SP-EPRCA: an ATM Rate Based Congestion Control Scheme

based on a Smith Predictor

D. Cavendish, S. Mascolo, M. Gerla *

dirceu@cs.ucla.edu, mascolo@poliba.it, gerla@cs.ucla.edu

Abstract

This report presents a feedback control algorithm for ATM congestion control in which
ABR/UBR source rales are adjusted according to VC queue levels at intermediate nodes along
the path. The goalis to fully and promptly utilize the available bandwidth left by QOS constrained
traffic (CBR+VBR) for transmitting the less QOS stringent ABR/UBR traffic, without incur-
ring in queue overflow and consequently cell loss. In order to obtain this, we propose a simple
and classical proportional controller, plus a Smith Predictor to overcome instabilities due to large
propagation delays. In the SP-EPRCA model, each queue ideally behaves as a simple first order
dynamic system with a delay in cascade. The delay is out of the feedback loop, and therefore
does not affect stabilitity. Moreover, since the system dynamic is a first order one, it is not only
stable but it has no damped oscillations as well. The real SP-EPRCA implementation, how-
ever, may behave as a higher order system due to innacuracies in estimating propagation delays.
We show wn which conditions system stability is guaranteed under this more realistic scenario.
Finally, we propose an effective SP-EPRCA wmplementation in which each source computes its
mput rate based on the marimum queue level along the path, which is compatible with the current
EPRCA type UNI specifications. Theoretical and experimental results show maz-min fairness of
the proposed control scheme, its efficiency under the constraints of the EPRCA implementation,
as well as 1ts cell loss free property. Moreover, the relationship between throughput, buffer size,
and round trip delay is established. Finally, various queue services disciplines are considered in

conjunction with the basic scheme.

*This work was partially supported by CNPq under Grant 201597/93-4(NV) and by NSF under Grant NCR-
9305376

Contents

1 Introduction 3
2 Continuous time rate based control 5
2.1 Network and Queue Models L 5
2.2 The Rate Control Model o 6
2.3 Queue Transient Analysis L L L 9
2.4 Steady State Analysis oL L 10
2.5 Stability analysis of the controlled system 11
2.6 The case of multiple nodes L L 17
2.7 Fairness of the control algorithm L L oL 18
3 Discrete time rate based control 19
3.1 From periodic to aperiodic feedback o oo o Lo 21
3.2 A comparison between the PRCA scheme and the proposed SP-EPRCA 24
4 Simulation Results 25
5 Implementation Issues 31
5.1 Buffer Requirements L 32
5.2 Queue Configurations e 33
6 Conclusive Remarks 411

1 Introduction

Asynchronous Transfer Mode (ATM) is a fast packet switching technology which supports a broad
range of services with distinct requirements for bandwidth, delay and cell loss. An important issue
is the “efficient coexistence” of Constant Bit Rate (CBR) services, Variable Bit Rate (VBR) services
and “best effort” services (ABR/UBR). ABR/UBR traffic is typically characterized by unspecified
requirements for throughput/delay, and it is used to “fill in” the bandwidth left unused by CBR and

VBR traffic. However, available bandwidth must be shared in a fair way among all ABR sources.

To be more precise, we model an ATM network as a set of switching nodes connected by com-
munication links. Queues are provided for temporary storage of incoming cells, to be relayed to
the next node in its way to its final destination. If the input cell rate to a link is higher than the
correspondent output cell rate, then, after the storage capacity is exhausted, all further incoming
cells are lost. A link in this condition is called congested. Clearly, congestion is undesiderable
because it jeopardizes the ability of the network to deliver cells, and thus causes a degradation in

performace.

Therefore, the amount of ABR traffic entering the network must be carefully and dynamically
tuned according to the network congestion situation. Too much ABR traffic may have the side
effect of queue overflows when fully utilizing the available bandwidth. On the other hand, too little
may cause underutilization of available bandwidth, degrading network efficiency. The ultimate goal
is thus to regulate the ABR/UBR input traffic rate of the network such that all entering cells can
be completely delivered using the existing network resources (i.e. queues, processing power and

link trasmission capacity) without exhausting network resources.

In order to achieve high bandwidth utilization, without incurring in cell loss, closed loop feedback
control mechanisms are expected to be used to regulate how much ABR/UBR traffic must enter

the network according to the actual congestion state of the network.

Namely, unused network resources are monitored continuously, and this information is fed back

to a controller, which adjusts the input traflic rates so that congestion is avoided.

Two classes of controllers are devised: rate-based and credit based control. Rate-based control

[7] aims at controlling the traffic input rate, whereas the credit approach [3] aims at regulating the
number of incoming cells per feedback information received. Many rate based algorithms can be
found in literature. However none of these is completely satisfactory either for its complexity or for
lack of stability properties, as is well reported in the excellent paper by Benmohamed and Meerkov
[1]. The main difficulty is that, due to large transmission and propagation delays involved in high
speed networks such as ATM, most algorithms exhibit persistent oscillations. Furthermore, they
have not been analyzed from the stability point of view, and so cannot guarantee the boundedness
of the queues. Considering, for example, the well known additive increase/ multiplicative decrease
PRCA [5], it is neither possible to state its stability nor to guarantee cell loss avoidance. To our best
knowledge, the Benmohamed and Meerkov’s paper [1] is the first attempt to develop an analytic
method for the design of congestion controllers which ensure good dynamic performance along
with fairness in bandwidth allocation. However, the control law proposed in that paper requires
a complex adjustment of control parameters in order to maintain stability and damp oscillations.
Moreover, these parameters must be dynamically tuned to the specific input traffic and network
condition. Finally, it is difficult to prove global stability, due to the complexity of the control
strategy.

This report presents a simple and effective rate based congestion control algorithm capable of
“filling in” quickly the unused bandwidth with ABR traffic. The main appeal of the proposed
congestion control algorithm consists in the use of a simple, first order dynamic model (for the
queue levels) in cascade with a delay. This yields the following properties for the ideal mechanism:
a) the queue occupancy never exceeds maximum queue capacity (i. e. no cell loss); b) the queue
occupancy dynamic is always stable, thus relaxing the need to dynamically adjust parameters in

order to stabilize queues or damp oscillations.

The report is organized as follows: First we present a description of the proposed control al-
gorithm in continuous time, theoretically establishing its properties and requirements, such as
max-min fairness, buffer requirements and stability. Then a discrete version of the algorithm is
presented, where we keep its implementation as close as possible to the current EPRCA ATM
congestion control platform [9]. Next we report several simulations results, contrasting the algo-
rithm with the popular PRCA scheme. We then address algorithm adjustments to be made so that

various queue schedule schemes may be used in conjuction with the proposed control algorithm.

Conclusions are addressed in the last section.

2 Continuous time rate based control

In this section, we first present the network and queue models for a continuous system. Next we
describe the control law used throughout the report, and present an analysis of the transient and

steady state behavior of the continuous controlled system.

2.1 Network and Queue Models

We mainly follow the notation reported in [1]. The network consists of N = {1,..n} nodes and
L = {1,...1} links. Each link ¢ is characterized by: transmission capacity ¢; = 1/¢; (cells/sec);
propagation delay td;; processing capacity 1/tpr; (cell/sec) where tpr; is the time the switch ¢
needs to take a packet from the input and place it on the output queue. We assume that the pro-
cessing capacity of each node is much larger than the total transmission capacity of its incoming
links so that congestion is caused by transmission capacity only. The network traffic is contributed
by source/destination pairs (9, D), where S, D € N. To each (5, D) connection, there is a Vir-
tual Circuit (VC) associated on the path p(5, D). Each source is characterized by its maximum

transmission speed, ¢; = 1/t;.

Each link maintains a separate queue for each Virtual Circuit VC passing through it. Let
z; ;(t) be the occupancy at time ¢ of the queue associated with link ¢ and VC;, and with X7
the corresponding queue threshold level. The control law computes the source input rate wu(t)
(cells/sec). The bandwidth delay product td;/t; represents the number of “in flight” cells on the

transmission link.

For the model of the dynamic behavior of each queue, we assume a deterministic fluid model
approximation of cell flow. [2]. Each link maintains a separate queue for each Virtual Circuit (VC)
passing through it. The reason for this choice is to ensure, through a round robin service discipline,
the fair sharing of the link by each VC (to be discussed later). Considering the queue associated

with the virtual circuit V'C; at link ¢ , the level of occupancy z; ;(¢) at time ¢, starting at ¢ = 0 with

z;;(0) = 0, is the integral over the time (0,¢) of the difference between the rate of cells entering

the queue (say u; ;(t)) and the rate of cells leaving the queue (say d; ;(1)):

! !

g0 = [g0 = Ty = o0l

where Ty is the transmission delay from the input source to the ¢, 7 queue.

2.2 The Rate Control Model

We propose a closed-loop control based on feeding back the network queue occupancy. In order to
control the queue level x(¢) ! for a specific VC, we initially use a simple proportional controller.
Letting X° be a set point for the queue level, we compute the difference between the set point and
the current queue level z(¢). This difference, the error e(t), is multiplied by a positive constant gain
K, so that Ke(t) is the input rate prescribed to the V' C' source. The proposed control implements
the reasonable idea of enforcing an input rate proportional to the room available in the queue. This

mechanism seeks to “fill the queue”, thus keeping link utilization high.

The calculated input rate Ke(t) at time ¢ will have effect on queue levels only after the round
trip delay along the path, i.e. the time that the feedback information needs to reach the source,
change the rate value, and finally returns back to the queue as an inflow rate Ke(t). Figure 1
depicts the block diagram of this system, where T, T, are the respective propagation delays
involved, and RT'D = Ty, + Ty is the round trip delay. Notice that in wide area networks, the
round trip delay is mostly determined by the propagation delays, so we assume that this quantity
is estimated and known in advance. However, for ABR traffic, this assumption may be violated if
a higher priority traflic is competing with it for network resources. The impact of delay estimation
errors is important in this case, and thus will be dealt with later on. Notice that, in figure 1, a
generic controller K*(t) is depicted, rather than a simple proportional controller K, for easy of

explanation.

!'From now on we drop the i, j subscripts, for sake of simplicity

X0
/\ K‘(t)u(t)T

X(t-T)

x(t)

Tip

Figure 1: Queue dynamic model with a proportional controller

Lets first use a simple proportional controller, K*(¢) = K. Then, due to the large delays, the
dynamic behaviour of the queue level might exhibit oscillations, and even become unstable. In
order to reduce oscillations, it is necessary to reduce the amplification gain K, but this carries the

drawback of a very long transient, i.e. the input rate is not able to fill in rapidly the queue, making

the outgoing link underutilized [6].

In order to stabilize this system, still preserving the ability of quickly “filling in” the available
queue space, we propose a classical Smith Predictor [4]. Following the Smith’s principle, we substi-
tute the controller A*(¢) in Fig. 1 with a controller A'* (see Fig. 3) such that the resultant system

dynamic is that of a first order system in cascade with a pure delay (Fig.2), in the absence of the

input d(t).

X0 i
k[Bdt

m
T

Trw

X(t-Trg

Figure 2: Equivalent model of the system using a Smith Predictor

K* Smith predictor

d(t)

S i x(t)

Figure 3: Queue dynamic model using a proportional controller plus a Smith Predictor

Thus, equating the transfer functions of the systems in Figure 3 and in Figure 2 one can verify

that the Smith Predictor controller K* is given by:

K

l_e—RTDs)

K" =
1+ K(

S

The Smith Predictor shown in Fig. 3 (K*) gives the following input rate control equation:

t

uuy:Kuw—xu—nw—l?@m£+éhﬂ—RTDmﬂ

:Kw%wu—nw<ﬁmwmmﬁ] 2)

Notice that this equation implements a simple proportional control action with the difference
that the actual queue level is increased by the number of cells transmitted during the last round
trip delay. Thus the physical interpretation is that the controller reacts as if all the “in flight” cells

were in the bottleneck queue, which is a worst case assumption for queue occupancy.

In order to describe the dynamic of the system it is helpful to look at the equivalent system

shown in Fig. 2. In this figure we can observe two parts:

a)The first one, containing the integrator, the constant gain K, and the delay free feedback
loop, is a first order system, and thus is stable for every positive value of the parameter K. This
parameter affects the transient behavior only. Namely 1/K is the time constant 7" of the system
(meaning that after 4 T intervals the system reaches stationary condition). Moreover the dynamic
response to a step function does not exhibit oscillations in reaching the stationary state. This
implies that the queue occupancy never overshoots the set point level X°, and hence the set point

can be set equal to the queue capacity without ever incurring cell loss;

b) The second part consists of a pure delay block that causes a shift in time of the queue level

x(t).

Concluding, the resulting behavior of the queue occupancy in the absence of d(t), starting at
t = 0 with an empty queue, is given by the first order system response to a step function, delayed

by the round trip RTD, that is: 2x(¢) = X°[1 — exp(—(t — RDT)/T))].

2.3 Queue Transient Analysis

The system shown in Fig.3 has a behavior equivalent to the system depicted in Fig.2, in response
to the input X°. Now we consider the behavior of the queue level z4(¢) in response to the output
rate d(t), where d(t) can be modelled as a step function a* 1(¢), and «a is the fraction of bandwidth,

normalized to one, given to each connection.

Using Laplace transform method, after some calculations, we find:

zq(t) = —a[t* 1(t) — (t — RT D) 1(t — RTD)] —
%[1 — e KG=RTD)) (1 — RTD) +
2(0) % 1(t) — 2(0)[1 — e KE=FTD) 14 — RT D)

where 2(0) > 0 is the queue level at t = 0. The overall response to d(t) and X°, by the principle

of superposition, is therefore given by:

z(t) = z4(t) + 2x (1) (3)

In stationary condition (¢ — c0), the queue level is:

2(00) = X° — aRTD — % (4)

Figure 4 shows the transient behavior z x (¢) in response to X °, the transient behavior in response
to d(t) = 1(t) — 0.5 X 1(t — of fset) (where 1(t) is the step function), and the overall transient
z(t). The initial offset is the time when the bandwidth d(?) drops below the input rate of the

corresponding VC queue.

40 .

X_X(t) ----

x_d(t) -----
P X_X()+x_d(t) —
30 | E

20 |

queue [cells]
=
o
T

210 F " i

S L L L L

-20 L P
0 50 100 150 200 250 300 350 400
time

Figure 4: Queue level transient dynamic

2.4 Steady State Analysis

As time approaches infinity, equation (2) gives us the following relation between stationary rate us

and stationary queue z:

D ST (5)
" T 1K + RTD

As far as the controller is concerned, any point in the plane u, x satisfying equation (5) is a stable
point for the system. This stability plane extends from 0 to X° in the queue level axis and from
0 to ¢ in the rate axis, ¢; being the maximum capacity of the bottleneck link. Later we will see
that the queue service discipline, initially assumed round robin, may determine which stable point
the system is going to rest upon. Notice that if a single connection must be allowed to achieve the
maximum bottleneck transmission speed ¢ (¢, = us), equation (5) ultimately states that we need
buffers proportional to the product of the round trip delay RT D by the maximum transmission
speed ¢p. To see this clearly we only need to make K go to infinity, thus providing the fastest
controller possible in terms of responsiveness, which is the one requiring smallest buffer size. Since
us = ¢ corresponds to having the full bottleneck capacity for a single source/destination pair, so

that 23 = 0. The buffer requirement is then:

10

X° = ¢,RTD (6)

This stringent buffer requirement results from the fact that we insist on designing a cell loss
free algorithm. If we are willing to accept some loss, buffer requirements can be reduced. We will

address this trade off shortly.

2.5 Stability analysis of the controlled system

For general systems, a common stability criterium is to require that the zeroes of their characteristic
equation have all negative real parts. For the particular system shown in Figure 2, the characteristic
equation is s+ K, which is stable for any positive gain K, since for K > 0 this equation has a single
negative real zero. However, the system shown in Figure 2 represents our controlled system only
if the delays T, Ty are known in advance, so that RT'D = T}, + Ty, box inside the controller
(see Fig. 3) matches perfectly the propagation delays present in the feedback loop of the system.
In reality, these delays must be estimated, and thus mismatches are likely to happen. Therefore, it
is important to study how the controlled system behaves in the presence of delay mismatches. We

address this question in this subsection.

We start assuming that the RTD estimated by the source is RT'D = d,, while the real round
trip delay is RTD' = d, + d. We are not concerned about which among the delays Ty, Ty, were
misestimated, since as we will shortly see this detail does not affect the characteristic equation. We
require that d,+d > 0, or d > —d,, so that the real round trip delay be non-negative. The system
is still represented by Fig. 3, with only 7%, + Ty = d, + d and RTD = d,. After some algebraic

manipulation, the transfer function u(s)/X? is found to be:

ul(s 1 1 e (otd)s _ g=dos o=Tru
)((O) =[F+5+ I (7)

K s s s

Since equation (2) is still valid, the steady state equation (5) still applies, hence if the system

is stable it settles to the same point as if there was no delay mismatch. Our concern here is then

11

whether the system is stable or not. We here follow a similar approach to Walton and Marshall
[11] for stability analysis of time-delay systems. The minor difference is that in the present case
the delay parameter d can be either positive or negative, since it represents a variation from the
estimated delay d,, rather than a strictly positive delay. From Equation (7), the characteristic

equation is given by:

F(s,d)=s+ K 4 Ke %*(e7% — 1) (8)

We first examine the zeroes of F(s,0), which correspond to the case of a perfect estimation of
the propagation delays. Trivially, we have a single real zero at s = — K, which is negative for any
K > 0. Next we consider a infinitesimally small d, in which case a infinite number of new zeroes
appear, due to the exponentials in Equation (8). It is necessary then to study the locations of these
new zeroes in the complex plane. Finally we need to find values of d, if any, at which there are
zeroes of Eq. (8) lying on the imaginary axis, i.e. find w,d values for which F(iw,d) = 0, and then
determine whether the root locus plot merely touches the imaginary axis or it crosses from one
half-plane to the other with increasing d. If the root locus plot crosses from left to right, increasing

d destabilize the system, otherwise increasing d stabilize the system.

We start studying the zeroes of Eq. (8) at the imaginary axis. Namely, s = wi such that:

F(wi,d) = wi+ K + Ke "% (e7%% _ 1) =0

which, after some algebraic manipulation, results:

—wai K(coswd, — 1)+ (=K sinwd, — w)i

‘ - K coswd, 4+ (— K sin wd,,)i (9)

If there exists real d which satisfies Eq. (9), then by equating the imaginary and real parts of

both sides of Eq. (9) there must exist a pair w, d of real values satisfying the following equations:

12

sinwd = ;U cos wd, + sin wd, (10)
(

coswd = 1—|—%sinwdo—coswdo (11)
(

Moreover, if for a particular system described by K,d,, we find a pair w/,d’ such that Eqgs.

(10,11) are satisfied, then it is easy to see that:

' ! 2
d=d(w)+ L g=0,1,2, - (12)
w

also satisfy Eqs. (10,11). So, once a minimum/maximal % d satisfying Eqgs. (10,11) is found, we use
Eq. (12) to find the other infinite zeroes lying on the imaginary axis. Notice that w' is independent
of the delay mismatch d’, which can be seen by removing d from these equations using the fact that

sin? wd 4 cos? wd = 1. By doing this, we first find w’ from the following equation:

w2 2w
I

2coswd, =1+ e I

sin wd, (13)

and then use either Eq. (10) or Eq. (11) to determine d'. Notice that equation (13) has two
solutions, +w’. Unfortunately, numerical methods are necessary to determine solutions of this

equation for non-trivial systems.

We next need to determine which among the roots found in the last computation are stabilizing,

and which are destabilizing. We do this by studying the sign of the 3—; derivative 2 at the imaginary

zeroes computed. From Eq. (8), this derivative is given by:

@ B K se~(dotd)s
dd ~ 1+ Kdye=dos — K(d, + d)e—(do+d)s

(14)

2Minimum for positive d, maximum for negative d.

*We apologize for the double d notation. The first d stands for derivative, as usual.

13

If we define S as:

ds .
S =sgn Re%(wz)

after some manipulation we find:

Kwsinw(d, + d) + Kwcosw(d, + d)i

S = R
i 1 + Kd,coswd, — K(d, + d)cosw(d, + d) + [K(d, + d)sinw(d, + d) — Kd,sin wd,]i

We are particularly interested in the positive sign of the previous expression, since for a mini-
. ! o . . . o« . . .
mum/maximum d found, a positive S gives us the maximum/minimum delay mismatch over which

the system becomes unstable. We find it convenient to define:

m = Kwsinw(d, +d)

n = Kwcosw(d,+d)

o = 14 Kd,coswd, — K(d, + d) cosw(d, + d)
p = K(d,+d)sinw(d, +d)— Kd,sinwd,

Since we are looking for points which satisfy Eqs. (10, 11), we use these equations, plus some

fundamental trigonometric identities to obtain:

m = Kwsinwd, + w?
n = Kuw(coswd,—1)
o = 14 Kd,+ Kd(1 - coswd,)

p = w(d,+d)+ Kdsinwd,

With the above definitions, the points at which 5 is positive are the ones such that:

14

mo + np
02 _I_p2

or

(Kwsinwd, + w?)[1 + K(d, + d) — Kd coswd,] + [w(d, + d) + Kdsinwd,]Kw(coswd, — 1) > 0

After some manipulation, the previous relation reduces to:

Kwsin wd,(1 4+ Kd,) + w?(1 + Kd, coswd,) > 0 (15)

Before going any further, some remarks are due here. First notice that relation (15) contains no
d, which means that all crossing points at the imaginary axis for a given system behave the same
way, namely they are either all destabilizing or all stabilizing. So we can conclude that the root

locus plot of our system has a similar shape to the one shown in [6] for a simpler time delay system.

Notice also that the validity of relation (15) is determined by the particular w computed from

equation (13), which again depends solely on (K, d,) parameters, not on d.
Using equation (13), the above relation becomes:
K w? 1 1 w?

- . - 2
d—o[l + d (K + © Ywd, sin wd, + [d—3 + o (K + f)](wdo) >0 (16)

which is of the form f(w)w sin w+g(w)w? > 0, where f(w), g(w) > 0 for all w, given that K, d, > 0.
It is not difficult to prove that relation (16) holds for any real w. Therefore, we conclude that,
if there are roots of the system characteristic equation lying at the imaginary axis, they are all

destabilizing, regardless of which particular system (K, d,) we are dealing with.

Summarizing all observations we have made in this subsection about a system described by

(K,d,), we can sketch few important points of the system root locus plot, as shown in Figure 5.

15

Im

destabilizing

\ W d’
_‘

v,d=-d, -Kd=0 |-w',d" Re
®

Figure 5: Sketch of the system root locus plot

Figure 5 shows the complex plane, with few points v 4 iw describing some of the roots which
are both easy to compute and sufficient to define the stable region of the system. Notice that this
figure does not show all root locus plot of the system, but only zoom at the important part for our
stability analysis. Fach point is described by its coordinates v,w in the plane plus the mismatch
value d at that point. We know that there exists a real negative root at v = —K,d = 0 (no
mismatch). We have included also the point v,d, to stress that points in the real axis to the left of
this point are not meaningful, since they represent negative real round trip delays. An important
observation here is that for d, < d < 0, the root locus plot can never touch the imaginary axis, for
if this was the case the cross point would be stabilizing, which we have shown not to exist. This
means that for d, < d < 0, the system is always stable, which makes sense since essentially the

control algorithm is using more information about the past than necessary.

The stability analysis of the controlled system reduces to the following steps. First, by solving
equation (13), we find +w values. Next we compute the maximum delay mismatch d from Eq.
(11 or 10), which gives us the first and most important destabilizing point, depicted in Figure 5.
Clearly there is a positive range of delay mismatch [0, d/) in which the system stability is guaranteed

despite the delay mismatch. This concludes the stability analysis of the controlled system.

16

2.6 The case of multiple nodes

So far we have modelled our system as having a single bottleneck node, situated 7', away from
the source, and having a propagation delay back to the same source of Ty, units of time. We would
like to extend the results so far obtained for single node systems for more general systems. Namely,
multiple node systems, possibly with dynamic change of the bottleneck node during the lifetime of
the connection are more realistic systems, and therefore we would like to rate control these systems
also. We first argue that when other less congested nodes are present in the feedback loop, the
single node model we have used so far can still be applied. Then we argue that moving bottlenecks

does not pose any additional modelling problems either.

We can model the system with multiple nodes as a collection of single node models as previously
described. Each single node model is controlled according to equation (2). Clearly all controllers
have the same RTD, and moreover we assume uniform control gains K and queue sizes X°*. We
also assume that feedback information is not delayed at intermediate nodes, which is similar to
our early assumption for single node that propagation delays dominates in the relaying of feedback

information over other types of network delays.

The source input rate is determined as the lowest rate among all input rates computed, otherwise

violation of one or more prescribed rates may occur.

Lemma 1 The prescribed input rate comes from the node with largest queue level.

Proof Lemma 1 Since the integral of equation (2) is the same for all controllers, the Lemma
follows immediately. Notice that the age of the feedback information is not important, as far as

rate computation is concerned.

Lemma 1 guarantees that all nodes but the bottleneck one may be ignored in the modelling
of multiple node systems. Notice that we can use a similar argument to claim that the control

algorithm proposed works equally well when bottlenecks move from node to node.

*The extension to various queue sizes is not difficult

17

Theorem 1 Under the same assumptions of Lemma 1, moving bottlenecks do not invalidade any

results obtained by single node systems.

Proof Theorem 1 [t follows from Lemma 1 and the fact that, as far as its proof is concerned,
it does not matter if the age of feedback information changes with time, which happens when the

bottleneck moves from one node to another.

2.7 Fairness of the control algorithm

In the congestion control context, fairness is generally defined as the property of exercizing traffic
blocking or rate reduction in a “fair” way among all connections. Although fairness can be defined
precisely in a number of ways, in the flow control application the most common definition is the so

called maz-min fairness [10]. We here define max-min fairness in the rate control scenario.

Let r be a rate vector, whose components are connections input rates of a general network,
defined previously as links [with finite transmission capacity ¢; interconnecting nodes. We need

the following definitions [10]:

Definition 1 A feasible rate vector r is a vector (1,72, ...,1y) of rates such that Y r; < ¢; over all

connections v sharing link j, for all network links.

Definition 2 A feasible max-min rate vector r is a feasible rate vector such that any attempt to
increase a given rate r; must result in a decrease of another rate r;,r; > r; in order to maintain

feasibility.

The following theorem shows that max-min fairness is achieved by the proposed rate control

algorithm.

Theorem 2 The Smith Predictor rate based control algorithm is maz-min fair. More precisely, the

rate vector of stationary rates is maz-min fair as defined in Definition 2.

18

We first need the following lemma:

Lemma 2 The rate vector whose components are stationary rates computed by the proposed rate

control algorithm is feasible.

Proof Lemma 2 Pick a generic link 1. If this is not a bottleneck link for any connection, it does
not even have to be modelled, as argued in the previous section. So let v be a bottleneck link for some
connection j. In stationary condition, whatever the stationary rates of bottleneck b connections are,
their sum do not exceed capacity c; for if this was the case queues would overflow. But since the

system behaves as a first order one, with the queue size as the set point, queues can never overflow.

Now for the proof of the Theorem.

Proof Theorem 2 The proposed algorithm assumes that each connection p has a bottleneck link
b (modelled by the control model). Moreover, feasibility is guaranteed by the previous lemma at
stationary regime. So we pick a generic connection p, which must have a bottleneck b associated to
it shared by ny, connections. At stationary regime, if we try to increase its rate, we must decrease the
rate of another connection q sharing the same bottleneck link in order to maintain feasibility, since
by definition of bottleneck >" r; = ¢,. Moreover, we know that r; = ¢y/ny, due to the round-robin
service discipline, and thus r, = r,. Thus connections p,q comply with definition 2. Since p is a

generic connection, the Theorem follows.

3 Discrete time rate based control

So far we have dealt with continuous time models only. However, in ATM, feedback information is
relayed in cells, and thus not available in continuous time, but rather in sampled form. Fortunately,

the discrete time implemention of the Smith Predictor is simpler than the continuous one [8].

We start with the system model shown in Fig. 1. From Nyquist sampling theorem and from
control theory we know that, in order to have a ”continuous like” performance of the system under

digitized control, the ratio of the time constant of the system over the sampling time must be at

19

least 2 and can not get any better if it is beyond 4[8]. Indicating by A the sampling time , it

follows:

7 = [2,4] (17)

In order to write the discrete time version of the control equation (2) we must consider two cases:

i) RTD > A: The ratio RTD/A = m + ¢ where m is an integer and ¢ € [0,1). Rewriting the

continuous time equation 2 in its discrete version, we obtain the input rate at time ¢ = kA:®

u(kD) = K[X? = (kDS = Tpy) — (kD = (m 4+ DAY = S u((k —)A)A] (18)
=1
ii) RTD < A:
u(kA) = K[X° = 2(kA = Tpy) — u((k — 1)A)RT D) (19)
| W28 u(kay
—— % | : %
tk-(n"wl)tk-m tk-(ml) tk-2 tk-l tk t
| A |
[RTD +—+ |

Figure 6: Discrete Time Notation

The notation used in the previous equations is illustrated in Figure 6 and will be followed

throughout the paper. It results: tr = tr_1 + A\.

The summation on the right side of the equation 18 can be rewritten as the sum of two parts:

I = w(t—Ty— D)AFu(t —Thy —28)A+ -4+ u(t — RTD)A,
IT = w(t—LA)A+u(t—20)A -+ u(t —Tpy,)A

®Note that k should not be confused with the gain K

20

The first one represents the number of cells that have already arrived at the bottleneck queue
but are not yet know at the source due to the feedback propagation delay 7y,. The second one
represents the number of cells that are travelling from the source to the queue. Therefore the input
rate computation at time ¢ can be rewritten as: w(t) = K[X? — a(t —Tg) — () — (11)]. We can
interpret (¢t — T'sp) + () + (1) as “effective queue level at time ¢”. So the calculation of the input
rate u(t) is made as if all “in flight” cells were already at the queue. In this way the dynamic is

delay free, which results in stability and lack of oscillations.

Finally we would like to interpret the difference between the queue capacity and the "effective
queue level” as a number) of cells that can be transmitted by the source without causing overflow

to the bottleneck queue.

3.1 From periodic to aperiodic feedback

In order to implement the proposed discrete time control algorithm we need to supply the controllers
located at the sources with periodic feedback information (every A units of time, with A satisfying
equation (17)). This can be obtained if the upstream node of a congested link sends the feedback
information, at every sampling time, to all the sources in the upstream direction, as in the Backward
Congestion Notification (BCN) scheme. This is what is assumed in [1]. We call this type of scheme
“Periodic Feedback Control”. In systems where Forward Congestion Notification (FCN) scheme is
used, like in the PRCA scheme, the source is responsible for transmitting a management cell RM
every N RM data cells. The control cell itself has to compete for bottleneck link bandwidth, since it
has to reach the destination node before being relayed back to the source through either the same or
an alternative reverse path. Clearly, under this scheme, it is not possible to guarantee the periodic
feedback information used in the discrete-time control equation. Due to the sharing of the congested
link, the rate of the feedback cells that can be received by the sources is Bqy/[Nye X (1 + NRM)],
where N, is the number of Virtual Circuits sharing the same bottleneck link and By, is the available
bandwidth. Thus the interarrival time of the feedback cells increases as N,. x (1+ N RM). Because
it is necessary to guarantee the sampling time equation (17) in order to achieve a good performance
of the feedback control, we have to increase the time constant of the system (i.e. the queue size per

VC) as N, increases. Thus, it is necessary to use VC queue sizes proportional to the number of

21

Virtual Circuits sharing the same bottleneck link. This requirement does not derive from the control
algorithm itself but rather from the FCN mechanism used for delivering feedback information. To
cope with the somewhat irregular delivery of RM cells, we need a control algorithm which must
operate well even if no RM cells are received for a while. If the source receives the feedback
information, the control algorithm will adjust the rate accordingly. Otherwise it will compute the
rate by estimating the missing feedback information in a conservative way. In other words, this

algorithm must perform some kind of “virtual feedback”. We call this type of control “Aperiodic

Feedback Control”.

We now propose a version of the previous discrete time control algorithm suitable for the FCN
feedback relay scheme. The feedback information is provided by RM cells which collect the max-
imum buffer level along the path. Note that regardless of the bottleneck location along the VC
path, RTD is always the same. The system will still be cell loss free even if we are not able to

guarantee the required periodicity of feedback information.

The basic idea is to update the source rate at least after each A sampling interval, regardless
whether the source gets the feedback information or not. Let #x,?x+1 be the instants at which
the source receives the last and current feedback information, respectively. Two cases need to be

considered:

i) try1 — tr < A. The source stores the rate u(ty), as well as its duration Ay, so that u(ty)Ag
becomes one of the terms of the summation in the control equation. Thus the rate updating

equation is:

u(tk + Ak) = I([XO — x(tk + Ay - be) — Z u(tk—i)Ak—i — u(tk_m_l)(RTD — f: Ak—z)]

1=0 =0
where Z;rio N < RTD < Z;ﬁ:&l Ap_;, N <A Y, t =t + Np_q.

ii) The interval A expires before the source receives its control packet. In this case, the algorithm
has to estimate the queue level z(t; + A — T4). In order to be conservative, and to prevent
cell loss, we propose the following “worst case” estimate of the missing queue level. We
conservatively assume that in the time interval [y, t; + A] (with A = Ay) the queue has zero

output rate. Thus the “worst case” queue level is the last value x(ty — Tp) plus what has

22

been received in the interval [tz,tr + A]. The accrued term corresponds to the number of
cells pumped into the network during the interval [ty — RT Dty — RT D + A]. Therefore, the

“worst case” estimate of the queue level at time ¢ + Ay is:

x(tk + Ap — be):x(tk — be) +

m+1
Wtz (BTD = 3 D) +
m+1
u(tk_m_l)(A — (RTD — Z Ak—z))

We call “virtual feedback” this worst case estimation of the queue level . Note that this is
equivalent to storing the last received feedback value, z(t — 1), and adding the new term wu(tx)A

to the last sum of “in flight” cells, say sum/¥’, i.e.

m+1 m41
sumF:Z u(tk—i)Ak—i + u(tk_m_g)(RTD — Z Ak—z)
=1 =1

and the rate is

u(tk + Ak) = I([XO — x(tk — be) — u(tk)Ak — sumF]

In this proposed EPRCA algorithm, the sources at the edge nodes of the network update their
input rates at least every /A units of time. If they do not get information about the occupancy of the
congested queue, they decrease their rates based on a “worst case” estimate of the congested queue
level. When they get the next feedback information they will increase their rates because the actual
queue level cannot be larger than the conservative estimate. In other words, the algorithm behaves
as a “positive feedback 7, decreasing the rate when feedback is not available and increasing it when
feedback information resumes. Note that this is very important aspect to guarantee stability in
any feedback congestion control because, due to congestion, it is not possible to guarantee the rate

at which feedback cells are received.

23

Correctness of the proposed algorithm

Our control algorithm collects the maximum queue length along the feedback loop of a given
source/destination pair. With this procedure we guarantee that the rate control is performed
based on the largest queue level. Therefore, given that the discrete system follows its continuous

version, by Lemma 1 and Theorem 1, the correctness of the algorithm follows.

3.2 A comparison between the PRCA scheme and the proposed SP-EPRCA

In the ATM Forum PRCA proposal [5], an additive increase/multiplicative decrease rate control is
exercised at the sources. Binary feedback information (congested/ not congested) is received at
the sources, and rate increase (additive) is performed in case a “not congested” feedback is received.
Failure to receive the “not congested” notification causes multiplicative rate decrease at the source

after each time interval A, thus making the scheme conservative.

Our proposed EPRCA uses the delayed queue occupancy as the feedback information. Like
in the PRCA scheme, if no feedback is received, the source calculates the rate at fixed intervals
A related to the time constant of the queue. The calculation is performed using a “worst case”

estimate of the queue level.

In the following, we study the dynamic behavior of the rate when the source lacks feedback

information. Let u(0) = w5~ (X° — a(t — T) — X prp u(t;)2;) be the rate computed based on

the last received feedback cell. If no feedback information is received since then, the rate must be

updated every /A unit of time, using the “worst case” estimate. It follows :

1

u(l) = ot [XO — x(t — be) — u(O)A — Z u(tz)Az]
s RTD
),
= Yo, (X% — A)
u2) = 4, -)
_ o4 _ k
k= Do, - o) = uo) [T =)

i.e. the rate decreases exponentially. When the source resumes receiving feedback information, the

rate jumps to (X° — a(t — Tpp) — > prp w(t) ;).

Therefore, we note that our EPRCA scheme, developed from a precise and simple mathematical
model, operates according to a “positive feedback” mechanism, much like the PRCA scheme. The
important difference is that the dynamic behavior of our regulation is related to the network state
and parameters. In fact, the rate decreases exponentially with a base related to the sampling
time/time constant ratio. More importantly, the increasing jumps are related to the queue level
and to the number of cells released from the source during the last round trip interval. As a
consequence, our EPRCA scheme does not drop cells, nor does it need a queue size proportional
to the RTD to prevent cell loss. In contrast, the conventional PRCA scheme does not use precise
information on the queue level and does not take into account the number of cells released during
the last round trip delay. Consequently, it cannot perform the correct rate increase so as to prevent

congestion and cell loss.

4 Simulation Results

In this section, we present results of a discrete event simulation of our control scheme. We first
show the performance of the periodic control algorithm under the same scenario considered by [1].

Then we compare the proposed EPRCA scheme with the conventional PRCA scheme [5].

The network topology, shown in Fig. 7, is similar to the one presented in [1]. Links have
uniform speeds, normalized to 1 cell per unit of time [cell/s]. They are labeled with their respective
propagation delays, normalized to the uniform transmission time. In an 150Mbps link speed, 10

units means roughly a 6 mile distance between switches.

25

Bottl eneck 1
S5

Figure 7: Network Topology - Multiple Bottlenecks

In this initial setting, five VC connections compete for bandwidth resources of the bottleneck
#2 link only(connection # 6 is innactive). Thus, queue dynamics are shown for this bottleneck
only. VC connection activity (i.e. start and end time) is described in Table 1. We assume infinite
backlog at each source. We set a queue level X° = 40 for each queue, in order to have a sampling
time of the system of 40/4 = 10, that is, one fifth of the interarrival time of the feedback cells under
the FCN scheme, with NRM = 10 and N,. = 5.

Table 1: VC Connections Activity

Connection # 1 2 3 4 5 6
Start Time 500 | 2500 | 1000 | 4000 | 5500 | O
End Time 7000 | 10000 | 8500 | 10000 | 10000 | O
RTD 0 0 20 40 60 0

Periodic Feedback
We first show the performance of a periodic sampling version of our control scheme, in conditions
similar to [1].

According to equation (17) we choose a sampling time A = 10. Figure 8(a) shows the behavior of
the five input rates, corresponding to connections 51— 55, at source nodes. For sake of comparison

with PRCA, we assume an initial cell rate of 0.1 [cells/s], equal to the PRCA minimum cell rate.

26

After the start/end of a connection, each rate rapidly settles to the new fair stationary value ©.
Figure 8(b) shows the dynamic behavior of the five queues at the bottleneck link, corresponding
to VC'1 — V5 bottleneck queues. As can be seen, no queue overflow occurs. Moreover, each
stationary level is in accordance with equation (4). The overall performance is similar to [1]’s

periodic control, without having dynamic tuning of control parameters.

EPRCA - PRC=1.0;ICR=0.1;MCR=0.0;NRM=1

1 T T T T T T
S1 —
S2
S3
S4
08 | S5 -~
_ 0.6 | R
@
K}
©
8,
Q
i) : :
04| 3] g
W‘ Ao
¥ 4
% | — A
, ‘
i i
0 i 1 ! 1 i 1 1 Il N Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time
(a) Rates
EPRCA - PCR=1.0;ICR=0.1;MCR=0.0;NRM=1
40 T T T T T T
VCl —
VC2
L VC3 ----- i
35 VC4
VC5 ---
30 T g
SO A
25 B
K%}
] 20
o
15 |
wfF T :
H
RTETTTY
5 - | .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time

(b) Bottleneck Queues

Figure 8: Periodic Feedback

SWhen there are three active connections, the figure shows small oscillations, due to the fact that the control

equation tries to regulate the queue occupancy to a value between two integers

27

Aperiodic Feedback

The aperiodic control scheme, with A = 10, requires NRM = 1 (i.e. one control cell every data
cell) in order to guarantee the minimum feedback frequency rate. The value N RM = 1 derives from
the fact that, under the heaviest traffic condition (five connections), the feedback cell interarrival
time is A = Ny (NRM + 1). Since the minimum feedback rate is maintained, simulation results

are identical to the ones under periodic control, as expected, and hence are omitted.

We next show performance degradation in case equation (17) is not respected. By setting
NRM = 10, under the heaviest traffic condition, the feedback interarrival time is 55 > 10. We
see from Fig. 9(a) that the rate does not reach rapidely the stationary condition anymore. More-
over, Fig. 9(b) shows that overflow occurs in VC4 and VC5 queues. Other simulation results, not

reported here, show that the greater the NRM value, the less controlled the queue levels are.

EPRCA - PRC=1.0;ICR=0.1;MCR=0.01;NRM=10

0.8 |

0.6 -

rate [cells/s]

i i
04 | i i p

tRRAL LA R
R

: U
02 | il

5&“}5«#}1‘&:‘«1‘%&*‘.}{!

0 i L ; Lol N
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

(a) Rates

28

EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=10
40 T T T T T T
i

35 +

30 |

25 |

cells
N
o
T

15

S

0 PR i P \ L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

(b) Bottleneck Queues

Figure 9: Aperiodic Feedback

Aperiodic + Virtual Feedback (SP-EPRCA)

Next, we study the performance of the proposed SP-EPRCA under the same conditions and feed-
back frequency (NRM = 10), as used above. Figure 10(a) shows the oscillatory behavior of the
controlled rates. This is so because the control operates in the “positive feedback” mode, i.e. in-
creasing promptly the rate when a feedback cell is received, and decreasing exponentially otherwise.
However, the oscillations are constant in amplitude, and centered at the fair value of the rate, so
that the throughput performance is preserved. The frequency of oscillations is high because the
virtual feedback period is A = 10, while the actual feedback interarrival time is about 50. In
fact, the control algorithm decreases the rate every A = 10, in a conservative way, increasing it
promptly, when a feedback cell is received (approx. every 50 units of time). Figure 10(b) shows
that the queue levels are still bounded, guaranteeing no cell loss. Thus, the major advantage of
the Virtual Feedback scheme is to prevent cell loss, due to congestion, even if it is not possible to

guarantee the frequency of feedback cells.

29

EPRCA - PRC=1.0;ICR=0.1;MCR=0.01;NRM=10

1 T T T T T T
S1 —
S2 -
S3 -
S4
08 | S5 ==
_ 0.6 |
v
©
3
9
g
04
0.2
0 1000 2000 3000 4000 5_000 6000 7000 8000 9000 10000
time
(a) Rates
o EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=10
4 T T T T T T
35 | B
30 -
LR
25 | B
0
E 20 |
o
15
10
5L
0 1000 2000 3000 4000 5_000 6000 7000 8000 9000 10000
time
(b) Bottleneck Queues
Figure 10: Aperiodic + Virtual Feedback
Conventional PRCA

For sake of comparison, the PRCA scheme has been simulated under the same traffic conditions as
before, with parameters: NRM=10; AIR=0.053; MDF=8. The results are shown in Fig. 11. As
expected, the PRCA scheme does not prevent cell loss, because it cannot account for the bottleneck

queue level and the number of cells “in flight”.

30

PRCA - PRC=1.0;|CR=0.1;MCR=0.01;NRM=10;AIR=0.053;MDF=8
1 r T TT : T L T

0.6 |

rate [cells/s]

0.4 |

0.2

0 i I i I I i I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

(a) Rates

PRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=10;AIR=0.053;MDF=8

1

40 T

35 +

s

30

25 |

20 |+

cells

15

P i s
0 1000 2000 3000 4000 5000

time

(b) Bottleneck Queues

! ! Hi
6000 7000 8000 9000 10000

Figure 11: PRCA Control Scheme

5 Implementation Issues

In this section, we address possible implementation versions of the basic rate control algorithm

described previously. Basically, we have the following parameters available for tuning our algorithm

31

(see Eq.(2)): buffer size X°, gain K, and time RT'D. By choosing these parameters carefully, we
first address the algorithm buffer requirements. Then we devise modifications in the basic algorithm

in order to have it operating with other schedule disciplines other than round robin.

5.1 Buffer Requirements

The steady state analysis of the proposed rate control algorithm has revealed the need for buffers
sizes proportional to the round trip delay (Eq. (6)). We aim at decreasing this requirement, by

trading buffers for cell loss. Two basic methods can be used: pseudo queues or pseudo RT D delays.

In pseudo queues, the algorithm operates with the parameter X prescribed by Eq. (6). However,
a smaller buffer size B is allocated for the connection at intermediate switches. It is not difficult

to see that a worst case analysis reveals a stationary cell loss rate of:

X°—-B

T (20)
=+ RTD

Ulpss =

In pseudo RTD, we decrease the buffer requirement dictated by Eq. (6) by operating with a
round trip delay smaller than the actual feedback loop round trip delay. In this way, the maximum
stationary rateis increased (see Eq. (5)). However, this approach is equivalent to having a mismatch
in the round trip delay estimation, which was addressed previously. The recipe then is to try to
operate with a minimum R7TD value (conversely a maximum positive delay mismatch) so that

system stability is not jeopardized.

Summarizing, the first approach leads to having a permanent flow of lost cells, although stability
is guaranteed. The second approach, on the other hand, cells may be lost only at transient time,
provided that the system is stable. System stability can be guaranteed, however, through the

stability analysis presented previously.

32

5.2 Queue Configurations

So far we have assumed a switch configuration in which separate queues are provided per VC,
and are served in round-robin fashion, which is a rather costly mechanism. In this subsection, we
relax this requirement, showing that other queue configurations are also feasible without giving
up very much of the proposed algorithm performance. We still assume switch architectures with
output queueing, which are well known to provide best performance, avoiding problems such as

head-of-the-line blocking. We consider the following possible alternatives for queue configurations:

FIFO per switch port - This is the simplest configuration, where cells belonging to different
VCs and destined to the same output port are stored in a single queue, being served in a
FIFO service discipline. No information is kept about individual VCs other than the usual

routing tables.

Pseudo VC queues per switch port - In this alternative, a single FIFO queue per output
port is provided as before. However, per VC counters are kept in order to account for the
number of cells per VC stored in the FIFO queue. This alternative relieves the switch from

the burden of serving a possibly great number of VC queues in round-robin.

VC queues per switch port - This is the most sophisticated queue configuration, where queues
per VC are provided for each output port, being served in a (possibly weighted) round-robin
service discipline. Switches have to dedicate memory space per VC, and keep track of which

among all VCs was last served.

The three queue configurations are shown in Fig. 12.

FI FO per SWport Pseudo VC queues VC queues per SWport
per SWoport

Figure 12: Queue Configurations

33

We here accrue one more connection to the previous network scenario, with the purpose of giving

rise to traflic activity in multiple bottlenecks. Thus, in this setting, connection #6 becomes active,

as shown in Table 2. Connections number 5 and 6 share the first bottleneck, while connections

number 1, 2, 3, 4, and 5 share the second bottleneck.

Table 2: VC Connections Activity

Connection # 1 2 3 4 5 6
Start Time 500 | 2500 | 1000 | 4000 | 5500 0
End Time 7000 | 10000 | 8500 | 10000 | 10000 | 10000
RTD 0 0 20 40 60 0

V(' queues per switch port

We now illustrate the behavior of the SP-EPRCA under this queue configuration. The following

performance results are based on the control parameters: X° = 40 cells, K = 1/X°, A = 10 units,

and will be used as reference for sake of comparison throughout this section.

EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=0

0.8 |

0.6

rate [cells/s]

04 |

0.2

SR
H

i

! ! ! : !
5000 6000 8000 9000

time

! i ! I
2000 3000 4000

1000

7000 10000

(a) Rates

34

EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=0
40 T T T T T T

35 +

30 |

25 |

cells
N
o
T

15

: i
[LI i : 1

L L L L : L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

(b) Bottleneck Queues

Figure 13: VC queue architecture

Fig. 13(a) shows the rate adjustment performed by the algorithm when new connections start/stop.
The rates are quickly adjusted to their fair share of the available bandwidth every time the system
is perturbed. Fig. 13(a) shows that max-min fairness is indeed achieved, by having VC connection
number 6 (VC#6) taking most of the bandwidth left by VC#D5 on bottleneck 1, since VC#5 rate
was constrained by bottleneck # 2 and could not increase its rate any further. Fig. 13(b) shows
bottleneck # 2 VC queue levels. Notice that no overflow is experienced. Similar curves can be

obtained for queues at bottleneck # 1, ommited here.

Pseudo VC queues per SW port

We next investigate a common FIFO queue configuration for ABR traffic at intermediate switches,
and its consequences on SP-EPRCA performance. As mentioned earlier, we have “pseudo” VC
queues at each switch, i.e. counters per VC that indicate the number of cells currently stored in
the common queue. This information is relayed back to the corresponding source for rate control.
We have simulated the same network and traffic activity shown in the previous subsection, under

a common FIFO queue for all ABR VCs. Results are shown in Fig.14.

35

EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=0 - Common Buffer
T

1r T T T T T T
08 |
0.6 |
o
K%}
©
8,
Q
s
0.4
0.2+
o i L , s s L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time
(a) Rates
EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=0 - Common Buffer
40 : : ; : ; ; : ;
35
30 B
25 B
WU
0
] 20 J
o
15 | | R T
\
10 B
sl |
O r‘ Il ! Il i Il Il Il Il i Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time

(b) Bottleneck Queues

Figure 14: Pseudo VC queue architecture

Figure 14(a) shows that, although rate control is still performed with cell loss avoidance (Fig.14(b)),
the algorithm fails to provide fairness among the connections. Notice that this fact do not contra-
dicts Theorem 2, since the theorem assumes a round robin service discipline. To understand why
fairness is not maintained, we recall equation 5. Let us plot this equation for the various RTDs

involved in the simulated system (Fig.15).

36

Stablility Curve
1 T T
RTD=0 —
RTD=20 ----
RTD=40 ----
RTD=60
08 B

rate [cells/sec]

04 - T 1

02| 1

0 L L L L L L L i
0 5 10 15 20 25 30 35 40
queue [cells]

Figure 15: Stability Curve

We can interpret the behavior of the control algorithm as seeking a point in each one of the
lines shown in the figure, so that it can “stabilize”, while satisfying Y us; = ¢, over all connections
sharing a bottleneck with capacity ¢;. Every time the system is perturbed with the start/stop
of a connection, the “operating points” of the remaining connections move down/up accordingly.
However, connections with small RTD will start earlier their search for a new stable point than the
ones with large RTD, and therefore are likely to end their search first, moving their stable points
as little as possible, giving rise to unfairness. Thus, bandwidth resharing can be seen as a race
between existing VC connections. The ones with longer RTDs start too late and hence grab less
bandwidth. However, we can compensate the long RTD by shortening the time constant of that
particular connection. In other words, by using a slower gain for VCs with shorter RTD, we can
nullify the discrepancy of differing RTDs. This is equivalent to matching the curves of Figure 15
by changing their slopes. In order to slow down the gain of VCs with short RTD, we use equation
5 to choose K for each V(' so that:

1
= = X°+ RT Dy — RTD; (21)
¢

37

where RT D, q, is the largest round trip delay among all connections sharing a bottleneck. We call
this gain RTD normalization. Thus, a fair version of the SP-EPRCA operating under this queue
configuration consists in relaying not only queue levels, but also gains K (more conveniently 1/ K,
since it is a integer quantity) in RM cells. Whenever VCs join or drop out from a link, new gains
must be computed and relayed back to sources. Since VCs may cross many different bottlenecks,
and might have to compete for bandwidth at any of them, the gains should be normalized not only
among VCs sharing the same bottleneck, but also among bottlenecks being crossed through by a
common connection (since otherwise this connection may not be normalized with respect to one
bottleneck, even if it is normalized with respect to another). Therefore, gains must be relayed not

only from bottlenecks to sources, but also from sources to bottlenecks.

Figure 16 shows SP-EPRCA performance when such procedure is executed. Note that part (a)
of this figure shows a premature saturation rate point for VC # 6 even though its RTD is zero, as
if its RTD were in fact RT D,,,., due to the gain RTD normalization procedure. One may argue
that, since VC #6 and VC#5 are not competing for bottleneck # 1 bandwidth, because VC#5 is
constrained by bottleneck # 2, such normalization is not only unnecessary, but in fact should be
avoided in this case. However, the temporary situation in which VC#5 is constrained by bottleneck
2 may change at any time, reversing the scenario and making VCs # 5 and # 6 start competing
for bottleneck # 1 bandwidth. Therefore, SP-EPRCA must be prepared for bandwidth resharing

at any time on a fair basis, hence making gain RTD normalization imperative.

This procedure can prevent some switches to have their available bandwidth fully utilized due
to the rate saturation problem. As shown earlier, this problem also happens with VC queues per
switch port configuration. However, this problem is more likely to happen here due to the fact that

“pseudo RTDs” are spread around switches traversed by a large RTD connection.

38

rate [cells/s]

cells

FIFO per SW port

0.8

0.6

0.4

0.2

40

35

30

25

20

15

10

EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=0 - Common Buffer

i I

! I ! ! : !
1000 2000 3000 4000 5000 6000 7000 8000 9000

10000
time
(a) Rates
EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=0 - Common Buffer
T T T T T T T T

VC1 —
VC2 ----
VC3 - i
VC4
VC5 —--

L { L

- 1 1 1 Y
1000 2000 3000 4000 5000 6000 7000 8000 9000
time

10000

(b) Bottleneck Queues

Figure 16: Normalizing Gain per RTD

We next investigate a truly common FIFO queue architecture for ABR traffic at intermediate

switches, and its impact on SP-EPRCA performance. Thus, contrary to the previous section, we

do not keep track of the number of cells stored in the switch memory per VC, but only the total

39

number of cells currently stored in the common FIFO queue. The motivation for exploring this
seemingly inadequate strategy is that, if the mechanism provides fair rates, the number of cells
stored at intermediate switches per VC should be the same. Indeed, the results presented in the
last section show that this is the case. Therefore, the switch needs to know only the total number
of cells stored in its FIFO queue, plus the number of VC connections currently sharing that queue.
It then assumes that stored cells are equally subdivided among VCs, relaying this cell count back

to the sources for rate control.

We have simulated the same network and traffic activity shown previously, under a common
FIFO queue for all ABR VCs with a single counter to keep track of the total number of cells stored

in each queue. Results are shown in Fig.17.

EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=0 - Common Buffer
T

: s1
s2
S3 -
s4
S5~
0.8 S6 R
0.6 |- i ; |
2 : ; ;
0 | Q
© H i
S : ;
Q B §
s :
0.4 L R
: | s
: | /
: i :‘ Fﬂ*fi w’
i “”w I
0.2 ,y‘“n,‘,; g i
i |
i i
i! I
i :
i}
0) L ! L i L : L ! : L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time
(a) Rates

40

EPRCA - PCR=1.0;ICR=0.1;MCR=0.01;NRM=0 - Common Buffer
40 T T T T T T T T

35 VC4

30 1

25 | . i |

cells
N
o
T

15 -

10 + e

L L L L . L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

£ L L

(b) Bottleneck Queues

Figure 17: Truly FIFO architecture

As expected, the results are identical to the ones shown in the last section. Notice that this
simplified version of the algorithm works only because fairness holds. Indeed, if among the compet-
ing connections, different number of cells per connection were allowed to be circulating inside the
feedback loop, we would certainly have a different number of cells per connection stored at each
intermediate switch queues. Dividing the total number of cells evenly among the connections and

relaying this information would help only to perpetuate the unfair situation.

6 Conclusive Remarks

Theoretical arguments and simulation results have shown that the proposed control algorithm
performs an effective congestion control in high speed networks, guaranteeing no cell loss and max-
min fairness, provided that round trip delays are known. The control scheme performs well even
under the pratical constraints of the EPRCA implementation in an ATM network, which makes it
compatible with EPRCA type of UNI interface. We have also shown that simple switch services
disciplines, such as FIFO, can operate in conjunction with the proposed rate algorithm. Although

buffer requirements to strictly avoid cell loss can be large in WAN scenarios, alternatives have been

41

shown to reduce buffers if one is willing to accept some cell loss.

Some of the assumptions that have been made in the course of this report can be relaxed in a
real network scenario. For instance, if queueing delays at intermediate nodes are significant when
compared with propagation delays, then a periodic estimation of the ABR/VBR connection round
trip delay including such delays can be used in conjunction with the control scheme in order to
keep track of such delay variations. In this case, a queue delay bound can be used to avoid cell
loss. Also, a priority mechanism can be used to expedite feedback (RM) information, so that the

effect of congestion on delivery of control information be minimized.

Finally, the proposed rate control algorithm can also be extended to multicast type of connections.

The reader is referred to [12] for further details.

References

[1] L.Benmohamed, S.M.Meerkov,“Feedback Control of Congestion in Packet Switching Networks:
The Case of a Single Congested Node”, IEEE/ACM Trans. on Networking, vol.1, no.6, pp.693-
708, December 1993.

[2] L. Kleinrock, “Queueing Systems. Volume II: Computer Applications,” Wiley, 1976.

[3] H.T.Kung, R.M.Morris, T. Charuhas, D. Lin, “Use of Link-by-Link Flow Control in Maximiz-
ing ATM Network Performance: Simulation Results,” Proc. IFEE Hot Interconnects Sympo-
sium, 93, Palo Alto, California,5-6 August 1993.

[4] O.J.Smith, “A controller to overcome dead time,” ISA J., vol.6, no.2, Feb. 1959,pp.28-33.

[65] A. W. Barnhart, “Baseline Performance Using PRCA Rate-Control,” ATM Forum/94-0597,
July 1994.

[6] D. Cavendish, Y.Oie, M.Murata, H.Miyahara, “Proportional Rate-Based Congestion Control
under Long Propagation Delay,” Int. Journal of Communication Systems, vol. 8, pp. 79-89,
1995.

[7] F.Bonomi, K.W. Fendick, “The Rate-Based Flow Control Framework for The Availble Bit
Rate ATM Service,” IEEE Network, pp. 25-39, March/April 1995.

42

[8] K.J.Astrom, B.Wittenmark, Computer Controlled Systems. Englewood Cliffs, N.J: Prentice
Hall,1990.

[9] Traffic Management Group, “Traffic Management Specifications”, ATM Forum, Version 4.0,
February 1996.

[10] D. Bertsekas, R. Gallager, Data Networks. Prentice-Hall, 1992.

[11] K. Walton, and J. E. Marshall, “Direct Method for TDS Stability Analysis,” Proceedings of
IFFE 134, pp. 101-107.

[12] D. Cavendish, S. Mascolo, M. Gerla, “Rate Based Congestion Control for Multicast ABR
Traffic,” To appear at Globecom96, November 1996, England.

43

