
4OR-Q J Oper Res (2010) 8:331–364
DOI 10.1007/s10288-010-0149-1

INVITED SURVEY

Makespan minimization in online scheduling
with machine eligibility

Kangbok Lee · Joseph Y.-T. Leung ·
Michael L. Pinedo

Received: 18 August 2010 / Revised: 5 November 2010 / Published online: 23 November 2010
© Springer-Verlag 2010

Abstract In this paper we provide a survey of online scheduling in parallel machine
environments with machine eligibility constraints and the makespan as objective func-
tion. We first give a brief overview of the different parallel machine environments
and then survey the various types of machine eligibility constraints, including tree-
hierarchical processing sets, Grade of Service processing sets, interval processing
sets, and nested processing sets. We furthermore describe the relationships between
the various different types of processing sets. We proceed with describing two basic
online scheduling paradigms, namely online over list and online over time. For each
one of the two paradigms we survey all the results that have been recorded in the
literature with regard to each type of machine eligibility constraints. We obtain also
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several extensions in various directions. In the concluding section we describe the
most important open problems in this particular area.

Keywords Parallel machine scheduling · Eligibility constraint · Tree-hierarchical
and GoS processing sets · Interval and nested processing sets · Online and Semi-online
scheduling · Offline scheduling · Makespan · Competitive ratio
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1 Introduction

Parallel machine scheduling has been studied extensively over the last 50 years. The
problem, in general, can be described as follows. A set of n jobs J = {J1, J2, . . . , Jn}
has to be scheduled on m parallel machines M = {M1, M2, . . . , Mm}. Job Ji has a
processing requirement pi , and machine M j operates at a speed vi, j when processing
job Ji . The time it takes for job Ji to be processed by machine M j is pi

vi, j
. If vi, j = 1

for all i and j , then the machines are referred to as identical machines. If vi, j = v j for
all i , then the machines are referred to as uniform machines. Finally, if vi, j is totally
arbitrary, then the machines are referred to as unrelated machines. According to the
3-field notation introduced by Graham et al. (1979), P, Q and R are used to denote
identical, uniform and unrelated machines, respectively. The goal is to schedule these
n jobs on the m machines so as to optimize a given objective function.

Many objective functions have been proposed and studied in the literature. The
common ones include the makespan, the total weighted completion time, the num-
ber of tardy jobs, the maximum weighted tardiness, and the total weighted tardiness.
The makespan is defined as the time it takes to complete all jobs. This will be the
main objective function considered in this paper. According to the 3-field notation
by Graham et al. (1979), the problems are denoted as P || Cmax, Q || Cmax, and
R || Cmax.

In recent years, parallel machine scheduling has been studied under the so-called
machine eligibility constraints. In such a model, job Ji cannot be processed on just any
one of the m machines. Instead, it can only be processed on any machine that belongs
to a specific subset of the m machines, namely subset Mi ⊆ M , which is referred to
as the processing set of job Ji . This problem will be called parallel machine schedul-
ing subject to machine eligibility constraints. The three problems defined above with
machine eligibility constraints will be denoted by P | Mi | Cmax, Q | Mi | Cmax,
and R | Mi | Cmax. Clearly, R | Mi | Cmax is a special case of R || Cmax. It is also
easy to see that P | Mi | Cmax and Q | Mi | Cmax are special cases of R || Cmax,
since we can set vi, j equal to zero if job Ji cannot be processed by machine M j . In the
remainder of this paper, we will only focus on P | Mi | Cmax and Q | Mi | Cmax.
Figure 1 depicts the complexity hierarchy of the machine environments.

In this paper, we discuss online scheduling problem subject to eligibility constraints.
An algorithm for an online problem does not have access to the entire input instance,
unlike algorithms for offline problems which have access to all input information in
advance. Instead, it obtains the input piece by piece, and has to react to new requests
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Fig. 1 The complexity hierarchy of the machine environments

with only a partial knowledge of the input (see Sgall 1998). We deal with two different
online scheduling paradigms, namely online scheduling over list and online scheduling
over time. Under the paradigm of online over list, jobs arrive one by one and each of
them has to be scheduled immediately at its arrival without any information regarding
subsequent jobs. Under the paradigm of online over time, jobs arrive over time and
they can be started either immediately or after some delay without any knowledge
regarding jobs that arrive in the future.

The organization of the paper is as follows. In the next section we will present
the preliminaries regarding eligibility constraints and online scheduling. In Section 3
we review the results regarding online over list and in Section 4 we review the results
regarding online over time. Finally, we point out some open problems for future
research.

2 Preliminaries

2.1 Machine eligibility

The processing set of a job, a non-empty subset of all the machines, may be arbitrary
or may have some structure. Depending upon the structure of the processing sets,
there are four special classes of eligibility constraints that researchers have studied
extensively:

(i) tree-hierarchical processing sets,
(ii) Grade of Service (GoS) processing sets,

(iii) interval processing sets, and
(iv) nested processing sets.

With tree-hierarchical processing sets, each machine is represented by a node, and
the nodes are connected in the form of a rooted tree. Each job is associated with a
machine node and the processing set of a job is the set of machines consisting of the
node and all the nodes that are on the unique path from the associated node to the root
of the tree. Tree-hierarchical processing sets for identical and uniform machines will
be denoted by P | Mi (tree) | Cmax and Q | Mi (tree) | Cmax, respectively. Figure 2
shows an example of tree-hierarchical processing sets. In this example, machine M5
is the root of the tree. Machines M1, M2 and M4 are the leaves of the tree. Jobs J1 and
J2 are associated with the leaf machine M1, and their processing set is {M1, M3, M5}.
Jobs J3 and J4 are associated with the leaf machine M2, and their processing set is
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Fig. 2 Illustrating the
tree-hierarchical processing set:
M1 = M2 = {M1, M3, M5};
M3 = M4 = {M2, M3, M5};
M5 = {M3, M5};
M6 = {M4, M5}

Fig. 3 Illustrating the GoS
processing set: M1 = M2 =
{M1, M2, M3, M4}; M3 =
M4 = M5 = {M3, M4}

{M2, M3, M5}. Job J5 is associated with the machine M3 and its processing set is
{M3, M5}. Finally, J6 is linked to the machine M4, and its processing set is {M4, M5}.

A special case of the tree-hierarchical processing set structure is the so-called Grade
of Service(GoS) processing set structure. With GoS processing sets, the form of the
rooted tree is simply a chain. This eligibility is motivated by the customer differ-
entiation scheme in the service industry in Hwang et al. (2004b). When a service
provider has customers categorized as platinum, gold, silver, and regular members,
with higher-level customers receiving better services, one possible way of providing
such differentiated service is to label servers (i.e., machines) and customers (i.e., jobs)
with prespecified grade of service (GoS) levels and allow a customer to be served
by a server only when the GoS level of the customer is no less than the GoS level
of the server. Thus, when all the machines are linearly ordered according to their
grades, the eligible set of job Ji always can be expressed as {1, 2, . . . , gi }, where gi

is a job-dependent parameter. The problem under GoS eligibility constraints will be
denoted by P | Mi (GoS) | Cmax and Q | Mi (GoS) | Cmax for identical and uniform
machines, respectively. Figure 3 shows an example of GoS processing sets.

With interval processing sets, the machines are linearly ordered, say M1, . . . , Mm .
Associated with each job Ji are two machine indexes, ai and bi . The processing
set of job Ji consists of machines Mai , Mai +1, . . . , Mbi . Interval processing sets for
identical and uniform machines will be denoted by P | Mi (interval) | Cmax and
Q | Mi (interval) | Cmax, respectively. Figure 4 shows an example of an interval
processing set structure. In this example, the processing set of J1 is {M1, M2, M3}, and
the processing set of J4 is {M4, M5}. The processing set of J2 and J3 is {M2, M3, M4}.

A special case of an interval processing set structure is a nested processing set
structure. With nested processing sets, for any pair of jobs Ji and Jk , we either have
Mi ⊆ Mk , or Mk ⊆ Mi , or Mi ∩Mk = ∅. Nested processing sets for identical and
uniform machines will be denoted by P | Mi (nested) | Cmax and Q | Mi (nested) |
Cmax, respectively. Moreover, a special case of a nested processing set structure is a
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Fig. 4 Illustrating the interval
processing set:
M1 = {M1, M2, M3};
M2 = M3 = {M2, M3, M4};
M4 = {M4, M5}

Fig. 5 The complexity hierarchies between different eligibilities

Fig. 6 Incident matrices of illustrating examples in Figs. 2, 3, and 4

GoS processing set structure. Figure 5 depicts the complexity hierarchies between the
different sets of machine eligibility constraints.

We consider a job-machine incident matrix X which is a (n ×m)-matrix and whose
element xi j is 1 if job Ji is eligible to machine M j , 0 otherwise. Thus, each row
represents each job and each column represents each machine. (see Fig. 6).

It may be possible to reorder the columns (rows) such that the ones in every row
(column) are consecutive. Interval eligibility has, by definition, an incident matrix
with consecutive ones in the rows.

Interestingly, the tree-hierarchical eligibility has an incident matrix with consec-
utive one in the columns. To find a proper sequence, (i) we sequence all nodes
according to postorder traversal sequence in depth-first search and (ii) we assign
all jobs to their associated nodes in the sequence. For example, the postorder tra-
versal sequence of nodes is 〈M1, M2, M3, M4, M5〉 and thus, the sequence of jobs is
〈J1, J2, J3, J4, J5, J6〉.

Moreover, we define E j to be the set of jobs that can be processed on machine M j .
This E j satisfies the nested property. Suppose two sets E j and Eh have a nonempty
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intersection. Then, we may assume that machines M j and Mh have a commonly
eligible job Ji . This implies that machines M j and Mh lie on the path from the machine
associated with job Ji to the root of the tree and, thus, one of the two machines is an
ancestor of the other or they are the same. Thus, E j satisfies the nested property.
Furthermore, the intersection of nested processing sets and tree-hierarchical process-
ing sets is exactly GoS eligibility.

Scheduling problems with eligibility constraints occur quite often in practice. In
manufacturing and logistics industry, Glass and Mills (2006) describe an application
of nested processing in the drying stage of a flour mill in the United Kingdom and Ou
et al. (2008) consider cranes with weight limit for loading and unloading cargoes of
a vessel and find that crane restriction of handling each piece of cargo can be mod-
elled into GoS eligibility constraints. In service provision application, Hwang et al.
(2004b) present a differentiation scheme for different grade of service level customers
and Wang and Xing (2010) analyze the worst-case performance for various on-line
service polices. Data processing and transmission in computer science is also a good
example for application of eligibility constraints. Azar et al. (1995) study an online
load balancing with assignment restriction and Bar-Noy et al. (2001) focus on online
load balancing among severs with a specific network topology. More applications can
be found in the survey paper by Leung and Li (2008).

2.2 Offline, online and semi-online scheduling

In the literature researchers have studied the above scheduling problems in offline
settings as well as in online settings. In offline scheduling, the scheduler has perfect
information with regard to the job characteristics, such as arrival times, processing
requirements, and processing sets of jobs. This information is given to the scheduler
before he constructs a schedule. In contrast, in online scheduling, the characteris-
tics of a job are not known to the scheduler before the job’s arrival. However, at its
arrival, all job characteristics become known to the scheduler. This version of online
scheduling is at times also referred to as clairvoyant online scheduling. This is in
contrast to non-clairvoyant online scheduling, where the processing requirement of
a job only becomes known after its processing has been completed. In this paper we
do not consider non-clairvoyant online scheduling. For a general overview of online
scheduling, please see the survey papers of Sgall (1998) and Pruhs et al. (2004). For
more information on online algorithms, the paper of Albers (2003) may be useful.

Two types of online scheduling problems are being considered:

(i) online over list, and
(ii) online over time.

In online over list, the jobs are ordered in some list (sequence) and are given to the
scheduler one at a time according to this list. When a job is given to the scheduler, the
scheduler knows all its characteristics including the processing requirement; he has
to assign it immediately to some machine and some time slot, without being able to
observe the remaining jobs on the list. Any assignment is irrevocable.

In online over time, jobs arrive at arbitrary points in time and the scheduler has no
information regarding the jobs that have not arrived yet. Thus the online feature in this
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case is the lack of information concerning the jobs that arrive in the future. When a job
arrives, the scheduler knows all its characteristics including its processing requirement
and he has the option of scheduling it immediately or postpone its scheduling till some
later point in time.

Throughout the paper, the symbols P | Mi | Cmax and Q | Mi | Cmax will be
used to denote online over list for identical and uniform machines, respectively. We
use the symbols P | ri ,Mi | Cmax and Q | ri ,Mi | Cmax to denote online over time
for identical and uniform machines, respectively.

In addition, researchers have also studied the so-called semi-online problems, where
some partial information regarding the jobs is given to the scheduler before the
scheduler constructs a schedule. Typical examples of partial information provided
include the sum of the processing requirements of all jobs, the maximum process-
ing requirement of the jobs, the optimal objective function value, and any combi-
nations of the previous ones. In this paper we will focus on online and semi-online
algorithms.

When applying preemptive options of offline problems to online problems, we need
some modification. The preemptive option is an assumption that concerns whether a
scheduler is allowed to interrupt the processing of a job at any time point and how to
determine the remaining amount of processing requirement of the interrupted job. The
following are three preemptive options for online problems. However, in online over
list, only the first two options are applicable whereas in online over time, all three are
applicable.

(i) non-preemption – preemption is not allowed.
(ii) preemption—a job can be interrupted and when an interrupted job is afterwards

put back on the machine, it only needs the machine for its remaining processing
requirement.

(iii) restart—a job can be interrupted and when an interrupted job is afterwards put
back on the machine, it needs the machine for its original processing require-
ment.

According to the 3-field notation, the symbol for preemptive option appears in the
second field. For non-preemptive case, no symbol appears while for the preemptive
case and the restart case, pmtn and restart will appear, respectively.

Problems with jobs having identical processing requirements will also be consid-
ered. In online over list problems, jobs do not have release dates. So by scaling the
processing requirements, we may assume that all processing requirements are unity.
Thus, this restriction is denoted by pi = 1 in the second field according to the 3-field
notation. On the other hand, in online over time problems, jobs have release dates.
In such a case, we assume that all release dates have integer values and all jobs have
identical processing requirements. This restriction is denoted by pi = p in the second
field of the 3-field notation. Obviously, a problem with pi = 1 is a special case of a
problem with pi = p, and a problem with pi = p is a special case of a problem with
arbitrary processing requirements.

For semi-online scheduling problems, the partial information also appears in the
second field. When the total processing requirement, the maximum processing require-
ment, and the optimal objective function value are given, semi(sum), semi(max),
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and semi(opt) denote the cases, respectively. If more than one piece of information
is given, then they appear in parentheses followed by semi ; for example
semi(sum, max).

2.3 The scope of the paper

We focus on the theoretical analyses of online scheduling problems and their algo-
rithms. All scheduling problems we consider ask for minimization of some objective
function (performance measure).We use the competitive ratio, ρ, to evaluate the per-
formance of an online algorithm. An online algorithm is ρ-competitive if for each
input instance the objective value of the schedule produced by the algorithm is at most
ρ times larger than the optimal objective value. Competitive ratio is the smallest value
of ρ such that the algorithm is ρ-competitive. The competitive ratio may depend on m.

A lower bound for the competitive ratio of any algorithm for a specific problem
is denoted by L(ρ), i.e., there cannot exist an algorithm better than ρ-competitive. If
algorithm A for a problem has a competitive ratio that matches the lower bound for
that problem, then A is referred to as an optimal algorithm.

There is a useful observation concerning a relationship between problems subject
to eligibility constraints. If all problem instances of problem P1 are also problem
instances of problem P2 and all feasible solutions of problem P1 are also feasible
solutions of problem P2, then we say that problem P1 is a special case of problem P2.
Then,

– the lower bound of the competitive ratio of problem P1 is less than or equal to the
lower bound of the competitive ratio of problem P2 and

– the upper bound of the competitive ratio of problem P1 is less than or equal to the
upper bound of the competitive ratio of problem P2.

Thus, we can make the following observations.

Observation 1 Pm | Mi | Cmax is a special case of Pm + 1 | Mi | Cmax. A problem
instance of Pm | Mi | Cmax can serve as a problem instance of Pm + 1 | Mi | Cmax,
with no jobs eligible to machine Mm+1.

Observation 2 If the eligibility of problem P1 is a special case of the eligibility of
problem P2, problem P1 is a special case of problem P2.

According to our definition, Pm || Cmax is not a special case of Pm + 1 || Cmax.
For online over time, we consider another relationship between the problem with

non-preemptive jobs and the problem with restart jobs. In both cases, the optimal off-
line makespan values are the same. Since a non-preemptive algorithm can function as
an algorithm allowing restarts, we can make the following observation.

Observation 3 The upper bound of the competitive ratio of the problem with non-
preemptive jobs is greater than or equal to the upper bound of the competitive ratio of
the problem with restart jobs.

As stated earlier, we study two streams of online scheduling problems, namely
online over list and online over time. In each stream, we deal with a variety of cases
with different machine environments, different kinds of eligibilities, and different
preemptive options.
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3 Online over list

In this section we consider online scheduling over list. We assume that the machine
environment consists of identical machines, unless stated otherwise. In the next three
subsections, we consider arbitrary eligibility, tree-hierarchical eligibility, and GoS
eligibility. In Sect. 3.4, we consider GoS eligibility with two levels. Finally, in Sect. 3.5,
we consider interval eligibility.

3.1 Arbitrary eligibility

Arbitrary eligibility means that there is no special structure on the processing sets
and each processing set is an arbitrary nonempty subset of the machine set. The first
result in online scheduling subject to arbitrary machine eligibility constraints is due
to Azar et al. (1995). They consider the following list scheduling algorithm known as
AW: when a job arrives the algorithm assigns it to an eligible machine that has the
smallest current load among all eligible machines. They show that this list scheduling
algorithm achieves a competitive ratio not greater than �log2 m� + 1. They also show
that the competitive ratio of any online algorithm is at least �log2(m + 1)�. Thus, this
algorithm is optimal when m is a power of two with a competitive ratio of log2 m + 1.
Hwang et al. (2004a) give an improved analysis of the same algorithm and show
that the competitive ratio is not greater than log2

4m
λ

− 1
λ

, where λ is the number of
machines eligible for processing the job with the latest completion time. When λ = 1,
it becomes log2 m + 1, which is a slightly improved upper bound. Based on the above
results, algorithm AW is known to be optimal when the number of machines, m, is
a power of 2, i.e., m = 2k . However, in other cases, the gap between the best known
competitive ratio and its lower bound can be as large as 1. Lim et al. (2010) construct
a new competitive ratio for algorithm AW and a new lower bound for the competi-
tive ratio of the problem. For the problem with m machines, the proposed competitive
ratio of algorithm AW is 	log2 m
+m/2	log2 m
 and the proposed lower bound for the
competitive ratio, denoted by L B(m), is presented by the following recursive formula:

L B(m) =
{

1 m = 1
L B(γm) + �γm/(m − γm)�−1 m ≥ 2,

where

γm = arg max�m/2�≤i≤m−1

{
L B(i) + �i/(m − i)�−1

}
.

They show that the gap is no more than an irrational number which is approximately
0.1967. Furthermore, they establish optimality for the cases when the number of
machines can be written as a sum of two powers of 2, i.e., m = 2k + 2k′

for k �= k′.
They further analyze the case with seven machines showing that their gap is no more
than 1/180 (≈ 0.00556).

Park et al. (2006) study online and semi-online scheduling on two machines. (Note
that for two machines, arbitrary eligibility is equivalent to nested eligibility.) For
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arbitrary eligibility, the competitive ratio of any online algorithm cannot be more
than 2. This is because the makespan of any schedule cannot be more than the total
processing requirement, which cannot be more than twice the optimal makespan. On
the other hand, the competitive ratio of any online algorithm cannot be less than 2 due
to the following example. Consider two jobs with unit processing requirement. The
first job can be scheduled on both machines, while the second job is only eligible on
the machine to which the first job is assigned. Therefore, any online algorithm would
be an optimal algorithm with a competitive ratio of 2.

This lower bound example also applies to any semi-online problem with partial
information of total processing requirement, the maximum processing requirement,
and the optimal makespan. This idea can be further generalized to the semi-online prob-
lem with an arbitrary number of machines subject to arbitrary processing sets. Azar
et al. (1995) provide a lower bound example for the case with m = 2k machines, where
all processing requirements are unities, and in the optimal schedule each machine pro-
cesses only one job and thus the optimal makespan is a unity. Based on this example,
even if we know the total processing requirement, the maximum processing require-
ment, and even the optimal makespan, such partial information is not helpful to develop
a better algorithm.

In case the number of distinct processing sets is restricted to 2 and the processing
requirements are unity, i.e., P | pi = 1, |{Mi | Ji ∈ J }| = 2 | Cmax, then there is an
optimal online algorithm with a competitive ratio of 1 by Mandelbaum and Shabtay
(2010). However, for the case where there are more than three distinct processing sets
a 1-competitive online algorithm cannot possibly exist.

For the uniform machine case, Lee et al. (2009) consider the problem Q2 | Mi |
Cmax. They assume that v1 = 1 and v2 = s. Since there are only two machines,
by symmetry, we may assume that s > 1. They give an optimal online algorithm,
the so-called High Speed Machine First (HSF) algorithm, with a competitive ratio of
1 + 1/s.

3.2 Tree-hierarchical eligibility

Bar-Noy et al. (2001) consider online scheduling subject to tree-hierarchical eligi-
bility. They present a deterministic (as opposed to a randomized) algorithm with a
4-competitive ratio for equal-processing-requirement jobs, and a 5-competitive algo-
rithm for unequal-processing-requirement jobs. They also show that randomizing
their algorithm improves its competitiveness to e and e + 1 for equal-processing-
requirement and unequal-processing-requirement jobs, respectively, where e is the
base of natural logarithm (e ≈ 2.7183).

3.3 GoS eligibility

Bar-Noy et al. (2001) consider online scheduling subject to GoS eligibility. They
give a deterministic algorithm with a competitive ratio of e and e + 1 for equal-
processing-requirement and unequal-processing-requirement jobs, respectively. More-
over, they show a lower bound of e for the competitive ratio of any online algorithm
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for equal-processing-requirement jobs. However, their upper and lower bounds for
the optimal competitive ratios assume that the number of machines is infinite.
Thus, there are several results with regard to cases that have a specific number of
machines.

Park et al. (2006) and Jiang et al. (2006) independently consider GoS eligibility
with two machines. In both papers, the authors first show that any online algorithm
must have a competitive ratio of at least 5/3 and then present an online algorithm with
a competitive ratio of 5/3. Thus, the algorithm is optimal.

Tan and Zhang (2010b) give a slight improvement of the algorithm of Bar-Noy
et al. (2001). They observe that the algorithm of Bar-Noy et al. (2001) involves first
the use of an LP-program to find a solution for the fractional model (i.e., the model
where a job can be split and assigned to several machines simultaneously), and then a
de-fractionalization of the LP program to obtain a solution for the original problem.
Tan and Zhang (2010b) give a more effective LP algorithm for the fractional model,
with a better competitive ratio than the algorithm of Bar-Noy et al. (2001) for all values
of m. For m = 4 and 5, they present improved algorithms with competitive ratios of
2.333 and 2.610, respectively.

Park et al. (2006) consider a semi-online problem on two machines when the total
processing requirement is given. They first show that any online algorithm must have
a competitive ratio of at least 3/2 and then provide a semi-online algorithm with a
competitive ratio of 3/2, implying the algorithm is in fact optimal.

Wu and Yang (2010) consider two semi-online problems where in the first prob-
lem the optimal makespan is known and in the second problem the largest processing
requirement is known. For the first problem, they first show that any online algorithm
must have a competitive ratio of at least 3/2, and provide an optimal algorithm with a
competitive ratio of 3/2. For the second problem, they first show that any online algo-
rithm must have a competitive ratio of at least (

√
5 + 1)/2, and provide an optimal

algorithm with a competitive ratio of (
√

5 + 1)/2.
Liu et al. (2010) study semi-online scheduling with two machines and the jobs sub-

ject to GoS machine eligibility. Their definition of semi-online scheduling is some-
what different from the earlier definition. Specifically, they study two problems. The
first problem is concerned with bounded processing requirement constraints. That
is, the processing requirement pi of job Ji is bounded by an interval [a, αa] with
α > 1. The second problem assumes that, in addition to the bounded processing
requirement constraints, the total processing requirement of all jobs is known in
advance.

For the first problem, Liu et al. (2010) obtain the following lower bound for the
competitive ratio:

L(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

1+α
2 for 1 < α < 2,

3
2 for 2 ≤ α < 5,

4+α
6 for 5 ≤ α < 6.

(Note that for the case α ≥ 6, Park et al. (2006) had already provided a lower bound
of 5

3 ). They, furthermore, propose an algorithm, the so-called B-ONLINE algorithm,
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with the competitive ratio:

ρ(B-ONLINE)=

⎧⎪⎪⎨
⎪⎪⎩

1+α
2 for 25

14 < α < 2,

3
2 for 2 ≤ α < 5,

4+α
6 for 5 ≤ α < 6 only when the optimal makespan ≥ 20a.

Thus, B-ONLINE is an optimal algorithm in the given range of α. Note that
B-ONLINE is actually a modification of the ONLINE algorithm proposed by Park
et al. (2006), which has a competitive ratio of 5/3. B-ONLINE has the same compet-
itive ratio of 5/3 as ONLINE for α ≥ 6.

For the second problem, Liu et al. (2010) show a lower bound of 1+α
2 for 1 < α < 2.

(Note that for α ≥ 2, Park et al. (2006) had already obtained a lower bound of 3
2 ) They

then propose an algorithm, the so-called B-SUM-ONLINE algorithm, and show that
it has a competitive ratio of 1+α

2 when 1 < α < 2 and the total processing requirement
of all jobs is at least 2αa

α−1 . (Note that B-SUM-ONLINE is actually a modification of
the SEMI-ONLINE algorithm proposed by Park et al. (2006). Both algorithms have
the same competitive ratio of 3/2 for α ≥ 2).

Jiang et al. (2006) consider GoS eligibility with two machines when preemption
is allowed but no idle time between consecutive preempted parts of a job is allowed.
They present an online algorithm with a competitive ratio of 3/2. Furthermore, they
show that 3/2 is a lower bound. Thus, the algorithm is in fact optimal.

Dosa and Epstein (2008) consider problem P3 | Mi (GoS), pmtn | Cmax. They
present a 3

2 -competitive algorithm and show that no online algorithm can have a
competitive ratio better than 3

2 . Thus, their algorithm is optimal for three identical
machines.

Liu et al. (2009) consider problem Q2 | Mi (GoS) | Cmax with the two machines
having different speeds. They provide lower and upper bounds with an algorithm for
the competitive ratio as a function of the ratio of the two speeds. Lee et al. (2009) point
out an error in Liu et al. (2009) and improve both lower and upper bounds. Finally,
Tan and Zhang (2010a) provide an optimal algorithm. They assume that v1 = s and
v2 = 1. Note that s can be either smaller or larger than 1. For 0 < s < 1, they give
an optimal algorithm with a competitive ratio of min {1 + s, 1 + 1+s

1+s+s2 }. For s > 1,

they give an optimal algorithm with a competitive ratio of min {1 + 1
s , 1 + 2s

1+s+s2 }.
Dosa and Epstein (2008) consider problem Q2 | Mi (GoS), pmtn | Cmax. They

consider the two cases: (1) v1 ≥ v2 and (2) v2 ≥ v1. In the first case, they provide a
s(s+1)2

s3+s2+1
-competitive algorithm that is optimal, where s = v1

v2
. In the second case, they

provide a (s+1)2

s2+s+1
-competitive algorithm that is optimal, where s = v2

v1
.

3.4 GoS eligibility with two GoS levels

GoS eligibility with two GoS levels, i.e., a special case of GoS eligibility, implies
that there are two groups of jobs and two groups of machines. Assume that the first
k machines have GoS level 1 and the remaining m − k machines have GoS level 2.
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Each job has GoS level of 1 or 2. Thus, machines with GoS level 1 can process any
job whereas machines with GoS level 2 can only process jobs with GoS level 2. Let
this problem be denoted by P | Mi (2GoS(k)) | Cmax.

Jiang (2008) studies online scheduling on parallel machines with two GoS levels.
He first shows that any online algorithm must have a competitive ratio of at least 2. He
then provides an online algorithm with a competitive ratio of (12 + 4

√
2)/7 ≈ 2.522.

Zhang et al. (2009) also study online scheduling on m machines with two GoS
levels. They propose an improved online algorithm TSL with a competitive ratio of

1 + m2 − m

m2 − km + k2 <
7

3
.

They also present another algorithm SLS with a competitive ratio of

1 + min

{
k − 1

	l0
 ,
m − 1

m − �l0�
}

where l0 = m(k − 1)

m + k − 2
.

Algorithm SLS outperforms algorithm TSL for some pairs of k and m. They study
lower bounds for different pairs of k and m.

When the processing requirement is restricted to one, we can apply the result by
Mandelbaum and Shabtay (2010). They prove that the problem with only two differ-
ent processing sets has a 1-competitive algorithm. Thus, P | Mi (2GoS(k)), pi = 1 |
Cmax also has a 1-competitive algorithm.

3.5 Interval eligibility

Bar-Noy et al. (2001) consider online scheduling with interval eligibility. They provide
a lower bound of �(log m) for any online algorithm. More precisely, they provide a
problem instance with a completion time that is at least 1

2 log2 m times the optimal
makespan when the number of machines is a power of two. The algorithm of Azar
et al. (1995) implies that the competitive ratio of an optimal algorithm for interval
eligibility lies in

[ 1
2 log2 m, 1 + log2 m

]
.

4 Online over time

This section deals with online parallel machine scheduling with jobs arriving over
time and all the information regarding a job being revealed only upon its arrival. For
job Ji , its release date is denoted by ri . In the schedule, Si and Ci denote the starting
time and completion time of job Ji , respectively. Let Cmax(π) and Cmax(σ ) denote
the optimal makespan and the makespan of the schedule in the context, respectively.

We discuss in Sect. 4.1 the algorithms and lower bounds for problems in which the
makespan has to be minimized. Online service scheduling, which is a variant of online
scheduling over time, is discussed in Sect. 4.2. In Sect. 4.3, we consider results with
regard to the total weighted completion time objective and related problems.
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4.1 Makespan

First we consider results with regard to online scheduling problems over time with the
makespan objective and no eligibility constraints. For the identical machine environ-
ment, P | ri | Cmax, with preemption not being allowed, Chen and Vestjens (1997)
prove that LPT has a 1.5-competitive ratio. They also provide lower bounds of 1.3473
and 1.3820 for the problems with m and two machines, respectively. Noga and Seiden
(2001) prove that 1.3820 is the best competitive ratio for problem P2 | ri | Cmax by
giving an optimum algorithm. When preemption is allowed, Hong and Leung (1992)
provide a polynomial time algorithm for problem P | ri , pmtn | Cmax with a com-
petitive ratio of 1. Thus, their algorithm is optimal.

Surprisingly, there are very few results concerning online scheduling subject to
eligibility constraints with the makespan as objective when jobs arrive over time. Lee
et al. (2010a) solve two problems concerning online scheduling of equal-length jobs on
two machines subject to arbitrary eligibility constraints and GoS eligibility constraints,
i.e., P2 | ri ,Mi , pi = p | Cmax and P2 | ri ,Mi (GoS), pi = p | Cmax. They devise
optimal algorithms for both problems and the competitive ratios are (1 + √

5)/2 and√
2, respectively.
There is an important study of online scheduling problems in connection with off-

line scheduling problems by Shmoys et al. (1995). They state and prove the following
theorem, which provides general upper bounds of our problems.

Theorem 1 Let A be a polynomial-time algorithm that is applicable in an environ-
ment where each job is available at time 0 and that always generates a schedule of
a length of at most ρCmax(π). For the analogous environment in which the existence
of a job only becomes known upon its release date, there exists another polynomial-
time algorithm A′ that is applicable in this more general setting and that generates a
schedule of a length of at most 2ρCmax(π).

Proof By Shmoys et al. (1995). Let I be an instance that includes jobs with unknown
release dates and let J 0 be the set of jobs available at time 0. The scheduler applies
algorithm A and schedules the jobs in J 0, finishing at time f0. Let J 1 be the set of jobs
released in the time interval (0, f0]. The scheduler now, at time f0, applies algorithm
A to schedule J 1, finishing at time f1. In general, let J i+1 be the set of jobs released
in the time interval ( fi−1, fi ], and let fi be the point in time when the schedule for J i

completes. At time fi , the scheduler uses algorithm A to schedule the jobs in J i+1.
Let fk be the finishing time of the entire schedule.

To analyze the length of the resulting schedule, consider the modified problem
instance I ′ in which jobs in J k are released at time fk−2. Since these jobs are released
in I ′ at an earlier point in time than in I, it follows that Cmax(π(I ′)) ≤ Cmax(π(I)),
where π(I ′) and π(I) are optimal schedules for instances I ′ and I, respectively.

Now note that fk−2 + fk − fk−1 ≤ ρCmax(π(I ′)), since the jobs in J k are not
released until fk−2 and the properties of algorithm A guarantee that fk − fk−1 is within
a factor ρ of the shortest schedule for J k . Similarly, fk−1 − fk−2 ≤ ρCmax(π(I ′)).
Therefore, fk ≤ 2ρCmax(π(I ′)) ≤ 2ρCmax(π(I)). ��

This theorem says that either an optimal or an approximation algorithm for off-
line problems can be used to develop an online algorithm for the problem where jobs
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arrive over time. Thus, we need to find optimal and approximation algorithms for off-
line problems. For the offline problem P | Mi | Cmax, Lenstra et al. (1990) provide a
2-approximation algorithm utilizing a linear programming and a rounding technique.
Shchepin and Vakhania (2005) improve the worst case performance bound to 2 − 1

m
using an optimal rounding, where m is the number of machines. For offline problems
P | Mi , ri , pi = p | Cmax and Q | Mi , ri , pi = p | Cmax, Lee et al. (2010a)
have provided optimal algorithms that run in polynomial time. For offline problem
P | Mi , pmtn | Cmax, Lawler and Labetoulle (1978) prove that it can be solved
optimally in polynomial time.

Furthermore, offline problems P | Mi (GoS) | Cmax and P | Mi (nested) | Cmax
have PTASs that are proposed by Ou et al. (2008) and Muratore et al. (2010), respec-
tively. While the PTASs have very high running times, there are faster approximation
algorithms with constant worst-case bounds for P | Mi (GoS) | Cmax proposed by
Ou et al. (2008) and for P | Mi (nested) | Cmax proposed by Huo and Leung (2010a),
Huo and Leung (2010b). The offline problem P | Mi (tree) | Cmax has a 4/3-approx-
imation algorithm that runs in polynomial time by Huo and Leung (2010b). Therefore,
based on Theorem 1, we can obtain several corollaries concerning the upper bounds
of the competitive ratio.

Corollary 1

(i) The online scheduling problem P | ri ,Mi | Cmax has a (4 − 2
m )-competitive

polynomial time algorithm.
(ii) The online scheduling problem P | ri ,Mi , pi = p | Cmax has a 2-competitive

polynomial time algorithm.
(iii) The online scheduling problem Q | ri ,Mi , pi = p | Cmax has a 2-competitive

polynomial time algorithm.
(iv) The online scheduling problem P | ri ,Mi , pmtn | Cmax has a 2-competitive

polynomial time algorithm.
(v) The online scheduling problem P | ri ,Mi (GoS) | Cmax has a (2 + ε)-com-

petitive polynomial time algorithm for any constant ε.
(vi) The online scheduling problem P | ri ,Mi (nested) | Cmax has a (2 + ε)-com-

petitive polynomial time algorithm for any constant ε.
(vii) The online scheduling problem P | ri ,Mi (tree) | Cmax has a (8/3)

-competitive polynomial time algorithm.

Similar to Theorem 1, we have a theorem and a subsequent corollary for the restart
case.

Theorem 2 Let A be a polynomial-time algorithm that is applicable in an environ-
ment where each job is available at time 0 and that always generates a schedule of
length at most ρCmax(π). For the analogous environment in which the existence of
a job only becomes known upon its release date, there exists another polynomial-
time algorithm A′ that is applicable in this more general setting and that generates a
schedule of length at most (1 + ρ)Cmax(π).

Proof Let I be an instance including jobs with unknown release dates and let J 0 be the
set of jobs available at time 0. Then the scheduler applies algorithm A and schedules
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the jobs in J 0. Before completing all jobs in J 0, if the first arrival of a job or group of
jobs occurs at time f0, we restart running all jobs at time f0. Let J 1 be the set of jobs
released or restarted at time f0. The scheduler now, at time f0, applies algorithm A to
the set of jobs J 1. In general let J i+1 be the set of jobs released or restarted at time
fi . At time fi , the scheduler uses algorithm A to schedule the jobs in J i+1. Let the
last arrival time of jobs be tk−1 and let F be the finishing time of the entire schedule.

To analyze the length of the resulting schedule, consider the modified problem
instance I ′ where jobs in J k are released or restarted at time fk−1. Since J k ⊂ ∪i=k

i=0 J i ,
we have Cmax(π(I ′)) ≤ Cmax(π(I)), where π(I ′) and π(I) are optimal schedules for
instances I ′ and I, respectively. Also, since there is at least one job that is released at
time fk−1 in I ′, we have fk−1 ≤ Cmax(π(I)).

Now consider another problem instance I ′′ that contains only jobs in J k which are
released at time zero and has an optimal makespan of Cmax(π(I ′′)). Since algorithm
A guarantees the worst case performance ratio of ρ,

F − fk−1 ≤ ρCmax(π(I ′′)) ≤ ρCmax(π(I ′)) ≤ ρCmax(π(I)).

Therefore, F ≤ (1 + ρ)Cmax(π(I)). ��
Corollary 2 (i) The online scheduling problem P | ri ,Mi , restart | Cmax has a

(3 − 1
m )-competitive polynomial time algorithm.

(ii) The online scheduling problem P | ri ,Mi , pi = p, restart | Cmax has a
2-competitive polynomial time algorithm.

(iii) The online scheduling problem Q | ri ,Mi , pi = p, restart | Cmax has a
2-competitive polynomial time algorithm.

(iv) The online scheduling problem P |ri ,Mi (GoS), , restart | Cmax has a (2+ε)-
competitive polynomial time algorithm for any constant ε.

(v) The online scheduling problem P |ri ,Mi (nested), restart | Cmax has a (2 +
ε)-competitive polynomial time algorithm for any constant ε.

(vi) The online scheduling problem P | ri ,Mi (tree), restart | Cmax has a (7/3)-
competitive polynomial time algorithm.

Before investigating the problems subject to eligibility constraints, we provide a
lower bound for the problem without eligibility constraints when restarts are allowed.
Shmoys et al. (1995) show that 10/9 = 1.111…is a lower bound for the competitive
ratio of P | ri , restart | Cmax. We present here a higher lower bound.

Lemma 1 Any online algorithm for P | ri , restart | Cmax has a competitive ratio at
least

√
6/2 ≈ 1.2247.

Proof We show this result by a set of adversary arguments. Recall that m is the number
of machines and we may assume that m ≥ 2.

Let m = 2k (2k +1) for m even (odd) and k be a positive integer. At time t = 0, 2k
(2k +1) jobs with processing requirement 1 arrive. These jobs are jobs of type 1. Since
this model admits restarts, we do not have to consider any delay. Thus, all type 1 jobs
start at time t = 0. At time t = 3 − √

6, k jobs arrive with processing requirement√
6 − 1. These jobs are jobs of type 2.
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We first consider the case where at least one type 2 job starts at time 1. It implies
Cmax(σ ) ≥ 1+(

√
6−1) = √

6. In the current optimal schedule, k type 1 jobs processed
on the first k machines are interrupted and restarted on the other k machines at time 1
while all type 2 jobs start at their arrival time on the machines where the interrupted
jobs were processed, implying Cmax(π) = 2. Thus, Cmax(σ )/Cmax(π) ≥ √

6/2.
Otherwise, all k type 2 jobs start at their arrival time implying that k type 1 jobs

have to restart. Then k new jobs with processing requirement
√

6 − 1 arrive at time 1.
Then, we have Cmax(σ ) ≥ (3 − √

6) + (
√

6 − 1) + 1 = 3. In an optimal schedule,
all type 1 jobs start at time 0 and all jobs with processing requirement

√
6 − 1 start at

time 1, implying Cmax(π) = √
6. Thus, Cmax(σ )/Cmax(π) = 3/

√
6 ≥ √

6/2. ��
Note that this example works when m = 2. Thus, any online algorithm for

P2 | ri , restart | Cmax has a competitive ratio of at least
√

6/2.

Lemma 2 Any online algorithm for Pm | ri ,Mi , pmtn | Cmax has a competitive
ratio at least 1 + (m−1)(m−2)

2m(2m−3)
for m ≥ 3.

Proof We show this result by describing a class of adversary examples.
If a job is eligible only to machines Mk and Mm for k ≤ m − 1, then we call this

job a job of type k. If a job is eligible to all machines, then we call this job a job of
type m. At time zero, two jobs with processing requirement 1 arrive for each type
k, 1 ≤ k ≤ m − 1; one type m job arrives with processing requirement 2. Note that in
the current optimum schedule jobs of type k are scheduled on machine Mk, k ≤ m−1,
and the job of type m is scheduled on machine Mm , implying that the optimal makespan
is exactly 2.

Let qk be the total amount of processing of the jobs of type k until time t = 1 for
all 1 ≤ k ≤ m.

If there exists a type k job such that qk ≤ 2m2−2m−2
2m2−3m

for 1 ≤ k ≤ m − 1, then the
remaining amount of processing requirement of the type k jobs at time t = 1 is greater
than or equal to

2 − 2m2 − 2m − 2

2m2 − 3m
= 2(m − 1)2

2m2 − 3m
.

Two jobs arrive at time t = 1 such that they have processing requirement of m/(m −2)

and they are eligible to machines Mk and Mm . We refer to them as type m + 1 jobs.
Since the remaining amount of type k and type m + 1 jobs must be processed on
machine Mk or Mm , the completion time on machine Mk or Mm is at least

1 + 1

2

2(m − 1)2

2m2 − 3m
+ m

m − 2
=

(
1 + m

m − 2

)
+ (m − 1)2

m(2m − 3)
.

Furthermore, in the current optimal schedule,

1. Two jobs of type k are processed on machines Mk and Mm from time 0 to time 1,
2. Two jobs of type m +1 are processed on machine Mk and Mm from time 1 to time

1 + m/(m − 2),
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3. All jobs of type τ , for τ �= k and τ �= m are scheduled on machine Mτ , and
4. The job of type m is processed on all machines except machines Mk and Mm with

a processing amount of 2/(m − 2) in each machine.

Thus, the current optimal makespan is

Cmax(π) = 1 + m

m − 2
.

Thus,

Cmax(σ )

Cmax(π)
≥ 1 +

(m−1)2

m(2m−3)

2(m−1)
m−2

= 1 + (m − 1)(m − 2)

2m(2m − 3)
.

Otherwise, qk > 2m2−2m−2
2m2−3m

for all 1 ≤ k ≤ m − 1. Since
∑m

k=1 qk ≤ m, the
remaining processing requirement of type m job is

2 − qm > 2 −
(

m − (m − 1)
2m2 − 2m − 2

2m2 − 3m

)
= 1 + (m − 1)(m − 2)

m(2m − 3)
.

If no jobs arrive later, then Cmax(σ ) ≥ 1+1+ (m−1)(m−2)
m(2m−3)

and since Cmax(π) = 2,

Cmax(σ )

Cmax(π)
≥ 1 + (m − 1)(m − 2)

2m(2m − 3)
.

��
Corollary 3 Any online algorithm for P | ri ,Mi , pmtn | Cmax has a competitive
ratio at least 5/4.

Proof Since limm→∞ 1 + (m−1)(m−2)
2m(2m−3)

= 5/4, as m goes to infinity, the lower bound
approaches 5/4. ��

When the eligibility is restricted to the nested one, we have a different lower bound.

Lemma 3 Any online algorithm for Pm | ri ,Mi (nested), pmtn | Cmax has a com-
petitive ratio at least 1 + 1/8 = 1.125 for m = 2 and 1 + 4/27 ≈ 1.148 for m ≥ 3.

Proof At time t = 0, m+1 jobs J1, . . . , Jm+1 arrive with pi = 1 for i = 1, . . . , m and
pm+1 = m/(m −1), Mi = {Mi } for i = 1, . . . , m and Mm+1 = {M1, . . . , Mm}. Let
qi be the remaining processing requirement of job Ji at time 1. Obviously,

∑m+1
i=1 qi ≥

m/(m − 1).
If qi ≥ m2−m+1

m3 for some i , i ∈ {1, . . . , m}, then job Jm+2 arrives with

pm+2 = m/(m − 1)2 and Mm+2 = {Mi }. The makespan of the schedule is at least
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1 + qi + m/(m − 1)2 while the current optimal makespan is 1 + m/(m − 1)2. Thus,
the competitive ratio is at least

1 + qi

1 + m/(m − 1)2 ≥ 1 +
m2−m+1

m3

m2−m+1
(m−1)2

= 1 + (m − 1)2

m3 .

Otherwise, qi < m2−m+1
m3 for all i, i = 1, . . . , m implying qm+1 ≥ m/(m − 1) −

m2−m+1
m2 . The makespan of the schedule is at least 1 + qm+1 while the current optimal

makespan is 1 + 1/(m − 1). Thus, the competitive ratio is at least

1 + qm+1

1 + 1/(m − 1)
≥ 1 + 1

m−1 + m−1
m2

1 + 1
m−1

= 1 + (m − 1)2

m3 .

For m = 2, the proposed lower bound is 1+1/8. For m ≥ 3, 1 + (m−1)2

m3 has
the maximum value of 1+4/27 at m = 3. By Observation 1, for m ≥ 3, Pm |
ri ,Mi (nested), pmtn | Cmax has a lower bound of 1+4/27. ��

Note that this lower bound is better than the lower bound in Lemma 2 for arbitrary
eligibility at m = 3. Thus, by Observation 2, P3 | ri ,Mi , pmtn | Cmax also has a
lower bound of 1+4/27.

Lemma 4 Any online algorithm for P | ri ,Mi (GoS), pmtn | Cmax has a competi-

tive ratio at least 1 + φ5 ≈ 1.0917, where φ =
√

5−1
2 .

Proof Assume that there are positive integers r and k satisfying 1 < r < k < m
and k ≤ 2r . At time zero, there are 2r jobs with processing requirement 1. They are
eligible to machines M1, M2, . . . , Mk . We refer to these jobs as jobs of type 1. At time
zero, there are also m − r jobs with processing requirement 2 that are eligible to all
machines. We refer to these jobs as jobs of type 2. Note that in the current optimal
schedule all the jobs of type 1 are scheduled on the first r machines and all the jobs of
type 2 are scheduled on the remaining machines, implying that the current optimum
makespan, Cmax(π), is 2. Let Q be the amount of processing of type 2 jobs in machines
M1, M2, . . . , Mk at time t = 2r

k ≥ 1.

If Q ≤ 2r(k−r)
m , then the average remaining processing requirement of type 2 jobs

must be at least 2− 2r
k (m−k)+Q

m−r . It implies that there exists a type 2 job with a remaining

processing requirement at least 2 − 2r
k (m−k)+Q

m−r at time t = 2r
k . So, if no other job

arrives, Cmax(σ ) ≥ 2r
k + 2 − 2r

k (m−k)+Q
m−r . Thus,

Cmax(σ )

Cmax(π)
≥

2r
k + 2 − 2r

k (m−k)+Q
m−r

2
≥ 1 + r(k − r)(m − k)

km(m − r)
.

Otherwise, k jobs arrive at time 2r
k with a processing requirement of 2(m−r)

m−k − 2r
k .

They are eligible to machines M1, M2, . . . , Mk and we refer to them as type 3 jobs.
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In an optimum schedule, all type 2 jobs must be processed on machines Mk+1 to Mm

and type 1 and type 3 jobs must be processed on machines M1 to Mk , implying that
the optimal makespan is Cmax(π) = 2(m−r)

m−k . Since Q >
2r(k−r)

m , the total remaining

processing requirement of type 1 jobs at time 2r
k , to be processed on machines M1 to

Mk , is at least 2r(k−r)
m . All type 3 jobs must also be processed on machines M1 to Mk .

Thus,

Cmax(σ ) ≥ 2r

k
+ 2r(k − r)

km
+

(
2(m − r)

m − k
− 2r

k

)
= 2r(k − r)

km
+ 2(m − r)

m − k
.

Therefore,

Cmax(σ )

Cmax(π)
≥ 1 +

2r(k−r)
km

2(m−r)
m−k

= 1 + r(k − r)(m − k)

km(m − r)
.

In order to maximize the lower bound of the competitive ratio, we set k = φm

and r = (1 − φ)m for large m, where φ =
√

5−1
2 . The competitive ratio is then

1 + φ5 ≈ 1.0917. ��
The table below contains lower bounds for different values of m. Even for m = 3,

there exists a lower bound example with a bound of 13/12 ≈ 1.0833.

m r k Lower bound
3 1 2 1.08333
5 2 3 1.08889
8 3 5 1.09000
13 5 8 1.09014
21 8 13 1.09017

We can consider an interesting problem that is related to this problem. We want to
find three positive integers a, b and c that maximize the value of abc

(a+b)(b+c)(a+b+c) .
By setting r = a, k = a + b, and m = a + b + c, this problem is directly related
to the problem of finding an asymptotic lower bound for the competitive ratio of our
problem. Thus, the value of this formula is also bounded by φ5.

In the above lower bound example, there are only two different kinds of processing
sets. Thus, this example can serve a lower bound example for GoS eligibility with two
GoS levels.

Corollary 4 Any online algorithm for P | ri ,Mi (2GoS(k)), pmtn | Cmax has a

competitive ratio at least 1 + φ5 ≈ 1.0917, where φ =
√

5−1
2 .

Now we restrict ourselves to the case of two machines.

Lemma 5 The lower bound of the competitive ratio of online scheduling problems
with two machines subject to eligibility constraints are as follows:
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(i) Any online algorithm for P2 | ri ,Mi | Cmax has a competitive ratio at least 2.
(ii) Any online algorithm for P2 | ri ,Mi , restart | Cmax has a competitive ratio

at least 1.5687.

Proof We prove lower bounds of the competitive ratio in each problem by an adversary
argument.

(i) At time t = 0, job J1 arrives with p1 = 1 and M1 = {M1, M2}. By a symmetry
of machines, we may assume that job J1 is assigned to machine M1 at time S1. If
S1 ≥ 1, then no job arrives later. Then Cmax(σ )/Cmax(π) ≥ 2. Otherwise, job J2
arrives with p2 = 1 − S1 and M2 = {M1} at time t = S1 + ε. Then the comple-
tion time of job J2 is S1 + 1 + (1 − S1) = 2. In this case the optimum makespan is
1 + ε. Thus, Cmax(σ )/Cmax(π) = 2/(1 + ε). When ε goes to 0, the competitive ratio
approaches 2.

(i i) At time t = 0, job J1 arrives with p1 = 1 and M1 = {M1, M2}. Since this
model admits restarts and machines M1 and M2 have a symmetry, without loss of
generality, we may assume that job J1 is assigned to machine M1 at time t = 0. Job
J2 with p2 = 0.1374 and M2 = {M1} arrives at time r2 = 0.4312.

If we assign job J2 to machine M1 at its arrival time and job J1 restarts at machine
M2, then we get job J3 with p3 = 0.3531 and M3 = {M2} at time r3 = 0.7844.
In the current optimal schedule, job J1 is processed on machine M1 from time 0 to
time 1, job J2 is processed on machine M1 from time 1 to time 1 + p2, and job J3
is processed on machine M2 from time r3 to time r3 + p3, implying that the current
optimum makespan is Cmax(π) = max{1 + p2, r3 + p3} = 1.1375. If restart occurs,
the makespan generated by the algorithm is at least r3 + 1 = 1.7844. Otherwise, the
makespan by the algorithm is at least r2 + 1 + p3 = 1.7844. Thus, in both cases,
Cmax(σ )/Cmax(π) ≥ 1.5687.

If we continue processing job J1 instead of job J2’s start, then job J3 arrives with
p3 = 0.4313 and M3 = {M1} at time r3 = 0.5687. In the current optimal schedule,
job J1 is processed on machine M2 from time 0 to time 1, job J2 is processed on
machine M1 from time r2 to time r2 + p2, and job J3 is processed on machine M1
from time r3 to time r3+ p3 = 1.0, implying that the current optimum makespan is 1. If
the restart of job J1 occurs, the makespan by the algorithm is at least r3 +1 = 1.5687.
Otherwise, the makespan generated by the algorithm is at least p1+ p2+ p3 = 1.5687.
Thus, Cmax(σ )/Cmax(π) ≥ 1.5687 in both cases. ��
Theorem 3 Any online algorithm without delay for P2 | ri ,Mi | Cmax is optimal
with a competitive ratio of 2.

Proof Consider an online algorithm not allowing delay. Then the makespan by the
algorithm is at most

∑
Ji ∈J pi . Since the optimal makespan is at least

∑
Ji ∈J pi/2,

Lemma 5 (i) completes the proof. ��
Note that we have already proved that any online algorithm for P2 | ri ,Mi , pmtn |

Cmax has a competitive ratio of at least 1 + 1/8 = 1.125 in Lemma 3.

Lemma 6 The lower bounds of the competitive ratios of two machine scheduling
problems subject to GoS eligibility constraints are the following:
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(i) Any online algorithm for P2 | ri ,Mi (GoS) | Cmax has a competitive ratio at
least 1 + λ ≈ 1.5550, where λ is a solution of λ3 − 2λ2 − λ + 1 = 0 in the
range (0.5, 0.6).

(ii) Any online algorithm for P2 | ri ,Mi (GoS), restart | Cmax has a competitive
ratio at least 4/3.

Proof We show these results through a class of adversary examples.
(i) At time t = 0, job J1 arrives with p1 = 1 and M1 = {M1, M2}. If job J1 is

assigned to machine M1, the competitive ratio can be up to 2 by using the lower bound
example of P2 | ri ,Mi | Cmax. Thus, we assume that job J1 is assigned to machine
M2 at time S1. Note that the current optimal makespan is 1. If S1 ≥ 0.5550, then no
additional job arrives and Cmax(σ )/Cmax(π) ≥ 1.5550.

Now we consider the case of S1 < 0.5550. Job J2 arrives at time r2 = S1 with
p2 = 1.2470 and M2 = {M1, M2}. If the starting time of job J2, S2, is greater than
or equal to S1 + 1 then Cmax(σ ) = S2 + p2 ≥ S1 + 1 + p2. In the current optimal
schedule job J1 is processed on machine M2 and job J2 is processed on machine M1,
implying that Cmax(π) = r2 + p2 = S1 + p2. Thus, we have

Cmax(σ )

Cmax(π)
≥ S1 + 1 + p2

S1 + p2
= 1 + 1

S1 + p2
≥ 1.5550.

Otherwise, S2 < S1 + 1 implying that job J2 must be assigned to machine M1. Then
job J3 arrives at time r3 = S2 with p3 = 1+ p2 − S2 and M3 = {M1}. So, Cmax(σ ) =
S2 + p2 + (1 + p2 − S2) = 1 + 2p2. In the current optimal schedule, jobs 1 and 2 are
processed on machine M2 while job J3 starts on machine M1 at its arrival time, imply-
ing that the current optimal makespan is Cmax(π) = max{1 + p2, r3 + p3} = 1 + p2.
Thus,

Cmax(σ )

Cmax(π)
≥ 1 + 2p2

1 + p2
= 1 + p2

1 + p2
= 1.5550.

(i i) At time t = 0, two jobs, job J1 with p1 = 1, and M1 = {M1, M2} and job J2
with p2 = 2 and M2 = {M1, M2} arrive. Then the current optimal makespan is 2.

Consider the status of job J2 at time 1. If job J2 is not running on either machine M1
or machine M2 at time 1, job J2 must start (or restart) after time 1 and be completed
after time 3. It means that Cmax(σ )/Cmax(π) ≥ 3/2 > 4/3. If job J2 is running on
machine M1 at time 1, then job J3 arrives with p3 = 1 and M3 = {M1}. In the current
optimal schedule, jobs J1 and J3 start on machine M1 at their arrival times and job J2
starts on machine M2 at time 0, implying that Cmax(π) = 2. If job J2 restarts, then
Cmax(σ ) ≥ 3. Otherwise job J3 can start after job J2 and it implies Cmax(σ ) ≥ 3.
Thus, Cmax(σ )/Cmax(π) ≥ 3/2 > 4/3.

Now consider the case where job J2 is running on machine M2 at time 1. Then job
J3 arrives with p3 = 2 and M3 = {M1, M2}. Consider the status of machine M1 at
time t = 2.

Case 1 If job J3 is running on machine M1, then job J4 arrives at time t = 2 with
p4 = 1 and M4 = {M1}. In the current optimal schedule, jobs J1 and J3 start on
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machine M2 at their arrival times and jobs J2 and J4 start on machine M1 at their arrival
times, implying that Cmax(π) = 3. If job J3 restarts then Cmax(σ ) ≥ 4. Otherwise job
J4 can start after job J3 and it implies Cmax(σ ) ≥ 4. Thus, Cmax(σ )/Cmax(π) ≥ 4/3
in both cases.
Case 2 If job J2 is running on machine M1, this implies that job J2 restarts after time
t = 1. Note that job J2 was running on machine M2 at time t = 1. Then, job J4 arrives
at time t = 2 with p4 = 1 and M4 = {M1}. In the current optimal schedule, jobs J1
and J3 start on machine M2 at their arrival times and jobs J2 and J4 start on machine
M1 at their arrival times, implying that Cmax(π) = 3. Since jobs J2 and J3 start after
time t = 1, Cmax(σ ) ≥ 4. Thus, Cmax(σ )/Cmax(π) ≥ 4/3.
Case 3 If no jobs are running on machine M1, then there are two possibilities. If job
J3 is running on machine M2 at time t = 2, this implies that job J2 restarts after time
t = 1. By the same argument as in Case 2, Cmax(σ )/Cmax(π) ≥ 4/3. Otherwise,
job J3 must start (or restart) after time t = 2. Then no more jobs arrive later and
Cmax(σ )/Cmax(π) ≥ 4/3. ��

Now we consider online problem P2 | ri ,Mi (GoS), pmtn | Cmax and its opti-
mal algorithm. First we consider an offline algorithm for offline problem P2 |
Mi (GoS), pmtn | Cmax. Let L j denote the total processing requirement of the jobs
whose grade are j , i.e. L j = ∑

i :gi = j pi . Let pmax denote the largest processing
requirement of all jobs, i.e., pmax = maxi∈J {pi }. Then L = max{pmax, L1, (L1 +
L2)/2} is the optimal makespan. An optimal schedule is constructed in the following
way: (1) schedule all jobs with grade 1 on machine M1 contiguously from time zero
to time L1; (2) schedule jobs with grade 2 on machine M1 from time L1 to L without
idle times and a running job at time L is preempted; (3) schedule the remaining jobs
(with grade 2) on machine M2 from time 0. In other words, we assign the least flexible
jobs first and then apply McNaughton rule (1959) to the most flexible jobs. Let this
algorithm be called LF–Mc. For online problem P2 | ri ,Mi (GoS), pmtn | Cmax,
we devise an algorithm using algorithm LF–Mc as a submodule.

Let J 0 be the set of jobs available at time 0. The scheduler applies algorithm LF–
Mc and schedules the jobs in J 0, finishing at time f0. The next arrival of a group of
jobs occurs at time a1. If a1 ≥ f0, then the previous jobs are completed at time f0 or
before. Otherwise, if a1 < f0, the scheduler immediately preempts all running jobs.
Let J 1 be the set of jobs to be scheduled at time a1 which consists of jobs released
at time a1, the unscheduled jobs and preempted jobs. The scheduler now, at time a1,
applies algorithm LF–Mc to schedule jobs in J 1, starting at time a1 and finishing at
time f1. The next arrival of a group of jobs occurs at time a2. In general, let J i be the
set of jobs that are to be scheduled at time ai . At time ai , the scheduler uses algorithm
LF–Mc to schedule the jobs in J i from time ai . Let fi be the point in time when the
schedule for J i completes. Let this online algorithm be called algorithm on-LF–Mc.
We can easily observe that the schedule generated by algorithm on-LF–Mc processes
jobs with grade 1 as much as possible at any time point among all feasible schedules.

Theorem 4 Algorithm on-LF–Mc for P2 | ri ,Mi (GoS), pmtn | Cmax has the opti-
mal competitive ratio of 1.

Proof We prove the theorem by contradiction. Let ah be the last arrival time. Suppose
the thesis is not true. Then, there must be a problem instance, called a counterexample,
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with which algorithm on-LF–Mc does not construct an optimal schedule. If there exists
a counterexample, there must be a counterexample with the minimum number of dis-
tinct arrival times, called a minimum counterexample. Among all minimum counte-
rexamples, there exists a minimum counterexample without idle time period before
ah . If there exists an idle time period in [ aν, aν+1 ], then we can add a job such that its
processing requirement is the same as the length of the idle time period, it is released at
time aν and it is eligible to both machines. This addition does not increase the number
of distinct arrival times. From now on, we only consider a minimum counterexample
without idle times before time ah .

For the case with h = 0, the theorem holds since algorithm LF–Mc is optimal for
the offline problem. By definition of the minimum counterexample, for ν ≤ h − 1,
all jobs that are released at time aν or before are scheduled optimally. In other words,
when we only consider jobs that arrive at time aν or before, the current optimal make-
span is fν . In case ah ≥ fh−1, it is easy to show that the schedule by on-LF-MC is
optimal. Thus, we consider the case for ah < fh−1. For convenience, let Lh, ph

max, Lh
1

and Lh
2 denote L , pmax, L1 and L2 with set J h , respectively.

We consider three possible cases of the schedule on fh . Obviously fh = ah + Lh .

Case 1 Suppose that fh = ah + ph
max. If a job with processing requirement of pmax

arrives at time ah , then the optimal makespan is at least ah + ph
max. Otherwise, if the

job arrives before time ah , then in the previous schedule at time ah its remaining pro-
cessing requirement is ph

max, implying that fh−1 = fh . Since the optimal makespan
is at least fh−1, the schedule is optimal, which is a contradiction.
Case 2 Suppose that fh = ah + Lh

1. Algorithm on-LF–Mc processes jobs with grade
1 as much as possible up to time ah and thus ah + Lh

1 is the lower bound of the optimal
makespan. Thus, it is a contradiction.
Case 3 Suppose that fh = ah +(Lh

1 + Lh
2)/2. Since there are no idle times before time

ah , the total processing requirement is 2ah + (Lh
1 + Lh

2), implying that the optimal
makespan is at least ah + (Lh

1 + Lh
2)/2. Thus, fh is the optimal makespan, which is

a contradiction. ��

Table 2 summarizes the results on competitive ratios and their lower bounds of the
problems under consideration.

4.2 Online service scheduling

Online service scheduling was first introduced by Wang et al. (2009). In online sched-
uling over time, we have a pool of unscheduled jobs and we may select a job among
the pool to assign to an idle machine. The pool of unscheduled jobs changes over time
according to the assignment of jobs and the arrival of new jobs. Customers (jobs) are
classified as either ‘ordinary’ or ‘special’. Ordinary customers can be served on any
service facility (machines), while special customers can be served only on a flexi-
ble service facility. Formally, there are m machines, of which the first k (1 ≤ k ≤ m)

machines are flexible and can process both ordinary and special jobs while the remain-
ing m − k machines can process only ordinary jobs. Customers arrive over time and
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their needs become known upon arrival. Any service, once started, will be carried out
to completion. The objective is to minimize the makespan.

The only difference lies in the fact that in online service scheduling there is a
restriction with regard to the order of assignment that is related to the order of arrivals.
Typically, among jobs in the same class, the order of assignment is consistent with the
order of arrival. We only take into account online algorithms satisfying such condi-
tions even though there are more efficient algorithms in terms of the competitive ratio.
Thus, while the aim of the traditional online scheduling research is to find an online
algorithm producing a schedule with a smaller competitive ratio, this study focuses
on the analysis of competitive ratios of practical service policies.

Wang et al. (2009) and Wang and Xing (2010) investigate three categories of service
policies used in practice;

(i) priority policies,
(ii) non-priority policies,

(iii) mixed policies.

(i) Priority policies. If, in a service system, customers requiring special services
are considered more important and have to receive preferential treatment, policies
with priorities are typically established. One such policy is the ‘Designated Flexible
Servers’ (DFS) policy. In such a policy, special customers have priority over ordinary
customers. The flexible servers serve special customers in the order of their arrivals
and, when all special customers in the queue have been served, the flexible servers
will remain idle and have to wait for the arrival of the next special customer, even
when there are ordinary customers in the queue. Another policy is the ‘Special Cus-
tomers First’ (SCF) policy. Under such a policy, the flexible servers first serve special
customers in the order of their arrivals. In the absence of special customers, they will
serve the first ordinary customer in the queue.

(i i) Non-priority policies. If no priorities are considered, two policies come into
consideration. The easiest and most impartial one is the ‘First-Come, First-Served’
(FCFS) policy. All customers are in the same queue in order of their arrivals and
‘queue jumping’ is not allowed. Note that in the FCFS policy, if the first customer in
the queue is special and all flexible servers are busy, then all customers in the queue
must wait even if some dedicated servers are idle. Therefore, although the FCFS pol-
icy is absolutely impartial, it may waste service resources. As a result, the ‘First-Fit,
First-Served’ (FFFS) policy may be adopted. In such a policy, the first idle server
serves the first customer that it is able to serve.

(i i i) Mixed policies. Consideration of both prioritization and impartiality may lead
to mixed service policies. We consider two such policies: (1) Set aside some of the
flexible servers to serve customers according to the DFS policy and apply the FFFS
policy to all other servers. Such a policy will be called the Mixed policy with DFS
(MDFS). (2) Set aside some of the flexible servers to serve customers according to the
SCF policy and apply the FFFS policy to all other servers. Such policy will be called
the Mixed policy with SCF (MSCF).

Let ρ(H) denote the competitive ratio of policy H for H ∈ {DFS, SCF, FCFS,
FFFS} and let ρ(H ′(k1)) denote the competitive ratio of the mixed policy H ′ for
H ′ ∈ {MDFS, MSCF}, where the first k machines are flexible among the m machines
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and in mixed policies, the number of flexible machines to which the DFS or SCF
policy is applied is k′ while the number of flexible machines to which the FFFS policy
is applied is k − k′ for 0 ≤ k1 ≤ k. Then the following results can be obtained for
priority policies:

ρ(DFS) = 1 + m − 1

m − k

ρ(SCF) =
{

3 − 1
k for 1 ≤ k ≤ m

2 ,

1 + m−1
k for m

2 < k ≤ m;

for non-priority policies:

ρ(FCFS) = 1 + m − 1

k

ρ(FFFS) =
{

4 − 2k
m − 1

k for 1 ≤ k ≤ m
2 ,

1 + m−1
k for m

2 < k ≤ m;

for mixed policies:

ρ(MDFS(k1))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 + 2 (k−k1)(m−k)
k(m−k1)

− 1
k for 1 ≤ k ≤ m

2 and 0 ≤ k1 ≤ m(k−1)
2m−k−1 ,

1 + k−1
k1

for 1 ≤ k ≤ m
2 and m(k−1)

2m−k−1 ≤ k1 ≤ m(k−1)
m+k−2 ,

1 + m−1
m−k1

for 1 ≤ k ≤ m
2 and m(k−1)

m+k−2 ≤ k1 ≤ k

1 + m−1
k for m

2 < k ≤ 2m
3 and 0 ≤ k1 ≤ 2k − m,

2 + 2 (k−k1)(m−k)
k(m−k1)

− 1
k for m

2 < k ≤ 2m
3 and 2k − m ≤ k1 ≤ (2k−1)(m−k)

2m−k−1 ,

1 + m−1
m−k1

for m
2 < k ≤ 2m

3 and (2k−1)(m−k)
2m−k−1 ≤ k1 ≤ k,

1 + m−1
k for 2m

3 < k ≤ m and 0 ≤ k1 ≤ m − k,

1 + m−1
m−k1

for 2m
3 < k ≤ m and m − k ≤ k1 ≤ k.

ρ(MSCF(k1)) =
{

3 + 2 (k−k1)(m−2k)
k(m−k1)

− 1
k for 1 ≤ k ≤ m

2 ,

1 + m−1
k for m

2 < k ≤ m.

From the expressions above we have the following chains of inequalities. where
the competitive ratio ρ(MDFS(k1)) of the MDFS policy is minimized at k1 = k∗.

1 ≤ k ≤ m/2

Policy Mixed Priority Priority Mixed Non-priority Non-priority
ρ ρ(MDFS(k∗)) ≤ ρ(DFS) ≤ ρ(SCF) ≤ ρ(MSCF(k1)) ≤ ρ(FFFS) ≤ ρ(FCFS)

m/2 < k < m

Policy Mixed Mixed Non-priority Non-priority Priority Priority
ρ ρ(MDFS(k∗)) ≤ ρ(MSCF(k1)) = ρ(FFFS) = ρ(FCFS) = ρ(SCF) ≤ ρ(DFS)
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4.3 The weighted completion and flow time

The total completion time (
∑

Ci ) and the total weighted completion time (
∑

wi Ci )

are important objectives in scheduling theory and have received much attention.
Related objectives are the total flow time (

∑
Fi ) and the total weighted flow time

(
∑

wi Fi ) where the flow time is defined as the completion time minus the release
time, that is Fi = Ci − ri . Since the total (weighted) release time is a constant, the
total (weighted) completion time problem and the total (weighted) flow time problem
have the same optimal schedules. However, the approximation algorithms have quite
different competitive ratios because the optimal objective function values are different
for each problem.

Hall et al. (1997) prove that the online problem R | ri | ∑
wi Ci has an

8-competitive algorithm. Since P | ri ,Mi | ∑
wi Ci is a special case of R | ri |∑

wi Ci , problem P | ri ,Mi | ∑
wi Ci also has an 8-competitive algorithm.

However, for the problem of minimizing the total flow time, there does not exist
an online algorithm with a bounded competitive ratio even for the case where all jobs
have unit processing requirements, that is even for P | ri ,Mi , pi = 1 | ∑

Fi by
Garg and Kumar (2007). Also, even for the problem with two machines subject to
GoS eligibility, denoted by P2 | ri ,Mi (GoS) | ∑

Fi , the competitive ratio can be
arbitrarily large.

5 Future research

In this paper we presented the state of the art in online scheduling subject to machine
eligibility constraints and with the makespan as objective. We considered both online
scheduling paradigms, namely online over list and online over time. A fair amount of
research has been done on this topic; Tables 1 and 2 provide comprehensive overviews
displaying all the results in online over list and online over time, respectively. There
are still many open problems remaining in both paradigms.

In online over list the following problems seem to be of interest.

Problem 1. What are the most general conditions on a parallel machine scheduling
environment under which Azar’s algorithm remains optimal?

Problem 2. What is the best possible algorithm for interval eligibility constraints?
Problem 3. What are the exact competitive ratios for the problem subject to GoS

eligibility constraints?
Problem 4. How does the value of partial information in a semi-online scheduling

problem depend on the type of eligibility constraints?

There are many open problems in the online over time paradigm as well.

Problem 5. What is the exact competitive ratio when an optimal or approximation
offline algorithm is repeatedly applied at each arrival of a job to a problem
subject to eligibility constraints?

Problem 6. How should one analyze algorithms for nonclairvoyant online scheduling
problems subject to eligibility constraints?

Problem 7. Does the restart option provide any advantage when minimizing the
makespan subject to eligibility constraints?
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There is still one major and challenging research problem:

Problem 8. Knowing the competitive ratio of a problem in one class (e.g., online
over list), does that tell us anything about the competitive ratio of the
corresponding problem in the other class (e.g., online over time)?
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