re-
sults of PS-SCL, and contained in each position are amino acids
corresponding to mixtures with S-index greater than a specified
threshold (see Materials and Methods for definition of S-index).
Thresholds of 2 and 3 were used to generate the search motifs. The
resulting motifs were then used to search the SwissProt and Gen-
Pept databases.

Tables I and II show the number of peptides that satisfied the
motif searches, and indicates whether the target peptide was iden-
tified. The target peptide was not found with either of the motifs
for TL3A6 in either database. The target peptide for GPF11 was
identified only when the search criterion was so permissive/lax that
over 500 other peptides were also selected. Furthermore, the in-
ability of motif searches to rank peptides renders it almost impos-
sible to identify the most likely epitopes in a rational way and
without synthesizing and testing very large numbers of individual
peptides.

Developing a score matrix-based approach for predicting T cell-
stimulatory candidate peptides

It is clear that a more systematic approach that employs all the data
generated from the screening of PS-SCL needs to be developed for
the search of databases. Our strategy is outlined in the flow dia-
gram (Fig. 2).

We recently demonstrated that each amino acid within a peptide
contributes to recognition almost independently and in an additive
fashion, so that amino acid substitutions that abrogate recognition
can be compensated for by highly stimulatory substitutions in
other positions (25). Thus, the overall stimulatory value of a pep-
tide results from the combination of positive or negative effects of
each of the amino acids. Based on these assumptions, we could

show that peptides that shared no amino acid in corresponding
positions of their sequences could still be recognized by the same
TCR (25). Also, the findings that the specificity information de-
rived from PS-SCL libraries is similar to that obtained with indi-
vidual peptide analogues and the fact that highly active peptides
can be identified allow the development of a new search algorithm.

Our algorithm provides a predicted stimulatory score for the
peptide of the same length as used in PS-SCL libraries. Based on
the above assumptions, the peptide score is the sum of position-
specific scores of the component amino acids. The scoring is
accomplished by calculation of a matrix in which the columns
represent positions, and the rows the 20 aa used in PS-SCL librar-
ies. The scoring matrix entry for a particular amino acid in a
specific position is based on the stimulation assay results for the
mixture of PS-SCL corresponding to that amino acid defined in
that position (Fig. 3A). The scoring matrix entry can either use the
S-index or use the Z-index, which takes into account the experi-
mental errors (see Materials and Methods).

The matrix is then used to search for predicted stimulatory pep-
tides in the public protein databases. By moving a decamer scoring
window across the known protein sequences in 1-aa increments
(Fig. 3B), a stimulatory score is calculated for all published 10-mer
peptides, and then they are ranked accordingly. This strategy offers
important advantages compared with motif searches: 1) all the in-
formation derived from the PS-SCL screening is used, and the
selection based on a cutoff of activity is not required; 2) peptides
are now ranked according to their predicted stimulatory score.

An example of a score matrix for one of the CD4� TCC (GP5F11)
is shown in Fig. 3A. The amino acids of the Flu-HA308–317 peptide
are boxed. Note that the amino acids of the target peptide sequence L
in position P7 and A in P10 are below an S-index value of 3, thus

Table I. Database search performed on SwissProt and GenPept to identify agonist peptides for TCC GP5F11

S-Index Search Supermotifa

SwissProt GenPept

Target
sequence No. hits

Target
sequence

No. hits,
viral DB

No. hits, H.
sapiens DB

	2 [WYFRH]-[MLIVADFYH]-K-
[QVILYHKPTM]-[NHQM]-[TSNIQGVAHM]-
[GPAHFSTYVNQLICM]-[RKGPMTNVS]-
[FRMYKLVHQPNISWGA]-[LMIFVYQA]

Yes 513 Yes 560 177

	3 [WYFR]-[MLIVADF]-K-[QVILYHKP]-
[NHQ]-[TSNIQGVAH]-[GPAHFSTYVNQL]-
[RKGPM]-[FRMYKLVHQPNI]-[LMIFVY]

No 82 No 23 34

a Amino acids corresponding to Flu HA(308–317)(YVKQNTLKLA) are shown in bold underlined characters. SwissProt contains 83,857 protein sequences (3-3-00); GenPept
viral database: 90,174 proteins (20,198,794 decamer peptides); Homo sapiens database: 43,795 proteins (13,879,822 decamer peptides).

Table II. Database search performed on SwissProt and GenPept to identify agonist peptides for TCC TL3A6

S-Index Search Supermotifa

SwissProt GenPept

Target
sequence No. hits

Target
sequence

No. hits, H.
sapiens DB

No. hits,
viral DB

No. hits,
bacterial DB

	2 [WHYFARTLCGQVKN]-[KIFSRYLWMTAVN]-
[KDLCGFVIYQNH]-[LKIMVSATDG]-
[VMLIWYTR]-[VMILPTYSKWGEQNA]-
[TSFVRWLQKGAPNY]-
[KICTSPLFQMRAHW]-[FKRVPYLIH]-
[TISVHWKMAFLR]

No 260,085 No 104,229 183,876 289,887

	3 [WHYFARTLCG]-[KIFSRYL]-[KDLC]-
[LKIMV]-[VMLIW]-[VMILPTYSK]-[TSFVRW]-
[KICTSPL]-[FKRVPYL]-[TISVHW]

No 797 No 285 502 776

a Amino acids corresponding to MBP(89–98)(FFKNIVTPRT) are shown in bold underlined characters. SwissProt contains 83,857 protein sequences (3-3-00); GenPept viral
database: 90,174 proteins (20,198,794 decamer peptides); H. sapiens database: 43,795 proteins (13,879,822 decamer peptides); bacterial database: 111,807 proteins (32,604,667
decamer peptides).
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explaining the failure of the motif search to find the target influ-
enza peptide. The principle of the sliding decamer scoring window
that is moved across a protein sequence in 1-aa increments
is shown in Fig. 3B. Three decamer peptides within the
Flu-HA304–321 sequence are scored by adding the stimulatory val-
ues of the respective 10 aa. Note the drastic changes in stimulatory
scores when the scoring window is moved 1 aa to the left (score
51.98) or to the right (13.7) as compared with the optimal register
that is shown in the middle (score 256.01). These changes of the
scores indicate that, as soon as both MHC and TCR contact posi-
tions that contribute most of the stimulatory activity are out of the
correct register, the peptide may lose binding to the MHC and/or
fail to stimulate the clone because the TCR contacts are not posi-
tioned properly.

Testing the score matrix-based approach using clones with
known specificity and with synthesized peptides

The effectiveness of this approach is demonstrated in Table III.
When the score matrices for clones TL3A6 and GP5F11 were used
to score all peptides in the GenPept database, both the target pep-
tides (MBP89–98 peptide for TL3A6, and Flu-HA309–318 for
GP5F11) were correctly identified. The GenPept database (ftp://
ftp.ncifcrf.gov/pub/genpept) was searched because it is substan-
tially larger than SwissProt (http://www.expasy.ch/sprot). The rel-
ative ranks obtained for the target peptides are given in Table III.

For GP5F11, the rank among viral peptides is given; for TL3A6,
we show the rank among human peptides. Consistent with previ-
ous observations with another autoreactive clone (45), MBP89–98

was far from optimal, i.e., it ranked only 202nd in the set of human
peptides using the S-index matrix. In contrast, the target peptide
Flu-HA309–318 ranked as the sixth highest scoring peptide for
GP5F11 among viral proteins, and 24th when not only viral, but
also human proteins were scored. This also suggests that molecular
mimics that are potentially more stimulatory than the native for-
eign peptide can be identified.

We assessed the predictive power of the algorithm using syn-
thesized peptides tested for stimulation of the three clones (76
peptides for GP5F11, 144 peptides for TL3A6, and 88 peptides for
CSF-3). For the two TCC of known specificity, TL3A6 and
GP5F11, the peptide was considered stimulatory if its EC50 (con-
centration that yields half-maximal stimulatory activity) was equal
to or 
10 times that of the target peptide (MBP89–98 and Influenza
virus HA308–317, respectively). For CSF-3, the TCC of unknown
specificity, the peptide was considered stimulatory if it activated
the TCC with a Z-index 	47.5 at any concentration between 0.001
and 100 �g/ml.

Table IV shows the relationship between stimulatory potential
predicted by the scoring matrices and actual measurement of TCC
stimulation. Thresholds for matrix score prediction were based on
relative operating characteristic analysis (46) to balance sensitivity
and specificity. For clone CSF-3, for example, of the 62 peptides
predicted to be stimulatory (have scores above the threshold of
47.5), 58 did stimulate the TCC (a positive predictive value of
58/62, or 93.5%). Of the 26 peptides predicted to be nonstimula-
tory, only 5 stimulated the TCC (negative predictive value: 21/26,
80.8%). The sensitivity for predictions with this clone was 92%;
that is, of the 63 peptides that actually stimulated the TCC, 58 were
correctly predicted. The specificity was 84%; that is, of the 25
peptides that did not stimulate the TCC, 21 were correctly pre-
dicted. Although the sets of synthesized peptides are small com-
pared with the number of peptides that would be predicted to be
stimulatory, Table IV documents the excellent sensitivity, speci-
ficity, and negative predictive values for the three TCC.

Table V shows the information on the 10 highest scoring pep-
tides derived from B. burdorferi database analysis for TCC CSF-3
with the half-maximal stimulatory value that was determined by
dose-titration, proliferative experiments. Examples of the stimula-
tory activity of peptides predicted to activate TCC GP5F11 are
shown in Fig. 4. Note that a predicted stimulatory peptide with
optimal amino acids in each position (WMKQNIGRFL) and a
higher score than the target peptide is in fact two orders of mag-
nitude more potent than the target sequence. One of the shown
peptides with a score of 132.40 ranks much lower than the putative
stimulatory threshold for TCC GP5F11, and consequently it did
not stimulate the clone. However, even a few high scoring peptides
(data not shown) are not stimulatory from reasons that are cur-
rently under further investigation.

Combining scoring matrix predictions of TCC stimulation with
cDNA microarrays to identify biologically relevant candidate
peptide mimics

The novel strategy described in this work allows us to find peptides
from every known source that have stimulatory activity for the clone
that was tested with PS-SCL. This leads to the problem of how one
identifies from this wealth of data which peptides may be biologi-
cally relevant. In cases in which the target Ag for the clone is not
known or molecular mimics with potential relevance for an organ-
specific disease are of interest, several strategies may be used.

FIGURE 2. Flow diagram of the strategy used to quantitatively analyze
TCR recognition of Ags by clonotypic T cells. Experimental data collected
by measuring functional T cell responses to PS-SCL are then analyzed by
a scoring matrix approach. This allows the identification and ranking of the
spectrum of antigenic ligands for TCC of known and unknown specificity.
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One approach to identify proteins involved in autoimmune
diseases is to examine the expression of genes that are overex-
pressed in the target organ using cDNA microarray technology
(41). We examined gene expression in 18 lesions from two MS
patients and compared them with levels of gene expression in
pooled normal white matter from three individuals with cDNA
microarrays containing 2889 human genes. One of the genes
that was overexpressed (	2-fold) in 17 of the 18 MS lesions
examined was titin (Fig. 5A), a giant muscle protein (47). When
we asked which genes that are overexpressed in MS plaques are

also identified as candidate epitopes/molecular mimics for
CD4� TCC that were tested with the PS-SCL (Fig. 5B), we
identified peptides derived from the same interesting candidate,
titin, among the highest scoring peptides for both a CD4� TCC
recognizing the immunodominant MBP peptide (83–99) in the
context of the MS-associated DR allele DRB5*0101, but also
for the B. burgdorferi-specific TCC CSF-3 (Fig. 5C). Titin, a
giant muscle protein (47), is surprisingly overexpressed in MS
brain tissue, and the identification of titin-derived peptides as
candidate molecular mimics for two TCC that are potentially

FIGURE 3. A, Score matrix for
TCC GP5F11. Data from a represen-
tative experiment of proliferative re-
sponse of the TCC to a decamer PS-
SCL experiment are used to generate
the matrix. Each number represents
the S-index (cpm in the presence of
the mixture/cpm in the absence of the
mixture) of each of the 200 mixtures
of a decapeptide PS-SCL (20 aa, in-
dicated by the single letter code, for
each of the 10 positions of a decamer
peptide, P1 to P10). In a model of
independent contribution of each
amino acid to peptide recognition,
the stimulatory value of any decapep-
tide can be determined by summing
the values of the individual amino ac-
ids in the score matrix. The example
shown is a decamer peptide derived
from influenza virus HA308–317 that
was used to establish the TCC.
Boxed numbers correspond to the
amino acid sequence of the peptide,
and their sum represents the peptide
score. Also shown are the maximum
and minimum scores that can be as-
signed to any decamer peptides by
this particular matrix. B, The scoring
matrix can be used to score contigu-
ous decamer peptides contained in all
known protein sequences contained
in public databases to find stimula-
tory peptides for a given TCC. The
example shows a decamer scoring
“window” moved in 1-aa increments
along the sequence of influenza virus
HA, recognized by TCC GP5F11.
The matrix (Fig. 3) derived from a
representative PS-SCL experiment
(Fig. 1A) attributes the highest score
to a decamer peptide (308–317) cor-
responding to the core of the 13-mer
used to establish the TCC (HA306–

318). Dramatic changes can be shown
by scoring the overlapping decamer
peptides along the entire sequence
(B). Remarkably, the highest score
corresponds to the actual epitope rec-
ognized by the TCC.
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pathogenic in two different CNS inflammatory/autoimmune dis-
orders, i.e., MS and chronic CNS Lyme disease, offers unique
opportunities to study the involvement of such candidate Ags in
the pathogenesis of these diseases.

Discussion
The experiments presented in this work have been conducted to
better understand, measure, and predict both specific and degen-
erate interactions between clonotypic TCRs and MHC peptide li-
gands. For this purpose, an approach was devised that would allow
us to 1) describe in a quantitative way the complex interactions of
the trimolecular Ag recognition complex, and 2) identify the spec-
trum of stimulatory ligands for individual TCC with high predic-
tive accuracy. We used combinatorial peptide libraries and bio-
metric strategies in conjunction with large scale database searches
to achieve this goal and could show for the first time that T cell
recognition can be predicted in quantitative terms. This study
builds on and expands previous investigations on the flexibility
and degeneracy of TCR recognition of Ag. A role for degenerate
T cell recognition has been postulated for such diverse immuno-
logical phenomena as thymic selection (48), peripheral T cell sur-
vival (49), protection from infectious diseases, and induction of
autoimmunity (49, 50). It was previously shown that peptide
combinatorial libraries in the positional scanning format can be
used to define the spectrum of agonist ligands for clonotypic TCR
(26, 49). In recent studies, we showed that functional responses
elicited in CD4� TCC by PS-SCL could be used to build motifs for
database searches and thus identify a spectrum of ligands of dif-
ferent potency for clonotypic TCR (45, 46). In the present study,
we confirmed that functional T cell responses can be elicited by
PS-SCL from certain CD4� TCC specific for both foreign (Fig.

1A) (34) and self (Fig. 1B) Ags. We then used a matrix-based
methodology for the analysis of the experimental data generated
with the PS-SCL (Fig. 2). This methodology is based on a model
of independent and additive contribution of each amino acid in the
peptide sequence to the interactions with both the TCR and the
MHC molecule (25). Although numeric matrices (8) and other
mathematical approaches based on independent amino acid con-
tribution to antigenicity have been previously used to describe the
interaction of antigenic peptides with specific MHC molecules (17,
18), the present study fills the important gap of applying a quan-
titative, matrix-based model to the interaction of an MHC peptide
ligand (keeping the MHC molecule constant) with a specific, clo-
notypic TCR using the data generated from PS-SCL. The biometri-
cal analysis described in this work systematically compares the
information derived from a PS-SCL composed of trillions of de-
capeptides with all the decapeptides (13, 879, 822 for a H. sapiens
database, and 20, 198, 794 for a viral database) contained in a
public protein database to rank and predict the most stimulatory
peptides for a given TCC. The predictions based on this method-
ology are so accurate (Tables III and IV, Fig. 4) (34) that they
actually lend strong support to an additive, combinatorial model of
peptide antigenicity. Available TCR crystal structures indeed sug-
gest that peptides may modulate the preexisting affinity between
MHC and TCR that is based on a large contact surface between
these two components of the trimolecular complex (51, 52). It
should be noted that this model does not contradict, but indeed
extends and develops the concept of primary and secondary TCR
contacts (23, 53). In fact, although complex substitutions of amino
acids along the entire sequence of the peptide can lead to molec-
ular mimicry in the absence of any sequence homology (25), the
relative weight of different amino acids in each position of the
peptides sequence is apparent from the experimental data (Fig. 1,
A and B).

An important application of the above described model is that
one can identify peptide ligands for a specific TCR by searching
public database not only with MHC and TCR anchor motifs (54)
or motifs obtained from PS-SCL data (34, 45, 49), but also using
the scoring matrix derived from the screening of a PS-SCL com-
posed of trillions of peptides (Fig. 3, A and B). We also illustrate
the limitations of using motifs derived from PS-SCL screening to
identify TCR agonist peptides. Such a strategy does not fully use
the information generated by screening specific TCR with PS-
SCL. Therefore, the native ligand may not be found if the motif is

Table III. Database search performed on GenPept with a sum of S-
index score matrix

TCC
Target

Sequence
Rank in
Database

GP5F11 Yes 6a

TL3A6 Yes 202b

a A total of 90,174 proteins scored in viral database (20,198,794 decamer
peptides).

b A total of 43,795 proteins scored in H. sapiens database (13,879,822 decamer
peptides).

Table IV. Indices of the predictive power of the scoring matrix approach for the definition of the stimulatory potency of antigenic peptides

TCC CSF-3 TCC GP5F11 TCC TL3A6

Matrix score
	47.5

Matrix score

47.5 Total

Matrix score
	220

Matrix score

220 Total

Matrix score
	45.2

Matrix score

45.2 Total

Experimental measurement
Stimulatory 58 5 63 38 4 42 20 8 28
Nonstimulatory 4 21 25 2 32 34 18 98 116
Total 62 26 88 40 36 76 38 106 144

Sensitivitya 58/63 (92) 38/42 (90.5) 20/28 (71.4)
Specificityb 21/25 (84) 32/34 (94.1) 98/116 (84.5)
Positive predictive valuec 58/62 (93.5) 38/40 (95.0) 20/38 (52.7)
Negative predictive valued 21/26 (80.8) 32/36 (88.9) 98/106 (92.5)
Overall accuracye 79/88 (89.8) 70/76 (92.1) 118/144 (81.9)

a Fraction of all stimulatory peptides that is correctly identified.
b Fraction of all nonstimulatory peptides that is correctly identified.
c Probability that a peptide predicted to stimulate actually does so.
d Probability that a peptide predicted to be nonstimulatory actually does not activate the TCC.
e Fraction of all predictions that is correct.
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not sufficiently degenerate (Table I, S-index 	 3; Table II, S-in-
dex 	 3; S-index 	 2), or if even one of the positions does not
contain the amino acid that appears in the native sequence. An-
other advantage in the identification of T cell epitopes is that one
can rank the predicted stimulatory peptides according to their
score. This is of great practical value when the number of candi-
date peptides is very high (Table II) and one needs criteria to select
which of the identified candidate peptides should be synthesized
and actually tested with the TCC. In addition to identifying
promptly the target peptide sequences (Table III), one can then
synthesize and test a feasible number (hundreds) of candidate pep-
tides to confirm their stimulatory activity (examples in Fig. 4; see
also Table IV). Interestingly, we confirmed our previous observa-
tion that for autoreactive TCC, the ligand used to establish and
expand the TCC is often a suboptimal one, consistent with the
notion that high affinity self-reactive TCC are deleted in thymic
selection (55). Whereas for autoreactive TCC we often found nat-
ural ligands derived from foreign or even self Ags whose potency
was several orders of magnitude higher than that of the native
peptide (45), for TCC GP5F11 and other TCC specific for foreign
Ags (R. Martin, B. Gran, M. Nagal, E. Borras, S. Jacobsen, W. E.
Biddison, R. Houghten, H. F. McFarland, and C. Pinilla, unpub-
lished observations) the native ligand was much closer to the op-
timal one (Table III) (56, 57). Although more potent synthetic
ligands could be designed based on the deconvolution of the PS-
SCL data (26, 32) (e.g., peptide WMKQNIGRFL in Fig. 4), nat-
urally occurring superagonists were rare. The fact that foreign Ag-
specific TCC may recognize their antigenic peptides as highly
potent ones is consistent with an efficient immune response re-
quired to eliminate infectious agents.

This study adds a new and important contribution to the defi-
nition and prediction of T cell epitopes using synthetic combina-
torial libraries (26, 27). It should be noted that many of the pre-
vious approaches to the identification of T cell epitopes were based
on the prediction of which peptides would be good binders for
specific MHC/HLA molecules (8, 16). Because only a fraction of
the potential MHC-binding peptides is a T cell epitope for an
individual TCR, these approaches provide information that is
specific for particular MHC molecules, but cannot predict which
fraction of the peptides that bind a restriction element is actually
stimulatory for a TCR with its unique structural features. Con-
versely, TCR ligands are not always high affinity MHC binders
(58). The approach presented in this study takes into account the
whole trimolecular complex of T cell activation by reading out a
functional T cell response. This requires a certain degree of MHC
peptide binding as well as the interaction of the MHC peptide
ligand with a specific TCR. When both are considered, the overall
accuracy of T cell epitope predictions is far superior to previously
adopted methods (Table IV), although further improvements are
currently being pursued. This is particularly helpful when the pro-
tein(s) recognized by a TCC is/are not known (34). Indeed, less
than a third of the peptides that were identified and found to be
stimulatory by the PS-SCL and scoring matrix approach would
have been predicted to be good MHC binders based on a recently
published MHC-binding prediction algorithm (12) (data not
shown).

Finally, we show that combining the above-described methodology
with the use of cDNA microarrays to assess differential gene expres-
sion in pathological and normal tissue of two patients with MS led to
an interesting candidate molecule (titin, to date only known as an

FIGURE 4. Proliferative response of the TCC GP5F11 to representative agonist peptides identified by the peptide library strategy. The potency is highest
for a theoretical peptide that is predicted to be a potent one because it has a high score. The native peptide (influenza virus HA308–317) and a double-
substituted naturally occurring variant have intermediate potency. A low-scoring peptide derived from H. sapiens phosphatidylinositol-4-phosphate 5-kinase
type III (PIP5KIII (246–255)) and a theoretical peptide predicted to be nonstimulatory because it has a very low score are indeed nonstimulatory.

Table V. Information on the 10 highest scoring peptides derived from B. burdorferi database analysis for TCC CSF-3

Score Sequence Protein ID No. Protein Description EC50 �g/mla

54.82 N N I Y K K A L I S AE001155 Hypothetical protein (section 41 of 70) of the complete genome 1
54.14 S N I I K S L S L F AE001174 Hypothetical protein (section 60 of 70) of the complete genome 0.1–1
53.73 S N I I K K T S E D AE001169 Similar to SP:P07017 (section 55 of 70) of the complete genome 1
53.70 F N I Y K R V V D N AE001145 Hypothetical protein (section 31 of 70) of the complete genome 1
53.68 N N I D K K V Y T N AE001135 (section 21 of 70) of the complete genome; similar to GB:Z32522 1–10
53.09 F F I K K R S L I I AE000785 Hypothetical protein of plasmid Ip25 1
52.82 R N I F K K T V E N AE001130 Similar to GB:L10328 (section 16 of 70) of the complete genome 	100
52.69 S N I K S K L I L V AE001146 Similar to PID:1652132 (section 32 of 70) of the complete genome 1
52.63 Y N I I V S S L L L AE001161 Hypothetical protein (section 47 of 70) of the complete genome 1–10
52.57 D N I F K K E T L I AE001165 Similar to GB:L42023 (section 51 of 70) of the complete genome 1

a Peptide concentration inducing half-maximal proliferation.
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important component of skeletal muscle (47)) that is overexpressed in
MS plaques and is recognized by a B. burgdorferi-specific TCC (Fig.
5). Preliminary pathological studies by immunohistochemistry indi-
cate the expression of an isoform of this molecule in the pathologic,
as opposed to normal white matter tissue, but further work to define
its role is clearly needed. Thus, the combination of two powerful

methodologies can guide the discovery of candidate autoantigens that
would otherwise not easily be identified by either approach.

In summary, we describe a methodology, PS-SCL-based bio-
metrical analysis for ligand identification, which is consistent with
a combinatorial model of TCR activation by antigenic peptides and
allows the identification of T cell epitopes for both autoreactive

FIGURE 5. A, Up-regulation of titin gene expres-
sion in lesions of two MS patients. Levels of titin
expression in individual lesions from two MS patients
(R and W). Bars represent ratios of expression of titin
in the indicated 18 lesions relative to titin expression
in pooled normal white matter. B, Identification of a
potential autoantigen expressed in MS lesions by the
integrated approach of peptide combinatorial libraries
and cDNA microarray analysis. Two TCC reactive to
myelin and microbial Ags were analyzed for their pat-
tern of Ag recognition by the PS-SCL approach, and
a numeric matrix was used to score and rank predicted
stimulatory peptides for their potency (left). Gene ex-
pression in MS lesions and normal white matter was
compared by cDNA microarray analysis, and a num-
ber of overexpressed genes was identified (right). The
comparison of predicted stimulatory peptides and
overexpressed genes identified interesting candidate
target autoantigens such as the giant protein titin. C,
Proliferative response of TCC CSF-3 to a titin-derived
peptide. TCC CSF-3 was isolated from the CSF of a
patient with chronic neuroborreliosis and recognizes a
lysate of B. burgdorferi as well as a number of peptides
derived from B. burgdorferi, human self Ags, and viral
Ags (34). The proliferative response (in cpm) to titin
(6205–6214) (GenBank accession no. X90569) is
shown in one representative experiment. The back-
ground (no Ag) control proliferation was 198 cpm.
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and foreign Ag-specific TCC with unprecedented efficacy. The
same approach has also been successfully used for the prediction
and identification of Ags by CD8� TCC (Ref. 59 and R. Martin,
B. Gran, M. Nagai, E. Borras, S. Jacobson, W. E. Biddison,
R. Houghten, H. F. McFarland, and C. Pinilla, unpublished re-
sults). For the first time, recognition of Ags by clones of unknown
specificity can be decrypted. This is an important advance in the
study of autoimmune disease, in which one tries to suppress spe-
cific immune responses, as well as for infectious and neoplastic
diseases, in which a stimulation of specific responses by vaccines
is pursued. Furthermore, it is important to note that this approach
can be used to identify ligands within proteins in public database
for any molecular interaction that has been or can be studied with
PS-SCLs composed of L-amino acids.

Acknowledgments
We thank Dr. Adriana Marques for providing T cells from a patient with
chronic neuroborreliosis, Dr. Myong-Hee Sung for critical reading of the
manuscript, and Dr. Samuel Ludwin for helpful discussions and advice.

References
1. Cresswell, P. 1994. Assembly, transport, and function of MHC class II molecules.

Annu. Rev. Immunol. 12:259.
2. Engelhard, V. H. 1994. Structure of peptides associated with class I and class II

MHC molecules. Annu. Rev. Immunol. 12:181.
3. Madden, D. R. 1995. The three-dimensional structure of peptide-MHC com-

plexes. Annu. Rev. Immunol. 13:587.
4. Falk, K., O. Rotzschke, S. Stevanovic, G. Jung, and H. G. Rammensee. 1994.

Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed pep-
tide motifs, constraints of processing, and general rules. Immunogenetics 39:230.

5. Verreck, F. A., A. van de Poel, A. Termijtelen, R. Amons, J. W. Drijfhout, and
F. Koning. 1994. Identification of an HLA-DQ2 peptide binding motif and HLA-
DPw3-bound self-peptide by pool sequencing. Eur. J. Immunol. 24:375.

6. Rothbard, J. B., and M. L. Gefter. 1991. Interactions between immunogenetic
peptides and MHC proteins. Annu. Rev. Immunol. 9:527.

7. Sette, A., J. Sidney, M. F. del Guercio, S. Southwood, J. Ruppert, C. Dahlberg,
H. M. Grey, and R. T. Kubo. 1994. Peptide binding to the most frequent HLA-A
class I alleles measured by quantitative molecular binding assays. Mol. Immunol.
31:813.

8. Hammer, J., E. Bono, F. Gallazzi, C. Belunis, Z. Nagy, and F. Sinigaglia. 1994.
Precise prediction of major histocompatibility complex class II-peptide interac-
tion based on peptide side chain scanning. J. Exp. Med. 180:2353.

9. Hammer, J., P. Valsasnini, K. Tolba, D. Bolin, J. Higelin, B. Takacz, and
F. Sinigaglia. 1993. Promiscuous and allele-specific anchors in HLA-DR binding
peptides. Cell 74:197.

10. Rammensee, H. G., T. Friede, and S. Stevanoviic. 1995. MHC ligands and pep-
tide motifs: first listing. Immunogenetics 41:178.

11. Sette, A., S. Buus, E. Appella, J. A. Smith, R. Chesnut, C. Miles, S. M. Colon,
and H. M. Grey. 1989. Prediction of major histocompatibility complex binding
regions of protein antigens by sequence pattern analysis. Proc. Natl. Acad. Sci.
USA 86:3296.

12. Sturniolo, T., E. Bono, J. Ding, L. Raddrizzani, O. Tuereci, U. Sahin,
M. Braxenthaler, F. Gallazzi, M. P. Protti, F. Sinigaglia, and J. Hammer. 1999.
Generation of tissue-specific and promiscuous HLA ligand databases using DNA
microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17:555.

13. Hammer, J. 1995. New methods to predict MHC-binding sequences within pro-
tein antigens. Curr. Opin. Immunol. 7:263.

14. Mallios, R. R. 1994. Multiple regression analysis suggests motifs for class II
MHC binding. J. Theor. Biol. 166:167.

15. Parker, K. C., M. A. Bednarek, and J. E. Coligan. 1994. Scheme for ranking
potential HLA-A2 binding peptides based on independent binding of individual
peptide side-chains. J. Immunol. 152:163.

16. Southwood, S., J. Sidney, A. Kondo, M. F. del Guercio, E. Appella, S. Hoffman,
R. T. Kubo, R. W. Chesnut, H. M. Grey, and A. Sette. 1998. Several common
HLA-DR types share largely overlapping peptide binding repertoires. J. Immu-
nol. 160:3363.

17. Brusic, V., G. Rudy, G. Honeyman, J. Hammer, and L. Harrison. 1998. Prediction
of MHC class II-binding peptides using an evolutionary algorithm and artificial
neural network. Bioinformatics 14:121.

18. Gulukota, K., J. Sidney, A. Sette, and C. DeLisi. 1997. Two complementary
methods for predicting peptides binding major histocompatibility complex mol-
ecules. J. Mol. Biol. 267:1258.

19. Honeyman, M. C., V. Brusic, N. L. Stone, and L. C. Harrison. 1998. Neural
network-based prediction of candidate T-cell epitopes. Nat. Biotechnol. 16:966.

20. Milik, M., D. Sauer, A. P. Brunmark, L. Yuan, A. Vitiello, M. R. Jackson,
P. A. Peterson, J. Skolnick, and C. A. Glass. 1998. Application of an artificial
neural network to predict specific class I MHC binding peptide sequences. Nat.
Biotechnol. 16:753.

21. Davenport, M. P., I. A. Ho Shon, and A. V. Hill. 1995. An empirical method for
the prediction of T-cell epitopes. Immunogenetics 42:392.

22. Roberts, C. G., G. E. Meister, B. M. Jesdale, J. Lieberman, J. A. Berzofsky, and
A. S. De Groot. 1996. Prediction of HIV peptide epitopes by a novel algorithm.
AIDS Res. Hum. Retroviruses 12:593.

23. Kersh, G. J., and P. M. Allen. 1996. Structural basis for T cell recognition of
altered peptide ligands: a single T cell receptor can productively recognize a large
continuum of related ligands. J. Exp. Med. 184:1259.

24. Sloan-Lancaster, J., and P. M. Allen. 1996. Altered peptide ligand-induced partial
T cell activation: molecular mechanisms and role in T cell biology. Annu. Rev.
Immunol. 14:1.

25. Hemmer, B., M. Vergelli, B. Gran, N. Ling, P. Conlon, C. Pinilla, R. Houghten,
H. F. McFarland, and R. Martin. 1998. Predictable TCR antigen recognition
based on peptide scans leads to the identification of agonist ligands with no
sequence homology. J. Immunol. 160:3631.

26. Pinilla, C., R. Martin, B. Gran, J. R. Appel, C. Boggiano, D. B. Wilson, and
R. A. Houghten. 1999. Exploring immunological specificity using synthetic pep-
tide combinatorial libraries. Curr. Opin. Immunol. 11:193.

27. Hiemstra, H. S., J. W. Drijfhout, and B. O. Roep. 2000. Antigen arrays in T cell
immunology. Curr. Opin. Immunol. 12:80.

28. Gundlach, B. R., K.-H. Wiesmüller, T. Junt, S. Kienle, G. Jung, and P. Walden.
1996. Specificity and degeneracy of minor histocompatibility antigen-specific
MHC-restricted CTL. J. Immunol. 156:3645.

29. Gundlach, B. R., K.-H. Wiesmüller, T. Junt, S. Kienle, G. Jung, and P. Walden.
1996. Determination of T cell epitopes with random peptide libraries. J. Immunol.
Methods 192:149.

30. Udaka, K., K.-H. Wiesmüller, S. Kienle, G. Jung, and P. Walden. 1996. Self-
MHC-restricted peptides recognized by an alloreactive T lymphocyte clone.
J. Immunol. 157:670.

31. Wilson, D. B., C. Pinilla, D. H. Wilson, K. Schroder, C. Boggiano, V. Judkowski,
J. Kaye, B. Hemmer, R. Martin, and R. A. Houghten. 1999. Immunogenicity. I.
Use of peptide libraries to identify epitopes that activate clonotypic CD4� T cells
and induce T cell responses to native peptide ligands. J. Immunol. 163:6424.

32. Hemmer, B., C. Pinilla, B. Gran, M. Vergelli, N. Ling, P. Conlon,
H. F. McFarland, R. Houghten, and R. Martin. 2000. Contribution of individual
amino acids within MHC molecule or antigenic peptide to TCR ligand potency.
J. Immunol. 164:861.

33. Martin, R., U. Utz, J. E. Coligan, J. R. Richert, M. Flerlage, E. Robinson,
R. Stone, W. E. Biddison, D. E. McFarlin, and H. F. McFarland. 1992. Diversity
in fine specificity and T cell receptor usage of the human CD4� cytotoxic T cell
response specific for the immunodominant myelin basic protein peptide 87–106.
J. Immunol. 148:1359.

34. Hemmer, B., B. Gran, Y. Zhao, A. Marques, J. Pascal, A. Tzou, T. Kondo,
I. Cortese, B. Bielekova, S. E. Straus, et al. 1999. Identification of candidate
T-cell epitopes and molecular mimics in chronic Lyme disease. Nat. Med.
5:1375.

35. Vergelli, M., B. Hemmer, M. Kalbus, A. B. Vogt, N. Ling, P. Conlon,
J. E. Coligan, H. McFarland, and R. Martin. 1997. Modifications of peptide
ligands enhancing T cell responsiveness imply large numbers of stimulatory li-
gands for autoreactive T cells. J. Immunol. 158:3746.

36. Vergelli, M., B. Hemmer, U. Utz, A. Vogt, M. Kalbus, L. Tranquill, P. Conlon,
N. Ling, L. Steinman, H. F. McFarland, and R. Martin. 1996. Differential acti-
vation of human autoreactive T cell clones by altered peptide ligands derived
from myelin basic protein peptide (87–99). Eur. J. Immunol. 26:2624.

37. Houghten, R. A. 1985. General method for the rapid solid-phase synthesis of
large numbers of peptides: specificity of antigen-antibody interaction at the level
of individual amino acids. Proc. Natl. Acad. Sci. USA 82:5131.

38. Pinilla, C., J. R. Appel, and R. A. Houghten. 1994. Investigation of antigen-
antibody interactions using a soluble, non-support-bound synthetic decapeptide
library composed of four trillion (4 � 1012) sequences. Biochem. J. 301:847.

39. Becker, K. G., D. H. Mattson, J. M. Powers, A. M. Gado, and W. E. Biddison.
1997. Analysis of a sequenced cDNA library from multiple sclerosis lesions.
J. Neuroimmunol. 77:27.

40. Lassmann, H., C. S. Raine, J. Antel, and J. W. Prineas. 1998. Immunopathology
of multiple sclerosis: report on an international meeting held at the Institute of
Neurology of the University of Vienna. J. Neuroimmunol. 86:213.

41. Whitney, L. W., K. G. Becker, N. J. Tresser, C. I. Caballero-Ramos,
P. J. Munson, V. V. Prabhu, J. M. Trent, H. F. McFarland, and W. E. Biddison.
1999. Analysis of gene expression in mutiple sclerosis lesions using cDNA mi-
croarrays. Ann. Neurol. 46:425.

42. Lennon, G., C. Auffray, M. Polymeropoulos, and M. B. Soares. 1996. The
I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their
expression. Genomics 33:151.

43. Carlisle, A. J., V. V. Prabhu, A. Elkahloun, J. Hudson, J. M. Trent,
W. M. Linehan, E. D. Williams, M. R. Emmert-Buck, L. A. Liotta, P. J. Munson,
and D. B. Krizman. 2000. Development of a prostate cDNA microarray and
statistical gene expression analysis package. Mol. Carcinog. 28:12.

44. Chen, Y., E. R. Dougherty, and M. L. Bittner. 1997. Ratio-based decisions and
the quantitative analysis of cDNA microarray images. Biomed. Optics 2:364.

45. Hemmer, B., B. T. Fleckenstein, M. Vergelli, G. Jung, H. McFarland, R. Martin,
and K. H. Wiesmüller. 1997. Identification of high potency microbial and self
ligands for a human autoreactive class II-restricted T cell clone. J. Exp. Med.
185:1651.

46. Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240:
1285.

47. Labeit, S., and B. Kolmerer. 1995. Titins: giant proteins in charge of muscle
ultrastructure and elasticity. Science 270:293.

48. Bevan, M. J. 1997. In thymic selection, peptide diversity gives and takes away.
Immunity 7:175.

2140 A NOVEL QUANTITATIVE APPROACH TO THE STUDY OF T CELL EPITOPES



49. Hemmer, B., M. Vergelli, C. Pinilla, R. Houghten, and R. Martin. 1998. Probing
degeneracy in T-cell recognition using combinatorial peptide libraries. Immunol.
Today 19:163.

50. Gran, B., B. Hemmer, M. Vergelli, H. F. McFarland, and R. Martin. 1999. Mo-
lecular mimicry and multiple sclerosis: degenerate T-cell recognition and the
induction of autoimmunity. Ann. Neurol. 45:559.

51. Garboczi, D. N., P. Ghosh, U. Utz, Q. R. Fan, W. E. Biddison, and D. C. Wiley.
1996. Structure of the complex between human T-cell receptor, viral peptide and
HLA-A2. Nature 384:134.

52. Garcia, K. C., M. Degano, R. L. Stanfield, A. Brunmark, M. R. Jackson,
P. A. Peterson, L. Teyton, and I. A. Wilson. 1996. An �/� T cell receptor struc-
ture at 2.5Å and its orientation in the TCR-MHC complex. Science 274:209.

53. Degano, M., K. C. Garcia, V. Apostolopoulos, M. G. Rudolph, L. Teyton, and
I. A. Wilson. 2000. A functional hot spot for antigen recognition in a superagonist
TCR/MHC complex. Immunity 12:251.

54. Wucherpfennig, K. W., and J. L. Strominger. 1995. Molecular mimicry in T
cell-mediated autoimmunity: viral peptides activate human T cell clones specific
for myelin basic protein. Cell 80:695.

55. Nossal, G. J. 1994. Negative selection of lymphocytes. Cell 76:229.

56. Bielekova, B., P. A. Muraro, L. Golestaneh, J. Pascal, H. F. McFarland, and
R. Martin. 1999. Preferential expansion of autoreactive T lymphocytes from the
memory T-cell pool by IL-7. J. Neuroimmunol. 100:115.

57. Hemmer, B., I. Stefanova, M. Vergelli, R. N. Germain, and R. Martin. 1998.
Relationships among TCR ligand potency, thresholds for effector function elic-
itation, and the quality of early signaling events in human T cells. J. Immunol.
160:5807.

58. Muraro, P. A., M. Vergelli, M. Kalbus, D. Banks, J. W. Nagle, L. R. Tranquil,
G. Nepom, W. E. Biddison, H. F. McFarland, and R. Martin. 1997. Immunodomi-
nance of a low-affinity major histocompatibility complex-binding myelin basic
protein epitope (residues 111–129) in HLA-DR4 (B1*0401) subjects is associ-
ated with a restricted T cell receptor repertoire. J. Clin. Invest. 100:339.

59. Pinilla, C., V. Rubio-Godoy, V. Dutoit, P. Guillaume, R. Simon, Y. Zhao,
R. A. Houghten, J. Cerottini, P. Romero, and D. Valmori. 2001. Combinatorial
peptide libraries as an alternative approach to the identification of ligands for
tumor-reactive cytolytic T lymphocytes. Cancer Res. 61:5153.

2141The Journal of Immunology


