
COGNITIVE SUPPORT IN SOFTWARE ENGINEERING TOOLS:

A DISTRIBUTED COGNITION FRAMEWORK

by

������ �����	
���

���� ������	�
� �� �����
�� ����

���� ������	�
� �� �����
�� ����

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

c� Andrew Walenstein 2002

SIMON FRASER UNIVERSITY

May 2002

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Andrew Walenstein

Degree: Doctor of Philosophy

Title of thesis: Cognitive Support in Software Engineering Tools: A Distributed Cognition

Framework

Examining Committee: Dr. Binay Bhattacharya

Chair

�� �����
 � �������� ������ � !����	��

�� �
���� �
"��	� � !����	��

�� #� 	� � �$ ����� � !����	���

%����		�� �� ���!
�� ��������

������	�
� �� &��
����

�� ' ����� '����(��� � !����	���

&��� %��	����
 ���
���� ������!���
�

���������)�
��
������

��* ��
 %����		��� ����� '��	�� ������	�
�

�� ��
(� +��"!�
���"� �'�),������

�� -���	 � #������),
�����),�������

%����		�� �� ��.��
��� ��������

� �� ����������� ��� ���.�

Date Approved:

ii

Abstract

Software development remains mentally challenging despite the continual advancement of training, tech-

niques, and tools. Because completely automating software development is currently impossible, it makes

sense to seriously consider how tools can improve the mental activities of developers apart from automat-

ing them away. Such mental assistance can be called “cognitive support”. Understanding and developing

cognitive support in software engineering tools is an important research issue but, unfortunately, at the

moment our theoretical foundations for it are inadequately developed. Furthermore, much of the relevant

research has occurred outside of the software engineering community, and is therefore not easily avail-

able to the researchers who typically develop software engineering tools. Tool evaluation, comparison,

and development are consequently impaired. The present work introduces a theoretical framework in-

tended to seed further systematic study of cognitive support in the field of software engineering tools.

This theoretical framework, called RODS, imports ideas and methods from a field of cognitive science

called “distributed cognition”. The crucial concept in RODS is that cognitive support can be understood

and explained in terms of the computational advantages that are conferred when cognition is redistributed

between software developer and their tools and environment. The name RODS, in fact, comes from the

four cognitive support principles the framework describes. With RODS in hand, it is possible to interpret

good design in terms of how cognition is beneficially rearranged. To make such analyses fruitful, a cog-

nitive modeling framework called HASTI is also proposed. The main purpose of HASTI is to provide an

analysis of ways of modifying developer cognition using RODS. RODS and HASTI can be used to convert

previously tacit design knowledge into explicit and reusable knowledge. RODS and HASTI are evaluated

analytically by using them to reconstruct rationales for two exemplar reverse engineering tools. A pre-

liminary field study was also conducted to determine their potential for being inexpensively applied in

realistic tool development settings. These studies are used to draw implications for research in software

engineering and, more broadly, for the design of computer tools in cognitive work domains.

iii

Acknowledgments

Funding for this research was provided by an NSERC scholarship, an BC Advanced Systems Institute

scholarship, an NSERC grant, and the Consortium for Software Engineering Research (CSER). I wish to

thank each of these funding bodies for their support.

This manuscript was prepared with the LATEX document preparation system and the associated TEX

utilities. All figures were created using the XFig system, with Figures 7.1 and 7.2 created with the help

of XMaple. Bibliographic metadata was provided by the HCI Bibliography Project (http://www.hcibib.org).

The instructions used in the field study is an adaptation of instructions written by Caroline Green and

Ken Gilhooly [256].

Thank you to the nameless people who participated in my field study. I also wish to thank Hausi

Müller, Janice Singer, and Anatol Kark for making my research visit to Ottawa possible, entertaining, and

educational.

I would like to thank Rob Cameron for his careful and patient mentoring, and for the financial and

emotional support he has provided me. I also wish to thank all of the members of my examining commit-

tee for their diligent reading of this dissertation. I am very grateful to my supervisory committee for their

time and effort in reading all of the various documents and for their advice. I am also very indebted to

each and every one of them as they have given me the freedom to pursue this somewhat unconventional

and lengthy dissertation topic. Few students are so lucky!

I would also like to thank the many friends and colleagues who have helped make life during my

PhD studies so much more enjoyable by discussing computing, humans, philosophy and life, and by just

being great companions. Thanks to Michael Heinrichs, Georgina Regeczi, Adam Woodgaines, Sheelagh

Carpendale, Philip Fong, Maria Lantin, Gabor Melli, Francisco Hererra, Robert MacDonald, and the many

other friends I have made. Thank you all!

Finally, I am deeply grateful to my wonderful family who have supported me so thoroughly and

unconditionally throughout my studies. Without them, I would never have been in a position to even

start this project, little less manage to battle it through to the end. Thanks always to my marvellous and

supportive wife Lorena.

iv

Contents

Approval ii

Abstract iii

Acknowledgments iv

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Overview of dissertation contents . 7

1.2 Overview of background sources . 10

1.3 Overview of contributions . 11

2 The Need for Cognitive Support Theories 14

2.1 A Case for Cognitive Support Research . 15

2.1.1 Cognitive Support—the Other 90 Percent . 16

2.1.2 Folk, Tacit, and Science Knowledge . 21

2.2 Problems of A Theory-Thin Discipline . 26

2.2.1 Evaluation Problems: Simple Comparison . 28

2.2.2 Evaluation Problems: Undirected Observation . 44

2.2.3 Evaluation Problems: Cognitive Modeling . 49

2.2.4 Analysis Problems . 51

2.2.5 Design Problems . 54

2.2.6 Summary of Problems . 55

2.3 Possibilities of Theory-Based Research . 56

2.3.1 Leveraging Mechanical Support Theory . 57

2.3.2 What Might Theory-Based Methods Look Like? . 62

2.3.3 SE Research and Researchers . 67

2.4 The Practical Art of Designing Theories . 73

2.5 Summary . 78

v

3 Cognitive Support Phenomena 80

3.1 Supportive Relationships . 82

3.1.1 Embodiment and Strategic Artifact Use . 83

3.1.2 External Memory and Internal Memory . 87

3.1.3 External Resources and Structure . 89

3.1.4 Reflective, Visual, and Intentional Thinking . 91

3.1.5 Evolving Structures, Emergent Thought . 92

3.1.6 Representation Effect . 94

3.1.7 Automation . 94

3.2 Descriptive Theories . 95

3.2.1 Mediation and Reflective Media . 96

3.2.2 Scaffolding . 97

3.2.3 Augmentation, Extension, and Symbiosis . 97

3.2.4 Fitness . 98

3.3 Schools Of Cognitive Support . 99

3.3.1 By Research Tradition . 99

3.3.2 By Problem Domain . 103

3.4 Summary and Conclusions . 107

4 Strengthening the Foundations of Cognitive Support with RODS 110

4.1 DC Principles and Tenets . 114

4.1.1 C0: Human Mind is a Cognitive Unit . 114

4.1.2 C1: Cognition = Computation . 115

4.1.3 C2: Cognitive Interpretation . 115

4.1.4 D0: Distributed Functional Unit is a Cognitive Unit 116

4.1.5 D1: Cognition = Distributed Computation . 116

4.1.6 D2: External Cognitive Interpretation . 117

4.1.7 Summary of DC Tenets . 121

4.2 RODS: Computational Principles of Cognitive Support . 122

4.2.1 Task Reduction . 124

4.2.2 Algorithmic Optimization . 125

4.2.3 Distribution . 131

4.2.4 Specialization . 133

4.2.5 Summary of Principles . 135

4.3 Analyzing Cognitive Support . 135

4.3.1 The Design Space Induced by RODS . 136

4.3.2 Distributed Cognitive Architectures . 138

4.3.3 Virtual Architectures . 141

4.3.4 Summary of Analysis Proposals . 143

4.4 Requirements Check . 144

vi

4.5 Summary and Conclusions . 145

5 HASTI: A DC Modeling Framework 147

5.1 Overview of HASTI . 150

5.1.1 Framework Principles and Strategies . 153

5.1.2 Structure Overview . 157

5.2 Hardware Model: Cognitive Capacity Decomposition . 160

5.3 Agent Model: Behavioural Decomposition . 162

5.3.1 Problem (ends, operations, constraints) . 164

5.3.2 Agenda (goals) . 166

5.3.3 Control Panel (plans) . 166

5.3.4 Progress (state, history) . 167

5.3.5 The Agent Model and Its Mapping . 167

5.3.6 Summary . 170

5.4 Specialization Hierarchy: SRKM Strata . 171

5.5 Task Decomposition: D2C2 Stratification . 174

5.6 Interaction Decomposition: Virtual Architecture . 176

5.7 Summary and Conclusions . 177

6 CoSTH: A Hierarchy of Support Theories 179

6.1 Using HASTI and RODS To Formalize Tool Ideas . 180

6.2 Distribution . 185

6.2.1 Data Distribution . 187

6.2.2 Processing Distribution . 192

6.3 Specialization . 205

6.4 Algorithmic Optimization . 210

6.5 Composite Rearrangement . 211

6.5.1 Revisiting Previous Examples . 213

6.5.2 Reconstructing and Naming Happy Composites . 215

6.6 Comparison to Related Work . 219

6.7 Limitations . 222

6.8 Summary, Commentary, and Implications . 225

7 Building Theories Fit For Design 228

7.1 The Trouble with Theory . 230

7.1.1 Navigating the Fitness Landscape . 232

7.1.2 Crossing the Gulf of Synthesis . 242

7.1.3 Theory for FP-reasoning . 246

7.1.4 Summary and Implications for Designing Design . 250

7.2 Cognitive Support Knowledge Fit For Design . 251

7.2.1 Engineering Concepts and Vocabulary . 253

vii

7.2.2 DC Design Stances . 256

7.2.3 Reifying Design Space . 261

7.2.4 Summary of Design Ideas . 265

7.3 Summary and Implications . 266

8 Application: Where Craft and Science Meet 268

8.1 RMTool Example . 272

8.1.1 Tool and Usage Description . 272

8.1.2 Interpreting RMTool Using HASTI . 276

8.1.3 Tool Analysis Scenario . 278

8.1.4 Design Envisionment Scenario . 281

8.1.5 Summary and Implications of RMTool Analyses . 284

8.2 Rigi Example . 285

8.2.1 Bottom-up Comprehension: BU-HASTI . 285

8.2.2 CoSTH Analysis of BU-HASTI . 286

8.2.3 Matching Features in Rigi . 287

8.2.4 Summary of Rigi Analysis . 288

8.3 Summary . 288

9 A Field Study of Cognitive Support 292

9.1 Field Study Description . 295

9.1.1 Motivation and Background . 295

9.1.2 Study Design . 300

9.1.3 Observation Methods . 303

9.1.4 Test Run (Pilot) . 307

9.1.5 First Stage Summary of Study . 307

9.2 Context for Research Scenarios . 308

9.2.1 Description of Participant Context . 309

9.2.2 Distributed Planning in Visual Café . 310

9.3 An Exploration of Data Analysis Techniques . 313

9.3.1 Analysis Methods . 313

9.3.2 Coding Scheme . 315

9.3.3 Results . 316

9.3.4 Discussions . 319

9.4 Theory Application Scenarios . 323

9.4.1 A Claims Check . 323

9.4.2 Measurement Scenario . 325

9.4.3 Summary and Discussion . 326

9.5 Validity and Evaluation . 327

9.6 Conclusions . 329

viii

10 Conclusions 331

10.1 Summary of Contributions . 332

10.2 Future Work . 336

10.3 Coda . 338

A Invitation to Participate 339

B Research Description 340

C Questionnaire 342

D Instruction Card 343

E Instructions For Producing Verbal Reports 344

F Coding for Participant E 345

ix

List of Tables

2.1 Summary of problems in SE research practice due to lack of cognitive support theories . . . 27

2.2 Comparison of methods used to evaluate tool ideas . 29

2.3 Evaluation and testing problems compared to the promises of theory-based research 31

2.4 Theory requirements (lessons learned) and where they are addressed 62

2.5 Comparing problems of current idea evaluation practices to theory-based research 63

2.6 Matching problems of current design/analysis practices to theory-based research solutions 63

2.7 Arguments for a realistic pursuit of cognitive support theories 75

3.1 Descriptive theories for various cognitive support relationships 95

4.1 Key tenets of DC . 114

5.1 Decompositions of phenomena and matching structures . 158

5.2 Cognitive resources in the agent model . 164

5.3 Overview of Rasmussen’s SRK categories of human adaptation 171

5.4 Summary of task taxonomy . 176

6.1 HASTI structures that align with RODS substitution types 182

6.2 Summary of redistribution examples . 186

6.3 Summary of specialization substitution types . 206

6.4 Examples which are compositions of multiple support factors 213

7.1 Four types of reasoning and roles of theory for supporting them 248

8.1 Summary of references in Figure 8.5 . 290

9.1 Potential problems caused by dependency of cognitive support use on adaptations 299

9.2 Codes for event types in “shadowing” observation technique 306

9.3 Summary of data collected during the study . 307

9.4 A list of cognitive support claims for Visual Café . 311

9.5 Coding scheme for Visual Café example . 315

9.6 Trace table for distributed planning activity in episodes V1 and V2 318

9.7 Description of goal and plan labels used in Figure 9.6 . 318

x

9.8 Frequencies of coded actions by type . 319

10.1 Diagram of how contributions are spread across the chapters 333

F.1 Protocol and codes for first Visual Café episode (Episode V1) 347

F.2 Protocol and codes for second Visual Café episode (Episode V2) 348

F.3 Protocol and codes for third Visual Café episode (Episode V3) 348

F.4 Full Visual Café protocol for the three episodes . 349

xi

List of Figures

2.1 Knowledge explicitness and its relation to discipline maturation 22

2.2 Models of (a) pharmaceuticals and (b) possible cognitive support knowledge ecosystems . 70

4.1 Summary of RODS computational advantage principles . 124

4.2 ADT view of interfaces, and mappings to implementations 129

4.3 Virtual shared memory as an abstraction over complicated interaction 142

5.1 Summary of principles and strategies for modeling in HASTI 153

5.2 Simplified joint system model . 160

5.3 Hardware level of description of a user . 161

5.4 Problem solving metaphor of experts working around a blackboard 163

5.5 Schematic Agent model showing generic agents, panels, and panel data types 168

5.6 Mapping of Agent models to Hardware . 169

5.7 Ordering of behaviour categories based on adaptation, preference, and fallback order . . . 172

5.8 SRKM imposes stratification on Agent model . 173

5.9 D2C2 task taxonomy partitions agents according to their task goals. 175

6.1 Hierarchy of support theories built from RODS+HASTI . 183

6.2 Relationships between artifacts, examples, theories, and tool ideas. 185

6.3 Tentative leaves for processing distribution . 199

7.1 A “fitness landscape” visualization . 234

7.2 Problems of mindless search . 235

7.3 Roles of theory for synthesis versus evaluation . 239

7.4 The magician’s design method . 245

7.5 Resource flow model of theory application in design . 249

7.6 Hypothetical example of a tabular-form worksheet and its use 266

8.1 Simplified flow of RMTool sessions . 274

8.2 Illustrations of RMTool’s HLM and reflexion model outputs 274

8.3 Refining the Agent model with Brooks’ comprehension model 279

8.4 “Virtual blackboard” illustration of RMTool processing . 280

xii

8.5 Timeline of main ideas and tools . 291

9.1 Typical observation configuration . 303

9.2 Snippet of coded field nodes (verbatim). 305

F.1 Fascimilie of Participant E’s first error list . 346

F.2 Fascimilie of Participant E’s second error list . 347

F.3 Fascimilie of Participant E’s third error list . 347

xiii

Chapter 1

Introduction

Our current ability to construct effective bridges across the chasm that separates our scientific

understanding and the real world of user behavior and artifact design clearly falls well short of

requirements. ... what is required is something that might carry a volume of traffic equivalent

to an eight-lane cognitive highway. What is on offer is more akin to a unidirectional walkway

constructed from a few strands of rope and some planks.

– Phil Barnard, “Bridging between Basic Theories

and the Artifacts of Human-Computer Interaction” [28], pg. 107–108.

�ow and why are tools useful? How can a tool’s usefulness be explained? And how can tools be made

more useful? There can hardly be more important questions to tool researchers. Another well-known and

related research question is how tools can fail to be usable. They could be difficult to learn, for instance,

or perhaps confusing, or inefficient to apply. But many researchers can be forgiven for being frequently

more concerned with usefulness than with usability. Usefulness helps answer the question: regardless of

its usability, why bother with the tool at all? Why go through the trouble of learning to use it? Why build

it? The first rule of tool design is to make it useful; making it usable is necessarily second, even though it

is a close second.

The issue of usefulness is certainly very relevant to researchers studying software development tools.

Software development is notoriously difficult and costly, and consequently a wide variety of tools are

sought after in order to make it less so. These tools vary in character from relatively automatic ones

such as compilers and analyzers, to highly interactive ones such as editors, code browser, and visualizers.

Moreover, most real software development environments mix aspects of automation and human inter-

action. Adequately explaining usefulness of these tools can be challenging due to their intrinsic nature.

Whenever important software development tasks can be completely automated, the issue of usefulness

seems relatively unproblematic. However wholesale automation of any non-trivial software development

task is, in practice, currently the exception rather than the rule. Tools generally need to work in combina-

tion with human users.

1

2

Unfortunately, the issue of tool usefulness becomes problematic particularly when the tools are meant

to work with humans. The reason for this is that their purpose becomes defined, at least in part, in terms

of what they do for the user. In the context of SE, this is frequently related to mental work. Developing

software is difficult, to a great extent, because it is mentally challenging. When tools are being interac-

tively applied in such a context, their usefulness is ultimately dependent upon their utility relating to

cognition: i.e., to thinking, reasoning, and creating. Assistance to such cognitive work can be called cogni-

tive support. Explaining the usefulness of many software development tools consequently involves being

able to explain cognitive support. A main point of these tools is to make the thinking parts of software

development better, easier, faster.

Software comprehension tools, such as code browsers, are good examples of the sorts of tools in which

cognitive support is important. The primary reason why these tools exist is to make it easier for develop-

ers to understand software, and, thus make software development easier. It stands to reason, therefore,

that most of the important evaluations of such tools relate to how they affect cognition. Is mental effort

reduced? Is developer knowledge improved? Are cognitively difficult problems made easier? Any suit-

able account of the usefulness of such tools must not fail to explain how the particular features of the tools

give assistance to what are essentially cognitive activities. That is a key challenge: building credible ex-

planations of cognitive support. How developers currently think, and what technological innovations a

tool presents are either irrelevant issues, or are merely background considerations.

Being able to credibly explain cognitive support has many far reaching implications for the field. Our

ability to adequately address many important research questions hinges on having such suitable accounts.

These research questions go beyond simply scientific curiosity. The right sort of theories might allow us to

engineer usefulness qualities of computer tools in a principled manner. They could allow us to evaluate

and compare tools in terms of cognitive issues much better than we do now. They would likely be able

to open up new avenues for rigorously testing and validating tools and tool ideas. And, of course, we

may be able to use the theories to guide invention. Thus it is fair to say that an entire research area in SE

depends on an understanding of cognitive support. Herein lies a peculiar conundrum. The SE research

community is presently ill-equipped to tackle this research. Current research and development methods

involve an uncomfortable amount of guesswork, and are poorly grounded in science.

The overall goal of this dissertation is to improve the research and design of cognitive support in SE

tools by manufacturing some appropriate theory-based resources. These resources include theories and

models, techniques for analyzing tools, methods for evaluating tools, and concepts, frameworks, and

notations for designing new tools. A theory-based infrastructure, in essence. My conviction is that such

theories and methods can presently be built, and that they can transform SE tools research from its current

craft-like state (regarding cognitive support) into one that is more principled, engineering-oriented, and

grounded in science. Unfortunately, this is a thesis that is reasonably proven only by the test of time.

A more specific and restricted thesis can, however, be proposed: that theories based on the principles

of distributed cognition (DC) can form a broadly-applicable starting point that can be immediately applied,

and thus make it possible to begin the process solidifying the theoretical foundations of SE tools research.

This thesis, at least, can be supported by building some theories and trying them out to see if they are

able to address a significant range of important cognitive support questions. That is the tactic taken in

3

this dissertation. I have constructed integrative theories (called “RODS”, “HASTI”, and “CoSTH”) that

attempt to package critical knowledge in application-oriented forms. These are used to survey and classify

the cognitive support in many common SE tool features, analyze existing SE tools, and empirically observe

cognitive support in action.

It should be clear that any adequate explanation of cognitive support will carry significant psycholog-

ical content—it will need to explain the reasons why thinking and problem solving during development

is better with one tool than with another. The appropriate science knowledge is accumulating in cognitive

science, psychology, and human–computer interaction (HCI) research. Such theories need to be imported

and used.

It might be argued that human cognition is not yet understood well enough. Needless to say, a subject

such as human psychology is far from perfectly understood. Real-world human cognition in a compli-

cated domain, such as software development, is an extremely complex phenomenon. The need to under-

stand the contributions of the complex tools and the development context seems to make the challenge

even more insurmountable. Humans are complex; development tools are complex; the domain itself is

complex. “Completely” understanding cognitive support in software development tools can only be con-

sidered, realistically speaking, to be a very long term goal at best. For the present time, we should expect

at most relatively moderate, incremental progress in the science base.

We must not, however, blame all of our current woes on the general difficulty of the topic. The roots of

our most immediate problems stem less from the height of the hill to climb, and more from the steps not

yet taken. The lack of suitable explanations of cognitive support in software development is not primarily

due to a lack of applicable theories. Instead, it is due primarily to (1) the general lack of appropriate

research effort directed specifically towards the topic, (2) the poor theoretical foundation for building

explanations of cognitive support, and (3) the wide gulf separating research in software development

tools from research in psychology, cognitive science, and other disciplines that could contribute useful

knowledge. In other words, cognitive support is poorly studied in SE research, there is little in the way

of a suitable research framework much less an accumulation of actual support-oriented theory, and it is

difficult for researchers from CS and SE to make headway in the area.

There are many reasons contributing to this state of affairs. Many of these are discussed in later chap-

ters. A few of these reasons are clearly fundamental (e.g., cognitive support is really hard to understand

and study), some are merely historical (e.g., attention has been elsewhere, such as on usability), and some

are best described as “political” (e.g., some researchers are reluctant to pursue what are perceived as

“softer” aspects of tool research). Whatever the reasons, the absence of a suitable theoretical grounding

has a significant impact on SE research.

Suitable theoretical and empirical treatments of cognitive support may be vital for the long-term health

of tools research. Many—perhaps most—of the significant claims that can be made about the usefulness of

software development tools involve human-related considerations, be they psychological, organizational,

or sociological. Pressure is mounting for researchers to approach tools—and the claims about their capa-

bilities and qualities—more scientifically and empirically. There can be no doubt that a critical component

of the systematic and scientific study of software development tools must include psychologically-based

explanations of how tools are useful to developers. Consequently, the topic of cognitive support is surely

4

near the top of the list of issues deserving a scientific underpinning. Considering how much these theories

are needed, the current state of knowledge within the field is not a matter of a small gap in our under-

standing, it is an ugly, gaping chasm. The present work is a directed attempt at helping fill this chasm.

Doing so is expected to have multiple benefits for the field—there is nothing so useful, so the saying goes,

as a good theory. If comprehensive and widely applicable theories, models, and techniques can be devel-

oped, then these could be employed to better analyze, test, and evaluate existing tools, and to develop

improved cognitive support for future tools.

Efforts to develop comprehensive cognitive support theories are not premature; they are, on the con-

trary, much overdue. They are overdue because our current theoretical capabilities are greatly underuti-

lized. To borrow a phrase from Norman [467, pg. 37], there isn’t any realistic hope of developing “the”

theory of cognitive support, at least not for a long time, but certainly we should be able to develop approx-

imate theories. Psychology is not “solved”, but we can hardly wait for human behaviour to be completely

fathomed before starting the project. Approximated theories, if they are grounded in science, are still bet-

ter than guesswork and folk psychology, if for no better reason than the various assumptions, hypotheses,

and claims are made more explicit and therefore comparable and testable.

Furthermore, the raw materials for building suitable approximate theories are all there: for decades

the fields of psychology and HCI have studied how people use tools, and the SE field itself has a wealth of

practical experience with tools. We have many bits and pieces needed for making a full-fledged, coordi-

nated attack at the theoretical void. As Barnard noted, what theorists have currently offered is little more

than “a few strands of rope and some planks” [28]. The time is right for putting what we already know

to better use. Now is hardly the right time to pick out some extraordinarily focused aspect of psychology

or tool use in order to meticulously add a tiny, incremental piece of knowledge. At the moment the field

has no pressing need for a long parade of tightly focused experiments, papers, and Ph.D. dissertations.

The chasm will remain unfilled much too long that way. Now is the time to begin dumping in by the

truckload whatever theoretical material can be found in hopes of developing a workable bridge spanning

the chasm. We need to look at the big picture. Whatever we build now can be fixed up and refined later

as science advances.

This is not to say that new and basic advances are not important. Indeed, for suitable theories to

be developed, it may be very helpful to determine certain important facts, say, that programmers fre-

quently switch attention between different sorts of information when understanding software (e.g., Vans’

Ph.D. work [654]). Such findings should be able to inform theories of cognitive support. The point here,

though, is that there is more than enough material available for building some initial—but comprehen-

sive, and widely applicable—theories. We should be able to begin the construction of these approximate,

applied theories even while the basic science research continues its slow, piecemeal process of accreting

new knowledge about software development, about tool use, and about basic psychology. There is no rea-

son why basic and applied research should not operate in parallel. In fact, the two research programmes

should complement each other. Right now the applied stream concerning cognitive support in SE desper-

ately needs a kickstart. It needs a broad, integrative treatment.

5

A DC approach to building cognitive support theories.

This work presents an initial attempt at building the needed applied theories of cognitive support, and at

determining how to apply them to SE research. The approach taken is typical of applied sciences. First, a

problem is identified, which in turn initiates a search within sister disciplines for existing and applicable

theories, models, and methods that could shed light upon the problem. Second, the resources found are

adapted in order to make them usable within the discipline. Next, an initial theory is constructed, typically

as a translation, adaptation, and integration of prior theories. Attempts are then made to apply them to

existing problems. The new theory is not an end unto itself—it is used as a seed for further research. Such

theories are iteratively evaluated, augmented, and tuned. The initial foray into theory development, how-

ever, is essentially exploratory in character. That is what is presented here: an exploration into theories of

cognitive support using resources gathered and adapted from prior relevant work. These raw materials

are for the most part not new, but the particular collection and presentation of them is novel. The raw

materials for this work come from prior research in cognitive science, HCI, psychology, and computing

science.

The main focal point of the theory building is the construction of a general framework for making

explanations of cognitive support. Because some sort of umbrella framework must be chosen, an approach

termed “distributed cognition” (DC) was picked. Even though the details of the framework can be tricky,

the core ideas are simple enough to state in a few, relatively short statements:

1. Cognition is usefully modeled as computation.

2. Computer tools are computational systems. Thus developers using tools can be modeled as joint

multi-processing computational systems. They form distributed computational systems; they form

distributed cognitive systems.

3. The cognitive support provided by a tool is the computational advantages that the tool provides.

Cognitive support can therefore be understood entirely in computational terms: support is the pro-

vision of computational advantage.

4. All real-world cognitive systems are distributed. New tools reorganize the overall computations

involved. The reorganization involves re-engineering the computations occurring between tools

and humans. Design of cognitive support is computational systems re-engineering.

Collectively these statements can be said to form a high-level DC viewpoint for understanding and build-

ing cognitive support. Statement 2 is a theory of cognition: distributed cognition. But the key statements

are actually numbers 3 and 4. Statement 3 is a theory of cognitive support, albeit an abstract one. State-

ment 4 is a theory of cognitive support design. The crux of this work is an elaboration of Statement 3,

although Chapter 7 takes an initial stab at expanding Statement 4.

By themselves, of course, the above statements actually explain relatively little. What, specifically,

are the sorts of computations involved in cognition? What cognitive processes are important in software

development? What ways, specifically, are such processes distributed onto tools? How is cognition benefi-

cially reengineered? The details are absolutely critical, and must be filled in. Models of cognitive processes

6

involved in software development need to be added. So do models of how such cognitive processes are

distributed onto tools. These details are required to turn a general DC viewpoint into a framework with

explanatory power.

The core part of this dissertation is an elaboration of these points in such a way that they can be

applied to software development tools. Since software development is a very broad topic, a sub-task of

development—software comprehension—will be singled out as a focal task. This focus should not unduly

cripple the resulting theories by making them too task-specific. However it will definitely skew the pre-

sentation and reference list in a software comprehension-specific way. The DC viewpoint outlined above

will consequently be fleshed out considerably by examining (1) models of cognition that can be applied

to software comprehension, and (2) the ways in which cognition may be reengineered and distributed in

order to support the comprehender.

Before continuing on, a simple and familiar example may help give the reader the basic flavour of the

sort of analysis involved. The example is due to Norman [467, pg. 21]. He used a simple shopping list

scenario to argue a cognitive view of tools and artifacts. He argued that artifacts which are normally con-

sidered simple and quite inert can be quite naturally understood to perform cognitive functions. Consider

a scenario where you are going shopping for food. You might employ a shopping list to store the names of

items that you need to get. Maybe you write the items down on the list as you find your household run-

ning out of them. You use this list when you go to the store in order to make sure you do not miss getting

any items that you need. Perhaps you check off items as they are placed into your cart. From your point

of view, you did not need to remember the items on the shopping list. In fact, if you checked off the items

as you put them in the cart, you would not have even needed to mentally keep track of which items you

had already collected. To figure out what to get next, you could merely scan down the list for unchecked

items. The shopping list serves as an external aid—a cognitive support. If you did not make the shopping

list, you would likely need to remember what items you require, and you would have to be able to recall

them all while at the store. Basic psychology—and common sense—says that this is relatively hard to do.

Many people prefer to use shopping lists instead of relying on their memory because not only is shopping

easier with the list, it makes them better shoppers (see, for example, Block et al. [59]).

Even this simple shopping scenario illustrates many of the important issues in the DC view of cog-

nitive support. First, note that the list serves a computational role: it is a memory device, an external

memory. Using a shopping list means you do not have to remember the items, but the items still are

remembered—the paper holding the list serves as a memory. External memory of many sorts occur in

software development environments. Consider these examples: a book of design patterns [232] acts as a

long-term shared memory; a history mechanism in a web browser acts like a personal short-term memory.

Second, notice that a shopper and a shopping list together form a joint system. It is not just you doing the

shopping, but you in combination with your external memory. If you lost your list you would likely lose

much of your memory of what you need to buy. Third, observe how behaviour, performance, and capa-

bility are joint properties of the system as a whole. “You + list” perform (i.e., shop) differently than just

“you”. The external memory extends your capability: it makes it possible for you to do things you could

not otherwise do (e.g., remember more), or it makes these things easier or otherwise better than before.

1.1. OVERVIEW OF DISSERTATION CONTENTS 7

In sum, the shopping list example serves to illustrate three sample concepts from the DC view of

cognitive support: that support can be understood in computational terms, that the behaviour of joint

human–artifact systems (especially human–computer systems) is the sort of thing that needs to be studied,

and that the ways in which tools affect joint cognitive performance is a key issue. Notice the importance

of the cognitive-level explanation of usefulness—the value of the shopping list is not fully captured by

considering the features and qualities of the artifact (degree of automation, efficiency, number of user

functions, etc.), nor by considering the misfeatures of the human (e.g., limited memory). Although the

example is a simple one involving non-computerized tools, the character of the analyses for software

development tools is directly analogous. The primary differences are in the complexity of the joint system

models, especially concerning the particulars of the cognitive processes involved. Simply put, software

development is significantly more diverse and cognitively challenging than shopping, and computerized

tools offer richer distributions of cognition.

1.1 Overview of dissertation contents

The structure of the dissertation (minus introductions and conclusions) is as follows.

Chapter 2 (Motivation; Vision)

Chapter 2 describes the current state of affairs regarding how computing science and SE currently ap-

proaches the issues of cognitive support. Chapter 2 therefore motivates and orients the remaining chap-

ters. It argues that the search for applied theories of cognitive support is not an idle quest to satisfy cu-

riosity, but an important yet absent part of a rigorous SE research programme. It also provides a guiding

vision for theory-based research, and a list of desired qualities of the needed cognitive support theories.

Thus, Chapter 2 represents good engineering design: it acts to build a requirements analysis, a rough

project plan, and a set of criteria for testing.

Chapter 3 (Cognitive Support Phenomena)

Chapter 3 surveys the phenomena to be studied, that is, it defines what cognitive support is, and character-

izes several of its many forms. Chapter 3, in other words, describes the sorts of benefits that tools provide

their users. These are the things which theories of cognitive support seek to explain. Simply describing

the various types of cognitive support is a valuable first step. The various conceptions of cognitive sup-

port are widely scattered in the literature, so that some sort of review must be performed to bring them

together and make them accessible. This review also makes a secondary contribution to theory building.

It reviews many types of cognitive support important to SE. In this way it establishes lower bounds on the

required breadth of coverage. Such a review is necessary to avoid two of the most pernicious problems

associated with building applied theories: irrelevance and narrowness. A broad review helps the theory

designer avoid both.

1.1. OVERVIEW OF DISSERTATION CONTENTS 8

Chapter 4 (RODS)

Mere description of cognitive support phenomena is not sufficient—we need explanations. Chapter 4

presents a framework for building various explanations of cognitive support, that is, a comprehensive

framework for researching and studying cognitive support. SE currently has no such framework to speak

of. The framework is built from pre-existing ideas taken from DC and HCI. The key part of the frame-

work is the proposal to understand cognitive support in purely computational terms. In particular, cog-

nitive support is identified with computational advantages that artifacts engender, such that cognition is

improved. A catalogue of four types of cognitive advantage is developed: task reduction, algorithmic

optimization, distribution, and specialization. HASTI gets its name from these four principles. These four

cognitive support principles are a central feature of an overall framework for studying cognitive support.

This framework provides a general way of analyzing and comparing tools for their cognitive support, and

describes the principles for abstracting and generalizing support arguments. Because of the centrality of

the four support principles, the overarching framework is also named RODS. The result of the chapter is

a widely applicable framework for (1) understanding cognitive support in computational terms, and (2)

expressing and arguing claims of how tools support cognition. These two contributions are absolutely

essential to an applied research programme on cognitive support.

Chapter 5 (HASTI)

RODS effectively produces an abstract “explanation” of cognitive support phenomena by providing a

computational account of the underlying mechanics of cognitive support. However this explanation is

at too abstract a level to be useful in SE. In order to systematically apply this computational account in

tools research, more detailed models are expected to be frequently necessary. In particular, computational

models of human–computer systems must be built in order for the support principles to be applied. The

modeling framework developed in the chapter is called “HASTI”. RODS lists the ways of beneficially

reorganizing cognition, but we need to know what cognition is being arranged and how. As can be ex-

pected, the most critical requirements of such models is that they capture important knowledge about user

psychology—especially with respect to how tools are used. HASTI is tailored specifically to the needs of

application-oriented researchers. They need abstractions and simplifications such that the important is-

sues of cognitive support can be efficiently raised and addressed. They also need pre-built models that can

be rapidly and widely applied to yield insight. The result is intended to be suitable for high-level design

reasoning based on “quick and dirty” analysis. The name “HASTI” is an acronym for the modeling struc-

tures which decompose the model as a whole (hardware model, agent model, specialization hierarchy,

task taxonomy, and interaction abstraction model). This decompositional structure is important for ana-

lyzing cognitive support. The HASTI modeling framework is therefore not simply a single model that can

be used to understand particular human–computer interactions, but a modeling framework that exposes

the computational principles on which RODS concepts can be applied to generate support explanations.

The importance of being able to apply RODS concepts to models is outlined in Chapter 6.

1.1. OVERVIEW OF DISSERTATION CONTENTS 9

Chapter 6 (CoSTH)

The number and type of cognitive support arguments an analyst is capable of making depends upon the

power of the theoretical armaments used to build the explanations. Chapter 6 demonstrates that RODS

and HASTI, in combination, can generate many diverse cognitive support arguments. This capability

is shown by applying the various support principles of RODS to the modeling features of HASTI. This

analysis generates a hierarchy of cognitive support arguments called “CoSTH”. Metaphorically speaking,

the nodes of CoSTH are cognitive analogues to systematic variations of simple machines (lever, inclined

plane, etc.). Like the simple machines, the types of cognitive support can be combined to make more

complicated ones. These support argument are shown to be able to theoretically reconstruct many com-

mon tool ideas from the literature. These support arguments act as generalized argumentation schemas

that can be specialized according to specific instances of tools in order to create tool-specific arguments

about the cognitive support they provide. Thus they are an initial attack at generating systematic, reusable

design knowledge.

Chapter 7 (Design)

Chapters 4, 5, and 6 were focused primarily on theory building, and secondarily on tool analysis, under-

standing, and evaluation. Chapter 7 is focused squarely on design. One of the more enticing possibilities

of cognitive support theories is their potential to guide tool design. This chapter begins with an analysis

of the ways in which theory can guide design. From this analysis it is argued that the cognitive sup-

port framework built here is rather uniquely positioned to offer a particular form of design knowledge

that, to this point, has been rare. Specifically, CoSTH offers the possibility of guiding “FP-reasoning”.

FP-reasoning is essentially reasoning about features to add to tools to make them useful. This type of

theory is contrasted with prior theoretical works that have “informed” design primarily by suggesting

design goals or constraints. From this analysis, three different ways of repackaging RODS, HASTI, and

CoSTH are proposed for making these theories more easily applied by practitioners during early design

envisionment. Because these sorts of design theories are relatively rare in HCI, the chapter concludes with

an overview of how this dissertation provides evidence that CoSTH can be useful as a source of practical

designer resources.

Chapter 8 (Analytic Evaluation)

Chapter 8 begins the evaluation of the theories and modeling techniques proposed in the previous chap-

ters. As these are meant to be application-oriented, the primary issues in their evaluation are whether

they are useful enough, and whether they are broad enough in scope. These questions are answered

primarily by demonstrations of the theoretical toolkit in action. Specifically, RODS, HASTI, and CoSTH

are applied to two high-profile reverse engineering tools in order to analyze them for cognitive support.

These “guinea pig” tools are strategically chosen in order to be topical for SE research, and to try to ex-

ercise much of the theoretical framework. The evaluations serve to demonstrate the applicability of the

theories to questions relevant to current research interests in SE. They also demonstrate the ability of even

this preliminary and skeletal toolkit to make interesting statements about tool features at abstract levels.

1.2. OVERVIEW OF BACKGROUND SOURCES 10

In the process, the theory-based toolkit is shown to be able to reconstruct several existing claims and expe-

riences about the “guinea pigs”. The correspondence of these theory-derived arguments to craft-oriented

knowledge builds confidence in the validity of both the theory and the craft knowledge.

Chapter 9 (Field Study)

Chapter 9 explores some of the possibilities for applying RODS, HASTI, and CoSTH in realistic research

and development work. In the other chapters the primary concern is analytic power: the ability of the the-

ories and models to explain or predict cognitive support, and their ability to generate useful design ideas.

In this chapter, the issue is whether RODS, HASTI, and CoSTH can be employed in empirical studies in a

lightweight manner. Being able to do so is expected to be a key enabler of practical theory-based tools de-

velopment. All theories are limited. RODS, HASTI, and CoSTH provide a basic theoretical infrastructure

for making interesting cognitive support arguments, but they cannot answer all questions. Sometimes

user studies are needed. But the theoretical framework can kick start the user study by allowing the re-

searcher to focus on answers to specific questions pertaining to cognitive support. This chapter explores

this possibility by using a field study of software development as a testbed for evaluating various obser-

vational techniques. The aim is to provide some insight into how cognitive support theory can be applied

in realistic tool development contexts. It provides an initial demonstration of how claims can be made

about cognitive support, how that support can be observed and measured, and therefore how claims can

be empirically validated.

1.2 Overview of background sources

This dissertation is focused on the “big picture” concerning cognitive support theories and their appli-

cations to real analysis and design. This necessitates drawing upon a very wide range of prior work. It

would likely have been much simpler to target one particular, restricted cognitive support issue. Then a

much smaller selection of prior works might be used as building materials. However simpler is not always

better; integration is hard but necessary—especially if the results from other fields are to be made usable

and palatable for SE. As a result, this work rests on the shoulders of a veritable academy of researchers

from cognitive science, psychology, and HCI.

Four main sources or prior works are distinguished. The first is basic cognitive science and psychology,

particularly DC work and work on the psychology of software developers. These substantially inform the

modeling work of Chapters 4, 5, and 8. They also are used as the basis for the explorations in empirical

methods from Chapter 9. The second main source is from applications of psychology to HCI and sys-

tems design. These are relied upon when extracting the basic foundations for understanding support in

Chapter 4 and 7. The third main source of prior research is work on applied theory-building. Ideas from

past theory-building activities used as a basis for Chapter 2 and 7. The final main source of prior work is

the SE tool research literature. The literature contains a wealth of tool ideas which are used pervasively

throughout to ground the discussion in the particular domain of application. The collected wisdom of

1.3. OVERVIEW OF CONTRIBUTIONS 11

the field is relied upon in order to “calibrate” the theory building effort: it generates the research prob-

lems to solve, establishes the requirements for theory building and theory application, and is used as an

initial “check” to make sure the applications are helpful and make sense. The cognitive support theories

and applications methods would not exist without the prior work in cognitive science, HCI, and related

disciplines. Likewise, the suitable application of such theories to SE problems could not have been made

without the past work in SE.

1.3 Overview of contributions

The contributions of the dissertation can be categorized according to the chapter contents. In addition,

the contributions are additionally classified into “core” contributions and “side effect” contributions. The

core contributions reflect the dissertation’s main research questions. The side effects contributions are

ones that needed to be made in order to answer those main research questions. It would have perhaps

been preferable not to need to make these side effect contributions but, on the whole, the contributions all

fit tightly together.

The contributions are broken down into theory building, theory application, and survey contributions.

Each contribution is labelled with its status as a core (�) or side effect (�) contribution.

Theory Building

(�) Vision for tools research. A vision of tool research is provided in Chapter 2. This vision suggests

how tools research can be guided by cognitive support theories. Such theory-guided research may be

able to resolve several significant inadequacies of current research methods, including the difficulties

in comparing designs, constructing and evaluating claims about tools, and establishing what the

proper burdens of proof should be for tools researchers in SE and CS.

(�) Integrated and simplified cognitive support framework. In Chapter 4 and Chapter 5, a compu-

tational foundation is given for explaining cognitive support. This foundation is given in terms of

DC theories. There are two critical parts of the framework. The first is a principled decomposition

of the meaningful ways of performing comparative analysis of cognitive systems by way of evalu-

ating differences according different support principles. The second is a method for using such an

analysis for generating arguments about how artifacts provide cognitive support. Neither the ways

of comparing joint cognitive systems, nor a principled way of generating arguments have been ad-

equately articulated in prior work. Cohesive integration and simplification for non-specialists has

been a particular problem in the past.

(�) Cognitive support arguments. Chapter 6 presents an organized collection of theories of cognitive

support. These theories are abstract and reusable (generalizable) arguments about how artifact fea-

tures lead to cognitive efficiencies. Although all of these arguments can be found elsewhere in some

form in the literature, no work has provided a framework for treating them in a uniform and in-

tegrated manner. Using only RODS and HASTI, many prior arguments can be directly generated.

1.3. OVERVIEW OF CONTRIBUTIONS 12

This work shows that support can indeed be treated with a minimum of underlying theoretical ap-

paratus. Consequently, this work makes a statement about cognitive support itself: it shows that the

complexities of support reflect the complexities of the cognitive systems involved—that cognitive

support is complicated because of the way that simple supports can be composed and arranged.

Although similar theoretical frameworks and support analyses exist, I know of no work showing

that such a wide variety of cognitive supports can be explained by appealing to a small set of funda-

mental principles. Secondarily, this work demonstrates that the variety of cognitive support types

can be generated by a few simple support principles in combination with models of cognition. That

is, a broad range of specific cognitive support explanations can be generated from first principles—

psychological and computational.

(�) Unified DC framework for cognitive support. DC is a promising theoretical framework, but it is

inhomogeneously presented, and it has a relatively weak tradition for modeling how cognition is

distributed between human and artifact. That is, it is not yet in a “polished” enough form for wide

use in SE. Chapter 4 extracts a focused portion of ideas from DC and related literature. Chapter 4 and

Chapter 5 add to the existing DC modeling repertoire. Chapter 4 also takes the mechanisms used in

traditional cognitive science to build generalizable models and expands them so that generalizable

models of joint human–artifact cognition can be constructed.

(�) Unification and comparison of cognitive models. Cognitive models abound, and few principled

ways exist for unifying them. Chapter 5 provides one way of unifying several previously disparate

model types. The key innovation is a way of separating out distinct modeling aspects and then

mapping between them. HASTI is the decomposition and mapping approach in question, and it

allows many different modeling traditions to be discussed in unison.

Theory Application

(�) Cognitive support analysis of software comprehension tools. Many software comprehension tools

are proposed and evaluated without adequate justification of their claims for support. This omission

makes it impossible to engage in any principled analysis about what features offer which support. A

lack of theory-based analysis hinders tool comparison, empirical validation of claims, and future ap-

plication of the ideas embodied in the tools. Chapter 8 provides a theory-based analysis of cognitive

support using the theories presented in other chapters. It fills in the missing support argumentation.

(�) Design implications from theory. Generating good design implications directly from psychological

theory is uncommon. Many design implications are derived indirectly by using theories to indicate

common maladies (e.g., cognitive overload), and then using design experience to suggest possible

resolutions. Chapter 7 attacks the problem of generating design implications by showing how the

cognitive support framework provides: (1) a “scaffolding” resource for structuring early design, and

(2) a way of reasoning forward from the existing to the possible, that is, from existing systems to new

ones.

1.3. OVERVIEW OF CONTRIBUTIONS 13

Survey

(�) Review of cognitive support research. Research on cognitive support has been widely scattered,

with little or no cross-discipline or cross-ideology unification and comparison. Chapter 3 adds a

broad review of some of the core ideas about how artifacts can support cognition, a review of re-

search paradigms which have been applied to understand cognitive support, and an overview of

many research disciplines that have independently been researching cognitive support. This con-

tribution demonstrates that there is a collection of common phenomena that can—even should—

become the subject of a domain-independent research discipline which seeks these out, and attempts

to explain them.

It may surprise some readers that part of Chapter 4, and most of Chapters 3 and 5, are considered pe-

ripheral to the main dissertation questions. One should note that although the side effect contributions

do not directly address the dissertation’s main questions, these contributions are neither unnecessary

nor minor. Designating these contributions as side effects merely reflects the theoretical gap between

the dissertation’s pragmatic goals and the current state of the science of cognitive support. To build the

desired application-oriented theoretical work it was necessary to first shore up the required theoretical

background.

Chapter 2

The Need for Cognitive Support

Theories

A successful system demonstrates nothing other than its own success, unless the possibly im-

plicit psychological theory underlying the design is articulated.

– Alex Kirlik, “Requirements for Psychological Models to Support Design” [348], pg. 72.

�he field of software engineering (SE) is in need of a research stream studying cognitive support in soft-

ware development tools. SE, for the most part, just does not yet realize this. It is primarily this lack of

awareness that makes this chapter necessary. Subsequent chapters will propose theory-based resources

for studying cognitive support in software development tools. These resources are intended to be an ini-

tial seed for more thorough and ongoing studies of theories and models of cognitive support. Although

this initial seed is a key contribution of this work, if the only issue was the technical (albeit difficult) prob-

lem of producing a decent initial theory, that theory could be presented immediately and little further

discussion would be necessary. But the reality of the situation is that, within our field, little attention has

been paid to the question of how to properly research and develop cognitive support in tools; many times

the cognitive issues are ignored and avoided. If the importance of a cognitive support research stream

is not fully realized, then no matter what theories are proposed, it seems likely that no actions will be

taken to rectify the situation. So in addition to describing an initial seed of a theoretical framework, some

elaboration is needed on the research context needed for this seed to grow and evolve.

There are many reasons for why cognitive support is so poorly respected. One of the main contribut-

ing reasons appears to be social and cultural. Specifically, it seems to be a result of the ways that tools

are perceived by researchers and developers, and the way that cognition-related research is understood

and conducted. On one side of the spectrum of opinions are technology-oriented researchers who have

little background in—or patience with—psychology and cognitive science. Some of these view social sci-

ence related work as “soft” and mostly irrelevant or even unscientific. Such researchers may not easily

14

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 15

be persuaded that knowledge of cognitive science and psychology could or should be integrated into the

practice of SE and CS research. Sometimes it is assumed that tools can be adequately developed or eval-

uated in the absence of psychological knowledge. These attitudes were known at the dawn of modern

HCI two decades ago [419] and they are prevalent to this day. Nearer the other end of the spectrum are

those who are convinced that nearly any attempt at understanding the cognitive activities of developers

will ultimately be useful and should be welcomed. Neither side has made much of an effort to further

argue their positions (except to their peers), perhaps because of their blind convictions that psychological

research will turn out to be either useless or almost unfailingly useful. In reality both positions hold some

grains of truth and the topic deserves further debate and elaboration [494]. Exploring the debate has the

capability to clarify our goals, to expand on the differences between various approaches to understanding

cognitive support, and to provide a vision for the future of research in the field. A healthy field of study in

cognitive support should be able to produce arguments to temper unrealistic optimism about the possibil-

ities of understanding cognitive support and yet make a convincing case for its pursuit. What problems

can theories of cognitive support address? What sorts of things need to be said? What sorts of issues are

outside the area of concern? Who builds the theories and who uses them?

The remaining part of this chapter consists of a debate on the possibilities and roles of theories of

cognitive support in SE and CS research. The debate is structured around a set of topic-defining ques-

tions: Is cognitive support that interesting a problem for SE? Do we need theories of cognitive support?

Who should build them? What should theory-related research be like? These questions are asked and

subsequently debated in separate sections. In Section 2.1.1, the focus is on evaluating current research

practice. On the whole, many of the most problematic issues can be traced to a lack of good cognitive sup-

port research. In Section 2.2 and 2.3, the question of how to remedy these problems is addressed. From

these debates the picture that emerges is of a discipline that is definitely concerned with cognitive support

and which, for many reasons, has not been able to properly research cognitive support due to the lack

of a suitable theory-guided research stream. Section 2.4 argues how theories of cognitive support might

best be developed, thereby providing a philosophical vantage point for the remainder of the dissertation.

Section 2.5 summarizes the debate.

2.1 A Case for Cognitive Support Research

Computer scientists make broad claims for the simplicity, naturalness, or ease-of-use of new

computer languages or techniques, but do not take advantage of the opportunity for experimental

confirmation.

– Ben Shneiderman, “Software Psychology” [582] (1980), p. xiii

Is cognitive support an important research focus for SE and CS? Should researchers be more concerned

with understanding cognitive support? The following two subsections argue that the answer is “yes” on

both accounts. Section 2.1.1 argues that the subject of cognitive support is a critical but under-appreciated

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 16

part of SE and CS research. Section 2.1.2 argues that the call for more explicit theoretical research on

cognitive support is reasonable since it is simply a call to render our current practices more principled

and scientific.

2.1.1 Cognitive Support—the Other 90 Percent
It is curious to observe how the authors in this field [programming logic], who in the formal aspects

of their work require painstaking demonstration and proof, in the informal aspects are satisfied

with subjective claims that have not the slightest support, neither in argument nor in verifiable

evidence. Surely common sense will indicate that such a manner is scientifically unacceptable.

... The deplorable situation of programming logic outlined here is part of a much more widespread

pattern of attitudes and manners prevailing in academic computing and mathematics, that tend

to accept sales talk in the place of scientifically sound reasoning.

– Peter Naur, “The Place of Strictly Defined Notation in Human Insight” [440, pg. 477]

There is an old tester’s adage that goes as follows: “The first 90% of software development consists of

understanding what to program, writing the program, and documenting it. The last 90% involves testing it.”

For many years, software design and construction had received a great deal of attention at the expense

of other critical aspects of software development like maintenance and testing. The gist of the adage is

that the easily apparent difficulties of one particularly well-advertised part of a problem may obscure the

difficulty of the other parts of the problem. To testers, the difficulties of designing and coding software

is given too much emphasis. They might argue that developers need to change their attitude towards

testing. Moreover, the saying issues a warning: woe to those who fool themselves into thinking the job

is done when development ceases—the “remaining” task of testing may be the back breaker. Whether or

not the adage is strictly true for testing, some similar sentiment certainly applies regarding how cognitive

support is treated in SE.

In the world of software development tools, the lion’s share of the attention is focused on providing

automation and clear formal precision. Computing science has developed numerous formalisms, logi-

cal frameworks, languages, and computational techniques that have been brought to bear on formalizing

development problems (specifications, documentation, design, etc.), and on automating parts of the de-

velopment. For instance, parsing, semantic analysis, and translation techniques have made possible the

modern compilers that translate code written in “high-level” languages that humans write into the byte

sequences that computers understand. Compilation is, in fact, one of the our greatest achievements in au-

tomating software development. It has to a large degree eliminated the tedious and error-prone process

of programming in assembly language, and thus has led to tremendous productivity gains [78]. How-

ever automation is essentially achievable only for those parts of software development that are within

the reach of our current capabilities of formalization [695]. Unfortunately our reach does not extend far

enough. True, many of the automatable tasks of software design are actually the tedious, mundane, and

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 17

repetitive parts. This is simply because the regular and well-structured tasks are the most easily automat-

able. This fact is quite fortuitous since those sorts of activities tend to be exactly the tasks that developers

most wish to avoid. Of course, for many of the less easily formalized tasks, artificial intelligence (AI)

techniques can be employed. But even with these, it is widely acknowledged that the tools do not work

alone, and that significant intervention is required on the part of the developer (e.g., in reverse engineer-

ing [524, 642]). Despite the strong focus on formalization and automation by researchers, most software

development activities are not in immediate danger of being fully automated [78, 378].

Even though automation and formalization are clearly important foci for tools research, it is entirely

possible to concentrate too steadfastly on that goal. In fact, successful automation invariably exposes

its own weaknesses. Brooks argued that good design removes inessential complexity [78]. By a similar

argument, automation removes unproblematic work. Thus the development of better and better forms of

automation slowly picks away at the more easily automatable parts of the problems—we would hardly

expect anything else! Our capacity to formalize and then automate is mostly limited to the routine and

predictable [371, 695]. These limitations tend to ensure that, as Landauer put it, the “easily reached fruits

have been picked” [371, pg. 6]. What is left for the developers? The mentally challenging, creative, and

error-prone parts. Referring back to the old tester’s adage, the parts we should expect to automate will

constitute only the first 90% of tool support issues. The developers are stuck with the other 90%. And this

other 90% corresponds to the most difficult, most ill-defined, and most non-routine parts. These are the

thinking parts of software development—the essentially cognitive work.

Consider again the example of automatic program translation (compilation). Compilers have al-

most completely eliminated the work of translating code from human-level programming languages to

machine-level, but what tasks are still left for the developer to perform? Designing, programming, debug-

ging, and testing. Successful automation etches away the routine and well-structured problems, leaving

behind the ill-defined and poorly understood ones. Support for this ever-present residue is cognitive sup-

port. While automation hogs much of the spotlight, cognitive support lurks as a problem that may easily

be its equal. And woe to those who ignore it. Automation-oriented research is not enough; cognitive

support research is needed. Has this need been met?

Considering the significance of cognitive support for tools research, shamefully little explicit attention

is given to it. It is fair to say that we have barely scratched the surface of that last 90%. An adequate

understanding of cognitive support in software development requires, at minimum, attention to two1

aspects of cognition2 in software development:

1. COGNITIVE PROCESSES: The cognitive processes and resources that are important to software de-

velopment must be understood. It is not adequate to treat these as unknowns or as mysterious

quantities. After all, the thinking done by developers is, in practice, never totally eliminated, only

1Some might complain that my dichotomy between cognitive processes and cognitive support is false, that is, that
all cognition is supported by external artifacts, people, etc. This point is a good one but irrelevant: the categories
describe research emphasis (developer psychology vs. support principles) rather than research topic (cognition).

2My attention here is focused on tool–user relationships that are related primarily to individual cognitive psychol-
ogy, although obviously other aspects of cognition (e.g., organizational and social dimensions) are clearly relevant
also (see e.g., Carroll [103]).

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 18

changed in form [470]. Thus no matter the tool, a human almost invariably operates it and so the

cognitive processes of doing so must be appreciated.

2. COGNITIVE SUPPORT: The principles and means by which cognitive processes are supported or

aided by tools must be understood. It is not enough to study cognitive processes without taking the

next step of understanding how tools beneficially alter them (but not replace them). Learning only

about existing development processes sheds little light on how to change them with tools.

Speaking informally, one could say that the study of cognitive processes is concerned with elaborating

requirements for tools that can support cognition, while the study of cognitive support is concerned with

the forms of the solutions, and with the ways of increasing the level of cognitive support.

Addressing both cognitive processing and support is challenging and, in the case of software develop-

ment tools, exceedingly rare. Cognitive support, in particular, has not been given its fair share of attention.

This contention may be argued by considering how infrequently (1) tools are thought of in terms of as-

sisting the harder parts of development like human problem solving, (2) cognitive processes are explicitly

considered or studied, and (3) cognitive support is explicitly considered or studied. On all three counts,

attention is lacking.

Consider the following characterizations of software development tools:

The main [software engineering environment (SEE)] requirements from a software application developer’s

viewpoint are that: ...The SEE must be seen as providing help with many of the routine and mundane

tasks associated with software development (for example, in producing documentation) ... The SEE must

not remove or hinder the creativity and innovative aspects of software development, which are crucial to

the enjoyment (or job satisfaction) of most software application developers. [82, pg. 33]

And

Software development tools are designed to assist software developers in producing quality products in

minimum time. Such tools [provide assistance] by enabling their users to perform their creative intellectual

activity under optimal conditions, by preventing or detecting human errors as they occur, and by relieving

users of routine mental and physical activity associated with the productive process. [644, pg. 109]

These portrayals reveal certain common attitudes towards tools. Tools are not understood as actively

helping developers in their “creative intellectual activity”; instead, they merely “enable” these activities.

By the phrasing of these sentences one gets the feeling that what constitutes the “creative intellectual

activity” is quite outside the area of concern for tool developers—that it is something sacred, or something

to be left alone. For the sake of contrast, consider the following alternative characterization of software

development tools:

Software development tools aid developers by participating in their thinking and work. This assistance can

include helping them make complicated decisions in the context of uncertainty or restricted knowledge,

helping them track their thought processes, assisting them in evaluating program quality...

The point here is not that either of the first two views are wrong, but that their definitions illustrate a

common (but by no means universal) set of attitudes concerning the importance placed on understanding

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 19

how developers think, and the roles of tools in supporting these thought processes. In particular the issue

of cognitive processes is marginalized, and the concept of support by tools is limited to be automation—

especially of the mundane parts of development.

Although it is under-represented, there certainly does exist excellent work that considers the cognitive

processes of software development. There has been a good deal of work on trying to determine “the”

process of software comprehension, for example (e.g., see von Mayrhauser and Vans [674] as compared to

Good [250]). However even in cognitive-oriented work it is entirely possible to methodically study cognition

in software development and yet fail to adequately advance our understanding of how to support these

processes. Some research, for instance, is focused on improving cognitive theories and models of software

developers without regard to the tools involved. In these sorts of works the central issue is typically the

“inner” environment of the comprehender’s mind rather than the “outer” tool context, or how the inner

environment relates to the outer one [348]. In software comprehension and maintenance research the use

of such “inner” cognitive models is modestly popular [675]. But these studies of cognition have failed

to shed much light on the principles of cognitive support. It is difficult to see how an “inner” model or

theory can shed light on the principles of cognitive support. What can be known about the impact of tools

on cognition if the tools are assumed not to impact it?

Thus, the problem is not simply that cognition is unstudied, but that most of the cognition-oriented

work in the field builds knowledge about developer behaviour or developer psychology, not knowledge

of how tools mediate, modify, and support such behaviour. When models of developer behaviour are con-

sidered, they are typically believed to apply across many—if not all—development environments without

significant modification. As a consequence, they have no power to make statements about cognitive sup-

port provided by the tools. To say something interesting about cognitive support, the models would need

to indicate how a change in tools or development environment changes cognition. For a model to be

able to do this, it is logically necessary to take into account some significant aspects of the developer’s

environment. Too few actually do so. This complaint was strongly voiced by Bellamy and Gilmore when

discussing their studies of planning and programming strategies:

To understand the psychology of complex tasks such as programming, we need to consider planning

strategies in particular task contexts. Theories of planning and problem solving have spent too long with

their heads in the sand, ignoring the role the external world plays in determining behaviour. If psychology

is going to make significant contributions both in theoretical and applied areas of research, we need

investigations of how features of the external world determine behavioural strategies. Only then will we

be able to produce artifacts that support effective task strategies. [41, pg. 69–70]

Much more is said about this issue in later chapters. But for now, the goal is only to establish that the topic

of cognitive support has often failed to receive due attention, so let us only consider an example and some

of the implications.

A raison d’etre of a cognitive model is to formalize knowledge about cognition. Cognitive models

enable one to think and reason about cognition. A raison d’etre of cognitive support theories is to for-

malize knowledge about how to support cognition. Cognitive models do not directly allow reasoning

about support. Thus, the failure to systematically model and explain cognitive support should imply that

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 20

researchers must fall back on background knowledge and informal reasoning to understand how tools

support cognition. As a case in point, let us consider the body of work by von Mayrhauser and Vans

on the “information needs” of software comprehenders. von Mayrhauser and Vans developed a model of

software comprehension [674,675], which they applied to analyze comprehension in a variety of tasks and

environments [654, 671–673, 676, 677, 679, 680]. They wished to use the knowledge gained in these sorts

of studies towards developing better tools. This case is of interest not because the research is poor (it is

cited quite widely and positively), but because it is an example of research on cognition that did not really

study cognitive support. What kind of knowledge did they discover? Perhaps the main contribution is

an analysis of “information needs” [654,668–670] for software comprehension, that is, a description of the

sorts of knowledge that software comprehenders seek. This is what I would call “comprehension process”

knowledge, not “comprehension support” knowledge. It makes a statement on the cognitive activities of

comprehenders but it does not say how artifacts make these activities better in any way. This limitation

stems from the fact that their model is an “inner” model only: it works as well for someone with a packet

of printouts as for someone in front of a computer full of sophisticated software. They do go on to state

that these information needs can be met by a variety of tools, and they do make many specific tool sug-

gestions [668, 670, 681]. But at the moment, the question is whether they learned about support or about

comprehension. What did their information needs analysis say about support? What was the role of their

model and their studies? And what resources did they employ to reach their suggestions for tools?

Their information needs analysis said little about the possible means of supporting comprehension. In

their earlier work [670], the sorts of tool suggestions they made were primarily along the lines of analy-

sis, search, filtering, and display mechanisms for various types of program information (e.g., a hypertext

browser). This is perhaps understandable given their focus on information seeking. But consider the

following: how and why did they infer, in effect, that because software comprehenders are seeking par-

ticular pieces of knowledge then the main role of tools is to satisfy that knowledge (provide information)?

If comprehension is to be made easier, maybe tools should seek to eliminate the needs for particular forms

of knowledge, and in that way avoid comprehension problems? Perhaps comprehenders should also be

providing knowledge to tools? The point here is that nothing in their models or studies prompted them—

or prevented them—from making these sorts of suggestions. Their model and studies are neutral with

respect to forms of cognitive support. One reasonable way of explaining their list of tool suggestions is

that they used their background knowledge (see Section 2.1.2) about common forms of tool support and,

to address the point of this section, their models did not provide them with an analysis of the support

provided by their various suggestions, nor did it greatly help to generate their list. This complaint in no

way suggests that the above sort of work is not valuable. It just points out that, even in cognition-oriented

research, work in this field has for the most part failed to methodically investigate cognitive support. Even

the most outstanding and methodical work on cognition can fail to adequately study cognitive support.

The pattern illustrated by von Mayrhauser and Vans’ information needs is common for many cognitive-

oriented studies concerning development tools. The general form is to (1) recognize and model cognitive

processes (e.g., common action sequences, or the knowledge used by comprehenders), and then (2) look

elsewhere for support ideas, often with the intent of automating some portion of it. Weiser, for instance,

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 21

discovered a characteristic form of causal reasoning that is used during debugging [692] (backwards data-

flow following) and this resulted in research on automated slicers [693]. Singer et al. [596] learned about

and modeled activity patterns during software maintenance, but got their main design ideas through

brainstorming sessions rather than directly from models of the activity patterns themselves [596] (see also

Section 7.1.2). The overall pattern is one of studying cognition during software development, stopping

short of actually studying cognitive support, and then having to fall back onto reasoning informally with

background knowledge when suggesting or designing new tools.

Returning to the question this section asks, we have seen that cognitive support is, as a research topic,

under-appreciated and insufficiently studied. Cognitive issues are often bypassed entirely; even when

developer cognition is studied, the subject of cognitive support is typically ignored, or too frequently

amounts to falling back on background knowledge and relatively simplistic design reasoning.

2.1.2 Folk, Tacit, and Science Knowledge
The intuitions of gifted and experienced designers typically play a crucial role [in artifact devel-

opment]. By drawing on their experience, good designers become astute at interpreting user

difficulties and relating them to problems in the design of the artefact and its interface. The tacit

acquisition and application of knowledge may serve the purpose in some design contexts, but

requires skill and judgment that is not easy to develop and to share. This motivates the search for

supporting techniques and frameworks that can make the analysis of cognitive issues in artefact

and interface design more systematic, and results of the analysis more accessible for recording,

exploring and communicating.

– Benyon et al., “Interactive Situation Models for

Cognitive Aspects of User-Artefact Interaction” [45], pg. 357.

Research in our field calmly hums along without much consideration of explicit theories of cognitive

support. Despite this, we have managed to produce tools that appear to have dramatically improved

the cognitive work of developers. Historically speaking, this advancement is entirely unsurprising. It

has been frequently noted in other applied domains that technology often advances without apparently

needing a secure, explicitly theoretic scientific foundation [93, 102, 106, 455]. For example, bridge build-

ing was successfully practiced before many of the basic mathematical techniques of structural mechanics

became mature [579]; a similar story holds for the steam engine [106]. As Sutcliffe et al. [626] note, “it is

a typical pattern in HCI for new ideas to be first codified in exemplary artifacts and only later abstracted

into explanations and principles” [626, pg. 214]. But even if it is historically unsurprising, it is surely still

curious—amazing even—that we could have been so successful. Is it not a little like having painted the

Mona Lisa without ever having sight? How did (do) we do it?

One of the first things that must be realized about tools research in SE is that we already have a great

deal of knowledge about cognitive support—but that most of it is tacit or folk knowledge. That is, much

of our knowledge is developed through long-term and intimate exposure to the problems of software

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 22

TACIT

EXPLICIT

Engineering
Craft

knowledge

time

Figure 2.1: Knowledge explicitness and its relation to discipline maturation

development, and as such it remains to a great extent unarticulated, unformalized, and unsystematically

developed [102, 579, 608]. Most of the researchers in the field have had extensive training in software

development, are accomplished developers, and have many years of hands-on experience in both using

and designing tools. Knowledge developed through this sort of extensive practice is often called “craft”

knowledge. Enterprises that tend to have such inarticulable experience, and that tend to hand down that

knowledge through long enculturation processes are called “craft disciplines” [391]. As craft disciplines

mature they frequently are able to make the tacit, craft knowledge explicit and directly conveyable in the

form of theories, models, and rules. Before such time, the wisdom tends to be predominantly folk or craft.

The basic progression from craft to engineering through the formalization of knowledge is illustrated

in Figure 2.1. Knowledge quantity is represented by height of the bar and the makeup (explicit vs. tacit) of

that knowledge is indicated by depicting a split between tacit and explicit knowledge. In the diagram, the

tacit knowledge is reduced not by forgetting things, but by converting it into explicit knowledge. Science-

based engineering disciplines are recognized as having significant explicit content [102,391,579], although

practical, experience-based knowledge is always present and important [594, ch. 5]. Nevertheless, during

the maturation process some of the tacit knowledge is converted into explicit, articulated knowledge. This

knowledge is applied in increasingly controllable and predictable methods. As Long and Dowell say:

...Craft disciplines give way to engineering disciplines: personal experiential knowledge is replaced by

design principles; “invent and test” practices (that is to say, trial-and-error) are replaced by “specify then

implement” practices. [189, pg. 127]

Where along this progression is tools research in SE? To a significant extent, it is currently a craft

discipline regarding our knowledge of cognitive support. Many of us are effectively engaging in applied

amateur psychology and social science, whether or not we consciously think so. The tools we build carry

significant psychological and sociological impact, altering how, for instance, problem solving in program

development is being done.

How has this craft discipline evolved? In the past, when new tool ideas were being reported, simple

sorts of argumentation and empirical evaluation were normally considered sufficient. This was partly

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 23

because the primary focus had been on the technological innovations presented by the tool’s design [263,

640], and partly because little emphasis was placed on greater formality or rigour in either the argumen-

tation or evidence [724]. Moreover, many authors were greatly helped by the simple fact that, after all,

most tools are fundamentally more similar to existing tools than they are dissimilar. Almost all tools are

complicated entities with features that are similar in hundreds of ways to dozens of other tools.3 Review-

ers of papers that introduce new tools often would have used many similar tools and could therefore

intuitively grasp many of their advantages even if these advantages are never fully articulated. Such

situations greatly lessen the need for authors to fully articulate and test the reasons why their tools are

beneficial: they can rely on the reader’s familiarity with the tools and their cognition-related benefits. Con-

sequently, in the past the main emphasis was naturally directed to the technical innovations rather than

to the many other features for which the community had already achieved consensus as being beneficial.

There was little impetus to develop clearly defined terms and concepts concerning cognitive support, and

little emphasis was placed on more formal, rigorous testing of the basic support ideas. In addition, there

was substantial cultural bias against social sciences-related issues in academic computing regarding tool

design (e.g., see Curtis [158], Curtis et al. [159], or Green [263]).

Consider two simple but illustrative historical examples of the above principle. Early programming

environments were batch-oriented rather than “interactive”, so that programmers normally wrote pro-

grams on paper, submitted them to a keypunch operator, and then (much later) collected the output as a

printout. Later on, when computing became “online” with the advent of cheaper time-sharing systems

(and, subsequently, with personal workstations), new forms of interaction were made possible, such as

direct manipulation environments using mice. Many of these interactivity innovations were related to

making better human–computer interaction rather than merely computing more effectively. When these

innovations were first introduced, their basic forms and their potential benefits were not well known, so

authors promoting them sometimes made considerable efforts to describe their basic features and to relate

these to the relatively “soft” issues of improving human–computer interaction. For instance, Baecker [19]

needed to argue that the close interactivity of time-sharing systems permitted qualitatively different and

better debugging since one could interactively examine the data as the program ran. Similarly Teitel-

man [636], writing in an era before modern windowing environments were commonplace, spent a con-

siderable amount of time describing what a mouse was, and how multiple windows on one screen could

be useful to a developer. Nowadays, to our ears these explanations may seem excessively detailed4—

almost comical—and virtually nobody would waste time now in explaining such features in detail or in

debating their possible advantages over batch-oriented, text-only interaction. The original papers argu-

ing these basic concepts—which must surely be considered important bases for software development

tool research—are rarely ever even cited. Even if niggling questions remain about superiority of the new

tool features (e.g., are WYSIWYG editors really better? [95]), they are understood by the community as

3In this domain, if a tool appears simple (e.g., grep) it is almost surely because it is a tool embedded within a
larger collection of tools (see Lethbridge et al. [381]).

4For example, Teitelman says “... the mouse is a small object (about 3” by 2” by 1”) with three buttons on its top ...
The user views his environment through a display consisting of several rectangular display “windows”. Windows can
be, and frequently are, overlapped on the screen.” [636, pg. 159].

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 24

being generally beneficial and now our interests lie elsewhere. We have remembered the lessons—made

them part of our craft knowledge—and have moved on. Similar things happened for other support ideas.

If we remember our lessons, how is this learning achieved? One way craft knowledge is not preserved,

generally speaking, is through the development and propagation of explicit explanations of why tool fea-

tures are useful. Instead, there are two other methods that do not involve explicit theories of cognitive

support. The first is within the tacit understanding of researchers that is won through experience. It is ex-

ceedingly unlikely, for example, that any tools researcher in SE would not have had significant experience

in using multi-tasking windowed environments. Many have even experienced great discomfort when

forced to do without it, such as when being forced to switch to single-tasking environments (e.g., PC-

DOS) that make it impossible to rapidly switch between applications. The value of effective multi-tasking

environments seems hardly worth explaining. Other ideas are similarly accepted through exposure.

The second main store of cognitive support knowledge is actually within the tools themselves.5 As

Carroll et al. noted [104, 105], artifacts embody a type of wisdom about the psychology of their users and

the activities they engage in. The properties of a multi-tasking windowing environment says something

about the problem-solving methods of its users. For instance, the utility of having separate windows

that make it easy to switch focus implies a need in the user (or their work context) to switch attention

rapidly. Automated type checking in compilers make implications about the types of errors committed

by programmers. The ubiquitous “undo” feature speaks volumes about slips, errors, and exploratory tool

use. It is hard to overemphasize the importance of tools as storehouses of support knowledge. When

designing new tools, designers frequently begin with a familiar (i.e., “exemplary” [626]) artifact form as a

starting point and modify it to suit the situation. Singley and Carroll called this sort of designer reasoning

“hillclimbing from predecessor artifacts” [598]. For example, when envisioning a tool’s features we might

begin thinking of it as being “hypertext-like” (e.g., when developing a code browser [596]), and proceed

by using our experiences with hypertext systems. When copying existing successful tools we are doing

nothing less than reusing the knowledge about successful cognitive support that is tacitly encoded in the

tools themselves.

If much of our knowledge is embodied in tools, how do we create it in the first place? One possibility

is that it is to a great extent accidental: good tools can be built without knowing, a priori, if or why they are

good (this thesis is expanded upon in Chapter 7). That is, the psychological and supportive knowledge

embodied in a tool may not have been known to its designer in advance [110]. Iterative testing weeds

out features that incorrectly understand the psychology of the user—it separates “nuggets of gold” from

dirt [370]. This means that even pure guesswork (or, somewhat more charitably, a “lucky hunch” [370])

is occasionally rewarded [189]. Furthermore the “lucky hunches” need not be all that lucky: because tool

design is normally highly iterative [251], big guesses can be broken up into a sequence of tiny guesses

that can be checked before proceeding. Ignorance of the principles of cognitive support therefore presents

no absolute barrier to development of better forms of tools, so long as good designs are preserved and

accumulated within the communal storehouse of known tools (see Chapter 7). Consequently, better tacit

knowledge about the principles of cognitive support can accumulate without much explicitly theoretical

5Or in secondary artifacts such as descriptions of tools or even patents [510].

2.1. A CASE FOR COGNITIVE SUPPORT RESEARCH 25

understanding. And our main method of accumulating these principles currently is within tools. When

these tools are copied, the good ideas are propagated.

Nevertheless, SE researchers may not wish to rely on lucky guesswork. Researchers can make edu-

cated guesses using whatever sources of knowledge are available to them. Good guessing results in faster

convergence to good designs. To make better guesses, SE researchers can watch people work and try to

understand their thinking processes, or try to introspect their own thinking processes and then reason

about plausible tools to support them. They can perform case studies and visit or collaborate with work-

ing programmers in the field in order to observe developers at “authentic” work. In fact, this is what

many tools researchers currently do. They are folk psychologists, weekend anthropologists, armchair

sociologists. Case studies and expert opinion based on deep field experience is heavily valued within

the community. Moreover, a form of experimentation is widely used. Researchers make changes to a

prototype tool and observe how developers react to it, soliciting feedback reports from users. In short,

SE researchers can and have used many of the tools of anthropologists, sociologists, and psychologists,

however in a much more informal and a less rigorous or controlled manner. The distinction between an

acknowledged science discipline and these sorts of craft disciplines can be, in some respects at least, sur-

prisingly small [110].6 The claim that cognitive support is not studied at all is therefore quite incorrect, but

the characteristics of that study is of a craft-like discipline, not a science-like discipline.

In summary, tools research in SE has historically managed to creep along as a craft discipline. Knowl-

edge about good support ideas is created by intuition and guesswork, this knowledge is encoded and

passed down in the form of tools, and the knowledge is reused by adapting existing tools during design.

Knowledge about cognitive processes in software development—and how to support these—lies latent

within these tools. An appreciation of these principles is gained through first-hand experience with the

tools and in-person observation of their use. The craft discipline therefore resembles, in certain ways, an

applied science (or a design science [110]), however the representations of knowledge are less explicit, and

the methods lack proper rigour. The call for more explicit investigations of cognitive support is nothing

more than a call to render our current activities more scientific—more principled.

6For an interesting take on the difference between science and non-science, see Sagan [556], particularly chapter
18.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 26

2.2 Problems of A Theory-Thin Discipline

At a recent workshop, a software engineer insisted that his only criterion for assessing what

psychologists had to offer was, would it save him money in development? To his ears, that was

no doubt perfectly reasonable. To my ears, it was a case of double standards. The software

engineering community sinks vast sums into systems such as CASE tools, based on collective

delusions about the nature of the design process. The community ought to be interested in

refining its beliefs and bringing them nearer reality. To ask an expert on thought processes to

give a financial estimate of the value to be gained from refining software systems is obviously a

piece of evasiveness.

– T.R.G. Green, “Why Software Engineers Don’t Listen

to What Psychologists Don’t Tell Them Anyway” [263], pg. 330.

Even if cognitive support has not been studied well enough, does tools research in SE really need new

theories of cognitive support? After all, we have has managed to proceed quite successfully as a primarily

craft discipline. So even if one were to grant that SE is fundamentally interested in cognitive support, it

still is important to ask whether theories and models of cognitive support are really needed. Perhaps the

status quo is fine?

A simple counter argument goes as follows: Why not try? There is very little to lose, and poten-

tially so much to gain. To some it might be tempting to leave the argument at that point, but it is much

more instructive to evaluate our existing research practices and consider some of the ways in which it is

problematic—or even strictly inadequate. Constructive criticism provides a more informative motivation

for improving the quality and character of our discipline. If we can identify our problems and trace them

to a lack of appropriate theories, then we may find that instead of being an unheralded dark horse, a

theoretical approach to cognitive support might be our most promising option.

Three points first need to be clarified in order to avoid confusions about the focus of this section. The

topic of this section is the practice of SE research. The first point of clarification concerns the relationship

between this work and HCI work. The field of SE tools research overlaps only partly with HCI (as well

many other fields like math, logic, psychology, etc.). To readers with strong HCI backgrounds, many of

the points brought up in the next section may seem familiar, but many of these points are not well known

in SE research circles and thus bear some repetition here. Furthermore, this section is more than simply a

review of HCI literature: I have attempted to directly relate the literature to SE research. Thus, although

there is some subject overlap with HCI, the specific viewpoint of the SE researcher slants the issues. The

second point is that it is desirable to distinguish between the topic or content of SE (or HCI), and the research

practices of SE (or HCI), by which I mean the research and publication activities of the participants in the

field. The subjects of HCI and SE may overlap even if most of the research practices do not. The final point

is that it is also desirable to distinguish between SE researchers and SE practitioners [93]. The latter are

normally more interested in making specific tools according to (as much as possible) known principles,

whereas the former usually build tools in order to discover new principles. To reiterate, the following

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 27

is primarily concerned with the research practice of the SE research community. Much may be gained by

further expanding the critique (e.g., to practitioners in SE or HCI), but that is left for others to do.

The key to evaluating research on cognitive support is to realize that the research programme in SE is

one that routinely trades in ideas, claims, and explanations of cognitive support. As a group we are inter-

ested in the question of how to constructively aid in the hardest and most cognitively challenging parts

of software development. We routinely strive to make software development easier while simultaneously

recognizing that some of the main bottlenecks are conceptual and cognitive in nature. This concern for the

cognitive aspects is clearly revealed in many of our research topics. Notations are evaluated as to whether

they are clear and easy to understand; tools are claimed to be natural, intuitive, easy to learn. Languages

are exalted as being easy to program in, or to comprehend [433]. Not surprisingly, many of our activi-

ties consequently involve talking and reasoning about psychological issues and cognitive support: when

trying to develop new technology to aid software development, when comparing different tools, when

evaluating and testing our ideas, and even when educating new legions of researchers. Part of our prac-

tice is, effectively, a dialogue concerning cognitive support. A push towards explicit theories is nothing

less than a desire to increase the precision and formality of the very activities we already engage in [102].

Insisting on theories grounded in scientific research methods is essentially a demand for rigour [101,370].

If explicit and science-grounded theories are lacking, we would expect to see problems in our research

programme that are symptomatic of a discipline that is missing the organizing influence that comes from

a strong science practice of modeling and methodically investigating the issues at the discipline’s core.

As the following sections argue, this is exactly what we find in the patterns of research in SE and CS

concerning cognitive support in tools. It is beyond the scope of this work to thoroughly discuss the

problems, but several important points will be touched upon. First the argument presented above—

that research centred on theories of cognitive support is consonant with the goals of science research in

computing—is expanded. Then some key difficulties in tool argumentation, evaluation, and design are

surveyed, and these difficulties are then related to the lack of suitable theories that could guide research.

This survey of problems in research practices is summarized in Table 2.1. The portrait that emerges from

the survey is of a field that faces troubles stemming from its lack of a theory-guided research stream.

ACTIVITIES RESEARCH PROBLEMS AND DIFFICULTIES

evaluation support claims are poorly articulated and tested

& “whole tool” testing is needed but is burdensome, problematic

testing tools researchers are forced to do cognitive science

analysis informal analysis suffers from concept- and lexicon-poverty

deep knowledge of psychology or cognitive science is often needed

design design is affected by theory too late, or not at all

Table 2.1: Summary of problems in SE research practice due to lack of cognitive support theories

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 28

2.2.1 Evaluation Problems: Simple Comparison
Although I could imagine a study to determine whether apples tasted better than oranges, I would

not dream of conducting it because I am fairly certain that “it would depend.”

– John Karat, “The Fine Art of Comparing Apples and Oranges” [479], pg. 265.

Ideas about tools are generated and need to be evaluated and tested. It might be supposed, for instance,

that a multi-focus “fisheye” interface would be beneficial for understanding software (e.g., SHriMP [621]).

How do we evaluate such ideas? What problems do we face in evaluation and why? In the following,

some of the most prominent empirical evaluation methods are explored through a sequence of scenarios

interleaved with discussions of the problems they illustrate. A summary comparison of these practices is

presented in Table 2.2, and the problems encountered in Table 2.3.

Scenario 0: Ad Hoc Evaluation

Elsie has an idea for a new program analyzer with a browsing interface for navigating the information

the analyzer extracts (a tool similar, perhaps, to SNiFF [1] or Rigi [426]). She has designed this tool

and built a prototype based on her belief that the tool can make it easier for programmers to understand

their code. How does she know her idea is any good? She might begin by arguing that software compre-

hension is hard and expensive, that tool support is therefore needed, that her tool incorporates some of

the functions (scrolling, search, etc.) which are clearly useful, and that her navigation interface is “nat-

ural”, intuitive, and easy to learn. As to how these features make program comprehension easier, she

could suggest that the interface exploits the “powerful mental capabilities of the user,” and that the tool

supports the user’s activities because they are functions needed by the user. She informally “tests” the

tool on some sample problems in order to iteratively improve her prototype, and writes up an experience

report.

Until fairly recently this level of justification might have been enough for Elsie, particularly because,

as I argued in the previous section, most researchers were primarily interested in the technological ad-

vances, and there was a great degree of consensus over the value of the main parts of the overall tool

and its environment. Recently, however, there has been increasing pressure to provide stronger theo-

retical and empirical evidence as to the quality of our ideas [640]. Elsie and her colleagues are wanting

better evidence and proof. One approach Elsie could try is a tool comparison in the style of validation

experimentation [724]. In this sort of experimentation one picks a performance measure of interest—total

maintenance time, for instance—and compares developer performance with differing tools. The aim is to

establish the relation between input variables (the tools) and output variables (measured performance). In

this type of work, models (i.e., mathematical formulas) that predict the relation are called theories [724].

In Elsie’s case she could try to establish that her tool results in faster maintenance than some specific set

of tools (perhaps a selection of the most common ones). This style of experimentation might be appealing

to Elsie since (1) it has the potential to establish the superiority of her tool according to some measure

(maintenance speed), and (2) it requires almost no understanding of the fine structure of the processes

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 29

of software maintenance, nor of the principles by which her tool actually caused the desirable output. It

is a technique that makes it possible for her to establish that her tool helps, while maintaining maximal

ignorance about the reasons for why it succeeds. Similar sorts of experiments could verify that adding

yeast to your bread dough triples the height of your loaves even if you know nothing whatsoever about

the biochemical action of yeast, and you have never even heard of carbon dioxide. Elsie can treat the

user-tool unit as a black box: maintenance problems go in, and satisfyingly objective and quantitative data

comes out. There is no need for pondering psychological effects, and no need for arguing theories of

support. There is no question that these are formidable selling points for SE and CS researchers, but there

INFORMAL BLACK BOX UNGUIDED COG. MODEL THEORY

TESTING COMPARISON OBSERVATION OBSERVATION BASED

basic
orientation

early feedback adoption
justification,
evaluate tool
promise

discovery,
learning

behaviour
discovery

generation &
investigation
of support
hypotheses

empirical
goals

informal
feedback,
serendipitous
discovery

tool validation
(find
performance
improvement)

discover key
factors,
understand use
context

improve
cognitive model

verify support
hypothesis,
measure sup-
port

observation
focus

tool output variable whole scenario /
task, user problems

human actor tool effect &
effect
mechanism

study scope
for tool

key features whole program whole program /
environment

frequently
ignored (!)

specific fea-
tures

claim
character-
istics

informal simplistic
questions

to-be-discovered informal support
mechanisms

perceived
threats to
method

folk beliefs statistical
validity,
replicability

discover nothing
new

ecological or
statistical
validity

incompleteness,
irrelevance

claim
articulation
level

informal /
ad hoc

N/A informal / ad hoc human–
oriented model

human–tool
model

benefit
explanation
type

descriptive,
folk

avoided observer
dependent

informal theory-based

explanation
knowledge
source

tacit expertise N/A observer’s
background

tacit /
psychological
training

science-
grounded
theory

Table 2.2: Comparison of methods used to evaluate tool ideas

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 30

are serious problems with this method.

Scenario 1a: Black Box Methods Part 1

Elsie decides to try a comparison, but she quickly runs into some troubles. Her tool is an unpolished

prototype containing a few of what she thought were minor usability flaws. But she finds out that these

flaws appear to have significant practical impact: her subjects are really affected by them. She feels she

might be able to fix up those problems if she did a few rounds of usability testing and tool improvement

first. But it might take months or even years before she gets it right, and she wonders if this is really

worth the effort because there is a chance that her idea is fundamentally flawed. Despite the possibility

that her prototype is a real gem-in-the-rough, she discovers that missing, inappropriate or even extra

features entirely confound the effects of that gem on the experimental output. Furthermore, as a research

tool it has enough novelties in its usage that it is hard to find many experts. Elsie watches her pilot sub-

jects either ignore the novel features, or else clumsily struggle with them when the experimental design

forces them to try these. She begins to suspect that much of the tool’s potential is untapped by her sub-

jects because they need months of long-term exposure to become proficient to the point where, like a pro

golfer unhesitatingly pulling a 2 iron out of her bag in just the right circumstances, the special capabil-

ities of the tool are integrated almost unconsciously in their strategies and problem solving. Meanwhile

she watches as her control subjects skillfully use their habitual tools in highly inventive ways, and she

wonders if her comparison experiment is entirely fair.

Scenario 1b: Black Box Methods Part 2

Despite her initial difficulties, Elsie fixes up her tool by adding functionality and cleaning up the

interface, manages to recruit a handful of expert subjects, and runs the selected tools head to head.

Unfortunately her results are somewhat disappointing: she sees a modest improvement, but the data ex-

hibits uncomfortable levels of variability in performance. Maybe there are factors she has not controlled

or randomized well enough? She fixes up the tool some more, runs another test, and gets marginally

better performance. With some sort of performance improvements in hand, she can probably publish

her results, but really she has more questions now than when she first began. Later when she adapts

her tool to a new programming language, she is forced to repeat the whole process. Who is to say she

did not destroy the benefits with her tool modifications? After submitting her results for publication,

she tries the tool again on several different maintenance problems and discovers that the results vary

considerably.

The practice of using validation-style experimentation for evaluating tools is quite widespread across

the spectrum of SE research. Its use can be found in evaluating software visualization [67, 387] and re-

verse engineering tools [620]. It shares a long history with evaluations of different software development

techniques, languages, and programming notations such as object-oriented language features [161] and

program indentation and formatting techniques [694]. The aims of such methods are noble—to increase

the scientific foundation of software engineering [724]. In the context of idea evaluation, however, the

ways in which such methods are used undermine the effort.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 31

PRACTICES PROBLEM SOURCES PROBLEMS ENCOUNTERED

informal evaluation informality in methods arguments and data are unconvincing
and explanations

simplistic questions weak results

fails to cumulate knowledge

simple comparative whole-tool evaluation cannot use prototypes

validation idea validation is late

(black-box methods) iterative prototype stopping criteria are unknown

improvements improvements weaken core arguments

explanation avoidance support concepts are poorly articulated

support concepts are indirectly tested

minimal theory heavy dependence on observer excellence

being applied analysis is made more difficult

undirected mismatched goals learning is about cognition / support

observation burdens of theory argumentation

inappropriate methods uncertainty of fishing expedition

tool shortcomings are highlighted over successes

cognitive model model weaknesses issue of support is not addressed

based observation mismatched goals learning is about support mechanisms

burdens of theory argumentation

Table 2.3: Evaluation and testing problems compared to the promises of theory-based research

In this discussion I am not primarily concerned with issues of methodological rigour in experimenta-

tion. Such concerns have been brought up many times in the past, such as whether we are studying the

right populations of programmers [155], using toy problems [345], properly controlling variables [413],

properly emphasizing effect size and reliability instead of statistical significance [238, 369], developing

improper statistical tests [410], replicating results [35, 161, 162], and so on [68, 74, 238, 308, 413, 581]. Even

ecological validity, which is a critical issue for HCI and SE work [369], is a problem that can potentially

be addressed using this sort of experimentation. For instance, techniques from applied experimental

cognitive science [402] or ecological psychology [221] have been developed to handle this style of experi-

mentation in ecologically valid circumstances. Of course all of these methodological issues are important.

But my concern here is not of proper execution, but of asking the wrong questions and applying otherwise

reasonable techniques inappropriately.

There are three sources of problems: simplistic questions are being asked, whole tools are being tested

instead of evaluating the tool ideas, and explanations of the benefits of the tools are neither developed nor

tested. These problems are outlined below.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 32

Simplistic Questions

On the strictly atheoretical extreme, an empirical study can be performed without a theoretical

underpinning, but the utility of such a study is limited. In contrast, a theory provides guidance for

targeting what behavior to study and for assessing a study’s results.

– Karen N. Whitley, “Visual Programming Languages

and the Empirical Evidence For and Against” [703], pg. 111.

Human activity in software development is very complicated, so it should surprise almost nobody that

comparative evaluation of tools and techniques in software development are quite difficult and involved.

Sheil pointed this out a long time ago when he said:

Such evaluations might, at first sight, seem to be a straightforward matter of comparing the performance

of groups of similar programmers using different programming techniques. Unfortunately, the complex-

ity of programming behavior makes the execution and interpretation of such comparisons anything but

straightforward. [581, pg. 102]

One particular problem is the sort of questions that are posed in validation-style experiments. Frequently

they are overly simplistic—especially in regard to the sorts of cause-effect relationships being sought. As

Carroll once said of HCI, the field “suffers from a methodological bias for posing elegant either-or research

questions that idealize away variables like task context” [99, pg. 88]. A decade ago Green reviewed the

field and noted that:

Many of the early studies asked simplistic questions: ‘Are logical conditionals better than arithmetic

ones?’, ‘Are flowcharts better than code?’, ‘Are nested conditionals better than GOTOs?’, etc. It is easy

to see today that in general the answer is going to be ‘X is better than Y for some things, and worse for

others’. [261, pg. 124]

This simple fact argues against using (simplistic forms of) comparison-style experiments to understand or

even evaluate tools. There are just too many interrelated factors for such an approach to yield informative

results. As the work by Storey et al. demonstrates [618, 620], this fact is certainly borne out for comparing

software visualization tools. Their work provided a demonstration that even though simple questions

about the value of visualization tools can certainly be posed, the complexities of realistic software devel-

opment can make simple questions seem like the bluntest of investigative instruments.

The thing is, we really do want to ask the complicated questions. We need the complicated answers.

For hypertext, Wright noted that a

... binary judgment of either “Yes it works” or “No it doesn’t” may underestimate the importance of the

interplay among the design decisions ... so the simple question “Does it work?” is too imprecise to be

useful. [716, pg. 2]

A simplistic question gives only simple answers which leaves us too little substance to address the design

issues we consider important. Two significant problems arise because of this. The first problem—alluded

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 33

to in Elsie’s scenario above—is the somewhat notorious fact that comparative experimentations have re-

sults that are weak or equivocal [308]. The second problem is that it is difficult to cumulate knowledge

gained by asking simplistic questions. These two problems are discussed in turn.

WEAK RESULTS

The weakness of many comparative experimental results has been noted in many different circum-

stances. In software development perhaps the most prominent examples are studies of program inden-

tation and formatting [261, 581, 694], and of visual versus text-based programming languages [703]. But

weak results for simple comparative experiments are pervasive. They have been found to occur in soft-

ware visualization environments [508,620], layout differences for graphs [519], software remodularization

tools [359], and (despite a dizzying bevy of statistical tests) program inspection tools [411, 412]. Weak

results also invade related comparative tests such as visual versus textual information [112, 332] (or ana-

logical versus propositional representations [365]), and hypertext versus traditional book forms [182,716].

Although there are many possible causes of weak results, two possibilities are related to the use of sim-

plistic questions: the effect size is too small relative to the scale of the question being asked, and the

human processes being observed are themselves just too unpredictable to answer the gross experimental

hypotheses.

Weak results might be expected if the performance gains attributable to the tool (i.e., the input variable)

are marginal due to the fact that the fraction of the overall problem it addresses is itself rather small. One

cannot expect a 50% improvement in productivity if, after all, only 1% of the causal factors are addressed in

the tool’s design [82]. Software development tasks are not simple tasks like touching a button when a light

turns on. For real software development tasks one should probably expect that the overall performance

impact will actually be modest. Software development is a “wicked” [541] problem and it is unlikely

that most tools [342] would qualify as a “silver bullet” [78] that can transform wicked problems into

tame ones. If this is so, then experimental conditions may need to be exquisitely sensitive in order to

reliably expose what is (at least relatively speaking) a minor effect. A whole host of other factors will,

in combination, normally dominate the performance of software developers. Because of the sensitivity

and control needed to show such a minor effect [238], some experimenters have been driven to use highly

contrived experimental setups in order to make the effect of interest dominate the performance [103] (e.g.,

Davies’ use of highly crippled editors [167]). While such contrived experiments are obviously useful for

clearly exposing the phenomena of interest, the sensitivity needed during experiments bears witness to

the relatively small overall effect on performance. The effects are easily lost to the error bars from the gross

development tasks. Although this is perhaps not a fatal difficulty for comparative experiments, it clearly

disadvantages them even without their other problems.

For “micro” tasks (e.g., making a menu selection, checking in sources to a repository) it seems reason-

able that relatively large and easily measurable performance increases may be achieved. But making a

dent on the overall domain task costs is often the consideration, and expectations for large measurable dif-

ferences should probably be modest unless the tools being compared are enormously outmatched. There

are at least two good reasons to offer why this should be so. First, making significant inroads on the men-

tally challenging problems in software development is hard and we have, realistically speaking, only just

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 34

started directly tackling the issue of cognitive support. Landauer [371] spent considerable time arguing

essentially this point—that at the broadest task contexts we have measured only marginal increases in

productivity precisely because automation is what we are good at, and that most of the easily automat-

able things already are well-automated. The easily automatable thus makes up only a small fraction of the

work that is left. Second, for the broadest task contexts, the open-endedness and flexibility of human be-

haviour makes for even competition. Although effect size (and the related issue of effect reliability across

individuals [238]) is important to applied disciplines [402], in practice the effects being searched for may

be too easily drowned out in fairly matched comparisons. A case in point is typical Unix development

tools. Practice and expertise can make up for many flaws in their design [468]. So the seemingly unre-

markable Unix tools can make formidable opponents in comparison evaluations [380,632]. On the whole,

then, simple comparisons run into a host of obstacles making their overall contribution either minor or

hard to fairly measure and detect.

Another source for weak results is that the usefulness of a tool may be highly dependent upon various

uncontrolled or unanticipated experimental variables. This possibility is hinted at by Wright’s quotation

above. Simplistic questions often belie a desire for simple answers that are not forthcoming. Are hyper-

texts better than traditional books? Are visual languages better than the more textual languages? Are

apples better than oranges? These questions all presuppose a simple answer. But the answer typically is:

“it depends”. The dependencies are frequently uncontrolled for in experiments. Sheil cited this problem

in reference to studies examining the usefulness of comments in programs:

Although the evidence for the utility of comments is equivocal, it is unclear what other pattern of results

could have been expected. Clearly, at some level comments have to be useful. To believe otherwise

would be to believe that the comprehensibility of a program is independent of how much information

the reader might already have about it. However, it is equally clear that a comment is only useful if it

tells the reader something she either does not already know or cannot infer immediately from the code.

Exactly which propositions about a program should be included in the commentary is therefore a matter

of matching the comments to the needs of the expected readers. This makes widely applicable results

as to the desirable amount and type of commenting so highly unlikely that behavioral experimentation is

of questionable value. [581, pg. 111]

Can comments be useful? Of course! But if the wherefores and hows are not understood beforehand, and

not accounted for in the experimental setup, then we should expect our results to be equivocal at best.

The same is surely true for any simple hypothesis testing concerning software development tools.

In terms of method appropriateness, however, the more important cause of weak results might actu-

ally not be either the relatively small effect size or the contextual dependencies—it might be the variable

nature of the processes being observed. It has been widely noted that performance is highly variable be-

tween individuals and even between different performances for the same individual [158, 197, 655]. Such

variability makes for messy statistical analysis. Individual performance differences appear to be partly a

matter of individual psychology [185], but also partly a matter of proper training [158]. Even so, there is

considerable subtlety to the issue of variability—individuals are not so variable when performing tasks

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 35

without significant problem solving. This was artfully illustrated by the careful word-processing experi-

ments performed by Card et al. [94]. They ran different word-processors head-to-head in order to measure

performance differences [94]. They were able to show significant performance increases on certain doc-

ument editing problems. Because of the notable increase in performance, one might wish to shrug off

their results as due mainly to the large effect size—an effect that large might have been hard to miss even

with less meticulous experimental techniques. But a second explanation can be offered, however: Card

et al. achieved good results because the process they were studying is reasonably predictable based on

the experimental conditions that could be controlled. That is, the observed process was well conditioned.

They had their users make changes to a document in order to get it to conform to a printed version of the

document that had been marked-up with the changes. For experienced word processor users like their

subjects, that task presents few cognitive challenges. Practiced physical and cognitive skills could there-

fore be applied. Indeed, this fact is precisely the reason Card et al. chose their tasks—they were concerned

with modeling and predicting skilled performance.

Herein lies the problem of applying comparative methods in the domain of software development:

the tasks of interest are not ones that can be performed using only skills-based methods. The so-called

“device-level” tasks can be skilled and predictable [314, 370, 446]. The sorts of problems being tackled

in software development—despite long years of training [158]—never become routine skills [361]. This

means that when one is interested in tool support for software development, one is necessarily most in-

terested in the so-called “higher-level” cognitive functions like learning and problem solving. To put it

into context, how might Card et al.’s experiments have fared if the word-processors were the same, but the

task chosen was to write an article, book, or dissertation? These are cognitively challenging tasks that fre-

quently do make heavy use of a word processor (or “text processors”, if you prefer). But in these tasks, the

overall processes are much more poorly conditioned. Individual knowledge and problem solving strate-

gies begin to dominate. These are things the subjects bring with them into any experiment. True, word

processing is a smaller part of the task of writing a book than it is of making simple edits to a document,

but the fact is that even more sensitive and meticulous experimentation would not reveal the relatively

small effect—it would only highlight the variability of the performances of individuals. True, if one re-

stricts one’s study to only the lowest task levels like scrolling and deleting words, a reasonable level of

predictability can be expected (perhaps—see Draper [191]). For example, in programming environments

it is reasonable to try to compare the relative costs for the skilled execution of common low-level edits.

Indeed, this has been done for syntax-directed editors for programmers [644]. But these works ignore the

overall task context: the experimentation works only for the practiced parts of the development process,

not the hard problem-solving parts.

The point to note about the above is that the difficulty for experimentation is not (only) that significant

portions of processes like writing7 are poorly understood, but that they are poorly conditioned. Predicting

such processes may thus be somewhat akin to weather forecasting: it is possible to understand the mech-

anisms underlying weather, but it is not possible to predict weather over time frames that are important

7Software development and design has often been likened to writing (e.g., [244, 499, 575, 603]).

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 36

to us. The software development processes of interest are much more like weather than simple editing.8

Whole-tool comparative experimentation in such highly cognitive domains is thus fundamentally prob-

lematic; unfortunately, the clean experimental results on well conditioned processes (like Card et al.’s)

are red herrings that are unlikely to be repeated for comparative evaluations in circumstances that are

interesting to investigators of cognitive support.

CUMULATION IMPOSSIBLE

A second problem raised with the method of asking simplistic questions in experiments is that, because

of the form of their results, it is difficult to use them to build theories about tools which can adequately

reflect the complexity of software development. The use of simplistic questions avoids understanding

how the factors affecting performance interact, and why. It is therefore hard to know how to combine

the answers one gets by asking such questions—even if one has a good idea of what the factors are. Say

we manage to learn that SHriMP is better than Rigi for certain tasks [620], and that StarDiagram is

better than vi and grep for other tasks [64]. What now? With just this knowledge it is impossible to

know how one result speaks to the other. Even if we manage to correctly guess that the major factors

involved include the features of the tool, the task, and the user, the experimental results are better suited

to tool adopters than designers. Designers want to know how to change their tools (see Chapter 7), yet

the available results say only whether the existing tools might be any good. Returning to our scenario,

Elsie might make a change to her program and re-run the experiment, but it would be far from clear how

to know what to do with the results (no matter what they turn out to be). Her experimental setup does

not allow her to find out what made the difference, and she must again resort to guesswork.

The above problems are symptomatic of experiments that seek to verify simple cause-effect relation-

ships rather than seek to expose the mechanisms creating a causal chain. Each of these experiments asks

a slightly different, but simply statable question. This is not a good recipe for accumulating knowledge.

As Newell once remarked, “you can’t play 20 questions with nature and win” [444]. In his view, the

problem is that knowledge just does not cumulate with experimentation based on simple dichotomous

questions. He argued that building integrated models is a fundamentally more sound method of cumu-

lating research knowledge [446]. His particular contention was that mechanistic models of causation are

the best accumulators for science knowledge about cognition. Newell was talking specifically about cog-

nitive models of individual psychology, but his argument seems equally applicable—perhaps even more

applicable—to cognitive support. With cognitive support one wants to understand generalizable design

principles, and it is hard to see how these could be constructed from simple tool comparisons. As Kirlik

succinctly remarked:

Especially in HCI, a vast amount of research effort has been expended trying to answer questions com-

paring various interface technologies, for example, design options such as scrolling windows, hyperme-

dia, and so on. This research is of dubious value ..., because the “it depends” answers produced by

such efforts will only lead to a never ending series of technology-specific design principles, rather than

8This contention is somewhat contrary to what some works on cognition and human performance presume. Read-
ers interested in debating this point can refer to Clark [136], Newell [446, ch 3.10] and, to a lesser extent, Landauer [370]
and Carroll and Rosson [108].

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 37

a stable and generative theoretical account of human-environment interaction that can guide design in

novel situations. [348, pg. 72–73]

Kirlik implied that the sort of knowledge needed by designers is difficult to collect and assemble into

usable form from the individual results of simplistic comparative experimentation. Each experimental

result is dependent upon myriad contingencies not accounted for by any cohesive theory. Without a

theory that is able to abstract away these contingencies and relate the experimental results to one another,

it is unclear how to integrate these “point-form” findings.

The fact is that, in the field of SE tools research, little or no work has tried to combine results from

this style of experimentation, and it is currently difficult to imagine how it could be successfully done.

Nonetheless, others have made serious suggestions as to different possible methods of cumulating scien-

tific knowledge, so these must be investigated before it is presumed impossible. The need to integrate

experimental results has, of course, been seriously studied for theories based on modeling mathematical

or statistical relationships amongst experimental variables. Examples of this form of theorizing include

various forms of meta-analysis of past experiments (e.g., on hypertext [120, 457], on the visual encoding

of data [112]; also see the review by Miller [409]), the “sequential experimentation” method of Williges

et al. [706], and the method advocated by Basili et al. [35] for disentangling and modeling performance

relations (see also Basili [33], and von Mayrhauser et al. [678]). This last effort is perhaps the best example

to consider since the other techniques mentioned tend to either compare the merits of competing theories

(rather than build theories themselves), or else fail to actually integrate the results.

Basili et al. [35] suggested that knowledge be accumulated in the form of a cause-effect map of the

factors affecting various qualities of performance. In this view, the process of experimentation not only

provides evidence to support a given hypothesized relationship, it also serves to tease out a typology of

the causal factors (e.g., development process type, design representation type, programmer experience,

etc.) so that the effect of variations in the independent variables can be understood. The goal of experimen-

tation is therefore: (1) to develop a list of input and output variables of importance, and (2) use empirical

evidence to create a map of how they relate. The map, as a collection of hypotheses about cause-effect

relationships, forms a theory. Basili et al. proposed their method for accumulating knowledge primarily

as a way of counteracting unscientific beliefs about the effectiveness of various SE techniques. For in-

stance, the technique was used to compare two different techniques for inspecting code [368]. Although

these are not comparisons of “tools” like code visualizers, it is clearly possible to use such validation-style

experiments in a similar way on such tools.

There is no way to know at present if the sort of knowledge building advocated by Basili et al. would

succeed in creating suitable knowledge for understanding and engineering cognitive support (that is,

without first supposing models of the mechanisms underlying performance). Yet there is enough evidence

to raise doubts about the possibility. For one thing, the proposal relies on distinguishing and describing

all significant variants on independent variables, including tool features. So, for instance, if Elsie made

a novel modification to her tool she would need some way to consult the theory to determine if her tool

would improve maintainer performance. At present this possibility seems unlikely. The cumulation, if it

can be said to be occurring, is of facts that are in no principled way connected. Thus the accumulation suf-

fers the fate that Kirlik noted of being a “never ending series of technology-specific” principles. However,

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 38

with an appropriate model-based theory, it seems at least plausible that one might input the tool features

as a parameter and have the model generate a new prediction [446]. Perhaps a more direct threat to Basili

et al.’s idea for the cumulation of knowledge is Newell’s observation that simplistic questions are rarely

ever convincingly decided one way or another [444]. The proposal of Basili et al. seems to depend heavily

on being able to determine answers to just such questions. So even if Basili et al.’s process of accumulating

knowledge is not strictly impossible, it seems more risky than its alternatives. In the past, similar meth-

ods have been tried for building “grand unified” theories in psychology (see e.g., Kjaer-Hansen [354]).

Although they were not entirely without merit, the feeling now is that building actual computational

models of thinking is a more fruitful tack.

On the whole, a seemingly more plausible position than that of Basili et al. is held by Green [259].

Like Basili et al., Green envisions a way of decomposing the independent variables of interest, but unlike

Basili et al., he envisions a collection of relatively independent micro-theories that are kept unintegrated

(see also Landauer [93, 370] for a broadly similar proposal, and Rasmussen [526] for a different method

of decomposition). For our purposes here, Green’s proposal is inessentially different from Newell’s be-

cause it adopts the premise that the causal mechanisms underlying performance should be understood

and tested. Though he proposes an unintegrated melange of micro-theories, Green’s focus on proposing

models and evaluating them avoids asking simple dichotomous questions, and so makes reasonable the

possibility of accumulating knowledge.

On a related note, it should be recognized that there are rather more immediate problems with gen-

eralizing simple comparative evaluations. What tools do you compare? Do you compare the “reigning

champion” and, if so, how does one compare this champion to the other tools? Performing pairwise com-

parisons of all conceivable tools is obviously impossible. And unlike in medical experimentation, there

are no valid baselines. The “white rat” that is called the “standard” Unix tool set has been developed

by experts over decades. It is both sophisticated and honed by time. Developers have used it to build

impressive systems, so it is demonstrably useful. Plus it is deeply embedded in many programming cul-

tures and that often gives it the advantage of familiarity. Moreover, although the Unix toolset consists

of some simple tools, the elegance and power of simple tools is frequently overlooked. Even paper and

pen are sophisticated technologies with many psychological consequences [264,289,472]. The point is that

tool evaluation is always comparative, and this simple fact raises the question of knowing what is being

compared and why. It is hard to conceive of a way of answering that question without a suitable theory

explaining why tools are advantageous.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 39

Tools, Not Tool Ideas

The experimental work by Miller [409, 411] and Bowdidge et al. [64] provide an excellent study in the

contrasts between what might be called “black-box” and “white-box” experimentation on tools. Miller

developed a tool for assisting in software inspections. He used a black-box test to measure the difference

in performance of tool-assisted inspection as compared to paper and pen. And, despite his tenacious use

of sophisticated statistical analysis techniques, his experiment generated weak results (surprise?). After

some deliberation, his recommendation was to iteratively design and test the tools. This is a recommen-

dation well echoed by decades of HCI research, and is one practically guaranteed to have some degree of

success no matter how poorly the design issues are understood (see Section 7.1.1). But simply testing out

guesses is not the best use for experimentation [93]: how did Miller know how to redesign the tool? If

we read between the lines in the paper, he used his own background knowledge in combination with the

rather informal evaluations of the tools (such as responses to survey questions). It is debatable whether

his black-box test results had any appreciable impact on the design process. The point to this example,

however is the importance of being able to state and test ideas underlying tools. Miller did find some

hints that his second tool is better (in ways) than his first. But despite the apparent soundness of his ex-

periments, they say little about what features inside the black box lead to these differences. What design

principles can be extracted?

Bowdidge and Griswold, in contrast, appreciated well the need to open up the black box and under-

stand how the tools were being used. In particular, they knew they needed to observe their program

restructuring tools in use in order to determine how (or if) they were good for the user:

[we] were unsure whether the technology in this tool should serve as the basis for similar tools designed

to restructure large systems. To effectively use the ideas from this prototype to help develop production-

quality restructuring tools, we need to understand how programmers use this tool, and how the organiza-

tion and features of this tool influence how programmers perform maintenance. [64, pg. 222]

They also appreciated the need to understand the abstract principles of the support provided by the tools,

rather than the interfering details of the particular prototype:

The purpose of observing programmers using a variety of tools was not to see which tool set was better.

Indeed, our restructuring tools should prove better in certain ways simply because they are specifically

designed to ease the task of restructuring, whereas the UNIX tools are not. The restructuring tools are

also certainly inferior in other ways because they are prototypes. Rather, we looked at a variety of tools

to help us generalize our observations and permit us to make comprehensive improvements to our tools

rather than make narrow fixes to the few peculiarities observed in this study. [64, pg. 222-223]

They realized the limitations of black box comparisons for determining the value of their tool ideas. More-

over they realized that opening up the black box was the only way to circumvent the pernicious confound-

ing effects of usability.

Usability is especially problematic for comparison-style research because usability (1) critically affects

performance, and (2) is a quality that is inherently “non-linear” with respect to the tool’s functionality.

What is meant here by “non-linear” is that small changes to a tool’s features can make dramatic impacts

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 40

on the overall usability. Performance is drastically affected in turn. A tool that regularly crashes the user’s

machine, for instance, is disastrously unusable. Yet the crashing version may be virtually indistinguish-

able, functionally, from a non-crashing version. True, a crashing program is perhaps just one extreme

example. But myriad other misfeatures or omissions can make significant impacts on usability, from the

omission of undo, file saving, search, or help facilities, to the colour assignments and command name

choices. There are simply many, many more ways of making unusable tools than usable ones (see Sec-

tion 7.1.1 for an expanded argument). The confounding misfeatures or omissions might be minor design

details that do not fundamentally affect the basic idea of the tool, that is, the reasons why the tool is

supportive. For example Storey et al. [622] found that the lack of a simple textual search function was a

significant source of frustration to the users of their software visualization tool. Yet the search functional-

ity was essentially parenthetical to their tool’s essential design ideas, which concerned the utility of using

fisheye views of software structure graphs. This raises the question: how can one evaluate one’s tool ideas

without needing to be “perfect” in all the other dimensions of its design?

The impact of usability might not cause problems for comparison experiments if the usability problems

could be controlled and accounted for. However that is not usually possible, so experimenters are forced

to use highly polished tools if they expect to obtain positive performance results. Note carefully that

usability problems are not threats to experimental validity, only to flattering performance results. A clear

example of this is illustrated by the SuperBook project [370, 371]. As Landauer notes, SuperBook is one

of the few hypertext systems that has compared favourably to conventional book technology. Thus it is a

technology that could be said to be “validated” in the sense implied by Zelkowitz and Wallace [724]. But

the initial version of SuperBook did not fare so well, and it actually took until the third major version

before performance improvements were large enough to call the project a success. The first version would

fail the evaluation criteria the later versions pass. In terms of developing productivity-enhancing tools

the initial SuperBook “was a complete failure” [370, pg. 69] since, although it contained gems of ideas,

it also contained enough flaws to ensure that using it would reduce productivity. In terms of developing

tool ideas, however, the design of the initial SuperBook is entirely—perhaps spectacularly—successful.

The initial SuperBook describes an application of fisheye views and full-text indexing to information

retrieval problems (i.e., knowledge-seeking activity). The final version of SuperBook is substantially like

the first SuperBook. Furthermore, if the design of the SuperBook is copied in the future, it is likely that

many of the key ideas that define the first version of the SuperBook will be copied. Thus there are really

two products to the SuperBook research: the tool, and the tool idea. Comparison-style experimentation

validates tools, but seems unable to validate tool ideas except in the special case that they are implemented

in a sufficiently polished and improved tool.

Overall, the fact that comparison-style experiments tend to evaluate whole tools rather than tool ideas

causes several difficulties for SE researchers. Firstly, it is clear that in many circumstances prototypes

cannot be used. This is certainly a hardship for many research projects since iterative development of

products to a suitably polished state is costly, and the exclusion of prototypes will drastically limit the

number of ideas that can be validated. Secondly, the validation comes too late. One of the main reasons

for performing an evaluation is to establish evidence that the tool idea is good enough to spend the time

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 41

and effort to develop more polished versions. Thirdly, the stopping criteria for trying to improve a sub-

standard tool are ill defined: maybe the basic idea is good, but nobody has yet figured out a way of fixing

up the flaws? Finally, the iterative changes to the tool means that attribution of productivity improve-

ment is more or less guesswork without specific hypothesis testing. What features should be credited for

enhancing productivity? In the SuperBook example, for instance, who is to say that the enhancements

made through iterative improvement did not merely make up for fundamental design flaws in the orig-

inal version (i.e., maybe fisheye views were bad!9)? Without explicitly testing the hypotheses, therefore,

attribution of benefit or failure is merely guesswork. Because of this fact, the iterative improvements serve

to actually weaken the argument that the performance improvement is due to the core design ideas. That

is, maybe the productivity gain is due to the subsequent improvements, not the core idea? If one needs

to go through several rounds of tool improvement, it weakens the argument of the usefulness of the core

idea.10 If that is the case, why not try to test these core design ideas in the first place? To do so requires

testable hypotheses about the value of the tool. Without theories of cognitive support, in many cases it is

hard to imagine how to generate such hypotheses without invoking guesswork.

Explanation Avoidance

Empirical demonstration and analysis of claims for usability and effectiveness is vital if interactive

technology is to be built on principled grounds, rather than a mutually constructed and self-

perpetuating folklore.

– Buckingham Shum & Hammond,

“Argumentation-Based Design Rationale: What Use at What Cost?” [85], pg. 42.

The need to ask simplistic questions in experimental methods reflects the inability or unwillingness to

propose and test more explicit models and theories of cognitive support. It does not have to be this way:

the same basic experimental methods that can be used to show that yeast raises bread dough can also

establish the more specific theory that yeast raises bread dough by fermenting maltose to create carbon

dioxide. The former type of experimentation establishes only that an unknown causal mechanism exists,

while the latter one describes the mechanism and so produces a proper explanation. Simplistic questions

avoid proper explanations—what Lewis called “inner theories” [384]. Two difficulties arising from this

fact are that the key ideas underlying the tool’s design are neither articulated nor tested adequately [154].

A third problem arising from this fact is that, without testing a theory, there is little basis for generalizing

the results of the experiment past the exact conditions of the experiment. This last point has been argued

well in many places and experimental contexts (e.g., Greenberg et al. [276], Olson et al. [479], Foltz [227],

Kirlik [348]). So let us concentrate here on the failure to articulate and test claims.

9In the SuperBook example, other observational data may have revealed that the fisheye views were an advantage
rather than a liability, but the point is that other observational data is needed to establish this—it cannot be extrapolated
from the performance data in simple comparative experimentation.

10To state it sardonically, if the original idea was so darned fantastic, why did the tool need to be fixed up so much?

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 42

Clear articulation of the cognitive support provided by a tool normally implies some method of for-

mally expressing the mechanisms and methods by which cognitive support operate. To an adopter of

technology, it hardly makes any difference if these support mechanisms are exposed since they are inter-

ested merely in whether the technology is “validated” [724]. With such a certification, they can determine

whether it is wise to purchase and adopt it [82]. To many SE researchers, however, expressing succinct

and explicit claims of the support embodied in a tool is important. They trade in support ideas and want

to know, for instance, if their tools support development in essentially novel ways, or if the same ideas

have been tried before, but in a slightly different guise. Without clear articulation, these ideas tend to

remain at the folk level of description and analysis. The result is that evaluation and comparison tend

to be ineffective for understanding the researchers’ ideas since the evaluations tend to focus on either (1)

low-level features of the tool, or (2) measurable effect rather than cause.

Comparisons based on low-level features and effects can be widely found. Price et al. [516] developed

a twelve factor taxonomy of features for comparing software visualization systems. With the exception of

the “effectiveness” factor, this taxonomy considered only the features and capabilities of the systems: the

graphical vocabulary used, the ability to produce multiple views, whether the system is scriptable, and

the like. According to this factor decomposition, there is “effectiveness”, and there are the 11 tool feature

types. One would suppose that the other 11 factors would somehow contribute to the “effectiveness”

dimension, but it is impossible to determine what the causal influences would be. In a similar way, Kiper

et al. [346] proposed to compare visual languages along the five dimensions: “visual nature”, “functional-

ity” (meaning the sort of computations specifiable in the language), “ease of comprehension”, “paradigm

support”, and “scalability”. Again, “ease of comprehension” is likely to be affected by each of the other

four dimensions, but it is not known why. Likewise, one may compare reverse engineering tools by their

surface or functional features (e.g., whether 3-dimensional views are generated or not), or their outputs

(e.g., the accuracy of software representations generated). Bellay and Gall [42] did the former, and Gannod

and Chen performed the latter [233]. Although there exist ways of evaluating these sorts of tools based

on cognition-related proto-theories [272, 665], much of the emphasis in the field has been on tool features

and measurable effect.

The problem with the above style of evaluation is that it tends to lead to what I like to call “so what?”

and “but why?” questions. Visualization � provides multiple views, but visualization � does not. So

what? Are multiple views vital—a sign of the ineffectiveness of individual views—or simply a distrac-

tion [407]? Are 3-D views better? When? Visual language � is demonstrated to be easier to comprehend

than language � . But why? Is it because of feature difference � or �? There is no doubt that feature

comparisons are potentially useful. But without some type of theory about what the features are doing for

the developer, these comparisons merely serve to chart out the presently known design space [81]. That is

the reason why it is important to articulate tool ideas succinctly and then test them directly. Of course we

have some ideas about why multiple views might be better for understanding software. We trade in such

theories. But they are doomed to remain folk unless they are actually spat out and directly tested.

Blackwell termed the way we think about cognition as “meta-cognitive theories” [53]. He surveyed

computing science literature on visual languages [53] in order to determine what sort of theoretical re-

sources the field generally uses to argue the advantages of visual programming languages. He observed

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 43

widespread preference for simplistic argumentation about the superiority of visual representations over

detailed understanding of the factors underlying their possible advantages. These included simple claims

for visual languages’ improved expressivity, intuitiveness, naturalness, and abstractness. Although some

of these claims might well be grounded in psychology or other science disciplines, Blackwell’s review

strongly indicated that (1) we rarely take the time to actually back up our claims by grounding them in

existing science, and that (2) many of these claims are, in fact, not easily justifiable according to existing

research. Blackwell’s thus argued effectively that as a group our understanding of the possibilities of vi-

sual languages is primarily folk and poorly grounded in basic science. Continued attention to simplistic

explanations is not likely to change this fact, whether it is for visual programming languages, maintenance

tools, or reverse engineering tools. We tend to avoid important explanations.

Investigating simplistic questions also means that the ideas underlying the tool are not directly tested.

If we really are interested in expressivity, intuitiveness, or naturalness, then these claims should be put

directly to the test instead of picking through the secondary evidence provided by productivity measure-

ments. Define what we think naturalness is. Test the supposition. Measure it. Even supposing Elsie does

have some ideas for why her tool supported development, her experiment does not test them. The prob-

lem is that the user and the user–tool interaction is treated as a “black box” [562]. Her ideas could be

entirely off base and yet the tool might be demonstrably better in certain ways for certain tasks. There is

a link between black box techniques and the tendency to keep our research discipline a craft discipline.

Problems in evaluation are most likely in the case where the researcher’s understanding of cognition and

cognitive support are naive or folk. For example in, Blackwell’s survey he noted that it is frequently

believed that graphical representations are more “natural” than sentential representations. It has been

suggested, for instance, that graphs of software structure are more readily understood without extensive

training and effort [509]. Research on graph-based representations have instead indicated that graph-

based representations require years of experience to read properly [506, 509]. Thus some graphical rep-

resentations may be easy to read due to extended experience and familiarity, rather than due to inherent

qualities of the graphical representation. Now imagine a tools researcher explaining their good perfor-

mance as being a result of the natural superiority of graphical representations. If these specific claims

are not being directly tested, then even if empirical evidence proves a performance difference, there is a

decent chance that the explanation being held up is in fact wrong. It stands to reason that the likelihood

of making valid claims about tool benefits is going to be proportional to the researcher’s ability to make

specific claims that are firmly grounded in the empirical data of basic psychological sciences. Although

simplistic questions are sometimes the easiest to frame, by using them one risks keeping the field in the

dark as to the true causes underlying the performance differences being noted.

The preceding analysis outlines many limitations of one of the most common experimental methods

used in tools research. The method in question is to first propose a new tool or tool prototype, and then

perform a direct comparison of user performance when using the new tool as compared to old ones (typi-

cally, only one old one). Although a favourable comparison adds fuel for further investigation, it provides

virtually no measure of assurance that the ideas of the tool developer are justified. It also provides no

statement of how the tool idea can be generalized outside the scope of the experiment. Simply put, even

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 44

the most carefully performed comparative experiments may be too uninformative if the experimental hy-

pothesis is too simplistic. A hypothesis about the reasons and context for improvement must be directly

put to the test. Frequently, the tool designers have such a hypothesis (we should probably be surprised if

they did not!), but it is latent and often based on folk psychology. Nonetheless it is never tested adequately

by simple, direct comparisons. Kirlik provides a forceful argument:

Assuming a particular prototype of a design concept is successful, any useful generalizations which

emerge from creating the prototype will be at the level of the psychological assumptions underlying the

design, rather than at the level of the particular technologies used to implement the design. ... it is

incumbent upon the researcher to make explicit the psychological assumptions that contributed to the

success of the prototype system. A successful system demonstrates nothing other than its own success,

unless the possibly implicit psychological theory underlying the design is articulated. ... the hope for

generalizable conclusions from such demonstrations [of success] surely rides on whether the researcher

can ... identify the psychological hypotheses that were validated by the success of the prototype. [348,

pg. 72-73] (emphasis original)

His argument is essentially that it is impossible to avoid the issue of stating and then testing specific

hypotheses about psychological aspects of tools, and that simple tool comparisons effectively try to do

that. Simplistic validation-style experimentation, however helpful it is for finding out whether one should

adopt a given technology, is virtually useless as a method for validating design ideas. Unfortunately,

simplistic comparison seems to be so entrenched and valued as an evaluation technique that it may be

some time before their limitations are realized. Far from bringing rigour to the area of tool evaluation, they

frequently have the opposite effect! They delay the required commitment to articulate the complicated,

but necessary theories and hypotheses.

2.2.2 Evaluation Problems: Undirected Observation
Although there are clearly insightful individuals in every profession or occupation who are able

to observe human behavior objectively, most specialists in domains other than psychology are

unlikely to have the skill or knowledge to relate their observations to observations made in other

domains.

– Ruven Brooks, “Comparative Task Analysis:

An Alternative Direction for Human-Computer Interaction Science” [77], pg. 51.

The previous scenario illustrated some of the problems inherent when human–computer interaction

was treated as a black box, i.e., with maximal ignorance of what is happening when users sit down with

the tool. The following scenario illustrates that opening up the black box introduces its own problems.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 45

Scenario 2: Undirected Observation

Elsie’s experiment left her with questions: what were the true causes of the performance improvements

that she observed? How can she improve the tool? She notes her ideas about the tool’s benefits went

untested: was she right? She is now convinced that in order to determine if she was right or wrong,

she is going to have to actually watch and understand maintainers and their comprehension activities.

She knows she needs to collect and analyze observations about what her users are doing and how the

tool helps. She hypothesizes that the tool’s analysis functions extract useful information and that the

browser’s navigation facilities help the comprehenders traverse the code. She hopes to find data that sup-

ports these hypotheses. She instructs her subjects to produce a verbal report of their thoughts and collects

videotapes and computer logs of several sessions—both with and without the tool. After obtaining these,

she has to analyze the data somehow.

She begins by trying to watch the videotapes, pouring through dozens of hours. Many of the hours

are uninteresting with respect to her tool’s use. Moreover, when her users are the most proficient at using

the tool she notices that they do not verbalize tool-related comments. A few ideas pop into her head as she

watches. She notices that users switch attention between various aspects of the program when reading

the code. She also notices that some users run into difficulties with her browser when trying to return to

places they had been to, but no longer remember because of the intervening excursion. After spending

time with the videotapes she begins to understand that her developers often stop what they are doing

temporarily in order to browse elsewhere, and then try to return to the previous position and continue

with what they were doing before. She notices that one user has a strategy of starting a new browser

window for such excursions so that he can return to the old excursion by closing the new window.

She hits on the idea that when the browser use is fluid, it is because the available browser actions

(hypertext links, back button, close window) correspond to actions that bring in the immediately-needed

information.

Once again, she seems able to publish. She learned that programmers switch their focus frequently,

and that browsers need to support this activity. She can also propose that the way to support such

activity is to make sure the browser can provide convenient access to the next-needed information. If

only we knew what that next-needed information was at all times! Elsie also recognizes that she has new

problems. She wonders if similar things about programmers have been noticed before. She notices she

ignored most of the data and concentrated on a few critical incidents. Her analysis was quite informal,

and she wonders about the generalizability of her findings.

In Scenario 2 Elsie engaged in what might be described as “unguided” or “undirected” observation be-

cause it is performed without explicit guidance from theory or hypothesis. It is essentially an exploratory

attempt at understanding tool-user interactions. There are various methods for performing unguided ob-

servations, and there can be several levels of formality in the collection and analysis of the data. Unguided

exploration ranges from developers simply watching people using their tools, to participant observation

in the field by trained researchers, to ritualized and iterative coding and recoding of protocols during

theory-building. Sometimes unguided observation is a response to a lack of understanding of the situa-

tions of tool use. Scenario 2 contains a portrait of exploratory verbal-protocol based observation. These

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 46

techniques have become relatively popular because verbal protocols have shown to be good at discovering

new and unexpected facts, especially for the so-called “higher-level” cognitive activities [280]. Develop-

ers and researchers of all stripes have made use of observational techniques based in verbal-protocols (see

e.g., Nielsen [458], Lang et al. [373], Suwa et al. [627]). Grudin noted this trend:

Studies of planning and interaction dialogue rely less on controlled experiments measuring time and er-

rors, and more on recording the dialogue and analyzing transcripts. This includes videotaping users’

sessions, asking them to “think aloud,” logging their keystrokes, and engaging in “Wizard of Oz” stud-

ies...11 [280, pg. 264]

This sort of unguided observation can be effective at exposing usability problems. Indeed, finding us-

ability problems appears to be a forté of verbal protocol studies, for they tend to quickly reveal “usability

catastrophes” [458]. Thus, such observation methods are helpful in practical endeavors. Furthermore,

some form of exploratory observation is also indispensable for theory building. But, despite being an

invaluable technique for both tool and theory building, its use is still arguably problematic for SE re-

searchers such as Elsie. There are three facts that cause problems: little theory is explicitly applied, the

discovery-orientation can be mismatched to the researcher’s goals, and the investigative methods being

used can be inappropriate.

Theory Missing

Elsie did not directly apply any explicit theories of cognition or HCI, so she was more or less left to

her own devices in her analysis. Successful analysis relies on her observational vigilance, her analytic

capabilities, and a considerable amount of insight. It clearly would have helped if Elsie was a trained

psychologist and could recognize various problem-solving behaviours. As it was, she had to rely on

insight and background knowledge. The outcome of such unguided efforts are often highly variable,

and dependent upon the observer. Would Elsie’s colleagues have come to the same conclusions? Are

there things that Elsie missed which would have been obvious to a cognitive scientist? Furthermore,

the analytic power that can be brought to bear in observation analysis depends upon the powers of the

theories being wielded. At the very least, a theory can help out by providing a useful coding scheme.

Elsie did not code the protocols according to a well-motivated coding scheme for the verbal protocols.

Adopting or developing a coding scheme requires, at minimum, some hypothesis that certain actions are

important, but she had only a vague idea of these to start with. Iterative coding, clustering, or pattern-

matching techniques (e.g., behaviour summaries [542]) can be helpful in cases where coding schemes are

not well developed a priori, but it is clear that starting with more powerful theoretical resources can kick-

start the analytic engine. It seems unreasonable, for instance, to expect that SE researchers should need to

devise entirely new coding schemes for each application of verbal protocol analysis [373].

11Computer responses are simulated by humans.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 47

Goal Mismatch

Even if exploratory observational methods are successful, they are often poorly matched to the researchers’

goals. Elsie is a SE tools researcher, not a cognitive psychologist or an HCI theoretician. Her goal is to learn

about the tool not about cognition. She wants to use theoretical knowledge not create it. She publishes in SE

journals not cognitive science journals. Undirected observational methods are antagonistic to these goals

since they are essentially learning- and discovery-oriented. This is not necessarily bad because Elsie may

very well learn valuable things about her subjects and their use of tools. Nevertheless, Elsie’s goals and

the goals of unguided observation are still mismatched. One potential problem with the mismatch is

that there is a reasonable likelihood that, instead of concentrating on important tool-related discoveries,

she might rediscover something already well known. Elsie learned about the opportunistic switching be-

haviour of her users by watching them do it. This knowledge could possibly have been obtained from the

literature on software comprehension or basic psychology. One might complain that the problem is that

Elsie was not sufficiently well versed in the relevant literature. This complaint merely dances around the

problem. Nobody can be expected to know all of the potentially relevant literature. But the inherently undi-

rected nature of observational methods combines disastrously with the non-specialist knowledge base of

SE researchers: SE researchers are specifically in the position of wanting to apply cognitive theories—not

to create them.

Elsie’s most basic problem, then, is that her activity was directed at building the theory she wanted

to use to help her in her tool research. Data collected was employed to support a conjecture about user

behaviour, and about possible tool support techniques. She had to notice the relation between browser

state and the next-needed information and, if she was to go any farther in the analysis, she would have to

further postulate models of cognitive processes in order to anticipate what sort of information is needed

next at different points in the process. Statistical models of browser activity might be generated from her

data (e.g., Tauscher et al. [633]), but that would still be discovery-oriented: she did not apply an existing

statistical model. Theory-building is intellectually challenging, and the task of building them is exactly

the opposite of her ambition to use theories. If she tries to publish her cognitive models and cognitive

support theories, she encounters the demanding needs of the basic science researchers (i.e., cognitive psy-

chologists, cognitive scientists, and HCI theoreticians). She would therefore face the burdens of making

the supporting evidence scientifically acceptable to the appropriate audience, would need to know the

existing literature, and would be exposed to the various controversies and disputes that rage on in fields

such as cognitive science. For someone trying to build tools, these burdens are entirely unpalatable.

Wrong Methods

Unguided protocol-based observational methods are also problematic because (1) they fail to identify

in advance what to look for, and (2) verbal protocol methods are strongly biased towards discovering

usability problems. Elsie’s hypotheses about her tool do guide her somewhat, but without theories with

which to further focus her observations, she is naturally uncertain about which parts of the protocol are

important. She is faced with coding and examining the whole of it. Furthermore, the observational goals

are not clearly understood at the start, so it is hard to know when she should stop. Perhaps she has

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 48

not yet observed the critical sort of behaviour needed to understand the tool? The research process using

unguided observations more closely resembles a “fishing expedition” than a focused search with a specific

objective.

In addition to its uncertain nature, it has been observed that undirected observations made using

verbal protocol techniques tend to highlight problems (errors, difficulties, etc.) more than successful and

smooth performance. Consequently, casual observation is frequently excellent at helping find design

problems such as usability blunders [458]. The unfortunate down side to this is that its ability to find

problems is equalled by its spectacular weakness for understanding successes. For instance, verbal reports

are not normally made for skilled and smooth action [207], yet copious reports tend to be made when

trying to cope with usability problems. This means that even unguided observation has a good chance of

discovering usability problems because they are conspicuously highlighted. Yet the causes of fluid and

successful action is typically lost from view. As Vicente notes [657], the result is that verbal reports tend

to clearly expose only what is called “breakdown knowledge” rather than the reasons for success. Yet

understanding fluid action (sometimes called “throwness” [710]) seems crucial to understanding—and

thus duplicating or designing for—successful work [26]. Simply put, verbal reports are better suited for

investigating usability problems than good tool design and usefulness.

It is actually a curiously difficult problem to understand fluid action. The problem is that success-

ful cognitive support removes conscious cognitive effort. Consequently, if one is to have any hope of

understanding the cognitive support offered by a tool, one needs to be able to (1) sense the absence of

problem-solving on the part of the user, or (2) directly appreciate the cognitive advantages of the tool

(e.g., noticing a reduction in memory requirements). Suppose a new development tool provides a novel

implementation of some type of cognitive support. Its users, when confronted with a problem as difficult

as software maintenance, can be expected to use any spare cognitive resources the tool frees up to extend

their problem-solving; thus we should always expect to see problem-solving behaviour in observational

data—only the nature of the problems should change with cognitive support. Also, users can often be

expected to always push improved tools to the point of exposing new limitations. These, once again, will

become prominently highlighted by verbal reports. In combination, the continued prominence of prob-

lem solving behaviour, and the tendency of verbal protocols to emphasize tool limitations makes it much

easier to discover the ever-present problems and limitations than to fully appreciate successes and their

causes. This is perhaps not an insurmountable problem, but once again we find a method poorly suited

to investigating cognitive support.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 49

2.2.3 Evaluation Problems: Cognitive Modeling

If undirected observation suffers due to the lack of a guiding theory, then perhaps a cognitive model would

help? This scenario highlights some potential problems with using many existing cognitive models.

Scenario 3: Cognitive-Model Based Observation

Elsie is unhappy with the results of her previous study. Even though she learned something about the

comprehension processes of real developers, she felt that she ran into difficulties because she did not have

a good model of how the comprehension processes work. She decides that in order to really “get into their

heads,” she needs to adopt some kind of cognitive model, whether it is software comprehension-specific

or not. She does some reading and finds the model of von Mayrhauser and Vans (vMV). She tries it out

by recoding some of her collected data. The change is dramatic. The model allows her to interpret the

many complicated sequences of activity (reading, browser manipulations, etc.) as essentially knowledge

search and acquisition processes. Many of the classic features of the vMV model are exposed, including

switching between different exploration strategies, and searching for knowledge at different abstraction

levels. She reflects on the fact that some of the results of her previous study are not only well anticipated

by the model, but that the model exposes additional details—like the difference between top-down and

bottom-up strategies.

After a while, Elsie notices that the model has no appropriate coding categories for the actions im-

mediately relevant to her tool. Users of her tool still search for data-dependency knowledge, but they can

quickly follow the dependencies through hypertext links rather than follow flow in an editor. In addition,

the trick of starting a new browser window with side excursions means the browser also provides sup-

port for opportunistic switching between search activities. The vMV model has no possibility of coding

such support-related tool use. Elsie decides that in order to trace the support, it is necessary to augment

the model—but how? After some thought, she comes up with a notion of “excursion states” so that she

can code up the user’s activities with the tool as excursion state representation and manipulation. Start-

ing up a new browser “pushes” the last excursion position on a stack and closing the browser “pops”

that value back off. She realizes that the browser is being used as a memory extension during problem

solving. She adds this activity to the model and recodes the data with the extension. Users who rely on

the trick seem to depend upon being able to forget about the interrupted search and to rely on the state

being stored in the browsing environment.

Once again, Elsie feels that she can now publish something since she came up with the insight about

how the browser state aided exploration. She refined her ideas about the browser and its support, and

she came up with data to support it. Still, she is a little frustrated because she had other hypotheses that

eluded her.

Elsie’s activity in Scenario 3 is not nearly as common as informal evaluation, simple comparative ex-

perimentation, or unguided observation. In fact, the scenario may well be considered a little farfetched

because this sort of theory use seems entirely absent in SE. But the scenario is plausible, and it illustrates

the possibilities and limitations of observation using cognitive models (e.g., Storey’s work using the vMV

model [618, 620], or Retkowsky’s work [535] using those of Detienne). The suggested procedure is to

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 50

start with a cognitive model that can code for mental actions, and then rely on other analytic resources to

determine tool implications. The problems with this sort of work derive primarily from inadequacies of

the available models. Essentially, they do not incorporate a way of explaining how external artifacts aid

cognition. As a result, Elsie is left in a similar position as in the prior section; however this time instead of

needing to import a model of cognition, she needs to import a model of tool-supported cognition. The result

is that this type of research practice remains oriented towards discovery and theory-building rather than

theory application.

Theory Building Again

Elsie wants to use the cognitive model as-is in order to derive an understanding or measure of how the

comprehension process is aided by her tool. It is reasonable to say that with the model Elsie was able

to understand much more about her users’ comprehension activities. By starting with a strong model of

the internal workings of the comprehension processes, the process of coding and analyzing the protocol

is greatly enhanced. But the model was ultimately inadequate for her purposes. She needed some way

of generating coding actions for external actions such as browser manipulation. Some way of integrating

external and internal states or resources was needed so that the browser history could be incorporated into

the analysis of behaviour. Many cognitive models fail to do this. Often they concern themselves only with

“internal” cognition and do not following how external states evolve and therefore affect cognition [29,

41, 192, 414]. Furthermore, some way was needed to express the influences of the tool’s capabilities on

comprehension behaviour. For instance, one tool-dependent strategy is to “stack” excursions by spawning

a new browser window for the excursion; such a strategy may emerge through long-term use of such

tools, and then only in relatively complicated situations.12 The strategy works only when the appropriate

external memory mechanisms are available.

There do exist interaction models that can account for some of these issues. For instance there are

models of tool–user interaction that consider evolving mental and tool states [192, 414]. Elsie could mod-

ify the vMV model with similar sorts of model features with an eye towards showing how such external

state tracking interacts with high-level cognitive activities such as problem-solving. But, once again, the

point is that discovery and theory building activities such as this are not Elsie’s first concern. Most likely

she would be perfectly happy to be given a modeling framework in which she could input her tool capa-

bilities and then be able to code the user behaviour in ways that expose the tools’ support for cognitive

processes. Although we have some promising cognitive models, they are not the solution to answering

many important tool evaluation problems.

12Anecdotal evidence suggests that such a window stacking strategy frequently develops spontaneously over time
or is learned, perhaps, from others. A recent posting on the newsgroup comp.human-factors says:

With sidetrack [i.e., excursion] links I’m much more likely to return to my current location. For example,
I use a search engine to find information on a company and find a single press release article on a news
site.

With mainstream links I tend to open in the same window, with sidetrack links I tend to open in new
windows, view the information then close them. (Gary Bunker, comp.human-factors, Jan 12, 2000)

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 51

2.2.4 Analysis Problems

Analysis is generally the activity of coming to understand a situation or process, often by modeling it.

Analysis activities range from informal musings to the generation of highly formal mechanical or math-

ematical models. For the present section, the analysis processes of interest are the ones that researchers

use to come to understand how tools support (or might support) software development processes. Such

analysis is often done in conjunction with, or prior to, the design of new software development tools. It

is also done when writing research proposals and research papers, and when comparing the designs for

different tools. The process of trying to understand observational data (e.g., from a case study) is also

called analysis (e.g., verbal protocol analysis [207]). The concern of this chapter is the “other 90%”, so

the primary focus is on analyzing the cognitive implications of tools. How do we analyze the cognitive

support in software tools? What problems are encountered during analysis of cognitive support? To what

extent are these problems caused by the lack of suitable cognitive support theories?

Earlier in this chapter a few analysis problems were already pointed out. In Section 2.2.1 it was noted

that it is rare to find adequate articulations of cognitive support claims. Section 2.1.1 argued that much

of our theory-based work suffers due to the lack of theories that could account for cognitive support,

forcing analysts to rely on craft knowledge and intuition. These facts imply that we rarely are in a good

position to analyze cognitive support in tools, compare them adequately, and so on. Rather than repeat

these arguments here, attention will be directed to another common analysis problem: word poverty.

Green [262] pointed out three problems that plague theories in HCI. Two of these are related to the

difficulty of making theories that can be readily applied. The third difficulty is that HCI knowledge is

“word-poor”. By this Green meant to imply that researchers and developers must circumlocute when

discussing common concepts. That is, instead of using a succinct word for the concept, they must often

fall back onto drawn-out argumentation, applying analogies to similar tools, and arguing unproductively

about the unimportant details. The following is an illustrative scenario concerning word poverty in dis-

cussing cognitive support. Although it is a made-up conversation, it follows other characterizations of

real designer and analyst conversations [270, 551]. Because it involves a design context, the scenario is

also used in the next section when considering tool design problems.

Scenario 4: Communication and Understanding

Olga and Bart are discussing a design idea for an object-oriented (OO) software re-engineering tool

they are working on. The conversation turns to some of the possible enhancements that Bart has come

up with, specifically to what Bart has called a “method gathering clipboard”, or MGB. He argues that

a MGB could be useful in OO re-engineering since a critical task in OO re-engineering is discerning

which methods to define in a class hierarchy. Both Bart and Olga understand the MGB’s implementa-

tion, but Olga is not sure why Bart wants to add it:

O: Its a pretty standard clipboard implementation and most windowing environments have them.

What’s so special about this clipboard?

B: Well say an engineer decides that some unencapsulated lines of code really correspond to a method.

He can select them with a mouse and drag them onto the MGB where they are copied.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 52

O: Why doesn’t he just make a new method from those lines then and there?

B: Oh he could, but a class may not yet exist for it, and he still has to enter all the other stuff... [the

tool has a dialogue for creating new methods]

O: So? He has to do that sometime...it just seems like an extra step, especially with copy and paste...

B: Yeah, but it takes a while to enter all the method information, and besides, he may not be sure about

the method just yet.

O: But he can just wait until he’s sure..

B: True, but he needs to remember the lines and might forget to do it later.

O: True...

B: Also he might decide later that he was wrong about the method, and he would have to undo the

method addition. Besides, sometimes it takes a while to find all the lines that belong to a method.

O: So its basically a temporary storage...

B: Right! But it also lets him start collecting related lines together and comparing them with the rest

of the code as he browses.

O: Sort of like a very specific display window.

B: Yeah, but the point is that he can modify it also—add more lines, delete lines, move them around,

and modify them, perhaps making them more generic so they can be placed higher up in the class

hierarchy. He may find several near-clones13, for instance.

O: Like a collecting pieces to several small puzzles and rearranging them until they make sense.

B: Sure...I never thought of it that way, but like a temporary puzzle board.

O: And a scratchpad of other ideas in case some puzzles don’t pan out.

B: Yeah.

The actual activity of arguing in detail about a proposed extension to a tool may be important for

designers. Working through the argument may bring out new ideas or problems, for instance, or the

actual conversation may serve to repair misunderstandings between the designers. But the absence of a

good set of concepts and a supportive vocabulary can substantially hinder the process. Green puts it well

when he says:

At present each application and its interface must be described in comparative detail, if anything useful

is to be said, and each type of problem must be rediscovered anew. Absence of a conceptual vocabulary

has well-known effects upon developing knowledge areas, especially in applied science: it prevents dis-

cussion about design choices because the repertoire of alternatives is not understood, it inhibits research

or limits its application because fundamentally identical problems are not recognised in different contexts,

and it constrains the focus of attention to a few aspects of a design when, in fact, the quality of a design

depends on a complex tradeoff. [262, pg. 298]

13Near clones are highly similar snippets of code. This passage refers to difficulty of determining how to abstract
repeated operations, a rather well known problem in reengineering (e.g., Kontogiannis [358], Bowdidge et al. [63]).

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 53

For cognitive support not only are interface problems not recognized in different context, but fundamentally

identical support concepts may also be unrecognized in different contexts.

The conversation in Scenario 4 illustrates some of these difficulties. Olga and Bart grapple with the

cognitive support they think is provided by the clipboard. Here, the correctness of their analysis is not

the concern; instead notice (1) how the main topic of the conversation concerns cognition-related aspects

of the tool and the reengineering process (method recognition, uncertainty, memory), and (2) the process

of reaching an agreement makes use of background knowledge about the psychology of the user, and

of the types of support exemplified by predecessor artifacts. On both counts, there are opportunities

to improve the conversation with appropriate concepts and vocabulary. In particular, one would like

to be able to introduce a widely-usable set of concepts and terms for cognitive aspects of the problem-

solving processes of the user [257, 262, 272] (Chapter 5), and for the cognitive support offered by the tools

(Chapter 6). These concepts and terms might have helped Olga and Bart to communicate more succinctly.

They could short-circuit reiteration, cascading clarifications, and arguments over unimportant details.

The particular vocabulary and concepts one might introduce is a topic for argumentation elsewhere

(see Chapter 7), but a simple example can help emphasize the point by hinting at the possibilities. Bart

and Olga eventually came to agree that the clipboard contained certain functionality that supported some

of the problem-solving of re-engineers. The support ideas included (1) the fact that the clipboard acted

as a type of external memory so that details would not need to be remembered, (2) that this external

memory was being used as a cost-effective place to temporarily hold uncertain and changeable parts of

the problem solution, and (3) that the juxtaposition of problem parts within the clipboard may play a

role in recognizing problem solutions. These possibilities all suggest supportive roles for the program

features and we might for the moment agree to call these “external working memory” used to store an

“externalized problem-solving heap”14 in order to take advantage of a “localization effect” that makes

solution recognition more efficient.

The conversation might have gone much better if both Bart and Olga were familiar with the above

concepts. They might not have had to appeal to analogies to other tools (display window, scratchpad).

They had to come to agree about the value of the memory function of the clipboard and how its necessity

relates to the tentative and backtracking nature of method recognition. If this was quickly acknowledged

by describing it as an “externalized problem-solving heap”, attention might have turned instead to the

tradeoffs between external and internal memory, or the relationship between problem-solving capabilities

and working memory sizes. For example, such a characterization might have started a discussion of how

an expanded problem-solving memory could make the user’s search for methods a more breadth-first,

rather than depth-first. Designers are known to have a bias (e.g., Stacey et al. [615]) to prematurely focus

on exploring sections of the solution space in depth (depth first) instead of exploring alternatives first

(breadth first). Olga and Bart might therefore have effectively argued whether this external memory could

help reduce this bias by providing an effectively expanded heap memory, therefore making breadth-first

14A heap is used for so-called “breadth-first” searches of problem spaces and is used to store a pool of unvisited
nodes. Breadth-first oriented problem solving is frequently advantageous over “depth-first” work because one is less
likely to be stuck searching deeply in unpromising portions of the solution space. However, excessive heap memory
use is a notorious problem of breadth-first searches.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 54

exploration cheaper.

Of course, these are just illustrative terms but the purpose of the scenario is to entice us to imagine

the possibilities. The point is clear: a good vocabulary of cognitive support terms and concepts can help

analysis. Without such a vocabulary, conversations about cognitive support are often muddied by oblique

references to psychological effects, and by references to prior tools.

2.2.5 Design Problems
What is software engineering research? We have known for 25 years that our programming

methods are inadequate for large projects. Research in software engineering, programming

methodology, software design, etc., looks for better tools and methods. The common thrust of

results in these fields is to reduce the amount that a programmer must remember when checking

and changing a program.

– David Lorge Parnas,

“Software Aspects of Strategic Defense Systems” [487], pg. 1330.

Design is a synthetic activity. Designers of software development tools wish to understand the prob-

lems and difficulties of software development and then be able to come up with—synthesize—tools that

support such development. What problems do researchers encounter when considering the design of soft-

ware development tools? Clearly the list of potential design issues is enormously long, but in this section

the concern is with the way that tool builders reason about how to assist thinking. Even if one does not

entirely agree with the above summary by Parnas, his essential point must be heeded: to do good SE tools

research often means to reduce cognitive challenges and burdens for software developers. Put another

way, to assure quality in software development tools it is necessary to provide cognitive support. So the

questions for this section become “how do SE and CS researchers engineer cognitive support?” and “what

problems are encountered in this regard?”.

Several relevant points have already been covered regarding these questions. It should be reiterated

that cognitive issues are frequently treated using craft knowledge and methods (Section 2.1.1). This gen-

erally means that they rely on the designer’s intuition, the reuse of existing successful designs, and the

application of folk knowledge about psychology, sociology, or other relevant domains. The point of this

section is to argue that keeping the practice craft-like is not desirable. What harm to design does not hav-

ing an explicit cognitive support theory impart? There are actually two relevant aspects to this question.

One aspect concerns design practices—how researchers build cognitive support—and the other concerns

design theory—how researchers understand cognitive support. Some current problems with the latter

were already covered in Section 2.1.1: when cognition is studied in software development, researchers are

often forced to fall back upon craft-based design knowledge. Thus here I will concentrate on the former

problem, that is, how tools researchers and developers from SE and CS think about and build cognitive

support into tools.

2.2. PROBLEMS OF A THEORY-THIN DISCIPLINE 55

In order to make a lucid argument, some concepts from design theory must be first introduced. In

Chapter 7, these are defined in more detail, but for now a short introduction will suffice. Two of the key

problems in design are knowing what is needed, and knowing how to design something to satisfy this

need. These are the problems of setting design goals and then performing design reasoning and synthesis. For

instance if it is known that software comprehension is cognitively challenging, one might adopt a design

goal of reducing memory load, and then reason that one way of doing so is to add an external memory for

browsed locations so that these locations need not be remembered (see e.g., von Mayrhauser et al. [682] or

Singer et al. [596]). For the problem of setting design goals, there exist the beginnings of promising new

theory-based research. A good example is the hierarchy of cognition-related design issues developed by

Storey et al. [619]. Most of the design issues in that work immediately suggest design goals, but only a

limited set of examples solutions are provided. Even so, SE researchers have shown that generally they

are good at generalizing from examples, so collecting together design goals and prior solutions is a good

step forward. However the second problem mentioned above has not yet been addressed as well, that

is, the problem of generating design ideas given a design goal. This problem can be called the “gulf of

synthesis” (see Section 7.1.2) because the designer must synthesize solutions from high-level goals.

In order to bridge this gulf of synthesis using theory, one must be able to reason forward about designs.

Reasoning forward means that the designer is able to reason about design ideas or options when given

a design goal and an applicable theory. Ideally, the theory would provide more than vague recommen-

dations, and do more than merely validate design goals adopted through other means [93, 522, 605]. As

pointed out before, most of our software comprehension models provide no account for how tools affect

comprehension, so any design recommendations made by the model must be based on experience and

common sense. Unfortunately that is currently by and large the state of theory in its application to design.

Except for a few scattered results, most of the design advice has been quite vague and mostly derived

from common sense or experience.

2.2.6 Summary of Problems
Some may argue that HCI does not need theory. I disagree. Any discipline that fails to make a

principled explanation to justify its practice is building on sand.

– Alistair Sutcliffe, “On the Effective Use and Reuse of HCI Knowledge” [625], pg. 199.

Understanding software development tools seems to inevitably require understanding how tools affect

and participate in human thinking and problem solving. Unfortunately we mobilize insufficient theoret-

ical knowledge to tackle the issue of cognitive support. This basic fact, I suggested, is the root of many

problems in tools research in SE and CS: we have a desire to address cognitive implications of our tools

but we are unable to do so properly due to our under-developed theoretical research thread concerning

cognitive support. To support this supposition, existing research problems were reviewed, and then each

of these were traced to the lack of a theory-based research thread. These problems were divided into

evaluation, analysis, and design problems.

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 56

Four evaluation techniques were reviewed: informal evaluation, simple comparative evaluation, un-

guided observation, and cognitive model-guided observation. Problems in evaluation were traced to the

avoidance or absence of sufficient explanation and understanding of cognitive support. Moreover, when

trying to back supposition up with empirical data, it is often the case that tools researchers are forced to

essentially generate new theories of cognitive support. This fact also was a cause for several concerns,

especially regarding how these efforts do not match the goals of tool builders. In hindsight, it might seem

logical that when evaluating existing cognitive support ideas, it is not appropriate to discover new cogni-

tive support concepts, or to build new cognitive support models. Explicit models of cognitive support are

key input ingredients to evaluations.

Analysis and design of tools for cognitive work takes place partly in the abstract plane of cognitive

support ideas. Our current state of practice was reviewed and shown to provide few ways of accessing

this plane, and few ways of reasoning within it. One hindrance to access, it was argued, is the lack of a

useful set of concepts and an appropriate vocabulary. Because of this absence, analysis and design tends

to take place in the concrete plane of specific tools—it gets bogged down in details and is foiled by the

indirectness of the designer’s conversation. Finally, the current state of theory was shown inadequate for

design. It may be able to model and explain some parts of software comprehension, but it lacks the crucial

ability to enable forward reasoning about how to support cognition.

2.3 Possibilities of Theory-Based Research

...it is likely that you have purchased a variety of artifacts, such as calendars, calculators, or

computers, that were created primarily to support cognitive activities... The vast majority of

these cognitive artifacts were designed not by the application of cognitive theory but instead by

appeal to folk-psychological intuitions, trial and error, and the forces of the marketplace. Only

recently have researchers begun to consider how theories and findings from cognitive science

can be systematically applied to the design of the cognitive environment.

– Alex Kirlik, “Everyday Life Environments” [350], pg. 702.

Suppose we agree that cognitive support is an important issue for tools researchers, that it has been

under-appreciated in the past, and that a lack of a suitable theoretical basis underscores many of the

problems that SE researchers face in current practices. What alternatives are there to the status quo?

What should theories of cognitive support look like? Who should be building them? How might SE

research be changed if they became available? This section address these questions by presenting one

vision of the possibilities of theory-based approaches to cognitive support. In this vision, theories and

models of cognitive support are a foundation for research in designing new and better forms of cognitive

support. SE researchers will be portrayed as consumers of theoretical advances from other disciplines, the

focus of the SE thread of research will be set on applications of theories derived elsewhere, and progress

on scientifically understanding cognitive support will be portrayed as a multi-disciplinary collaboration

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 57

mediated through theories exchanged between disciplines.

It is nearly impossible to convey any sense of a vision without an analogous success story to use as an

intuition pump, and from which it is possible to draw an understanding of the reasons for the success.

Two analogies are used here: one based on mechanical support to provide a vision of what theory-based

methods of cognitive support research might become, and one based on medical research to paint a picture

of how SE research on cognitive support relates to other research disciplines such as cognitive science.

The first analogy, based on mechanical support, is presented in Section 2.3.1. From it I will draw at-

tention to the features of modern mechanical support knowledge that appear to be vital for successful

explanation of mechanical support. By analyzing the successful case of mechanical support, we may de-

velop a set of desiderata for new support theories, or, more strongly, a set of requirements. Later chapters

will use this requirements analysis to guide theory development and to show that the resulting theories

meet the antipicated requirements. For now, the mechanical support analogy will be used to argue that

a theoretical understanding of cognitive support enables a theory-based approach to tool design and de-

velopment. Such a theory-based approach could avoid many of the problems that were found in the

survey of SE tools research practices. The mechanical support analogy also makes it possible to contrast a

theory-based approach to existing practices. It also give a better indication of the potential advantages of

theory-based methods.

The second analogy, based on medical research, is used to position SE research on cognitive support

within the greater research milieu. SE tool researchers are compared in Section 2.3.3 to pharmaceuticals

researchers. The comparison is important to SE researchers because it limits the contributions that should

be expected of SE researchers, and it provides a focus for future cognitive support research and SE research.

2.3.1 Leveraging Mechanical Support Theory
Its author said that machines were to be regarded as a part of man’s own physical nature, being

really nothing but extra-corporeal limbs. ... Observe a man digging with a spade; his right forearm

has become artificially lengthened, and his hand has become a joint. The handle of the spade

is like the knob at the end of the humerus; the shaft is the additional bone, and the oblong iron

plate is the new form of the hand which enables its possessor to disturb the earth in a way to

which his original hand was unequal.

– Samuel Butler, “Erewhon” [88], pg. 202.

Some of the earliest thinkers in HCI, such as Bush [87] and Engelbart [201], believed that computers

(electro-mechanical machines in Bush’s case) could augment human thinking capabilities much in the

same way that a shovel can augment innate digging capabilities [65, 124, 537]. The main difference is

that shovels are for physical labour, whereas computers were envisioned to assist in thinking labour. Both

physical labour and the advantages of mechanical devices have been studied for a long time. They are by

now quite well understood. It might be possible to carefully examine how physical support is explained

in order to appreciate the possibility of explaining cognitive support better. Here one of the simplest

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 58

physical supports is examined: a lever.

A Lever Story

Chris and Eric are hiking in the woods. Eric accidentally drops his car keys and they wind up in a

hollow beneath a large fallen tree. After trying in vain to reach them, he and Chris try to move the tree

by pushing it, but it is too heavy. They discuss various options for retrieving the keys and decide to try

to use a lever to lift it enough for Chris to reach the keys. Eric finds a rock, which he moves beside the

fallen tree, and then places on top of it a medium-sized branch that Chris found nearby. Chris presses

down on one side of the branch. On the other side, the heavy tree is lifted enough so that Eric can retrieve

his keys.

Although this example is simple, it serves to illustrate a number of important strengths and properties

of our modern understanding of physical support. The first and foremost thing to note is that we can form

an explanation of the physical support in question. In particular, the explanation exposes a detailed causal

chain that expresses the mechanisms underlying the events. Such an explanation might go as follows:

1. The physical arrangement of the branch and boulder forms a lever.

2. The lever is supportive because it transforms Chris’ downward force into a larger upward force,

enabling her to lift the fallen tree. This force-amplification effect is called leverage. It is a form of

mechanical advantage. It allows Chris to lift a tree larger than she can lift unaided.

3. The leverage arises because Chris’ downward force is transmitted by the rigid branch onto the ful-

crum, and since it does not move, the downward force is converted to torsional force which is in

turn transmitted to the tree through the other end of the lever. Because the lever is longer on Chris’

end, her downward force is exerted over a longer distance than on the tree’s end. Since physical

labour (work) is conserved, and the work is proportional to the force times the distance, the force on

the tree’s end is greater than on Chris’ end.

Further details of such explanations are not important for this vision section. What is important is the sorts

of lessons that can be drawn from the example, especially lessons for future cognitive support theories. A

short summary of these appears in the left hand column of Table 2.4.

Lessons

MECHANISTIC EXPLANATION

The explanation of physical support is given a mechanistic explanation. No important mysteries

are left about the powers of either Chris or the lever she uses. Nobody talks about amazing but

mysterious properties of a lever, about it being more “natural”, or about it evoking powerful and

innate lifting abilities of Chris. Moreover, the explanation is not purely descriptive, as it would be if

one had claimed that “the lever is pushed down, supporting the lifting of the tree,” or that “levers

mediate physical work.” Neither is it tautological, as it would be if one claimed that “the lever helps

lifting by supporting the up-pushing task.”

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 59

� Cognitive support must be given “deep” explanations using mechanistic models. Most current explanations of

cognitive support are extremely “shallow.” For instance a tool might be said to support comprehension because

it offers search capabilities or browsing of program-dependency links. Such claims are not proper explanations.

SUPPORT VS. AUTOMATION

The lever did not eliminate work but it changed its characteristics. If Chris and Eric were hiking with

a powerful robot, there might have been no need for a lever and no (physical) work would have had

to be done by Chris. The robot’s power supply could have provided all the motivating force needed

to move the tree. As it is, Chris needs to do the work, but it is supported.

� Cognitive support models need to explain how cognition may be assisted yet not completely automated [171].

To date, many explanations have been too shallow, often relying on arguing automation or referring vaguely to

powers of the human mind (e.g., the power of visual systems) [53].

FUNCTIONAL, HIGH-LEVEL ONTOLOGY (RIGHT LEVEL)

The concept of leverage is a high-level one based on functional relationships between high-level inter-

pretations of the basic components. Specifically, the low-level details are ignored: it matters little

what the branch and boulder are made of. Subatomic physics, for instance, just do not enter into

the discussion even if, ultimately, the action is reducible to such laws. A boulder is thought of as a

“fulcrum” and a branch as a “pivot”. The abstraction is important because the same concepts could

be used for many other configurations (e.g., a crowbar or a mechanic’s floor jack). The concepts used

in the high-level interpretations comprise an “ontology”15: a list of the sorts of entities (fulcrums,

pivots, etc.) and their relationships used in defining the elements of reality [653]. This ontology is a

function-related one that is relative to the use and not “absolute”. A boulder is only a fulcrum if it is

being used to form a lever.

Notice also that the words used in this ontology form the sort of vocabulary that is necessary to

reason about mechanical support. Words like “leverage” are not only succinct, but they are defined

in terms of mechanical models of work, and so they evoke other well-understood implications (e.g.,

the tradeoff between amount of mechanical advantage and the extra distance that Chris has to push).

For most purposes, the explanation based on leverage is at the “right level”. The analyst happily

glosses over complications such as the fact that the branch is discontinuous (it is made up of tiny

particles), and the fact that the “force” involved might be explained by more “fundamental” models

(e.g., interaction of subatomic particles). At the same time, the mechanical explanation is important:

many times it would not be sufficient to cut off the analysis at the point of noting that the lever is

a force-transforming machine. In particular, if one is to build effective levers, one must understand

the features of artifacts that can make good levers (tensile strength, smoothness, etc.).

15Philosophers of science will probably cringe at this use of term “ontology”, much as they cringe at the liberal use
of the term “knowledge” in AI. In this work I follow the lead of knowledge engineering and use “ontology” roughly
like “schema” [281] and “knowledge” roughly as “belief”. For the benefit of the purist, however, it is possible to
employ the philosopher’s notion of “ontology” by proposing that the task-relevant properties (e.g., whether the rock
is a fulcrum) are realist facts (see e.g., Dennett [176]), as is done in Gibsonian psychology [221, pg. 9].

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 60

� Cognitive support theories must be constructed at the appropriate level, using functional terminology and

cognition-related interpretations. It is critical that this ontology be able to abstract away from implementation

details, as the conception of a lever does. One possibility is to use “knowledge level” [445, 446] (or “cogni-

tion level” [523]) concepts and terminology, since they relate directly to cognition issues. They also abstract

away implementation issues, that is, the uninteresting lower-level details. Then cognition-related aspects and

relationships could be highlighted, and implementation-related ones deemphasized (or elided).

TRANSFORMATION AND WORK COMPARISON

With physical work there is a strong notion of conservation of labour. Of course, in the scenario

a different solution path might have been found—for instance Chris could have picked up a small

stick and fished out the keys with it, thereby avoiding the lifting of the tree. But assuming the

tree needs to be lifted, a certain amount of work is unavoidable: the work needed to lift the tree

the required distance. Conservation of energy laws state this is unavoidable. Using mathematical

models of work, it is possible to compare the assisted and unassisted work; we can compare Chris’

lifting with the lever with what she would have to do (her power requirements) if she did not have

a lever. In this comparison, it is the lever that changes the nature of the work that Chris does. True,

she needs to push with less force than if she had no lever, but also she now pushes downwards on

the branch rather than lifting up on the tree. The transformation makes strictly harder jobs possible,

but at some cost (making the lever, pushing it a greater distance). It is important to remember the

advantages in order to accept what may be unavoidable overheads.

� Cognitive support models need to explain how tools transform the tasks [470] to improve the cognitive er-

gonomics. Some method of comparing work done while using different tools must be generated [77]. Ways of

establishing work equivalence seem important to making fair evaluations or comparisons of tools. Also required

are ways of distinguishing between the main work being done from the overheads created.

USABILITY AND TESTING

Once a mechanical explanation of leverage is available, it can be studied with even the poorest of

implementations. A lever made out of a pipe-cleaner and a wad of gum can be tested in a variety of

ways, such as establishing the relationship between lever length, tensile strength, and possible load

limits. As a working lever, however, the implementation may be completely unusable.

� As much as is possible, cognitive support modeling and evaluation should be independent of other suitability

issues: it should be possible to evaluate the supportive nature of prototype tools (i.e., in the presence of usability

problems).

TOOLS VS. SUPPORT CONCEPTS

Since leverage can be modeled and detected, once it is clear that leverage is needed, then a lever-

builder’s challenge is restricted to showing that the lever is effective and useful for the tasks it is

intended to be applied to. In more complicated tools, where levers are merely parts of the overall

tool, the value of the lever can be established independent of the other functionality.

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 61

� Cognitive support models need to make it possible to separate the appropriateness of the tool’s design from the

correctness of the designer’s reasoning about cognitive support. That is, support is independent of the overall

design’s rationalization.

TOOL DESIGN

Chris and Eric adapt the materials available to make a new tool. As tool designers, they require some

knowledge of the task they are to perform and the materials available. But the key is to understand

the implementation-independent concept of a lever and to be able to reason about how to build one

(using available materials) to solve their problems.

� Cognitive support models should make it possible to reason forward about design from an analysis of the

cognitive work that needs to be done. Cognitive support theories do not address task or user requirements, or

the various implementations of supportive solutions.

UNIFIED EXPLANATORY MODELS & COMPOSITION FRAMEWORKS

Newtonian mechanics creates a framework within which it is possible to describe and explain many

fundamental principles of mechanical advantage. Common simple machines such as levers, in-

clined planes and pulleys can be described as basic elements that can be combined in many ways to

generate more complicated machines.

� Cognitive support theories would be most beneficial if most (or all) concepts of support could be decomposed

into a collection of elemental support types. More importantly, the total collection of support types should be

framed within a theory that can coherently unify them.

THEORY USE, NOT THEORY BUILDING

Once the principles of leverage are known, they can be applied with relative ease to understand

the basic events in a given situation. If someone knowledgeable about such things were to have

observed Chris and Eric, they would have little trouble recognizing and explaining the supportive

nature of the lever. Because such an analysis rests on established concepts and theories, reasonable

explanations are unlikely to be questioned. Even if they are, the correct response is to refer the skep-

tic to the science publications upon which they are based, and let the experimental data gathered

elsewhere settle the case. It would be quite unrealistic to suppose that Newtonian physics would

need to be first created and defended by such an observer. Only in highly exceptional design situ-

ations are new theories actually required to make progress in explaining phenomena (e.g. building

transistors for the first time [110]). Good theoretical resources ensure that these situations are the

exception rather than the rule.

� Cognitive support theories should strive to minimize the amount of specialist knowledge needed to that required

for theory application. In particular, cognitive support theories should strive towards the state in which tool

developers can almost casually recognize and discuss supportive mechanisms (like external memories) much

as they might talk about a lever. Certainly, theory users should never need to do cognitive science. Proposing

good cognitive support explanations may never be as simple as it is for mechanical support (much of cognition

is not easily observable), but the importance of an established theory is still clearly analogous.

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 62

DESIGN INTENTIONALITY AND AD HOC TOOL BUILDING

A tool can be supportive even if it is not designed that way. The boulder and branch were not

designed for the purpose of lifting. The support is related to the uses to which the artifacts are put.

� Cognitive support may be created in an ad hoc manner. It must be possible to generate explanations of cognitive

support from observed or prospective user behaviour, not merely from designed-in mechanisms.

These lessons from the lever scenario greatly influence the remaining chapters. For reference, Table 2.4

lists where these desiderata are addressed in succeeding chapters.

LESSON REGARDING THEORY REQUIREMENTS SECTION(S)

explanations of benefit must be mechanistic 4.1.2

explanations cover partial automation and cognitive assistance 6.2.2

ontology should be cognitivist (abstract, cognition related) 4.1.3

work equivalence with/without tool should be established 4.2.2, 5.5

definition of support should be independent from usability 6.7

definition of support should be independent from other functionality 6.7

forward reasoning about support should be possible / simple 7.1

good theories will have a small “vocabulary” of unifying support concepts 4.2, 6.5

need for deep psychology / cognitive science knowledge is minimal 7.2

theory should be applicable to ad hoc designs —

Table 2.4: Theory requirements (lessons learned) and where they are addressed

2.3.2 What Might Theory-Based Methods Look Like?
The theory gives the answers, not the theorist. That is important, because humans also embody

knowledge and can answer questions. ... What questions can be answered by a theory may well

depend on the skill of the theorist, but the answer itself, if obtained, does not—it depends on the

theory, not the theorist.

– Allen Newell, “Unified Theories of Cognition” [446], pg. 13-14.

In the previous section the example of a lever was used to drive an analysis of important features of

theories and models of mechanical support. The present section asks the question: if theoretical models

of cognitive support were to become as well-elaborated and, indeed, as mundane as those for mechanical

support, what might SE tools research look like? The question is answered in two parts. First, a prospec-

tive scenario is suggested of how established cognitive support theories might be used in the future to

perform theory-based tools research. This is a technique used previously by Card et al. in their landmark

book “The Psychology of Human–Computer Interaction” [94]. In it, they tried to establish a vision of

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 63

how an applied psychology might be used during tool analysis. Second, after each scenario is presented,

the problems of current practices will be revisited in order to generate suggestions of how theory-based

methods might either avoid or solve them. These comparisons to theory-based methods are summarized

in two tables: Table 2.5 for evaluation activities, and Table 2.6 for design and analysis activities. In order

to make the example realistic enough, some genuine support ideas from the literature will be included

in the scenario. For now, the reader is encouraged to ignore these details and concentrate instead on the

general form of the scenario.

PRACTICES PROBLEM SOURCES THEORY-BASED APPROACH ADVANTAGES

informal informal methods increased results are more convincing

evaluation and explanations formality

simplistic explanation building understanding cumulates

simple questions explanation testing validation is stronger

comparative whole-tool specific prototypes may be used

validation evaluation feature feedback is directed

evaluation feedback is early

(black-box explanation explanation support idea is explicit

methods) avoidance seeking ideas are directly tested

minimal theory support-relevant better coding schemes

is applied theories are imported reduced proof burden

learning is about tools,
undirected mismatched goals matched goals not psych/support

observation (theory building) (theory application) support theory is imported,
not argued/proved

methods are experimentation is directed avoids fishing expedition

inappropriate support mechanism exposed usability problems can be ignored

model-based model weaknesses support-capable models mechanisms testable

observation mismatched goals matched goals [see undirected obs. above]

Table 2.5: Comparing problems of current idea evaluation practices to theory-based research

PRACTICES PROBLEM SOURCES THEORY-BASED APPROACH ADVANTAGES

analysis word poverty cognitivist vocabulary support-related concepts

& design abstraction over details

relies on craft knowledge theory grounded design reasoning better rationales

design backwards-only forwards reasoning help designers cross the
reasoning enabled “gulf of synthesis”

Table 2.6: Matching problems of current design/analysis practices to theory-based research solutions

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 64

Scenario 7a: Design

Lorne is developing a new software reverse engineering tool that is intended to help reverse engineer

design patterns from legacy code. He has a tool that contains a knowledge base of design patterns.

He knows that these design patterns can be partially matched by an analysis engine he developed with

his colleagues. The partiality of the matches is due to the fact that the analysis engine cannot make

certain inferences about the correctness of matches, and partly because the patterns in the legacy code

are subject to occasional violations of design rules. A small part of the overall HCI consists of the reverse

engineer trying to complete partial matches of design patterns and finding and accounting for all pattern

violations. The process of making these matches is a hard one—it is cognitively challenging to reverse

engineers. Lorne wants to build in cognitive support for this process.

Lorne starts by thinking about the opportunistic problem-solving methods typical of reverse engi-

neers. On his white-board he begins sketching the engineer and computer and the resources they have.

He knows the computer can compute a partial match of a design pattern to a piece of code that im-

plements it. Each match binds pattern features to code features, but these bindings may be erroneous,

or may fail due to pattern violations in the code base. Lorne realizes that the engineer’s task is to go

through the matches and determine correct bindings to the legacy base, and also find pattern violations

and determine how to possibly correct the legacy base. The tool essentially “kick starts” this process.

Based on his knowledge of tool-assisted problem-solving he realizes that the list of bindings the tool

generates forms a shared “match completion plan” and the places where the pattern is violated is a

shared “repair plan”. That is, the tool and user act together in a distributed problem-solving manner,

with the tool’s initial work serving to develop a partial match, and to generate an initial plan for the user

to establish a good binding to code. The plans provide a series of hints regarding the likely locations of

good and bad bindings, and where pattern inconsistencies may exist.

Using his knowledge of cognitive support, Lorne realizes that a suitable support is an external

planning environment that can ensure that the plan and its execution state are well-represented exter-

nally. He knows that if he can effectively distribute the execution states between user and tool, then the

user can engage in display-based16 problem solving instead of internal planning-based problem solving.

From cognitive support theories, he knows that this would free up cognitive resources, resulting in more

systematic plan following, and it would make the process more tolerant of interruptions.

Armed with a general idea of what support is needed, Lorne’s design task is to generate interface

ideas to carry out the support. He begins sketching an interface that can (1) hold the (known) match

completion plan steps and (2) accumulate the (unknown) repair plan. Support theories kick in to advise

him to pay attention to several types of shared problem solving states. Based on these warnings he adds

ways of tracking plan completion state and visually indicating action options relating to the problem

goals. He then adds features to unroll decisions, and to enable backtracking. He also adds a heuristics-

based prioritization algorithm to rank the bindings list so that the ones with the most confidence are

listed first. After making many more detailed design decisions (e.g., involving how novel to make the

16A type of problem solving characterized by the use of external artifacts to represent problem-solving state and to
cue future actions (e.g., see Larkin [374], Section 6.5.2).

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 65

proposed interface), he has a design for an initial prototype.

Lorne used a theory-guided approach to design reasoning. He analyzed the reverse engineering task in

terms of problem-solving and reasoning that needed to be done. He then made use of cognitive support

concepts to reason about how to distribute the problem solving process between the tool and user. In

particular he began to reason about how to distribute the knowledge within the system (plan and state)

in order to enable a particular form of problem-solving (display-based). Prior high-level ideas about

cognitive support helped him make the transition from analysis to synthesis. The transition is critical

and difficult; the potential for theoretical resources to assist designers in this regard is thus a powerful

motivator for the pursuit of cognitive support theories.

Lorne was further aided by using an appropriate cognition-related ontology to analyze the potential

benefits of the tools. The vocabulary and concepts concerning cognitive support were readily available to

Lorne. He could abstract away from the low-level details (e.g., windows, list boxes) and think in cognition-

related terms (e.g., planning, plan execution states). The ability to reason at such functional and high levels

is absolutely critical. This ability is one of the most pervasive and well known differences between expert

and novice performance (e.g., see Ormerod [481] or Chi et al. [123] for reviews). Experts tend to think

at abstract, function-related levels rather than at lower implementation-related levels. Cognitive support

related knowledge can act like a lightning rod for attention. For Lorne, the support-related concepts

such as display-based problem solving may have helped bring to the fore relevant issues such as cost

tradeoffs involved with externally-represented problem solving state. Lorne may well have been able to

design a similar tool without theoretical backing (see, for instance, Koschke [359, ch. 9] for some similar

ideas), however without being able to explicitly reason about why the tool supports cognition, Lorne may

never think to empirically test some of these implications of his tool. But as can be seen, Lorne has a

number of support claims that might be put to empirical test. For instance, he could test whether or not

display-based problem solving is being performed, or whether the external representation plan execution

state really offloads memory requirements. Without articulating the theoretical claim he might have been

tempted to pursue only black-box methods. Thus theories are important to the analysis, evaluation, and

redesign cycle.

Scenario 7b: Early Evaluation

Lorne wonders if the support mechanisms he proposed in his prototype are any good. His current con-

cern is that maintaining an externalized plan-completion state is perhaps too costly. From the standard

textbook on cognitive support, he learns that there is a multi-way tradeoff between externalized plan-

completion state, the cost of manipulating the state, and resistance to interference effects (among other

things, like user confidence in the correctness of the job, and the ability to support cooperative work by

multiple users). He briefly thinks of trying to use a GOMS analysis17 to calculate state-manipulation

costs, but decides to wait until later, thinking that state-manipulation costs may have only a minority

effect. For now, he thinks the more important issue is whether the prioritization algorithm in the repair

plan display destroys breadth-first problem space exploration. He thinks that users may adopt a more

17A task analysis applied to help determine the efficiency of low-level interface tasks [94].

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 66

focused, depth-first behaviour where they chase unpromising leads for too long before realizing their

errors.

Lorne suspects there is no easy way to test his supposition, but he feels he might get reasonable

initial feedback from the developers using his prototype. Lorne visits one of his test sites and videotapes

developers using the tool. Back in the lab, he edits the videotapes to get rid of all observations except for

cases where the step sorting is used. He watches as the users show a habit of always looking first at the

highest priority binding. He might not know whether that strategy is good in all cases, but at least now

he knows the prioritization does focus the search to options his algorithm considers most important.

The above sort of theory-based evaluation is significantly different in character than all of the non-

theoretical methods surveyed in the last section. Unlike those other methods, it is highly focused on the

specific supportive ideas designed into the tools. Detailed suppositions of the supportive nature are ar-

ticulated. These details can generate a cascade of specific evaluation questions. Empirical work serves to

directly validate or disconfirm Lorne’s suppositions about the support rather than build a theory of the

support or the cognitive processes involved. Data collection and observation are strongly directed. When

Lorne analyzes the videotape he knows what sort of behaviour he is looking for. He also could use a

model-based coding technique to code problem state transmission between internal and external repre-

sentations (see Chapter 9); this would then help him evaluate the success of the display-based interface.

If Lorne wanted to, he could directly test some of the predicted performance benefits even with his pro-

totype. For example, he could try adding various memory loads (like articulatory suppression [167]) to

subjects to determine how their ability to track progress is affected. This allows Lorne to propose and eval-

uate interesting questions early in the iterative design phase, when such empiricism has the best chance

of making the greatest impact. By being focusing on the cognitive support, he is able to appropriately

ignore many usability issues (e.g., proper help systems, printing, interface consistency) during the time

when changes to functionality are most critical. While he is designing and evolving new support, he is

analyzing and modeling that support at the same time. His understanding of the tool’s benefits therefore

accumulates in the models he uses, and thus these directly reflect his design ideas. When it comes time to

publish, the claims of support can be made crystal clear, and being able to appeal to standard theories of

cognitive support grounds his work in a widely accepted science base.

These two scenarios of design and evaluation lead to a vision of theory-guided research where re-

searchers can work directly in the domain of cognitive support. They can fully articulate their ideas and

by doing so engage in a tight feedback loop of proposing support implementation concepts, directly test-

ing them, and then modifying their designs. Cognitive models and theories act as strong allies by helping

them do their intended work—developing computational implementations of support—rather than ex-

posing them to the full burdens of building theories of cognition and of cognitive support.

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 67

2.3.3 SE Research and Researchers
Engineering relies on codifying scientific knowledge about a technological problem domain in

a form that is directly useful to the practitioner, thereby providing answers for questions that

commonly occur in practice. Engineers of ordinary talent can then apply this knowledge to solve

problems far faster than they otherwise could.

– Mary Shaw, “Prospects for an Engineering Discipline of Software” [579], pg. 16

What does research on cognitive support for software development entail? What is the role of SE

researchers? I have already portrayed SE researchers as future users of cognitive support theories. These

theories are not going to magically appear—they must be developed. Who develops them? How are they

evolved? It is unreasonable to claim to be able to predict answers to these questions, but by looking into

the past history of another domain it might be possible to glimpse the future history of our own. Here, I

take a cue from Lewis [384], and suggest that SE research might best exhibit many parallels with modern

medical and pharmaceuticals research.

From Quackery to Modern Medicine

Early medicine was frequently highly unscientific. In America and England in the 18th and 19th century,

quackery prevailed.18 Our view back on this quackery is sometimes romantic: charismatic hucksters

crawling from town to town with a cargo of small bottles filled with mysterious potions. The salesmen

would speak to crowds and extol the virtues of their wares. These snake-oil salesmen promised that the

mysterious concoctions contained in their bottles could cure a multitude of ailments. The recipes for these

concoctions frequently were created by mixing together various herbs and spirits which were believed to

have healing “powers”. There was little available from medical science to either understand the ailments,

or the possible mechanisms by which the cures could be effective. Consequently, little emphasis was put

on such explanations: if the body’s complicated mechanisms were poorly understood, what confidence

could be placed on any explanations offered? Potential clients were just interested in whether or not

the potions worked. Of course, “explanations” for why these miracle cures worked were pronounced,

but without the sciences of biochemistry and genetics, all explaining had to be simplistic. Sometimes

the healing ability were attributed to mystical properties of the ingredients; sometimes to the potions’

capability to tap into the powerful—and often unnamed—healing capabilities of the human body. Sales

depended on endorsements, reputation, gullibility, and snappy brand names.

Since the time of the traveling snake-oil salesmen, medical sciences and pharmacology have blossomed

and matured to the point where, not only do we have marvelous new drugs, but we also understand to

a much better degree the causes of diseases, how they progress, and how various drugs, organisms, and

radiations chemically and physically interact with the human body. The contrast between the snake-oil

18See e.g., “The Golden Age of Quackery” [310], and “Peddling Snake Oil” [453]. Actually, quackery is still alive
and well. Both quackery and anti-quackery sites litter the web.

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 68

era and modern medicine is stark. Now, we have a certain level of sophistication concerning pharma-

ceuticals. We know much more about the causes of ailments. The knowledge of underlying causes, and

the capability to be more demanding in showing evidence go hand in hand. Now we insist on having

clinical evidence showing drug safety and effectiveness. But we also want to be able to explain why the

drugs work. Appeals to mystical properties of drugs or of humans are no longer acceptable. Good expla-

nations are important. Unfortunately, the explanations come at a high cost—one must have theories and

models out of which to create the explanations. Chemistry is needed to decompose pharmaceuticals into

active ingredients and fillers. Biochemistry has to be developed before it is possible to explain how some-

thing like the birth control pill works. A great deal of science knowledge is needed to support modern

pharmaceuticals research. Fortunately for the pharmaceuticals developer, a great deal of knowledge is

available.

It may just be possible to glimpse part of the future of SE tools research from the history of pharma-

ceuticals and medical interventions. The state of SE tools today is arguably much better than medical

interventions were in the “golden age” of quackery. But the analogy to the snake oil and quackery times

still draws some uncomfortable parallels. Trade literature today routinely tout wares in ways reminiscent

of the snake oil salesmen. One web page, for instance, claims that “Even if a software project involves

millions of lines of code, high-end application developers can use SNiFF+ tools to quickly and easily com-

prehend, navigate and analyze source code.”19 The “easily comprehend” claim is vague yet it is clearly

disputable. Of course, web sites can still be found for such medically dubious products as cellulite remov-

ing creams, but the point is that the current marketing of software development tools too much resembles

the snake oil era when it comes to cognitive support. Much emphasis is currently made on product en-

dorsements by prominent clients, and on favourable hands-on reviews. The subtle implication is that

there are few expectations of better forms of evidence. Of course, trade literature is not the same thing

as the academic literature on SE tools. Still, it hardly can be argued that the academic research commu-

nity have done enough to distance themselves from criticism [724]. The point is that much more needs to

be done than simply “validating” tools in ways similar to the way drugs are validated in clinical trials.

Validation is not enough: “deep” explanations of the actual tools are required. For the case of pharmaceu-

ticals research, producing better evidence required many improvements in scientific knowledge about the

causes of maladies, and the ways in which the pharmaceuticals work.

Gaining this scientific understanding is far from trivial. It is, in fact, much more than one researcher

can effectively handle. The typical way to deal with subject complexity is to decompose the problems into

well-partitioned subproblems, and then set up subdisciplines to study them. As Plato is thought to have

said, science should “carve Nature at its joints” [317, pg. 7]. Where these joints should rightly be raises

some concerns [26]. But wherever they are set, it is impossible to take on the whole at once, so together

the subdisciplines (and sister disciplines) set up a knowledge ecosystem. In such an ecosystem, knowledge

is produced by one subdiscipline and consumed by another. Modern medicine split itself up (quite suc-

cessfully) in exactly this manner, and has developed a roughly defined set of roles for medical research.

The knowledge ecosystem in medicine is now very complex, with many astonishingly narrow specialties.

19http://www.windriver.com/products/html/embed dev tools.html, retrieved on 2001/01/10.

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 69

Luckily, a rough generalization is enough to make an illustrative analogy. Medical practitioners diagnose

medical conditions and determine interventions to solve the medical problems they discover. The practi-

tioners know about drug capabilities and side effects, and prescribe and administer drugs after matching

problem diagnosis to an appropriate intervention. They need to know the efficacy and risks associated

with the drugs, and they depend upon the fact that the drugs are validated to ensure their efficacy and to

establish their associated side-effects and risks.

Pharmaceuticals research itself is divided into (1) the research and clinical trials that establish efficacy

and risks, and (2) the research that develops new drugs and drug ideas. These latter pharmaceuticals

researchers frequently use their understanding of biochemistry, genetics, and human physiology to de-

velop the new drugs. In particular, they rely on an understanding of how drugs can produce their effects

(delivery mechanisms, interaction with the immune systems, barriers to absorption, etc.). In general, they

do not make up the problems they are solving, nor do they build the underlying science upon which they

base their solutions. They rely on more basic science researchers such as protein structure researchers,

geneticists, and cell chemistry researchers. They especially rely upon those researchers who turn basic

research into applicable techniques. These latter researchers include those that make gene splicing or pro-

tein synthesis practical. Pharmaceuticals researchers import this knowledge, and they frequently export

their set of unsolved problems for which a solution would be desirable. Over time, the medical profes-

sions have tackled the early unscientific basis for building medical interventions to human ailments with

an overall approach involving a separation of basic sciences research from applied science, and design

sciences from testing. Clearly, in order for this ecosystem to be successful the pharmaceuticals researcher

must be able to effectively use knowledge gained in the basic sciences. In this scheme the applied theories

and methods carry this knowledge.

The above pharmaceuticals research ecosystem is depicted in Figure 2.2(a). I have ignored many de-

tails, such regulatory agencies and pharmaceuticals packaging, but even though the overall picture is a

crude characterization, it is sufficient for drawing parallels to cognitive support research. One way is with

the following mapping: drugs are like tools or tool concepts, medical practitioners are akin to software

developers (i.e., tool adopters), pharmaceuticals testing is similar to tool validation, pharmaceuticals de-

velopment is like tools research and development, and the applied scientists that bring basic science to

practice are like cognitive support theory developers. In this scheme, the basic principles of cognition and

cognitive support are akin to the basic sciences underlying modern medicine. This scheme is diagrammed

in Figure 2.2(b). This dissertation fits squarely into the “cognitive support adapter” role in that diagram.

My target audience for the knowledge developed is the “tool innovator”; I draw upon the basic sciences

of psychology and cognitive science. My goal, therefore, is to make knowledge from the basic sciences

available to the tool innovator.

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 70

drug
tester

drug
innovator

applied
scientist

medical
practitioner

basic
scientist

science
knowledge

drug

science knowledge
methods,
tools

certification

drug

(physiology,
biochemistry, etc.)new problems

cognitive support
adapter

technology
validator tool

science knowledge
methods,
tools

certification

tool

science
knowledge

basic
scientist

tool
adopter

tool
innovator

(cognitive science
logic, etc.)new problems

(a) (b)

Figure 2.2: Models of (a) pharmaceuticals and (b) possible cognitive support knowledge ecosystems

Three Alternative Visions

The above scheme of the ecosystem for software development tools research establishes a clear distinction

between users and developers of cognitive support theories and models, and users and developers of the

basic science underlying these theories. It is the applied theories that tie basic science to its application.

This scheme is not without its potential critics. Three different sorts of proposals have been at times

advocated which blur the distinctions between specialists. Although they do not have standard names,

the proposals might well be called the “scientist as tool builder”, “tools researcher as scientist”, and the

“group knowledge” approaches. Each approach makes different suggestions as to how the appropriate

specialist knowledge should be applied.

The “scientist as tool builder” approach advocates that basic science is done through tool building.

For instance Anderson [12], Landauer [369], Norman [468], and many others (e.g., [169,186,447,448,494])

envision research programmes in which scientists such as cognitive psychologists create basic science

knowledge by building tools. This vision of research collapses the roles of basic and applied scientists

with the roles of tool developers. Several reasons have been given for trying this approach [350]. Norman

argued that applications tend to drive science rather than the other way around [468], so that the basic

science researcher should be developing tools. Other reasons given have included the belief that theories

would become more relevant to application, and the fact that novel tools would rely on new theories.

Most of these reasons cite benefits for the basic scientist, not the tool developer. Be that as it may, even if

none of these reasons are borne out, it is certainly true that wearing the dual hats of tool developer and

basic science researchers does provide good assurances that at least some knowledge from the underlying

sciences can be applied by the tool builder during research and development.

The “tools researcher as scientist” approach essentially suggests that tools researchers do the basic

science. Commonly the argument advanced to support this approach is that the scientific methods used

by the basic scientists can be adopted and wielded by tool builders during design. Tool designers would

need to establish the validity of the principles inherent in their designs. Numerous suggestions have been

made in this vein for using methods from other specialist disciplines during software development. These

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 71

include applications of methods from psychology [369–371,402,458] and anthropology [24,60,311]. Some-

times there are no expectations that the software developers become specialist experts (as in Nielsen’s sug-

gestion that computing scientists use protocol analysis [458]). In other cases it is clear that tools researchers

are expected to acquire and maintain highly specialist skills and knowledge such as from cognitive sci-

ence. For instance the proposal by Williges et al. [706] assume that fundamentally theory-building exper-

imental methods be used during design. The general thrust of this approach is that the tools researcher

is not so much using principles and theories originally constructed elsewhere, as they are experimentally

establishing them (once again) in their particular design contexts.

The “group knowledge” approach argues that specialist knowledge be imported in the form of hu-

man experts. Thus psychologists, anthropologists, and HCI specialists, it is suggested, should be part of

software design teams, and of research teams as well. This imports the required knowledge in the form a

human specialist. It consequently side-steps the problem of making basic science knowledge available to

non-specialists. This raises a number of other problems (e.g., scientists tend to specialize in narrow areas,

so it is an open question as to how many experts should be included), but it seems to assure some measure

of availability for specialist knowledge.

The above three proposals all raise serious concerns for the practice of SE research. The “group knowl-

edge” approach is in principle quite sound and has been practiced quite successfully in the past (see, e.g.,

Carroll et al. [111], Landauer [371, ch. 5], and Green et al. [271]). But (1) the approach does not avoid the

need for good cognitive support theories for the specialists (which is still poorly developed anyway), and

(2) it does not really solve the problems for SE researchers, who are left with a critical issue they cannot

properly address without recruiting knowledgeable colleagues from other disciplines. Should all grant

proposals in the field include funding requests for a psychologist as a research associate?20 The other two

approaches are problematic because of their implication that SE researchers wear the two hats of basic

science researcher and tools researcher.

Some arguments certainly can be made in support of the two-hats approaches. History has shown that

it certainly is possible for one scientist to successfully wear the two hats. In fact, it has been frequently

pointed out that the seemingly clean split between basic and applied research quickly dissolves under

close inspection (e.g., Nickerson [455], Naur [439], Kirlik [348]). So perhaps the split between applied and

basic scientist in Figure 2.2(b) is never quite so clean anyway. In addition, it is common for researchers

like psychologists and sociologists [156] to study software development as a particularly interesting do-

main for study and application. As a result, several works studying software development have tried

to advance theoretical understanding and simultaneously build better tools (e.g., Adelson et al. [6]). Re-

searchers from other domains can do good software development and tools research. Sharing a common

problem domain has been nothing but mutually beneficial. And there is certainly nothing stopping SE

researchers from becoming more knowledgeable in cognitive science or sociology. An excellent example

of the results possible is the work done by Redmiles et al. [532] to weave together applied theory and

tool development in work on the Explainer [533] and Argo [544] tools. But are the close ties really

necessary?

20The question was rhetorical. Those psychologists and HCI specialists currently looking for work need not email
me to argue the affirmative.

2.3. POSSIBILITIES OF THEORY-BASED RESEARCH 72

A Necessary Marriage?

Laboratory experimentation to test systems is an interim procedure, to approximate the benefits

of models, while we wait for our science to mature to the point that such models are complete.

– Bonnie E. John, Panel statement on “The Role of Laboratory Experiments in HCI” [711],

pg. 266.

Even if each of the three alternative views have some merit, the question still remains: does the tool in-

novator need to be, effectively, a trained scientist in a contributing research discipline? It is still reasonable

to question whether the tight couplings that are being proposed (and which exist in current practice) will

really be necessary in the future. There are several troubling issues. First, it has yet to be proven that ad-

vances in basic sciences are necessary to build better tools. It is certainly unclear that we currently employ

what we know to full effect. Consequently, research in cognitive support should not, as I have argued,

invariably require extensions to the underlying science base. So doing basic science research is certainly

not an absolute and universal necessity. Second, the requirements made of research in the basic sciences

are frequently at odds with the aims of tools researchers. For instance, as Green has argued [259, 270], the

sorts of research demanded by parent disciplines too frequently generates results of the wrong sort, em-

phasizes statistical significance over effect size, and favours simplified models that can be easily verified

over models that integrate numerous phenomena and can therefore address design tradeoffs. The basic

sciences simply haul in too much baggage from their respective research paradigms. Third, without ac-

cessible cognitive support theories, SE researchers are faced with the difficult task of finding, interpreting,

integrating, and applying basic science research. As the applied work by Redmiles [532] shows, many of

the experimental problems described in Section 2.2 crop up, such as the burdens of building theories.

The alternative vision presented in Figure 2.2(b) is one where the basic ideas and models of cognitive

support are quite well established, and the main challenge presented to tools researchers is to use these

theories and models in establishing new supportive technologies. The scientific basis of tools research

is improved when tools researchers use applied models that are ultimately grounded in basic research.

The vision creates a clear distinction between tool-oriented research that uses basic science, and support-

oriented research that generates knowledge about cognition and cognitive support. Knowing more about

cognition and cognitive support may still be a requirement for the future tool-oriented researcher, but

the value of a mature theoretical framework that can be imported for this purpose is inestimable. Fur-

thermore, a permanent position is created for research that generates applied models from more basic

sciences. The GOMS models created by Card et al. are the results of one well-known prior effort in gen-

erating applied theories for tool researchers [94]. The next few chapters of this dissertation are another

attempt.

2.4. THE PRACTICAL ART OF DESIGNING THEORIES 73

2.4 The Practical Art of Designing Theories

So far in this section I have argued that the topic of cognitive support is important to our research com-

munity, that we need to pursue cognitive support theories, that we have largely neglected them to our

own detriment, and that they appear to be a resource that, in the long term, we hope to use to build good

tools with, rather than having to continually build ourselves. To continue the ongoing debate, then, the

questions become: how should we begin building them? Can they be built? It was already mentioned

above that there is some debate as to whether or how an appropriate cognitive support theory could be

built. The debate appears to hinge upon what we expect cognitive support theories to be, and what we

expect them to do for us. I will argue here that if our expectations are relatively modest and thoroughly

pragmatic, there should be no real difficulty in developing useful cognitive support theories. In my view,

the theories are tools—artifacts—and we should think of theory building as a design activity.

Setting Proper Expectations for Theory

Opinions about the usefulness of psychology-related sciences differ greatly. Some people are highly dis-

missive; others feel that psychological sciences are obviously relevant and have much potential. It is un-

wise to avoid this debate. By studying one’s critics, one can identify and therefore avoid potential pitfalls.

More importantly, debating the issue requires preparedness. To answer the critics of psychology requires

one to either demonstrate appropriately useful theories, or else put forward a reasonably convincing and

realistic plan for building them. The following presents a pragmatic plan for building SE-relevant cogni-

tive support theories. Many potential criticisms against the approach are considered one by one, and then

countered with pragmatic replies. Afterwards, an approach to iteratively building theories is outlined.

Being able to present such a plan hinges on first settling on an appropriate definition of the term

“theory”. The position taken in this work is essentially the same as Newell’s in his heroic assault on

“Unified Theories of Cognition” [446]. Newell said:

To state it positively and in general, let there be some body of explicit knowledge, from which answers can

be obtained to questions by inquiries. Some answers might be predictions, some might be explanations,

some might be prescriptions for control. If this body of knowledge yields answers to those questions for

you, you can call it a theory. There is little sense worrying that one body of knowledge is just a collection

of facts (such as a data base of people’s heights and ages) and another is the fundamental axioms of a

subject matter (such as Newton’s three laws plus supporting explication). The difference, of course, is

important. But it is clear what is going on—they answer different sorts of questions and have different

scope and have different potential for further development. That is, they are indeed different bodies of

knowledge. But both play a role in providing needed answers... [446, pg. 13]

Theories are considered here as ways of generating answers to questions. Naturally, the traditional con-

ceptions of scientific and empirical justification still apply, and are considered desirable. Given this defi-

nition, a key aim of this work is to define theories that are useful during tool analysis and design, and to

work towards their scientific and empirical justification. The remaining question is how to do so.

2.4. THE PRACTICAL ART OF DESIGNING THEORIES 74

The answer offered here is to consider seriously the idea that application-oriented theories are artifacts

that need to be designed—just like any other artifact—with the needs and characteristics of its users in

mind. This stance will be expanded upon somewhat in Chapter 7, but a few comments can be made here.

The approach treats theories as artifacts—as things to design.

The purpose of the theory-as-artifact approach is to take seriously the idea that theories need to be

built to suit their intended application [84]. The overall approach is not new. Barnard [28,30], for instance,

pointed out that perhaps one of the reasons so few good design-relevant cognitive theories exist is because

nobody has really ensured their usability:

... those seeking to apply cognitive theory in HCI have, in fact, behaved just like early system designers.

Like glass teletypes, basic psychological technologies were under-developed for their new purpose and,

like the early design of command languages, the interfaces (application representations and engineering

models) were heuristically constructed by the theorists around what they could provide rather than by any

deep analysis of requirements, extensive study of their target users (designers), or of the actual contexts

in which design occurs. [30, pg. 106]

Taking this view into account, the outlook pursued here is that the artifacts (theories, models, examples,

etc.) being produced are supposed to be early prototypes. They are tools for analysts and designers—

tools to answer questions. But the first ones will be “alpha” versions. They will necessarily seem hacked

together, will be missing functionality, and be only partially usable. But it is reasonable to expect them to

go through the improvement cycles common to other artifacts. A few researchers may try them and then

improve them. New capabilities will be added. More and different theories will join them. Perhaps “user

manuals” and tutorials will be written on how to use the theories, as has been done for the Cognitive

Dimensions framework [269]. This theory-as-artifact viewpoint provides the way of answering possible

criticisms (i.e., potential pitfalls). This shows up in the point–counter point debate below. The debate is

summarized in Table 2.7.

Point, Counter Point, and Approach

Pylyshyn took the approach of debating with himself about the possibility of theory that is actually appli-

cable to design [522], and this tactic seems to work here also. The tactic is used below to raise and counter

arguments which may be put forward for why useful cognition-related theories cannot be built.

Behaviour is too complex.

Point: Psychology has been seriously studied for a century and we seem to barely have made a dent [370].

Thus, whatever approach we use we cannot expect the basic sciences to provide many good answers.

Counter: Good approximations are still useful and we should be able to generate some good approxi-

mations [467]. Furthermore, sometimes the approximations are what we want. For instance, Newtonian

mechanics, though approximate, is frequently just fine for ordinary mechanical engineering. Moreover,

it has been argued that relatively little deep scientific knowledge is needed to make useful observations.

For instance, Hutchins [320], in his work on DC, argued that little of the “internal” psychology of the

2.4. THE PRACTICAL ART OF DESIGNING THEORIES 75

Useful Theory is Impossible

POINT COUNTER POINT MY APPROACH

behaviour is too complex should be able to approximate iteratively refine / deepen theories

shallow models are still useful build “broad-brush” theories

there is no hope for “the”
theory

approximation is better than intuition use theory when available

Theories Are Not Really Needed

POINT COUNTER POINT MY APPROACH

design precedes theory craft and folk knowledge is used instead try to add rigour and formality

analysis and evaluation is still important improve theory basis for evaluation

ignored by practitioners / SE
community

problem is their usability use familiar computational ideas

SE researchers are not psy-
chologists

theories/models carry the psychology build knowledge into models

SE research is not psycho-
logical research

import psychology/HCI, not export it build theories from existing knowledge

Current Theory is Too Poor

POINT COUNTER POINT MY APPROACH

theories are not applicable only some is not applicable seek related and usable research

theories are irrelevant used wrong base / tackled wrong issues focus on problem, not available theory

theories are immature exploratory work invigorates research begin with broad high-level theories

theories are unintegrated,
fragmentary

can still try to integrate pioneer integrative frameworks

Table 2.7: Arguments for a realistic pursuit of cognitive support theories

individual was needed. Thus it may be enough to produce decent approximations of relatively few psy-

chological phenomena. Approach: Start with relatively gross approximations and build “broad-brush”

theories [257] initially. Then iteratively refine the theories. Detail can be added if or when it is required;

the application-oriented theories can follow advances in the basic sciences when they occur.

There is no hope for the theory.

Point: There is no hope that complete and accurate theories can be built which will be able to handle our

analysis and design needs. As Singley et al. said, “Certainly now, and probably always, psychological

principles will under determine design. Deducing a design from first principles is too much to ask from

any psychological theory.” [599, pg. 197]. So even if psychology were solved, design theory will never be.

Counter: Like in the previous counter point, the answer to impossible perfection is to happily approxi-

mate. Even rather extreme approximation is useful since right now we have practically no scientifically

based cognitive support theories. Approach: The SE researcher can make use of whatever theory can be

2.4. THE PRACTICAL ART OF DESIGNING THEORIES 76

provided, and simply supplement it with their own craft skills and intuition. The aim is to use whatever

resources we have now to the best of our abilities.

Design precedes theory.

Point: It is often the case that we can build good tools without the theory to explain why they are good.

Thus theories are not needed. Counter: So what? Theory construction does not have to postdate de-

sign [384], and designers can still use theory whenever it is available [106]. If we actually had the theory,

nothing would stop us from using it. Furthermore, even if good design precedes theory, we need the right

explanations during analysis and evaluation (see Section 2.2, above). How can we rationally compare

tools otherwise? How do we know what parts of a tool to copy? What lessons generalize? Approach:

It is worthwhile pursuing more rigorous foundations to tool building. Chapter 8 illustrates that under-

standing our existing tools better is in fact a worthwhile goal even if no truly novel design knowledge

comes from it.

Ignored by practitioners / SE community.

Point: Tool developers in SE and CS for the most part ignore HCI and psychology [263]. Cognitive

support theories will therefore have little practical impact other than for psychologists, or possibly HCI

specialists. Counter: The problems of making theories usable to non-specialists are indeed severe, but

nobody has proven the problems are insurmountable. Modern undergraduate HCI courses teach a mod-

icum of theory. If what we do is simple enough, we could reasonably expect it to be added to such a

curriculum and in that way slowly make further inroads. Approach: In this dissertation, I have striven

to use concepts and terminology familiar to researchers with traditional computing science backgrounds.

For the most part familiar intuitions about computation transfer to the topic of cognitive support. This

should help increase the acceptability of the results to computing scientists, although obviously there are

no guarantees.

SE people are not psychologists.

Point: Past approaches in HCI have required a rather considerable amount of psychological sophistica-

tion in order for them to be effective [657]. Building theories for specialists with deep knowledge is not

inherently wrong, but what about the average SE researcher who wants to do SE research? They will not

have the right background and skill set. Counter: The straightforward answer is that models carry psy-

chological knowledge. So the necessary psychology can be built into the models being used. Although

a limited number of useful models can be built in, the number is surely nonzero. Approach: Focus on

important items that can be addressed using broad-brush theories. They will probably have the most

“bang for the buck”. Some basic psychology is included in the models of Chapter 5 (e.g., limited memory

capacity). Learning the models entails learning a little of the relevant psychology. More importantly, if the

models are good, the psychology learned is precisely that which is needed most.

2.4. THE PRACTICAL ART OF DESIGNING THEORIES 77

SE research is not psychological research.

Point: SE researchers want to build novel technologies and computing science theories, not psychological

theories. To build good cognitive support theories, one needs better cognitive science or other scientific

foundations. Counter: We do not have to do the psychological research if we can import it. Even right

now, there is plenty of useful research to start the process, and much of it has never been adequately

explored in the context of software comprehension and software development. Approach: Instead of

trying to add a small bit of detail to the tapestry of basic science knowledge (e.g., validating a model of

comprehension [654]), the focus will be on collecting and integrating existing knowledge.

Existing research is not applicable.

Point: Most of the basic science sources we can consult fail to be directly applicable. They may be too

low-level, explain highly esoteric and isolated phenomena, and fail to be ecologically valid [26,155]. Thus

we are left with practically no applicable science base. Counter: Not all of the prior work is inappli-

cable. True, a good fraction of the applicable work seems somewhat underdeveloped, but I would claim

that we have more than enough basic science to work with to build good initial application-oriented

theories. Approach: The plan is to seek out useful research, for it is unlikely to be entirely absent. A

start to the required survey work appears in Chapters 3, 4, and 5.

Prior work has been irrelevant.

Point: Even when one finds potentially applicable theory in the existing literature, it is mostly irrelevant

to the important issues in software development. If one wishes to understand the role of tools for pro-

grammers, studies which restrict the use of tools, or which model “disembodied” thinking are not going

to be especially useful [41,472,493]. Even if you succeed in modeling real-world thinking, it may not help

you understand cognitive support. Counter: Prior work has not concentrated on cognitive support in

part because there has been little awareness of the issue. In addition, much of the work in this field has

adopted methods and techniques which are inadequate for addressing cognitive support. But that does

not mean the existing knowledge is entirely useless. What if it could be suitably augmented? Approach:

The solution is to let the problems drive the theory, rather than to start with one’s favorite theory (or what-

ever one is available) and try to squeeze as much out of them as possible. Gaps in the science base will be

highlighted and filled in as best as possible. This can feed new problems back into the basic sciences. Thus

over the long term, being problem-driven should help to steer research towards buttressing the theories

in the needed ways.

HCI research is too immature.

Point: Even if you used the right science base, our understanding of HCI and cognitive support is very

immature. What could you possibly produce from it? Counter: True, it is in ways immature, but

we have used hardly any of it yet! We can try make better use of what we have, and fill in the rest

tentatively. Approach: Given the current state, the most reasonable course of action is to start with very

2.5. SUMMARY 78

“broad-brush” [257] theories. This goal is adopted in Chapters 4 and 5 when building theoretical frame-

works and models. And, of course, these theories are expected to be iteratively refined and deepened in

time.

Cognitive support theory is unintegrated, fragmentary.

Point: Artifact-supported cognition seems to have frequently taken a back seat to studies of the “un-

aided” mind. Where research exists, it is scattered in multiple problem domains and research disciplines,

and it is unorganized and unintegrated. Efforts to build application-oriented theories seem, in this light,

to be premature. Counter: So let us start gathering the stuff together in earnest. We do not need per-

fection the first time. Try and then update. Approach: In order to get anywhere, a broad survey of

cognitive support phenomena and theories needed to be generated. This survey is presented, collectively,

in Chapters 3, 4, and 6.

2.5 Summary

...like others in human factors, we have been faced with sometimes critical questions of human

behavior in technical systems and, having gone to our cache of theoretical weapons, have found

the cupboard uncomfortably bare.

– Flach et al., in preface chapter [220], pg. xii.

For the last four decades or so, SE and CS researchers have pondered the psychological aspects of

software development [308]. But this has been a fringe area, and not many traditional SE and CS re-

searchers have delved into it. And probably rightly so. Mainstream SE and CS research regarding tools

has dealt primarily with computational theories and technological innovation, not with performing psy-

chology or sociology. Even so, the topic of supporting cognition is still one of the central issues of the

discipline! The cognitive and social issues, it is widely agreed, are some of the most pressing problems

of software development, and are probably the most difficult to solve. The endeavor of building tools for

software development has psychology written all over it. Thus although the majority of SE researchers

should probably not do psychological research, neither should psychology be ignored. Nor should it be

marginalized in the way it has been in the past. A particularly vexing problem is that even when developer

cognition is studied, the distinction between studying cognition and cognitive support is frequently not

made, and the supportive nature of tools are not fully realized. All of this needs to change—the sooner,

the better.

SE research must more seriously address how development tools aid cognition. It needs an applied

science of cognitive support, and an engineering discipline built around that applied science. This is not

a plea for more basic psychological research, but an argument to establish an applied science that imports

the basic research. Really, nothing of this sort currently exists. An applied science of cognitive support

would be nearly as important to SE tools research as are parsing and automata theory, logical frameworks,

2.5. SUMMARY 79

or models of formal semantics. The difference is that applied cognitive support theories will be born from

disciplines like cognitive science, cognitive anthropology, and psychology, whereas the latter have come

from the historically closer siblings of mathematics, logic, and theoretical computing science. In a way,

this chapter has aimed to advertise the clear need for an applied science of cognitive support, and thus

serve as a “call to arms” to both appreciate the need for applied cognitive support theories, and to join in

their development.

This chapter was organized as a debate about the role of cognitive support in SE research. My hope

is that this debate helps put the importance of the topic of cognitive support into sharp focus. In the

past, too many SE researchers have been able to justify to themselves, in one way or another, that it is

alright to maintain a blissful ignorance of the psychological aspects of their tools. On the flip side, too

many cognition-oriented works in the field effectively avoid the question of applicability. Both of these

viewpoints are real threats to positive change. I hope the extended debate in this chapter can pick apart

these roadblocks to a more rigorous research discipline.

The debate consisted of a progression of questions and arguments in response. First, it was argued

that cognitive support is, as a subject, important for SE research. It was pointed out that we have been

studying cognitive support all along, but it has been informal, unprincipled, and unsystematic. A call

for research into cognitive support theories is therefore “merely” a call for increased rigour, and for more

sound scientific principles. Second, several serious problems with existing research practices were noted,

and these were traced to the lack of suitable cognitive support theories. Third, the desirable form of such

theories was explored by examining the mature example provided by our knowledge mechanical support.

In addition, the way SE research related to cognitive support research was elaborated upon in order to set

realistic goals and expectations for SE researchers. Finally, a programme for building suitable theories was

outlined.

The programme is typical of applied sciences research. In applied sciences, one starts with a problem,

looks amongst existing research for applicable theory, massages a candidate theory into shape, and then

tries it out to see if it is useful. The work by Rasmussen et al. on “ecological interface design” [531] is an

outstanding example of the sort of research that is involved in this sort of programme. Vicente summed

up their efforts as follows:

First, we conducted a literature review to identify empirical findings that might be pertinent to the aspects

of interface design in which we were most interested. Second, we used the SRK taxonomy 21 as an

“umbrella” framework for integrating, under a common language, the variety of research results that were

encountered. Third, we then used the theoretical constructs of SRK to deduce from these findings a set

of three principles for interface design [657, ch. 11].

Except for the particular theories and findings involved, the process described in this quotation is closely

followed the remaining chapters.

21A theoretical construct that will be covered in later chapters.

Chapter 3

Cognitive Support Phenomena

The power of the unaided mind is highly overrated. Without external aids, memory, thought,

and reasoning are all constrained. But human intelligence is highly flexible and adaptive, superb

at inventing procedures and objects that overcome its own limits. The real powers come from

devising external aids that enhance cognitive abilities. How have we increased memory, thought,

and reasoning? By the invention of external aids: It is things that make us smart.

– Donald Norman, “Things That Make Us Smart” [472, ch. 3]

�he very idea of cognitive support would be quite absurd without some way for the world outside the

head to make some kind of difference to the world inside, that is, to human thinking and problem solving.

If tools are claimed to support cognitive activity, it behooves us to provide some sort of explanation and

proof of how in the world such support can possibly work. To really explain cognitive support, the way

that the external world is integrated into thinking needs to be modeled, and the supportive nature of this

integration needs to be understood. If cognitive support is to be designed, some way of reasoning about

how to introduce and tune these interventions needs to be elaborated. The attempt to deliver design

reasoning is saved for Chapter 7. This chapter, and the two following it, are concerned with the first issue,

that is, with simply being able to explain how the external world can impact cognition, especially the way

artifacts like software development tools can support cognition in developers. Here we are in search of

cognitive support theories.

The approach taken is the theory design approach outlined in Section 2.4. The overall plan for theory

construction is to determine what explanations are needed, to then find or make resources from which to

build suitable explanations, and to then create theories and models from these raw materials in a way that

makes them valuable to their eventual users. From a scientist’s point of view, this roughly corresponds to

elaborating the phenomena of interest and what sort of statements one wishes to make about it, setting

the theoretical stance and researching prior related work, and then generating an initial theory accounting

for the phenomena. From a theory designer’s point of view, the process looks instead like performing

80

81

requirements analysis, exploring the design space, and then elaborating the design once an overall ap-

proach is settled on. Viewing the situation from this top-most level it is clear what the general plan of

this chapter and the four following will be: first survey and expose the types of cognitive support that are

relevant to software development (this chapter), next scour existing DC theory for applicable resources

(Chapter 4 and 5), and then customize or build appropriate models and theories (Chapters 5, 6, and 7).

The first step cannot be skipped. Cognitive support is currently rather enigmatic. It is hard to understand

cognitive support simply because cognition and human behaviour is hard to understand. But there are

other complications.

For one thing the essential nature of cognitive support does not seem to be a unitary and homogeneous

thing. Simply put, there seem to be different types of support. Consider, for instance, three tool sets: paper

and pen, a typical compiler that checks a program’s partial semantics (e.g., type checking), and the search

tool grep. These are all clearly important for many types of software development. Each seems to support

the thinking work of developers in some way. But the support seems different in each case. Is it, and if

so, how? If we cannot answer this question there is a real danger of choosing a focus that is too narrow,

and consequently adopting a conception of support that is far too limiting. The first challenge, then, is to

make sure that we cast the net wide enough to encompass the important variations, and yet still be able

to recognize the similarities and differences among them.

A further complication is the fact that the research concerning cognitive support lies scattered in many

small pieces, and that it sometimes spans the boundaries of traditional research disciplines. Sometimes

it is investigated by anthropologists, sometimes by cognitive scientists. Sometimes it is studied in educa-

tional contexts, but sometimes in industrial ones. Not surprisingly, the basic descriptions of the phenom-

ena of cognitive support are diffused and variable. For example, one researcher might talk about artifacts

being “external media” that act to enhance “reflective thought”, while another may speak about “aug-

menting” human intellectual capabilities. Cognitive support has many guises and aliases. The challenge

this presents is thus the problem of synthesis: the various ideas must be gathered together and coherently

composed. Comparing and collecting past knowledge into a coherent whole is itself a difficult challenge

that exists independent of the problem of actually explaining these phenomena by proposing models and

theories that account for them.

Making this last obstacle more difficult is the fact that the explanatory frameworks used to understand

cognitive support have been fairly incompatible and varied. Several of the potentially applicable theoret-

ical schools are widely known to be difficult to reconcile [103, 434, 546]. Later chapters will settle on one

particular school called DC, but its “competitors” should first be discussed and briefly assessed.

The above challenges are met in this chapter with a short review of selected research pertaining to cog-

nitive support. The review is necessarily incomplete. Perhaps thousands of thinkers throughout history

have contemplated the relationship between human thought and artifact. Psychologists have considered

it off and on for over a century [454]. A complete or even decently representative review of this history is

thoroughly beyond the scope of this work. My goals in this particular chapter are correspondingly mod-

est: I wish to help bring into the general SE zeitgeist a number of common observations about the nature

of intelligent human activity, and to enumerate some of the supportive relationships that artifacts have

on these. Like flares shot over an unfamiliar field to illuminate the general lay of the terrain, I hope these

3.1. SUPPORTIVE RELATIONSHIPS 82

brief summaries can outline many of the basic types of cognitive support issues that may be of particular

interest to SE. In addition, I hope that this review, and the resulting collection of citations, can be of aid

to those researchers wanting to continue on in this line of work, and to SE researchers desiring additional

reading. I also wish to take the opportunity to relate cognitive support in SE research to studies in other

disciplines. Some of these disciplines are well-related by topic and method, and yet somehow the papers

they generate never seem to be found sitting next to each other in bibliographies. Relating them to one an-

other may thereby help build better bridges into these sibling disciplines, so that they might in the future

become conduits of knowledge useful to SE.

Organization

The survey is organized along three main dimensions: the “supportive relationship”, “descriptive the-

ory”, and “schools” dimensions. The “supportive relationship” concerns the characteristics of human

thinking, and how artifacts and tools relate to this thinking. This dimension addresses the question:

“generally speaking, how can artifacts aid thought?” The “descriptive theory” concerns the ways that re-

searchers and philosophers have tried to argue the purpose and significance of artifacts in human activity

(e.g., the belief that certain interactions with artifacts are crucial to developing so-called “higher” mental

capacities). This dimension generally addresses the question: “why are artifacts important for human

thinking?” Finally, the “schools” dimension is concerned with identifying the sort of research traditions

and problem domains that have seriously studied cognitive support. Each of these dimensions is tackled

in a separate subsection in the following. After this chapter, the stage will be set for building models and

theories that seek to explain these phenomena.

3.1 Supportive Relationships

When they are solving problems, human beings use both internal representations, stored in their

brains, and external representations, recorded on a paper, on a blackboard, or on some other

medium.

– Larkin and Simon, “Why a Diagram is (Sometimes) Worth Ten Thousand Words” [375], pg. 66.

Aristotle speculated that one of the reasons that the base-10 numbering system is so prevalent is be-

cause our 10 fingers are so useful for counting [588]. We now know that many different number systems

have been developed throughout history which are based on counting other physical artifacts, and thus

are not base-10 [629]. But the point is that we use our hands, bodies, and other artifacts to support our

thinking, and consequently these significantly affect it. Certainly it takes only a few moments of reflection

to realize some of the many ways human thinking and human artifacts are inextricably codependent.1

1Yes, co-dependent. Our cognitive culture depend on them, and the cognitive artifacts owe their existence and
form to our cognitive needs [320].

3.1. SUPPORTIVE RELATIONSHIPS 83

Where would we be without written language, without the wealth of books that fill our libraries, or, in

light of technology updates, the flurry of emails that many of us rely on in daily work? There can be little

doubt that artifacts significantly impact our mental lives.

The thinking work of software developers is no exception. Would software developers work nearly as

well without scrap paper, a white board, or the seemingly ubiquitous restaurant napkin? The software de-

veloper’s intellectual world differs from the more mundane only in the fact that some of the artifacts they

think with are special and, perhaps, somewhat more complicated than in many other everyday activities.

Software designers build and “play” with prototypes as a critical part of design; requirements analysis

draw diagrams and write formal models; programmers run programs in order to understand figure out

how (or if) they work. Thinking, creating, and problem solving takes place within the context of such

artifacts, and is thus impacted by them. In particular they have a supportive relation to mental activity.

There are several important classes of such supportive relationships that are surveyed below. The cat-

egories below do not represent completely orthogonal dimensions of support: there is significant overlap

amongst them. But I have attempted to draw together common “themes” in understanding these rela-

tionships. Within each theme, support concepts will be described, some salient research will be reviewed,

and some of the implications for SE tools research will be drawn.

3.1.1 Embodiment and Strategic Artifact Use
One key to understanding the psychology of complete tasks is to understand how different task

environments affect peoples strategies, as Newell and Simon (1972) argued long ago.

– Stephen J. Payne,

“On Mental Models and Cognitive Artefacts” [493], pg. 104.

We live in a complicated world and, since we are quite smart, we should expect that people will use

artifacts in their environment to full advantage. This world includes our own bodies and the artifacts that

surround ourselves. This might be called the “external” world—the world outside the head.2 Because

of being embedded in the physical world, we can make use of this external world as an extension of

our internal world. Moreover, one could consider the use of the external world in place of the internal

world. For example we might use our fingers when counting coins [352], or while following data flow

lines on a visual program [272]. One way of looking at these external devices is that they are “resources

for action” [719]. If these external resources were not available, internal resources (e.g., memory) would

need to be used instead. Besides our own bodies, we also make use other artifacts in nearly endless

variety. Well known examples include the use of the abacus for calculation, and the “breadcrumbing” or

“bookmarking” techniques that are used for tracking progress. Without these sorts of external markers,

we would have to perform mental arithmetic or mentally track our progress in our tasks. Consider, for

2Like many other authors do, I will use the term “internal” to refer to things “in the head” [465, 469] or mind,
and “external” to all other things (external memory, etc.). Assorted nitpickers and philosophers may object to these
definitions (are eyes internal or external?) but they should suffice for our purposes.

3.1. SUPPORTIVE RELATIONSHIPS 84

example, how “long division” is frequently accomplished with paper and pencil. Having the world hold

partial results is crucial to the process.

One particularly important facet of embodiment is that with developing experience, people often be-

gin to strategically use external resources to make their work less mentally challenging. In the words of

Kirlik, people become “ecological experts” [349]—they become adept at making effective and strategic

use of the work settings [48]. Two delightful examples of this strategic use of external resources comes

from Norman [472] and Kirlik [348]. Norman tells a story of how one of his colleagues uses her office

workplace to organize her activity [472, ch. 7]. She files her papers in a three-level system, uses multi-

ple calendars to mark different categories of appointments, and sprinkles post-it notes about the office to

serve as reminders and reinforcements. The picture painted is of a researcher that keeps the current state

of her work embedded in the state of her office. Kirlik’s example is from a rather different domain: that

of short-order cooks. He observed that the cooks make strategic use of their environments to simplify

their mental work. They “may organize the placement of meats in order of doneness, [and] may lay out

dishes or plates to serve as a temporary external memory of orders to be prepared” [348, pg. 84] (also see

Kirlik [349, 350]).

Neither Norman’s nor Kirlik’s example are in any way unusual. Like Norman’s colleague, there are

several other published examples of such inventive and creative use of artifice to organize thinking and

research (see, for instance, Harnad [289] and Engelbart [200]). The lesson is that humans adapt their

environment to their activities and adopt strategies to make use of this fact. Lave’s early work [376] on

“everyday math” was one of the earlier and more influential sources of similar observations of situated

strategic use.

This relationship between thought and artifact is hardly new or obscure. McKim, focused on “visual

thinking”, provides as good an overview as any:

Consider the sculptor who thinks in clay, the chemist who thinks by manipulating three-dimensional

molecular models, or the designer who thinks by assembling and rearranging cardboard mockups. All are

thinking by seeing, touching, and moving materials, by externalizing their mental processes in physical

objects. Many contemporary thinkers, in science and engineering as well as art and design, respect the

fertility of this venerable form of visual thought. ... Do not be confused by the similarity between external-

ized visual thinking and the expression of visual thought. A chemist who is advancing his or her thinking

by playing with a molecular model is not involved in the same process as a chemist who is using a molec-

ular model to communicate a fully formed idea to another person. Externalized thinking involves actively

manipulating an actual structure, much as one would manipulate that structure mentally. [404, pg. 44]

In sum, there are two points to embodiment. The first is that various parts of external world (including

our own bodies) may stand in place of objects of thought. Manipulations of such objects can also replace

mental work. A recently popular phrase is that “the world is it’s own best representation” [136, pg. 46]—a

reference to the fact that internal representations of external artifacts are not always necessary if the exter-

nal ones can “stand in” for themselves. A corollary to the saying might be “try to use the world instead

of the head” in reference to the fact that, using the right strategy, artifacts can serve representational, cal-

culational, and inferential roles that might otherwise have required mental capacity. This corollary raises

3.1. SUPPORTIVE RELATIONSHIPS 85

the second point to embodiment: that there is a relationship between the capability of external artifacts to

support thought and our ad hoc and habitual strategies for employing them in that capacity. It is important

to know not only that artifacts can be used strategically, but also how people actually do it [311].

Studies

Using artifacts strategically to reduce mental effort is familiar—even mundane—and can frequently be

found in studies of cognitive development (e.g., Piaget’s celebrated studies of children manipulating arti-

facts to make difficult problems easier), and what is sometimes called “everyday cognition” [350]. Studies

of everyday cognition have been performed for quite some time, but there has been rather little overlap

between these studies and many other streams of cognitive science and cognitive psychology. Neverthe-

less, some examples are well known in the cognitive science circles. Norman’s popular “Psychology of

Everyday Things” [469] can also be categorized as a work on how everyday cognition is facilitated by

cognitive artifacts. Another relatively well known example of strategic artifact use is de la Rocha’s study

of how dieters turned to physical objects to solve math problems. De la Rocha observed one dieter phys-

ically manipulate cottage cheese to calculate fractional amounts instead of trying to do it mentally (e.g.,

see Greeno [277, pg. 287]). Another important example is Larkin’s analysis of coffee-making [374]. Larkin

explained that in the normal course of events, the state of the world helps out by making plain the current

state of the problem, and by providing clues as to the next course of action (see also Section 6.5.2). Larkin’s

analysis suggests that these external resources reduce the need for memory and planning to such a degree

that the “problem” of coffee making is made facile enough that “many of us can solve [it] reliably even

with the diminished capacities of early morning” [374, pg. 320]. All of these examples serve to illustrate

ways in which people naturally incorporate their environment to reduce cognitive burdens.

Relevance to Software Development

Although the examples noted above tend towards the simple and familiar, the general rule they illustrate

carries well into even highly complicated domains of software development. Software developers also

strategically use the resources available to them—however some of the tasks and artifacts in software de-

velopment are more complex. One example of such use comes to us from Cardelli [96]. Cardelli noted

that “experienced programmers adopt a coding style that causes some logical errors to show up as type-

checking errors (For example, by changing the name of a field when its invariants change even though

its type remains the same, so as to get error reports on all its old uses.)” [96, pg. 2240]. The type checker

can be employed to do, essentially, simple change impact analysis.3 This is a trick of getting the world to

help do thinking work. Automated typechecking is not explicitly designed to do impact analysis, but it

can be employed to do so. The significant point is that without the typechecking ability of the compiler,

some other (most likely tedious) method must be used to find all of the uses of the field.

There are a few cognition-oriented studies of similar artifact use in software development—but not

many. One of the most interesting is the study done by Bowdidge et al. [64], which investigated how

maintainers reacted to different toolsets when performing remodularization (a maintenance task) on C

3Analyzing the changes to dependent software features, see e.g., Arnold et al. [16].

3.1. SUPPORTIVE RELATIONSHIPS 86

programs. In this study, they observed how the maintainers made strategic use of external resources in

order to make their work easier and more systematic. By observing several teams of maintainers, they

revealed some of the variations in “ecological expertise” that practiced maintainers bring to tasks. They

noted:

Keeping track of the state of the overall restructuring task as well as the state of specific restructuring

modifications—what might be called bookkeeping—is a crucial activity. Bookkeeping occurs at many lev-

els in the process: completely performing a specific restructuring change, evaluating progress during a

set of changes, and overall sequencing of restructuring activities. Each team exploited structure implicit

in the tools (e.g., cursors) and the program representation (e.g., the ordering of lines in a file) to keep

track of information regarding the current state of the activity. ... The methods employed by the program-

mers vary widely, although they share the underlying similarity of trying to achieve certain properties of

completeness and consistency of a change. Each method of exploiting structure decreases the possi-

bility of some class of oversights (e.g., missing a required change), but does not address others (e.g.,

formulating a flawed design), hence requiring additional integrity checks. In general, these tactics amount

to maintaining to-do lists of data or design considerations that have yet to be processed. [64, pg. 224]

(emphasis added)

This is a glimpse into the ecological expertise of maintainers. From these observations, the authors go on

to more directly state a general rule of strategic use that has implications going far beyond their study’s

context of remodularization:

when faced with a complex design task, a programmer will use tool features in a way that allows the tool

to store information conveniently for the programmer. Moreover, if the tool cannot conveniently store the

information, the programmer will order subtasks in a way so that the information is immediately used and

can then be forgotten. ibid., pg. 225.

A variety of other studies complement this one. Flor and Hutchins [224] observed how paired software

maintainers would strategically use the program correctness checking capabilities of their compiler to get

feedback on their work, and to gain a sense of closure during incremental modification. Bellamy [39]

studied the inventive use of Smalltalk browsers by experienced Smalltalk programmers. She observed

them use a trick of creating dummy classes to perform category-based searches for reusable classes by

exploiting reference-following capabilities of the browser.

It is interesting to note that these sorts of strategic and flexibly ad hoc uses of software development

tools are frequently overlooked when evaluating the usefulness of software development tools (but see

Lethbridge et al. [380,596]), and when studying cognition in software development. This raises a question

regarding the proper evaluation of software tools. If one advantage of software tools is to employ them

strategically in ways for which they are not overtly designed (e.g., using grep for dependency analysis

and generally as a utility knife [380, 590, 696]) then how do you determine what tasks to evaluate them

on? In addition, there is a risk of evaluating tools without acknowledging the burden of learning good

strategies. For studying SE tools, the appropriate research slogan might be “don’t study how software

developers think, but how they think through tools.”

3.1. SUPPORTIVE RELATIONSHIPS 87

3.1.2 External Memory and Internal Memory
Man has now many extra-corporeal members, which are of more importance to him than a good

deal of his hair, or at any rate than his whiskers. His memory goes in his pocket-book.

– Samuel Butler, “Erewhon” [88], pg. 203.

The world remembers things for us, just by being there.

– Donald A. Norman, “Things that Make Us Smart” [472].

External memory generally refers to the storage of knowledge or mental states on artifacts (externally)

rather than within internal memory.4 Schönpflug and Esser [569] recount the intriguing fact that Roman

senators once used educated slaves to store appointments, to remember facts and figures, and to remind

them of important points during conversations and arguments. They pointed out that there is fundamen-

tally little difference between our modern use of memory devices like personal digital assistants (PDAs)

or online databases, and these more ancient uses of external memory systems (apart from, of course, the

enormous socio-political dimensions, and the underlying technology differences). In general, external

memory devices are used in a variety of settings, and for a variety of purposes [326, 472], from simple

reminders stored on post-it notes, to the list of items kept on a shopping list, to a phone number written

temporarily on the palm of one’s hand, to long-term reference works that systematically and permanently

record knowledge.

Even though external memories have access costs [567] and use costs [569], they are employed because

they can make up for our own mental memory limitations and processing shortcomings [325,469]. As any

textbook on HCI is sure to point out, our own memory is often short-lived, poorly accessible, and effortful

to update. External memories can help overcome these shortcomings [472]. In addition to the inherent

cost of external memories, effectively using them often requires specialized or ritualized strategies [114].

Studies

Despite the obvious importance of external memory there is a general reluctance to study external mem-

ory on par with internal memory [325]. However the tides are slowly turning in favour of a balanced

treatment on how both types of memory are utilized during activity [50, 304]. A mixed bag of researchers

have contributed to this overall mosaic of how individuals use external memory aids (e.g., Norman [472],

Intons-Peterson [325, 326], Schönpflug [567–569], Hunter [318], Card [92, 95], and Davies [166, 168, 212]).

4Of course, there are conditions that must be met to be counted as external memory: not all artifacts will qual-
ify [137], and not all representations can be said to be knowledge or mental state. These details will be discussed
later.

3.1. SUPPORTIVE RELATIONSHIPS 88

External memory has been more extensively studied in the context of group, social, and cultural mem-

ories [318, 320]. For instance “organizational memory” appears to have a relatively higher research pro-

file [2].

Relevance to Software Development

Software development is memory intensive, so external memory use is, as one might expect, pervasive.

Individual, personal external memory use is common. External memory can be found in something as

simple as command line histories (e.g., Greenberg [275]) or browser histories (e.g., Tauscher et al. [633]).

In these, the memory acts as a type of external working memory [95]. The study by Bowdidge et al. [64], al-

ready mentioned in the section on strategic artifact use, also provides good examples of the use of external

working memories in the form of “bookkeeping”. External memory use can also be found in longer-term

versions such as in developer diaries (e.g., Naur [438]) or scavenged code (e.g., Flor et al. [224]). Organi-

zational memory also has a place, such as in code libraries and repositories (e.g., Retkowsky [534]), or for

collecting other development- and design-related knowledge (e.g., Zimmermann et al. [728]). As a final

example, Arunachalam et al. [17] studied how the use of external memories interacted with software com-

prehension and redocumentation processes. In their study, for instance, the act of externalizing memory

was shown to have an influence on the degree to which the recorded material is understood, a fact noted

in other research on external memory [325].

Because it is such a crucial resource in software development, models of development that can account

for external memory use may turn out to be important for understanding developer behaviour. For in-

stance, a characteristic of expert developers is that they often retain high-level knowledge of a piece of

software rather than the low-level information that novices tend to develop [4, 498]. One way of explain-

ing this preference is that experts make extensive use of external memory instead of needing to remember

the program details, and because of this they need small, efficient, and therefore high-level index knowl-

edge in order to be able to retrieve from this external memory [569]. The observations by Singer et al. [595]

regarding the use of a “just-in-time comprehension” strategy is consistent with this conjecture: a devel-

oper relying on externally stored knowledge would seem to “page in” this knowledge on an as-needed

basis, but would still need index information to know where to look in order to page it in. Besides un-

derstanding software comprehension better, research on external memory has the potential to address the

problem of developing computer support in many different ways, from the design of short-term external

memory in browser histories to improving the effectiveness of long-term memory code repositories.

3.1. SUPPORTIVE RELATIONSHIPS 89

3.1.3 External Resources and Structure
... the user interface itself can stimulate and initiate cognitive activity ... a good user interface

helps organise and direct cognition—it is not a passive receptacle for thoughts emanating from

an internal model, but plays an active role in the problem solving process.

– Nardi and Znarmer, “Beyond Models and Metaphors” [437].

Most difficult tasks can accurately be called “ill-structured”: the properties of the solution are only

partly understood at the start, no fixed or routine methods exist to solve them, and the criteria for success

are only weakly defined. As a result, ill-structured problems inherently involve guesswork, backtracking,

and reflection. And consequently one role that artifacts can play is to help organize and direct problem

solving in ill-structured tasks. That is, they can help structure the ill-structured. Structuring problem solv-

ing inherently involves sharing control of the cognitive activity, at least to some degree. Simple examples

of structuring artifacts are checklists, shopping lists, or written plans for action.5 These are resources that

one can consult during an activity. The above are examples of rather “passive” structuring artifacts. A

more “active” example is a “wizard” [210]—a software agent that guides the problem solver. Structuring

resources can be pre-designed, or built by the problem solvers themselves. Solving ill-structured problems

often requires the problem solvers to perform problem structuring (e.g., Goel et al. [244], de Vries et al. [172]),

problem discovery (e.g., Carroll [103]), or problem setting (e.g., Gedenryd [235]). In this work, these activi-

ties will all be termed “problem structuring”. Problem structuring often yields artifacts (e.g., plans) that

structure future action.

Studies and Literature

One of the classic works frequently cited to illustrate the capacity of artifacts to structure human behaviour

is Simon’s parable of an ant walking on a beach [594]. In this parable, the actual path that the ant takes

is to a great degree dependent on the shape of the dunes rather than some complicated problem solving

mechanism within the ant. Simon used the analogy to argue that human behaviour can characterized as

similar sorts of structure following. However unlike the ant, humans think using two sources of structure:

the outer environment and the inner.6

5Notice that the shopping list example came up again—it was also used as an example of an external memory.
This is because a single artifact can exhibit more than one type of support, but also remember that the sections of this
summary do not necessarily represent orthogonal notions of support. The issue of orthogonality of cognitive support
types is visited in more depth in Section 6.5.

6Some have mistaken Simon’s intentions, suggesting he is arguing that humans behaviour may be structured
more by the external environment than the inner [395]. But this stretches his point somewhat: Simon was primarily
likening human memory to the ant’s beach so that he could ignore the structuring influences of both memory and
environment, and concentrate instead on modeling the (presumably) simple and generalizable cognitive processing
that drives the navigation of these structures. Elsewhere in that same work, Simon argues that human adaptations
to their environment means that many machinations of the mind will not be revealed by analyzing behaviour. This
might also be seen as an argument that human action is conditioned primarily by external structures rather than
internal ones. But in reality his argument is correctly seen as only limiting the sorts of validations possible on “inner”
models (see e.g., Rasmussen [526, pg. 264]), barring some way of tapping into those inner processes (e.g., by protocol
analysis [207]).

3.1. SUPPORTIVE RELATIONSHIPS 90

Generally speaking, the notion of activity structuring tends to crop up in at least three contexts: (1)

when problem solvers do not have the appropriate knowledge needed to solve their problem, (2) when

problem solvers do not wish to retain structuring representations internally, and (3) when problem solvers

structure their own action by constructing artifacts or manipulating the environment. Examples of the

first case include the design of wizards for novice application users [210] and the construction of learning

environments for students [172] (see Section 3.3.2). An example of the second case is the “precomputation”

performed in creating checklists [321]. Examples of the third case include the office organizing activities of

Norman’s colleague, and the cooking organization done by Kirlik’s short order cooks (see Section 3.1.1).

Relevance to Software Engineering

Most software development activities—including reverse engineering [331]—are ill-structured. It should

therefore likely surprise nobody to find widespread use of artifacts to structure software development

processes. All of the three classes of structuring contexts described above will apply, and are discussed in

turn.

1. Delivering problem solving knowledge. Providing structures for novices is relevant in software develop-

ment: (1) when novices are learning software development techniques, (2) when expert developers

are relative novices on a particular tool, and (3) when expert developers are novice to a domain

or software system. Examples of these cases include the structuring of lessons to students learning

data reverse engineering techniques [56], the provision of wizards to execute source code queries for

engineers unfamiliar with tool capabilities [324], and the structuring of lessons for new immigrants

to software projects [132].

2. Pre-structuring. One of the potential advantages of CASE tools that is regularly cited is the ability to

enforce a particular development process (e.g., Brown et al. [82]). This type of constraint on action is

one of the more active forms of structuring. Hutchins’ classic “precomputation” form of structuring

using checklists is found in the case of software inspections [208]. Inspections often use checklists of

defect types (e.g., Miller et al. [409]) to ensure a systematic evaluation. Of course, the checklists do

not have to be so passive: tools can enforce attendance to the checklists to varying degrees [412].

3. Self-built structuring artifacts. The third type of structuring is perhaps the most well known in soft-

ware development. Because development problems are so difficult, planning and problem struc-

turing activities are common. It could be argued, for instance, that flow charts represent one of the

earliest uses of external structuring mechanisms in programming. Flowcharts were used by devel-

opers to work out the form of a program (i.e., problem structuring) from which a program could be

more-or-less directly transcribed (e.g., see Knuth [356], Sheil [581]). Once produced, the flowchart

structures (but does not dictate) the coding process. Similar arguments can be made for the modern

descendants of this technique, such as coding OO systems from UML diagrams. But problem struc-

turing is not limited to only coding, it is desirable for any difficult task in software development. An

excellent example of this is revealed by the previously cited work by Bowdidge et al. on software

3.1. SUPPORTIVE RELATIONSHIPS 91

restructuring [64]. They observed maintainers building and manipulating “to-do lists” which are

used to structure their subsequent activities.

3.1.4 Reflective, Visual, and Intentional Thinking
Externalizations (1) create a record of our mental efforts, one that is “outside us” rather than

vaguely in memory, and (2) represent artifacts that can talk back to us ... and form the basis for

critique and negotiation.

– Arias et al., “Transcending the Individual Human Mind” [15], pg. 88.

Reflective thinking is sometimes contrasted with experience-based or “rote” thinking [472]: it is de-

scribed as thinking about one’s own activities, knowledge, or mental processes and strategies. Reflective

thought seems important when considering situations that are in some way out of the ordinary [469, ch. 5],

and therefore not amenable to highly practiced or routine thinking [564]. It has long been observed that

artifacts can play important roles in such reflective thought [180]. One way of better understanding this

role is to highlight the metaphor implied in the term “reflective”—that the artifacts reflect one’s own

thoughts or actions much as a mirror reflects one’s image. In this sense artifacts can make the abstract

world of thinking concrete, that is, they can “reify”7 mental constructs like ideas and process descriptions

or models. By doing so, the artifacts encourage or facilitate reflective thought, making it potentially easier

for one to think about one’s own thought or actions.

A phenomenon related to reflective thinking is what might be called “intentional thinking.” Inten-

tional thinking involves consciously using learned ways of extending memory, solving problems, think-

ing creatively, or thinking critically. A familiar example is the technique of “brainstorming,” a “train-of-

thought-following” method of writing down words and concepts as they are thought of, in the hopes of

discovering unappreciated connections when structuring them later. Many of these intentional thinking

techniques inherently make use of artifacts like drawings, charts, and checklists. Some are organized

around trying to make use of visual and perceptual capabilities (e.g., McKim [404]).

Studies

Some of the main points of literature on reflective thinking will be covered later in Section 3.2.1, so for

now let us concentrate on intentional thinking. There exists a great deal of non-academic trade press in the

“self-help” and “pulp psychology” sections of many modern Western bookstores. Many of these books

advertise that they can improve the mental work in such fields as management, marketing, and math-

ematics (e.g., Polya [513]), or claim to be able to improve creativity and idea development in creative

writing and design (e.g., McKim [404], Flower [225]; see Allen [9, ch 1] for a small review). Although a

few of these works are highly regarded, most of them are lean on scientific respectability and, for the most

7Reify: to regard (something abstract) as a material or concrete thing, Merriam-Webster Online Encyclopedia.

3.1. SUPPORTIVE RELATIONSHIPS 92

part, academic psychology has avoided these techniques and publications [121].8 Nonetheless, there has

been considerable interest in a few of these sorts of techniques in contemporary education and educa-

tional psychology literature (e.g., Perkins [500], Dunson et al. [193]), especially constructivist educational

literature (see also Section 3.3.2). Certain idea processors [121], like “concept mapping” programs [231],

are perhaps the most widely known examples.

Relevance to Software Development

When confronting the cognitively challenging problems in software, developers will naturally reflect on

their own thinking and attempt to self-consciously apply problem solving strategies. For instance, in-

tentional strategies for problem decomposition and design are commonplace in software development.

They are called a variety of names such as “analysis methods” or “engineering methodologies”. Classic

examples include proposals to solve design problems by focusing first on persistent data, or on functional

decomposition. The main implications for SE tools research are derived from the relationships between

reflective and intentional thought, and the artifacts that support them. On one side of the coin are the

properties of the tools that are needed to effectively enable reflection, and to make intentional strategies

work well (e.g., Sugiyama et al. [624], Fischer et al. [216]). On the other side are the creation and teaching

of the thinking methods that enable effective use of the tools available.

3.1.5 Evolving Structures, Emergent Thought

Complicated artifacts are often created incrementally and iteratively instead of by thinking things through

completely beforehand. Writing a research paper is a familiar example. The final form of a research paper

may resemble only superficially the writer’s original vision. During the process of writing the paper,

the author might revise and edit the structure, flow, passages, and individual wording. Sections may be

rewritten or deleted entirely. While writing, the author may think of new things to say. She may re-read

what was already written in order to re-orient herself, and to inspire new passages. The paper is an artifact

that is constructed piece by piece and grows incrementally but “non-monotonically”.

From one point of view, such a writing process is unstructured and inefficient: if only the paper could

have been planned beforehand so that it could simply be typed letter for letter without having to make

changes! An “ideal” planner [41] could “write” the paper in the head, hierarchically decomposing the

topic into sections, and then simply transcribe [261] the results onto paper. Although such a process

might be considered “optimal” it is almost never observed in practice for anything but the most trivial or

ritualized construction problems. Instead, construction frequently consists of an incremental and inter-

active process of interleaving writing with reading and evaluating. Throughout the process, uncertainty,

discovery, backtracking, and much updating of previous results occur.

8There are some interesting exceptions to this rule though: psychologists have studied certain mental tricks and
techniques such as mnemonic coding techniques for memory and calculational shortcuts for arithmetic problems (e.g.,
Ericsson and Chase [206]). These have tended to be artifact-free methods that work on well-understood problems.

3.1. SUPPORTIVE RELATIONSHIPS 93

Recently, these sorts of problem-solving processes have all been characterized as variants of design [244].

Carroll and Rosson describe design as being

non-hierarchical, neither strictly bottom-up nor strictly top-down. ... [as] radically transformational, involv-

ing the development of partial and interim solutions which may ultimately play no role in the final design.

Design intrinsically involves the discovery of new goals. [108, pg. 27]

Design problem solving is an activity that occurs in a broad spectrum of activities, including engineering

design [514, 661, 662], paper writing [575], software design [103, 283, 663], programming [267] or software

construction [488], redocumentation [17], and reverse engineering [139, 331]. A number of reasons have

been suggested for its prevalence: the limited planning capacity of human designers [267,662], the fact that

goals (or “requirements”) frequently change during design [488], and the fact that, ultimately, designers

must learn about the problem and solution and will therefore make poor decisions due to the presence of

uncertainty, and the absence of foresight [79, 488].

To return to the point of this section, though, design processes are ones where thought and artifact

are intimately tied. Complex artifacts like sketches, documentation, specifications, and programs are

normally created and iteratively evolved during design. The artifacts themselves become part of the

designer’s environment and situation [627]. Designers make extensive use of this environment for evalu-

ating current progress, for managing focus and attention, and for receiving ideas back in return (see Sec-

tion 3.2.1 on “backtalk”). Design therefore involves a feedback loop where design moves impact the future.

It is difficult to attribute causal roles in systems with such a feedback loop because of the circular causality.

Brooks described this problem of circular causality when he said that “it is sometimes hard to point to one

event or place within a system and say that is why some external action was manifested.” [70, pg. 572].

As a result, the designed artifact is seen to emerge from the iterated application of local changes which

feed back into decision making—design is an emergent process (see e.g., Poon et al. [514]). The incremen-

tally evolved artifacts play a crucial but complicated role in this emergent process. They partly function

as external memories (alleviating the need to remember the partial form of the solution), they encourage

reflective thought about one’s own progress, and they serve to partially structure further work. To say

that the designer alone is responsible for the design would be to miss the contribution of artifacts: they

are an inseparable part of the design process.

Before proceeding, a small point needs to be covered. It might be thought that certain abstract repre-

sentations (e.g., UML diagrams [554]) can eliminate some of the backtracking involved, making the devel-

opment process more structured. Clearly though, using such techniques merely changes the medium and

form of the design. Instead of incrementally constructing a program more or less directly in the medium

of a programming language, a planning stage is added in which the incremental and iterative process

is that of developing the abstract representations (like UML diagrams). The point of adding this extra

step is to take advantage of an environment where planning (especially exploring and backtracking from

unpromising decisions) is less costly [40, 575, 709].

Studies

See Sections 3.2.1 and 3.3.2 below on reflective media and design studies.

3.1. SUPPORTIVE RELATIONSHIPS 94

Relevance to Software Development

The iterative and evolutionary process of artifact and design update has several implications for the de-

sign of supporting languages and environments, and for engineer training [64, 257, 283, 284, 331, 544, 663].

The design of such tools needs to take the characteristics of design processes into consideration. This is

true for tools designed for software design [5, 544], maintenance [64], redocumentation [17], reverse engi-

neering [331], and even software comprehension (see Section 8.1). These tools need to take into account

the emergence of solutions resulting from the cyclic interaction of developer and environment.

3.1.6 Representation Effect

It has long been observed that differing representations which are logically equivalent (according to some

measure) can have remarkably different psychological implications, and be significantly different in their

ease of use. A problem represented in one form may make certain inferences almost automatic, whereas

a different representation of the same problem can make the problem incredibly difficult. Norman calls

this phenomenon the “representational effect” [472], which “refers to the phenomenon that different iso-

morphic representations of a common formal structure can cause dramatically different cognitive behav-

iors.” [727, pg. 90]. A familiar example is the difference between a line graph and a table of values. A line

graph can make it easy to read off certain information (e.g., finding a maximum value). Certain visualiza-

tions and displays also can make some features “pop out” [687]. But the representation effect is not solely

concerned with fast inferencing, quick recognition, or rapid perception. The form of the representation

can also help mental manipulations and problem solving. Norman gave the example of Arabic numer-

als [472], which facilitate multiplication much more than Roman numerals do. In addition, the design of a

representation can make it possible to nearly simultaneously answer multiple questions by giving certain

inferences “free rides” [31]: once one inference is made, the result of another is seemingly immediately

apparent.

Studies

The representation effect is one of the most widely studied cognitive support-related phenomena. Sample

overviews include Norman [472] and Scaife et al. [562].

Relevance to Software Development

Representation effects are one of the primary motivations for pursuing software visualization research. A

further area of application is the design of textual or visual programming languages and environments.

3.1.7 Automation

Lest we forget, some problems are amenable to more or less completely automated solution through the

processing capabilities of computers. These problems can involve mathematical manipulation, or sym-

bolic manipulation such as inferencing, pattern matching, and search. Complete automation of any task

represents the extreme case of cognitive support: when a task is automated, mental effort is absent.

3.2. DESCRIPTIVE THEORIES 95

3.2 Descriptive Theories

There is no denying that some people have important and valuable insights, both into human

nature and into the design of technologies. But we should not confuse wisdom and insightfulness

with having a scientific theory.

– Zenon W. Pylyshyn, “Some Remarks on the Theory-Practice Gap” [522], pg. 43.

Once it is realized that artifacts are important parts of human thought and culture, then attention fre-

quently turns towards characterizing and describing the relationship between the two. Various theories

are proposed—some only rough sketches, some more thoroughly developed. These theories are often

primarily descriptive [522]: they introduce concepts and terms to describe the phenomena of thinking with

artifacts (and its importance) without producing causal explanations of the mechanics of such thought.9

Sometimes these theories are developed by basic science researchers (e.g., psychologists) and find strong

voices in certain domains of practice (like education). Other times the theories originate in those practice

domains. Any of these theories could conceivably be applied to the various supportive phenomena noted

in the previous section. For instance, the concept of mediation (Section 3.2.1) could conceivably be invoked

to help understand external memory. The following short review surveys several such descriptive the-

ories, and the domains in which they are frequently found. Table 3.1 summarizes these. In the table,

column one lists entities from this section, column two from Section 3.1, and three from Section 3.3.

CHARACTERIZATIONS AND DESCRIPTIVE THEORIES

THEORIES / CONCEPTS ASSOCIATED SUPPORT RELATIONSHIPS COMMON STUDY DOMAINS

Schön’s reflective practitioner reflective thinking, emergent thought,
strategic artifact use

software design, education,
writing

Activity Theory (mediation) embodiment, intentional thought education

augmentation / symbiosis external memory, structure, automation writing / hypertext

fitness representation effect, visual thought programming,
decision making

Table 3.1: Descriptive theories for various cognitive support relationships

9In this admittedly brief review of these theories I do not mean to imply that they are without analytic power,
or that research is not underway to more fully elaborate the models of causation. Neither of these things are true.
The point is, like behavioural or gestalt psychology before the emergence of cognitive science, most of the discussed
schools have not developed strong mechanical explanations, and this section tries make a distinction between mech-
anistic theories and these others.

3.2. DESCRIPTIVE THEORIES 96

3.2.1 Mediation and Reflective Media

If thought products and processes can be represented externally, it seems natural to say that artifacts are

media for thought much as clay is a medium for sculpture, or newspaper is a medium for communication.

If external artifacts structure and control activity, one might say that they mediate the thinking processes

of the artifact users. The themes of mediation and reflective thinking with external artifacts have been

woven into diverse schools of thought for nearly a century [563]. A few instances are noted here.

The notion of reflective media can be found in the work of Donald Schön in his work on designer

thinking and design education [564, 566]. He describes design as a “conversation with materials,” where

designers work out parts of the solution using external media and models, and that these then provide

“backtalk” to the practitioner. This explanation relies on the idea that the practitioner engages in distinct

“modes” of thought [389]. In the course of design, the designer frequently makes use of her expertise and

skill to be able to act with a minimum amount of reflection, often making decisions and gaining insight

fluidly and with little (conscious) effort. These activities can be said to evoke “skilled” or “practiced”

responses, and the designer may not even know how she knows how to do these things. Nevertheless,

in challenging design settings, this fluid design activity is inevitably interrupted when poorly understood

or surprising evidence is encountered. Such “breakdowns” in skilled execution cause designers to reflect

upon their actions. In such circumstances the designers enter a different “mode” of thought in which they

use artifacts to help them reflect on their own actions and on the design problem. The interaction with

artifacts is portrayed figuratively as a conversation—a conversation with materials. Schön’s work is quite

influential in the “design studies” or “design science” world as a way of understanding the practice of

industrial designers, architects, and software designers and developers (e.g., [130, 216, 544, 566, 638, 650]).

Schön’s work, especially his later work on designer education [565], has also found a strong following

in education research, including the design of learning environments and educational materials (e.g.,

Lehrer [379]).

Mediation is also an important concept in the approach called “Activity Theory” [142], a school of

sociocultural psychology that traces its history to Soviet psychologists, particularly Vygotsky [203, 435].

Activity Theory has a reputation10 for being difficult to understand by many Western thinkers [52], but

a taste of some of the ideas is enough for our present purposes. In Activity Theory11 tools and artifacts

are understood to stand, metaphorically speaking, between a thinker (the subject) and the thing being

thought about (the object). This interposition of tools mediates the activities and, what is more, the me-

diation can radically change the very nature of the activities engaged in. One especially relevant notion

in Activity Theory is the idea of a “functional organ”—a joint system composed of a human working in

close combination with artifacts. For example, eyes and glasses can form a functional organ that produces

sharp vision [339]. Activity Theory is of interest here because it is often posed as an alternative theoretical

framework in HCI [52, 103, 339, 366, 616], particularly as an alternative to DC [367, 434].

10Well deserved!
11“Activity Theory” is written capitalized. The acronym CHAT for “cultural–historical activity theory” is now also

used [393].

3.2. DESCRIPTIVE THEORIES 97

3.2.2 Scaffolding

“Scaffolding” is an evocative term that can be used to understand the roles of artifacts or other people

or agents in helping people think or learn. The metaphorical reference is to a temporary rigging dur-

ing construction. The rigging makes it possible to build a structure that would fall down without the

scaffolding, but after being built it is strong enough to stand without it. The roots of scaffolding, as it is

frequently used now (see e.g., Palincsar [483], Soloway et al. [612], Goldman et al. [247]), can be traced

back to so-called “constructivist” and socio-cultural education theory and psychology [483]. The idea of

scaffolding is commonly applied to artifacts such as idea processors, learning environments [329], sim-

ulations (or “micro-worlds”), and other writing tools that help establish thinking processes and enable

learning (e.g., [107, 246, 247]).

The meaning of the term “scaffolding” has sometimes been expanded to include practically any exter-

nal structure that can be strategically used to perform tasks [136, pg. 46]. The concept is thus extremely

versatile, if not precisely defined. Jackson et al. [329] defined three classes of scaffolding: “supportive”

scaffolding, “reflective” scaffolding, and “intrinsic” scaffolding. The exact definitions do not especially

concern us here, but each of these three types has close analogues with other concepts in this review of

cognitive support. For instance the notion of reflective scaffolding echoes the “reflective” media of the

previous subsection. When used in a very general manner, scaffolding is very similar to “support”, but it

adds certain wrinkles. In particular, the issue of learning while using scaffolding is critical, and the idea

is added that scaffolds can “fade”, that is, be removed after learning is accomplished.

3.2.3 Augmentation, Extension, and Symbiosis

The idea of computers augmenting humans comes primarily from Bush [87], who brought the term into

computing, and from Engelbart [201], who carried the torch of augmentation.12 The basic ideas are far

older than either of these pioneers, however, since they have been used to understand physical or me-

chanical augmentation for centuries [515] (see Butler’s shovel on page 57). The concept of augmentation

has enjoyed some popularity in the distant computing past (e.g., see the 1964 Symposium on “Computer

Augmentation of Human Reasoning” [560]). The main idea underlying augmentation is that basic human

capabilities can be added to (augmented) by computer capabilities. So to take Bush’s Memex [87] as an

example, computers can augment human memory by being storehouses of knowledge. Thus, like the way

that telescopes augment vision and thus make it possible to see farther than with unaugmented vision,

computers can augment human memory and make it possible to remember better and think better. Exten-

sion (as in “extended memory”) is essentially the same idea, but it may carry an additional connotation

that the extension can apply to existing human capabilities only—not to complementary ones.

Licklider (who worked with Engelbart at SRI [199]) proposed that computers should be related to

human activity in terms of symbiont systems [385]. In Licklider’s view, humans and computers coordinate

closely to bring their different talents into play during complicated problem solving. Licklider attempted

to distance the idea of symbiosis from the notion of augmentation by suggesting that the relationship

12See the “Bootstrap Institute” homepage, www.bootstrap.org, or Rheingold [537].

3.2. DESCRIPTIVE THEORIES 98

between computers and humans is more involved than simply adding memory to human capabilities. In

particular, he claimed that some of the thinking and problem solving is taken over by the computer in

symbiont systems. For instance, AI programs might perform pattern matching or suggest alternatives to

problem solvers. But his distinction may be superficial rather than fundamental: the difference between

augmentation and symbiosis is that in symbiosis human thinking capabilities (cognitive processing) are

being augmented in addition to human memory capabilities. Later authors have noted this possibility;

for instance, it seemingly corresponds to Perkins’ “distribution of the executive function” [501]. Besides

augmenting thought, the other connotation of symbiosis not shared by augmentation is of the mutually

beneficial co-evolution of the symbionts (see also Butler [88] and Mackay [394]). But this distinction seems

to be unimportant with regard to explaining how cognitive support works.

The notions of augmentation, extension, and symbiosis are all powerful and evocative terms describ-

ing the ways of aiding human thinking and problem solving. They are therefore useful for envisioning

possibilities and setting goals. Several more modern threads of work on human–machine cooperation can

trace their ideas back to these roots [65, 124, 306]. But although they are highly descriptive, they are just

that: descriptive, not generative or predictive. Engelbart was well aware of this limitation, and he care-

fully cast some of his main writings as a “conceptual framework” intended to outline more of a research

paradigm rather than to generate specific tool ideas and requirements [199]. What is really needed by SE

research, though, is explanatory, predictive, and generative theories. The authors promoting the above

sorts of perspectives provided no models of exactly how augmentation, extension, and symbiosis might

actually work, and how they should be built. Consequently only the smallest illumination is cast by them

on the mechanics of how artifact supported thinking works.

3.2.4 Fitness
... the notion that fitting the representation to the task is beneficial for problem-solving is not a

new one ... However, although the idea may even seem intuitively obvious, it has little explanatory

or predictive power when expressed at this level of abstraction and must therefore be defined in

operational terms.

– Judith Good, “The Right Tool for the Task” [249], pg. 91.

Some artifacts are better than others for certain tasks or in certain circumstances. This relationship can

be named and described without necessarily explaining it. We can call it “fitness”. The notion of fitness

can be invoked to describe the suitability of an artifact with respect to some aspect of its intended use

context (see Section 7.1.1). That is, tools need to fit their ecology of use. So, for instance, one may hear that

one tool is “fit” for expert programmer use when performing impact analysis, but that it is “unfit” for the

novice performing program restructuring.

Naturally, the definition of fitness is as complicated as the environments in which tools are found. A

tool’s fitness will depend upon its users, their work environment, their work activities, and so on. In other

words, all of those things that affect performance and behaviour (see e.g., Storey et al. [619], Basili [33],

3.3. SCHOOLS OF COGNITIVE SUPPORT 99

or Teasley [635]) will have a stake in the tool’s fitness. It should therefore not be a surprise that the

notion of fitness has been applied to tools in various ways. Examples include the notion of fitness to

task [187, 188, 399, 596], fitness to the psychology of the user [124, 469, 473, 689], fitness for purpose [237],

cognitive fitness [601, 610, 656], and fitness to the work system [530, 657]. Similar concepts are called

“congruence” by Gilmore [239] and Good [249], and “match-mismatch” by Green and Gilmore [240]. If

one should identify support with fitness, then cognitive support becomes cognitive fitness.

3.3 Schools Of Cognitive Support

In their everyday lives, people seldom undertake complex reasoning or decision-making tasks

without turning to pencil and paper, yet in the scientist’s laboratory, how many subjects have been

permitted such luxuries? What explains this state of affairs? There seems to exist an unspoken

argument underlying traditional approaches to cognitive skill: only by looking at unaided skill

can we see the mind in action. If we let people use tools, like pencil and paper, then our view

of the mind will be confused by contingencies and circumstances that are outside the scope

of psychology. But this argument is surely fallacious. ... You can’t realize the crucial role of

locomotion in vision unless you let your subjects move, and you can’t realize the crucial role of

artefacts in cognition unless you let your subjects use them.

– Stephen J. Payne,

“On Mental Models and Cognitive Artefacts” [493], pg. 105.

The relationships between artifact and human thought and action has been a research focus for cer-

tain groups of people. Sometimes research cliques form around a particular problem domain (education,

architecture, etc.) and sometimes they form because they are studying some particular phenomena in

a common way but without specific domain or problem orientation (short term memory, social norms,

etc.). We might say these latter have a research paradigm, school, or tradition, whereas we might say the

former have a common problem type. Here are a few of the salient clusters of cognitive support research

are surveyed and grouped according to tradition and problem type.

3.3.1 By Research Tradition

Cognitive support is a subject that can potentially apply to any problem domain involving thinking and

problem solving. Consequently, it is possible to develop research paradigms to study cognitive support

in a domain-independent way. As a result, it is studied by various schools (or sub-schools) of psychology,

and to a lesser extent other schools like social psychology, sociology, cognitive anthropology, linguistics,

and so on. Some sort of research tradition—a set of beliefs and commonly understood ways of doing

research—must be adopted to study cognitive support no matter which school the researchers belong to,

and no matter which particular methods (e.g., ethnography versus laboratory study) are used.

3.3. SCHOOLS OF COGNITIVE SUPPORT 100

In reviewing these research traditions it is exceedingly difficult (and not worthwhile) to identify strict

boundaries between traditions, so I shall be understandably brusque in my categorizations. Because later

chapters be labouring under the umbrella of DC, the following review starts with traditions linked most

closely to DC, and then works outwards. The main focus shall be on matters close at hand—that is, work

that relates well to cognitive science in the context of artifact use in real-world situations like software de-

velopment. There are four reasonably distinct clusters of activity closely tied to DC: traditional cognitive

science, socially distributed cognition, situated or embodied action, and ecological psychology.

Traditional Cognitive Science

From a functional viewpoint, the STM [short term memory] should be defined, not as an internal

memory, but as the combination of (1) the internal STM and (2) the part of the visual display that

is in the subject’s foveal view ...

– Newell and Simon, “Human Problem Solving” [449], (1972).

The research paradigm that might reasonably be called “traditional” cognitive science tends to centre

its research around cognitive models with high-level symbolic representations and centralized process-

ing. Newell and Simon’s seminal work “Human Problem Solving” [449] is paradigmatic. Contrary to

what is sometimes claimed, in such work, external representations are often crucial to the explanation

of problem solving and performance. For example, within this school it is possible to find work where

intermediate results are viewed as being stored externally during algebra problem solving. To explain

cognition in these contexts, the memorial capacity of the external world is relied upon. So even in the

most “traditional” cognitive science memory is distributed between head and world. The distribution is

often marginalized [465], perhaps, but it is there nonetheless. A number of relevant works have contin-

ued in this traditional vein and have still managed to take into account some of the impact of artifacts

on cognition. Examples of this sort of work include the foundational work by Larkin et al. on display-

based problem solving [374] and diagrammatic efficiency [115, 375], the work by Card et al. [94] on HCI

modeling, and the work by Brooks [71–73, 76] on program writing and comprehension.

In most of this sort of work, the external world is explicitly (but simply) treated as an external memory

whose currently perceivable contents can appear in working memory. The treatment of the mechanisms

involved is frequently simplistic: items stored externally will appear “automatically” in internal memory

(as if by magic) when the relevant portions of artifacts are in the field of view and being attended to

(c.f. Altmann [10]). This type of treatment of the external world was adopted explicitly by Brooks [71] in

his pioneering work on modeling programmers:

The third major [internal] knowledge structure ... is actually information about how to access an external

memory, the code that the programmer has already written. It is quite likely that very little of the actual

code remains accessible in [internal memory] once it has been written out on paper; when the subject in

this study wanted to rewrite or reuse pieces of code, longer than a line or so, that he had already written,

he was almost never able to recall them directly from memory. Any use, modification or correction to

3.3. SCHOOLS OF COGNITIVE SUPPORT 101

code which has been written must therefore retrieve the code from the paper external memory; and the

[internal memory] must contain the information necessary to perform the retrieval. [71, pg. 880]

Brooks’ models made explicit use of external artifacts in the explanation of thinking. His basic ideas were

rediscovered and extended a decade later by Green et al. [267]. Brooks’ model also suggested how the

emerging solution (Section 3.1.5) can structure thought (Section 3.1.3) by implying that a programmer’s

sub-goal generation is driven at least partially by the external representation rather than “via [an internal]

goal stack” [71]. Following chapters expand on these ideas, but the point is that work that can easily

be classified as traditional cognitive science has significantly anticipated some of the later work on DC

and “situated action” (below). It should also be noted that cognitive science has evolved over time, as all

research traditions do. More recently, aspects of task and artifact use have become more central issues in

the descendents of traditional cognitive science (see e.g., the review by Gray et al. [253]).

Socially Distributed Cognition (SDC)

The second cluster of cognitive science that concerns itself with external artifacts is DC. It is not possible

or appropriate to review DC adequately in this section, especially since the main ideas will be covered in

depth later. Thus only the sort of DC work that is not well covered later is highlighted here. One type is

called “socially distributed cognition” (SDC) to emphasize the social and group aspects of cognition (e.g.,

Salomon’s collection [558]). SDC research as a whole is loosely connected by an underlying conviction that

human intelligence and human behaviour is always embedded in a context of collaboration or partnership

with others, and hence it has an underlying social and cultural content. For instance, it is a common

conviction within SDC that agreements upon meanings are socially arrived at (“socially constructed”)

through interaction and communication. One of SDC’s particular interests in artifacts is that they are

viewed as conveyances of knowledge (e.g., Pea [495]), and that they mediate social and organizational

activity (e.g., Hutchins [320], Perry [502]). A small glimpse of these ideas has been brought into the world

of software development by several researchers [223, 224, 690].

Closely related to socially distributed cognition is research on what is sometimes called “shared intel-

ligence”, “collective intelligence”, or “group cognition”. It has long been recognized that people in groups

behave and perform differently than they do individually (e.g., Norman [465]). In fact, Newell’s influen-

tial “blackboard” model [442] of individual problem solving was inspired by how groups of experts can

come together and solve problems in a way that the individuals could not on their own (see Section 5.3).

The choice of the term “shared intelligence” exposes an interest in how intelligent behaviour is not purely

a function of an individual’s cognition, and in the ways in which tasks and problems are shared [65]; the

terms “collective intelligence” and “group cognition” imply an emphasis on how individual intelligences

combine in a group, and on the structure and dynamics of such group thought processes. Many of the

authors from Salomon’s collection [558] have come from these sorts of research backgrounds, so the link

between that prior research and SDC is quite well established. In the context of building supportive arti-

facts authors such as Boy [65] have used these ideas to understand the application of intelligent assistants.

Others, like Smith [603], have considered how to support collaborative work using groupware.

3.3. SCHOOLS OF COGNITIVE SUPPORT 102

Situated/Embodied Action

The third cluster revolves around so-called “non-symbolic” or “anti-representational” explanations of

“situated action” or “embodied” behaviour. “Situated” refers primarily to the fact that behaviour is con-

tingent on the particulars of the situation in which an actor finds herself [657]. Important claims in this

cluster are that (1) behaviour is ad hoc (as opposed to “purely rational”) in fundamental ways [623], and

that (2) action that appears globally coherent can result from local interactions rather than being a result of

a “global plan” [135,136,623]. At a less technical level another important contention is that the actual com-

petencies and behaviours of humans are intimately connected to the “socioculturally constituted contexts

in which they are embedded” [377, pg. 6]. In other words, the particular “situated” condition of interest

is an agent’s social and cultural setting.

The situatedness of cognition is itself simply a phenomenon that any psychology must address [270,

657], and hence many different schools try do so. In fact, sometimes situated action viewpoints can bear

remarkable similarities to other viewpoints such as DC [417]. Nonetheless there are circles within the

situated action (and other) schools that takes situatedness as a challenge to certain modeling traditions

(see e.g., Thagard [639, ch. 10]). The details of this controversy are not that important here (see e.g.,

Clancey [133] or the special issue on Cognitive Science [471] for some lively discussion), but some situated

action theorists have pursued a modeling tradition which avoids a core reliance on directly representative

symbol systems (e.g., of plans for action) and centralized processing.13 Frequently their models instead

emphasize how global properties emerge from local interactions, and they often highlight intimate interac-

tion between the external and internal world. Prominent figures in this loosely connected school include

Suchman [623], Greeno [277], Clancey [134], and Clark [136]. Little work from the situated action camp

has been applied in software development, although some attempts have been made (see e.g., Law [377],

Shukla et al. [586]).

Ecological Psychology

The fourth cluster of related research is gathered around what is termed “ecological psychology”, a tradi-

tion pioneered by J. J. Gibson [236]. Many of the ecological concerns that captured Gibson’s attention are

familiar also to many other strains of psychological study, but certain Gibsonian ideas might be said to

be endemic to the ecological psychology cluster. Gibson’s work appears to require several concepts to fit

together in order to gel properly [221]. One is the idea of “direct perception” where information is “picked

up” directly rather than by involving information-processing steps (computation) [726]. Another needed

concept of great concern here is the notion of affordance. To Gibson, an affordance is a (realist) property

of objects that relates to the perceived or actual capabilities of those artifacts to have actions performed

with them. For instance, buttons afford pushing; chairs afford sitting. Affordances of artifacts are human-

and task-relative—a single artifact can afford different actions to different people. A screwdriver affords

driving screws, but it also (poorly) affords driving nails. Human action is consequently related to artifacts

13It is worth noting that these are all still computational models of symbol processing but they are significantly
different in character (see also Section 4.1.3).

3.3. SCHOOLS OF COGNITIVE SUPPORT 103

by the artifacts’ affordances and how they relate to the tasks being performed. Because of its way of re-

lating artifact, task, and behaviour, Gibson’s work is influential in certain circles, particularly the field of

“cognitive engineering” (see Section 3.3.2).

3.3.2 By Problem Domain

Research within any problem domain may be directed towards cognitive support whenever it is realized

that artifacts are important parts of the mental lives of people in that domain. Any of the different research

traditions mentioned in the previous section might be subsequently employed within that domain.

Design

Many educational and research institutions maintain a separate faculty for design, which often includes

graphic design, architectural design, and engineering design (e.g., Hubka et al. [316]). Sometimes this list

of design professionals is extended to include software designers. Some of the ideas in design theory have

trickled down into software design either somewhat directly (see e.g., reviews by Terrins-Rudge et al. [638]

and McPhee [406]) or indirectly (e.g., the influence of Christopher Alexander on design patterns [148,232]).

The design community as a whole is philosophically connected by a shared premise that there is an un-

derlying common activity to many different forms of design. The research movement began in earnest in

1967 with the founding of the Design Research Society (http://www.drs.org.uk/) after a watershed conference

on the possibility of creating a science of design. The first edition of Simon’s influential “Sciences of the

Artificial” [594] came out soon afterwards, and it helped speed progress in the field. Within this problem

domain, the main concern is how people design things, either routinely or creatively.

There are several potential crossover points between design studies and research on cognitive sup-

port in software development. First, there are topic similarities. The design field shares with software

development an interest in processes and methods for designing things, and in the artifacts and computa-

tional support for these processes. For instance they are interested in how things like sketches and models

are used during the different phases of design (envisionment, creative design, etc.) [235, 517, 628, 764].

Second, there are methodological similarities. Many studies in the design field are closely reminiscent

of studies of software design, programming, and maintenance. For instance, protocol analysis studies

in this field bear remarkable similarities to many from software comprehension and reverse engineering

(e.g., Suwa et al. [627], Purcell et al. [518]). In addition many of the ways of researching tool support are

similar. For example, some authors [38] have used protocol analysis to try to discover what information

designers attend to during design, in order to determine requirements for information management tools.

This tactic is remarkably similar to the “information needs” analysis of software comprehension made

by von Mayrhauser et al. [666, 669]. Third, there are definitely opportunities for sharing theoretical con-

tent. Some of the ideas from design-related authors such as Christopher Alexander, Herbert A. Simon,

and Donald Schön have made their way into computing science theorizing (see e.g., Robbins et al. [544],

Guindon et al. [285], Schön et al. [566]). A more direct mixing occurs when authors who publish in design

literature (Visser, Hoc, Guindon, Davies, etc.) publish also in journals common to both communities (e.g.,

IJMMS [661]), or when they publish also in software psychology related conferences and books (e.g., the

3.3. SCHOOLS OF COGNITIVE SUPPORT 104

Empirical Studies of Programmers Workshops [745]). In addition, design research may utilize the same

science base as computing. For example, design may begin to use DC theories (e.g., Gedenryd [235],

Perry [504]).

Cognitive Engineering

Cognitive engineering is something of a mixture between human factors, HCI, and industrial engineer-

ing [713]. It can be viewed as an offshoot from industrial human factors and industrial psychology—that

is concerned with high-level cognitive issues in industrial contexts. These contexts typically constitute

complicated socio-technical control systems such as aircraft control, and industrial or nuclear plant con-

trol. Researchers in this area are concerned with the design of human–machine systems, and are therefore

self-consciously interested in the notion of joint system performance (e.g., Hollnagle et al. [312]). For ex-

ample, typical assumptions in this domain are that the total work is distributed between humans and

machines, and that an important design goal is to allocate functions to machinery in ways that reduce cog-

nitive overheads of the operators [66]. There is a great deal of relatively mature research work in this field

concerning how to analyze and design cognitively-intensive socio-technical systems. For example, see the

volumes by Vicente [657], Flach et al. [219], Hancock [287], and Rasmussen et al. [531].

Many of the ideas floating around in the community seem applicable to designing software develop-

ment tools (with some modifications, perhaps), yet they have never been applied to this field. For instance,

in ecological interface design [531] there is a well articulated theory of how to provide support for cog-

nitive work via the provision of a so-called abstraction hierarchy. This is a testable hypothesis about the

usefulness of certain representational forms and these forms seem applicable in software visualization.

Some of the theoretical resources from this field are actually integrated into the HASTI framework in

Chapter 5 (the SRK taxonomy, see Section 5.4).

Management and Decision Making

Management and decision making is concerned with the products of, and processes involved in, making

informed decisions (about purchases, manufacturing decisions, etc.). Artifacts like tables and decision

charts have been important resources for such decision making. Thus this area has contributed to the long

stream of research on textual and graphical representation effects [332, 656]. Some of this research has

already influenced Rasmussen’s SRK taxonomy in cognitive engineering, so there may also be potential

for points of contact with software development too.

Education

Education research is interested in improving both teaching and learning. One way of viewing it, there-

fore, is as a design science concerned with improving and facilitating cognitive performance and problem

solving. Thus it shares some common ground with applied sciences of cognitive support, and with en-

gineering disciplines built around them. Even more so than cognitive engineering, it has a long history

of taking theories and applying them in practice as in instructional design research (e.g., see Tennyson

et al. [637]). For instance, many of the theoretical schools surveyed here are also applied to technologies

3.3. SCHOOLS OF COGNITIVE SUPPORT 105

for education (see e.g., the special issues of Instructional Science on multimedia [8] and metacognition [291],

and various conference [80, 684, 760, 761]). Perhaps it should also be noted that cognitive psychology and

educational psychology are rather distinct disciplines with their own journals and conferences. This might

have something to do with the design-oriented focus of educational psychologists—is there a nascent ana-

logue for software engineering psychology?

Potential crossover points include: (1) studies on what makes for good representations and media for

problem solving and learning, (2) studies on tutoring systems and interactive learning environments, (3)

studies on training of methods for metacognition or reflective thinking in order to instill skills in prob-

lem solving, and (4) possibilities of theory transfer or cross-pollination. On the first point, education

researchers have one of the longest histories of research into the benefits of diagrammatic representa-

tions and visualizations (see e.g., Paige et al. [482]). Although educational researchers have in the past

recognized the importance of external media in education, research on the use of external media seems

currently vigorous (e.g., Mathewson [398]). Some of this research has had some time to mature, and there

may be some hope to transfer some relevant research and cognitive models from studies of reading to

software comprehension and software visualization. Likely examples include studies on diagram reading

strategies [708], and studies on memory for spatial location of passages [131]. The second point argues

that many psychologically-motivated design ideas for computational support have been investigated by

educational researchers (e.g., Anderson et al. [14], Vosniadou [683], Salomon [559]), and that many of these

ideas for learner support (or scaffolding) might conceivably be transformed into analogous concepts of SE

support. The third point indicates that some research in education is quite directly relevant to cognitive

support in SE: workers in SE frequently need formal training or need to learn on the job in order to enable

effective use of novel technologies (e.g., see Lemut et al. [759]). In fact, training and technology deploy-

ment must frequently go hand-in-hand (see Rasmussen et al. [531] for a cogent argument). The fourth

point suggests that there may be a great deal of theoretical groundwork in common. Certainly there are

many authors working within the computer-based learning field that have related theoretical roots (e.g.,

Salomon [558], Dillenbourg [180, 181]).

Reading and Writing

Reading and writing research exists semi-independently from related areas like education, computer doc-

umentation, and hypertext. Reading researchers are frequently concerned with how people read and

understand texts. Writing researchers are concerned with the problem of how to make writing of all sorts

(stories, reports, etc.) easier and better. Because of the well-known importance of intermediate represen-

tations (outlines, sketches, notes, annotations, etc.) in writing, this aspect of performance is not neglected

in writing research. Much like design science, reading and writing research often involves observational

studies and verbal protocol work that are similar to those performed in software development tool re-

search. Several recent volumes on writing environments highlight some of the building maturation in the

field [313, 383, 577,652].

There are several possible points of relation between reading and writing research, and cognitive sup-

port research in software development. Perhaps the most obvious is the fact that text comprehension

research has been influential in software comprehension research (e.g., Pennington [498] and Soloway

3.3. SCHOOLS OF COGNITIVE SUPPORT 106

et al. [609]). A similar cross-fertilization concerning cognitive models of planning might also be feasible.

For instance many models of writing planning (e.g., Hayes et al. [293]) strongly resemble programming

planning models, which are in turn consistent with the modeling framework presented in Chapter 5.

There are two other points of contact that are more specifically related to cognitive support: (1) there has

been significant research into the roles of diagrams in text comprehension, and (2) there is some maturing

research that has attempted to organize explanations of how artifacts aid writing processes. Some of the

best examples of these are the bodies of research from Sharples, Pemberton, and colleagues [496,573–576],

and from Smith et al. [603–605].

Hypertext, Information Retrieval, and Library Sciences

Books like those of Marchionini [396], Allen [9], Dillon [183], and collected works like those of Rouet

et al. [552] are testaments to the increasing understanding within these fields that some of the main prob-

lems they face involve cognitive support issues, especially relating to how users perform iterative and

media-manipulating interaction with tools. In the past, these fields have had a strong interest in the un-

derlying technology (non-linear representation of documents, document query and retrieval, collections

management). But for over 30 years [561] there has been an awareness that on “a fundamental level, infor-

mation retrieval is inherently interactive.” [561, pg. 1067]. After a watershed workshop on the problems

of interfaces in IR in 1971 [561], interest began to grow regarding the importance of overall task con-

cerns (navigation problems, sensemaking and iterative querying, etc.), and regarding the roles of artifacts

and their manipulation. There is an increasing awareness of the need to understand user cognition and

problem solving, and to subsequently relate them to task environments in order to develop correspond-

ing requirements for tool features. A good example is the Stanford Digital Libraries project, which gave

birth to reflective media like the “scatter/gather” interface, and iterative problem solving models such

as sensemaking models [301]. Another excellent example is the work by Tweedie et al. on “Interactive

Visualization Artifacts” [646] and The Attribute Explorer [614].

There is certainly a direct point of contact to software development: software developers often use

hypertext (e.g., [213, 234, 248, 729]) and information retrieval (e.g., Consens et al. [146], Clarke et al. [138])

tools. Clearly, one would expect that models of program browsing will need to be highly compatible with

models of hypertext browsing if hypertext-like browsers are used to browse programs. Indeed, it may be

relatively easy to establish a case for this. For instance, the ASK (Anomalous States of Knowledge) model

of information seeking within hypertext (see Marchionini [396]) shares much intellectual ground with

Letovsky’s model of knowledge seeking within programs [382]. In addition, many of Storey’s cognitive

design issues for developing software comprehension tools were derived from a similar framework in

hypermedia [618]. Moreover, Dillon’s TIMS framework [184] (Task, Information, Manipulation, Standard

Reading) is an attempt to build theoretical resources for hypertext design, and is in many ways similar in

spirit to the present work. Thus hypertext and IR research should be seen as having significant overlap

with program comprehension research.

3.4. SUMMARY AND CONCLUSIONS 107

Extraordinary HCI

People are sometimes confronted with lesser or diminished mental capacity. Diminished capacity can

result from congenital disability, but also from accident, aging, or more temporary conditions such as

fatigue or extreme stress and duress [451]. Whatever the reason for the diminished capacity, there exists

the motivation to furnish prosthetic mental capabilities: augmented memory, inferencing, vigilance, and

so on. The design field concerned with this support is called “extraordinary HCI”. Of course, all humans

have limited mental capacity. Thus cognitive support for the mentally challenged is not fundamentally

different than cognitive support for the most capable, but of course there are the special conditions that

make it a genuinely distinct strand of HCI.

The contributions to SE research that might be made by extraordinary HCI could be to a great extent

symbolic, but it also could be substantial. The symbolic contributions are perhaps the most readily ap-

preciated. In my personal experience, I have found that for some reason it is frequently difficult for the

uninitiated to fully appreciate the cognitive support provided by artifacts, especially simple ones. Sup-

port is often overlooked. Perhaps there is a tendency to assume people can do amazing things like build

million-line programs simply through mental capacity and discipline alone. The fact that many of these

feats would be frankly impossible without external artifacts seems to be frequently glossed over. Cog-

nitive support for the cognitively challenged helps put this faith in the power of human brilliance into

perspective. There is something convincing about how simple computer tools can help people with pro-

found memory and cognitive disabilities perform tasks like write cheques and organize daily living [141].

These are activities that just could not be done without the prosthesis. Thus, perhaps extraordinary HCI

can be of symbolic use in helping to appreciate the importance of cognitive support. The more substantial

contribution that might be made by extraordinary HCI concerns the unique disabilities of some of the sub-

jects studied. In experiments with able subjects, it is frequently difficult to determine the support offered

by tools since subjects can often make up for lack of support by substituting mental effort or special mental

tricks. In extraordinary HCI, however, one can sometimes study people with well established limitations

(e.g., zero capacity to remember newly presented information after 30 minutes have elapsed [141]). These

well-known limitations may be useful to experimenters much in the same way that studying subjects with

various head injuries has helped research on brain function and neurophysiology.

3.4 Summary and Conclusions

Sometimes obvious things have to be repeated over and over before they are realized.

– Stanislaw Ulam, “Adventures of a Mathematician” [649].

This chapter started out with relatively modest goals—to (1) provide a global overview of the types

of phenomena that can be considered cognitive support, and the clusters of research work that have con-

tributed to an understanding of them, and (2) to help relate these concepts to SE tools research in order

to raise awareness of these issues within the community, and to indicate the potential applicability and

3.4. SUMMARY AND CONCLUSIONS 108

relevance to our research. The survey covered seven distinctive clusters of support concepts, four de-

scriptive theoretical schools for understanding the support concepts, four explanatory theoretical schools

that might be brought to bear on understanding cognitive support, and seven quite independent research

communities that have a stake in understanding cognitive support, or have histories of trying to do so.

The survey reveals that cognitive support is multi-faceted, and that research on it is widely scattered.

To conclude the chapter, it is worthwhile standing back and reflecting on what the juxtaposition of

so many different strands of research reveals. One thing that is hopefully quite obvious is that without

good and integrative reviews of such materials it is difficult for any SE researcher to have a good global

understanding of cognitive support. With examples and discussions of cognitive support so widely scat-

tered, it is unrealistic to suggest that tool researchers—or psychologists or sociologists for that matter—be

aware of all the possibilities and flavours of cognitive support, and of their applications in practice. The

consequences are predictable. We are destined to rediscover the same facts over and over. And useful

techniques and ideas will remain unused through their inaccessibility. I find it simultaneously amazing

and incredibly frustrating that research in so many disciplines and problem domains can contain so many

unbeknownst similarities regarding cognitive support. Although I have tried to pepper this review with

adequate citations, I have left out as many as I have included. And to this day I am astonished at how

frequently I discover more papers that essentially replicate similar insights from publications past.

In closing this chapter allow me to point out just one example. Two decades ago, McKim, himself an

engineering design professor, wrote a non-academic book about “Visual Thinking” [404]. It was intended

as a sort of cookbook for thinking better and was, in fact, subtitled as “a Strategy Manual for Problem

Solving”. In it, he noted that people tend to manipulate the world in order to “externalize thinking”, that

is, artifacts are used as a medium for thought. He then noted some design implications for such media:

Externalized thinking is best accomplished with materials that are easy to form and reform. The sculptor’s

Styrofoam, the chemist’s snap-together elements, the designer’s Foamcore and tape all have the virtue

of being easily manipulated spatially, much as symbols and images are moved and modified internally in

mental space. Materials used to communicate a visual idea that is already formed need not be as flexible.

[404, pg. 44].

Similar sorts of observations are sure to have been made in many places. The two essential implications

for design noted above are that (1) humans like to think with external media, and (2) if a medium for

external thought is being designed, it must be easily manipulable—ideally it should be as fluid as internal

human thought. These are relatively simple observations, but they link aspects of cognitive processes and

problem solving to desirable properties of supportive artifacts. Observations so straightforward should,

one might argue, be incorporated into some type of standard design theory or wisdom. And indeed they

have been. Green’s cognitive dimension of viscosity [258], for example, nicely captures the need for easy

manipulation in this context. Green actually includes an excellent analysis of some of the psychology

underlying this cognitive dimension; thus he has incorporated viscosity into something of a broad-brush

psychological design theory. A sequence of several papers and presentations have served to expand on

the framework, and to extoll its virtues [54, 257, 258, 266, 269, 270, 272].

3.4. SUMMARY AND CONCLUSIONS 109

But from one point of view it is surprising that cognitive dimensions such as viscosity should even

need to be argued in so many papers. Indeed, it is surprising that a well-respected cognitive psychologist

should have to be the one to introduce this little theory to the software development community, since

viscosity obviously has many precedents. Should we not have noted these things (and many others)

before? It is, moreover, vexing that many of the psychological observations needed are ones that are either

rather “obvious”, or have been known for centuries [454]. Take, for instance, Norman’s popular book “The

Psychology of Everyday Things” [469]. It is very well received, contains scores of psychological facts that

are extremely relevant to design, and is a standard reading for many undergraduate HCI courses. Yet

Pylyshyn argued that:

After all, it did not require knowledge of any psychological theory, or even training in psychological re-

search, to make the sorts of insightful psychological observations of practical foibles that are contained

in Don Norman’s Psychology of Everyday Things! [522, pg. 43]

At the conclusion of this chapter I find it surprising and perhaps a little puzzling that the basic concepts

of cognitive support were not long ago pieced together and brought into loose but functional theories

for designing computer tools. Instead, focused articulation of one type of support or another has been

favoured over reconciliation and synthesis with other forms. More recently, of course, they are beginning

to come together (see Section 6.6), but the progress is so slow. This chapter has highlighted a number of

cognitive support concepts, and I think that just shoving these together onto the page can be enormously

beneficial. Certainly, a good and more thorough review of cognitive support concepts should help tease

apart the issues, organize the concepts, and resurrect yet others from their undeserved exiles in publication

purgatory.

Chapter 4

Strengthening the Foundations of

Cognitive Support with RODS

Because the framework is not too informal, it can appeal to the clean-living software engineer;

and because it does not suppress too much mess, it does not appal the cognitive psychologist.

– T.R.G. Green on his Cognitive Dimensions framework, in “Why Software Engineers Don’t

Listen to What Psychologists Don’t Tell Them Anyway” [263], pg. 332.

�ometimes, it is the general, high-level, qualitative theories that make the biggest impact on a field. When

this happens it is often because they capture fundamental principles, and thus provide deep and general

insights which can be as important as fine details. This trend was noted by Newell and Simon [450] in their

1975 ACM Turing Award Lecture. They observed that the essential characteristics of a discipline can often

be stated in short, general sentences. Although any field will have its share of theories explaining specific

phenomena, the details are often overshadowed by the “big picture”. Newell and Simon highlighted, in

particular, the importance of the cell doctrine in biology, the theory of plate techtonics in geology, and

the germ theory of disease. These are all gross qualitative theories which are critical for understanding a

domain. They tie together, relate, and organize multitudes of facts.

Consider the theory of plate techtonics, for instance. The theory argues, essentially, that the Earth’s

crust is made up of plates that are moving, growing, and pressing up against each other. Stated thusly,

it is a simple theory, but it helps explain a whole host of facts, from fossil records to earthquakes. Stated

so simply, however, the theory can make few specific predictions or explanations; the details eventually

count. But the non-predictive and qualitative nature of such theories does not diminish their importance.

General, qualitative theories can be enormously valuable in understanding a broad range of phenomena

from up high.

110

111

One important function of such high-level theories is that they often provide the first firm foothold

for non-specialists. The theory collects and neatly packages together the key insights, which the non-

specialist can effectively cling to. Beyond such a theory, the abyss of detail awaits. But not only is the

theory an initial foothold, it is really a stepping stone to deeper and more specific theories. One can look

to the experiences of typical science students in many countries for evidence to support this view. By the

time they are in High School (around age 15), they are usually exposed to all of the qualitative theories

listed by Newell and Simon. This does not qualify them as bona fide biologists or geologists, but they have

the basic conceptual tools needed to be able to understand key aspects of geology, biology, and so on. If

they need deeper conceptual tools, these can be learned, with the stepping stone of the qualitative theory

easing the transition. However the main point is that the high-level qualitative theories are very widely

accepted as being vital and general knowledge. They are general, but not too general to be useful. We also

normally think that it is valuable for our children to learn many of these theories, and to be able to apply

them to make sense of the world; they are considered part of a well-rounded education.

For similar reasons, a clearly articulated, general, high-level, qualitative theory of cognitive support

is likely to be invaluable to developers of software for cognitive work domains. In SE, for instance, a

wide variety of tools are proposed in order to reduce the mental challenges of software development. One

would expect, therefore, that the developers of these tools would be greatly helped if they understood and

could apply the basic psychological principles of supporting cognition. The specific details about cogni-

tive support will be, of course, important at some point, but arguably not as important knowing the core

principles. Moreover, the core principles will undoubtedly be the foundation onto which more detailed

theories are built. Should the details be needed by the developer—and this is by no means guaranteed—

then specialized theories and principles can be assimilated and applied. In any case, it seems prudent to

expect that the general theories should be included in the list of things a well-educated tool developer

should know.

Unfortunately, such a simple, comprehensive, qualitative theory of cognitive support is not yet clearly

perceivable from the literature. The aim of this chapter is to take steps to rectify this. The form of the

resulting theory is important. The goal is to produce a theory that satisfies the desiderata outlined in

Section 2.3.1. This means making sure that the theory is based on mechanistic explanations, explains

work equivalence, and so on (see Table 2.4, page 62). Judging from the qualitative theories enumerated by

Newell and Simon, we should be able to recognize a suitable initial theory by its simplicity (i.e., statable

in a few sentences), and by its ability to help make sense of a host of related facts and theories. The aim

of providing a broad survey in Chapter 3 was, in fact, to set our aim widely enough. Thus we will know

when we succeed if our theory is simple and yet helps explain all of (or at least much of) the supportive

phenomena identified in Chapter 3.

The existing science base makes the extraction of such a theory of cognitive support a non-trivial ex-

ercise. The phenomena of cognitive support is generally inadequately understood, and we have to date

studied it using a menagerie of limited and incompatible theoretical approaches. In facing this theoretical

jumble, perhaps the most sensible course of action is to limit confusion by picking an approach that ap-

pears to have good practical promise. If better theoretical frameworks appear later, then we can update

what we have already built, or put our frameworks aside and build new ones. This approach is much like

112

adopting an industry standard when developing software. Nobody is entirely satisfied with the standard,

but most agree upon the importance of adopting one. This pragmatic strategy helps side step some of the

controversies that rage on in cognitive science and psychology [270]. Once the standard is picked, key

principles can be extracted and highlighted as a general, qualitative theory of cognitive support. This can

then act as a framework onto which other prior results and theories can be fit.

Distributed cognition (DC) is the overall theoretical approach chosen in this dissertation. DC is a rela-

tively new and developing area of cognitive science, but it seems to hold high practical promise. Several

researchers have recently adopted DC as an umbrella approach to HCI research and design (e.g., Wright

et al. [719], Dillenbourg et al. [181], Rogers et al. [547], Holland et al. [311]). DC appears eminently suitable

as a starting point because its scope of enquiry is taken to be cognitive systems composed of humans in

combination with the artifacts they use. Artifacts are thus not seen as something peripheral to the cogni-

tive machinery—they are part of it. Thus the contributions of artifacts are woven directly into models and

theories of cognition.

Using DC as a starting point still leaves us with issues to resolve, however. The fact is, DC is a theory

of cognition, not a theory of cognitive support. A cognitive theory or model—distributed or not—does not

by itself guarantee that the means of supporting that cognition are clearly spelled out. Any theory of cog-

nitive support must provide an explanation of the benefits that artifacts provide. This analysis of benefit is

necessarily comparative: the benefits of a tool may be understood only in comparison to what is implied

by its absence, substitution, or modification. Cognitive support theories therefore compare various cogni-

tive systems to determine their relative benefits. It is the benefit explanation that distinguishes theories of

cognitive support from theories of cognition. Theories of cognition explain cognitive phenomena like mental

constraints, forms of internal representation, learning, and performance. Given a class of cognitive sys-

tems, a theory of cognition can be used to explain or predict those sorts of aspects of that class of systems.

Loosely speaking, the “output” of a cognitive theory is thus a prediction or explanation of cognitive phe-

nomena or behaviour, whereas the “output” of a cognitive support theory is an explanation of cognitive

benefits provided by some class of artifacts (as compared to some other class). Existing DC theory embeds

a kind of cognitive support theory within its description, but it is (unintentionally) concealed and must be

flushed out.

Fortunately, it is easy to convert the basics of DC theory into a simple and high-level, qualitative theory

of cognitive support. The key idea for doing so was described on page 5 in Chapter 1:

The cognitive support provided by a tool is the computational advantages that the tool provides. Cog-

nitive support can therefore be understood entirely in computational terms: support is the provision of

computational advantage.

Notice that this is clearly not a theory of cognition, but one trying to explain support. A theory of cognition

seems obviously necessary to make such a statement, but it is a logically distinct type of theory. Note

also that the phrase “providing computational advantage” in this statement is comparative: it means

that the computations involved when using one artifact are better in some way than when another is

used. Stated in this way, the above blurb qualifies as a high-level cognitive support theory—too high

level, unfortunately. If one can imagine a dial that sets the level of detail in a theory, then such a theory

113

threatens to set the dial too high to be useful [265]. Some details must be added to the statement to let

analysis proceed. We wish to lower the detail dial, but not too much.

The dial can be lowered by addressing two questions which quickly arise after some reflection. First,

what are the “computational advantages” that are mentioned? Once their existence is mentioned, it seems

natural to ask for the complete list. Second, how do we go about determining these advantages? If

tools differ according to the support they provide, it is natural to ask for a method for analyzing these

differences. This involves knowing how the support is actually implemented by the artifacts (i.e., how

the cognitive support principles apply in HCI), and how these supportive mechanisms compare. At first

it might not be obvious how to do this. Tools are frequently compared only according to their surface

features (widgets used, user-interface metaphors used, etc.) and their over functionality (store, edit, graph,

analyze, etc.). In contrast, what we need to be able to do is compare artifacts based on what they do for the

cognition of their users. Thus although a simple theory can be offered up front, what is really needed is a

slightly more complicated one that can follow up with useful (but still relatively simple) answers to these

two questions.

RODS is a theory and analysis framework proposed to fit these needs. The core part of RODS is a list of

four fundamental principles of computational advantage. These are actually ordinary notions of computa-

tional efficiency familiar to computing scientists. These principles are called “task reduction”,“algorithmic

optimization”, “distribution”, and “specialization”. The four principles are collectively referred to using

the acronym RODS. Because these principles are so central, the entire cognitive support framework de-

fined in this chapter is also called “RODS”.1

RODS is intended to strengthen the foundations for understanding cognitive support in SE. Adopting

this goal has meant that the form and qualities of RODS are engineered specifically according to several

criteria. First, it was designed to try to fulfill the desiderata of Section 2.3.1, as was mentioned above.

Second, it was specifically constructed with the needs of traditional software designers in mind. These

needs are discussed in Section 7.2. Finally, RODS was designed to try to define the cognitive support

principles using orthogonal computational ideas. This is a point that is important to other sections of this

dissertation, but the discussion is best delayed until Section 6.5. For the time being, these design issues

are put aside, and the issue of what constitutes RODS is considered instead.

The chapter thus proceeds as follows. First, the main DC tenets are collected and described in Sec-

tion 4.1. This review is necessary, in part, because the theory is unfamiliar in SE circles, and it will help

to relate the theory to the domain. It is also needed because there exists considerable variability in how

DC is treated, so the various convictions used herein must be stated. Second, the four cognitive support

principles of RODS are introduced in Section 4.2. Third, ways of analyzing tools for support are described

in Section 4.3. Fourth, RODS is evaluated in terms of how it matches the theory desiderata which were

outlined in Section 2.3.1. Finally, Section 4.5 summarizes RODS and makes conclusions about its construc-

tion.

1This naming scheme is similar that of Card et al. [94], who called their entire analytic framework “GOMS” based
on the key cognitive elements in the framework (Goals, Operators, Methods, and Selection Rules). Properly speaking,
though, both GOMS and RODS refer to focal parts of the analytic frameworks in which they are embedded.

4.1. DC PRINCIPLES AND TENETS 114

4.1 DC Principles and Tenets

It is impossible to say what constitutes the DC viewpoint since there is so much variability in the field.

Not only in DC per se, but in cognitive science more generally. Several sorts of research with differing

underlying methods and philosophies fly the flag of DC [417]. It is therefore important to state what basic

assumptions are being made [417]. The goal of this section is to present a simplified version of the basic DC

convictions. The aim is to make the characterization suitable for SE research, and to relate important DC

principles to SE issues. These tenets are necessary for understanding the RODS framework as a whole, and

are required to appreciate how RODS can be applied. A small, core set of commonly assumed convictions

are singled out. These are chosen such that they enable the theory design in subsequent sections. Each of

these is discussed in separate sections below.

For each tenet, an attempt is made to supply representative links to the supporting literature. Also,

links to SE works are given where possible. In addition, implications for RODS and its design are noted

where appropriate. The presentation attempts to distinguish more-or-less independent or “atomic” tenets.

These are divided into two groups consisting of (1) “cognitivist” modeling principles, and (2) their corol-

laries in DC terms. They are labelled for easy reference using a simple naming scheme. A table of these

tenets appears in Table 4.1. The table uses arrows (’	’) between columns to illustrate the fact that the

“standard” cognitivist convictions all have their DC analogues.

A note about these DC tenets needs to be made in advance. Since all of these tenets are fundamental

and reasonably widely held, the following may seem at times to be a review of rather well-known concepts

and ideas. It may therefore at times seem that they are not worth repeating. Nevertheless, none of these

tenets can be said to be universally held—indeed, some are currently hotly contested. As a result, this

review has the seemingly dubious dual properties of being both review material and (by certain accounts)

incorrect. But it is important to be explicit about the fundamental convictions underlying the overall

framework. The explicitness is bound to be beneficial to researchers new to DC. Moreover clarifying the

basic assumptions helps other researchers from similar fields understand the relationships to their own

worlds [493]. It is quite worthwhile, therefore, to risk the relatively benign hazard of tedium in listing

these convictions.

COGNITIVIST # DISTRIBUTED

C0 human mind is a cognitive unit � D0 distributed functional unit

C1 cognition = computation � D1 cognition = distributed computation

C2 cognitive interpretation � D2 external cognitive interpretation

Table 4.1: Key tenets of DC

4.1.1 C0: Human Mind is a Cognitive Unit

The traditional assumption in cognitive science is that the thing to be studied and modeled is the cognitive

functioning of the human mind.

4.1. DC PRINCIPLES AND TENETS 115

4.1.2 C1: Cognition = Computation

One of the most fundamental principles of cognitive science is that cognition is adequately modeled

as a type of computation, where computation consists of operations over symbols (cf., Pylyshyn [520],

Newell [446]). Explaining cognition as computation has the advantage that a mechanical explanation of

the cause of behaviour is advanced. It is difficult to overstate the importance of this advantage [520, 523].

RODS takes this lesson to heart: it attempts to explain cognitive support in purely computational terms. If

there is a cardinal rule in RODS, it is that support, if it is to be properly explained, will be explained using

computational models, and by appealing to the fundamental principles of computation.

Software Comprehension and SE

Computational models have been a de facto cognitive modeling technique in SE domains since the late

1970s and early 1980s [156, 481]. Cognitive models have slowly begun to offer some explanations as

to the causes of programmer behaviour. These explanations have offered advantages over “black-box”

techniques, which were unable to properly uncover these causes [581].

4.1.3 C2: Cognitive Interpretation

If cognition is modeled as computation, then the simple corollary is that certain computational mech-

anisms can be interpreted in cognitive terms [521]. In particular, it is possible to talk about how data

corresponds to knowledge or mental state, and how computational processing correspond to perception,

attention, thinking, deliberation, reasoning, and so on.

It is important to note that viewing data as knowledge and processing as thinking is an interpretive

act. In this work, computational models are assumed to be data-processing systems—systems of purely

syntactic manipulation of symbols having no inherent meaning.2 So if a model posits that the concepts of

“cat” and “house” are somehow encoded, it means that some syntactic entities are being interpreted by

the analyst in terms of these semantically meaningful concepts. At some level, therefore, it is fruitful to talk

about cognition being the manipulation of meaningful symbols. This does not mean, however, that one

can pry open a subject’s braincase and see tiny inscriptions of the words “cat” and “house”. Nevertheless,

an adequate treatment of cognitive support will require it to be possible (in principle) to map cognitive

concepts like goals and plans to their implementation. There is no guarantee that this mapping will be

obvious in any way. Cognitive-level concepts like goal or plan may be implemented ephemerally much

like centre of gravity or temperature: one cannot directly point to either of these yet it may be perfectly

reasonable to build models of reality based on them. The importance of these points shall become more

apparent in conviction D2, and in Chapter 5.

2This terminology accords well with Turing’s original understanding of the term “symbol”, however in cognitive
science, a “symbol” is normally understood as a syntactic element within a symbol system, so that its semantic content
can be interpreted [117, 446]. This other definition reasonably leads to such notions like “sub-symbolic” computa-
tion [97, 606] which, using the purely syntactic notion of “symbol”, is nonsensical. In Section 4.1.6 the reason for
presenting cognitive models as an interpretation of data processing will be made more clear.

4.1. DC PRINCIPLES AND TENETS 116

4.1.4 D0: Distributed Functional Unit is a Cognitive Unit

Cognitive models are built to explain and predict behaviour. Models will be able to do this insofar as

they model the mechanisms contributing to it. In well bounded systems, these mechanisms have only weak

connections to external entities. Consequently, well bounded systems form distinguishable units that can

be analyzed relatively independently. Such units often can be modeled as independent computational

subsystems with well understood ways of interacting with their embedding contexts. We could say that

these independent bundles of causal influences are identifiable as subsystems or “modules”; we may then

say that they have low external coupling [613]. Strict modularity is not found very often in real systems [317],

but many systems are still loosely connected enough to be termed “modular” and studied as separate

entities [446, 592].

One modular subsystem is the human mind. It is typically assumed to be generated by the brain and

bounded physically by the skull. The mind forms the most traditional unit of analysis in cognitive science

(conviction C0). However, recently the sufficiency of this traditional unit of analysis has been challenged;

DC represents one approach to expand the unit of analysis. An example of where the traditional “unaided

mind” unit breaks down is in group interaction. People working in groups can form larger combined sys-

tems such that the behaviour of both the individuals and the group as a whole are dependent upon the

relationships and interactions between individuals (e.g., Norman [465]). That is, the subsystems combine

into larger systems and it is these that become the expanded unit of analysis. Duke et al. [192] called

such coupled units “syndetic” units—a reference to the fact that the subsystems within the unit are rather

tightly bound (the term “syndetic” comes from the Greek word syndetikos, meaning to bind together). In

DC, several examples of syndetic units have been studied. Examples include cockpits of airplanes [321],

navigation teams on ships [320], and pairs of maintainers sharing a single computer [224]. Humans also

form syndetic units with artifacts such as PDAs and, significantly, software development tools and envi-

ronments.

The key criterion for identifying syndetic units is the closeness of the interaction between subsys-

tems [137], that is, by the strength of the coupling between entities. This coupling is not based on physical

or temporal3 proximity, but by being causally or functionally related [311]. Consequently, Hutchins uses

the term “functional unit” [320] to refer to syndetic units, but a variety of other terms have also been

used. For instance, Activity Theory has a similar concept of “functional organ” (see e.g., Kaptelinin [339]),

and the term “ecosocial system” has been applied in the context of socially situated cognition (see e.g.,

Wortham [715]). It is not imperative to settle on a single term, but in this work they will generally be re-

ferred to as “joint cognitive systems” when speaking of (single user) human–computer syndesis, or simply

“cognitive systems” when it is clear that the systems in question are distributed ones.

4.1.5 D1: Cognition = Distributed Computation

The conviction that cognition be modeled computationally (C1), combined with the conviction that the

unit of analysis is a joint system (D0) implies that the joint cognitive systems be modeled as distributed

3For instance one may not return to a marked passage in a book for a long while [454], yet the marked passage can
still qualify as an external memory.

4.1. DC PRINCIPLES AND TENETS 117

computational systems. Hutchins’ work on ship navigation is perhaps the best exemplar of this view [320].

In that body of work extended groups of actors and artifacts jointly participate to perform such navi-

gational computations as fixing the position of the ship [319, 320]. Cognitive models in DC are simply

distributed computation models; all existing computation modeling techniques used in cognitive science

can (potentially, at least) therefore be imported and applied. Sometimes different terms are applied to

emphasize cognitive implications. For instance, in traditional cognitive science the standard analogue for

computation is “symbol processing” to emphasize the semantic level of the processing. Also, in the DC

literature, one finds references to the manipulation and “propagation of representational state” [320].

4.1.6 D2: External Cognitive Interpretation

The conviction that computational systems can be interpreted in cognitive terms (C2), combined with the

conviction that artifacts can be part of a joint system (D0) implies that it should be possible to interpret

artifacts in cognitive terms. Thus we should be able to speak about artifacts in terms of how they func-

tion as memories and how they store knowledge. We should also be able to think of artifacts in terms

of their participation in reasoning, planning, and problem solving. That is, it is possible to view artifacts

through three different sets of lenses: (1) the cognitivist lens, which reveals the cognitive functions of the

artifacts, (2) the computational lens that reveals the “implementation” of cognitive system in a computa-

tional system [320], and (3) the “physical” lens, which shows how computational functions are actually

manifested in real-world objects. For instance a printed checklist can be viewed as a plan (cognitive), a list

(computational), and a body of text on a printed page.

Notice that each mapping between levels generates an abstraction boundary that allows substitutions

to occur without affecting higher levels. For instance, the same cognitive function could occur if the

printed checklist is is implemented in a PDA; the same is true if the plan is represented as (say) a set of

actions � and a set of ordering constraints between elements of�. This point will become important when

considering how to compare cognitive systems in Section 4.3.

As with the non-distributed case, the way that cognitive content is encoded may be arcane. For ex-

ample, pending goals may be represented (in part) using the position of a hamburger [348], or a piece of

string [325]. Just as it is not possible to peer inside the head to see inscriptions of “cat” and “house”, the

cognitive roles of artifacts may not be labelled for our convenience. But, as Hutchins pointed out [320], at

least artifacts are much more readily available for inspection than are the inner workings of the brain.

Several different streams of research take care to explicitly interpret artifacts in cognitive terms. The

best known approach is the AI approach that begins with the argument that computers may implement

(artificial) cognitive systems. That is, the data and processing of an AI system are referred to in cognitivist

terms such as “mental states”, “knowledge”, “inferencing”, “reasoning”, and so on. In this approach,

the interpretation at the cognitive level is overt, that is, explicit, openly acknowledged, and reasonably

easy to follow. But one can consider less explicitly intelligent artifacts and yet still employ cognitive

interpretations to understand how they participate in human thinking and problem solving. In these

latter approaches, the cognitive interpretation is often implicit, or tacit. Examples of both the overt and

tacit approaches are given below.

4.1. DC PRINCIPLES AND TENETS 118

Overtly Intelligent: AI, DAI, Agents, and DC/AI

The so-called “good, old-fashioned” [320] AI approach to cognitive support generally tries to build rel-

atively autonomous and intelligent programs to assist humans. AI research is thus concerned with how

to represent knowledge, how to efficiently implement inferencing, and how to realize various problem

solving methods. In many AI efforts, the AI developers use explicitly cognitive-level notations and tools,

like formal ontologies [697], knowledge representation languages [179], inferencing algorithms, and so on.

These manifestly cognitive-level formalisms help ensure that the analyst’s cognitive-level understanding

of knowledge, inferencing, etc. are translated faithfully into computational implementations. A prime

example is the Programmer’s Apprentice (PA) project [539]. The PA project aimed to build intelligent

assistants that could be smart enough to take over some of the relatively menial coding work that pro-

grammers have to do. The PA project utilized a formalism for representing knowledge in the form of

plans [538]. Thus the mapping from the analysts’ understanding (plans) to implementation (strings of

bits) is both explicit and rather straightforward.

“Dumber” Artifacts?

A rather different strain of research studies artifacts that are less explicitly or intentionally intelligent, but

still ascribes cognitive-level interpretations to them. In AI-oriented work, the clear intent is to have com-

plicated computer programs behave intelligently and autonomously. Thus when “dumber” artifacts like

paper and pen are involved, the cognitivist interpretation of such material artifacts tends to be signifi-

cantly muted. Nonetheless one may still speak of the roles of these “dumb” artifacts in joint cognitive

terms. Norman, in fact, calls them “cognitive artifacts” [470, 472, 493]. Even “ordinary” artifacts that

people interact with can be thought of as part of the cognitive machinery of the individual. This view of

artifacts is often substantially different, qualitatively, from more overtly cognitive approaches as exempli-

fied by AI research. After all, there is nothing magical about implementing AI computations in a digital

computer. The exact same computations could be “implemented” (at least in principle) “by hand” with

paper and pen. Nevertheless, it can take some mental gymnastics on the part of the analyst to under-

stand a shopping list or a string tied around the finger in terms of a cognitive state. But the world of the

seemingly ordinary frequently finds close company with the cognitive.

An example of this sort of interpretation in software development comes from Flor and Hutchins [224].

They described code scavenging behaviour as knowledge reuse. They interpreted external artifacts as

embodying knowledge, and the manipulation of these artifacts as a form of knowledge manipulation.

Specifically, they proposed the following mapping:

code base �� (episodic) knowledge base

grabbing old code �� knowledge retrieval

hacking out unneeded parts �� schematic abstraction

substituting in particulars �� schema instantiation

As it is typically done in cognitive science, one can roughly separate the cognitive interpretations of

artifacts into mental representations and cognitive processes. The mental representation brand of this

research focuses on how humans extend themselves with external representations of knowledge and

4.1. DC PRINCIPLES AND TENETS 119

mental states. For instance one brand of research examines the ways in which knowledge exists “in

the world” [469, 471]. A prime example from SE research are reified or externalized goals (e.g., Singley

et al. [599], Green et al. [267]). Essentially, all of the varieties of mental representations from traditional

cognitive science (goals, plans, concepts, etc.) may have their analogues in external representations.

Cognitive interpretations can also be made of external processes, even if they are not overtly consid-

ered cognitive processes. These might be “ordinary” computational processes that take place in comput-

ers, or they could be any other sort of process. Even non-electronic processes can be interpreted computa-

tionally and cognitively, a point made clear by the work on navigational computations by Hutchins [320].

The issue is not whether the processes are done by electronic computers, but that they occur as part of a

single joint cognitive process. There are at least two interesting ways in which this can occur: artifacts can

process mental states externalized by humans, and humans can manipulate the externalized mental states

themselves.

Manipulation by computer. Computer manipulation of externalized mental state is perhaps the more

familiar of the two cases of external cognition. This form of cognitive processing ranges from simple

calculation to complicated symbolic processing. An example of the former is a spreadsheet program cal-

culating expected profits for a financial analyst exploring various forecasts. An example of the latter is an

automated theorem prover being employed by a software developer to check whether a program matches

its specification. Often there is a bias towards interpreting only the “symbolic” processing cognitively (as

if math symbols are not symbols). However any processing that would have to otherwise occur in the

head of the analyst may count as part of a distributed cognitive process.

Manipulation by a user. The other brand of cognitive processing associated with cognitive artifacts in-

volves more direct manipulation of artifacts by users. In this type of external processing, the artifacts

function as a medium [224] for cognitive states. Then, much as clay is a medium for manipulating sculp-

ture, artifacts can serve as a medium for mental states which are are manipulated by the user. This is

a distributed version of internal (mental) manipulation—the manipulated medium is merely external,

rather than internal. Many classic examples come from mathematics (abacus, slide rule, long division on

paper, etc.). Another variant is the work on “epistemic actions” by Kirsh et al. [353] and Kirlik [349]. To put

it roughly, an epistemic action is an action on the world that functions much as a cognitive process would

(e.g., an inference). There are many other variants of such cognitive processing by manipulating external

media. Scaife et al. [562] called these types of external processing “external cognition”, and they supplied

an overview of many different instances. The main point being made here is that DC provides an impor-

tant twist on understanding external cognition: it models external cognition as ordinary DC processing.

From the DC point of view, the “external” artifacts being manipulated are not external at all! Instead, they

are to be viewed merely as parts of a joint cognitive system.

Notes on Interpreting Artifacts in Cognitive Terms

Before continuing, some preliminary remarks must be made regarding the forms and realities of repre-

sentations and other external manifestations of data. The topics of data, information, knowledge, and

4.1. DC PRINCIPLES AND TENETS 120

so on are very tricky and exceptionally thorny. There is no hope of satisfactorily resolving all of the con-

troversies before continuing. But even though the controversies cannot be resolved, their impact can be

blunted somewhat by clarifying in advance what is being assumed in the following (see e.g, Hayes [294]).

The goal is to provide definitions and disclaimers in advance so that when controversial topics are raised

the discussion is not paralyzed by a blizzard of counterpoints. Toward this goal, five issues concerning

cognitive interpretations of the external world need to be briefly touched on.

First, some notes must be made regarding the implementation or encoding of semantic content. The

terms “data”, “processing”, “mental state” and “knowledge” will be used in a loose manner. There may

ultimately be great value in pinning down what these terms mean, but using the commonly assumed def-

initions are precise enough for this work. Also, the terms “information”, “signal” and “sign” are generally

avoided. The reason is simple: “data” and “processing” are comfortable terms to computing scientists,

and they suffice for the current purposes. This decision goes against some long-standing traditions such

as the use of the term “information processing” in cognitive science. But it is worthwhile targeting com-

puting scientists (see Section 7.2). Also, the more neutral computing terminology may help avoid some of

the thorny issues that surround other terms like “information”, “signal”, and “sign”. For similar reasons

the term “knowledge” will often be treated as a cognitivist analogue of “data”. These decisions may turn

out to be inadequate in the long term, but my experience so far have been that distinctions not captured

by RODS has not hindered further analysis. Moreover, in my interactions with CS people, I quickly found

it to be beneficial to speak in terms of the “lowest common denominator” of data processing.

Second, the notion of equivalence between implementations must be somehow addressed. This work

will essentially adopt the assumptions introduced by Zhang and Norman [727]. They introduced a gen-

eral scheme for understanding distributed manifestations of data within DC systems. Their scheme is

essentially an expansion of Simon’s concept of information equivalence in representations [375, 593]. Their

view establishes a way of understanding functionally or informationally equivalent manifestations of data.

For instance, in their view a problem constraint may be equivalently manifested as: (1) an explicit rule (in

the head or on paper) that needs deliberate interpretation, (2) a logical constraint that is easily checked by

visual processes, or (3) an implicit physical constraint that is observed by necessity.4 This particular trio of

implementation types is very reminiscent of the scheme Rasmussen proposed for distinguishing between

“signal”, “sign”, and “symbol” encodings [526]. However delving into these distinctions is not productive

here. In this work, it shall be enough to remember that there can be many equivalent implementations of

data and computing process; no implementation is considered privileged.

Third, representation. “Representation” is a slippery concept. One popular way of defining “repre-

sentation” is in terms of a representing relationship—as in a representation represents something else (e.g.,

Norman [555]). However sometimes it seems that some authors are happy to call practically any stim-

ulus a “representation” without special concern with what is being represented (e.g., see Zhang’s [726]

definition). Such a definition is closer in spirit to the terms “information” or “data”. If there is nothing to

distinguish between “representation” and “data” then perhaps my preference for the more generic term

“data” is further justified. For instance consider the case of a program that can be used to track a to-do list.

4The complications seem to pile endlessly on top of each other: one may wish to distinguish between “real”
physical constraints and simulated ones [474].

4.1. DC PRINCIPLES AND TENETS 121

If the to-do list is out of date, then can it really be said to represent the list of items to do? Either answer

creates its own set of problems. Perhaps more serious is the confusion created when the logical and physi-

cal aspects of representations are intermixed. That is, sometimes the term “representation” is used to refer

to both the objects manifesting the representing relationship, and the properties of the objects themselves.

This confusion is, unfortunately, all too possible since it is quite easy to confound a perceivable depiction

of a representation and the representation itself. When discussing the use and design of artifacts, such

confusions can be troubling. For instance, consider the to do list program again. Is the output of the list-

displaying program the “representation” of the to do list? The program might be able to display the list

in a variety of ways—formatted, coloured, filtered, elided, etc. Is it not therefore better to call the array

of bytes held in the computer’s memory “the representation” rather than some transient display of it? Or

what if just the screen layout changes, or a magnifying glass is used? Is the representation actually the

glowing phosphors on the CRT, or the image formed on the viewer’s retina? Some limiting definitions

need to be made for progress to occur. In this work, I will gloss over many of the various nuances and

consider just two issues: the manifestation of the data (somehow) in the computer or other artifact, and

the presentation or way of making it known to the user. The former is henceforth called “representation”,

and the latter, “presentation”. In this way “representation” is more-or-less identified with “data” or “data

structure”, and “presentation” is equated with ways of accessing the data. This stance parallels the tactic

taken by the comparable framework defined by Wright et al. [719].

Fourth, the fact that data or data structures may be distributed can complicate matters. It is possible

for any non-atomic data structure (i.e., most of them?) to be distributed amongst different processing

elements. The most obviously relevant case is when a data structure is distributed between human and

computer. For instance while a programmer is writing out code, part of it will be written out already, and

part of it will still be stuck inside the head. Zhang et al. [727] and Green et al. [268] give other excellent

examples in which data structures are so distributed. In the present work, the choice of examples will tend

towards those cases where the data structures are more completely external. This is just because such

simplified cases tend to make good examples. Bear in mind, however, that in most practical instances

some distribution of data between human and artifact may be involved.

Fifth, duplication. Just because an artifact is intepreted as being an external memory for some data,

it does not mean that the same data may not also be held internally. Copies of an external memory may

be cached internally. Conversely, just because a user maintains an internal copy, it does not mean that an

external memory holding a duplicate copy is not a memory. Users can forget things.

4.1.7 Summary of DC Tenets

DC theory provides a viewpoint for conceptualizing cognition in terms that permit artifacts to be full-

fledged members of cognitive systems. Cognition is treated as a type of computation, and this compu-

tation is spread out between humans and artifacts. This world view adds an important layer of under-

standing to artifacts: the cognitive interpretation layer. Thus artifacts can be viewed in terms of how they

function as memories and processors, and how they can store and process knowledge or mental state.

Because of this conceptualization, DC theory can provide explanations of complicated cognitive systems

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 122

such as airline cockpits [321] and paired software maintainers [224]. This world view makes it possible

to discuss the contributions of artifacts in cognitive terms. What is left to do, however, is to pick out

and enunciate the principles of how beneficial artifacts support cognition. This is done in the following

section.

4.2 RODS: Computational Principles of Cognitive Support

Artifacts can reduce the cognitive challenges during problem solving, and so they are said to offer support.

In order to speak about this support in a principled way, some sort of “language” is required for arguing

what the support consists of. Since it is being assumed that cognition is modeled as computation, it is only

appropriate that the language for cognitive support should be based on computing concepts. A simple

example helps introduce the idea.

Hutchins [320] enlisted the notion of “precomputation” to understand the benefits and drawbacks of

checklists. This was fundamentally a computational explanation of the cognitive benefits of checklists.

The standard computing science understanding of the term “precomputation” connotes much of what

is needed to comprehend the nature of checklists. For instance, computing the list of items in advance

effectively spreads out the computational work over time, potentially lessening the peak demands during

use (e.g., the amount of stack memory used). Such rearrangements of computation are standard tricks

for enabling real-time performance. In addition, it is well understood that the value of precomputation

is increased when the results can be reused many times, and there is bound to be a tradeoff in terms of

memory requirements and lookup costs. Moreover, precomputation can spread the computation work

over different computing elements: one processor can precompute some values, and another can use it.

All of these basic effects are well known in standard computing. Hutchins noted that the same effects

occur in cognitive systems, but that the improvements to computing result in improvements to cogni-

tion. The cognitive analogues to computer-based advantages of precomputation can be formulated; for

instance, cognition can be distributed in time and individuals. The cognitive advantages of artifacts stem

directly from their computational advantage to the overall computational system.

This simple example should make it clear that the key benefits attributed to the checklist can be ana-

lyzed purely by comparing the implications of differing computational methods. This type of comparative

computational analysis is the core part of the entire RODS framework. The ultimate success of this DC

explanation framework rests on whether appropriate computational accounts can be made for all of the

types of cognitive support that one needs to understand and design.

It may be initially worrying, therefore, that the example of precomputation used above is, a certain

sense, quite limited. The basic notion of precomputation provides a computational account of just a few

facets of cognitive support. Chapter 3 surveyed many varieties of cognitive support, and even so it was

an incomplete and selective survey. It therefore may seem necessary to be able to generate a challenging

number of ways of explaining cognitive support.

Yet it would be surprising to find that completely different explanations were needed for each cogni-

tive artifact! A more plausible scenario is that some relatively small set of principles are in combination

sufficient to account for the many varieties of cognitive support. If so, the situation for cognitive support

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 123

would be similar to that of chemistry. In chemistry a small number of different atom types (around 100)

combine in endless variety to generate the enormous universe of different chemical compounds. Alterna-

tively, it might be reasonable to compare cognitive support to mechanical support. In mechanical support

a small “vocabulary” of simple machines (inclined plane, pulley, etc.) are sufficient to account for the wide

variety of mechanical aids [510]. So the veritable zoo of cognitive artifacts might turn out to be eminently

manageable if some small collection of principles of computational advantage could be derived. Each

computational principle would identify a equivalence class of artifacts that provide the same sort of cogni-

tive support. The trick, of course, is settling on a suitable set of computational principles. Perhaps ideally,

these would identify orthogonal computational principles such that they can be considered independently.

RODS proposes a selection of four computational concepts and principles that appear to account, in

combination, for many varieties of cognitive support. It is currently infeasible to know with certainty what

combination of principles would be completely sufficient. Fortunately, however, it appears that only this

small “vocabulary” of computing science concepts goes a long way: they appear to explain a great number

of different types of cognitive support identified in Chapter 3. These basic underlying principles fall into

four categories: “task reduction”, “algorithmic optimization”, “distribution”, and “specialization”. The

taxonomy is therefore referred to using the acronym “RODS”.

Each of the principles of RODS identifies a distinct substitution principle. The substitution says how an

equivalent computation is better in some way. Of course, the notion of equivalence must be defined in some

adequate way, but it is the notion of substitution that is really the particularly important part. Intuitively,

the fact that each cognitive support principle identifies a substitution principle may make some sense.

After all, cognitive support is necessarily comparative, and the comparisons must be fair. It would be

awkward to argue that an artifact supports cognition if, by using it, some entirely unrelated computation

is performed using it. An analogous rule in mechanical support is that the total work is conserved—a

lever reduces the force needed, but the work done is the same. The issue of equivalence and substitution

is revisited in more detail in Sections 4.2.1, 4.2.2, 4.3, and in Chapter 6. For now, it is only briefly mentioned

in order to help readers appreciate that RODS is not an arbitrary collection of principles, and to help them

to relate the principles to one another.

The following four subsections describe the computing principles underlying each of the cognitive

support categories identified RODS. A summary appears in Figure 4.1. The table lists concise statements

about each of the computing principles. This is exactly what we should expect for a suitable, high-level

qualitative theory. It also provides a short statement about how the substitution principle can be used in

design (in parentheses). These statements are included here primarily to foreshadow the design theories

discussed in Chapter 7. Because the terminology within the literature varies, and because the intended

audience of this framework is computing science-oriented, the presentation will be made using comput-

ing science terminology where possible. Within each category a purely computational description of the

principle will be offered followed by an analysis of how the idea has been applied in HCI or related fields.

Each principle may have wide applicability. Several applications are listed in later sections (primarily

Chapters 6 and 8, and Section 9.2.2). Enumerating all of the possibilities for applying these principles is,

however, obviously out of the scope of this chapter. Nonetheless, one or two examples will be provided

of how each principle can be applied to explain a type of cognitive support. These examples are intended

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 124

� task Reduction

Cmpt Principle: some functions are easier to compute
Substitution Type: substitute simpler tasks for more complicated ones

Example (cmpt): removing redundant or unused computations
Example (HCI): eliminating unnecessary steps

(Design Principle: remove unnecessary work; relax task demands)

� algorithmic Optimization

Cmpt Principle: the computational efficiency of functionally identical algorithms differ
Substitution Type: substitute equivalent methods, ADTs, or encodings

Example (cmpt): changing to doubly-linked list; switching to faster sorting algorithm
Example (HCI): switching to Arabic numerals

(Design Principle: optimize cognitive processes for task & infrastructure)

� Distribution

Cmpt Principle: distribution adds memory or computing resources
Substitution Type: substitute external resources for internal ones

Example (cmpt): caching memory to a hard drive; client-server architecture
Example (HCI): puting a shopping list on paper; automating constraint checking

(Design Principle: distribute (i.e., redistribute or offload) data or processing)

� Specialization

Cmpt Principle: specialized routines or processors can be more efficient
Substitution Type: substitute specialized processors for more general ones

Example (cmpt): use a FPU or accelerated graphics card
Example (HCI): enable visual search to substitute for “manual” search

(Design Principle: change representation to make use of specialized hardware)

Figure 4.1: Summary of RODS computational advantage principles

to anchor the abstract discussion of computational advantage in somewhat more concrete specifics.

4.2.1 Task Reduction

It is sometimes possible to eliminate work that is unnecessary. For example, a pathologically designed

development environment might insist on having the developer re-read every line of code in a program

before each and every edit (e.g., by forcing a line-by-line scroll through the program). In most (all?) cir-

cumstances this is a waste of time and effort since usually very little new knowledge can be expected from

re-reading the entire code base again. Computationally speaking, the problem is that there are unneces-

sary computations being performed; from an HCI point of view, the task can be reduced by eliminating

unnecessary steps. Removing unproductive work will influence the performance. This form of perfor-

mance “enhancement” is quite obvious and will not be discussed further. It is included in the taxonomy

primarily for two reasons.

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 125

The main reason for including task reduction in RODS is so that one cannot confuse any of the other

support types with a simple reduction in the work done. Thus every other principle in RODS will insist

on maintaining some strong notion of equivalence in work. Being able to eliminate differences in the

amount of work being done is crucial for rationally comparing the support provided by different tools. It

would be nonsensical, for instance, to claim that a puppy “supports” the task of doing math homework

by chewing it up and thus rendering it unnecessary to do. The “same” task—in some sense—needs to be

done with the tool as without it (or with a modified version of it).

The above consideration leads to the second reason for including task reduction in RODS: it is some-

times important to identify cases where a designer can simplify task demands by requiring only a “good

enough” results. Such cases are not, strictly speaking, instances of artifacts supporting cognition, how-

ever. Since RODS is proposed as a tool for performing design (Chapter 7), including task reduction as a

category should help the designer consider design options.

Note that for many real-world activities it is problematic to tell whether parts of a task (or even which

tasks!) are necessary or unnecessary. The problem is that most—if not all—of a user’s efforts will have

side effects. The hypothetical environment that forces developers to repeatedly re-read every line of code

may cause bugs to be serendipitously discovered. Or the developer may gain confidence in the correctness

of the code, and this confidence could affect later decisions about legally signing off on the security of the

system. In both of these circumstances at least some of the re-reading work is not completely unnecessary.

The good news, if there is any, is that all of the other types of support principles can be applied to improve

even unnecessary work.

4.2.2 Algorithmic Optimization

Algorithmic optimization refers to the modification of data structure, algorithm, procedure, or method in

order to improve aspects of performance without changing the essential outcome. In HCI terms this is

typically manifested in changes in representations and task solution methods.

Computing Science Principles

In RODS, the term “algorithmic optimization” is used to denote a change in computing methods or data

encodings such that the underlying hardware and computational infrastructure remains unchanged. It is

fair to say that the intent of algorithmic optimization is generally to get the most out of whatever compu-

tational resources or mechanisms are available. This interpretation aligns well with standard computing

science sensibilities. For instance Bacon et al. [18] say that the goals of “optimizing transformations” in

compilation technology are to:

1. maximize the usage of computational resources (processors, functional units, vector units, etc.),

2. minimize the number of operations performed,

3. minimize use of memory bandwidth (register, cache, network, etc.),

4. minimize the size of total memory required,

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 126

5. maximize data access locality.5

Generally speaking, not all of the above optimization goals can be simultaneously achieved: optimization

involves making tradeoffs. In any case, the goals and description of optimization in computing science

match very well the goals of optimizing DC systems more generally. The only question is: what are the

fundamental computational principles of optimization, and which should be included in this category of

RODS?

In RODS, the term “algorithmic optimization” refers specifically to the principles of computational

optimization concerning what may be called algorithmic substitution. This refers to the fact that changing

a data structure, algorithm, procedure, or method can result in performance changes. A key contribution

of computing theory in this regard is that it defines a way of fairly comparing equivalent algorithms and

data encodings. To compare algorithms one looks for differences in procedure (e.g., loop nesting depth),

and, in abstract data type (ADT) and their implementation:

1. ADTs. ADTs are usually defined as an encapsulation of a collection of values along with a set of

operations on those values [7]. For instance, a list ADT could be defined as a set of sequences of

values along with delete, insert and data-accessing operations. An ADT implementation decides on

the encoding for the values, and on the methods for computing the operations (e.g., a doubly-linked

list). A change in the data structures implementing an ADT can make certain operations in one im-

plementation faster than in another. For example, for a list ADT, a doubly linked list implementation

will (normally) make insertion faster than an array-based implementation [7]. Depending upon the

algorithm used, different ADT implementations can make important performance differences.

2. Algorithms. Algorithms can be roughly defined as terminating, side-effect free procedures oper-

ating over ADTs, and computing a single function [7]. Different algorithms can perform identical

functions with different performance characteristics. The sorting algorithm quicksort, for example,

requires fewer comparisons (in the average case) than the algorithm bubblesort. Assuming compar-

isons are of fixed cost, quicksort will run faster (on average) than bubblesort. Besides the running

speed of the algorithm, many other performance differences are possible, such as the maximum

amount of memory utilized, number of memory updates, and so on.

ADT implementation and algorithm are both implicated in performance differences. That is, two ways of

altering the computational performance on a given problem is to change the data structures or procedures

operating over them (or both). Because of the intimate relationship between procedure and data structure

(e.g., see Rumelhart et al. [555]) they can both be considered to be variants of algorithmic optimization.

A Note on Functional Equivalence. It can be tricky to apply ideas of algorithmic optimization in HCI.

First, in computing it is often the case that some notion of functional equivalence is required when com-

paring computations [7]. But exact functional equivalence is a stringent requirement that is frequently

inappropriate for analyzing real-world systems. Sometimes the notion of equivalence must be expanded

5This point assumes that memory access costs are not independent, which is the case for most computing technol-
ogy (due to caches, lookahead, virtual memory, etc.).

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 127

beyond this demanding definition. Strict functional equivalence as a fairness criterion breaks down for

non-algorithmic processes, and in cases in which the exact function cannot be defined. For instance, one

may wish to compare non-halting computations (e.g., phone switching systems) for the size of their state

space. One may also wish to compare running times of heuristic, statistical, or approximate procedures

where the equivalence criteria are relaxed. Furthermore, one may be interested in ill-defined problems

in which there are no known or set criteria for solutions. Typical examples of such problems include de-

signing aesthetically pleasing buildings, and laying out graphs in an understandable manner. In these

circumstances, the function to compute is not known or is not specifiable. Thus, fair comparison of pro-

grams relies to some degree on an analyst’s evaluation of the program’s output. But even in these relaxed

equivalence situations it is normally possible to apply the same basic principles of algorithmic optimiza-

tion: different procedures computing comparable results can perform differently depending upon the

data structures and procedures used.

Applications to HCI

The advantages of diagrams, in our view, are computational. That is diagrams can be better

representations not because they contain more information, but because the indexing of this

information can support extremely useful and efficient computational processes.

– Jill Larkin and Herbert A. Simon,

“Why a Diagram is (Sometimes) Worth Ten Thousand Words” [375], pg. 99

In psychology, cognitive science, and HCI, the application of algorithmic optimization is well known.

For example, in cognitive science it is widely agreed that shifts in internal representation or procedure can

lead to improved performance (see e.g, Rumelhart et al. [555]). The question here is: which applications

of these optimization principles can reasonably be called cognitive support? For instance, it is possible to

improve performance on tasks by teaching users to use better task strategies [47, 657]. It is not unrea-

sonable to say that these newly tutored users may then perform different algorithms to achieve the same

function—their use of the tools are “optimized” in the sense discussed above. However is it not stretching

the intent of the term to call this type of optimization a form of “cognitive support”? Note that in the above

example the issue is not whether the particular tutoring is a form of support: a tutoring system may quite

easily be considered a cognitive support. But the tutoring system is not the application of optimization in

question: it is the use of a more efficient task strategy by the user. In this case it is probably best to say

that the support offered by the tutor lead to optimizations, but that these optimizations did not constitute

an example of cognitive support. So merely using a better task strategy is not cognitive support.

So the question remains as to which applications of optimization principles can be justly classified as

cognitive support? The criteria adopted here are: (1) the causes of computational rearrangement must

stem from the existence or properties of artifacts, (2) the benefits must not be due to the other support

principles, (3) the benefits must be a result of changes in ADT implementation or procedure in operation

in the DC system, and (4) the benefits must specifically ease the user’s cognitive challenges or difficulties.

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 128

The first criterion rules out counting changes to internal cognition as cognitive support. So although it

may take some learning to make effective use of an artifact, that learning will be considered to be just

another independent task (which may, of course, also be supported). The second and third criteria merely

limit consideration to cases where the benefits come from optimization and not from, say, distribution. The

last criterion is kind of a “catch all” intended to maintain the spirit of the term “cognitive support”. There

can be cases where optimization occurs to reduce the user’s overall work, but these may not necessarily

reduce the cognitive challenges. For instance, maybe just the physical effort involved in operating an

interface is reduced. The optimization in this vein may indeed be considered a form of support, but it

seems prudent to reserve the term “cognitive” support for those instances where cognition is made easier,

faster, or better.

Even given the above guidelines, it is still necessary to define a method for mapping the principles

onto HCI. There are two aspects to this mapping: interpreting DC systems in such a way as to be able

to understand how optimization principles can be applied, and understanding how these optimizations

lead to cognitive improvements. First, let us consider the second issue, that is, how optimization can lead

to cognitive improvements. Let us consider some varieties of optimization in computing science and then

map them onto HCI issues.

Optimization in computing. Many different performance measures may be optimized for any given

program. When software developers think of the term “optimization”, they often think in terms of speed-

ing up computations. In addition, it is often assumed that the main contributor to speedups is a reduction

in the number of instructions executed. It is frequently the case, though, that speedups in optimization

are a result of more efficient utilization of limited resources. For instance, speedups are often more closely

associated with more efficient use of limited register or cache memory rather than with executing fewer

instructions. Alternatively, the optimization may involve executing more operations but reducing the

number of expensive operations. In sum, in computing the question of “what” to optimize has three

common answers: reduce the number of instructions, reduce the use of non-processing resources such as

memory, and reduce the number of costly operations by using cheaper operations (even if more of them

are needed).

Analogues in HCI. In terms of cognitive support, all three of the above optimization types are relevant.

Collectively they can be used to reduce the “cognitive load” placed on the user. Some optimizations may

reduce the amount of short term memory that is required (e.g., by reducing the depth of a goal stack

that needs to be maintained). Other optimizations include reducing the total number of operations, and

reducing the number of “hard mental operations” [257] that need to be performed.

Mapping to HCI. Given these optimization issues, the essential idea for mapping them to HCI is to

interpret human–artifact systems as computational systems such that the optimizations apply. The pri-

mary way is to do this is to see the user as running methods (tasks) which operate over externally-stored

ADTs (interactive systems). This basic idea has been advanced in many different guises. For instance,

Green [257] argued that computer systems consist of both a notation and the ways of interacting with the

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 129

mouse operation menu operationIMPLEMENTATION command ...

select next delete itemread item...ADT INTERFACE

USER

catch up:
loop:

select next

goto loop:
done? −> exit

select first unread
read mail

Figure 4.2: ADT view of interfaces, and mappings to implementations

notation. A system can therefore be viewed as an external information store [261, 268]. The ways of ac-

cessing and altering this external information provide the operations of an ADT. The particular notations

and interface manipulations provide an implementation of this ADT. In this view, the ADT corresponds to

the artifact’s abstract interface (read value, write value, sort, etc.); the ADT’s implementation corresponds to

the concrete interface (select menu option with mouse, etc.). A simple illustration of the idea appears in

Figure 4.2. The figure schematically depicts the situation for the task of catching up on one’s new email

given some particular mailer interface.

For example, Green [257] gave the example of a speech interface to an otherwise standard (text-based)

Pascal editing environment. The interface required sequential dictation of Pascal. The coding environ-

ment could therefore be understood in the following manner: the abstract ADT consists of a Pascal store

of statements with only one abstract operation (append statement); the implementation of the dictation in-

terface can be seen in terms of Pascal statements (encoding) and speech-based input method (operations).

As Green noted, this restricted ADT forced an unnatural coding order. At a yet lower level, this imple-

mentation might be viewed in terms of the specific interaction technology and communication mode, i.e.,

in terms of speech acts (operations) and verbal utterances (encoding) (see Bass et al. [36], Moran [418]).

Mental vs. physical optimization. Note that in the above view, the procedures being executed using

the ADT can be internal cognitive functions (e.g., inferences), external manipulations (e.g., edit tasks), or

a mixture of both. Green’s interpretation mentioned above seems to mix aspects of both. Other related

interpretations lean one way or another towards internal cognition or towards action. The thinking/action

differences closely correspond to the classic perception/action dichotomy in HCI [467]. In Figure 4.2, the

“read mail” (in italics) may be modeled as a mental operation, whereas the “select mail” may be considered

a physical operation.6

The interpretation made by Larkin and Simon [375] is an example of optimizing mental operations.

6It could be argued that even physical action has a mental component since it still would have to be thought and
planned of in order to be performed (e.g., see a GOMS analysis [94]). This fact is actually needed below. But this
complication is muted here because it hinders making the helpful distinction between mental and physical action.

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 130

They looked specifically at viewers “passively” reading diagrams (i.e., not physically manipulating them;

reading a diagram is an active process [708], but not physically so). For instance, they compare the in-

ferences made with diagrammatic and sentential representations of a physics problem. The particular

problem involved a configuration of pulleys; the diagram showed the configuration of pulleys and ropes,

and the sentential representation effectively encoded the same thing but, by describing it in ritualized

English (e.g., “If a weight �� hangs from two ropes �� and �� and ...”). The mental operations required to

make inferences needed to answer questions differed depending upon the representation.

Bass et al. [36] focuses primarily on designing artifacts to implement efficient action procedures. For

instance, they considered an example of an email system. Given some particular ADT for accessing the

email, they argued that, to be efficient, the ADT operations should eventually be implemented at the phys-

ical interaction level by single manipulations rather than extended manipulation sequences. Although

the issue of optimizing physical operations is arguably not an issue of supporting cognition, it is still the

case that cognitive resources are used during interaction—even skilled interaction, as GOMS modeling

shows [94].

Applications in HCI. Given the above analysis, optimization principles can involve changing the pro-

cessing involved in performing a task (given some interface). It can also involve changes in representation

(encoding) or abstract interface (ADT).

Processing. Given a particular set of interfaces (e.g., a note pad), it is possible to rearrange cognitive

processing by making new representations available. For instance Hutchins’ notion of precomputa-

tion [320], discussed above, is effectively computational optimization enabled by the provision of

precomputed data. For example, if a user writes a checklist onto a piece of paper and then uses it

later to reduce mental load, the cognitive processing is changed by distributing it in time.7 Thus

precomputations can provide cognitive support by reducing the instantaneous processing demands

during performance. The same argument holds for other external structures used in a similar man-

ner.

Representation. In cognitive science circles, differences in representation8 are often pointed to for making

problems mentally easier to solve (see e.g., Larkin et al. [374,375], Norman [472], Peterson [505]). The

basic understanding is that the representation is stored on some medium that gives access methods

7Note that an external resource is needed in this particular example, making it an example of a composition of
different support principles (see Section 6.5). However the same effect occurs if the user merely memorized the
checklist using a mnemonic of some sort (such as how I have heard the process of crossing one’s self recited as
“spectacles, testicles, wallet, and watch”). In such a case, the precomputation rearrangement of computation is still
in effect. Memory is needed in either case, but the offloading of memory onto an external medium must be counted
separately (see below).

8In the normal use of the term, “representation” refers to the encoding of semantic content rather than the structur-
ing and encoding mechanisms. That is, a representation consists of data encoded in some data structure, and carries
an additional requirement that the data bear a particular relationship to something else—that is, the data represents
something (see e.g., Norman [472]). Usually, the structure and encoding format of the representation are enough
to discuss efficiency—it matters little whether the structures represent some other entity. Thus including the repre-
senting relationship in this discussion actually adds little, if anything, to the analysis of algorithmic explanations of
efficiency differences. Consequently it is not emphasized here.

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 131

to it (reading, manipulating, etc.). An example of such a representation substitution is the switch

from Roman to Arabic number systems (see Section 3.1.6). That substitution can make mental oper-

ations like multiplication easier.

Abstract interface. Tools and media can provide various interfaces to external structures and processors.

Differences in these interfaces (the ADTs) affect the costs of manipulation ADT [257]. For example

if an interface is viscous [258], then the depth of the goal stack may need to be increased in order to

successfully make updates.

4.2.3 Distribution

Distribution refers to the act of spreading computing costs amongst multiple elements. In cognitive terms,

this typically means letting computers or other artifacts hold or process mental states or knowledge.

Computing Science Principles

In the ordinary use of the term, computational systems are called “distributed” when they have multiple

distinguishable processing elements and these elements are loosely connected. The concept of distribu-

tion is therefore based on hardware-level considerations stemming from interconnection (communica-

tion) properties. Particularly relevant to distributed computation are communication costs. Distributed

systems are also usually parallel processing systems, but the property of parallelism does not imply distri-

bution9—it is the high communication costs between elements that is the key criterion. A dual symmetric

processing PC with an accelerated video card and SCSI hard drive is not normally considered a distributed

system even though the two CPUs, video card, and SCSI drive controller circuitry run computations in

parallel. On the other hand, a Beowulf10 cluster of PCs connected through relatively slow Ethernet con-

nections is considered distributed. The difference is the communication costs between the processing

elements. The processing elements in the single PC can access common memory locations “directly”, so

that communication costs are considered low. Of course, it is possible to consider a single system as being

distributed on several levels. The “non-distributed” dual-processor PC might indeed be considered dis-

tributed at the finer granularity associated with the internal hardware. At the level of the individual CPU,

the PC is seen as a network of processing elements communicating through a slower system bus.

There are several ways of realizing performance differences in distributed systems. A single compu-

tational process may be distributed amongst several elements. Using multiple processing elements splits

the work, and so the work done by each element is reduced. This can speed up the execution because

frequently the work can be done in parallel. Distribution can also mean that computations with resource

requirements exceeding the capabilities of one limited processor might still be performed if the excess load

can be taken up by other elements. In addition, distribution can lead to many other processing advantages

such as scalability and fault tolerance. If distribution is desirable in a computer system, it is because of

these sorts of performance advantages.

9A distributed system can run serially.
10See http://www.beowolf.org.

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 132

Another important aspect of distributed systems is the nature in which the distributed elements com-

bine to form a conceptually single computational system. Several logically independent computations

can be performed simultaneously on a distributed system without them being part of what might be

called a single distributed process. For example an intranet can connect many office computers, but these

might run quite unrelated processes (e.g., different window managers). Criteria must be met for dis-

tributed work to be considered as part of a single distributed computation. In particular they must share

(equivalently, they must distribute) conceptually unitary data (state) and processing. This can involve such

activity as data replication, state change propagation, rollback, update conflict management, synchroniza-

tion, coordination, and scheduling. Each of these can have several forms; coordination, for instance can

performed centrally, hierarchically, or even involve self-organizing coordination based on local rules.

It is important to note that distribution frequently introduces a great deal of complexity into the spec-

ification and description of computational systems. Much of this complexity can be considered a form of

overhead (see Section 5.5). The complexities arise from distribution, and from the coordination of parallel

processes. Indeed, merely converting a serial program to a parallel one can be considered a code obfusca-

tion technique [144]. Distributing an even simple computations can significantly complicate them. The

distribution can especially destroy local coherence in the computation’s specification or program. Simple,

locally-specifiable control structures may give way to distributed coordination mechanisms. For instance,

a program with a simple tree-structured control graph can be considerably complicated just by breaking

it into a client-server system. The distribution can add cycles, polling, wait states, data translation, access

negotiation, transaction and rollbacks. Thus there is conceptual cost associated with distribution that is in

a way unrelated to the computation being performed. It can easily hide underlying simplicity. The loss of

local coherence is also problematic because it can be extremely difficult to understand the overall compu-

tation by looking at only a part of it. What can be understood about a company’s accounting programs by

examining only the action of the company’s database server?

Application to HCI

Humans in conjunction with artifacts and other humans form DC systems, that is, distributed compu-

tational systems (Conviction D1, Section 4.1.5). All of the benefits and problems of distributed systems

consequently have analogies in DC and HCI. For example the “many hands make light work” principle is

an analogue of computational work sharing, but—as in distributed computing—if the work cannot be de-

composed into independently processable chunks, then resource and communication contention reduces

the speed-ups achievable. For the most part, the traditional computing science intuitions about distribu-

tion carry forward into the sphere of human cognition (with the provision, of course, that only certain

ways of engineering human cognitive systems are possible). For example:

 joint human–computer systems can solve problems too difficult or large for the human to do alone,

 coordination and synchronization are important problems in HCI,

 coordination overheads can greatly complicate even simple tasks,

 human–computer interactions can spoil the simplicity of an otherwise simple cognitive task.

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 133

4.2.4 Specialization

Specialization refers to the construction of specialized computing facilities that function in the same man-

ner as slower, more general facilities. Being “specialized” here means that they have more restricted

applicability (i.e., are less general in capability). In computing terms, it means they can compute fewer

functions or operate over a restricted input domain. In cognitive terms, this typically refers to efficient but

specialized mental capabilities.

Computing Science Principles

Over the years, computing science has created a number of ways of abstracting and generalizing com-

puting methods (procedural abstractions, object hierarchies, etc.). The general rule that has been found is

that generality and abstraction usually have a cost associated with them: the more specialized and spe-

cific computing mechanisms tend to be faster even if they are less general. This is roughly the computing

science analogue of the difference between a Swiss Army knife (generalist) and a grapefruit knife (special-

ist). The same basic phenomenon is also well known in relation to simulation/implementation hierarchies.

Computational systems are normally hierarchically decomposed such that operations viewed as atomic

at higher levels are “simulated” by compound operations at lower levels. There are several traditional

boundaries between hierarchy levels [446]: hardware–microcode, microcode–machine language, machine

language–high-level language (although modern architectures can blur these traditional boundaries). Be-

cause the levels are related by simulation it is often faster to use operations implemented at lower levels,

if possible, than to simulate these same operations at higher levels.11 One way to improve performance,

therefore, is to directly use specialized hardware in place of simulating the operations it performs.

Familiar examples of this efficiency-by-specialization principle include: floating-point co-processors,

accelerated video cards, and vector processors in supercomputers. All of these examples dedicate special-

ized hardware to compute restricted sets of functions efficiently. The advantage is that these units are fast

and efficient on the operations they are able to perform. Because of the specializations, optimizations in

their construction can be applied. For instance it may be possible to take advantage of parallelism oppor-

tunities or to use special-purpose algorithms instead of using more general algorithms. But, because of the

specializations, certain other operations cannot be performed. Besides hardware specialization, software

can also be specialized, typically to perform better on particular problems or data. For example a tech-

nique called “partial evaluation” (see e.g., Hatcliff et al. [292], Section 6.6 of Bacon et al. [18]) can specialize

general purpose methods to work more efficiently on partially specified data. Some optimizing compilers

can also specialize code that is locally general but, due to global properties (e.g., invariant expressions),

can be specialized. Another example is found in the AI literature on problem solving methods: the so-

called “weak” problem solving methods work less efficiently than the so-called “strong” methods [443].

The difference between strong and weak methods is essentially that strong methods take the specifics of

the problem into account—they are specialists.

This same principle of specialization is commonly found in cognitive science and HCI. In cognitive

science one can find models of specialized perceptual hardware (e.g., edge detection or motion detection)

11Not always, of course, but it is the principle that counts.

4.2. RODS: COMPUTATIONAL PRINCIPLES OF COGNITIVE SUPPORT 134

as distinguished computational components of an overall cognitive system. These low-level cognitive

operations are fast, automatic, and are unconsciously performed. Specialization is also a mechanism used

to explain how skills are learned (see especially Rasmussen [526, 529]). These skills include activities like

reading English, typing, and riding a bike. In such learning models the performance of the skill is at first a

conscious act and therefore makes use of general-purpose reasoning capabilities. After repeated exposure

to the task (the repetition is important) the computations are “compiled” down into more rudimentary

and inflexible mechanisms. After training, the performer is no longer conscious of all the activity taking

place, even to the point of not being able to say precisely what they are doing. Although the distinction be-

tween hardware and software specialization may seem clear enough, it is difficult to say with confidence

what cognitive phenomena should be classified as hardware-level specialization [686]. Highly practiced

skills (e.g., adding single digit numbers) are also quick and to a great degree automatic so they are phe-

nomenologically similar to “built-in” hardware capabilities (even if their underlying mechanisms differ).

Thus it is sensible to group software and hardware specialization together in this taxonomy.

Applications to HCI

In computing science, specialized software or hardware is used to improve performance by substituting

for the more general mechanisms.12 In the context of HCI, the specialization principle is applied by recog-

nizing instances where specialized processing capabilities are available. Differences in artifacts can lead

to situations which enable these special processing capabilities. These can then substitute for more cogni-

tively taxing processes. There are a variety of examples of this general principle. Perhaps the most well

known is what has been called perceptual operator substitution [116].

Perceptual operator substitution occurs when efficient, low-level perceptual mechanisms can substi-

tute for deliberate inferencing or reasoning (see Section 6.3 for more). This effect can justly called the

“bread and butter” of visualization research [687]. The essential understanding is that certain types of

stimuli can exercise highly specialized perceptual mechanisms. The classic perceptual mechanisms in-

volved are the visual mechanisms like motion detection and visual search. Often these create what are

called “pop out” effects [687]. The point is that excellent computational accounts of some of these substi-

tutions are available. The essential quality of these accounts is that the specialized mechanisms perform

computations that substitute for more complicated inferences (see Larkin et al. [375], Casner et al. [115,116],

Rasmussen [526]). Perceptual operators are just one instance of specialized cognitive abilities. However

the blueprint for other specialized abilities is the same as for perceptual operators: artifact differences

enable specialized processing to be substituted for more cognitively demanding processing.

12As an aside, this notion of substitution is reasonable only if the computational system is composed of distinct
levels or processing elements, that is, if it is heterogeneous in some way and therefore distributed [300]. The situation
is analogous to the example of the computer with an accelerated video card. At some level, it too can be considered
distributed. In the past, I have called substitutions of specialized processing “internal distribution” [685]. While the
interpretation is reasonable and unifies two categories in the taxonomy, it is perhaps better to leave substitution as a
separate category since it seems qualitatively different, and also explanatory.

4.3. ANALYZING COGNITIVE SUPPORT 135

4.2.5 Summary of Principles

This section presented a taxonomy of four different support principles: task reduction, algorithmic opti-

mization, distribution, and specialization. These support principles consist of computational principles

and a way of using them to explain causes of cognitive support. The computational principles state why

different computations or DC configurations generate computational advantages and hence generate cog-

nitive benefits. The taxa were chosen with the intention of providing four quite orthogonal dimensions for

analyzing computational advantage. The basic “gist” of each of these support principles is relatively easy

to state. Task reduction is essentially the elimination of unnecessary computation. Algorithmic optimiza-

tion is the use of more efficient algorithms or ADTs, or the use of more efficient ADT implementations.

Distribution is the use of additional computing resources. Specialization is the use of less general mecha-

nisms that can be made efficient because they are customized, that is, adapted to the specific task or task

environment. Thus RODS meets at least one expected criterion for a suitable high-level qualitative theory:

simplicity.

It is important to reflect upon the significant aspects of the support principles, and to relate how they

are used in the remainder of this work. One aspect that seems significant is that all of the fundamental

principles are familiar principles of computational advantage. In certain respects it should be considered

astonishing that understanding the basic principles of cognitive support requires so little psychological

knowledge. Indeed, the fundamental principles explaining cognitive support should be quite familiar to most

computing scientists. Naturally, there is still an enormous difference between understanding the basics and

applying them well in real situations, but the lesson is clear: the essential character of the DC vision of

cognitive support is not inextricably psychological. This might be reasonably taken to be an encouraging

sign. For it suggests that reasoning about (certain aspects of) cognitive support may be tractable for ordi-

narily trained computing scientists. This possibility is further explored in Chapter 7. A second reason for

optimism is that the same fundamental principles appear to underly important aspects of both comput-

ing science and cognitive support. Some consider this sort of theoretical unification significant (e.g., see

Goguen [245] and Simon [594]).

4.3 Analyzing Cognitive Support

DC is a relatively new school within cognitive science. As a result, the ways of actually employing it to

analyze and compare various artifacts are still being explored. There are still open questions as to how

to best analyze and model DC systems. There are, in particular, three important issues that will be of

long-term interest in applying RODS to analyzing cognitive support:

1. How can cognitive systems be compared to understand the cognitive support provided by artifacts?

Being able to answer this question is obviously critical for tool evaluation and comparison. But it is

also a critical question for analysis and design since cognitive support is understood in comparative

terms.

2. How can one generalize DC models across multiple joint cognitive systems? If this question cannot

be adequately answered, then we may end up being so restricted that we can only make statements

4.3. ANALYZING COGNITIVE SUPPORT 136

about particular joint cognitive systems, not classes of cognitive systems. This would be a serious

blow for applications in HCI, for if it were impossible to reuse previous DC models, one would have

to begin from scratch for each new system. The cost of analysis would skyrocket. Knowledge about

good design could not be accumulated in models.

3. How can one usefully abstract the computational structures of DC systems? Human interactions

with artifacts can be extremely rich at the level of physical interaction. Often we wish to understand

it at a higher level so as to avoid “death by detail” [264]. For instance, at some point we may only

care that a user can access a fact from external memory, not whether this access involved particular

search mechanisms, scrolling, etc. What are suitable methods for abstracting these details away?

It is not necessary to fully answer these questions here (nor are we in a position to do so). However

it can be helpful to make a few initial comments about how these questions might be answered. Even if

the full answers are not forthcoming, it is important in a chapter like this to help set the tone and reveal

the “ground rules” for future theorizing. Consequently, three proposals will be made as to how these

questions can be answered, and how they will be generally addressed in the remainder of this work.

These proposals are all based on arguments in the existing literature, but they need to be presented in a

more explicit form because of their importance for applying cognitive support theories such as RODS.

The first proposal is the suggestion that joint cognitive systems can be compared by locating them

within a logical space of “functionally-equivalent” joint cognitive systems. Cognitive systems within this

space are related by substitution transformations defined by RODS. To compare the cognitive support

in two cognitive systems, one needs to determine the substitution transformations that relate the two

systems. Since these systems are related by variations in artifacts, the logical space is, in fact, a projection

of an associated design space. This proposal is outlined in Section 4.3.1.

The second proposal is that DC modeling in HCI and SE should be oriented towards defining and

refining standard distributed cognitive architectures. Architectures are general (and thus reusable) compu-

tational models. Often DC studies are focused on specific cognitive systems. To make observations about

such systems generalizable, the resulting models and theories must be defined on DC architectures. This

proposal is outlined in Section 4.3.2.

The third suggestion is that it will frequently be useful to define virtual architectures when modeling

DC systems. The purpose of a virtual architecture in this context is to encapsulate and abstract mean-

ingful interactions between system components, especially between a user and a computer. It would be

surprising if no regular or systematic interactions occurred between users and computers. A virtual archi-

tecture is a modeling technique for encapsulating such systematic interactions. This proposal is outlined

in Section 4.3.3.

4.3.1 The Design Space Induced by RODS

The DC literature contains several comparisons of cognitive systems. For example, Hutchins’ seminal

book on “Cognition in the Wild” [320] analyzes the differences between Western and Micronesian navi-

gation. The analysis shows, in vivid detail, the two navigational systems to be different computational

implementations of navigation. In a related way, Zhang et al. [727] show several games to be isomorphs

4.3. ANALYZING COGNITIVE SUPPORT 137

if one analyzes them as different implementations of the same problem. Both of these accounts reveal

instances of support. But the way of systematically analyzing such support is never adequately spelled

out. For instance, can the space of all possible ways of supporting cognition be mapped out? Here it is

argued that such a space can indeed be conceived as an aid for comparing tools and reasoning about tool

designs.

To suggest that an artifact supports cognition is to indirectly imply that there is a way for cognition to

be un-supported in the way suggested. For instance, if a slide rule is thought to support cognition when

doing calculations, then life without the slide rule can be pondered. In general, the support provided

by an artifact may be understood only in comparison to what is implied by its absence, substitution, or

modification. One way of thinking about this comparison is to suggest that there is a continuum of differ-

ent levels of support which ranges from the completely unsupported (entirely mental) to the completely

automated (no human thinking involved). In between the extremes are cases where cognition is spread

between humans and artifacts. In practice, both extreme ends of the spectrum will be unattainable for

interesting tasks. Still, it is instructive to imagine in principle what the unachievable extremes of the

spectrum would entail.

For the entirely mental end of the continuum to hold up under close inspection, all of the user’s prob-

lem, evolving solution, and mental state information would need be held internally; all of the processing

of such information would also need to be done internally. This might be akin, perhaps, to floating in a

sensory deprivation chamber and solving problems mentally. In reality, of course, people always are em-

bedded in an environment and will make strategic use of that. Programmers, for instance, will normally

not code anything non-trivial without interacting with external media [260]. No matter, we can still imag-

ine the case where some inhumanly capable programmer keeps a copy of the entire world in the head.

The completely unsupported programmer is a logical possibility even if it is not an actual possibility.

Distribution begins to change that picture. As distribution of cognition is increased, the locus of cogni-

tion expands away from the individual mind and is dispersed. Our imaginary unsupported programmer

may begin to use a notepad, for example, to offload a specific item from memory. Thus we have consid-

ered two cognitive systems: the mythical lone programmer, and the programmer-plus-notepad system.

The logical difference between the two cognitive systems is a substitution transformation: an external mem-

ory is substituted for an internal one. In other words, the artifact reengineers the computation by making

a distribution substitution. It is critical that the substitution transformation is in some sense function-

preserving, that is, the cognitive systems belong to the same equivalence class. If they did not, it would

be difficult to argue their differences as being due to cognitive support.

As various parts of the computation are distributed, further variations of these systems can be posed

by considering specialization- and algorithmic optimization-based substitutions. That is, once data of

any sort is distributed, processing can be distributed, specialization substitutions can be enabled, and

algorithmic optimizations can be performed. It may be the case that several of these transformations

occur in unison. For instance, Sharples noted that writing things down unlocks other types of support:

One way to overcome the difficulties of performing ... complex knowledge manipulation in the head is

to capture ideas on paper (or some other external medium such as a computer screen) in the form of

external representations that stand for mental structures. So long as ideas, plans, and drafts are locked

4.3. ANALYZING COGNITIVE SUPPORT 138

inside a writer’s head, then modifying and developing them will overload the writer’s short-term memory.

By putting them down on paper (or some other suitable medium) the writer is able to explore different ways

of structuring the content and to apply systematic transformations, such as prioritizing items, reversing

the order, or clustering together related items. [575, p. 135]

The above observations suggest one conceivable method for generating the space of all possible cogni-

tive supports for some task (conceptually, at least). The generation is effectively by recursive application of

RODS transformations: start with an unsupported human, pick a possible redistributions of data and, then

one-by-one, apply each possible substitution transformation to generate new compositions. For instance

in Sharples’ writing example, one could begin by enumerating the possibilities of (at least partially) dis-

tributing ideas, plans, drafts, goals, and so on. Then one might consider various ways of processing these

externally, of changing the representation to enable specialized processing to substitute for deliberate pro-

cessing, and of making changes to encodings and methods. Each of these changes represents a possible

design option. Thus the logical space of cognitive systems also identifies a design space.

Now it may be the case that the full design space cannot actually be generated. Nonetheless the

logically-defined space provides ways of trying to rationally compare the support given by two artifacts

or environments. If two tools are similar to each other—one is a successor of an earlier prototype, for

instance—then it might reasonably be argued that one transforms cognition according to some combina-

tion of RODS transformations. These transformations would identify the cognitive support differences.

This is a type of “relative” comparison since the support in one tool is being compared to a neighbour

rather than to some “absolute”. It is also possible to envision an absolute analysis. One would need to

start with an analysis of how an unaided mind might perform the task, and then describe the substitution

transformations required to achieve the given system. The reverse transformation can also be considered.

Given any user–tool dyad, one would consider the transformations needed to make the relevant activity

occur entirely inside the user’s head.

4.3.2 Distributed Cognitive Architectures
At what level of generality should artifact analyses be conducted? I believe that rather specific

analyses will prove necessary to understand the functionality of artifacts, but that some relatively

general analytic tools can be developed for some issues of user interface design, because such

issues are often general across a wide range of artifacts.

– Stephen J. Payne,

“Interface Problems and Interface Resources” [492], pg. 133.

Cognitive science uses an ages old trick from computing science to build cognitive models that gen-

eralize across multiple individuals and situations. The trick is to use an incomplete model. But it must

be incomplete in just the right way. The missing parts must correspond to the variations one wishes to

generalize over. Conversely, the parts that are actually specified must correspond to invariants. Cognitive

architectures in cognitive science are just such abstract models. They are intended to capture invariants

4.3. ANALYZING COGNITIVE SUPPORT 139

in cognition [315, 520, 651] across essentially all “normal” humans. A cognitive architecture is a software

architecture [580]. It specifies a model of the “cognitive machinery” of the mind. These cognitive archi-

tectures are not specific to tasks, social context, or the particulars of the environment such as the tools and

artifacts available. This makes the cognitive architectures general. The statements one can make about

such architectures (efficiency, behaviour, communication costs, etc.) generalize. But the generality of the

architecture also means that work must be done when applying it in specific situations. To be applied, the

appropriate details of the analyzed situation must be “plugged in”. For instance, a cognitive architecture

like SOAR [446] contains essentially no domain or task knowledge. This knowledge must be encoded

before it can be run to simulate users. That is, the user’s knowledge base must be programmed in [721].

Actually, much more than user knowledge is normally required: one must also program in, simulate, or

otherwise account for many other aspects such as tools, tasks, and social settings [651].

The generality of a cognitive architecture has obvious and crucial advantages when applying it during

analysis. The generality itself is critical, for an architecture will be useful to an analyst only if it can

be applied to the situations of interest. Just as important is reusability. The “contents” of a cognitive

architecture are those aspects of cognition that it models, that is, those aspects that are invariant. In other

words, the architecture captures and encodes certain context-independent facts and knowledge. This

content is reused by the analyst whenever it is applied. This can save much effort since the content does

not have to be recreated for each situation it is applied in.

Currently there are no DC cognitive architectures that one can obviously point to for being candidates

for reuse. One problem may be that many types of studies in this field take the point of view that each

situation must be studied and modeled individually.13 On the face of it, this approach may not seem

that unreasonable. The trouble with modeling joint cognitive systems is that (1) they come in so many

different flavours and configurations, and (2) “the system” to model is frequently a shifting, ephemeral

entity. In contrast, pursuing (individual) cognitive architectures makes a certain degree of sense: most

of us have similar brains, and we modify our brains (barring injury) in rather limited ways. We cannot

currently pop new RAM chips and co-processors into our brains. This universality and stability makes it

prima facie reasonable to talk of a model of ”the cognitive system” of an unaided individual. Joint cognitive

systems exhibit neither this universality nor this stability. One must talk about human–computer systems

rather than “the” human–computer system. Unlike the brain, the external parts of joint cognitive systems

can easily be modified. Indeed, from the DC viewpoint the whole purpose of design is to retool the

cognitive system (see Chapter 7). Moreover, human–computer systems naturally and fluidly change from

one moment to the next. A developer can slide his chair across the room to a coworker’s computer and

begin working with an entirely different set of tools. Tool manufacturers continually update and change

their products. In fact, developers are well known to customize, program, and tweak their environments

themselves. For all intents and purposes, these simple facts rule out the hope of building a single model

13On a side note, some DC researchers adopt philosophical backgrounds that tend to reinforce this practice. Certain
philosophies from anthropology and communication value a fundamentally “bottom-up” procedure for understand-
ing cultures or systems; they view with suspicion pre-existing theories or preconceptualizations of the phenomena
under study. As a result, there may be a tendency to try to model each system by starting from scratch. Although ba-
sic modeling principles can still be reused, this sort of philosophy generally rules out assuming a particular cognitive
architecture.

4.3. ANALYZING COGNITIVE SUPPORT 140

that can be applied across all relevant design situations.

Are generalizable DC models therefore impossible? Must context variability universally preclude ab-

straction and generality? Can DC models be generalized across various tools and tasks? If so, how? To

the best of my knowledge, these questions have not been answered in DC literature. So far, most publica-

tions from DC have tended to focus on arguing the viability and necessity of the DC view, or have tried

to show how particular cognitive systems can be modeled and explained. Generalizability of analysis is

not currently a research emphasis. As a result, prescriptions for studying DC (e.g., Hollan et al. [311])

emphasize the need to capture situation-specific details rather than, say, the need to understand how the

particulars of one system relate to those of similar systems. Consequently, there are no “standard models”

to begin with—one builds DC models from scratch. There are some related suggestions on potentially

useful modeling techniques (e.g., ERMIA [268], Flor’s media constellations [223]), but these do not address

reuse of the models themselves. Since cognitive model building involves computational model building,

it is fair to say that DC modeling is not currently founded on software reuse.

Surely this is not necessarily so. There must be similarities in DC systems that can be recognized and

utilized effectively. If we could identify useful invariants where they exist then we could capture these in

“standard” DC architectures. The trick would be to (1) identify unimportant variations and abstract these

away, (2) recognize important variation and then either provide abstractions of these or omit computa-

tional details for them so that the situation-specific details can be “plugged in” later, and (3) encode the

important invariants into an abstract distributed cognitive architecture.

To computing scientists, this prescription for generality will come as no surprise. Parnas is normally

credited for identifying the steps that are needed in order to define families of similar programmatic

structures [245, 486]. His main prescription was to recognize similarity, anticipate variation, and then

structure the system to capture the similarities and allow easy modification for the variations [485, 486].

It is possible, therefore, to define generalizable computational structures, but only for families of similar

computational systems. Thus although there may be no universally useful DC architecture, we should

be able to define some reasonable collection of abstract and incomplete DC models. These would cap-

ture important DC invariants so that they may be reused in a wide variety of similar situations. Since

humans can be expected to learn and participate in a restricted set of artifacts, an adequate collection of

general architectures might be eminently manageable in size. The same basic vision has driven software

architectures research in SE [578, 580].

What these standard DC models might be is beyond the scope of this work. The main point of bringing

up DC architectures in this chapter is to ensure that the importance of the DC architectural level of analysis

is realized. This will become important in later sections since they will be proposing DC-based cognitive

support theories. And to be useful, they will have to address the issue of generalizability. To use Parnas’

terminology, the theories need to make statements about a family of artifacts. Furthermore, the significance

of DC architectures should be emphasized to the wider context of DC research. If the importance for

building a generalizable science base is not realized, there is a risk that future DC systems will continue

to be unnecessarily difficult to analyze and compare because there are no DC architectures to reuse. This

threatens the viability of efficiently using DC-based cognitive support analysis in many instances of real-

world design.

4.3. ANALYZING COGNITIVE SUPPORT 141

4.3.3 Virtual Architectures

If people could plug RAM chips, hard drives, network interface cards, coprocessors, and device controllers

into their heads, there might be relatively little need for many of our cognitive artifacts. Why bother with

an appointment book if you can slip a flash RAM card into your head and store your appointments there?

Your brain could use the extra RAM to store your important appointments on instead of your poor, fallible

“wetware” memory. Being able to plug in these components may seem like an “ideal” way of augmenting

human intellectual capabilities: one usually imagines that there is little “overhead” involved. When using

cognitive artifacts, there is always some overhead involved. The overhead of interacting with cognitive

artifacts shows up as cognitive effort and interface activity—pointing, typing, speaking, reading, etc. The

overhead work mixes with the “real” work of the user. Users must learn how to use the artifacts; they

must command, manipulate, and communicate with them; they must also react to, perceive, and monitor

them too.

But although cognitive artifacts are not “real” hardware extensions, it may still be possible to go some

ways towards restoring a similar level of simplicity when modeling DC systems. The key is to try to

encapsulate and abstract some of this “overhead” within the DC models. One way is to employ a model

of virtual hardware, that is, a virtual architecture. A virtual architecture is a simplified model of cognitive

hardware. The idea is that the virtual hardware does not really exist—it is in fact simulated by operations

performed by the user or computer. That is, the virtual hardware is simulated by a (more complicated)

implementing hardware.

For instance, consider a user doing some work using a paper and pencil. At some level it makes sense

to consider the paper and pencil as an extension to the user’s memory. But at the “real” DC hardware

level all of the memory operations like storing, recalling, and even contents addressing must actually

be simulated by the user. She must perform the writing and reading steps manually. Each of these can

involve considerable cognitive machinery to perform. Furthermore the user is in charge of devising and

following an addressing scheme for the contents on the paper. For example if the data being stored is

two-dimensional ordinal data, then tabular or graph based indexing methods might be used (see e.g.,

Norman [472, ch. 3]). If more than one piece of paper is used as an external memory then not all of the

memory may be viewable at once, and the burden of “paging” in the right portions of external memory

is passed onto the user [303]. Thus although we may be interested in viewing the paper as a memory

extension, when we look closely at how paper is used, there is no simple memory interface to be found.

To create a degree of abstraction in viewing the extended memory, a virtual memory architecture can

be postulated. The point of such an architecture is to provide a direct, simplified read/write abstraction to

the overall distributed memory system. A rough illustration of such an abstraction is given in Figure 4.3.

The figure appears more complicated than it really is: the diagram shows that cognitive overheads are in-

volved in accessing the external memory, addressing it, and paging the right parts into view. Postulating a

virtual architecture in this way clarifies the overall work process by encapsulating the overheads involved

with interacting with the particular implementation of the virtual memory.

Note that the simulation overheads are not forgotten. They are merely collected together and encapsu-

lated in the mapping to the implementing architecture. The memory and processing overheads involved

4.3. ANALYZING COGNITIVE SUPPORT 142

PAPER

MEMORY
OVERHEAD

USER’S
MEMORY

VIRTUAL
EXTENDED MEMORY

simulating
architecture

virtual
architecture

ADDRESSING SCHEME

WRITE

WORK PROCESSWORK PROCESS

PROCESSING OVERHEAD

PAGING SCHEME

READ

mapping of data
mapping of processing

Figure 4.3: Virtual shared memory as an abstraction over complicated interaction

in implementing the reading, writing, addressing, and paging are merely handled at another level. This

virtual architecture modeling method is precisely the approach taken in distributed shared memory sys-

tems (see e.g., Skillicorn et al. [602]). These systems provide an interface to the programmer as if a single

physically shared memory were available. But, in reality, behind the scenes it is being simulated. This

means that virtual architectures are a way of making the transition from one “level” to another explicit.

That is, they bridge the lower level of detailed HCI to a more abstracted view of the system in which

those details recede. In a sense, then, they propose a “non-greedy” [177], explicit reduction of a high level

description to its implementation.

To see the relevance of this possibility, let us reconsider how HCI is frequently dealt with when per-

forming cognitive modeling. For instance, consider how von Mayrhauser et al. [675] modeled compre-

hender behaviour using a high level model. They used protocol analysis to build an interpretation of the

mental actions that comprehenders take. But in this analysis they effectively ignored many of the human–

computer interactions involved. Sometimes this is natural since many interactions are done with skill and

so they will not leave verbal traces to analyze. Other times, however interactions with tools are actively

filtered out (see Gray et al. [255] for a well considered example). So cognitive analysis often filters out the

interface activity, either explicitly or otherwise. This is suitable if one’s aim is to build a simplified model

of human cognition that is unfettered by the complications of interactions with tools. This is reasonable to

do if one considers that interacting with artifacts constitutes a separate sub-task that the human thinker

must simply cope with.

But from the DC point of view, if one throws away the tool interaction, there is a good chance that the

full contributions of tools will be missed. If a tool is acting as an external memory, for instance, then some

of the system’s memory would be left unmodeled. For example, in the model by von Mayrhauser et al. (see

above), they coded their protocols for a “Chunk&Store” action without concern for the (internal) activities

4.3. ANALYZING COGNITIVE SUPPORT 143

that implement the action. But what if external actions were actually implementing a “Chunk&Store”

action onto an external memory? Would they be correctly coded as a memory action? If the interactions

with tools are ignored, the answer would likely be “no”. But if the interactions are simply thrown back in,

then the analysis threatens to become bogged down with the thick interaction details. Here is where vir-

tual architectures may be significant in the future. They allow one to systematically control the complexity

of the interactions without simply throwing them away. This ability will be used in Chapter 8 to abstract

away details about interacting with an external medium.

There is a second possible significance to virtual architectures. In the previous section it was sug-

gested that families of human–computer systems with common structures might fruitfully be described

using DC architectures. This could lead to the definition and study of a collection of common DC archi-

tectures. If this should come to pass, virtual architectures can make a useful addition: generalized task

analyses. A virtual architecture maps between abstraction layers by defining tasks that are performed in

the simulation of the virtual machine (e.g., addressing, paging, etc.). What is important about this account

is that: (1) the tasks are defined independent of any particular interface or problem domain, and (2) the

tasks are assigned cognitively meaningful interpretations. This combination may be hard to achieve with

other means. There exists some prior work in describing generalized task structures in ways that are rem-

iniscent (see e.g., the “generalised task models” (GTM) work [336]). But a virtual architecture additionally

casts the abstract tasks in cognitive terms; it is an abstraction mechanism suited to DC modeling.

In sum, although external artifacts are not “directly” connected to the user it is possible to step back and

view DC systems as implementing virtual architectures. The most essential virtue of a virtual architecture

is the logical modularization and simplification it provides. One may encapsulate complicated interaction

between heterogeneous components with modular—but virtual—architectural components. The virtual

and implementing architectures are related through simulation. The tasks performed to simulate the

virtual architecture define a meaningful but abstract set of tasks to perform.

4.3.4 Summary of Analysis Proposals

DC theorists have argued that joint human–computer systems can be modeled using distributed computa-

tion models. It is hoped that systematic ways of studying cognitive support can be fitted onto this existing

DC research. But three fundamental problems appear not to be addressed well in prior modeling work:

(1) how to compare systems in a way that carefully describes the support and the possibilities of support,

(2) how to generalize analyses across different types of tools and task situations and then collect such gen-

eralized analyses, and (3) how to effectively abstract and encapsulate low-level complexities involving

human–computer interaction. Three proposals advanced in response to these issues were overviewed.

First, the concept of a space of functionally-equivalent cognitive systems was defined. Motion in the

space corresponds to applications one or more of the three primary substitution principles of RODS. Defin-

ing such a logical space clarifies our understanding of cognitive support and how tools may be compared

for their support.

Second, the notion of a DC architecture was promoted as a method for providing generalizable DC

models. The notion of a DC architecture is a relatively minor extension of common cognitive architecture

4.4. REQUIREMENTS CHECK 144

modeling techniques. A DC architecture can capture computational structures that are invariant across

a family of contexts. The suggestion to investigate DC architectures is significant because it implies a

potentially useful shift from studying individual systems to studying families of systems with common

computational structures.

Third, the idea of a virtual hardware architecture was proposed as a technique that could be used to

abstract and encapsulate certain human–artifact interactions. These abstractions may be important for

analyzing HCI. It may make it much easier to understand interaction at an abstract cognitive level; it may

also make it possible to define meaningful abstract tasks.

These three proposals may turn out to be critical parts of RODS-based design and analysis frameworks.

They are not well developed yet, but because of their potential significance, it was important to describe

them in this framework definition chapter.

4.4 Requirements Check

Certain theories are proposed as an improvement to previous theories, usually by explaining or predicting

something better (more accurately, in more contexts, etc.). Others are proposed primarily to try to meet

specific desiderata or requirements; less concern is expressed for improving theory accuracy. RODS is

an example of the latter. Most of these requirements were generated using the mature field of physical

support as an intuition pump (Section 2.3.1). Key requirements are recalled here and RODS is examined

to clarify why it is anticipated that these requirements are met.

High-level, Qualitative Theory of Cognitive Advantage

The exposition of RODS given in this chapter hides its core statements within its extended defini-

tions. But a relatively simple definition exists. At a high level, RODS can be stated as:

Artifacts reengineer cognition by substituting one computation for another. The cognitive sup-

port these substitutions provide is the computational advantage generated by the reengineering.

There are four distinct forms of cognitive support generated by four distinct types of computational

advantage. The types of computational advantage are: task reduction (eliminating unnecessary

work), algorithmic optimization (switching algorithms, ADTs or their implementation), distribu-

tion, and specialization. All cognitive artifacts can be decomposed into applications of these four

computational principles.

It seems reasonable to say that this statement of RODS qualifies as a high-level, qualitative theory of

cognitive advantage.

Small Vocabulary of Primitive Types

RODS identifies and requires only four primitive types of cognitive support. These rely on distinct

computing principles for substitution, and these seem to be orthogonal.

Compositional Language

The primitive types of cognitive support combine because the substitution principles they are de-

fined by identify independent computational substitutions.

4.5. SUMMARY AND CONCLUSIONS 145

Mnemonic, Evocative Names

RODS is couched in terms familiar to most computer scientists. This does not guarantee that the

terms will be more understandable, memorable, or more evocative of important implications. How-

ever it seems to improve the odds that the terms are at least familiar and meaningful the average

computer science student. And computing scientists frequently understand the principles of op-

timizing computing. This may allow non-specialists to reason by analogy about various forms of

cognitive support.

Abstract, Generalizable Description Level

RODS names four categories of cognitive support and defines their underlying principles in cogni-

tivist terms (knowledge, inferencing, etc.) and computational terms (memory, processing, etc.). Both

of these are description levels are abstract and independent of their implementations. In particular,

cognitive support categories are defined without reference to a task or even a particular cognitive

model. For instance, distribution is defined without referring to the specifics about what are being

distributed. Plans, constraints, goals, and processing history might be distributed (e.g., see Wright

et al. [719]). This means RODS can be used on whatever issues of cognition the analyst considers

important (goals, social roles, etc.). The significance of this ability is underscored in Chapter 5. In

addition, the computational principles referenced are abstracted away from their implementation.

For instance, when considering distribution of cognition, any number of artifacts may play the role

of an external memory (white boards, computers, even other people [569]). Thus RODS is indepen-

dent of both task and technology: how they are used depend on the analyst’s application context.

Analysis Framework

RODS contains a framework for analyzing cognitive support in terms of computational reengineer-

ings. The core of this framework is a way of comparing cognitive systems. A cognitive system is

identified, in part, by the computational architecture created by humans using their particular arti-

facts. Given two “equivalent” cognitive systems, one can be seen as a computational reengineering

of the other based on the four types of advantageous substitution identified in RODS.

4.5 Summary and Conclusions

This chapter has presented an overall framework for generating and using theories of cognitive support.

The framework consisted of three main parts:

DC Tenets

DC assumes a particular way of understanding cognition and the way artifacts contribute to it. Six

main tenets of DC were reviewed and their importance to RODS and to the goals of this dissertation

were considered. These set the overall analytic framework of RODS.

A Simplified General Theory of Cognitive Support

A taxonomy of four cognitive support principles was defined. These principles were: task reduction,

algorithmic optimization, distribution, and specialization. These principles are intended to identify

4.5. SUMMARY AND CONCLUSIONS 146

orthogonal computational explanations for cognitive benefits. Collectively they form a theory of

cognitive support.

Analysis Techniques

Effectively applying the overall RODS and DC framework to real design work requires an under-

standing of the principles used to identify and compare the cognitive support in tools. It also re-

quires consideration of how to generalize and reuse DC-based analyses, and how to abstract away

unneeded low-level interaction details without completely discarding them. Section 4.3 discussed

the beginnings of ways of dealing with these issues. A basis was described for defining a logical

design space generated by substitution-based cognitive restructurings. The importance of search-

ing for reusable cognitive architectures was highlighted. In addition, the potential for using virtual

architectures to encapsulate low-level interaction details was recounted.

These three parts of the overall RODS framework establish a coherent foundation for studying and ex-

ploring cognitive support in tools. Up until this point, SE has not had any similar framework to work

with. Bits and pieces of prior works were sometimes used in an ad hoc fashion, however what was miss-

ing was a clear articulation of a high-level, qualitative theory of cognitive support (and ways of applying

it). In fact, for the most part, it has not been realized that a principled theoretical foundation might be

possible for constructing generalizable explanations of cognitive support. Most related prior work in SE

has been either primarily atheoretical, or has assumed a framework for researching theories of cognition,

not theories of cognitive support.

Realizing that such encompassing frameworks are possible is strategically important. Cognitive sup-

port has to this point been dealt with theoretically in a piecemeal fashion. Considering the diversity of

support research described in Chapter 3, this might not be the least bit astonishing. A coherent, capable

framework puts this diversity in a new light. RODS may ultimately be limited in what types of support it

can talk about, but it argues that (1) cognitive support might be understood using just a handful of basic

principles, and (2) these principles can be stated within a single coherent, generalizable theoretical frame-

work. The basic principles for explaining cognitive support have already been noted elsewhere, but they

have never before been united in this way.

Chapter 5

HASTI: A DC Modeling Framework

There are many theories and models that are potentially relevant to systems design, but each

is applicable only to narrow psychological phenomena. ... On the positive side, we should feel

fortunate that there is so much potentially relevant knowledge to draw on. On the negative side,

it is not at all obvious how to identify the knowledge relevant to any one design problem and then

package this knowledge into a form that makes the practical implications for systems design

more obvious.

– Kim Vicente, “Cognitive Work Analysis” [657].

�t stands to reason that anybody wanting to analyze or design cognitive support would need to have

a reasonable command of some salient aspects of applied cognitive psychology. Although informal and

qualitative descriptions have their place, so too do more formalized descriptions like computational mod-

els of cognition. Consequently, pragmatic-minded cognitive support researchers—especially the non-

psychologists by trade—would undoubtedly appreciate simple, standard, unified models of cognition.

Perhaps ideally these standard models could simply be plucked from the theoretical shelf and used with-

out modification. Certainly, some well-considered cognitive models would be of great use in applying the

support principles from RODS. The reason is simple: the support principles from RODS are practically

psychology-free. So although they “explain” cognitive support as different sorts of computational advan-

tages, some details of real-world cognition are required in order to understand what those advantages

could possibly consist of. Models help answer the question “what aspects of thinking are supported and

how?” In other words, the support principles are the necessary intellectual tool for understanding or de-

veloping cognitive support, but one still needs some material on which to work this tool. The aim of this

chapter is to try to provide some of this needed material.

At first blush it would seem that modern psychology, especially cognitive science, should be very

helpful in this matter since they generally propose to crystallize knowledge about psychology in the form

of computational models. Since the models are computational, it might seem at first that they should be

147

148

easily employed to analyze various computational rearrangements. Unfortunately, this is not the case.

Cognitive modeling in psychology is not “standardized” in the sense that a common consensual base

model is pervasively assumed. If a modest cognitive model in combination with some empirical evidence

for it is a “good thing”, then psychology clearly has far too much of a good thing. Narrow, little cognitive

models abound. To the average non-psychologist, cognitive psychology is a dizzying jumble of indepen-

dent models, and a squabbling cacophony of irreconcilable theories and modeling methods. Seemingly

every paper presents a small isolated model, and this makes integration very difficult, if not impossible.

Integration of psychological results is probably the primary impediment to anyone trying to analyze or

develop cognitive support.

The integration problem is well known to cognitive scientists. Card described it as follows:

Isolated human performance models cannot necessarily be integrated to together to give a larger model.

Trying to match up the miscellaneous hodge-podge of inputs and outputs into an integrated whole is one

of the chief problems in trying to build a [practice of] computational ergonomics out of isolated models

from the literature. [93, pg. 507]

There do exist some efforts on integration like Newell’s high profile work on “unified theories of cogni-

tion” [446]. In the domain of programming specifically, unification of past theorizing has been an occa-

sional interest (e.g., Boehm-Davis [61], Hale et al. [286], von Mayrhauser et al. [675], Pirolli [511]). Even

so, these efforts do not integrate enough aspects of human cognition to be especially useful in analyzing

cognitive support. To explain cognitive support using RODS, one needs an adequate characterization of

the ways of performing the substitution transformations identified by RODS. Clearly, many facets of psy-

chology and environmental interaction need to be modeled for this to be possible at all. This includes

being able to model high level thinking and problem solving, modeling the impact of the environment,

and integrating details about different cognitive mechanisms or capabilities. Most existing models fail to

deliver on more than one of these aspects.

A second challenge is the narrowness typical of the models. They often simply do not address enough

issues or phenomena. For the practical modeler, psychology appears to apply Occam’s razor far too

liberally and energetically. What is left after the slashing is done is usually a bare bones architecture, or an

enormously limited model. Even “unified” models succumb to such evisceration. It is in a certain sense

quite astonishing that there are serious proposals to model something as complicated as human behaviour

using a few simple computational mechanisms.1 For instance, it is not too far off the mark to say that the

well-known SOAR architecture [446] essentially explains cognition as: a particular form of rule following,

with a pervasive and automatic rule learning mechanism. That characterization is surely too crude and

a little gruff, but the essence of the critique is accurate. SOAR’s take on cognition is akin to arguing that

a Linux kernel is structured as a RISC processor fetching operation codes and executing them cyclically.

This description might very well be defensible, but only at a level totally inappropriate for a maintainer

who is planning to tinker with the software. To properly understand Linux for this purpose, one usually

needs abstractions in the form of higher level computational structures. The exactly analogous argument

1See e.g. Simon [594, pg. 53] for a good statement of the basic philosophy of this approach to limiting psychological
enquiry to simple mechanisms.

149

is true for cognitive models since developing cognitive support amounts to tinkering with DC systems.

Of course, architectures like SOAR can be used to create more specific models by adding knowledge to

them. For instance, analysts can program the models with rules [721]—often many, and with a most

tedious amount of detail. But one way of viewing this situation is that, in order to be able to say anything

useful, the applied modeler has to supply too much additional information. This means the models are

too frequently too bare. Not wrong, not indefensible, just under-employed for the purpose of carrying

psychological knowledge. The “base” models must aim to encode at the start much more information about

cognition-related issues, and in that way provide the practical analyst with a more suitable launching

point.

The current situation of HCI modeling frequently creates a third challenge: existing modeling tech-

niques can be costly to apply, making them unsuitable for broad-brush analyses [257]. In particular, the

amount of effort needed to get a model to say something useful can be high, giving them a low benefit–

to–cost ratio. In Section 7.1.1, these costs will be considered in relation to the relative benefits of user

testing, but for now, the main point to note is that many situations require simplified models that are easy

to apply.

A fourth challenge to analysis is that existing models do not properly insulate them from the com-

plexities of the science base. Simplified, broad-brush models effectively mediate interactions between the

analyst and the science base from which they draw. One important function of applied models, therefore,

is to index the underlying science base. Currently a small fraction of the useful knowledge from psy-

chology and HCI are being used. Partly, the issue is one of awareness [263]. An important mediational

function of simplified models is that they can provide a convenient access point; if the model is suitably

integrative, it can provide access to a greater fraction of the usable knowledge. A second important aspect

of mediation is the models must be in a sense “semi-transparent” so that the more complicated and de-

tailed models can be accessed if need be. This is important because when the model fails to address some

question—and all simplified applied models can be expected to occasionally cause this to happen—the

analyst needs to be able to “look behind” the model to access the related literature. This is not so much a

function of the model, perhaps, but of the way the model is documented. Regardless, some way of mak-

ing the model suitably transparent is needed. For researchers, this transparency is helpful if they find the

need to wade deeper into the related literature. For practitioners, this transparency is needed so that they

have a smooth way of accessing more complicated models in order to iteratively deepen their analysis.

The four hurdles of model disintegration, structural simplicity, analytic cost, and mediational weak-

ness currently face researchers in SE. One obvious solution is to provide some suitable “encapsulation” [587]

or “bridging representation” [28] which integrates and simplifies existing knowledge, and thereby reduces

the cost of the analysis and improves access to the science base. In the context of cognitive support, in par-

ticular, there is a need for a suitably capable model for reasoning about the logical space of viable forms of

cognitive assistance. This is not to say that there are no potentially applicable models—there are plenty—

but they can be costly to use, and most tend to stand alone and work poorly together, if at all. There is

therefore really no choice but to try to cobble together a working integration that recovers enough struc-

ture to be useful. The aim is not to try to abrogate the modeling challenges entirely, for that would be

hubris of the highest order. Instead, the goal is to provide just enough of a stop-gap solution as to palliate

5.1. OVERVIEW OF HASTI 150

the worst ills heaped on the poor SE researcher who is trying to reason about cognitive support. Where

prior models individually fail, the hope is that their integration will succeed. Success, in this sense, means

that the integrated model will embody suitable abstractions of the science base concerning DC systems,

and that these can then be used to reason at a high level about how to reengineer them in a cost effective

manner.

Towards this end, this chapter proposes a modeling framework called “HASTI”.2 HASTI is a frame-

work for building DC models of joint human–computer cognition. The intent of this framework is to make

it possible to perform “quick and dirty” analyses of cognitive systems in such a way that the possibilities

for reengineering them are exposed. In building such a modeling framework many decisions must be

made about what form it should take. The key issues are (1) choosing the right prior works to integrate,

and (2) deciding on an overall framework and principles for integrating them. In other words the main

issues are the content and structure of the models. Although obviously important decisions must be made

regarding content, it is actually the integration mechanisms and principles for construction that are the

crux of the entire project. For this reason, the integration and structuring mechanisms that were chosen

give HASTI its name.

The HASTI framework comprises a set of modeling principles and structuring methods. The acronym

HASTI is formed from the names of the five decomposition and structuring methods it identifies: (1)

Hardware models, (2) Agent models, (3) a Specialization hierarchy, (4) a Task taxonomy, and (5) an

Interaction abstraction layer. Each of these are described in a separate subsection below (Sections 5.2–5.6).

Before these can be described, the underlying principles for framework construction must be introduced.

The decomposition framework and the way of mapping the HASTI elements to one another is an attempt

to, as Vicente says, “package [psychological] knowledge into a form that makes the practical implications

for systems design more obvious” [657]. This requires an appreciation of principles for building models

that serve these designer needs. These principles are introduced in Section 5.1. Then, after the five HASTI

structuring methods are described, a summary is provided in Section 5.7, and conclusions are drawn.

5.1 Overview of HASTI
My experiences have led me to believe that the central problem that needs to be overcome to

make the products of cognitive science more relevant to design is identifying a more productive

set of dimensions along which modeling efforts can be decomposed. To support cognitive engi-

neering, the decomposition must be derived from an overall framework capable of ensuring that

the resulting research products can be reassembled into a coherent theory useful for design.

– Alex Kirlik, “Requirements for Psychological Models to Support Design” [348], pg. 69.

There is not now, nor will there ever be, a “perfect” way of modeling and understanding cognitive

support—at least not with respect to the needs of tool developers. Instead of singular perfection, we

2“HASTI is pronounced to rhyme with “tasty”.

5.1. OVERVIEW OF HASTI 151

are left to aspire to develop a collection of approximate modeling techniques each capable of addressing

some particular set of phenomena—each to their own degree of approximation. Pragmatic-minded tool

researchers hope to have modeling techniques with exact sort of abstractions and approximations that

enable them to analyze and evaluate tools, and to design good ones. In this context, an important concern

is modeling just enough detail of a DC system to enable tools researchers to do their jobs. There are

very many models and modeling traditions that can potentially be drawn upon in this project. There are

actually too many. The primarily challenge remains how to gather and integrate appropriate models in

ways that are useful.

This chapter is predicated on the conviction that the needs of SE researchers can be met by steadfastly

focusing on decomposing cognitive phenomena in a useful way. Thus a key requirement for success is

to determine what aspects of cognition are important to consider, and then determine ways of decom-

posing these. Most cognitive modeling is driven by the desire to model specific phenomena [446], and to

establish the constraints on cognitive theories [348] (e.g., timing constraints [446]). The building of HASTI

is, in contrast, driven by the varied needs of general design tasks. Kirlik (see the quotation above) hit

the nail squarely on the head when he argued that the way to make cognitive science “more relevant to

design is identifying a more productive set of dimensions along which modeling efforts can be decom-

posed” [348, pg. 69]. His particular proposal for doing this differs from HASTI, but the basic argument

is the same: figure out a decomposition that exposes design issues. In this regard, the main modeling

consideration in question is the various ways in which DC systems are modified by artifacts. One way to

see the importance of this is to appeal to the analogy of a Rubik’s cube.3

A Rubik’s cube effectively consists of interlocking rings with a number of ways of rotating them, that

is, with a number of degrees of freedom. Motion along any degree of freedom moves a collection of coloured

squares from one face to another. The Rubik’s cube thus physically implements a way of generating a

number of permutations of the original colouring of the cube. Ignore, for the moment the goal of the

Rubik’s cube game (uniform colouring of the sides), and consider just the ability to rotate the cube into

different configurations. Rotating a Rubik’s cube is, in a way, similar to reengineering cognition: the cube

is like a cognitive system in the sense that it has a number of degrees of freedom for changing it; the

cube’s various rotational degrees of freedom correspond to the substitution types of RODS; the various

different colours and faces correspond to different aspects of cognition that might be changed by applying

substitutions. Using this analogy, the purpose of building HASTI is to determine what the various colours

mean in terms of cognition, and to match the rotational motions to valid and interesting rearrangements

of cognition. As always, analogies must be used carefully lest one pursues one too far, but it is worth

pursuing this one a few steps further so that the implications for the rest of the dissertation are made

clear. In particular, we can look to the Rubik’s cube to help explain and compare the roles of HASTI and

RODS in analysis.

Consider, then, the following imaginary use of a Rubik’s cube. Imagine that an existing cognitive sys-

tem is represented by some particular cube configuration. The aspects of cognition that HASTI can make

3A cube puzzle with uniquely coloured sides each split into three rotating rings along both axes (9 total sections
on each face, like a tic-tac-toe board) such that the faces can be rotated along two axes; the object of the game is to
rotate the rings such that the colours of all sections on every face matches the other ones on that face.

5.1. OVERVIEW OF HASTI 152

statements about correspond to the colours. These are encoded by the coloured squares and their rela-

tive positions. The analyst using HASTI therefore considers some salient aspects of the existing cognitive

system, and then maps these aspects to particular squares of the appropriate colour. For instance, if the an-

alyst is considering a shopping task, she might note that knowledge about items are mentally considered.

So she might “mark” one particular square as “item knowledge”. Other aspects are similarly marked,

so that at the end of analysis, the important aspects of the current cognitive system are represented by

markings on the various squares. That is, after analysis, the cube models the cognitive system.

Now imagine rotating one or more rings. Each rotation would correspond to an application of RODS,

that is, each rotation corresponds to a substitution transformation which modifies the structure of the

computations without changing their essential function. Imagine, for instance, the square previously

marked “item knowledge” is rotated to another position. Let us say that this change corresponds to a

distribution substitution. Such a transformation might be achieved, for instance, by providing a handheld

computer so that memory for the item is externalized onto a shopping list maintained by the computer.

The analyst could then make a number of other rotations to see the various ways of reorganizing the

cognitive system. Click! Now the progress in shopping is recorded externally instead of having to be

kept in the head (e.g., by tick marks on the display). Click! Now the planning of shopping steps is

done externally (e.g., by having the computer order the list according the aisles the item is in). Each of

these rotations identify ways of rearranging the cognitive system in order to support cognition. The model

allows the analyst to explore different transformations of the task at the cognitive level—she is responsible

for relating these transformations to ways of implementing them in the design of artifacts.

The above imaginary scenario makes is possible to emphasize the purpose of HASTI. The five dimen-

sions of HASTI enumerate important cognitive issues to consider when reorganizing cognitive systems.

These are akin to the different colours in the cube. Furthermore, HASTI establishes relationships between

the cognitive issues. This is akin to the mappings of colours onto faces. This is important because it hints

of dependencies between cognitive aspects. Note that in the Rubik’s cube game it is impossible to move

one square without affecting others. Although in that game there is only one winning solution, the gen-

eral lesson to remember is that certain configurations are considered “good”, and rotating squares to fix

up one face of the cube often fouls up another face. A similar effect occurs in cognitive rearrangements

in that changes to one cognitive aspect imply changes to another. The cognitive support analyst therefore

reasons about design by “playing” with the model to determine winning combinations (see Chapter 7).

The tool evaluator effectively uses such a model to determine what moves are made by some particular

design. RODS correspond to the ways of rotating the cube, but it is critical to know what is being rotated

and what happens when rotations are made. The role of HASTI is thus analogous to the cube itself: it

must provide a way of deriving cognitive models that can be analyzed for ways of transforming them.

RODS identifies HASTI’s degrees of freedom.

The remainder of this section describes the principles and methods for making such a cognitive mod-

eling framework. First, the basic principles for building the framework are described in Section 5.1.1.

Next, Section 5.1.2 describes the way in which HASTI is structured. There it shall be argued that deciding

upon the right structural decomposition of HASTI is the key to developing models useful for analyzing

cognitive support.

5.1. OVERVIEW OF HASTI 153

5.1.1 Framework Principles and Strategies
Basic, bottom-up investigations have been the mainstay of experimental psychology and the

literature is filled with tens of thousands of experiments demonstrating thousands of regularities

in human behavior. Conducting one more such experiment adds, at best, one small piece of

information to the existing pool. Thus, I would argue, basic bottom-up experimentation is not

the most efficient use of an HCI researcher’s time. Instead, researchers should use the existing

psychology literature as the foundation for building computational models.

– Bonnie E. John,

Panel statement on “The Role of Laboratory Experiments in HCI” [711], pg. 267.

Five main principles have guided the generation of HASTI. These are summarized in Figure 5.1, and

described below. In building an applied theory, decisions are made as to what to include, and as to

what form the result should take. HASTI can be described without enunciating the principles guiding

its construction, but having a statement of what they are will help evaluate the wisdom of the decisions

underlying HASTI’s design.

1. model for use

2. favour inclusion, integration, and approximation

3. embody psychological knowledge in low-detail computational structures

4. decompose phenomena according to model application

5. structure models according to phenomena decomposition

Figure 5.1: Summary of principles and strategies for modeling in HASTI

Principle 1: Model for Use

One view of the relationship between science and application is that science is like a fruit tree.

The fruit on the various branches eventually will ripen. If a human performance model is not very

useful yet, just water the tree, give it sunshine and be patient; eventually the fruit will fall into

one’s hands. Unfortunately, a look at what is available in models against what is needed to do

engineering suggest this view is not accurate...

– Stuart K. Card, “Theory-Driven Design Research” [93], pg. 507.

The primary assumption in all applied modeling is that the models should be well suited to the uses

they are put. This may or may not correspond to what the basic sciences are interested in using them for,

5.1. OVERVIEW OF HASTI 154

or to what they are presently good at modeling [587]. This is perhaps an obvious point but it is still worth

stating it since it is the most important principle. The main use being assumed here is that the models will

be used to reason about ways in which DC systems are beneficially modified by artifacts.

Principle 2: Favour Inclusion, Integration, and Approximation

... the use of a simple theory of cognition, that is, a theoretical model that adheres to the premises

of simplicity, provides a viable alternative that ... acknowledges the impossibility to contain in the

model the whole richness of human decision making and performance.

– Hollnagle, Cacciabue, and Hoc,

“Work with Technology: Some Fundamental Issues” [312], pg. 12.

HASTI is being designed for broad-brush analysis. As a result, inclusion, integration, and approxi-

mation should be favoured. Many efforts in cognitive psychology and cognitive science take an oppos-

ing view by favouring accuracy and minimality. The strategy often pursued is to focus on a specific

phenomenon (reasoning, learning, perception, language, etc.), and then introduce a limited “microthe-

ory” [446] to explain it. Although this approach has proven to be effective for explaining many phenom-

ena, rarely are the resulting microtheories stitched together. Rather, once a microtheory is proposed, the

goal often becomes to try to make it account for as many phenomena as possible. As Green says, “The

normal approach to theorising in cognitive psychology is to propose a theory and then to see how much

can be predicted from it, squeezing as much juice as possible from whatever fruit it bears” [259, pg. 28].

Freed et al. [229] express well the different focus of the applied modeler:

For models meant to be evaluated on the degree to which their performance fits empirical data, a reluc-

tance to incorporate capable but speculative model elements is easily understood. Our goal of predicting

performance in complex domains prescribes the opposite bias: If human operators exhibit some capabil-

ity in carrying out a task, our model must also have that capability... [229]

The general implication is that applied modelers are willing to put up with having inaccurate models if

the model usefully addresses the many relevant facets of cognition. It is wise, therefore, to follow the

advice [229] of Freed et al.: make the initial model too powerful rather than too weak, and extend or refine

the model only as required. Include whatever seems necessary, integrate the models, and approximate or

idealize when required.4 Of course, doing so introduces an important liability: the approach means we

may have no realistic hope of “validating” these models to the standards of rigour normally associated

with microtheories. This liability must not be completely ignored, but it can be put into perspective. This

will be done in Chapter 8. In the meantime, the pragmatic issues still remain: it must be useful.

4My choice of the term “integrate” over the term “unify” is intentional. The term “unified” has come to be as-
sociated with efforts to explain many aspects of cognition in detail. The hope of “unified theories” is that by making
models that account for many different aspects of cognition, it will be possible to “pin down” the theories with enough
constraints from observed phenomena [147, 446]. In contrast, the aim here is to determine how to abstract any such
unified theories and integrate them with other theories.

5.1. OVERVIEW OF HASTI 155

In applied settings it is more fruitful to admit the approximation, and then merely enquire about when

the models are useful. Indeed, it is normally fruitful to willfully approximate model features even when

more detail is known [335]. In this work, the aim is to be able to discuss many different forms of cognitive

support with broad strokes. Broad-brush analysis techniques are “thinking tools” that are frequently

needed, surprisingly useful, and in short supply [93, 262, 268, 719]. Broad-brush techniques permit the

generation of highly abstract cognitive support arguments (see Chapter 6). This makes them suitable for

use in the early stages of design when the benefits of codified knowledge is most effective (Chapter 7).

Lightweight approximations must therefore be favoured, at least initially. They can efficiently kick-start

analysis. When more specific analysis is needed, the models can be refined as needed. This “iterative

deepening” approach may be very important for efficiently investigating cognitive support: often times,

the analyst may not know at the beginning what sorts of details are needed. The broad-brush models can

thus act as “heuristic tools” for narrowing down the focus; for “raising and addressing theoretical and

empirical questions” [495, pg. 47]; for allowing investigators to “isolate variables for designing empirical

studies with human subjects” [181, pg. 352].

The above considerations establish a heuristic strategy for deciding what to do with modeling contents

once they are decided upon: abstract, idealize, and approximate until what is left is highly general and

broadly applicable. Card [93] provides one of the most cogent analyses of this design-driven reduction in

detail:

The use of idealizations means simplifying a phenomena so that inference about it is tractable. The

simplification is achieved by dropping out details that will have little effect on the outcome. But which

details will have an effect may depend upon whether one is interested in broad coverage or in subtle

mechanisms. The theory-driven design research paradigm is a heuristic for keeping in the idealizations

of the theory those details that will matter for some class of design. [93, pg. 507]

This work concentrates on broad coverage; subtle mechanisms are assumed, by default, to be of interest

only when they are demonstrably needed. Until such time, the broad-brush models act to help determine

these needs.

It may strike the reader that the goals of being inclusive and deliberately approximate are in some

sense contradictory. Not so. Inclusiveness in this context means that knowledge about a diverse range

of cognitive and HCI phenomena should be collected. But each of these sources of knowledge may have

rich details, only some of which are interesting to cognitive support developers on a regular basis. Thus

it is necessary to pick and choose from among the detailed riches, and to turn some complicated aspects

of these riches into cruder generalizations.

Principle 3: Embody Knowledge in Low-Detail Structures

Knowledge about psychology or HCI can be formalized in a number of ways, from loose English de-

scriptions, to abstract computational architectures, to programs written in LISP. What sort of models are

of interest here? The general rule being pursued in HASTI is to encode the relevant knowledge in the

features of computational structures with very little detail to them. These are much like structural or ar-

chitectural diagrams for computing systems. They describe abstract computational structures but without

5.1. OVERVIEW OF HASTI 156

many of the implementational details.5

The reason for adopting this preference for how to encode psychological knowledge is that it will

match well the way in which the model will be used (especially Chapters 6 and 7). The primary use for

the models is to provide possibilities to argue about how artifacts rearrange DC systems. Emphasis is

therefore rightly placed on making plain and explicit all of the features of DC systems that are essential

to these arguments. Any relevant feature from psychology or HCI should therefore have a visible and

separable presence in the model. Other models, such as SOAR [446], propose a simplified base architecture

and then embed much of the relevant psychology in diffuse and intangible rule sets. In this work, the aim

is instead to embody the relevant knowledge in relatively simple computational structure models.

Principle 4: Decompose Phenomena Strategically

Often the classificatory exercise is an integral and inextricable step in the development of theory.

The resultant classificatory system provides a consistent conceptual framework, the elements of

which eventually are to be utilized in the interpretation or prediction of behavioral phenomena.

– Fleishman and Quaintance,

“Taxonomies of Human Performance: The Description of Human Tasks” [222], pg. 47.

The purpose of HASTI is to provide material with which to reason about cognitive support in DC

systems. Thus it is important to have an inventory of the distinct and changeable aspects of DC systems

and how they relate—to know a system’s logical elements, their “degrees of freedom”, and constraints on

modification. In fact, it is arguably more important to simply have an inventory of these aspects than it is to

have predictive accuracy. Rasmussen keenly appreciated this fact. He argued that in order to build models

appropriate for design, it is important to decompose the relevant phenomena appropriately [526] (also, see

Green [259]). This observation led him to develop two related taxonomies, one of which is incorporated

into this work. Natural phenomena must be decomposed in some way in order to understand it, but the

point is the decomposition must be strategic: it must carve up the phenomena in ways that are design-

relevant. The way that this is actually done in HASTI is described in Section 5.1.2.

Principle 5: Match Model Structure to Phenomenon Decomposition

Rasmussen argued that if one decomposes phenomena well enough, then independent models can be

used to model each separately [526]. So, for instance, he proposed to classify human behaviour into three

types: skill-, rule-, and knowledge-based behaviour (SRK). He proposed distinct general models to ac-

count for each type of behaviour. He also proposed an integration model that relates the SRK categories

5Make no mistake: these are models even if they are abstract. Some authors, such as Vicente [657] and Dillenbourg
et al. [181], exercise considerable evasiveness about whether their models are indeed models. Rasmussen’s processing
model is emphatically declared not a model but a “framework” [657], even though it is clearly similar to other high-
level layered cognitive architectural models (see, e.g. Brooks [69]). In fact, it very much resembles the multi-stage
processing model that Norman [466, 467] holds up as the type of approximate models that need to be developed for
HCI.

5.1. OVERVIEW OF HASTI 157

to one another, and explains the general rules for how they coordinate in real-world cognition. Thus, in

reality, he proposed a model with two different modeling levels: the “base” models that modeled specific

categories of behaviour using independent mechanisms, and an integrating model that captured aspects

of the interplay between these mechanisms. In other words, the base models modeled distinguishable

categories of phenomena, and the structure of the integrating model matched the structure of the decom-

posing taxonomy. This is the basic recipe for success when integrating heterogenous aspects of cognition into

computational models. Although this modeling scheme is not emphasized in Rasmussen’s exposition, it is

an absolutely critical strategy. Generally speaking, the principle is that a model’s structure will in some

way mirror the decomposition of the phenomena.

5.1.2 Structure Overview
We knew of many phenomena scattered in the literature of psychology ... that would be helpful for

system design. ... To someone who is not a specialist, such as a designer, this literature appears

disorganized and contradictory. Psychologists love to split hairs and find small contradictions in

published models. The robust but approximate generalizations that might be made to work for

engineering tend to get trampled in the debates.

– Stuart K. Card and Thomas P. Moran,

“User Technology: From Pointing to Pondering” [92], pg. 186.

In any integrative effort, contents must be decided upon. According to the strategies described in the

last subsection, this involves generating a decomposition of these contents suitable for design-relevant

analysis. After content and decomposition scheme are assumed, decisions must be made as to how to

reflect these in the modeling framework and its structure. This subsection provides an overview of these

decisions. The result is a list of five key structures of HASTI (hardware model, agent model, specialization

hierarchy, task taxonomy, and interaction decomposition hierarchy).

These five structures are discussed in more detail in separate sections following this overview. The

main purpose of the overview is to provide a guide to the rationales for why these five structures take

the form they do. These rationales are given in later sections, but they are camouflaged by the detailed

expositions. As a countermeasure, this subsection provides an simplified account of the content being

integrated, the decompositions of this content, and the model mapping techniques being used. In other

words, these explain the way that principles 2–5 from Figure 5.1 are observed. In addition, each section

below describes the relevance that each structure has in analyzing cognitive support, i.e., how principle

1 from Figure 5.1 is observed. The decompositions, matching model structures, and rationales are sum-

marized in Table 5.1. The table highlights the key issues HASTI addresses: the phenomena or issues to

model, the way of decomposing these, the way of modeling them, and the relevance that they have to

analyzing cognitive support.

5.1. OVERVIEW OF HASTI 158

PHENOMENON/ISSUE DECOMPOSITION MODEL FEATURE SUPPORT RELEVANCE

H invariant capacities/constraints memory, processors Hardware model distribution, performance

A behaviour agents, panel types Agent model distribution, alg. opt.

S specialization (adaptation) SRKM layering specialization

T task/problem D2C2 taxonomy partitioning overheads

I interaction virtual architectures layering generalized task analysis

Table 5.1: Decompositions of phenomena and matching structures

Capabilities and Constraints: the Hardware Model

The Hardware model captures task- and knowledge-invariant capabilities and constraints within DC sys-

tems. Thus the Hardware model is used to encode basic physical and psychological facts about a joint

system. This is a common use for hardware-level models. For example, cognitive constraints such as

short term memory limits are frequently modeled as resource bounds in a cognitive architecture. Since

the functional or behavioural aspects of the system are orthogonal to this hardware aspect, there is usually

some sort of mapping between these other decompositions and the hardware level. In computing science

circles, such mappings are routine. A prime example is the so-called “4+1 viewpoints” framework [364].

The Hardware model decomposes basic capabilities and constraints in terms of memories and proces-

sors. These are important to know for reengineering cognition because they state what computational

resources are available for distributing computations onto. The encoding of psychological constraints are

also important for reasoning about performance issues in the cognitive system.

Behaviour: the Agent Model

The Agent model captures abstractions of behaviours in the DC system. Humans do not switch ran-

domly between actions, but rather alternate between goal-focused clusters of activities. Thus cognition

may be decomposed into task-, or goal-relevant behaviour. The structure of this decomposition does not

directly mirror the physical or logical structure of a DC system, so a mapping must be assumed. An

Agent model is a way of matching the system structure to behaviour structure. Agent models encapsulate

logically cohesive mechanisms that generate coherent action. A generic template for an Agent model is

proposed with the aim of capturing common aspects of behaviour. This template includes a taxonomy of

six different types of data that the Agents can process: ends, operations, constraints, goals, plans, current

state, and past state (history). The Agent model is mapped down onto the Hardware model in order to

reason about constraints and behavioural regularities. The Agent model plays a key role in discussing

cognitive redistributions. Specifically, it is the primary source in HASTI for identifying generalizable (i.e.,

task-independent) aspects of cognition that can be rearranged.

5.1. OVERVIEW OF HASTI 159

Specialization: the SRKM Strata

The SRKM strata impose a partitioning of behaviour according to levels of adaptation, that is, according

to levels of specialization in the mechanisms responsible for the behaviour. These closely follow the SRK

taxonomy of Rasmussen [526, 528, 529]. Rasmussen argued that there exist genuinely different categories

of behaviour that people exhibit. He called these “skill-based”, “rule-based” and “knowledge-based”

(hence the name “SRK”). These behavioural categories are related to how a system is adapted to tasks.

Notably, these categories are not related by function, or goal (as the Agent behavioural decomposition

is), but by class of adaptive response to task demands.6 Generally speaking, several of these categories

of behaviour may be involved in performing a single coherent goal-related activity. Each category is

associated with different classes of cognitive behaviour. For instance, skill-based behaviour is associated

with rapid perception–action loops that are not cognitively penetrable by the performer. The three SRK

categories are ordered according to their relative degree of adaptation (i.e., degree of specialization), with

S � R � K (where � � � means � is more specialized). A fourth is added, called “meta-cognitive”

behaviour, and so the taxonomy is expanded into a “SRKM” taxonomy. These behaviour categories are

integrated into HASTI by imposing modeling layers or strata onto the Agent model. Agents belong to one

particular stratum. Each SRK category is mapped to different Hardware mechanisms, which is used to

explain their differing performance characteristics. The importance of SRK stratification is that it provides

a way of labeling the degrees of computational specialization within the model. These are needed when

discussing the types of specialization within DC systems.

Task type: the D2C2 partitioning

The D2C2 partitioning impose a partitioning on behaviour based on a classification of task types. It is

possible to model DC activities as searches within problem spaces [727]. It can be helpful to decompose

this problem space according to some meaningful problem taxonomy. Doing so not only partitions the

problem space into identifiable components, it can inject a useful vocabulary for the analysis of cognitive

support. HASTI proposes a four-fold classification system for sub-problems, i.e., for “tasks”. These clas-

sifications are: Domain, Device, Coping, and Cooperation. The taxonomy is thus referred to using the

acronym D2C2. The taxonomy imposes a partitioning on the Agent model. Thus it is used to classify

what type of activity each agent is responsible for. This vocabulary and method for tagging task types

in this manner will be important for reasoning about cognitive support; in particular they are needed to

trace how cognitive overheads within a DC system may be reduced.

Interaction: the Virtual Architecture

Virtual architectures generate a layer of abstraction to encapsulate regularities in interaction. It is easy to

get bogged down in interaction details if one has to reason about behaviour at a low level. It is important

to be able abstract some of the interactive behaviours so as to be able to consider them at higher levels of

6The use of the term “behaviour” by Rasmussen is perhaps a little confusing, but it is not unreasonable. The Agent
model is proposed to decompose behaviour according to common goals; the SRK taxonomy proposes to decompose
behaviour in an orthogonal way—by level of adaptation in the behaviour-generating mechanism.

5.2. HARDWARE MODEL: COGNITIVE CAPACITY DECOMPOSITION 160

granularity. As was discussed in Section 4.3.3, the way to do this in computational models is to postulate

a virtual architecture that the DC system simulates. Virtual architectures identify classes of common inter-

faces, such as direct-manipulation interfaces to external memories. Virtual architectures map down onto

lower-level simulating architectures (there may be, in principle, a deep hierarchy of these). The lowest of

these is always the Hardware model. Depending upon the granularity of analysis, the Agent model can

map onto a Virtual architecture. So far in this work, a simple virtual architecture has been mentioned—a

Virtual Memory architecture for abstracting the interactions involved in managing an external memory. In

Chapter 8, a “virtual blackboard” architecture is also used. Building a catalogue of common and reusable

architectures might be very helpful to designers, however such a catalogue is outside the scope of HASTI.

At present, HASTI merely explains how such architectures fit into HASTI-based analyses.

5.2 Hardware Model: Cognitive Capacity Decomposition

In debugging a program, in writing a paper, in doing financial analysis of a firm, in attempting to

reason about a machine, limitations on the number of mental things that can be kept track of lay

a strong constraint on human cognitive capabilities.

– Card et al., “Window-based Computer Dialogues” [95], pg. 241.

The hardware model describes aspects of a DC system’s structural decomposition, as well its stable

constraints and capabilities. Colloquially speaking, the hardware model factors out the basic computa-

tional hardware so that other aspects of psychology and interaction (e.g., knowledge) are considered “soft-

ware”. In a joint DC system, this description includes both the computer hardware and human cognitive

architecture. So the background assumption is that what is being modeled is a multi-node distributed

computing system. HASTI treats the computer simply as an external memory and processing system that

can be interacted with. This simple treatment is depicted in Figure 5.2. For example, a direct-manipulation

interface to a program editor can be abstracted in such a manner. Non-computing artifacts may be mod-

eled similarly by taking out the processor. In the remainder, the main focus will be on just one computing

node: the human. The aim is to describe an abstract cognitive architecture for users within the DC system.

USER
I

MEMORY
O

PROCESSOR

COMPUTER

Figure 5.2: Simplified joint system model

There are a great many psychological aspects that might be considered for a hardware model. Some

representative sources of this sort of knowledge from HCI include the “Model Human Processor” [94],

Mayhew’s overview [401], Barnard’s “Interacting Cognitive Subsystems” model [27,28,30], and the EPIC

5.2. HARDWARE MODEL: COGNITIVE CAPACITY DECOMPOSITION 161

LTM

PM

STM

long−term memory

perceptual memory

short−term memory

MEMP

COGP

LLP

cognitive processor

memory processor

low−level processorthread processor pool

memoryprocessor

STM
&

PM

ABBREVIATIONSLEGEND

fast, automatic, parallel

fast, automatic, parallel
MEMP

slow, effortful, serial
COGP

fades

LTM

deliberate reasoning

expert response

skills, perceptionLLP

small,

take turns

asynchronous

Figure 5.3: Hardware level of description of a user

model [343]. Some representative examples from cognitive science include the cognitive architectures

SOAR (e.g., Newell [446]) and ACT-R (e.g., Anderson [13]). Understanding all these (and more) is dif-

ficult for the non-specialist. What is more, not all of this knowledge will yield benefits proportional to

their cost of acquisition. Following the principle of inclusive approximation, salient generalizations and

approximations must be picked such that useful reasoning about cognitive support can be established. In

this work, only a few basic items are considered. Primarily, these establish constraints and capabilities

needed for other aspects of the models, and for reasoning about the need for cognitive support.

The hardware model is summarized in Figure 5.3, and described below. The intention of the model is

to let the diagram encode the salient psychological knowledge. The following aspects are indicated by the

figure:

1. Processing. Cognitive processing is decomposed into several interacting threads, and these threads

are distributed onto three pools of processors. The first pool consists of a single processor called

COGP. Threads running on this processor execute serially, although they may switch off as in typical

multi-threaded uniprocessing systems. The second pool consists of the single processor MEMP with

a single thread running in it. MEMP contains a single thread that accesses LTM. The third pool con-

tains many processors operating in parallel, with a single thread assigned to each. These act much

like independent “peripheral” processors [343]. Many similar sorts of multi-processing models are

assumed in cognitive and agent models (e.g., Hayes-Roth [297], EPIC [343]).

These processors are named to indicate their purpose, and labelled with their main qualities. These

crudely approximate a number of general features of human psychology:

5.3. AGENT MODEL: BEHAVIOURAL DECOMPOSITION 162

(a) The COGP models deliberate, introspectible, high-level cognitive processing. Each thread cor-

responds to some coherent cognitive processing activity. Humans frequently interleave many

of these coherent activities, such as when they switch attention between editing a program and

writing some email. COGP carries out operations slowly compared to the MEMP and LLP pools.

Because multiple threads share the processor, it models limited resources of humans to focus

attention.

(b) The LLP processing is associated with low-level skills and capabilities such as perception and

psychomotor control. These are known to be generally automatic, asynchronous, fast, and

opaque to introspection.

(c) The MEMP processing is associated with memory-based processing such as recognizing mean-

ingful stimuli and acting upon stored rules.

2. Memory. Memory is divided into short-term (STM), perceptual memory or buffers (PM), and long-

term (LTM). The PM and LTM are like unstable register pools—fast but limited. LTM is effectively

unbounded and permanent but it cannot be directly accessed from by COGP. These are named to

indicate their purpose, and labelled with their main qualities.

This crudely approximates several basic features of memory, such as the notorious limitations of

short term memory, and the relative independence of different memory buffers (e.g.,). Similar

models are frequently found in HCI models (e.g., Mayhew [401], EPIC [343], Barnard et al. [27],

Card et al. [94]).

Within SE and software comprehension, some models of cognition share commonalities with this model

(e.g., Shneiderman et al. [584]).

This model is bereft of any description of the “software” running in the processors (data types, be-

haviour, perceptual function, etc.). It selects and models a few key capabilities and limitations of human

psychology. The intent is to be maximally useful with a minimal model. If the analysis needs to be itera-

tively deepened, then the more detailed models cited above could be turned to. As a model for predicting

human performance, it may leave much to be desired. However as a model for “quick and dirty” reason-

ing about performance implications of design decisions, it may suffice. In fact, once the analyst is familiar

with Figure 5.3, A simpler “model” can also be rendered as two collections of mental capabilities:

� COGP, MEMP, LLP �, � STM, PM, LTM �.

These terms are indexes into simple psychological knowledge.

5.3 Agent Model: Behavioural Decomposition

The Agent model is a schematic model intended to allow the analyst to model aspects of the behaviour of a

DC system. Human cognition does not flit from moment to moment—it is characterized by episodes of co-

herent, purposive, goal-driven, semi-organized activity. In addition, these episodes tend to be organized

schematically and hierarchically (e.g., see Taylor [634], Nielsen [456, 459], Rasmussen [531], Moran [418],

Bass et al. [36]). Even so, this overall coherence is complicated by the interleaving of various activities, and

5.3. AGENT MODEL: BEHAVIOURAL DECOMPOSITION 163

by interruptions, breakdowns, and backtracking (e.g., Davies [163]). Many different accounts have been

drawn over the years for various aspects of this behaviour. What is needed in this work is a simplified

account that can model some mechanisms causing this behaviour. The aim is to provide a simple but

broadly-applicable schematic model to describe generalizable aspects of this behaviour. Analysts could

adapt this model to suit their particular analyses.

scribble

blackboard

scribble
 chat

watch

 chat

Figure 5.4: Problem solving metaphor of experts working around a blackboard

This need is met by a schematic, agent-based model of cognition—specifically a type of blackboard

architecture (for our purposes blackboard architectures differ from agent architectures in unimportant

ways [151]). Blackboard architectures are well-studied in AI, and have a number of descendents and

variations. Luckily, HASTI needs to include only the gross architectural features. As a consequence,

the needed concepts are described only briefly here and the reader is referred to the existing literature

if a more detailed treatment is called for.7 Blackboard architectures originated from a problem solving

metaphor advanced by Newell [442]. Newell’s original metaphor was of a group of experts collaborating

on a shared problem by standing around a blackboard and (more or less) taking turns. An illustration of

one variant of the metaphor appears in Figure 5.4. An agent model is proposed as an implementation of

this metaphor. It has two key characteristics: it proposes to encapsulate behaviour-causing mechanisms

using an agent abstraction, and it proposes a classification system (or ontology) of cognitive resources that

serve to coordinate and organize cognitive processing.

Cognitive resources are function-related collections of data that are cooperatively processed by the

agents. A classification of four types are proposed: a problem description, an agenda of goals, a control

panel for holding control representations, and a progress record. Each of these cognitive resources is in turn

composed of a collection of typed data values. To reiterate, resources are function-related collections of

7A short bibliography includes: Garlan and Shaw [580], Nii [462, 463], Craig [151], and Corkill [150]. The reader
is directed specifically to the review of blackboard systems by Carver and Lesser [113], the multi-level blackboard
architecture of Hayes-Roth [295], and the model of expert decision making by Vinze et al. [571, 659, 660]. The first
work presents a breakdown of problem solving techniques that aligns well with the breakdown presented here, the
second describes a system that mixes autonomous agent processing and a shared thread of control (which will be
adapted for use here), and the third gives an example of the application of blackboard models to modeling human
thinking that is similar to the one presented here.

5.3. AGENT MODEL: BEHAVIOURAL DECOMPOSITION 164

data; there are thus two classification systems in the ontology: resources, and data types. This ontology

is briefly summarized in Table 5.2. Each of these four resources are described in more detail in the sub-

sequent subsections (5.3.1–5.3.4). These resource types are commonly found in prior works on modeling

cognition. The ontology is consistent with other collected accounts of cognitive resources (e.g., Wright

et al. [719], Howes [314]). The agent model proposes a general scheme for cooperatively processing these

cognitive resources. It maps the cognitive resources to data stores. It also models several aspects of how

agents behave. This agent model is further described in Section 5.3.5. Afterwards, in Section 5.3.6, a short

summary is presented in combination with an example of how this model can be used to interpret prior

cognitive modeling work in software comprehension.

RESOURCE DATA TYPES PURPOSE AND ASSOCIATED FUNCTION

Problem ends, operations, constraints establishes long-term objectives to achieve, and the ways
of achieving them

Agenda goals used to juggle multiple goals at multiple levels

Control Panel plans represents control information to structure activities, and
resolve ordering constraints

Progress curr. state, history defines current problem solving state and history

Table 5.2: Cognitive resources in the agent model

5.3.1 Problem (ends, operations, constraints)

It is typical to say that users work to solve problems. In this sense a problem defines the context in which

it is possible to understand the actions and motives of the problem solver (see e.g. Simon [594, ch. 3],

Vicente [657, ch. 4]). In cognitive science and AI, defining what these problems are has been treated as the

challenge of defining a “problem space” (e.g., see the classic book by Newell et al. [449]). A problem space

is, essentially, a graph of legal states. There may be several possible ways to represent or define this logical

object, but a reasonable one is to define three things: an end to achieve, a set of conceivable or possible

actions or operations, and a set of constraints on the actions. Problem solving is portrayed as the process

of selecting appropriate operations, subject to the constraints, such that the end is achieved. The terms

“end” and “goal” are sometimes considered synonyms, but in HASTI, the term “goal” is used in a specific

sense. Because goals and sub-goals may be generated by the user in solving a problem, a term is needed

to distinguish the long-term objective defining by the problem, and the shorter-term objectives adopted to

try to solve the problem. HASTI thus reserves the term “end” for use by the analyst in modeling longer-

term problems, and “goal” for shorter-term objectives. A similar distinction is sometimes made between

an “activity” and a “task”, with the idea of an activity being roughly the same as how HASTI treats a

problem.

The above way of defining a problem is known to raise a number of difficulties. These can be quieted

somewhat by relaxing the above definitions to the point where the difficulties no longer hinder informal

reasoning. Since HASTI is being proposed to be useful in analysis of real user problems, it is necessary to

5.3. AGENT MODEL: BEHAVIOURAL DECOMPOSITION 165

briefly mention these analysis difficulties and to overview how they are resolved.

One potential difficulty is that it may be hard to find a user-independent context from which it is

possible to understand the user’s problem. In classic problem solving, the problem space is normally

defined independent of the problem solver. This fact lead Goel to remark that “It is rather puzzling that

the goal should be part of the task environment rather than the agent. In any event, goals are assumed but

not explained in information processing theory.” [243, pg. 84 (footnote 2)]. This puzzle can raise confusions

on how problems might be defined. In particular, the difficulty stems from the fact that what a user does

can often be understood only in terms of the user’s own conception of their problem. For instance, the

problem of writing a PhD proposal is one that is only reasonably defined in reference to the PhD candidate

(e.g., their interests). Thus one is lead to the curious conclusion that the context for understanding a user’s

action is dependent upon the user’s own knowledge and belief system. This possibility does not pose an

irreconcilable threat to the problem space definition, although it does become recursive and thus difficult

to reason about. Note that this problem is not the same as the problem of correctly understanding a work

domain. In well-established problem contexts (e.g., controlling a nuclear power plant), it is reasonable

to establish a firm worker-independent understanding of the problem domain. However doing so may

require a distinguished point of view (see Zhang et al. [727] and Vicente [657]).

A second potential difficulty is that “the problem” may seem to be poorly defined. In other words,

the user’s end may only be vaguely understood at the start. The classic case the ill-structured problem of

design [108]. In design, inadequate knowledge of the problem and constraints is paradigmatic; problem

solving therefore involves problem discovery or “problem setting”. Whiteside and Wixon elaborated on

these problems of goal settings:

In a tightly defined, carefully controlled laboratory situation, where the user has been given a set task,

goals are perhaps identifiable. However, in a more representative situation, users are often unable to state

unambiguous conditions of satisfaction, and are dependent on the context in which they are operating. To

the extent that we can identify the users goals at any time, they are not organized in any strict hierarchy

and are radically transformed as events unfold. Further, users are constantly distracted from their goals,

make up goals as a rationale after the fact, and state goals in general and often vague terms. In general,

we see users acting first, thrown to the situation, and perhaps devising a goal, a posteriori, if asked

to. [702, pg. 359]

In a similar way, but to a lesser extent, the constraints and possible actions are also dependent upon the

user’s conceptions of their problems, and can seem poorly defined at the start. Once again, recursion can

be applied to resolve the issue. Thus one might wish to think of problem setting as just another problem,

albeit a distinguished one that supervenes on other dependent ones. In this view it just defines a sub-space

of the problem space (e.g. Kim et al. [345]). Problem solvers then act to refine their solution and problem

space concurrently.

A third potential difficulty is that problems a user faces may change just by working on them. Specif-

ically, a recorded history of problem solving activities can change the operations that may be performed.

This case is covered below in the section on progress.

To use HASTI during analysis, the analyst determines what Problem is being solved, and then tries

5.3. AGENT MODEL: BEHAVIOURAL DECOMPOSITION 166

to model it in terms of ends, operations, and constraints. For example, an informal analysis of coding in

Java might define the end to be the generation of a correct Java program, the operations to be code writing

actions, and the constraints to be Java programming language constraints.

5.3.2 Agenda (goals)

Users are goal-directed. They do not simply react on a moment-to-moment basis in response to stimuli

reaching their senses. To achieve this, they need to maintain some sort of internal state, which we can call

“goals”. They adopt various goals to achieve and work to try to achieve them. But they also interleave

the pursuit of multiple, possibly even conflicting goals. As Green says:

...the [users] were willing, within the limit of the tools they were using, to work on whatever goal came

to mind, as long as it could be approached without undue difficulty. They did not pursue the strategy of

taking one task goal, breaking it into subgoals, solving each subgoal in turn, and then taking the next task

goal. Such a strategy is implied by simple theories of performance, but a more realistic view appears to

be that users keep an agenda of unsolved subgoals, and can proceed with any one of them at any time.

... the nearest approach to such behaviour in the literature on computational models of planning is the

’opportunistic’ planning model ... [259, pg. 29]

The agent model includes just this sort of agenda of unsolved subgoals. The agents respond by trying

to achieve specific sorts of subgoals. They also manipulate the agenda by posting new goals or refining

them. It can be assumed that many of these goals are associated with plans or sub-plans on the Control

panel (below).

To use HASTI during analysis, the analyst would determine the potential Goals that might be adopted

in order to solve the Problem. For example, in coding it might be reasoned that programmers adopt goals

of defining a collection of functions implementing a module, sub-goals of writing a function definition,

and so on. The user might then juggle these various goals [267].

5.3.3 Control Panel (plans)

Human action is planful, but not “mechanically” so in the sense that plans are rigorously followed without

alteration. Plans are posed in order to achieve a goal. There are two important aspects of planning:

intention to act in the future (“I plan to fix this up later”), and structuring the action (preparation [293]) to

account for constraints between acts (as in “No son, first we put on our socks, then we put on the shoes”).

In simplistic models of planning the structuring amounts to generating a full control plan. This is now

perceived by many as an unrealistic model of human planning (e.g., see Young et al. [722], Suchman [623]).

Instead, plans are seen as resources that structure but do not entirely dictate action (e.g. Wright et al. [719]).

Even so, plans are essentially a data encoding of control information. In the agent model, this is modeled

by instantiating the plans on a shared panel. This can therefore be called a “control panel” in which

partial control information is stored. Any agent, including asynchronous ones (memory processors, skills,

or perceptual processors), can act to generate or modify plans, fulfill a plan’s subgoal, act to signal a plan

update (e.g., see Hayes-Roth [295], Green et al. [274, pg. 32]). It is of dubious value to try to specify in this

5.3. AGENT MODEL: BEHAVIOURAL DECOMPOSITION 167

broad-brush model how plans are represented internally. However it important to point out that plans are

usually presupposed to be hierarchically structured (e.g., see GOMS [94]). Plans, in particular, decompose

into sub-goals which are in turn may be achieved by sub-plans.

To use HASTI in analysis, the analyst would determine the operations needed to perform tasks and the

orderings and constraints on this action. For instance, in coding tasks, the analyst might note that design

documentation (e.g., a UML model) serves as a plan for code generation.

5.3.4 Progress (state, history)

Problem solving can be said to involve the progression through a sequence of states in the problem space.

Part of the data involved in defining this progression is the states themselves, and the sequence that is

progressed through, that is, the history. Each state is defined by (1) the a partial solution being constructed,

(2) the internal problem solving state, and (3) recorded problem solving history. For instance if a person’s

problem is to write a sentence about how they feel about spam email, then a problem solving state could

include the partial sentence as it is being constructed, plans for structuring unconstructed phrases, and

a memory for the sub-goals that have been fulfilled, and for the phrase ordering possibilities that have

been discarded. Storing progress makes it possible to backtrack or otherwise use the history to determine

moves to perform. Thus maintaining a history provides an evolving session-specific set of operations to

the problem space definition.

To use HASTI in analysis, the analyst would determine what constitutes the evolving solution and

memories of past history of those states (or of a sequence of operations to recover such states). For in-

stance, in coding tasks, the analyst might note that the evolving program, the current statement the coder

is working, and test data are all part of the current state. History could include previously attempted solu-

tions. An “ideal” [267] could code unsupported by external memories, and could thus hold all of this data

in memory. In realistic situations, of course, the developer is supported by an external memory [260], but

if the evolving program is not recognized as part of the cognitive system, then the support of the external

memories will not be recognized.

5.3.5 The Agent Model and Its Mapping

The base Agent model is a relatively standard blackboard model with multiple “panels”. Panels are a

way of logically partitioning the blackboard contents according to their functional roles [660]. Each agent

encapsulates a coherent behaviour, activity, or function. This form of abstraction differs from cognitive

processing decompositions based on cognitive capability (planner, inferencer, etc.). The agents are fruit-

fully viewed as experts in performing some particular operation based on the long-term knowledge that

they are familiar with. This view accords with Newell’s original metaphor; it is the reason that the agents

are called “knowledge sources” (KSs) in the lexicon of blackboard systems [463]. It is important to note

that the agents are proposed as abstractions over the “software” of the mind. A variety of ways of mapping

these abstractions onto lower-level desciprions of that “software” are possible (e.g., mapping to related

rule sets in a rule-based model [65]). This mapping generates performance implications.

5.3. AGENT MODEL: BEHAVIOURAL DECOMPOSITION 168

The blackboard metaphor argues that each agent will be activated when they have an interesting addi-

tion to make towards the problem solution. They will thus read or write to the various panels as needed.

This essential insight is used to explain the key property of opportunism in human behvaiour. For instance,

one agent may know how to generate a partial plan for a particular goal on the agenda. It could then post

this plan on the plan panel for other agents to resolve. Alternatively another agent may know how to

modify the current solution state to achieve a sub-goal. Thus the blackboard architecture treats solution

processing (progress) and control processing (plans, goals) uniformly [113]. In addition, it is assumed that

there are a collection of agents that cooperatively process perceptual and motor activities. These agents

have read access to all of the above four panels, but they also have full access to relevant perceptual

memory. The overall architecture is illustrated in Figure 5.5. In the figure, the dashed line is intended to

indicate that many different agents could be defined (i.e., it is a modeling framework).

The analyst can use such an abstract model to encode a variety of goal-directed behaviours. This

might be done at a high level of granularity within informal design settings. For instance, the analyst

might note that when developers are investigating code to make a bug fix, they often switch between

activities of searching files, reading documentation, and running test cases. Thus she might draw three

different agents labelled “search”, “read dox”, and “run tests”. She might then argue that as the developer

performs these activities a plan for making a change is formed. She can then write “bug fix plan” on the

Control panel. Such a bug fixing plan might, for example, consist of a sequence of three steps: (1) add

new function variant, (2) search for old uses, (3) switch to new function where appropriate. In general, the

Agent model is used to model the cognitive activities involved in performing some task. It is also used to

expose the types of data being processed and then categorize them into function-related roles.

AGENT AGENT AGENT AGENT

BLACKBOARD

PROBLEM AGENDA CONTROL

ends goals plans curr. state historyoperations constraints

PANEL

agents take turns

PROGRESS

I/O

Figure 5.5: Schematic Agent model showing generic agents, panels, and panel data types

5.3. AGENT MODEL: BEHAVIOURAL DECOMPOSITION 169

Mapping onto Hardware

This agent model is mapped onto the hardware model as shown in Figure 5.6. The blackboard is mapped

onto the memories. It is assumed but not explicitly shown that the blackboard contents are held in some

combination of LTM and STM. Thus the analyst only is aware that often the contents will be subject to

STM limitations, and sometimes will persist. That is, the contents of the blackboard may be forgotten if

too much data is needed at once, and some parts of it persist for long terms (e.g., remembering where one

left off when returning to a programming problem after lunch).

The I/O-processing agents are mapped onto the LLP processor pools in the hardware model. This

allows them to run asynchronously. Flexibility in the mapping is allowed for the remaining agents. Some

agents are allowed to be skill-based and mapped to the LLP pools. Other agents are mapped onto dis-

tinct threads of the COGP. In most threading, threads are switched according to priority and runnability.

Specifically, certain agents are suspended until such time as their potential contribution to problem solv-

ing is elevated enough (e.g., see Carver et al. [113]). This suspension might be as a result of waiting for

a particular event or contents of the blackboard (i.e., blocked on an input or awaiting a signal). This

scheme allows both cooperative threading (e.g., turn taking) and competitive threading (e.g., competing

goals). Action of the group as a whole will be of a turn-taking nature when they require access to the same

blackboard contents. Such turn-taking indicates the contents have a coordinating role [333], that is, they

AGENT

AGENT

AGENT

AGENT

AGENT

LTM

PM

STM

long−term memory

perceptual memory

short−term memory

MEMP

COGP

LLP

cognitive processor

memory processor

low−level processorprocessor pool

memory
agent

BLACKBOARD

COGP

MEMP

LLP

ABBREVIATIONS

STM

LTM

MAP

LEGEND

Agent Hardware

PROBLEM AGENDA CONTROL PROGRESS

I/O

Figure 5.6: Mapping of Agent models to Hardware

5.3. AGENT MODEL: BEHAVIOURAL DECOMPOSITION 170

affect control [571] of thought and action. Agents doing rather different work may amicably take turns,

or an agent may suddenly jump in and interrupt after observing a situation where it thinks it can make

important progress. Agents with differing ideas on how to solve a problem may compete for attention.

This is a simplified model that could be expanded upon as needed by consulting other published

models from related domains (e.g., Visser [661], Whitefield [699], Vinze et al. [660], Zachary et al. [723]).

This model and mapping can model several important aspects of human psychology:

1. The fact that important parts of the blackboard panels are mapped onto STM means that the limita-

tions of STM affect the capacity to hold complicated contents. That is, human cognition is resource-

bound. There are limits to the depth and breadth of the agenda, control, problem, and state that

people can remember at one time. Furthermore, these things are prone to being forgotten or pushed

out of memory, resulting in slips and errors. For instance, the depth of planning is limited, and

sometimes plan steps are forgotten (e.g., see Young et al. [722]).

2. Mapping agents to separate threads running on a serial COGP models opportunistic switching be-

tween different tasks, sub-tasks, or goals based on the recognition of opportunity [113,299,489,661].

5.3.6 Summary

The agent model presents two decompositions mechanisms: (1) cognitive processing is decomposed into a

collection of agents that opportunistically switch between coherent goal-related actions, and (2) data con-

tents are stored in separate, function-specific panels on a shared blackboard. Several features of cognitive

processing were explained by mapping the agent architecture down onto the resource-limited hardware

architecture (goal switching, opportunism, planning limitations and slips, etc). In addition, the cognitive

resource types were decomposed into four orthogonal types: problem, agenda, control, and progress.

These resource types consist of collections of data with different data types. A problem consists of a col-

lection of global goals, constraints, and possible operations; progress consists current problem solving

state and history; control panels store plans; agendas store goals being considered. The data typology

was used to explain several properties of human problem solving (i.e., it is goal-directed and planful).

The result is an abstract model of human thinking and problem solving that summarizes knowledge from

prior models of cognition. Although the discussion focused on prior “internal-only” models of cognition,

the DC framework of Chapter 4 implies that in reality all of these resources may be distributed. This is

commented on below in Section 5.6.

To illustrate the applicability of this model to software engineering tasks, the “integrated” model of

software comprehension by von Mayrhauser et al. [675] (the vMV model) can be re-interpreted as a black-

board architecture in a straightforward manner. The vMV model postulates that comprehension consists

of a process of incrementally constructing a hierarchical internal representation (knowledge base) of a

system. The process is described as consisting of three different types of processes (top-down, bottom-up,

and situation) which use different processing techniques, and which build complementary types of knowl-

edge. Processing in the model is described as opportunistically switching between the three processing

types. This model is quite naturally re-interpreted using the Agent model. The three processing types are

interpreted to be three specialized agents. Thus the model would contain a top-down agent, bottom-up

5.4. SPECIALIZATION HIERARCHY: SRKM STRATA 171

agent, and situation agent. Each is opportunistically activated when it can make a contribution towards

the solution. The internal representation is identified with the progress panel (i.e., the solution state), with

the understanding that for long-term processes the incrementally built solution will need to be stored in

LTM. Other minor aspects of the vMV model can also be incorporated into this translation. However this

simple description should be enough to show that the agent model corresponds closely to existing cog-

nitive modeling in the field. In Section 8.1.2, an example of a different software comprehension model is

modeled using the Agent model.

5.4 Specialization Hierarchy: SRKM Strata

Rasmussen was not the first to note that human behaviour falls into several different categories [366,

526]. But he provided an incisive (and reasonably influential) analysis of what this sort of categorization

implies to the problem of modeling and designing systems [526, 528, 529]. His proposal was to divide

human behaviour according to how well it is specialized or adapted towards particular tasks. Specifically,

he proposed that cognition falls into three categories of response: skill-based (S), rule-based (R), and

knowledge-based (K). The categorization as a whole is called the SRK taxonomy. A summary is presented

in Table 5.3. Briefly, skill-based cognition is quick and easy because of overlearning in controlling external

devices. Rule-based cognition is fast because of deep experience in solving classes of problems. And

knowledge-based behaviour is slow and difficult because it requires deep thinking and reasoning.

The crucial realization is that properties of cognition match levels of adaptation to the tasks involved.

Because of these matches an ordering is imposed on the SRK taxonomy in terms of preferred activity.

This ordering results in an ordering on how processing falls back to different levels one level of adaptation

fails. This ordering is depicted in Figure 5.7. These basic categories of cognition will be very important for

understanding cognitive support.

CATEGORY ADAPTATION COGNITIVE PHENOMENA SUGGESTED MECHANISMS

skill Highly adapted to repeti-
tious activity not involving
deep knowledge.

Quick, automatic, effortless,
parallel, opaque.

Simple, functional, “non-
symbolic” computational models.

rule Expert response in familiar
situations.

Rapid response and pattern
matching without rational
deliberation.

Rapid memory search for expert
knowledge based on abstracted
cues.

knowledge Variations in circumstances
mean canned responses fail:
need to adapt.

Slow, serial, deliberate. Rea-
soning, problem-solving, cat-
egorization, etc.

Manipulation of internal rep-
resentations and semantically
meaningful symbols.

Table 5.3: Overview of Rasmussen’s SRK categories of human adaptation

5.4. SPECIALIZATION HIERARCHY: SRKM STRATA 172

Knowledge

Skill

Rule

fallback
adaptation,
preference

Figure 5.7: Ordering of behaviour categories based on adaptation, preference, and fallback order

In addition to these categories, Rasmussen also established: (1) a taxonomy of interpretation levels

on data, (2) a set of hypotheses about mechanisms generating the three SRK behaviour types, and (3) an

abstract model for schematically depicting how the behaviour-causing mechanisms interact. In this work,

the first aspect is not considered.8 The second two are reinterpreted in this framework by mapping his

scheme onto the hardware and agent models presented in prior sections. In particular, the mapping is

accomplished by establishing a set of layers or strata on the agent model.

This stratification works as follows. Agents are located on a stratum. Each stratum defines a typing

on the agents located within it. Each agent typing is associated with a specific way of mapping the agent

onto the hardware model. It is the properties of the hardware model that explain the different phenomena

of the SRK behaviour categories. The hardware model therefore replaces the mechanisms that Rasmussen

suggested for each SRK category (i.e., the rightmost column in Table 5.3). In addition, the agent model

explains how the different behaviours flexibly interact. Thus the agent model replaces Rasmussen’s model

(he calls it a “framework”) of how the different behaviours interact.

The mapping is as follows:

1. Skill-level. The skill-level behaviour that Rasmussen describes corresponds to the LLP processing

of the hardware model. All agents in the skill-level stratum are mapped to these components. All

I/O operations are assumed to be mediated by skill-level agents.

2. Rule-level. The rule-level behaviour corresponds to simple memory-based response mechanisms.

In the agent model, this is modeled as an agent or agents that match the current contents of the black-

board to knowledge from LTM and then post the resulting solutions or plans back to the blackboard.

This type of agent is mapped down onto the MEMP processor.

3. Knowledge-level. The knowledge-level behaviour corresponds to the serial, deliberate processing

in the hardware model. All agents at the knowledge-level stratum are mapped to threads in the

COGP processor of the hardware model.

An illustration of such a stratification appears in Figure 5.8. In the figure, a fourth stratum labelled “M” is

depicted. This will be explained below.

The above scheme very much resembles Rasmussen’s “framework”. The main difference is that di-

rect communication between agents is not depicted, and communications through a resource-restricted

data store is. Because of the close correlation, the strata terminology will be used when referring to Ras-

mussen’s framework also. For simplicity agents are forced to reside entirely within one stratum. If they

8Rasmussen’s insights are deep and potentially useful, and it may be very fruitful in the future to extend this work
by including them.

5.4. SPECIALIZATION HIERARCHY: SRKM STRATA 173

identify behaviour spanning more than one stratum, they can be simply decomposed into clusters of in-

dependent, cooperating agents.

The mappings of the strata onto the Hardware model are also depicted in Figure 5.8. A few notes can

be made regarding precedents to this scheme. In agent terminology, Rasmussen’s architecture is much

somewhat like a subsumption architecture [69] which is vertically layered (see e.g. Jennings et al. [334]). The

main differences appear to be related to communication methods of the agents. Note also that many sim-

ilar schemes have been proposed for multi-layer information flow through cognitive agents. Examples

include Norman’s multi-stage model [467], and many robot architectures (see e.g., Van de Velde [651] for

several examples). Further, it is worthwhile mentioning that Rasmussen is careful to argue that informa-

tion flows between the environment and the different strata always pass through the skill level. That is,

action and perception are always accomplished through agents on the S stratum. This constraint is also

adopted; it is depicted in Figure 5.8 by locating the I/O capabilities on the S stratum.

Before finishing, observe that the model includes a fourth stratum, labelled “M”. This is intended to in-

dicate a fourth category of cognitive behaviour called “metacognitive” activity. This category is included

in HASTI primarily as a placeholder for future work. The intention of this category is to differentiate a

special type of knowledge based processing. This knowledge based processing occurs when one thinks

about and reasons about one’s own problem solving. This corresponds in part to what was termed “re-

flective thinking” as part of “breakdowns” (see Section 3.2.1; in that work, reflective thought is considered

a different “mode” of thought (e.g., Norman [472], Lloyd et al. [389])). This is a reasonable extension of

the SRK taxonomy because it represents a case where the knowledge-based processing is ill-adapted to

smoothly solve a task. In such cases one is forced to reason about how to adapt existing knowledge-

based solutions. Because it is related to reflective thought, I thought it would be helpful to indicate future

directions for being able to discuss cognitive support in relation to reflective thought.

AGENT

AGENT

AGENT

AGENT

BLACKBOARD

S

R

K

M

LLP

MEMP

COGP

I/O

Agent Hardware
MAP

Figure 5.8: SRKM imposes stratification on Agent model

5.5. TASK DECOMPOSITION: D2C2 STRATIFICATION 174

5.5 Task Decomposition: D2C2 Stratification

The notion of a problem space is a powerful one. It can be used to treat many different activities such

as moving mice, solving algebra, and negotiating a resolution to a conflict with co-worker. The over-

all “problem” that a user faces is some complicated composition of all of these sorts of problems, and

more. Although this may seem to be a beneficial simplification in logic, the reality is that when discussing

cognitive support, a more useful vocabulary is needed. The problem space must be sensibly partitioned.

HASTI propose a four-fold partitioning of the problem space. The choices in this partitioning are re-

lated to what sorts of issues are important when analyzing cognitive support. These are called “domain”,

“device”, “coping”, and “cooperation” problems or tasks. These are summarized in Table 5.4. They are as

follows:

 Domain. A domain problem (e.g. remodularizing a program) might be solved using any number

of different tools or techniques. It is desirable to differentiate between work or domain task from the

specific tasks related to the solution environment. For instance, a commonly noted distinction in HCI

is the difference between a domain task and a device task (see below). There may be some question as

to whether it is possible in principle to define domain tasks in a completely device-invariant manner.

It is irrelevant for the purposes of this model whether generalizable domain tasks can be identified.

Instead, it is sufficient that the analyst be able to confidently categorize part a problem as being part

of the domain.

 Device. The particular tool being used to solve a problem is usually called the device. A device

creates its own set of tasks. For instance when writing a letter with a word processor one particular

device task might be to save the current file periodically. Such tasks may differ with different tools:

no saving is required when using a typewriter. All domain tasks are ultimately mapped by the user

onto sequences of device tasks.

 Coping. Domain problems present difficulties to the user, but some problems are encountered that

may not appear to be part of the domain proper. Perhaps the most significant for this work is the

unavoidable difficulty imposed by one’s own limitations, such as a small STM, or a bias for simpli-

fied reasoning. People often adopt strategies to cope with these problems (e.g., see Freed et al. [229]).

Other difficulties might appear in the form of failures (e.g. power outages) or unanticipated interrup-

tions (e.g. a telephone call from a spouse). Regardless of the source, coping problems are problems

that are attributable to difficulties not associated with the other categories.

 Coordination. It takes effort to cooperate. Cooperating individuals must synchronize, communi-

cate, and maintain joint awareness, understanding, and planning (e.g. Baecker et al. [22]). For sim-

plicity we can call these all coordination problems. Cooperation between human and computer is no

different. One might be tempted to call this category as part of the “device” category. However there

are good reasons for considering a separate category for coordination overheads. To see why, notice

that so long as cooperation is occurring, a similar collection of coordination problems can exist even

if the devices (and thus device tasks) change. For example, if an external memory is being shared

5.5. TASK DECOMPOSITION: D2C2 STRATIFICATION 175

between a user and a computer, coordinating over access to a shared item is a coordination over-

head regardless of the particular implementation of the external memory. It would be unfair to the

design of the device to lump these costs in with device costs. Thus cooperation tasks are considered

independent from the device in the same way that work tasks are.

These four types of task or subproblem are collectively called the D2C2 taxonomy. The actual proposal

relates well to previously proposed ways of decomposing task or problems (e.g., Moran [418], Whitefield

et al. [701]).

There are several reasons for wishing to decompose the overall problem space in the above manner.

First, every problem type except domain represents a different type of overhead. It is important to be able

to distinguish between an overhead and a fundamental problem of the work domain. When discussing

cognitive support, the benefits must be placed in relation to the overheads it creates. For example, a de-

signer of an external memory system will need to evaluate the cognitive support provided for work tasks

in relation to the device and cooperation overheads it creates. A second reason for providing such dis-

tinctions it that without them, it would be difficult to understand the underlying domain-related problem

solving activities of the user. The importance of this is emphasized by the experiences of Gray et al. [255].

They found it impossible to coherently understand the problem solving performed by their subjects until

they recognized the spurious activities caused by device tasks.

The D2C2 taxonomy can be used to identify different types of cognitive processing in the Agent model.

The problem types are intended to be pair-wise orthogonal; furthermore the problem type is orthogonal

to the SRKM categories (any of the four D2C2 problems could potentially be tackled by any of the SRKM

categories of behaviour). These orthogonalities can be depicted by partitioning the multi-layer SRKM

mapping from Figure 5.8. This is shown in Figure 5.9.

domain device coping coord.

AGENT

AGENT

AGENT

AGENT

BLACKBOARD

S

R

K

M

LLP

MEMP

COGP

I/O

Agent Hardware

MAP

Figure 5.9: D2C2 task taxonomy partitions agents according to their task goals.

5.6. INTERACTION DECOMPOSITION: VIRTUAL ARCHITECTURE 176

TYPE DESCRIPTION

domain related to the work context
device specific tasks for working a tool
coping work to avoid limitations/contingencies
coordination overhead tasks when cooperating

Table 5.4: Summary of task taxonomy

5.6 Interaction Decomposition: Virtual Architecture

The importance of distinguishing different virtual architectural abstractions has already been discussed

in Chapter 4. That chapter introduced the concept of a mapping between virtual architectures and their

implementing or simulating architectures. There is no need to reiterate the basic arguments here. How-

ever it is important to discuss how virtual architectures fit in with the rest of HASTI. The main impact it

makes is by making it possible to slide a virtual architecture over top of the Hardware architecture. Then,

instead of having the Agent architecture map directly to the user’s internal cognitive architecture, it can

map onto a virtual human–computer architecture.

The Agent architecture models a single user’s internal cognition using a multi-agent model. Because it

is a multi-agent model to begin with, it is a small step to extend the model to multi-agent systems such as

human–computer dyads. Similar concepts have been advanced before, usually in the context of computer-

mediated communication between humans (e.g., Demoirers et al. [174], Perry et al. [503]). Interposing a

virtual architecture between the Agent architecture and the Hardware model makes this extension pos-

sible. Then, agents can be seen to execute on the human (mental work) or computer (automations). The

blackboard can also be seen as being distributed between the human and external memory. For this

scheme to work, the interposed virtual architecture must map memory and processing to the implement-

ing Hardware architecture. For a memory system, an architecture such as the Virtual Memory architecture

from Figure 4.3 may be used (page 142). In these cases, the work done to simulate the virtual architecture

identifies and encapsulates common device and communication overheads. Thus a virtual architecture

can be used to elide such overheads from the task view in the Agent model.

Depending upon the analyst’s focus, virtual architectures might be considered important or unim-

portant. For instance, in certain circumstances the designer may wish to ignore the particular virtual

architecture. Then she might just assume that the Agent model is a distributed version and delay con-

sidering the issue of how it is implemented. In other cases, the analyst might be very concerned how the

costs of the simulation overheads compare to the benefits of the device.

5.7. SUMMARY AND CONCLUSIONS 177

5.7 Summary and Conclusions

Several important criteria impinge on any proposed framework beyond the obvious one of utility.

First, it must be accurate. This is not to say that it must offer a precise picture of the [cognition

and HCI] being supported but what it offers should be correct in the sense that it describes real

factors or aspects that influence the [tasks]. Second, it must be relatively non-complex. Invoking

psychological descriptors or cognitive structures in a form suitable for non-specialists to use and

apply is a difficult but necessary part of a good framework. Third, it must be suitably generic to

be of relevance to more than one application.

– Andrew Dillon, “Designing Usable Electronic Text” [183, pg. 123], pg. 123.

This chapter addressed the problem of defining a modeling framework for analyzing cognitive sup-

port. In order to analyze different types of cognitive support, it is necessary to have DC models to apply

the different support principles of RODS to. In particular, the DC models supply the psychological and

HCI materials with which to discuss the various forms and possibilities of cognitive support. The primary

challenges that analysts of cognitive support face are the complexity and disintegration of the knowledge

base. Furthermore, the knowledge—as it exists in cognitive psychology and HCI currently—tends to be

overly detailed relative to the needs of broad-brush analysis. Moreover, the fragmentary nature of exist-

ing modeling leads to the result where it is difficult to relate cognitive model features to performance and

support issues.

These problems were met by (1) defining a collection of principles and strategies for constructing suit-

ably integrated models, and (2) integrating a number of existing models of DC systems into a generic

modeling framework. It is considered a modeling framework because it defines only a schematic model

which is expected to be expanded and refined as needed. The principles of construction emphasized the

needs for integration, broad coverage, and approximation and abstraction. An especially important prin-

ciple for construction concerned how to decompose the modeling efforts. Specifically, it was argued that

one of the most important tasks in the entire enterprise is to determine a set of dimension along which it

is helpful to decompose DC phenomena. Then, when a decomposition is decided upon, it is important to

decompose the models for this phenomena in an analogous way.

Using these principles, a modeling framework called HASTI was proposed. The key idea behind

HASTI is that the decomposition dimensions should relate to the ways in which DC systems can be

reengineered. This consideration effectively generated the primary feature of HASTI: a collection of five

“dimensions” for decomposing aspects of DC systems. These dimensions were called: hardware, agent,

specialization, task, and interaction dimensions; each identified cognition-related phenomena and issues,

and each had a modeling structure associated with it (see Table 5.1). These dimensions name HASTI itself.

Each of these dimensions adds concepts and vocabulary for analyzing cognitive support related issues.

The models were designed so that they present an abstracted and simplified sampling of salient facts.

Relationships between the various dimensions was established by the use of inter-model mappings, or by

imposing orthogonal layerings on models. The emphasis of this presentation was primarily on modeling

5.7. SUMMARY AND CONCLUSIONS 178

users. Nonetheless, with the use of Virtual architectures, it is possible to map the same models onto joint

cognitive systems. This capability will be further illustrated in Chapter 6.

It should be reiterated that no “new” facts are being proposed in this chapter. All of these phenomena

and their models are discussed reasonably well in the science base. The contribution made here is in

selecting the relevant knowledge and integrating it in a coherent set of structured models and inter-model

mappings. The integration is very broad, simplified, principled, and unique. In concluding this chapter

it is necessary to discuss how HASTI can help cognitive support analysis in ways that the underlying

support base cannot.

First, the simplification may be valuable to both the psychology-averse SE researcher, and the spe-

cialist alike. For the non-specialist, it is a tidied, selected gathering that is ultimately grounded in rather

well-established science base. The advantages to this will be rather obvious to most researchers, but es-

pecially to the non-specialists. Current analysis practices make little use of existing cognitive theories.

Many existing modeling techniques present an initial hurdle that is too large for many non-specialists to

jump over. HASTI is a step towards providing lightweight modeling frameworks which offer smaller

hurdles and yet still present stepping stones towards deeper analysis. For the specialist, the integration

vividly illustrates how broadly construed cognitive models need to be to make useful design implications.

Rarely—if ever—are all of these aspects considered in cognitive science or HCI studies. For instance, the

comprehension model by von Mayrhauser et al. [674] maps directly in to the Agent model. The suggestion

is that it fails to address the other four dimensions of cognition. The integration therefore can help give

the specialist perspective in appreciating the limitations of the studies and in understanding how they

relate to the broader context [465].

Second, providing the five “dimensions” is important because of the way that many cognition-related

issues can be smoothly brought into the analysis as needed. Indeed, one of the main advantages for the

analysis is that an inclusive set of concepts and vocabulary is provided. The analyst can refer to memory

limitations, discuss goals and plans, compare knowledge-based and skill-based behaviour, distinguish

between device and domain tasks, and identify device tasks with simulation overheads. This benefit is

discussed further in Section 7.2.1.

Third, the way that the five “dimensions” are woven together is important. In fact, modeling the

integration is arguably as important as modeling the individual dimensions. Although it is possible to

pay attention to any one dimension during analysis, relating cognitive issues between models is made

difficult unless an explicit mapping is available. The mappings effectively create a structure of implications

and associations that can be followed during analysis. For instance, a simulation operation in the virtual

architecture can be linked to cognitive overheads in the form of device tasks, which can be classified as

a skill-based behaviour, which leads to consideration of which perceptual skills are being utilized. It is

conceivable that an experienced cognitive ergonomist might rapidly appreciate these relationships, but

the mappings in HASTI are explicit.

Lastly, HASTI is structured in such a way that RODS can be applied to it to generate a space of cognitive

structurings. This last advantage, however, is important enough to have a separate chapter devoted to

exploring it: Chapter 6.

Chapter 6

CoSTH: A Hierarchy of Support

Theories

... developers and maintainers of software are faced with the ongoing task of assessing the value

of new comprehension aids. Currently, this assessment is entirely by trial and error, usually of the

most informal and anecdotal kind. ... a useful task for engineering psychology is the development

of a set of design guides for the selection of these devices. ... As a starting point for developing

such design principles, an analysis of the way in which program comprehension aids operate is

necessary.

– Ruven Brooks, “A Theoretical Analysis of the Role of Documentation

in the Comprehension of Computer Programs” [75], 1982.

�heories of cognitive support are the intellectual foundation for understanding why tools built for cogni-

tively demanding activities are useful. They postulate how tools are able to actually improve thinking and

problem solving. Two ingredients are indispensable for using any such theory: (1) a description of some

facets of cognition, and (2) a way of indicating the ways in which tools serve to improve this cognition.

These are precisely the two things that HASTI and RODS are intended to help provide. RODS enumerates

ways in which DC systems are improved in the form of support principles—specifically, in the form of

explanations for why specific computational rearrangements of DC systems can be advantageous. RODS

is therefore a high-level support theory that does not explain in particular what sorts of cognition rear-

rangements are helpful. HASTI proposes a way of modeling joint human–computer systems in DC terms.

HASTI can therefore be combined with RODS to build more specific cognitive support theories which

make more detailed arguments about what sort of cognition is being rearranged and how. This chapter

aims to extract these theories, to illustrate how these relate to cognitive support in SE tools, and to explain

how such theories may someday be used to codify knowledge about good tool design. RODS and HASTI

set the theoretical backdrop, and this chapter begins the process of applying the theories to improve SE

179

6.1. USING HASTI AND RODS TO FORMALIZE TOOL IDEAS 180

research.

The structure of the chapter is as follows. First, in Section 6.1, an overview is provided of how HASTI

is used to specialize the high-level support theories of RODS. The output of this process is a hierarchy

of more specialized theories of cognitive support. This hierarchy is called “CoSTH”. The topmost level

of CoSTH consists of three classes of abstract support theories. Each class is based upon the application

of one of three types of support principles from RODS. Specifically, each of computational substitution

principles from distribution, specialization and algorithmic optimization are used as a basis for generating

different classes of support theories. HASTI is used as a basis for refining these topmost classes of theories.

These refinements identify equivalence classes of artifacts which are related by implementing a particular

type of cognitive support. Thus CoSTH formalizes generalizable tool ideas. Each of the three topmost

support types are described in separate sections—Sections 6.2, 6.3, and 6.4. Then the way that these

branches of the CoSTH hierarchy compose are explored in Section 6.5. Finally, the chapter closes out by

comparing this work to prior integrative work on cognitive support (Section 6.6), by discussing some of its

limitations (Section 6.7), and by providing a summary of the hierarchy and its implications (Section 6.7).

6.1 Using HASTI and RODS To Formalize Tool Ideas

Whilst there have been numerous empirical studies investigating different aspects of graphical

representations there has been little attempt to integrate the findings into an analytic framework.

What is needed, therefore, is a more systematic approach for evaluating the merits of different

kinds of graphical representations, one that is theoretically-driven and which accounts for the

cognitive processing when people interact with them. Without such an approach we have no

principled way of either making sense of the vast empirical literature on the benefits of graphical

representations or of making predictions about the value of new forms, such as animation and

virtual reality.

– Scaife and Rogers,

“External Cognition: How Do Graphical Representations Work?” [562], pg. 186.

Tools researchers are commonly interested in tool ideas rather than tools themselves. This fact was

argued in Chapter 2. Informally speaking, we may say that a tool idea is a statement that a certain class

of tools is beneficial in a certain way. The distinction between an implementation of a tool idea and the

idea itself is important. A perfectly good tool idea can be embodied in a horribly bad implementation. A

pipe-cleaner, for instance, makes a feeble lever. This fact leads to important implications for testing tools.

In order for a test to generalize, a tool idea must be tested, else any minor variation in the implementation

threatens to render the test results inapplicable to the variants. The existence of such minor variations

obviously implies that the same basic tool idea might be implemented in several different forms. This is

important to know when, for instance, refereeing papers and grant proposals, or for building re-usable

design knowledge.

6.1. USING HASTI AND RODS TO FORMALIZE TOOL IDEAS 181

It is therefore important to be able to formalize tool ideas and be able to classify artifacts into categories

of equivalent tool types. RODS works toward this goal. For example, tools that distribute data of some

kind all can be said to fall into the broad class of tools that function as an external memory. This cate-

gorization involves more than simply clustering together related tools—a tool idea is normally associated

with an understanding of the usefulness of a tool. For example, we might reasonably claim that the idea

behind a fisheye-based source code browser is that the browser helps avoid being “lost in hyperspace”

by presenting a detail-in-context view (e.g., see Storey et al. [621]). The explanation is important. RODS

formalizes the idea by providing a computational explanation for why that class of artifacts are supportive.

The reader may recall from Section 4.2 that the four cognitive support principles of RODS identify

theories of cognitive support. Since the underlying computational principles of RODS are thought to

be orthogonal concepts for substitution, the four principles of RODS induce four independent support

theories. The result is a hierarchical refinement structure to the theories as follows:

processing distribution
data distribution

computation
reengineering

distribution

specialization

algorithmic optimization

refinement

These theories identify high-level tool ideas such as external memory. They are in a sense independent of

the particulars of cognition—independent also of the DC modeling techniques used to model cognition.

This model-independence has its advantages. Conceivably many different cognitive models could be

used in conjunction with RODS. These models could be domain-specific, or they could uniquely model

certain aspects of cognition like auditory perception. This model independence is just good separation of

concerns—good theory engineering. It insulates the definition of RODS, to a certain degree, from changes

to how we understand and model human cognition. It also insulates RODS from the vastly complicating

details of various domains of application. These advantages are transferred onto the topmost levels of the

hierarchy of support theories.

The disadvantage of this independence, however, is that the ideas they formalize are too general. Thus,

although the basic RODS principles take a step towards formalizing ideas, it is, practically speaking, the

tiniest of steps. We should like to be able to formalize more specific ideas about tools. Thus some way of

making the tool ideas more specific are needed.

The way this can be done is to define more specifically what sorts of computational reengineering is

being done by the artifact. For instance, after it is noted that data is being distributed, a question likely

to be asked next is: “what data?” After noting that more-specialized processing can substitute for less-

specialized processing, one is tempted to ask: “what substitutions are possible?” This is where HASTI

comes in. The main purpose of HASTI is to be able to discuss what sorts of computational reengineerings

are possible (see Section 5.1). A key contribution of HASTI in this regard is its five-fold decomposition

of cognitive issues into various taxonomies and hierarchies. Since HASTI is derived as a simplification

and integration of cognitive modeling literature, it provides a theoretically-motivated decomposition of

cognitive aspects that may be reengineered by applying RODS restructurings.

6.1. USING HASTI AND RODS TO FORMALIZE TOOL IDEAS 182

RODS: SUBSTITUTION PRINCIPLE HASTI: MATCHING STRUCTURE COSTH: REFINEMENTS

distribution Agent data typology distribution subtypes

Virtual architectures distribution subtypes

specialization SRKM substitution hierarchy

Table 6.1: HASTI structures that align with RODS substitution types

Since RODS is model-independent, other cognitive models can also be used. However, depending

upon the cognitive model involved, generating these refined support theories can be easier said than done.

For instance, the notion of a specialization substitution would be difficult to apply on models in which no

clear distinction is made between general and specialized processing elements (e.g., the comprehension

model of von Mayrhauser et al. [675]). HASTI has been designed to provide a good starting point. The

principle design rationale for HASTI was that the structuring mechanisms should cleave computational

models along lines where the computational reengineering can be applied (see Section 5.1). Consequently,

the substitution principles of RODS are “matched” to structuring mechanisms of HASTI (see Table 5.1). A

summary of these matches is presented in Table 6.1 and described below.

DISTRIBUTION

Distribution substitutions can be applied to the resource and data type decomposition of the Agent

model, and the virtual hardware as follows:

1. Data Type. The panel types from the Agent model classify the different types of mental states.

Any of these are candidates for distribution. For instance, plans could be distributed. The

existence of a distributed data type also strongly indicates a distribution of processing of that

data. For instance a shared plan can indicate distributed planning.

2. Virtual Architecture. Virtual architectures encapsulate interface interactions, thereby abstract-

ing the interface operations. It therefore provides one class of more specific—but still general—

details about what data and agents may be distributed. For example, the task of searching an

external memory for a match is one that is clearly generalizable across many different external

memory devices, and which has external processing possibilities.

SPECIALIZATION

HASTI’s SRKM is a specialization hierarchy that distinguishes within humans four degrees of adap-

tation to a task and environment. The level of specialization indicates distinct categories of pro-

cessing which is interpreted by HASTI as involving different (levels of) cognitive mechanisms. The

SRKM hierarchy therefore provides a specialization substitution hierarchy in which lower level pro-

cessing can potentially be substituted for higher level processing.

HASTI therefore contributes several ways of refining the CoSTH hierarchy with specific details about

different sub-categories of cognitive reengineering. The result is a hierarchically structured family of

6.1. USING HASTI AND RODS TO FORMALIZE TOOL IDEAS 183

distribution data

processing

history
state (current)

generic domains

progress

ends
constraints
operations

rule−based

skill−based

recognition

rule−based action

action
perceptive/reactive

optimization

specialization

encoding shift

D

P

S

R

O

D

S

PB

PG

problem solving methods
cognitive functions
virtual hardware

algorithmic

S

G
P
O
C

GD

PS

CF

VH

SA

SR

SU

SP

EN

H

E

problem
plans
goals

Figure 6.1: Hierarchy of support theories built from RODS+HASTI

cognitive support theories, some more refined than the others. Figure 6.1 illustrates the hierarchy that

results from these refinements. This is called the “cognitive support theory hierarchy”, or CoSTH.1 The

leaves of the tree represent support theories specialized using cognitive system information from HASTI

in combination with a few additional ways of categorizing support types. It is worthwhile reiterating

the fact that these are theories of how certain computational restructurings of DC systems can explain

cognitive support—they are not theories for generating artifacts that are supportive.

Although HASTI can be used to refine CoSTH, even these more particular theories may be quite

“generic”. This is simply because HASTI is an intentionally “broad brush” modeling framework. “Generic”

cognitive support theories, in this sense, are essentially broad-brush statements about how large classes of

DC systems can be rearranged to support cognitive work. Even though their generality limits their power

to make certain explanations or predictions, the generic theories are nonetheless important to have, and

is prominently utilized in Chapter 7.

1The choice to present the body of theoretical work as a hierarchically refined collection of separate theories was
somewhat arbitrary. I could have chosen to present the whole as a sort of single “unified theory” composed of the
leaf nodes, perhaps, or I could have tried to highlight orthogonalities by presenting the theories as inhabiting a topo-
logical space. I think, however, that the hierarchical refinement presentation reinforces the theory-design perspective
(Section 2.4) well by highlighting the multiple decision points that are possible when narrowing the strokes of the
broad-brush theories.

6.1. USING HASTI AND RODS TO FORMALIZE TOOL IDEAS 184

Documentation Conventions

The bulk of the remainder of this chapter consists of descriptions of the generic cognitive support theo-

ries from CoSTH in Figure 6.1. In the following, UNIX-style file naming conventions2 is used to name

the nodes in this tree, with hyphens (’–’) replacing spaces between words. Also, to save space a set of

abbreviation letters are used to refer to various nodes in the tree. These letters are indicated in Figure 6.1

by capital italicized letters (e.g., “D”) either under the node (non-leaf nodes) or to the right of the nodes

(leaf nodes) for which they are abbreviations. So, for example, the strings distribution/data/goals

and D/D/goals both refer to the top-most leaf in Figure 6.1, and both O/encoding and O/EN name the

bottom-most one. Note that many abbreviations are reused (e.g., S, R) in different parts of the tree, but

that the leaves are all distinct.3 The duplication does not present any problem if used to name a nodes

using the UNIX style. Likewise the leaves can be named without reference to path (when it is unclear

whether a leaf node or one of the root nodes are being referred to, a note is made).

In order to structure the exposition of the support theories, a schema is imposed on describing each

support type, as follows:

� RECAP/INTRO

The relevant features of HASTI and other relevant background materials are briefly recapitulated

and summarized for convenient reference.

� INTERPRETATION GUIDELINES

Understanding how to apply the support type to real HCI analysis situations can be challenging. The

contribution of artifacts to system cognition can be extremely non-obvious, or otherwise difficult to

properly appreciate [311] (see also Section 4.1.6). This guidelines part provides a characterization of

what can constitute an instance of the support type being described. It may help the reader to think

of these characterizations as things that an experimenter would look for when performing observa-

tions of user–tool interactions. It is impossible to be completely thorough in these characterizations,

so the emphasis is placed on providing one or more paradigmatic examples.

� SAMPLE IMPLEMENTATIONS

Examples from the literature are provided here to punctuate the theoretical description with some

concrete instantiations. The examples also help demonstrate that the categories they inhabit are

nonempty. In some cases the examples are archetypical instances of an unidentifiable sub-category

of similar support types. Thus, in addition to the example, sometimes a more general description

of a refinement to the support type is also included. It is worthwhile reiterating here the role of the

examples in this exposition: they are illustrative samples of a support category; they are definitely

not exhaustive. Figure 6.2 illustrates how these examples relate to the types of cognitive support

and of cognitive support theories. The examples are all categorized by the type of cognitive support

2This naming scheme uses a sequence of node names separated by the ‘/’ character to specify a path from the root
node. A mathematician might have chosen a sub-scripted or parameterized notation such as ���goals�, but I think
the tree-walking UNIX scheme helpfully highlights the refinement path.

3Notice also that two of these, D/D/PG/past and D/D/PG/current are a little unusual but is explained later.

6.2. DISTRIBUTION 185

CORRESPONDENCE

ab
st

ra
ct

co
nc

re
te

TOOL IDEA
UNIVERSE OF
EXPLANATIONS EXAMPLESEQUIVALENCE

ARTIFACTS
UNIVERSE OF

CLASS

*

EXAMPLES

phenomena theories

THEORIES
SUPPORT

TYPES
SUPPORT

Figure 6.2: Relationships between artifacts, examples, theories, and tool ideas.

they exhibit, which in turn corresponds to the types of theories that explain them. The illustration

schematically shows that the examples may be members of more than one category (support types

combine). CoSTH inhabits the upper right quadrant (Chapter 3 attempts to elaborate the upper left).

With these organizational issues out of the way, the next four sections can be dedicated to describing

the support types and how they combine.

6.2 Distribution

One way of thinking about cognitive support is that there is a continuum of different levels of support

that ranges from the completely unsupported (entirely mental) to the completely automated (no human

thinking involved). In practice, both ends of the spectrum are generally unattainable for interesting tasks

like programming. Still it is reasonable to imagine in principle what the unachievable extremes of the

spectrum would entail. In order for the entirely mental end of the continuum to hold up under close

inspection, all of the problem, solution, and mental state information would need be held internally; all of

the processing of such information would also need to be done internally.

Distribution changes this picture. With increasing distribution the problem solving becomes more and

more dispersed. With increasing distribution less computational work is done by the user. A common

term for this is “offloading” (e.g., Scaife et al. [562]) however the terms “automation” (e.g., Boy [65], Para-

surman [484]), “allocation” (e.g., Wright et al. [719]), and “delegation” (e.g., Bhavnani et al. [48]) are also

used, and are effectively synonymous. Because “distribution” is both more general (computation can be

distributed between artifacts or other agents) and computer science-friendly, it is the preferred term in the

6.2. DISTRIBUTION 186

CLASS TYPE DESCRIPTION (SUBTYPE) EXAMPLES

data goals directs/maintains focus explicit names in task list, GoalPoster,
MediaDoc

implicit skeleton declarations during cod-
ing

plans orders or structures action explicit checklist, todo list, reminders,
schedule

implicit code repair list, query results
plan-like scripts, macros, wizard plans

remod. plan in StarDiagram, the-
sis outline

problem defines cognition context operations menus, buttons, options
constraints linguistic/physical/graphical con-

straints
combined requirements documents

progress problem solving states past, trace visitation history, breadcrumbs,
dog-ears

past, path undo, revision history
current, focus cursor position, object selection,

window focus
current, partial berrypicking

process generic intermediate computations math/stats Mathematica, SPSS
domains patterns/search grep, SCRUPLE

abstraction clustering, concept analysis, graph
layout

virtual abstracted interface tasks VM data layout, item sorting, search
hardware page management
PSMs domain independent strategies iteration wildcards, tag-&-drag, query-

replace
cognitive thinking activity attn. mgmt. critiquing
functions planning error list generation

constr. enf. type checking
learning programming-by-demonstration

script library population by peers

Abbreviations:
VM = virtual memory

PSMs = problem solving methods
attn. mgmt. = attention management
constr. enf. = constraint enforcing

Table 6.2: Summary of redistribution examples

following. Nevertheless “offloading”, “allocation”, and “delegation” are all helpful and evocative terms,

so these terms also occasionally find uses.

The remainder of this section is an elaboration of different ways of distributing cognition. For each

different type of distribution the principles for categorizing each type are explained and several examples

are given. A summary table of these is presented in Table 6.2. The table is organized hierarchically ac-

cording to distribution class (data or process), type, and what is referred to as a “subtype”. The subtypes

used in the table are primarily for organizational and explanation purposes, so in the following they may

not be explicitly mentioned.

6.2. DISTRIBUTION 187

6.2.1 Data Distribution

There are two characteristic uses of data distribution. The first is the unloading of data from the user’s

memory for later consumption by the same user. This is typically called “memory offloading”. It implies

that something functions as an external memory. The second use of distribution is the sharing of that

data between user and another agent (e.g., a computer). One might call this “memory sharing”. This type

of distribution also requires an external memory, but the shared nature of this memory is perhaps more

obvious. In the former case one normally can trace a data loop from the user to the external memory and

back again. In the latter case the data may be produced and consumed by either participant, so the data

loop may be much more convoluted or indirect.

The different types of data distribution are supplied by the Agent model’s panel content types (i.e., the

cognitive resource types and their data types). These are: goals, plans, problem, and progress. Problem

data is further decomposed into ends, constraints, and possible operations. Likewise, progress can be

further divided into past and current problem solving states. This data type hierarchy can be summarized

as follows:

progress

current pastoperationsconstraintsendsplansgoals

problem

Goals

� RECAP/INTRO

An agenda is a resource used to maintain and manage multiple goals. Goals are things to try to

achieve.

� INTERPRETATION GUIDELINES

Any external structure or feature that is employed by users to direct and manage their focus can be

considered an external implementation of an agenda. Often the agenda can be recognized by noting

cases where goals are explicitly written down, often as presentations of desired problem solving

states.

� SAMPLE IMPLEMENTATIONS

Skeletal declarations. A classic example of goal offloading from programming is given by Green

et al. [267] in their “Parsing-Gnisrap” model of code generation. Programmers planning a com-

plicated addition may externalize pending subgoals in the form of skeletal program declara-

tions to be filled in later. These skeleton declarations serve an external agenda. As Brooks

argued [71], such an external agenda can substitute for an internally stored subgoal stack.

Shared goals. Agenda sharing is often an important mechanism for coordinating agents [173]. The

Molehill learning environment [598–600] contains a good example of an external shared

agenda in the context of human–tool coordination. The computer agent is a tutor called the

GoalPoster, and it periodically “posts” the goals which it infers the student is currently

6.2. DISTRIBUTION 188

working on. In this case the externally manifested goals are names of meaningful and de-

sired problem states. An analogous function is provided by the “task list” component of the

MediaDoc system documentation environment (see Erdem et al. [204] for a description). Me-

diaDoc’s task list maintains an agenda of sub-tasks to perform for a task that a user selects.

The user’s subtask selection can therefore be partly driven by this external agenda. A similar

role for an external agenda is also used in the software design environment Argo (see Robbins

et al. [544]).

Plans

� RECAP/INTRO

Planning is about (partially) specifying future intentions or action orders, especially in response to

constraints on the ordering of activities. Planning and pre-structuring acts are therefore precompu-

tations of action sequences, or of action ordering constraints.

� INTERPRETATION GUIDELINES

Since planning is about ordering future action, external plans can be nearly any kind of structure that

can indicate or specify constraints, future intentions, or ordering of actions within the system. They

do not have to be followed slavishly to be considered a plan in this context. For instance a checklist

is a plan; so is a shopping list. Plans can organize user action, computer action, or coordinate the

two.

� SAMPLE IMPLEMENTATIONS

A reminder. A sticky note pasted on the edge of a computer screen; the event database of a popup

reminder agent.

An appointment schedule. As in a day planner or online meetings scheduler.

Inspection checklists, test plans. Code inspection checklists (e.g., Fagan [208]) are good examples

of precomputed and static plans [319, 320]. Checklists are used for performing orderly and

systematic software inspections [432]. Another common SE plan is a test plan [432].

Error lists. Most compilers will produce an error message list during compilation runs. The mes-

sage list forms a partial list of fixes which the programmer (normally) has to make.

Search results. One strategic use of query engines is to pose queries that define a structure to tra-

verse in a task. For instance a programmer might call grep to query a text base for a list of

relevant program locations to modify [596]. The search results can be used to structure the

ensuing action and thus can form an external plan of action.

“Todo” lists. Lists of things to do are commonly used ways of accumulating future intentions. Of-

ten the lists are used to organize action by imposing ordering schemes. Many development

environments (e.g., Argo [544], SourceForge4) include todo list tracking features. Such exter-

nalized lists are also frequently used for coordinating multiple agents. They often are utilized

4http://sourceforge.net/, an open-source online development resource.

6.2. DISTRIBUTION 189

in conjunction with external agendas (see above). Argo, MediaDoc, and Molehill are all ex-

amples of multi-agent systems that use task decompositions as external plans. Many people

organize their email mailboxes as a stack of things to do.

Scripts, macros, procedures. Scripts and macros are specifications of procedures (sequences of oper-

ations) for the computer to perform. Scripting languages are common across nearly all complex

systems like operating systems (Windows scripting host, tcl, sh) and applications (word pro-

cessors, reverse engineering systems [324, 426]).

Instructions, problem solving methods. Instructions for performing tasks are frequently written in

terms of procedures [657]. Sometimes these are instructions for novices which are later “inter-

nalized” as they are learned. A classic example is Polya’s popular book [513] of mathematics

problem solving. Other external instruction structures include teacher lesson plans, and their

computer analogues like structured documentation. These might be generated, for instance, to

guide “software immigrants” when starting maintenance on a new system [132].

Tours and lesson plans. Tours are like scripts for humans. They are structures that can be used to

guide someone unfamiliar with an application or information space through its contents and

organization (e.g., Marshall et al. [397]).

Wizard plans. A wizard’s internally stored goal-satisfying procedure [719] is an example of an ex-

ternal plan. Wizard plans are like computer scripts but they are typically incomplete (i.e., they

are schematic, see Ormerod [481]) since they do not implement formalized decision procedures

at the script decision points (users are queried for these decisions).

Problem

� RECAP/INTRO

A problem is the context that a person (or group or organization) acts within and gains motivation,

constraints, and action possibilities from. A user’s problem changes from moment to moment as

their understanding of this context changes. Formalizing a problem context is often difficult. One

way to formalize a problem is in terms of a problem space, which consists of (1) goals to achieve, (2)

constraints on action, and (3) operations that could be performed.

� INTERPRETATION GUIDELINES

Recognizing what constitutes external manifestations of a problem can be extraordinarily difficult

(see Section 5.3.1 for why this is so). Although identifying exactly what constitutes the problem

is tough, for our purposes here the externally manifested problem information can still be classi-

fied into ends, constraints, and possibilities for action. Of these three, perhaps constraints are the

easiest to recognize even though they can take on many different guises. Externally manifested

constraints could include physical constraints on action, logical constraints within a language, or

6.2. DISTRIBUTION 190

written specifications of logical constraints (see Zhang and Norman [727] for a more extensive com-

parison5). Externally manifested ends are identified just as goals are in an external agenda, however

they are associated with setting a context for problem solving rather than determining the moment-

to-moment focus for problem solving. Possibilities for action can be any indication of ability to per-

form an action on an interface, or to make logical moves. Logical moves can be internal operations

like inferences, or partly external moves that may be mapped down into a sequence of device-level

moves.

� SAMPLE IMPLEMENTATIONS

Drawing constraints. An architect’s T-square can be used to implement a drawing constraint for

producing horizontal and parallel lines [48].

Language constraints. A compiler will need to represent, either explicitly or implicitly, the con-

straints of the language it compiles.

Action restrictions in editors. Some syntax- or semantics- aware program editors enforce linguistic

constraints by constraining editing action [630].

Type declarations, assertions. It is widely believed that being able to specify solution constraints

is an important part of software design and development. Constraints are thought to help

one avoid “shooting one’s own foot off”. Strong typing is a fine example of externally speci-

fiable constraints [96], but many other examples can be cited, including assertions [549], con-

tracts [405], “aspects” [327], and various types of system structure specification methods (e.g.,

Moriconi et al. [421]).

Menus, buttons, options. Menus, command buttons, and options in dialogue boxes are all visual

representations of possible action. Some systems use context-sensitive menus to represent ac-

tions possible in the context.

Means-Ends Hierarchy. Externally manifested possibilities for action are called a “means-ends rep-

resentation” by Rasmussen et al. [530]. Rasmussen influentially proposed his “means-ends hi-

erarchy” as a principle for designing interfaces [528]. Many examples are given in derived and

related works (e.g., Rasmussen et al. [531], Vicente [657]).

Requirements documents. Requirements documents are frequently used to represent the problem

that developers face. These are commonly acknowledged to be necessarily incomplete and

require iterative negotiation. That is, the programming problem evolves as it is explored and

understood further. Thus requirements documentation is an excellent example of an evolving

problem conception, but one that is externally manifested.

5Since Zhang and Norman give such a nice decomposition of different ways of manifesting constraints, I have con-
sidered adding another level of refinement to CoSTH diagrammed in Figure 6.1 in which the D/D/PB/constraints
node is further subdivided into several types of constraint manifestations. However this further refinement begins to
mix implementation issues with support type issues, and I have decided against mixing them as far as it is possible.

6.2. DISTRIBUTION 191

Progress

� RECAP/INTRO

Progress data includes the current and past computational states of a system and how they evolved.

The division of progress into past and current states generate good taxa because they describe a

proper dichotomy. A reasonable synonym for past states is “history”, so “H” is used as the ab-

breviation for past state information. Since “current state” is a mouthful, we can simply drop the

“current” and call it simply “state”, abbreviating it “S”.

� INTERPRETATION GUIDELINES

External manifestations of progress tracking can be generally associated with any way of storing

current or past system states. Current state includes the rather obvious objects such as the data

being edited (current document, database, program, clipboard, etc.). It also includes, however, states

such as problem focus, like the currently active window in a windowing system. Past progress

can include snapshots of prior states, an ordered record of the problem solving path taken through

different system states, or an unordered trace of different states that the system has been through.6

� SAMPLE IMPLEMENTATIONS

Evolving solution objects. Many computing environments revolve around (a presentation of) an

evolving solution, such as a document in word processing or a system’s source code in software

development.

Logical focus. The logical object of the user’s current focus for problem solving may be externally

represented. Often this is mapped from the logical position within the abstract problem space

and onto the system’s presentation space. Common examples include mapping: logical fo-

cus onto a cursor position, object selection onto highlighted presentations, and window focus

onto window selections. One special instance of externally representing logical focus is tracing

positions with one’s hand or fingers [272, 352]. Note that if a logical object has a distributed

external presentation, then the logical focus may map to multiple presentation locations (e.g.,

Tallis [228, 631], Brown [83], Shneiderman et al. [585]).

Visitation history. Many browsers keep a history of visited links (they use this to present link

colours differently depending upon its visitation). Other similar examples include edit history

and recently-used document lists.

Interaction history. Most command interfaces provide a history of commands or responses. An

example of such a history is the scroll of paper that used to cascade down behind the old tele-

type machines. The modern equivalent of this is the terminal emulator buffer and its scrollbar.

History also includes shell command histories [275].

Breadcrumbing, dog-earing, tick marks. A special form of visitation history; people often mark their

trail or important places they’ve been to indicate relevance [454]. They also regularly record

6The terms “snapshot”, “trace”, and “path” are not further defined here as they are meant to be merely evocative
terms as part of the ongoing work of vocabulary building.

6.2. DISTRIBUTION 192

progress within a checklist using tick marks. Some environments incidentally record usage

informally as wear and tear [214, 698].

Change history, revision management. During software development, multiple branches of docu-

ments are frequently kept in a revision tree using a revision management system. These effec-

tively store partial solutions from different branches of the search space. Undo mechanisms in

applications are similar in character to such revision histories (although undo mechanisms may

differ in their state and revision encoding methods). Some systems like SeeSoft [23, 198] are

able to indicate certain aspects of an object’s change history.

Berrypicking. “Berrypicking” [37] refers to the practice of gathering together (references to) inter-

esting things so that the collected works can be returned to later or referred to en masse. For

instance incrementally adding items “to basket” while browsing online for purchases in an e-

commerce site is a simple form of berrypicking. Common non-computerized forms of such

behaviour include jotting down names or short notes pertaining to pending tasks on a scrap of

paper (see for instance the use of scrap paper reported by Bowdidge et al. [64]).

6.2.2 Processing Distribution

Processing distribution implies shared and cooperative processing of data. Distributed processing means

that multiple agents split the work; re-distributing processing can involve any shifting between these

multiple agents, but typically it refers to making computers take on cognitive more load.7 Software de-

velopment is littered with examples where processing is distributed. Probably none is more obvious than

program compilation: compilers now automate what used to be a laborious and error prone activity of

generating machine-specific code from a more abstract specification of it. Many more examples could be

produced, but apart from just listing them, it is unclear at the start how these could be coherently orga-

nized. Moreover, there does not seem to be any guarantee that any organization we could produce would

carry over for other domains. Thus we arrive quickly at an important question for this section: is there

a principled, domain-independent way of saying what sorts of processing can be distributed? For data

distribution, the Agent model panel types yield a succinct, well-motivated decomposition of data types.

These produce a corresponding taxonomy of data distribution types. The case for processing distribution

is not so clear. There are no “obvious” ways of decomposing processing in a generic way.

HASTI includes essentially two structuring mechanisms that make some kind of statement regarding

process decomposition. The first is the D2C2 task categorization taxonomy (Section 5.5). It provides cat-

egories for labeling certain tasks as corresponding to domain, device, coping strategies, or cooperating

overhead. These categories can provide helpful ways of classifying activities once they are known, but

they do not make any statements about what these activities are. The second statement HASTI makes

regarding process decomposition is the virtual hardware abstractions in the form of virtual architectures.

Virtual architectures are proposed as a way of abstracting human–artifact interactions which are common

7Distributed processing also necessarily implies that the data to process is available externally, but data distribution
is not the focus of this particular subsection.

6.2. DISTRIBUTION 193

across many different interfaces (see Section 4.3.3). They certainly are resources for characterizing widely-

applicable types of processes that may be distributed, and is utilized in the following. However the virtual

architectures still say little about the processes that are implemented “on top of” this virtual hardware.

What processes “run” on the virtual hardware? Can those processes be distributed? In sum, HASTI pro-

vides some decomposition methods for building a processing taxonomy, but they are insufficient. Other

ways of building generalizable taxonomies of processing must therefore be considered here.

There are several possible classification methods for processing that could be considered. These in-

clude:

1. Generic Domains. A frequently used method for formalizing computation is to map operations

from a problem domain into operations within domain-independent computational layers [76] (e.g.,

algebras, calculi, logics, etc.). This suggests that a fruitful approach for creating a domain-independent

taxonomy of computational methods is to enumerate operations defining these sorts of intermediate

domains (set functions, matrix calculations, graph traversals, etc.). Distributing computation would

then amount to knowing how to map cognitive work onto operations in such intermediate domains.

There can be no doubting the value of this approach because it is essentially the way we have been

successfully automating previously cognitive work for nearly a century [371,695]. As Landauer [371]

noted, however, the limitation is that the problem remains as to how to map domain processes onto

these intermediate domains. In some cases this is relatively easy (e.g., as it was for the problem of

vote tabulation). But for cognitive work such as software development, design, and maintenance,

it is exceedingly difficult. Nevertheless, even if the analyst cannot create the mapping, users may.

Thus it is possible to provide users with programmable domain-independent processing systems.

The users are then responsible for mapping their particular cognitive problem into a form that can be

externally processed. Spreadsheets are an obvious example. Thus, although domain-independent

computational layers should not be ignored, they have a rather limited capacity to serve as a gen-

eralizable basis for decomposing cognitive processing for the purposes of discussing distribution

possibilities.

2. Domain Task and Process Models. Task models are ways of decomposing activities and relating

them to goals or purpose. An example of a domain-specific task is translating a program to machine

code. Program translation is clearly a task which is specific to a particular problem domain (pro-

gramming). For many domains it may be feasible to discern a taxonomy of tasks to perform, or it

may be possible to systematically break down large-grained tasks into smaller subtasks. In either

case, a collection or taxonomy of tasks is necessarily constructed. Sometimes such a task taxonomy

emerges when developing either normative or descriptive models of problem solving within the

domain. For our purposes here it does not matter how a task decomposition is created8: sometimes

8For this work I downplay any distinctions between “cognitive” and (presumably) “non-cognitive” task analyses.
From the DC point of view there is little fundamental difference since one can generally substitute for the other
(Section 4.2.3). There might be exceptions, of course, so more-or-less equating task analysis to cognitive task analysis
may not always work. However, this stance is not so unusual since the DC view tends to blur the distinction between
thinking and acting. This view seems especially sensible in highly cognitive domains like software development
because it rarely seems worth giving up the simplicity of treating thinking and acting as being interchangeable.

6.2. DISTRIBUTION 194

the tasks are elicited during a task analysis [77,657]; sometimes they are a result of process modeling

or description (e.g., Tzerpos et al. [647], Basili et al. [34]).

In SE there are many examples of process and task models. One of the most obvious characteristics

of such models is their wide variability in granularity, form, and content. A classic process model is

the so-called “waterfall” software development process [613], which consists of a sequence of high-

level tasks to perform. In contrast, there are many fine-grained models of program comprehension,

both descriptive, like Sengler’s pseudocode model of program comprehension [572], and normative,

like Basili and Mill’s process model [34] for bottom up comprehension of code. Other task models of

programming [499], maintenance [664], remodularization [64], and reverse engineering [641] testify

to the diversity of process and task modeling in the field. Similar types of task decompositions exist

in other domains like reading [477,553], writing [92,574,575,604,605], model formulation [660], flight

planning [66], decision making [196], and even coffee making [374]. More specific task analyses are

performed routinely in standard HCI practice, and increasing emphasis is being placed on the cog-

nitive aspects of tasks [128]. Regardless of the form and content, a task or process model describes

processing of some sort and therefore can provide a vocabulary for discussing process distribution.

For instance, Boehm-Davis’s [61] model of program comprehension consists of, in part, a cycle of

“hypothesis generation”, “verification” and “segmentation” operations. Although these are puta-

tively purely mental activities, one can nevertheless consider how each of these sub-processes may

be distributed. For instance, one can contemplate distributed hypothesis generation.

The problem is that it is not at all clear how to make use of such obviously pervasive modeling

to produce general descriptions of process distribution. The first problem is that many task analyses

are better considered “competence” models rather than “performance” models. That is, they suggest

what is needed to do a task rather than the ways it is actually performed. The second problem is that

domain task decompositions are, by definition, domain-specific—notwithstanding the fact that they

may be coarse-grained or written in abstract task languages. Domain specificity is unfortunately

the main liability of these models: it is normally difficult to break them free of their domain. When

constructing domain task models it is too easy to ignore crucial similarities and patterns of activities

across domains. But when seeking a general theory of processing distribution it makes sense to try

to abstract away from domain or environment specifics. Brooks [77] chalks up the difficulty as being

primarily due to the way that tasks are usually modeled and described, especially in human-factors

task models:

... the very low level of the [primitive tasks] and the lack of any formalism for summarization makes

it difficult to use human-factors task analysis as the basis for task description in HCI. Suppose that

such a task analysis were carried out for controlling a nuclear power plant and for piloting an aircraft.

Each analysis might have thousands of instances of the task-analysis primitives. How could the

similarities and differences between the tasks be determined? [77, pg. 56]

Regardless of the exact reasons for why domain task models are hard to generalize, they are difficult

to use systematically for refining CoSTH. Despite Brooks’ pessimism, there is some hope that useful

domain-independent taxonomies can be developed. For instance it is possible to point to the work

6.2. DISTRIBUTION 195

by Chandrasekaran et al. [119] on the development of a taxonomy of generic tasks (classification, data

retrieval, state abstraction, etc.) in the domain of AI and knowledge engineering, and the body of

taxonomic work spearheaded by Fleishman [222] in the domain of psychology. There is also some

hope in generalizing relatively standard task analyses. An example is the “generalized task models”

(GTM) of the TKS task modeling method [336]. However, these latter task models are primarily

competence models, not performance models. Despite these bright spots, the current state of affairs

makes task analyses difficult to use for refining CoSTH. However a similar sort of task analysis is

featured more prominently in Chapter 8.

3. Problem Solving Methods. Brooks [77] suggested that HCI follow the lead of AI and knowledge

engineering (KE) in pursuing abstract descriptions of methods of problem solving (PS). These are

called Problem Solving Methods (PSMs) in KE, but similar concepts are known variously as tactics,

heuristic strategies, and task strategies. In other areas of computing, similar concepts are known as

“algorithmic skeletons” [143]. The PSM work is a descendant of work on generic PSMs: the so-called

“weak” methods such as “means-ends analysis” [443]. The weak methods are entirely problem

independent, and although in principle they should always work, they do not take advantage of

particular details of the task or environment in order to be efficient. Generally speaking, the more

knowledge one has about the task and task environment, the better one can tailor one’s solution

strategy to take advantage of the available invariants, constraints, and resources. PSMs expand on

the weak methods by introducing abstraction mechanisms that allow one to add details about the

problems in a generic way. They capture strategic knowledge of how to solve particular problem types

efficiently using the PS environment. Fensel et al. [209] succinctly sum up the significant potential

advantages of PSMs for KE, but they seem to apply just as well for HCI:

... [PSMs] describe domain-independent reasoning components, which specify patterns of behavior

which can be reused across applications. For instance, Propose&Revise ... provides a generic

reasoning pattern, characterized by iterative sequences of model ‘extension’ and ‘revision’ ... the

study of PSMs can be seen as a way to move beyond the notion of knowledge engineering as an

‘art’ ..., to formulate a task-oriented systematization of the field, which will make it possible to produce

rigorous handbooks similar to those available for other engineering fields. [209]

The push to identify, catalogue, and name PSMs in certain ways resembles the design patterns

work [232], except that instead of codifying successful and recurring patterns of software solutions,

the aim is to codify successful and recurring patterns of reasoning in PS. The PSM approach seems

like a promising sort of approach for developing taxonomies of processes that can be used as a basis

for reasoning about distributing them. The goals of PSM research therefore match well the needs of

tool analysis: PSM research tries to build taxonomies of PSMs that are well matched to task type but

independent of domain.

Although I know of no work that explicitly applies AI research on PSMs to HCI, the basic utility of

the concept has caught on in several places under various disguises. In the realm of HCI, one in-

stance of PSM-like descriptions of problem solving strategies is within Green’s analysis of cognitive

6.2. DISTRIBUTION 196

dimensions [257]. The cognitive dimensions framework started out with an abstract description of

a task type (basically a design task) and an abstract description of a PSM matched to that task (ba-

sically incremental generate-and-modify). Later work has elaborated this “proto-theory” [272] into

a taxonomy of 6 different “generic activities” [266, 269]. These are described as “incrementation”,

“transcription”, “modification”, “exploratory design”, “searching”, and “exploratory understand-

ing”. These are all related to high-level PSMs in that they classify generalized yet task-related strate-

gies of employing artifacts in the solution of problems. Currently, the problem of describing and

classifying such “activities” is a hot topic in research on cognitive dimensions [54]. Another excellent

example of the application of PSM-like models is the “resources model” of Wright et al. [719]. Part of

this modeling framework consists of a short list of what they termed “interaction strategies”. These

interaction strategies play a role similar to PSMs. They used these interaction strategies as resources

for reasoning about how to redistribute different types of data (or “resources” in their terminology).

Unfortunately, Wright et al. did not consider how the interaction strategies could be used to cate-

gorize types of process distribution. A further instance is the recent work by Bhavnani et al. [46, 48]

on what he calls generalizable efficient strategies. In one paper [46], he lists 10 strategies which are

grouped into four clusters: “iteration”, “propagation”, “organization”, and “visualization”. These

strategies are relatively “low-level” but they share the key idea of capturing strategic knowledge

of how to solve problems efficiently using the structure of the task environment. Similar types of

taxonomies of PS strategies also appear in many other places; one can usually find them whenever

an abstract description of PS strategies is desired (e.g., in hypertext [717] and writing [441]).

The concept of abstract PSMs is also commonly applied in software engineering and program com-

prehension research. A sizable fraction of the program comprehension work attempts to categorize

program comprehension behaviours in terms of abstract PSMs. For example a common categoriza-

tion is the tripartite split of comprehension strategies into the so-called “top-down”, “bottom-up”,

and “opportunistic” strategies (e.g., see Robson et al. [545], von Mayrhauser et al. [675]). This is an

old categorization of generic PSMs adopted from prior AI research. Top-down PS is knowledge-,

theory-, or goal-driven PS; bottom-up PS is data driven; and opportunistic PS is an interleaving

of the two to take advantage of opportunities that arise (e.g., see Carver et al. [113]).9 PSM-like de-

scriptions of other behaviours have been given elsewhere. For instance Myers [432] defined various

debugging strategies like “inductive”, “deductive”, and “backtracking”. Overall, the PSM line of

work seems promising. Unfortunately, at this time it does not appear to be mature enough to be

used systematically in this chapter.

4. Cognitive Function Taxonomy. Intelligent agents of any form must perform basic cognitive func-

tions regardless of the tasks that need to be performed. There is no closed and agreed upon enu-

meration of these functions, but they include planning, learning, deliberating, perceiving, commu-

nicating, being vigilant, and so on. Newell [446, pg. 15] provided a tentative list of such functions,

9Sometimes other distinctions are used such as “systematic” versus “as-needed” [388, 676], however these dis-
tinctions do not yield different problem solving strategies: it is possible to be either systematic or “as-needed” using
either top-down or bottom-up comprehension.

6.2. DISTRIBUTION 197

however numerous similar lists can easily be constructed just by browsing through the tables of con-

tents for many textbooks or encyclopedias in cognitive science and HCI (for example, see the recent

human factors handbook [341]). A rather different sort of list of cognitive functions is put forth by

Parasuraman et al. (see e.g., Parasuraman [484]). They propose to divide cognition into four stages

of information processing: (1) acquisition, (2) analysis, (3) decision/action selection, and (4) action

implementation. This sort of decomposition of activity is also popular, and similar decompositions

can be found in many different places, such as Mayhew’s book [401], and in the multi-stage models

of Rasmussen [526] and Norman [465–467].

Whatever the decomposition of cognitive function is chosen, the basic idea for distribution is the

same: what is applicable for an individual intelligent agent can apply equally well to extended or joint

cognitive systems. Consequently, one may talk about how any of the above cognitive functions may

be distributed within a DC system. One may think, therefore, about how to redistribute planning,

perceiving, learning, and so on. In Parasuraman et al.’s case, they use their taxonomy to discuss

different levels of automation for their four types of cognitive function [484]. A list of cognitive

functions is thus one possible way of decomposing the different types of cognitive processing dis-

tribution. There is definitely promise in this sort of decomposition. Of course there is still the small

matter that nobody knows what a list of cognitive functions should include [446], but even so an

initial list could be drawn up and ways of distributing these functions could be considered.

Although this is a promising approach at this point only the basics can be covered. HASTI does not

explicitly incorporate a cognitive function taxonomy. But in some sense a limited one is already im-

plicit in the Agent model: each of the panel types can naturally be associated with certain cognitive

functions (recall that the panels group together function-related types of data). Distribution of those

panel data types therefore implies distribution of the associated cognitive function. Plan distribu-

tion implies planning distribution, constraint distribution implies distributed constraint proposal

and evaluation, and so on.

5. Virtual Architecture. As was mentioned above, virtual architectures include generalizations of tasks

pertaining to interaction with external devices. The operations within these models are candidates

for distribution. For instance, a virtual shared memory architecture might define operations such

as searching the memory for a matching item. This is clearly a task that can have some processing

distributed onto a tool. In the D2C2 taxonomy the operations of the virtual architectures are device

tasks.

From the above it should be clear that determining a good decomposition method for describing pro-

cess distribution types is an unfinished but fundamental challenge. It is not possible at this time to be

completely systematic about generating generic process distribution theories from RODS. As a result, at

present it may be possible to only go so far as to say that certain instances of support are some type of

processing distribution (i.e., D/P), but without being able to classify it further.

Newell [446, pg. 16], when facing the slipperiness of human cognition, took solace in Voltaire’s saying

“the best is the enemy of the good”. Likewise, with a perfect decomposition of processing unattainable,

it is time to satisfice [594]. Each of the five possible decomposition methods listed above seem to have

6.2. DISTRIBUTION 198

some merit. Consequently the following adopts an attitude of pragmatic theoretical eclecticism, and a

few prudent examples are picked from four of the five decomposition methods listed above. These are as

follows:

1. Generic domains. Three examples are chosen: mathematical and statistical operations, searching

and pattern matching, and abstraction. The first is an “obvious” choice and the last two are particu-

larly relevant to software reverse engineering.

2. Domain task/process models. Saved for Chapter 8.

3. PSMs. The generic PSM of iteration—likely the simplest—is chosen.

4. Cognitive functions. The following cognitive functions are chosen based on the Agent model data

types:

RESOURCE TYPE ASSOCIATED COGNITIVE FUNCTIONS

agenda attention management, goal selection

control planning

problem constraint observation

progress progress evaluation

� learning

Here � means that learning can apply to any type of knowledge. Other cognitive functions could

easily be added, but these are a good start.

5. Virtual hardware. A virtual memory architecture example is examined. The focus is on the memory

management operations it describes. These are broken down into “back-end services”, “layout”, and

“page management” types. Page management, in turn, is decomposed into “window management”,

“page replacement”, “view management”, “working set management”, and “localization”. These

are all described in more detail below.

Note that only the five basic types of process decompositions are shown in the diagram of CoSTH in Fig-

ure 6.1. The five further decompositions given here should be thought of as potential, tentative extensions

to these five types. In such an extension, these leaves would look as in Figure 6.3. For space saving rea-

sons, several obvious abbreviations are used. Also, as indicated in the figure, several acronyms are used

for many nodes as they were in listed in Figure 6.1.

Generic Domains: Statistical and Numerical Methods

� RECAP/INTRO

Automating mathematical and statistical processing is the archetypical use of computation. Because

this is by now so mundane, it is good to include it as an example.

� INTERPRETATION GUIDELINES

Basically any computation specified in mathematical language.

6.2. DISTRIBUTION 199

back end
layout

win mgmnt
page replc
view mgmnt
wmset mgmnt
localization

page mgmnt

PM

virtual hardware

AM

I

GS
PL
CO
L

MS

AB
SPsearch & patterns

abstraction

iteration

attn mgmnt
goal selection
planning

math & stat

constr obs

generic domains

problem solving methods

cognitive functions

learning

Figure 6.3: Tentative leaves for processing distribution

� SAMPLE IMPLEMENTATIONS

Notable examples of domain-independent environments include Mathematica, SPSS and Visi-

Calc.

Generic Domains: Pattern Matching, Search

� RECAP/INTRO

Pattern matching and search are common functions of models of long-term memory.

� INTERPRETATION GUIDELINES

Commonly understood.

� SAMPLE IMPLEMENTATIONS

Grep, for instance [596]. More involved examples include involved pattern matchers like SCRU-

PLE [490], and QBO [25].

Generic Domains: Abstraction

� RECAP/INTRO

Performing “bottom-up” analysis of data involves aggregating patterns and then classifying them

using abstractions. This abstraction process is often hierarchical in nature. This type of task is

common in reverse engineering (e.g., Müller et. al [426]), but also in many other domains such as

synthesis tasks in writing (e.g., Neuwirth et al. [441]).

6.2. DISTRIBUTION 200

� INTERPRETATION GUIDELINES

Typically involves reinterpreting data at a “higher” semantic level by looking for commonalities and

structural modularity.

� SAMPLE IMPLEMENTATIONS

Statistical semantics. Algorithms can use statistical co-occurrence or other association measures as

indicators of “latent” meaning (e.g., object-verb associations [338]). The overall technique can

be called “statistical semantics” [372].

Clustering algorithms. Clustering usually means collecting items together according to similarity

or connectivity measures, although it also can imply the construction of new abstractions or

concepts with which to associate clusters (e.g., Tzerpos et al. [648]).

Concept analysis. Concept analysis is a way of generating categories and simultaneously classify-

ing items based on common features (e.g., Snelting [607]).

Graph layout algorithms. Many layout algorithms, like spring layouts, compute “closeness” met-

rics in order to lay out nodes according to connectivity (e.g., Müller et al. [426]). When presented

in an appropriate manner they can help the reverse engineering perceive these clusters, or at

least perceive good initial candidate clusters [359].

Virtual Architecture: Virtual Memory Management

� RECAP/INTRO

There are certain overheads associated with any external memory (save, perhaps, if we could im-

plant RAM chips and memory controllers directly into the brain). These overheads include carrying

out interface tasks to simulate memory access and management. A Virtual Memory architecture is

a trick to raise the abstraction level of the interaction model in order to encapsulate the complexity

of memory management. The architecture used in HASTI models a single virtual memory which is

in fact implemented by combined user and external memories and managed in part by the user. A

task analysis of external memory management will reveal several classes of operations. An impor-

tant subset of these operations are concerned with the management of the memory resources. This

includes creation and management of search indexes, managing caches, and managing memory

windows (paging).

� INTERPRETATION GUIDELINES

Remember it is the user’s view of external memory that is being referenced here, not the application

programmers’. It is critical not to confuse the two. For instance to its users, a phone book applica-

tion is an external memory; to the application’s programmer, the term may additionally refer to a

database stored on disk. From the user’s point of view memory management and access operations

are restricted to mean the methods provided by the application to store, search, access, and organize

this memory.

6.2. DISTRIBUTION 201

� SAMPLE IMPLEMENTATIONS

“Back-end” services. Modern computing platforms have a remarkable number of sophisticated mem-

ory systems on which they are built: structured documents, hierarchical file systems, and rela-

tional databases for example (e.g., see Jones [337]). Even when the database or filing services

are hidden in the “back end” of a program, these sorts of systems already perform a wide array

of processing for accessing, indexing, and so on. For instance, a modern relational database

will provide index processing—a case-based database will provide even more advanced index

processing. These can frequently greatly reduce accessing and indexing costs associated with

external memories (c.f. filing cabinets, file folders, card-based indexes, printed subject indexes).

Layout, sorting. Often the main criterion for layout algorithms is that indexing is made efficient.

For instance, an array layout, like that of a spreadsheet, makes address calculation simple (see

e.g., Larkin et al. [375]). The work done by the layout algorithm to rearrange the data into an

efficiently accessed display is a form of external memory management processing.10 For this

reason, sorting should frequently be counted as layout processing. For example, sorting file

names in a directory listing is layout processing for the purpose of improving access efficiency

to the list items.

Page management. In the VM architecture in HASTI, a computer screen is treated as memory window

onto a larger external memory, that is, it is a small, directly accessible fragment of a larger,

indirectly accessible memory. Managing this memory window is a function that can be at least

partially performed by the computer. There are several examples from the literature that one

may point to:

 Window placement/management. Many windowing systems perform work to automatically

place new windows so that they do not need to be managed directly. This may also include

creating new windows that effectively subdivide the display so that local page replacement

schemes can be used within each window.

 Page replacement. Wiecha et al. [704] propose a “visual cache” as a page replacement strat-

egy that tries to automatically manage a small number of fixed-position windows. Card

et al. [92] used a related page replacement idea for window management.

 View management. On multi-view systems, a single memory system is accessed through dif-

ferent views. Automatically maintaining consistent logical location between views is one

example of distributing view management. One prime example is so-called “synchronized

scrolling” mechanisms [83,228,585,631], where updates to one portion of the window pre-

cipitates corresponding updates in related views.

 Working set management. The set of memory locations being accessed in a given segment

of time is a process’s working set. This management processing can be redistributed. This

might involve loading in parts of memory that are about to be, or are likely to be, accessed,

10This work done by layout is of a rather different sort than the that described above concerning structural abstrac-
tion. Here the issue is layout for the purpose of efficient access; there the issue is layout for the purpose of structure
perception.

6.2. DISTRIBUTION 202

or it might involve scaling the display automatically so that the entire working set can be

seen at once.

 Localization. When accessing a slower memory through a faster memory window, memory

access locality [92, 278] becomes enormously important to performance. The reason is that

accesses to areas outside the current window will require “paging in” operations (scrolling,

loading files, etc.). One way of helping to ensure access locality for a widely scattered work-

ing set is by providing a “virtual” or temporary view that presents the scattered locations

in close proximity. In other words, one can localize a non-local working set [278]. Methods

of doing this include various ways of performing elision [230, 279, 328, 416, 557], filtering,

and querying [145]. Processing towards this end redistributes localization processing.

PSM: Iteration

� RECAP/INTRO

Iteration11 is not really a PSM in the same vein as PSMs in KE. Still, it fulfills the main qualifications:

it represents a generalizable computing pattern or structure that is specialized to take advantage of

specifics in the task or environment in order to be efficient. Iteration applies operations to elements

of a structure when given a way of traversing it. Distribution can mean getting another agent to do

some of the iteration.

� INTERPRETATION GUIDELINES

Usually some method of specifying a structure or traversal is necessary.

� SAMPLE IMPLEMENTATIONS

Wildcards, tag-and-drag. In command line systems wildcards are often used to specify the structure

to iterate a command over. For instance in UNIX the command line “/bin/rm �” applies the

remove command iteratively to a group of files. In many visual shells, iterated commands are in-

voked by performing an aggregation operation (“tagging”) followed by a gesture or command

(“dragging”) to indicate the operation to perform on each item in the aggregation. Similar dis-

tribution methods can be found in many other interfaces, such as in computer-aided design

(CAD) drawing packages [48].

Program-driven interaction. Iteration follows a control loop. Sometimes this control loop is dele-

gated onto a computer agent which exercises control over the user’s action. A simple example

is a wizard that guides a user through a sequence of steps. Perhaps a more familiar example is

a search-and-replace agent that asks the user for a sequence of yes/no responses.

Cognitive Function: Attention Management and Goal Selection

� RECAP/INTRO

An agenda is maintained in order to enable focused, goal-directed behaviour (instead of being

11I have chosen the imperative form of description rather than a declarative form (mapcar, higher-order-functions,
etc.) primarily because the state is so prominent when discussing HCI.

6.2. DISTRIBUTION 203

purely data- or percept-driven), especially in the presence of multiple tasks or subtasks. The agenda

therefore serves a key role in managing attention and selecting action based on the active goals. The

priority or urgency of goals will change from moment to moment [113] as new opportunities are

recognized in reference to pending subgoals [489]. Goal selection is also affected by an agent’s per-

ceptions of the cost versus benefit of each possible action [113,661]. Both attention management and

goal selection may be at least partially redistributed. In these cases, external agents take on some of

the load of recognizing opportunities, prioritizing subgoals, and commanding attention.

� INTERPRETATION GUIDELINES

Attention management and goal selection is usually associated with a shared agenda.

� SAMPLE IMPLEMENTATIONS

Alerts. Many systems will interrupt the user and, therefore, manage the distributed agenda [212].

An obvious example is an operating system that presents so-called “moded” dialogs when

displaying urgent alerts—these dialogues must be responded to first before anything else can

be done.

Critiquing. Intelligent critiquing agents will manage a distributed agenda by interrupting when

they believe alternate goals should be selected. An example is the critiquing agent of Argo [544],

which looks for potentially problematic design decisions and interrupts the user at appropriate

times.

Cognitive Function: Planning

� RECAP/INTRO

Planning means either establishing intentions for future actions or else establishing a course of ac-

tion, i.e., creating plans.

� INTERPRETATION GUIDELINES

Any processing done to generate structures that are followed by the user can be considered planning.

� SAMPLE IMPLEMENTATIONS

Error list generation. When compilers generate an error list they are generating a partial repair plan

for the program. The list ordering frequently acts as a step ordering since programmers often

perform repair activities by sequentially scanning down the list for repairs to make.

Query result ranking. Ranking query result sets is a common technique in information retrieval.

Result ranking is external planning when the ranking indicates future exploration order.

Cognitive Function: Constraint Observation

� RECAP/INTRO

Problem constraints can be obeyed through the vigilance of the user or be enforced by the environ-

ment [727].

6.2. DISTRIBUTION 204

� INTERPRETATION GUIDELINES

Generally any type of processing that checks and enforces constraints or reports constraint violation

is a form of constraint enforcing.

� SAMPLE IMPLEMENTATIONS Any externalized constraints are potential candidates for being checked au-

tomatically. For instance type checking of compilers is one instance.

Cognitive Function: Learning

� RECAP/INTRO

Learning can be thought of as a process of accreting and organizing knowledge, and as a process of

improving the ability to make knowledge available for use. A DC system embodies knowledge in

both internal and external forms. This knowledge encompasses both declarative like facts, concepts,

and maps, and procedural knowledge like rules, scripts, strategies, and programs. DC learning there-

fore means augmenting and refining internal and external knowledge, or adding new capabilities

for recalling and mobilizing this knowledge. Distributing learning processes means moving some

of the processing required to do this between agents.

� INTERPRETATION GUIDELINES

Distributing learning can involve instances where work is done to synthesize new knowledge struc-

tures, or to construct new rules or programs. It can also involve cases where knowledge is otherwise

made ready-to-hand, such as through indexing, adding search or construction programs, and so

on. One type of learning distribution is not considered in this chapter: when designers embody

knowledge in tools or environments. For instance, populating a plan-matching program’s database

using knowledge engineering (e.g., Wills [707], Chin et al. [127]) certainly redistributes learning, but

it these cases the tool developer has a special relationship to the user. This relationship is such that

it is awkward, to say the least, to view the developer–user activity as a collaborative learning ef-

fort (but see Section 6.7 for more discussion of this topic). In contrast, it is frequently the case that

groups of peer software developers cooperatively collect together a code repository, or add scripts or

macros to their shared development environment. This would be more easily be considered learning

distribution.

� SAMPLE IMPLEMENTATIONS

Programming by example/demonstration. It is possible for a computer agent to abstract procedural

knowledge from examples given, or from demonstrations of how to perform tasks [386]. For

instance, a system might abstract procedures for program transformations from given exam-

ples [464]. Another example is Varlet [330]; in Varlet, heuristic rules in a knowledge base are

tweaked automatically in response to sequences of decisions that a reverse engineering makes

while understanding a legacy system.

6.3. SPECIALIZATION 205

Script/macro library construction. People frequently share customizations to programmable envi-

ronments such as Rigi [426].12 Extensions of these sort are frequently in the form of plugins,

macros, or scripts.

6.3 Specialization

... what makes a presentation interesting are the efficient perceptual procedures that users can

perform using the presentation to quickly arrive at a desired result.

– Stephen M. Casner, “A Task-Analytic Approach to the Automated Design of Graphic

Presentations” [116], pg. 112.

The SRKM hierarchy provides several categories of cognitive functioning which are ordered in terms

of preference and ease. One category can often substitute for another. For instance, at the beginning

of learning a new skill, performance is frequently a knowledge-based activity, but after repetition and

practice it becomes increasingly dominated by perceptual, skill and rule-based behaviour. Such practiced

activities are easy and relatively effortless, and are frequently described in qualitative terms like ”natural”

and “fluid”. Cognitive support in this context means provision of artifacts that allow perceptual, skilled,

and rule-based behaviour to be used in place of more cognitively demanding cognition. This frequently

means that modes of interaction are changed, or it means that the way data is encoded is altered. It is

worth reiterating here that CoSTH enumerates advantageous changes to cognitive systems, not the ways

of achieving them. Therefore this chapter does not enumerate the possible ways of making specializations

happen: it only organizes the cognitive effects in terms of the specializations that are enabled.

For the most part, this subsection is an adaptation of the SRK work by Rasmussen [526]. However

there are some differences worth making note of. The main difference is the decreased emphasis on the

monitor–and–respond type of tasks which the SRK taxonomy was originally derived for, and an increased

emphasis on highly goal-directed knowledge-based behaviour. In the monitor–respond paradigm, there

is a tendency to focus on tight causal loops (e.g., catching a ball or steering a bicycle). The SBB (skill-based

behaviour) and RBB (rule-based behaviour) are, in particular, focused on closely coupled perceptual–

action loops or cue–response mechanisms. Here, effort was made to separate the perception and action

components of the loops. This seems to makes it more clear as to where substitution can occur for more

complicated and more goal-directed behaviour. The close coupling of action–perception loops is not in

dispute; the intention is only to try to distinguish between specializations occurring primarily for percep-

tion or action. As a result, the closely coupled loops highlighted by SBB and RBB are somewhat muted in

this presentation.

In addition to this difference in emphasis, the SRK model interpretation is recast specifically in terms of

HASTI rather than Rasmussen’s “framework” [657] for relating the three different classes of processing.

Recasting it in light of HASTI makes it possible to refine CoSTH based on the types of specialization

12Kenny Wong, personal communication, November 24, 2000.

6.3. SPECIALIZATION 206

HASTI describes. The recasting of SRK also has the effect of changing the language for specialization:

Rasmussen’s specializing substitutions are in terms of behaviour substitution—substitution of behaviour

phenomena—and in this work the substitution is in terms of computing mechanisms.13

The basic idea of specialization substitution might well seem conceptually simple, but understanding

specialization in realistic situations is fraught with complications. As Vicente is careful to note [657], real-

world cognition is normally a rich mixture of activity on all of the SRK levels. The apparent distinctness

of the SRK levels, and the overall simplicity of the SRK framework, mask the difficulty of converting the

idea of specialization into credible explanations of support. The complicated nature of the interactions be-

tween SRK levels is counteracted by focusing on examples of “simple” specializations. For my purposes

here, simple specialization shall consist of a single, wholesale replacement of a computational method

with another. A brief summary table of these specializations is presented in Table 6.3. In the table, ar-

rows are used to indicate action/perception differences (= perception, 	 = action). More complicated

rearrangements are discussed in Section 6.5.

TYPE � DESCRIPTION SUBSTITUTES FOR EXAMPLES

skill � low-level hardware vigilance sound at significant events
replaces recognition- logical operation visual search in graphs
based or generalized constraint observation animation visualizations
cognitive machinery computer animation envisionment using imagery

� skilled action mental rotation Tetris piece rotation
rule � rapid recognition and structure extraction clich é plan recognition

recall of information situation assessment display-based recognition
� stored precomputed interface metaphors reuse of skill

solutions are reused

� = perception / assessment
� = action

Table 6.3: Summary of specialization substitution types

Skill Level: Perceptual Substitution

� RECAP/INTRO

Perceptual processes can be rapid, automatic, effortless, and can occur in parallel with other pro-

cesses. HASTI does not describe what these perceptual processes involve, but it is possible to enlist

13It is worth commenting briefly on this point since Rasmussen contended [526,528] that it is often sufficient to con-
sider only categories of phenomena (memory issues, cognitive processing types) rather than models of mechanisms
underlying these phenomena. It seems that there is no practical different between describing specializing substitu-
tions in terms of phenomenon or mechanism since, after all, mechanism and phenomenon are supposed to correspond
to one another. Furthermore, even phenomena need to be described and formalized some how, and abstract mod-
els are perhaps the most parsimonious ways known. Since HASTI is compatible with Rasmussen’s explanation of
behaviour, shifting the language in the direction of a mechanism orientation means that my model-oriented presen-
tation can always be mapped back onto Rasmussen’s behaviour vocabulary. See Section 5.4 for more information on
the mapping.

6.3. SPECIALIZATION 207

the help of other resources in order to fill in some of the details. Casner [116], for instance, lists a cat-

alogue of some 17 perceptual operators that can potentially be substituted for inferences. Certainly

there is ample opportunity to expand this list further, but there is rather little guidance as to how

to do it. For example, Kosslyn [360] lists four abilities of imagery that might be enlisted. Are these

related to Casner’s list of perceptual operators, and if so, how? Resolving this level of modeling is

beyond the scope of this work, and we shall have to make do with just listing a few representative

instances of specializations. Regardless of how one models perceptual capabilities, the number of

logical operations that can be substituted with perceptual operators is limited only by the ability to

encode problems in a representation that enables the specialization.

� INTERPRETATION GUIDELINES

Perceptual processing is generally difficult to casually observe because it is usually so rapid and

un-introspectible. Clearly one of the clues as to whether or not specialization is possible is the form

of the artifact: if there are differences in visual form and presentation, these are the changes that are

likely to impact perceptual processing.

� SAMPLE IMPLEMENTATIONS

Observational vigilance. Perceptual cues can replace the need to maintain observational vigilance

(essentially situation or condition polling). The most obvious example is probably the use of a

sound to signal the occurrence of a significant event like the completion of a lengthy operation.

Simple search. A classic example of perceptual operator replacement is the substitution of tabular

data presentations for graphical ones. For instance consider the task of searching for a mini-

mum or maximum value in a list of values. In tabular form it is straightforward but involves

number interpretation and memory. Change the presentation into a line graph, and the search

becomes a simple visual search for the highest point in the line graph [472].

Constraint violation detection. Kraemer and Stasko [362] give an example where a violation in a

program’s constraint can be detected by a perceptual judgment when watching an animation

of its execution.

Imagery and proxy physical manipulation. Mental visualization skills can operate rapidly on “men-

tal models” in a way that is almost exactly as if perception and physical manipulation were

used [360]. Evidence is accumulating that suggests that both mental imagery and perception

activate common low-level brain functions [360]. This provides a partial explanation for the

efficiency of mental imagery in terms of specialization, i.e., that imagery skills could substitute

for other knowledge-based cognition. In this sense the title of “perceptual substitution” at the

head of this section is actually a misnomer since no actual perception need be involved to acti-

vate the imagery processing capabilities [360]. There is certainly ample evidence to suggest that

mental imagery is an important part of a software developer’s mental life [507]. The only ques-

tion is: other than being used in training, how can artifacts be said to support cognition through

imagery? Not directly, perhaps, but since imagery can be seen as an internally-generated form

6.3. SPECIALIZATION 208

of perception and action, imagery may substitute for more taxing cognitive actions when a vi-

sualization or visual is not present or in view. For instance, consider the immediately prior

example of visual constraint violation detection of a program animation. After detecting a

constraint violation, imagery may come into play. A developer might be able to visualize (i.e.,

using imagery, not using a visualization program) how the animation will play out if she makes

certain changes the program.

Skill: Action Substitution

� RECAP/INTRO

Skilled manipulation of external artifacts is similar to perceptual processing in that certain opera-

tions are easy, rapid, largely automatic, and parallelizable.

� INTERPRETATION GUIDELINES

External artifacts obviously need to be manipulable in order for action substitution to occur. This

manipulation needs to be used instead of perform reasoning or other mental action.14

� SAMPLE IMPLEMENTATIONS

Tetris moves. A well-studied example of action substitution is the instances of “epistemic action”

noted by Kirlik and Kirsh (see Section 4.1.6). For instance, Kirsh and Maglio’s observations

of Tetris15 game playing [353] showed that players will rapidly rotate pieces—not to move

the pieces closer to their final orientation—but to (among other things) effectively structure the

problem by eliminating orientation variation on the input.

Media manipulation. Many problem solvers use skilled manipulation of external media to substi-

tute for problem solving that would otherwise require mental gymnastics. Writers manipulate

notes and diagrams [575]; designers manipulate models and materials [566].

Rule Based: Recognition-based Substitution

� RECAP/INTRO

In the purposefully simplistic HASTI model, recognition is a function of an active memory system

that constantly searches long-term memory for relevant chunks or facts based on the contents of

working memory and perceptual buffers. This retrieval could be based on cues generated by per-

ception, or by other, higher level cognitive processes. The retrieval is automatic, fast, and effortless,

14Note that skilled action is frequently exhibited in combination with perceptive and reactive capabilities—what
Rasmussen terms “skill-based behaviour”. For instance tracing an a drawing involves the close coordination of hand
movement and perceptual feedback [526]. In spite of this fact it is still reasonable to differentiate between perceptual
substitution and action substitution since perceptual substitution can stand well on its own. For example for simple
visual graph search the only physical skills that may be needed are the ability to move one’s eyes. The distinction is
blurred by “active vision” [349] (see also Ware and Franck [688]) in which perception and action are tightly linked,
however this blurring does not negate the utility of making the distinction.

15A video game in which players must maneuver moving game pieces into winning positions under time
constraints.

6.3. SPECIALIZATION 209

however it is dependent upon having the right cues available—sometimes the cues required are

nearly exactly the same cues used to encode and index the memories. This fact means that recall

and expert performance are sometimes situation specific [657]. Many types of memories could be

recalled, including past episodes, facts, and images. Memory’s basic function is that it obviates the

need to reconstruct the recalled information. This is clearly useful when the needed information is

transient, as it is for information that has become scrolled off of the screen [10]. But it is also useful

when recognizing information that is latent, implicit, or implied in a display. For instance it is usually

far better to rapidly recognize a threat from a falling boulder than to have to painstakingly deduce

it by calculating its probability of landing upon you with crushing force. Display-based problem

solving (see Section 6.5.2), in particular, relies on the rapid perception of problem-solving state.

� INTERPRETATION GUIDELINES

Recognition-based action is often identified with fluid expert responses that do not leave verbal-

izable traces [657]. Subjects seem to automatically and rapidly perceive and recognize familiar

patterns and cues. Generally speaking, recognition-based replacement requires some expertise in

recognizing patterns and cues in the environment and in the problem situation.

� SAMPLE IMPLEMENTATIONS

Cliché recognition. Experienced programmers can rapidly recognize clichéd patterns (see e.g., McK-

eithen et al. [403]). Much of the research in relation to this ability has been concerned with

the recognition of the so-called programming plans [51, 241, 609, 707] and programming id-

ioms [6,611]. However the findings probably generalize for all relevant recurrent structures (text

structures, control flow structures [266], design patterns, architectural patterns, etc.). As one

would expect, these structures would need to be relevant to the programming language, and

the programmer would require training or experience to be able to recognize them [241, 375].

Ways of enabling recognition include methods for presenting the patterns in such a way that

they can be easily recognized [241], or using names that cue the appropriate clichés.

Situation recognition. As mentioned in the section on data distribution, expert display users often

rely on externally represented action cues in order to determine what to do next. For example

during coffee making [374], the coffee maker will be able to quickly perceive the state of the cof-

fee making. This recognition will cue a response for what to do next. In this perceive-respond

action, the coffee maker does not consciously reason about the state of the coffee making. Pre-

sentation of external state (i.e., situation) in a way that enables such recognition is one way of

enabling situation recognition substitution.

Rule Based: Stored Rule Substitution

� RECAP/INTRO

Knowing how to act in a given situation can be difficult and involve a lot of reasoning. Experts

have been exposed to many different situations and have learned rules that they can apply to sim-

ilar situations when they are recognized. Rules are essentially precomputed solutions: the experts’

6.4. ALGORITHMIC OPTIMIZATION 210

vast memory with quick cue-based access means the strategy of storing precomputed or “compiled”

results will be often faster than recomputing them again.16 Recalling past solutions to problems is

a method of substituting memory-based computing for more effortful reasoning. Expert program-

mers, for instance, have a vast [72] stored collection of rules on how to write small snippets of code.

When presented a situation in which they need to produce a similar snippet, they will not perform

laborious reasoning but will instead promptly produce a variation of the canned result. As Sheil

said, “If you know how to program, you would neither generate [a familiar fragment] nor synthe-

size an understanding of it. You would know the answer. You would recognize the problem, key

directly into that knowledge, and pull out a working procedure” [581, pg. 117] (emphasis original).

� INTERPRETATION GUIDELINES

Rule-based action generally is recognizable by its rapid and unverbalizable nature. For instance

an experienced designer may adopt certain problem constraints without comment and seemingly

without thought (e.g., Eastman [194]).

� SAMPLE IMPLEMENTATIONS

Interface metaphors. Experts develop skill at performing routine low-level tasks such as interface

interaction. At least part of smooth skilled performance is the mobilization of rules saying how

to achieve task goals using the interface (these would correspond to methods or selection rules

in GOMS [94]). It has been suggested that metaphors for interaction (e.g., the “desktop” in-

terface) taps into this knowledge base. The user may be a relative expert in the metaphorical

world, but a novice in the particular task domain at hand. Using the metaphor can effectively

“co-opt” this rule-based problem solving knowledge: the user can solve problems in the anal-

ogous world rather than the ones they are novices in.

6.4 Algorithmic Optimization

The term “algorithmic optimization” is intended to refer to cases where computations are restructured by

substituting algorithms, ADTs, or encodings. A simple demonstration of cognitive restructuring is Nor-

man’s example of changing number systems from Roman to Arabic [472]. Multiplying numbers in Roman

format is much harder (for humans) than in Arabic. The change is best categorized as a change in number

encoding formats and the corresponding changes in algorithm. It is noteworthy that the improvement

to performance can have little to do with any of the other principles of cognitive support: it involves no

reduction in task, no distribution of data or process, and no new specializations in the cognitive machin-

ery (it is essentially a rule-based problem for those skilled in the art). It is only the restructuring of the

computations that has a supportive effect.

To the best of my knowledge there are no principled ways of categorizing cognitive restructurings.

This means that it is impossible to systematically refine CoSTH any further. There are two main reasons

16This admittedly simplistic account suggests that learning rules requires someone to have a high-level under-
standing of the solution first in order for the precomputation to be made beforehand. This is not always the case (see
Vicente [657, ch .11]), however the distinction is not important for the present purposes.

6.5. COMPOSITE REARRANGEMENT 211

for this impasse. First, RODS as it stands does not contain a taxonomy of optimization types. Ideally, a

taxonomy could be given (in a generic and principled way) that enumerates the types of computational

rearrangements have performance advantages. Even with such a taxonomy (and there are perhaps decent

initial candidates [18]), there is still the rather enigmatic problem of classifying representation shifts like

the one from Roman to Arabic. Much of the existing knowledge, such as Norman’s principles of rep-

resentation [472], either fails to provide a taxonomy of ways of changing representations, or else makes

statements about other cognitive support types, especially perceptual substitution. Thus, I know of no

principled taxonomies of such representation shifts, although there are some potential resources to con-

sider (see e.g., the review by Blackwell et al. [55]). The second cause of the impasse is that HASTI does not

propose any features that say what sorts of optimizations are possible. Humans are not reprogrammable

like computers are, so human psychology will have much to say about which optimizations are reason-

able, and which are frankly impossible. Because of these two problems, there seems to be no resources for

further refining theories of cognitive restructurings. Consequently CoSTH is limited to merely noting an

example of encoding shifts.

Encoding Shift

� RECAP/INTRO

Making changes to the data encodings for an ADT will usually alter the way the ADT’s operations

(algorithms, procedures) on them will be performed. The relevant application for cognitive support

is when the number of difficult mental operations are reduced, or when the strain on cognitive

resources is lessened.

� INTERPRETATION GUIDELINES

In HCI, the main application of a shift in encoding is when the encoding of externally manifested

data changes with respect to the user’s perception and interpretation of it.17 This type of encoding

change will typically involve what is sometimes referred to as a shift in symbol systems (e.g., see

Rasmussen [526]). Note that the type of change of encoding referred to is not merely a cosmetic

change to presentation. For instance neither changing the colours, nor using a new set of letters

should be considered an instance of encoding shift for Roman numerals.

� SAMPLE IMPLEMENTATIONS The canonical example of encoding shift is the change from Roman to Arabic

numerals which made (most) arithmetic operations easier to perform [472]. For instance using a

piece of paper for doing long division is far easier using Arabic numerals.

6.5 Composite Rearrangement

Three types of cognitive support—distribution, substitution, and cognitive restructuring—have been ex-

amined so far. Each category of support was further divided into a small number of important variations.

These variations were derived from principled consideration of the ways of applying the three support

17This is opposed to, say, changing the computer’s internal encoding of pictures from TIFF to JPEG.

6.5. COMPOSITE REARRANGEMENT 212

principles to DC models. The result is a collection of a few dozen distinct support theories arranged in

three families.

It is fruitful to view the three support principles as orthogonal bases for decomposing complex forms

of support into independent principles. This capability to decompose support into its basic components

is enormously useful. As Chapter 3 showed, there are a bewildering number of different forms and vari-

ations of cognitive support. A decomposition framework can bring some degree of order to this wild

menagerie. It can show the many variations of support to be different manifestations and combinations

of just a few handfuls of primary support types. The analogy utilized earlier was that the support prin-

ciples decomposition plays a role similar to the one played by periodic table of elements in chemistry:

the periodic table brought order to the endless variety of chemical compounds (it also, incidentally, was

organized into families). The support principles decomposition framework of this chapter may not yet

be fully developed and completely satisfactory, but it should be clear that some sort of decomposition

framework is both necessary and possible.

Up until this point, it has been quite reasonable to restrict our focus to distinct types of cognitive sup-

port. Being able to pick apart distinct types of support can simplify the explanations made for them.

However, in reality, the categories of cognitive support is not so easily disentangled. The attentive reader

may have already noticed this fact after examining the examples of cognitive support used so far: most

of them hint at—or appear to depend upon—other support principles in addition to the one being high-

lighted by the particular example. To further illustrate the interdependencies between support types,

any number of additional examples could be brought forth. Consider the following example, which was

described by Sharples in reference to the support provided by writing environments:

One way to overcome the difficulties of performing ... complex knowledge manipulation in the head is

to capture ideas on paper (or some other external medium such as a computer screen) in the form of

external representations that stand for mental structures. So long as ideas, plans, and drafts are locked

inside a writer’s head, then modifying and developing them will overload the writer’s short-term memory.

By putting them down on paper (or some other suitable medium) the writer is able to explore different ways

of structuring the content and to apply systematic transformations, such as prioritizing items, reversing

the order, or clustering together related items. Writing creates external representations and the external

representations condition the writing process. [575, p. 135]

Clearly an account of something even as “simple” as pen and paper will need to be multifaceted. Sharples’

brief synopsis makes oblique references to several forms of support. These are referred to here as D/D

(ideas, plans, drafts), D/P (sorters, clusterers), S/S/perceptual, and S/S/action. This example demon-

strates that even for a simple collection of artifacts, different types of cognitive support may be potentially

involved. Consequently, to make sense of realistic instances of cognitive support some way is needed for

understanding how the support principles compose. To continue with the analogy to chemistry, some-

thing akin to a theory of chemical composition is required. How do atoms compose? What families of

compounds are possible? These questions are answered by a composition theory. A similar sort of theory is

needed for CoSTH.

6.5. COMPOSITE REARRANGEMENT 213

An encompassing theory of support composition is beyond the scope of this work. However it is pos-

sible to gain a sense of what may be involved, and to give at least a few representative examples of cases

where support principles composition is at work. Section 6.5.1, reconsiders many of the examples which

were used in the preceding sections. These were previously held up as exemplars of the various types of

support. These examples are used to show that other support types are usually found in conjunction with

them. The aim is not to be exhaustive, but to be illustrative. Then, Section 6.5.2 considers two commonly

cited examples of complicated reengineerings of cognition. Decomposing these high-profile compositions

of support types using CoSTH hints at the breadth of CoSTH. It also may help to develop intuition as to

how the support principles compose.

6.5.1 Revisiting Previous Examples

This subsection revisits some of the previously described examples to give some inkling as to how dif-

ferent support principles combine. A selection of these examples are summarized in Table 6.4. Multiple

support types were already mentioned for the first two listed in the table. The last three entries (in italics)

are from the next subsection, and can be ignored for the time being. The table is not meant to be searched

for patterns, it is only intended to summarize the selected combinations being analyzed. However the ta-

ble should help make it clear that CoSTH makes it conceivable to rationally compare even vastly different

tools and environments based on how they serve to improve cognition.

Data Distribution Processing Distribution Specialization O

PB PG GD VH PS CF Skill Rule

G P O C G H S MS PS AB PM I AM PL CO SP SA SR SU EN

requirements docs

writing media

skeletal declarations

...boobytrapped

MediaDoc

wizards

Emacs’ compile

Emacs’ igrep

search-replace

context-sens. menu

type checker

browser links

reminder agent

DBPS

precomputation

backtalk

(abbreviations from Figures 6.1 and 6.3, except DBPS = display-based problem solving)

Table 6.4: Examples which are compositions of multiple support factors

6.5. COMPOSITE REARRANGEMENT 214

� D/D/goals

 Skeletal declarations. In programming, skeletal declarations can be used to externalize pend-

ing subgoals. A trick I have seen used in this respect is to ensure that each skeleton generates

compile-time or run-time exceptions.18 “Booby-trapping” the skeletons in this manner ensures

that these pending goals are attended to at some point in case they are forgotten. This is a

way of externalizing constraints (D/D/PB/constraints) and externalizing constraint check-

ing (D/P/CF/constr-obs) so that either the compiler or the runtime system performs the

checks.

 Shared goals. The GoalPoster agent in the Molehill environment can be seen as a col-

laborative agent involved in plan setting (D/P/CF/planning) and attention management

(D/P/CF/attn-mgmt). In the Mediadoc example, the task list serves also as an external plan

(D/D/plan).

� D/D/plan

 Scheduler. Schedulers frequently have reminder functions (D/P/CF/attn-mgmt).

 Scripts, macros, wizards. These external plans are normally executed (at least partially) by the

computer (D/P). Stepping through a wizard requires that progress information be kept by the

computer (D/D/PG/curr). Wizards will normally display, at each choice point, a number of

options available to the user (D/D/PB/operations). They may also display the name of the

task being performed to keep the user reminded of it (D/D/goals).

 Error lists Generating the error list is a form of external processing (D/P), specifically planning

(D/P/CF/planning). But the presentation of the error list may be made such that the user can

apply visual operators to determine the order in which errors should likely be attended to [476]

(S/S/perceptual). Many compilation environments have functions specifically designed to

allow the programmer to step through the plan. This requires some functionality in common

with wizards, namely the presentation of stepping options (D/D/PB/operations) and track-

ing progress (D/D/PG/curr). A good example is the popular editor Emacs. Emacs has a

compile mode that allows the user to step through an error list from a compiler by hitting

a “next” key sequence to move to the next list item. When a compilation is invoked, Emacs

automatically partitions the screen so that both the error list and an editor page are shown

(D/P/VH/PM/win-mgmt), and then pages in files and scrolls to the error location as needed af-

ter the “next” key is pressed (D/P/VH/PM/page-replc). Note that even if such functionality

is not available, users can frequently simulate it by using multiple windows strategically: one

places compilation results in a separate window and then uses the cursor position (or perhaps

a finger) to trace one’s progress.

 Query results. Query results are frequently used much as error lists are: to traverse a sequence

of related locations. Another Emacs mode called igrep works analogously to compile mode,

18See for instance Wiki Web’s entry (http://c2.com/cgi/wiki?StubButton) for “StubButton”

6.5. COMPOSITE REARRANGEMENT 215

except that instead of stepping through an error resolution plan, it allows one to step through

a list of search results created using the tool grep (or any other program that creates a suitable

list for that matter). Similar types of stepping tools can be found in many other environments

such as tkSee [596]. A variation of this stepping mechanism are so-called search-and-replace

mechanisms, like Emacs’ query-replace function. Like wizards, such search-and-replace

mechanisms step through an update plan calling on the user for decision making concern-

ing replacement (normally “replace” or “skip”). Some interfaces display the choice options

(D/D/PB/operations). Most search-and-replace involves having the user give up the main

loop of control—instead the computer performs a simple iteration over a linear structure de-

fined by the query results (D/P/PS/iteration).

� D/D/problem

 Menus, buttons, options. Context sensitive menus implement moded dialogues, and therefore

need to have a shared problem state (D/D/PG/state). The also have to process this shared

state in order to determine the possible options in the present context (D/P/CF/planning).

 Language constraints. External constraints are frequently created in order to have them me-

chanically checked (D/P/CF/constr-obs).

� D/D/progress

 Visitation history. Browsers frequently indicate link visitation state using colour. Users can

apply visual search routines (S/S/perceptual) to locate unvisited nodes.

 Change history. Like visitation history mechanisms in browsers, SeeSoft colour codes pro-

gram fragments. It uses colours to show the number of change episodes recorded for each

program fragment. Users can apply visual routines to substitute for high-level search opera-

tions (S/S/perceptual), and the colouring may serve to draw attention to high-priority items

(D/P/CF/attn-mgmt).

� D/P/GD

 Graph layout algorithms. Humans use perceptual capabilities to determine clustering in many

graph layouts (S/S/perceptual).

6.5.2 Reconstructing and Naming Happy Composites

At the beginning of this section I recounted Sharples’ analysis of the values of writing with paper and

pen in hand. In that example the cognitive support principles seemed to fall into place one by one, so

that the whole was more than a simple combination of the parts. Externalizing mental structures onto pa-

per unburdens memory. Once externalized, it can be manipulated skillfully, processed externally, and be

searched visually for pattern and constraint violations. Moreover, being able to manipulate and perceive

the externalization is another reason to externalize it in the first place. This fact becomes even clearer if

a computer can help process it. Thus, when one analyzes all of these benefits, it seems that the pieces

6.5. COMPOSITE REARRANGEMENT 216

fit together and lean on each other in a mutually reinforcing way—much like the mutually reinforcing

structure of a stone arch. The support principles appear combine gracefully. The design patterns com-

munity might say that the artifact resolves multiple forces [148]. I do not necessarily wish to discourage the

possibly prosperous comparison to design patterns. But for the sake of differentiation, let us not call them

“patterns” just yet. Instead, let us agree to call them “happy composites”.

A good theory of cognitive support composition would say how these happy composites arise. This

is work for the future. But in the meantime, a bottom-up approach of analyzing good compositions may

still yield some fruitful intuitions. With CoSTH in our toolbelt, we are in a position to pick up a few

happy composites and decompose them to “see what makes them tick”. In this section a few happy

composites are selected from the literature and examined to determine how cognitive support principles

have combined. Although the approach is unlikely to yield a theory, it may deliver insight.

This bottom-up approach has two other important and simultaneous benefits:

1. REINFORCING COSTH. If the happy composites are chosen wisely, it may be possible to lend some

credence to the de-compositional account of cognitive support offered by CoSTH. Specifically, if it

can be shown that existing published accounts of the happy composites can be reconstructed using

CoSTH, it argues for the usefulness and applicability of CoSTH.

2. TOWARD A PATTERN CATALOG? The happy composites describe the pattern of a fruitful solution

to a problem. In particular, they describe solutions that appear to “resolve multiple forces”. Thus,

even if we do not have a generative theory for building the happy composites, we can helpfully

name them and construct a catalogue of them. Such a catalogue would almost certainly be useful for

designers (see the theory-based design scenario of Section 2.3.2). If the composites can be described

in terms of component support principles, it may prove to be a useful indexing of design knowledge.

This topic is revisited in Chapter 7.

Towards these ends, three happy composites are selected from the literature in order to consider their

composition. These are called “display-based problem solving” (DBPS), “precomputation”, and “back-

talk”. They are reasonably widely known, and they have a rather firmly established terminology. The

three happy composites are listed as the last three entries in Table 6.4 (so that they can be easily compared

to the composites already mentioned).

It is probably unwise to push the analogy to chemical composition too far, but another interesting sim-

ilarity can be made. Chemical compounds can be (somewhat) uniquely named by listing their molecular

contents. For instance water is HOH (or H�O to avoid repetition), and table salt is named NaCl. Since the

leaves of the CoSTH are also given distinct abbreviations, a similar naming scheme for cognitive support

compositions can be entertained. Since lower case letters were not used, the support types need to be

separated somehow, and one might as well choose a comma (’,’). Given this naming scheme, the “chem-

ical name” equivalent for the “common” name of DBPS would be C,S,SP,SR,SU (the order is based on

reading Table 6.4 from left to right).

6.5. COMPOSITE REARRANGEMENT 217

Display-based Problem Solving

Larkin [374] invented the term “display-based problem solving” (DBPS) to describe a form of problem

solving that makes extensive use of external displays. It is clear that to Larkin there are three essen-

tial qualities of display-based problem solving: (1) that all or almost all of the relevant problem solving

state can be read from the display, (2) that because of the nature of external displays, perceptual infer-

ences can be used in places where otherwise more taxing logical inferences would need to be made, and

(3) that little planning or deliberation is required for any of the steps—the solver employs local control.

These requirements appear to be relaxed in other uses of the term “display-based problem solving” (e.g.,

Davies [165]), however it is not important here to decide what should or should not be considered DBPS

solving. Larkin’s notion will do. Using her conception DBPS differs from the “purely mental” equivalent

as follows:

 D/D/PG/C. The current state of the problem is readily available.

 S/S/perceptual. The solver is able to use perceptual skills to make inferences concerning prob-

lem implications, goal selection, or problem constraints.

 S/S/recognition. Because of practice, the user is able to rapidly recognize salient aspects of the

problem state.

 S/S/rule-action. The recognized states of the system cue the recall of rules saying what to do

in the current state.

As can be seen from this list, DBPS is essentially a skilled way of solving problems requiring little need to

store state related to planning or backtracking. In light of newer analyses than Larkin’s, it may be prudent

to augment this list of cognitive support types. Specifically, a new analysis of physical implementations

of the Towers of Hanoi problems (which was used as an example of DBPS by Larkin) was produced by

Zhang et al. [727]. In this analysis, the physical implementation provides external constraints that can be

perceived instead of determined internally (D/D/PB/constraint).

Precomputation

Hutchins [320, 321, 470] introduced the notion of precomputations to refer to artifacts19 that are constructed

in advance to help structure ensuing activity. There are several computationally interesting aspects of

precomputations. The most obvious is that precomputation redistributes processing across time. This

can reduce the computational load during subsequent performance of tasks. Not all of these interesting

aspects of precomputation can be captured fully by CoSTH. However a number can; based on Hutchins’

accounts [320, pg. 164–170] [321], the following support types may be seen to apply to precomputations:

 D/D/P. A common type of precomputation is a checklist.

19Note that precomputations are nouns. They involve performing precomputations (transitive verb), but Hutchins
uses the term “precomputations” predominantly as a noun. This use of terminology is similar to that of
“representation”.

6.5. COMPOSITE REARRANGEMENT 218

 D/D/PG. Many precomputations such as maps and charts are frequently drawn upon. This can

record a history of location and computations thereof.

 D/P. Precomputations allows other agents to perform part of the work. This work could involve

performing and then storing simple calculations; for example, generating a table of precomputed

numbers for lookup later [321] (D/P/GD/MS), or pre-sorting a stack of charts in preparation for an

ordered sequence of actions (D/P/GD/PS). These examples suggest that one class of precomputation

involves making the subsequent tasks less cognitively demanding by formatting or laying out the

artifact to enable skillful manipulation or perceptual inferences (below).

 S/S/perceptual. Certain precomputations can be rendered in a form such that perceptual infer-

ences can substitute for complicated logical operations (e.g., distance-rate-time calculations during

ship navigation [320]).

 O/EN. Hutchins makes it clear that when constructing a precomputation, frequently a change takes

place in the data encoding used (e.g., from tables to bar charts). This can make a difference to

the mental operations subsequently performed on them. Sometimes this encoding change may al-

low substitutions by perceptual operations. He gives a clear example in the context of an airline

cockpit [321]. In the cockpit he studied, digital representations of the desired aircraft speeds are

transformed to analog “speed bug” representations (small indicators on a circular dial). These allow

quick perceptual judgments of relative speed (see also Vicente [657]).20

There may be more overlap between Hutchins’ analysis of precomputations and CoSTH. This would not

be surprising since Hutchins’ analysis of precomputations is really a mixture of (1) an analysis of the

power of artifacts to beneficially alter cognition, and (2) the importance of the pre-construction of such

cognitive artifacts. This mixture makes it somewhat challenging to explicitly map his account to CoSTH.

Backtalk

In Schön’s work on design thinking, he noted that designers like to manipulate external materials in order

to elicit what he termed “backtalk”. Backtalk is part of the “conversation with materials” such as sketches,

models, and simulations [566]. Interpreted within the world of software development, this conversation

might be made with prototypes, or possibly with various sketches or diagrams [544]. Schön’s analogy

to conversation is apt because real conversation is not a smooth transmission of ideas from one party

to another. It is an active process involving breakdowns in communications, and actions to repair these

breakdowns. Breakdowns are instances when the conversation cannot be made sense of by one of the

parties, so that feedback is elicited. This ability of the parties to provide feedback is enormously important

because it frees speakers from making everything clear at the start, and thus extensively planning their

speech [235]. Backtalk in conversation with materials means that designers can set forth to experiment

20Hutchins also gives an example of a more encompassing cognitive restructuring in the differences between Mi-
cronesian and Western methods of navigation [320]. However the relation of this restructuring to precomputation is
much more complex, having more to do with learning at the cultural level.

6.6. COMPARISON TO RELATED WORK 219

with materials; they provide feedback that can both help correct invalid reasoning, and provide pause to

reflect upon assumptions, or upon the chosen course of action.

This rough account of backtalk can be analyzed using CoSTH as follows. In order for backtalk to work

in the first place, some aspects of the solution must be externalized (D/D/PG/current). Then backtalk

can happen in several ways. One particular way is that the evolving external solution cues the designer’s

rapid recognitions of unexpected problems, opportunities, or constraint violations (S/S/perceptual,

S/S/recognition, D/D/PB/constraint, D/D/PB/operations). Another possible way is that the

designer can “play” with the externalized solution rather than consciously perform deductive reason-

ing. This play may involve skilled manipulations (S/S/SA), which can further lower the cost of external

manipulation.

6.6 Comparison to Related Work

The main contents of this chapter are the enumeration of a family of support theories, and an analysis

of some of the ways in which they combine. These theories are organized into a refinement hierarchy

in which RODS provides a core set of support explanation principles, and HASTI supplies the ways of

applying these core principles (although some elaboration of HASTI was needed). This presentation has

drawn extensively from many different sources for theories, such as the works by Hutchins [320], Larkin

et al. [374, 375], and Zhang et al. [727]. Because this chapter tries to synthesize these, it is not especially

illuminating to compare and contrast the integrative account with the many sources it draws from. A

more interesting comparison is with other integrative explanations of cognitive support.

Many, many other works have reviewed various forms of cognitive support. It would be cumbersome

and rather uninformative to attempt to exhaustively compare them all. But among these, there are a

select few that (1) propose comparable theoretically-motivated explanations, or (2) provide some sort of

integration of different cognitive support concepts. A focused subset of these exceptions is listed briefly

here:

Neuwirth & Kaufer [441] (1989)

These authors begin with an internal/external representation dichotomy that is similar to mine.

They utilize a domain task analysis for hypertext environments. They touch on many explanations

of cognitive support that are in common with this work, including perceptual substitution and re-

distribution of process and agenda. However, they pursue a rather different tactic for enumerating

advantages of external representations. Like I do here, they begin with a cognitive model and try

to determine how external features affect the model. But their model is tightly focused on specific

aspects of cognition; it contains only four fundamental cognitive processes (encoding, match and ex-

ecution, control of cognition) and only implicitly considers how control and data are redistributed.

Although their approach is distinct, many of their explanations for support are very compatible with

CoSTH.

Tweedie [645] (1995)

Tweedie’s account of the role of artifacts in problem solving provides an interesting contrast to the

6.6. COMPARISON TO RELATED WORK 220

development presented here. There are certainly much in her approach that is common or consistent

with the account of support presented here. For example her account implies (1) an SRK-like decom-

position of cognition types into skill/knowledge modes, and (2) some similarities in decomposing

types of external representation (like the inclusion of R/PB/operations). The interesting con-

trast concerns Tweedie’s 8-fold decomposition of problem solving according to the three orthogonal

dimensions of: situatedness (planned vs. opportunistic), cognition driver (conceptually motivated

vs. perceptually motivated), and action mechanism (automatic vs. intentional). This decomposition

provides an alternate way of understanding the context of cognitive support in that the supportive

nature of artifacts are placed in relation to the mode of problem solving being engaged in. This de-

composition could conceivably provide a sixth type of processing redistribution decomposition for

Section 6.2.2.

Scaife & Rogers [562] (1996)

These authors try to provide an integrated account of why external representations are helpful. They

utilize some of the same references as I do here. The core part of their analysis is the decomposi-

tion of cognitive benefits into what are called computational offloading, re-representation and graphical

constraining. These three have close analogues in this work in the form of redistribution, cognitive

restructuring, and problem constraint redistribution, respectively.

Narayanan & Hubscher [433] (1998)

Analyzes the “cognitive utility” of visual languages; they touch on situated reasoning and visual

inferencing, and give a brief account of what conditions are required for inferences on representing

words can substitute for reasoning about the represented world.

Petre, Blackwell & Green [508] (1998)

This paper contains an eclectic mélange of questions regarding the effectiveness of visualization in

programming. Its presentation of support is hardly integrated, but in its winding course it briefly

touches on many aspects of cognitive support. Some of these aspects are addressed in this chap-

ter, others are not. They touch on external perceptual effects (S/S/perceptual), display-based

planning (R/D/plans) and re-representation (CR/encoding). They also discuss more complicated

concepts of support that are hard to categorize in this framework, like the advantages of providing

a “secondary notation” in which important relationships are kept implicit.

Several more papers could easily be added (e.g., Ware [687], Cheng [122], Sharples [574], Orhun [480],

Perry [502], Kirlik et al. [351], Robbins et al. [543]), but the ones listed best qualify as focused, theory-

backed integrations. There is certainly overlap between these accounts and the theories presented in this

chapter. However none of these other works integrate the number of diverse forms of support presented

here, and none provide the same type of theoretically-inspired decomposition.

Two other bodies of work bear a special relationship to the support theories of this chapter. One is the

“resources model” work by the group of Wright, Fields and Harrison [210, 211, 290, 718, 719]. The other

is the cognitive design work by Rasmussen and colleagues [526–528, 530, 657]. The latter was essentially

merged into my RODS and HASTI frameworks, so it forms a core part of the analysis. The former bears

6.6. COMPARISON TO RELATED WORK 221

a more complicated relationship to this work. The overall support framework presented here had its

genesis before I became aware of the resources model of Wright et al.. The fact that it bears remarkable

similarity to their work, yet it was developed quite independently, seems important enough to mention.

In ways, the similarities should not be surprising since there are clearly a number of significant overlaps

in the literature that we have both drawn upon. The result is that their work is highly compatible with

this one; many of the observations made by Wright et al. have their analogues in CoSTH. Probably the

most significant difference is that, in this work, RODS provides a more thorough computational account

of support, and HASTI provides a more rationally motivated decomposition of what Wright et al. term

“resources”. Thus the main divergence between the two is that this work further clarifies the theoretical

foundations for analyzing distributed resources in cognition.

Other than the unique theoretical framework for integrating cognitive support, there is one other no-

table differences between this work and that of Rasmussen et al. and Wright et al.: the way that design

rationalization is treated. Here the support theories are completely separated from issues of “good” or

“bad” design. Support is cast as an accounting of the computational benefits of artifact features. The

support involved in a system may or may not make an beneficial impact on performance. For instance,

the advantages of offloading working memory may be completely offset by the costs of the offloading. In

comparable work the difference between support and good design is muted. For instance, in the cogni-

tive engineering work of Rasmussen et al., the notion of support is clearly enunciated as a substitution of

modes of behaviour, but the various means of substituting behaviour are tied to just a few design concepts

like the so-called “abstraction hierarchy” [528].

Another potentially interesting comparison of CoSTH is to other theory-organized collections of design

ideas for software development tools. Unfortunately, there are not too many of these to compare with. For

the most part other surveys have organized tools by their features or products (see Section 2.2.1). The main

points for comparison are the surveys by Storey et al. [619] and von Mayrhauser et al. [668,669]. These are

both surveys motivated by theory-backed analyses of cognitive issues in software comprehension and

reverse engineering.

The survey of Storey et al. hierarchically clusters tools according to a “hierarchy of cognitive issues”

relating to their design. Like this chapter, the survey employs exemplar tools to illustrate each of the

leaves of the hierarchy. This hierarchy is probably best described as being complementary to CoSTH. The

main distinction between the two is the type of nodes in the hierarchies, especially the leaves. Storey et al.

essentially provides a decomposition according to design goals (see Section 7.1.3). Each design goal might

be potentially satisfied using a variety of different classes of cognitive support. Thus the leaves in CoSTH

cluster together examples using similar cognitive principles, whereas the hierarchy of Storey et al. clusters

together examples of tools satisfying broad design issues. Logically, the hierarchies therefore belong to

different categories, although because the design goals often relate to the provision of cognitive support,

the relationship is complicated.

The surveys of von Mayrhauser et al. are quite distinct from CoSTH also. Their work started with

an analysis of the tasks involved in program comprehension (e.g., “gain high-level view”, “determine

program segment to examine”, etc.). They generated these by starting with a model of program com-

prehension, and then using these to “reverse engineer” a set of common tasks from observations of the

6.7. LIMITATIONS 222

activities of actual maintainers. From these tasks they then determined what information could be needed

to solve them. Given these needs, they made many suggestions as to what sorts of tools or tool features

could provide the information. The result is a reasonably fine-grained analysis of different uses for tools

(29 total), and different classes of tools (22 total). The classes of tools usually abstractly specify tool func-

tionalities (e.g., “smart differencing system”) rather than list specific tool features (e.g., display formats,

interaction methods, etc.). Each of these functionalities could be implemented using a variety of cogni-

tive supports. Thus their survey is also in a different category from CoSTH. An interesting fact emerges

if one interprets their survey with CoSTH in hand. CoSTH seems to indicate that von Mayrhauser et al.

tacitly used craft knowledge about cognitive support in order to generate their particular list of tools. This

fact was mentioned briefly in Section 2.1.1. The way that they deduced the tool categories from the task

demands is not explicitly acknowledged. Yet, it is fairly easy to interpret examples of D/D (e.g., “his-

tory of browsed locations”), D/P (e.g., “function counts”), and various virtual memory operations (e.g.,

“keyword search”). Thus their categorization is not based on identifying different examples of cognitive

support implementations, but on associating certain tool types with their uses.

6.7 Limitations

CoSTH is a limited theoretical framework in the sense that it is preliminary and approximated. It made use

of limited models of cognition in the form of HASTI, and it employed limited ways of analyzing tasks.

Although it can offer basic explanations for a wide range of cognitive support types, the explanations

derived from it are not quantitative or precise. In addition, even though many things are successfully

integrated, if one goes through the phenomena described in Chapter 3, then one is likely to find several

instances of support whose spirit is not completely captured by CoSTH. For instance, one could point to

Hutchins’ idea of precomputation and note that nothing was specifically mentioned regarding the role of

preparation. CoSTH is not fine-grained, not detailed, and not comprehensive.

Let us agree to put aside questions about these sorts of limitations for the time being. One can hardly

fault any theory for failing to be simultaneously fine-grained, detailed, and comprehensive. Moreover the

entire point of a broad-brush applied theory is to approximate usefully, and to provide good coverage of

salient aspects rather than to fill in fine details, or to be entirely comprehensive. It is therefore more im-

portant to step back a bit to try to place CoSTH within the greater context. Specifically, how does CoSTH

address main problems we wish to address—the problems of understanding tool usefulness, and of build-

ing useful tools? The most important criterion for an applied theory is if it can be usefully applied, so the

limitations of the theory that impact application need to be discussed. These issue might be phrased as

the “bottom-line” question: “what will I need to really use it?” In this regard there are four important

limitations that affect this “bottom line”: (1) the negative consequences of tools are ignored, (2) the full im-

plications of cognitive support are not traced from support to eventual performance, (3) human learning

and training is ignored, as is the issue of tool adoption, and (4) little help is available for understanding

partial, coordinated human–tool collaboration.

6.7. LIMITATIONS 223

No negative consequences

The support theories are not full design rationales: they contain no tradeoff information. All design in-

volves tradeoffs. For instance, the aid offered by an automation may be more trouble than it is worth [347],

and an external memory may be too costly to be worth storing knowledge into [165, 567]. Thus although

CoSTH could be employed for arguing a good or bad design by saying what is or is not supported, it has

no grasp whatsoever on the tradeoffs. On the one hand, being able to separate the mechanisms of support

from the issue of negative consequences is good. It affords some insulation from the many complications

associated with implementing good and useful tools. As I pointed out in Chapter 2, this separation is crit-

ical if one is to evaluate or test design ideas, which may or may not be implemented in a polished tool. On

the other hand, this is bad news for designers. Linking tools to their negative and positive consequences

is important to them [110,269,272]. They need it during tradeoff analysis. Although I have not attempted

to add tradeoff information, it seems likely that CoSTH could be augmented to provide much tradeoff

information, and it is certainly a possible direction for future work.

Full implications are not traced

What difference does it make if a plan is offloaded? The possibilities are vast. Perhaps the memory freed

up by the offloading could be used for better planning, resulting in fewer cases where backtracking is

required? This in turn could reduce the need to easily undo operations. Or maybe the user’s mental

workload is simply reduced without otherwise affecting the user’s productivity? Maybe bigger problems

could be tackled? The implications seem to spiral out unbounded, cutting a swath through psychological,

technological, and organizational aspects. The same holds for any of the nodes in the CoSTH. Tracing

these implications will require more than RODS, HASTI, and CoSTH frameworks. It would most likely

be a daunting task that would appear to need cognitive models with much more detail. A hint at some of

the requirements can be detected by examining the work of Stacey et al. [615] and Freed et al. [229]. The

details of these papers are not of concern here—only what these authors needed to do to derive design

implications for supportive technologies.

Stacey et al. needed an analysis of the ways that cognitive biases and limitations showed up in task

performances. They identified a problem that product designers (their target user population) had: they

usually had a bias for following habitual paths based on what they have learned from past experiences.

This bias leads them to sometimes use solutions that were less appropriate. This is a variation of the old

saw “to a baby with a hammer, everything looks like a nail”. To understand how to counteract undesirable

biases, a list of them would need to be generated, and the effects of various forms of support would need

to be established. Unfortunately, many of these biases would be based on personal motivation, or on

training and organizational or sociocultural setting. This makes them all the more difficult to model. And

without a model for biases in software development it would be difficult to trace how the reengineering

provided by cognitive support would impact them. Fortunately there may be some promise in simply

building a list of cognitive biases in software development (see Stacy et al. [691] for a start). After building

the list one might be able to employ empirical legwork to determine how cognitive support affects them.

In this, at least, CoSTH makes such an empirical endeavor possible by providing a list of experimental

6.7. LIMITATIONS 224

variables (i.e., the support types) to consider.

Freed et al. helpfully suggested that performance problems need to be understood in the context of

coping strategies that people have for dealing with cognitive limitations (see Sections 3.1.1). As Freed

et al. say:

Human resource limits are much easier to identify and represent in a model than are the subtle and varied

strategies people use to cope with those limits. ... People cope with memory limitations by maintenance

rehearsal, writing notes to themselves, setting alarms, and other methods. [229]

But cognitive support counteracts cognitive limitations. As a result, before the implications of cognitive

support could be understood, the ways in which coping strategies are relieved by it must be appreci-

ated. Unfortunately our knowledge about coping strategies in software development is rather pitiful [41].

Nonetheless, there are a few bright spots, such as the work by Davies [165] on coders’ strategic use of

external memory during coding, and that of Bowdidge et al. [64] on developers’ bookkeeping strategies

for coping with high demands on working memory during maintenance.

Learning, training, and adoption

Learning and training play a significant role in determining which strategies people employ, and which

skills they develop. CoSTH does not specify what these should be. It only presumes that learning and

training have produced the appropriate capability so that the support can be effective. This seems ap-

propriate anyway, since the definition of support should probably be independent of training: designers

want to know if an artifact is supportive, even if some particular class of users will not be able to use it

effectively. But it is important for design analysis to understand the importance of learning. For example,

consider exploratory learning (sometimes known as “learning while doing”). A well-known facet of ex-

ploratory learning is that users “asymptote to mediocrity” [109], that is, as they become more competent

at an interface the need to learn better methods abates in proportion, and so they never become maximally

skilled. In other words, learning how to use tools is an instance of classic negative feedback: learning is

squelched by competence. This means that even if one provides a supportive mechanisms, users may

never learn to use them effectively [48]. But tool designers will want to know when and how well the

support can be used. The upshot is that cognitive support only tells part of the story the tool designer

wishes to hear. CoSTH is limited to explaining the support only if it is actually used; it does not specify

the conditions upon which the support is actually rendered.

On a related note is the issue of tool uptake or adoption [424]. There is a cost to learning a new tool.

Even if there is potential for an eventual improvement in performance, developers are loath to adopt them.

This is nowhere more apparent than how developers cling onto their favorite editors with near religious

fervour. The implication is that knowledge of cognitive support is not enough for effective design—one

may also need to account for learning costs, or other hindrances to tool adoption.

Understanding collaborative human–tool interaction

A core part of CoSTH is the distribution framework: in any DC system distribution is the key element.

Without it, it is useless to consider the other support principles. In this review, a conscious decision was

6.8. SUMMARY, COMMENTARY, AND IMPLICATIONS 225

made to try to provide examples that highlight each individual form of cognitive support. This emphasis

has resulted in a review that did not highlight well the possibilities of partial distribution of data and pro-

cessing. CoSTH describes many different types of data and process distribution, but it does not elaborate

well on how to develop partially redistributed data and processing. For example, in reverse engineering

it is for the most part acknowledged in that fully automated clustering of real legacy software is never

likely produce satisfactory results, at least, not in the immediate future. Yet it is certainly not appropri-

ate to simply wait until perfect automated clustering mechanisms appear. Thus we are necessarily left

to consider how to partially automate clustering in ways that humans and tools work well together. Cur-

rently the ideas being pursued to that end have been more simplistic than they might need to be. Typical

suggestions involve simple human–tool coordination schemes such as a “propose–validate” style of dia-

log, in which humans pick and choose amongst automatically generated candidates [359]. This method

places human judgment at the periphery of the clustering process. In other words, the processing does

not currently use tight collaboration between human and software agents.

This type of cooperative processing [290,320] of shared, partially distributed [268,727] data is actually

a core fixture of the DC viewpoint. Sadly, CoSTH gives too little insight into developing it. The main

culprit is the weakness in characterizing types of processing distribution. What is needed is a more com-

plex decomposition that enumerates classes of partial distributions. Consider an analogue: a automatic

parallelizing, distributing compiler. The compiler takes a description work process (a serial program) and

analyzes it for ways in which to distribute the processing amongst different elements. Often times such

compilers look for clichéd patterns that they know how to distribute. In a similar way, a generative cogni-

tive support theory for distribution would be able to take a description of a problem and say how to split

it up into joint human and computer processing. This issue is revisited in Section 7.2.2.

6.8 Summary, Commentary, and Implications

Theories cumulate. They are refined and reformulated, corrected and expanded. ... Working

with theories is not like skeet shooting—where theories are lofted up and bang, they are shot

down with a falsification bullet, and that’s the end of that theory. Theories are more like graduate

students—once admitted you try hard to avoid flunking them out, it being much better for them

and for the world if they can become long-term contributors to society. Theories are things to be

nurtured and changed and built up. One is happy to change them to make them more useful.

– Allen Newell, “Unified Theories of Cognition” [446], pg. 14.

This chapter defined a space of generic cognitive support theories and provided examples of support

that inhabit the space. The space was generated in part by applying the support principles of RODS to

the model features of HASTI. RODS and HASTI were well-matched partners in producing these support

theories: RODS provided computational explanations of the different types of cognitive advantage that

artifacts provide, and HASTI provided a breakdown of cognitive features to apply these computational

6.8. SUMMARY, COMMENTARY, AND IMPLICATIONS 226

explanations to. Since RODS is grounded in theoretical computing science and HASTI in prior work

in cognitive science, the result is a principled, integrative, and theoretically motivated decomposition of

support types. Since many details were suppressed by strategic abstractions, the resulting theories are

broadly applicable, that is, they are reusable. Some of these theories have quite a lot of backing from

basic sciences, while some of them are quite preliminary. Lack of solid evidence is not a knock on the

framework, however, since the maturity of the basic sciences on which it draws are themselves rather

shaky and full of holes [508, 562].

The aim of the effort was to bring existing theory together so that tacit and folk knowledge can be

replaced with whatever science knowledge is currently available. And the CoSTH is certainly broadly

integrative in this regard. At the beginning of Chapter 3, I asked the reader to consider a paper and pen,

a typechecking compiler, and a search tool like grep. Although the cognitive supports exemplified may

have seemed to be quite distinct, this chapter has demonstrated that they may be rationally compared

within the same theoretical framework. Thus, even though the work is preliminary, one thing should be

clear: the RODS framework in combination with the structuring mechanisms of HASTI make a convincing

case for a good starting theoretical framework for cognitive support in software development.

This particular exposition of cognitive support theories has advantages other than relative complete-

ness, generality, and theoretical pedigree. First, the decomposition of support types into three orthogonal

groups appears to be immensely helpful. There is considerable parsimony in providing a principled

decomposition of the many complicated combinations of support. The decomposition simultaneously

demonstrates that a few principles common to all of computing carry over, to a great extent, to explaining

cognitive support. Applications of these computing concepts to cognitive support have to be attenuated

to the issues of human psychology, of course, but the principles do apply: cognitive support is compu-

tational advantage. Furthermore, note that there seems to be some utility in gathering together different

support examples and implementations in the coherent organizing context that CoSTH provides. In par-

ticular, the examples populate a design space mapped out by CoSTH. This suggests that a more thorough

survey of how the CoSTH types have been applied to software development would yield a useful cook-

book of design ideas. As it is, this chapter presents a rudimentary cookbook. The breadth and variety

of this cookbook is an early testament to the thoroughness of the framework, and hints at the potentially

broad applicability of the resulting support theories.

In concluding this chapter, it may be appropriate to comment on some of the implications which

CoSTH makes regarding the research questions covered in Chapter 2. First let us consider the fact that

this chapter has been a close mixture of theory and examples to which it applies. The examples were

portrayed as expository devices (see Figure 6.2). In choosing the examples an attempt was made to use

ones that are likely to be familiar to SE researchers—although for scholarly purposes, the selections were

also chosen to citing example that boast publications that can buttress the theories with argument or evi-

dence. I certainly hope many of these are examples that strike the reader as being familiar and even a little

mundane and well known—as necessary knowledge for anyone skilled in the art of creating SE tools. If

so, it is excellent news. It would strongly indicate that the support theories capture some of the important

and tacit tool building knowledge from the field. Being able to transform the enormous quantity of craft

knowledge into explicit knowledge was singled out as a critical long term goal for the evolution of the

6.8. SUMMARY, COMMENTARY, AND IMPLICATIONS 227

field (see Figure 2.1). Synthesizing a broad, widely applicable theoretical framework for cognitive support

is one accomplishment—building one that brings principled explanations to heretofore tacit understand-

ing is an excellent feather in the cap. CoSTH provides a vigorous demonstration that the search for such

theoretical foundations is not vacuous. And if the examples are not familiar, then all the more reason to

appreciate their exposition.

This last point brings up a final issue for comment. Chapter 2 argued that many forms of empiricism

that we engage in are limited because of their lack of theoretical basis. In particular we tend to engage in

what I called “simplistic comparison” experimentation. We pit tool against tool with little theoretical basis

for rational comparison. My sincere wish is that we as a community can put to rest the unreasonable hope

that we can continue to pursue this course. While we should not abandon these experiments (they can be

extraordinarily useful) I hope that it is clear from this chapter that considerable theoretical apparatus can

be brought to bear on the problem of understanding the merits of software development tools. For one

thing, CoSTH indicates that principled tool analysis is a viable precursor to experimentation: there can be

a principled basis for comparing the merits of different types of tools, a way of categorizing the support-

relevant features of tools, and a reasonably fine grained basis for differentiating among tool variants.

For another thing, within each example of this chapter lurks a plausible, theoretically motivated, but

unverified hypothesis about the supportive nature of artifacts. Any empiricist looking for a problem to

examine need only scan down Tables 6.2, 6.3, and 6.4 to find dozens of support issues that are nearly

completely unexplored in the realm of SE. Potential PhD topics lurk in every category. CoSTH is not

only a door leading to codified tacit knowledge, it is a window onto the uncharted future of a potentially

central aspect of SE research.

Chapter 7

Building Theories Fit For Design

Historically and traditionally, it has been the task of the science disciplines to teach about natural

things: how they are and how they work. It has been the task of engineering schools to teach

about artificial things: how to make artifacts that have desired properties and how to design.

– Herbert A. Simon, “The Sciences of the Artificial” [594], pg. 111.

�esign is about constructing things that have properties the designer desires. At the most abstract level,

designers take as input an existing world, decide what they dislike about it, and then determine how

to create artifacts to fix it. Design and engineering are therefore constructive, or synthetic activities. Their

basic goals differ sharply from the goals of the sciences. Herbert Simon, in his seminal work “The Sciences

of the Artificial” [594] describes the distinction crisply:

We speak of engineering as concerned with “synthesis,” while science is concerned with “analysis.” Syn-

thetic or artificial objects—and more specifically prospective artificial objects having desired properties—

are the central objective of engineering activity and skill. The engineer, and more generally the designer,

is concerned with how things ought to be—how they ought to be in order to attain goals, and to func-

tion. [594, pg. 4] (emphasis original)

Because analysis is an important part of design activities, it is probably better to contrast synthesis with

explanation or evaluation rather than analysis (see e.g., Long et al. [392] for a similar dichotomy). The dif-

ferences between “explanation” and “synthesis” activities are further revealed by examining what they

consider fixed versus dependent variables. Kirlik understood the essential differences:

A standard modeling approach in cognitive psychology is to hold a task environment relatively fixed and

to create a description of the cognitive activities underlying a person’s behavior in that environment.

The designer, on the other hand, is faced with the reverse challenge of creating an environment to

elicit a desired behavior ... In problem solving terms, the solution space for the scientist is a set of

plausible cognitive theories, whereas the solution space for the designer is a set of technologically feasible

environments. [348, pg. 71]

228

229

The simple corollary to this argument is that designers do not use explanation oriented theories to do de-

sign, except during evaluations before or after synthetic steps. Designers want artifacts, not explanations.

How then do designers know what to design? What resources are used in the synthesis step?

One simple answer is that designers utilize their craft knowledge and experience. If this were the

only conceivable answer there would be much less to talk about regarding the development of theories

for design. The more interesting answer to the question of synthesis is that designers might be able to

use design theories, that is, theories that provide to the theory wielder a description of a design solution

rather than an explanation of some phenomenon. Note that the explanation–synthesis distinction is not

to be identified with the commonly cited basic–applied dichotomy [348]. It is conceivable to have both

basic and applied design theories. Instead, the difference is in the product of the theories: one produces

explanations, the other produces (suggestions for) artifacts. This chapter is concerned with (applied)

design theories for cognitive support.

The topic of design theories for cognitive support is particularly relevant to SE. As I argued in Chap-

ter 2.1.2, it does the field as a whole a great disservice to keep our knowledge of cognitive support tacit.

To do so means to suffer a discipline that is craft on one of its most important dimensions. Mind you, the

status of SE theory is certainly not unique to SE: HCI design is predominantly craft-like and atheoretical.

Even though there certainly do exist many theories in HCI, these are not particularly suited to design.

Most are instead oriented towards evaluation. Long [390] invented the terms “fit-for-design-purpose” to

indicate knowledge or theories that are well suited for synthesis, and “fit-for-understanding-purpose” for

knowledge or theories that are suitable primarily for understanding or explanation. Let us agree to drop

the “-purpose” ending and just call the two categories “fit for design” and “fit for understanding”. It is

fairly easy to argue that most work in cognitive science and HCI has been primarily fit for understanding

and not fit for design. This state of affairs should not be considered surprising. After all, HCI has leaned

heavily on cognitive science, psychology, and sociology for theories and the vast majority of the theories

from such fields are distinctly explanation-oriented, not design-oriented.

In this chapter, I wish to make a strong case that the theories and models of the previous chapters

can be made, with a little work, to be fit for design. Chapter 6 has already made a good initial argument

that they are fit for understanding, and Chapters 8 and 9 will reinforce this argument. RODS, HASTI,

and CoSTH were actually developed with the needs of design in mind, but even so there is still work

to be done to make them especially fit for design. Converting explanation theories into theories fit for

design is neither trivial nor automatic, and these facts are seriously under-appreciated. Design theories

are tools, and like all tools they need to be carefully crafted with the characteristics and needs of their

users in mind. Since there are many different design contexts there is inevitably a need to reshape the

same basic theoretical resources into many different forms. In Barnard’s terminology [28], these different

design-specific forms would be called “application representations” because they are the forms that basic

theory takes when being applied during synthesis. RODS, HASTI and CoSTH are good starting points

but they are only starting points.

This chapter is structured as follows. First Section 7.1 describes reasons for why the theories of HCI

and related disciplines are so notoriously unfit for design. An argument is put forward that too little at-

tention has been paid to what type of knowledge the design-oriented theories should represent. To this

7.1. THE TROUBLE WITH THEORY 230

end, a taxonomy of design knowledge is proposed. The taxonomy is organized by the type of reasoning

it enables. This taxonomy is used to argue that most current HCI theorizing has failed to compile knowl-

edge that enables what may be termed “forward reasoning” about “positive consequences” of artifacts. Next,

Section 7.2 considers several different ways of converting the support theories of previous chapters into

forms that are more fit for design. Finally the chapter concludes with a brief summary.

7.1 The Trouble with Theory

The basic assumption of researchers who study programmers is that by understanding how and

why programmers do a task, we will be in a better position to make prescriptions that can aid

programmers in their tasks.

– Soloway and Iyengar, Preface to

the Proceedings of the First Empirical Studies of Programmers [741], 1986.

There is a belief, quite widely held, that good science invariably leads to usable design knowledge.

An argument commonly used to bolster this conviction is that knowing more about the design context

(pick any: the user, user psychology, work domain, work practices, etc.) will naturally enable better de-

sign. This belief is certainly held by many researchers in SE and HCI. For instance, when motivating the

development of a model of software comprehension, Vans argued that a “better grasp of how program-

mers understand code and what is most efficient and effective should lead to a variety of improvements:

better tools, better maintenance guidelines and processes, and documentation that supports the cognitive

process.” [654, pg. 4]. The popular expectation is that good theories inevitably find application.

But this is really a myth, or, at least, it seems to be dishearteningly indistinguishable from a myth. For

there is a readily noticeable lack of useful theory that is applicable to real HCI situations in general, and

even fewer theories exist that can be called “fit for design”. This scarcity persists despite decades of quality

research working to erase it. The noticeable lack of usable theory has created something of a running

debate within the HCI community. In 1989, the “Kittle House Workshop” was called to rally together HCI

theoreticians so that they could reflect upon the notorious shortcomings of theory in HCI [101]. Barnard

summed up many of the problems nicely:

The difficulties of generating a science base for HCI that will support effective ... design are undeniably

real. Many of the strategic problems theoretical approaches must overcome have now been thoroughly

aired. The life cycle of theoretical enquiry and synthesis typically postdates the life cycle of products

with which it seeks to deal; the theories are too low level; they are of restricted scope; as abstractions

from behavior they fail to deal with the real context of work and they fail to accommodate fine details of

implementations and interactions that may crucially influence the use of a system ... Similarly, although

theory may predict significant effects and receive empirical support, those effects may be of marginal

practical consequence in the context of a broader interaction or less important than effects not specifically

addressed... [28, pg. 107]

7.1. THE TROUBLE WITH THEORY 231

In the decade that has elapsed since the workshop, agonizingly little has changed which could dispel

Barnard’s disparaging remarks. Is good high-level, design-oriented, relevant, and applicable cognition-

related theory in HCI impossible?

Some, like Landauer [370, 371] and Carroll [102, 104, 106] have argued that the application of explicit

theory to design in HCI will always be marginal, limited, or indirect. However, rather than giving up on

theory, a number of authors have concluded instead that not enough attention has been paid to what de-

signers really need from theories. Kirlik [348] articulated this stance very well in his own field of cognitive

engineering:

Although it may be fashionable within the cognitive engineering community to bemoan how little guidance

modern psychology provides the designer, the psychological nature of the design product is inescapable.

The correct response to the current and unfortunate lack of applicable psychological research is not to

attempt to do psychology-free design (because this is impossible—the design will not be apsychological

but instead reflect the designer’s folk psychological theory), but rather to ask what kinds of psychological

models are needed to support cognitive engineering, and to begin the long range empirical and theoretical

work necessary to realize them. [348, pg. 72]

Besides Kirlik, a number of others others, including Green [257,259,263,264,268,270,272], Rasmussen [531]

and many former members of the AMODEUS-2 project1 like Barnard [28,30], Buckingham Shum et al. [43,

57, 84], and Blandford [57, 58] have reached similar conclusions. They concluded that useful and us-

able theory is possible, but what has been missing is appropriate attention to the designer’s needs. Plus,

perhaps, too little attention to what it takes to transfer theory into practice [57, 263]. The trouble with

computers—as Landauer [371] argued at length in a book by that title—is that we have not striven ade-

quately to make them usable and useful. In an analogous way, the trouble with theory, according to the

above authors, is that we have not striven to produce usable theoretical products. Their prescription is to

begin to better understand the needs of designers, to understand the design context, and to understand

what forms the theory should take to be readily taken up by designers. Only then will theory become fit

for design.

I am highly sympathetic to this theory-as-designed-artifact point of view. However I do wish to add

one small but important point that seems never have been well articulated. The point has to do with what

it takes for design-oriented theory to be useful. Obviously all the critical usability problems like learnabil-

ity must be addressed, but little has been written about what designers would find most useful in a theory.

I contend that designers are in serious need of design theories that allow forward reasoning about positive

consequences of artifacts. Because it is such a mouthful, that type of reasoning is abbreviated FP-reasoning.

By “forward reasoning” I mean using theory to reason from designer goal towards conceivable artifact,

rather than from an existing or envisioned artifact back to explanations or predictions. By “positive con-

sequences” I mean the facets of artifacts that make them desirable, as opposed to facets that negatively

impact usability. I distinguish design theory from other theories that might be fit for design by requiring

that design theories enable FP-reasoning; they are FP-theories. I would argue that FP-theory is the type of

1The AMODEUS-2 project was a large three-year European project to investigate methods for modeling and de-
signing in HCI (see e.g., Bellotti et al. [43]).

7.1. THE TROUBLE WITH THEORY 232

knowledge that is most useful in a direct attack at researching and designing good tools.

The important distinction between forward reasoning and backward reasoning, and between reason-

ing about positive and negative consequences seems to be poorly understood. Even the theoreticians who

try to design usable HCI theory seem to be frequently unaware of the important distinction. This may

be one of the reasons for why these sorts of theories are not only poorly developed, but for why so few

researchers appear to be aware of the possibility of developing them. It is important therefore to describe

the needs of designers and then explain the possible roles of theory in design.

This subsection consequently unfolds as follows. First the problems faced by designers are exam-

ined in order to understand the requirements that need to be met. Two key needs are identified in this

analysis: the need for survey knowledge of design possibilities, and the need for resources that allows

FP-reasoning. The former is argued in Section 7.1.1 by first casting the problem of design in terms of

evolutionary algorithms, specifically as a search in what is called a “fitness landscape”. Posing design

in this way (very helpfully) casts what we currently do in HCI in a rather unflattering light. This makes

it clear that it is survey knowledge of the fitness landscape that is most immediately needed by designers.

Introducing the fitness landscape also makes it relatively simple to properly highlight the importance of

synthetic reasoning in design. In particular, the difficulty of synthesis is portrayed as a gulf of synthesis

in Section 7.1.2. Analyzing what the designer must do to cross this gulf leads to the conclusion that the

most pressing needs is for knowledge enabling FP-reasoning. Along the way it will be shown that the

most common types of theoretical work in HCI simply do not address these needs. The implications for

building theories fit for design is summarized in Section 7.1.4.

7.1.1 Navigating the Fitness Landscape
Here followed a very long and untranslatable digression about the different races and families of

the then existing machines. The writer attempted to support his theory by pointing out the sim-

ilarities existing between many machines of a widely different character, which served to show

descent from a common ancestor. He divided machines into their genera, subgenera, species,

varieties, subvarieties, and so forth, He proved the existence of connecting links between ma-

chines that seemed to have very little in common, and showed that many more such links had

existed, but had now perished. He pointed out tendencies to reversion, and the presence of

rudimentary organs which existed in many machines feebly developed and perfectly useless, yet

serving to mark descent from an ancestor to whom the function was actually useful.

– Samuel Butler, “Erewhon” [88], pg. 192, (1872).

With the application of sufficient persistence, it takes astonishingly little intelligence or knowledge to

be successful in building new and useful tools. In fact, good tools can be constructed entirely by accident

and without any explicit intent. This lesson was first taught over a century ago by Darwin in the context

of creating biological organisms. But the lesson need not apply only to biological entities, it can apply

to artifacts such as mechanical or computer tools. As the quotation at the head of this section indicates,

7.1. THE TROUBLE WITH THEORY 233

Samuel Butler—a later contemporary and fierce critic of Darwin—was one of the first authors to apply the

concepts of Darwinian evolution to artifactual evolution. But he was certainly not alone.2 The formula

for generating good tools is simple and general.3 Only three things are needed: (1) a way of preserving

good existing tools and forgetting the bad, (2) a way of generating new tools based on the pre-existing

ones—random changes will do, and (3) a way of evaluating each tool to determine how well it works so

the bad ones can be detected and eliminated. In the lexicon of evolutionary algorithms, this algorithm is

cast in terms of “reproduction”, “mutation and recombination”, and “selection”. To make good tools, just

iteratively run the generate-and-test process, accumulate the good tools, and throw away the rest. This is

the basic Darwinian method for building good tools without even knowing how.

It is quite easy to see that the above formula for building tools is too good of an approximation of how

we currently build successful tools. The connection was made briefly in Section 2.1.2, and the mapping

is straightforward. Much of our knowledge about good tool design is tacitly and silently encoded within

existing tools. Successful tools are emulated. When designing new tools one rarely, if ever, starts from

scratch, but builds from prior designs [62, 102, 177, 599]. We design by “hillclimbing from predecessor

artifacts” [598]. Because we know so little about what makes tools great, our changes to existing tools

tend to approach random modifications more frequently than we would like. To deal with this fact, we

have our own versions of natural selection. The single most successful idea in HCI is user testing in

combination with iterative design [251]. User testing weeds out poor designs. We cull the “unfit”.

In natural selection, “fitness” and “adaptation” are concepts used to explain the success of organisms

and species. The precise definition of “fitness” is entirely dependent upon the ecosystem the organism

lives in. This concept of fitness also applies to tools, that is, tools need to be ecologically fit. Tradition-

ally one of the main fitness criteria for tools has been the performance that the tool makes possible (user

productivity, product quality, etc.). However clearly any performance measure of interest can conceivably

be one indicator of fitness (see Section 3.2.4). So, for example, the degree of cognitive support can be an

indicator of fitness. There obviously cannot be any globally fit tool since fitness depends upon local ecol-

ogy. Since so many factors affect the overall fitness, it can be expected that variations on any of the factors

will affect the overall fitness of an artifact. So, for example, it is widely known that the fitness of a repre-

sentation is task-dependent (see e.g., Casner [116], Green et al. [273] Peterson [505], or Mulholland [422])

and user-dependent (see e.g., Good [250]). Moreover, because of the so-called task-artifact cycle [106], the

work ecology will tend to change in response to the introduction of new tools. This tool–ecology change

process is somewhat akin to predator-prey co-evolution. But the notion of fitness does not need a globally

fixed definition of ecology of use. In general, the analyst investigates a tool’s fitness with regard to some

combination of performance measures, characterizations of user population, and situations of use.4 The

issue of fitness is simply given in relation to some chosen ecology.

2See Basalla’s “The Evolution of Technology” [32] for a good overview of various attempts to apply evolutionary
theory to mechanical technology.

3I am presenting the simplest form: there are many good reasons for complicating this most basic formula but for
my purposes here these complications are only distracting.

4The parameter optimization style of modeling design search uses a different but analogous vocabulary. For in-
stance, a tool’s overall fitness is defined by the analyst in terms of a “utility function” and the manipulable features
are called “command variables” (see e.g., Simon [594, pg. 117]).

7.1. THE TROUBLE WITH THEORY 234

Dimension 1Dimension 2

Fitness

Figure 7.1: A “fitness landscape” visualization

Each variation in an individual tool induces changes in the tool’s adaptation to the ecology in which

it is used—each slight change in a tool affects its overall fitness. These changes can run the gamut. They

include changes to screen presentation, screen size, colour selections, layout options, input mechanisms,

command language, commands provided, and so on virtually endlessly. It is enough to even try to un-

derstand the dimensions on which a tool can vary, but what is more, variations along one dimension

modulates the fitness of variations on other dimensions. These co-dependencies make fitness very diffi-

cult to understand. In order to illustrate this difficulty evolutionary biologists have developed a useful

visualization trick called a “fitness landscape” (also called “adaptive landscape” or “adaptive topology”,

see e.g., Dennett [177] or Fogel [226, ch. 4]). The idea behind the fitness landscape is that the features

which may covary are placed along different axes, and the resulting fitness is plotted as a function of

these variables. Although such fitness landscapes will generally have extraordinarily high dimensional-

ity, a two-dimensional slice can be very illustrative. Figure 7.1 is an example visualization. Given two

dimensions for design variation, the resulting fitness results form a surface; the height at any point indi-

cates the degree of fitness.

This sort of visualization be quite helpful in thinking about the properties of design methods and

the possible roles of knowledge in design. From this viewpoint, design can be seen as the search for

appropriate high points in the fitness landscape. Iterative design based on a preexisting tool can be seen as

starting at some particular location, and then tracing a trail up one of the slopes. As far as how knowledge

affects the design, it can be assessed by how it alters the properties of search in the landscape. Without

adequate knowledge, search risks being too dumb.

The Problems with Dumb Moves

The most important benefit to Darwinian construction methods is that very little knowledge (i.e., none) is

needed in order to stumble upon good tools. To make the scheme work practically any sort of mindless

7.1. THE TROUBLE WITH THEORY 235

local maximum

here be monsters

(directendess) (predictability)

(efficiency)

what we want
what we got

Figure 7.2: Problems of mindless search

random mutations of preexisting artifacts is sufficient. So long as the mutations are modest, the iterative

build-and-test process will follow slopes up to the top of hills in the landscape. Even “dumb” moves can

be good. This is seemingly fantastic news for tool designers. They can be profoundly ignorant and still

manage to produce good tools. Unfortunately, Darwinian dumbness is closer to the current state of the

art than we should like. It is unfortunate not (only) because the ignorance is embarrassing, but because of

the problems of the mindless slope following. There are at least three problems with Nature’s maximally

dumb design method. These are illustrated in Figure 7.2, and are as follows:

 Inefficiency. The most obvious problem of mindless search is its stupefying inefficiency. Normal

design spaces are vast [177] and filled primarily with bad designs. Dawkins, ever the wordsmith,

said “the vast majority of theoretical trajectories through animal space give rise to impossible mon-

sters.” [170, pg. 73]. That is, most of tool design space is inhabited by inappropriate and unworkable

tools. Consequently mindless search will happen upon the good ones only rarely.

 Unpredictability. The second most obvious problem of mindless search is its unpredictability and

uncertainty. Many interesting parts of design space may never be ventured into. One particularly

pernicious aspect of unpredictability is that it is possible to get stuck in a local maximum and never

find more globally optimal designs. At a local maximum, all slopes lead down so that slope fol-

lowing (based on small incremental changes and doing iterative design and user testing) will never

converge on a better solution. The problem is especially acute if the more global maxima are a result

of multiple dependent design factors. Rasmussen et al. [531] are fully aware of this problem, and

they even use a fitness landscape as an illustrative device. As they put it, missing a design consid-

eration “in only one dimension may cause an otherwise optimal design to fail” [531, pg. 24]. From

the point of view of searching in a landscape, the problems of unpredictability are that (1) random

walks end up in random places, and (2) random walks make finding fit designs more difficult if they

lurk in far flung locales.

7.1. THE TROUBLE WITH THEORY 236

 Undirectedness. The third most obvious problem of Darwinian design is the undirectedness of

it. Without mindful selection of direction, fit designs are essentially the outcomes of a series of

accidents. The outcomes might be fit for some use, but the result may have no obvious relation to

any of the designer’s original goals.

All of the above problems stem from the dumbness of the search, and specifically from the dumbness with

which new designs are selected or constructed.

Now it is clear that the way we build new SE tools does not really rely on a truly random search of

design space. Nonetheless it is helpful to look at the implications of random search because each of the

problems noted for random search exist to some degree in current design practice:

 Inefficiency. Inefficient search is well known problem for HCI. User testing is an expensive process

so it makes sense to leap up to the tops of hills as fast as one can and to avoid accidentally tumbling

downhill. In fact, the process of inching up hills is a limiting method of iterative hillclimbing search:

the most efficient searching methods will be able to leap from hilltop to hilltop without needing to

sample the valleys in between. This corresponds to radical redesign of the existing tools5 rather than

small incremental change [531].

 Unpredictability. The unpredictability and uncertainty of random search implies that many useful

tool ideas are waiting to be uncovered if we only knew where to start looking. The problem of

getting trapped into local maxima is also worrisome. It suggests that iterative improvement may

allow one to race to the top of hills, but it subsequently traps one there even if there is a taller hill

close by. Many times this problem is a result of the inter-dependencies between features of artifacts:

sometimes good tool ideas are successful only if the appropriate supporting tool features are also

present. If the designer does not realize the dependencies, the good idea will seem bad because user

testing will show poor performance. We saw this in Section 2.2.1 for SuperBook, where the fisheye

view was a good idea, yet careful testing showed that it performed poorly unless other features were

added to the interface.

 Undirectedness. The undirectedness of dumb search may seem to be less obviously a problem for

tool designers. Taken naively, the undirectedness is not a problem at all: normally nobody would

start out trying to build a compiler and accidentally end up building a video game! Design, in the

normal sense of the word, is all about intention (the term “design” is often used as a synonym for

intention or purpose), so designers will generally not to pursue leads taking them far away from

their intentions. Instead, designers will try to use whatever knowledge or beliefs available to them

to find their way in the landscape. This knowledge may or may not be adequate, and Nature’s

5There are two separate notions of radical (re)design. Here I am talking about making multiple, significant changes
to the users’ task environment as often occurs when, for instance, a computer system is brought in where none existed
beforehand, or when introducing a large number of design changes to existing products. Another notion of radical
redesign is a paradigmatic shift in tool form as described by Newman [452]. The latter type of radical redesign
implies a situation in which truly and globally novel ideas are investigated. The former merely implies that the ideas
are novel in the workplace the tool is being deployed in, and it does not rule out the possibility of having established
engineering knowledge to say how to do so.

7.1. THE TROUBLE WITH THEORY 237

random search is the limiting case: random search uses no knowledge of where the high points

are, and has no knowledge of which direction is better. The clear implication of undirectedness is

that the worse off the designer’s knowledge of the landscape is, the more the wayfinding resembles

dumb Darwinian search.

The way to counter these problems is, of course, rather obvious: build in some knowledge and intelligence

into the “generate” part of the “generate-and-test” cycle.

Building Knowledge into Design

...a practical goal for frameworks and models in HCI is to guide the derivation of suitable initial

designs which, by virtue of their accuracy or utility (and these terms are not equivalent), reduce

the number of iterations required before an ultimately acceptable design is achieved. Evaluations

would subsequently act as confirmation or rejection of the design (or parts thereof)

– Andrew Dillon, “Designing Usable Electronic Text” [183], pg. 122.

If one wishes to improve the search in the fitness landscape with knowledge derived from theories,

it makes good sense to resist applying one’s pet theory for long enough to first determine where adding

knowledge holds the most promise. One place it could be added is in the “generate” part of the “generate-

and-test” cycle, that is, in trying to improve the synthesis of new candidate tools. How important is good

candidate synthesis? Consider:

 Inefficiency. Good candidate synthesis can speed up hillclimbing by making it possible to make

larger jumps up the hill, and by avoiding wasted iteration cycles going in the wrong direction. It

also can make it possible to jump from hill to hill instead of following a convoluted path using

conservative iterative improvement.

 Unpredictability. Good candidate synthesis can avoid getting caught in local maxima by reducing

the chance of starting out on the wrong slope, and by either jumping long distances, or taking paths

through low-fitness designs in order to break out of local maxima.

 Undirectedness. Good candidate synthesis can help designers start from the right location, and to

set a course in the direction matching their design goals. Knowledge for doing this is called survey

knowledge.

Knowledge about candidate synthesis is therefore a critical resource for good design. A good case can be

made, in fact, that the most important role of theory in design is the provision of knowledge to synthesize

good initial or succeeding design candidates.

The above presentation might at first seem somewhat unnecessarily belaboured in order to make rel-

atively simple point. My sincere hope was that the presentation makes it very obvious to the reader that

one of the most important roles for theory in design is for building good candidate synthesis knowledge.

7.1. THE TROUBLE WITH THEORY 238

I hope this fact is made blindingly obvious because the significance of this role is not universally acknowl-

edged. In fact, the role does not even appear to be particularly well known or investigated. Instead, a

great majority of theory in HCI is concerned with evaluation instead of synthesis, and with fine detail

rather than survey knowledge. I shall briefly consider in turn why evaluation and fine detail should be

considered secondary targets for theory development.

Synthesis, not Evaluation

... once in hand, the theory makes it possible to zip out products faster than cut-and-try engi-

neering because one can skip a lot of the cuts and the tries. ... far from being a leisurely luxury,

theory can be even quicker than “quick and dirty” engineering methods.

– Stuart K. Card, “Theory-driven Design Research” [93], pg. 502.

One of the most popular applications of theory to HCI is to substitute prediction for empirical testing.

The clearest example of this principle is given by the authors of GOMS [94, 448]. GOMS is, to put it very

simply, a theory that produces predictions of performance given a description of an artifact, user, and task.

Synthesis works the “other” way: it takes a desired performance and generates a new design intended to

achieve that performance [348]. One can say that GOMS works “backwards” in relation to the direction

of synthesis.6 The difference between synthesis and evaluation is illustrated in Figure 7.3. For synthesis,

one needs resources to reason forwards from the design context to features of new artifacts such that the

design goals are satisfied. Evaluative theories like GOMS, by their very definition, only serve to reason

backwards. To use them one needs to have an artifact, prototype, or design in hand.

There can be no question that applying theory to the problem of evaluation can be very valuable [254].

But the preceding discussion on navigating the fitness landscape places the contributions of evaluation

into its proper place. Theory’s role in evaluation is of a secondary tool that helps out only after the im-

portant decisions are made. Evaluation’s role in search is limited to establishing current position so that

it can be compared to other established positions. As such, it can assuage the problems of inefficiency,

unpredictability, and undirectedness in only the most roundabout ways. This limited role for theory in

design appears to suit Landauer just fine, because he feels that “empirical cut-and-try” is the “foundation

of design” [370, pg. 60]. He argued that the basis of design is inspired guesswork followed by iterative

slope following, with theory playing a small and limited role in the guesswork portion. Now, it is true

that we will surely never have enough theoretical knowledge to make perfect design moves. It may also

simply be cheaper to do some guesswork and test the guesses even if the theory did exist. Nonetheless,

we must resist being led into thinking that the most promising application for theory is in evaluation. The

brightest promise for better design always was, and always will be in improving synthesis. Human are not

more efficient designers than Nature because of their evaluation skills, but because of their construction

knowledge.

6Calling synthesis “forwards” and understanding “backwards” corresponds to industry-wide terminology. E.g.,
“forward engineering” and “reverse engineering” [126].

7.1. THE TROUBLE WITH THEORY 239

Natural
Selection

BACKWARDS
EVALUATION

FORWARDS
SYNTHESIS

Theory
Applications

Testing
Iterative

guesses
context, goals new artifact

testing
performance artifact

mutation
new organism

natural selection
fitness organism

informed guesses
context, goals new artifact

evaluation
performance artifact

Figure 7.3: Roles of theory for synthesis versus evaluation

Because it is a slippery slope between evaluation and design, some elaboration on this point is war-

ranted. When Card et al. [94] outlined their vision of an applied psychology for design, they held up, as a

guiding example, a scenario of how it might be used. Specifically, they imagined a hypothetical designer

of the future using GOMS analysis in order to compare the performances of users using two competing

designs for text editor interaction mechanisms (these were, incidentally, keyboard-based vs. light pen-

based solutions). The GOMS analysis showed that one design was easier to learn, but slower, and the

other was harder to learn, but quicker. These results were then used in order to make and rationalize

design decisions. Is this not the use of GOMS to do synthesis? Answering that question satisfactorily

requires a modicum of subtlety, but the answer is definitely “no”.

The first key point to notice is that the space of design options (i.e., keyboard vs. light pen) was already

set out somewhere else. Perhaps in the world of text editors the option space for input devices is well

known, and needs no “theory” in order to lay out the possibilities. However, elsewhere the space of

options is enormous, and the issue of understanding design options quickly becomes a dominant hurdle.

Currently we rely on craft knowledge of the design space built from exposure to large portions of it in

the form of many different existing artifacts. It is fine to say that designers should be able to learn to

build an internal model of the structure of the design space. But there are few things so parsimonious as

a theory that generates it from fundamental principles. As can be seen from Section 6.5, even a restricted

decomposition of this design space can be important for reigning in the multidimensional space of options.

The second important thing to understand is just what the designer is forced to do with GOMS. GOMS’

role in the scenario is to analyze the design implications of the elements in the design space. The output

7.1. THE TROUBLE WITH THEORY 240

from this design space analysis using GOMS is a decision table, that is, a situation-specific design theory.

Given a designer’s preferred mix of learnability and performance, the table is a theory specifying (or

predicting, if you prefer) the artifacts that deliver those goals best. It is the space of design options in

combination with the decision table that form the knowledge the hypothetical designer used for forward

reasoning. GOMS is used to produce this knowledge, but it is not the knowledge itself. It would be far,

far better for the designer to have had a description of the design space and its decision table in hand to

begin with. This is, in fact, the critical point to the whole question of analysis vs. synthesis.

Consider the cost to the designer of producing the situation-specific decision table: GOMS is needed

for essentially every slight artifact variation because there is no equivalent of a generalized decision

table—i.e., a generalized design theory. Not even a heuristic or approximated one. The designer is left

to sample design space and evaluate each point. She tediously reconstructs the fitness landscape. Put

another way, the very fact that an evaluative theory like GOMS is so often required is definitive proof that

no appropriate design theory exists that could mitigate the need for it. Instead, the designer must sweep

GOMS across the entire design space in order to point out the high ground in the fitness landscape. This

last point conveniently brings up the issue of survey knowledge.

Survey Knowledge, Not Details

There are many ways of evaluating the adequacy of a theory [348] but one of the most prevalent in HCI

and cognitive science is its predictive accuracy. Since most theories in HCI and cognitive science are for

evaluation rather than synthesis, this means that much attention is paid to the accuracy with which a the-

ory predicts a phenomenon such as user behaviour and performance when given an artifact. The reason

for this attention is straightforward and understandable: accuracy of prediction is one of the best ways of

establishing whether the basic ideas underlying the theory are sound. Unfortunately because predictive

accuracy is used as a measuring stick, there is an overpowering bias against theories that try to explain

many things [446], and a strong preference towards “limited theories” [259] that pick out some small phe-

nomenon and predict it reasonably well. The price one usually pays for predictive accuracy is a limited

scope [192] (see also Section 5.1). Predictive accuracy is still a valid measuring stick for design theories,

but the above discussions of the difficulty of navigating the fitness landscape argue against applying it

too aggressively lest limited theories are unduly favoured. And there are good reasons for considering

accurate but limited theories to be less desirable than more general theories even if these are less accurate

or less predictive. A key to realizing this preference lies in the cost difference between tool analysis and

empirical testing.

Evaluation in the form of user testing is relatively easy and it can rather cheaply pick out many of the

small flaws in design, especially problems in usability. That is, for many “minor” aspects of the design

it is easier to test guesses than generate good design decisions in the first place. Of course, this is a

generalization that needs some qualification, but even when qualified not everyone is likely to agree with

it. For example, Landauer [371, ch.10] advances the argument that developing new ideas is easy but the

evaluation is hard. He suggested that good new tool ideas like spreadsheets and direct manipulation are

quite easy to create but properly evaluating their merits is much more difficult. This is in ways true and

yet in many important circumstances it is generally false. The ultimate proof of the matter is that many

7.1. THE TROUBLE WITH THEORY 241

sorts of simple usability evaluations have proven very effective at detecting the obviously bad parts of

designs (e.g., Nielsen [460]). In fact, the average untrained user is apparently quite good at detecting bad

designs. Just ask any novice computer user whether they think operating it is easy; ask pretty much any

expert computer user whether they think the system they are using is perfect. They will both generally

be able to give a list of problems, and neither will have put in as much effort in listing these problems

as the designer had in conceiving a novel design. The ultimate proof is that if users could not detect bad

design, the push towards ensuring usability would be seriously muted. There may be many limitations to

user testing, but even so testing design guesses will often be cheaper than building good initial designs,

especially for the minor usability quirks. Using the metaphor of the fitness landscape again, user testing is

the cheap way to inch up a hill once you have located it, but locating the hill is hard. The “test and tweak”

method may be very hard to beat so long as only minor tweaking is required.

Given the relative cost of local hill climbing the problem with limited design theories is apparent. Lim-

ited theories—no matter their accuracy—by their very construction reflect a knowledge of local topology.

Metaphorically speaking this is the equivalent of knowing well a small neighbourhood of a large city. Im-

proving predictive accuracy of such a limited theory may do little more than eliminate a few steps on the

slope-following curve: once you get to the right street, you can just go door-to-door. Thus the most impor-

tant role for theory in design may very well be for hill finding, not hill climbing. Hill finding absolutely

requires a non-limited theory, that is a theory that is very broad in scope and general, integrates many

high-level design concerns, guides one roughly to the right neighbourhoods, and lets one quickly realize

when one is in the wrong neighbourhood. A critical role for theory in design is therefore to provide broad

survey knowledge rather than knowledge of limited local topologies.

In addition, the cost structure of theory application further disadvantages accurate but limited theories.

Simply put, there is generally a cost to predictive accuracy and power in terms of analytic effort. This cost

creates what Shum et al. [86] call the “cost gulf” for an analytic technique. It is clear that what goes on

when human interact with computers is incredibly complicated; so in general, being able to predict what

sorts of artifacts will be maximally fit requires accurate and detailed understanding of the users, tasks,

environments, and so on [344, 625]. One can expect that better initial designs only come as a result of

better analysis and more powerful theory. This not only makes the analysis part difficult, it also makes

the techniques much harder to learn for the HCI specialist and non-specialist alike. Barnard and May [30]

describe the problem as follows:

[Many techniques] require detailed specifications to be generated for each application modeled. Often

each application can require the specification of many rules, the construction of which requires a mod-

eling expert. All of this work has to be redone for each problem considered. Therefore application of

such techniques requires a large commitment of resources. In many design contexts, this is difficult to

justify. [30, pg. 105].

Good and accurate theory application may be very costly and user testing can be cheap. This puts the

squeeze on applied theories: in many circumstances the only cost effective role for theory in design may

be hill finding. To put it bluntly, there may be rather little practical use for highly accurate but limited

design theories.

7.1. THE TROUBLE WITH THEORY 242

The upshot is that if one is looking to build design theories, as I am in this chapter, the obvious choice

to begin with is “quick and easy” survey knowledge that gets the designer into the right general area

of design space. The minimum requirements for these theories are that (1) they be broad in scope, (2)

they require only cheap, broad-brush analysis to apply, and (3) they need only yield general, high-level

suggestions about the gross forms of tools. This suggests that applied researchers should tend to eschew

limited theories in favour of aggressively broad and inclusive ones. I am hardly the first to point out many

of these facts (see e.g., Young and Barnard [720], Green et al. [270], Dillon [183]), however these voices are

difficult to hear against the din made by papers emphasizing the predictive accuracy of limited theories.

As a consequence, some authors apparently feel the need to offer apologies for their broad-brush theories

(e.g., Wright et al. [719]), probably to attempt to appease the “hard-line” theoreticians. No apology should

be needed. Because these issues bear strongly on both how I will design and evaluate design theories, the

above argumentation for the necessity of survey knowledge is worthwhile.

Summary of Navigating the Landscape

Theory builders should be aware of the overall importance and possibilities for theory in design. Initial

design theories should probably favour breadth and generality instead of fine detail and predictive accu-

racy. The cost structure of theory application and user testing supports this point. Further, it should be

realized that one of the most critical roles for theory in design is to allow the designer to reason about how

to synthesize good designs, rather than to better analyze existing tools.

Even if these facts are realized, it is still necessary to understand what is required to enable synthetic

reasoning. As the field stands now, not much attention has been paid to what it takes to improve synthetic

reasoning. So in the next subsection I shall take on this issue by outlining the distinction between design

context knowledge and synthesis knowledge, and then identifying the types of theoretical resources that

can enable designers to cross what can be termed the “gulf of synthesis”.

7.1.2 Crossing the Gulf of Synthesis
...there is an assumption that understanding the programmer’s mental model is an efficient route

to designing effective tools. However, it is not at all obvious how to design a tool given a speci-

fication of the programmer’s mental model. For instance, how does knowing that programmers

will sometimes use a top-down strategy to understand code ... inform tool design? It doesn’t tell

us what kind of tool to build, or how to integrate that tool into the workplace or the programmer’s

work.

– Singer et al., “An Examination of Software Engineering Work Practices” [597], pg. 210.

It is one thing to understand the world, and another quite different thing to know how to change it.

In much of the cognition-oriented research work in software engineering and other fields, a great deal of

attention is paid to understanding the contexts for which tools are designed. This is quite understandable.

7.1. THE TROUBLE WITH THEORY 243

Knowing the ecosystem that the tool is intended for is critical for knowing what would be “fit” in that

ecosystem. In fact, one of the original rallying cries [20] for HCI was to “know the user” [288]. The cry

lead to wide-spread acceptance of the ideal of user-centredness [475] in the design of human–computer

interactions. The basic call for understanding design context has been refined over the years. Now, more

and more aspects of the design context are being studied: in addition to individual psychology, we are

become more concerned with such things as collaboration and group interaction [44, 591], the social and

organizational backdrop [103,140,157,160,690], and the essential structure of work domains [530,657,658].

We are also told to study “authentic” users [275,583] “in the wild” [221,311,371] to know what they “really

do” [60,596,658].7 In contemporary HCI much emphasis is placed on understanding the ecological context

during design.

Cognition-oriented theories clearly have an opportunity to play an important role in understanding the

relevant aspects of the ecological context. Researchers have turned to a variety of theoretical disciplines in

order to shed more light on users, their activities, and other like issues in the design context. The typical

presumption is that the theories can, in some vaguely understood way, be applied to better “inform”

design. Now, it is hard to imagine that it is ever a bad thing to know more about the design context. Even

so, it is important to make a distinction between being informed about the design context, and knowing

exactly what to design. To paraphrase the quotation from Simon that started this chapter: designers want

to know what ought to be rather than what is.

It would be a profound pity if theory could only be applied to “inform” the designer about what

is, instead of what ought to be and how to achieve it. I am reminded of the old joke where the patient

goes to the doctor and says “Doc, it hurts when I do this” and the doctor says “Don’t do that.” The

joke is no less applicable if the patient says “Doc, I think I have a broken arm” and the doctor runs an

exhaustive battery of sophisticated tests and says “Yup, its a broken arm all right” and sends him home,

broken arm untreated. Designers want the equivalent of the doctor’s knowledge of how to actually mend

the broken arm—it is not satisfying to just know the current state of affairs. Restricting theory’s role to

simply “informing” design by articulating aspects of the design context is a seriously limiting conception

of theory’s role. We want to use theory to cross what can be called the “gulf of synthesis”.

The Gulf of Synthesis

As Long [390] pointed out, it is possible to learn something about the design context without necessarily

also knowing what to build in order to change it for the better. Say you learn that short term memory

is limited. How would a theory of how short term memory works tell you what features to add to your

source browser? It certainly tells you something about what not to include—features that require lots of

short term memory—but nothing about what remedies a lack of it. The problem is that, in general, knowl-

edge about a design context is not easily convertible into ideas for design—it is “inert”. This knowledge

can serve to inform designers of the problems the users face. It can also serve to constrain design, but

because the design space is so vast such constraints are not generative. Imagine going on a treasure hunt

7Blomberg [60] produced an excellent review of how the push towards understanding design context as a precur-
sor to good design has come about.

7.1. THE TROUBLE WITH THEORY 244

when the only information you have been given is that the treasure is not in Mobile Alabama. Although

one can try to add more and more constraints, theory will always under-constrain design [110], so ex-

ploring design constraints is helpful, but not sufficient. Knowing the user’s problems and the constraints

imposed on design does not actually tell one what to build.

After studying the design context the designer is therefore inexorably lead to the precipice between

analysis and synthesis. Norman [322, 467, 468] used the term “gulf” to describe similar sorts of impasses.

For instance he coined the term “gulf of execution” to name the impasse that occurs between a user’s

plans for action, and the performance of these. In an analogous way, the problem of developing design

ideas when given some understanding of the design context can be called the “gulf of synthesis”.8 Design

context knowledge primarily leads one to better appreciate the gulf rather than ferrying one across it.

The gulf of synthesis is actually even more devilish than one might at first suppose. Not only is knowl-

edge of a design context inert, it can also act like a set of blinders for the unwary designer. Pylyshyn [522]

provided a clear example in the case of designing for designers themselves. Design studies have shown

that professional and expert designers do not follow strictly phased development methods (such as the

well known “Waterfall” method), despite suggestions that such phased development is the “right” way of

doing software development (see e.g., Carroll et al. [108], Parnas et al. [488]). Pylyshyn correctly asked how

this knowledge of the actual existing practices of developers informs the design of tools for designers:

What are we to make of such findings? Do they suggest that design cannot be automated, or that we

should not study designers? The fact that certain ill-structured problems, such as design, are approached

in a certain way by experts may not tell us anything about how they could, or should be approached given

certain computational aids. [522, pg. 48] (emphasis original)

Now it may certainly be the case that design can really never be automated, but claiming that it cannot

be automated based on observations of what designers currently do simply begs the question. So even if

one studies “authentic” situations, one must be wary of confusing what exists with what is possible, and

with what ought to be. The designer must have vantage point from which the possibilities for changing

the status quo can be understood; she must be in a rather privileged position [657]. Traditionally, the issue

of comparing what is with what ought to be has been posed as a distinction between descriptive theory (that

describes what is) and normative theory (that describes what should be). For instance, a normative theory

of design might prescribe that design should be performed as a group activity in which the appropriate

shareholders cooperate. It is not appropriate to further unpack these various meanings in this chapter.

The point is that a variety of models and theories can be used to understand the target ecology (the user’s

tasks, preferences, needs, social setting, and so on), but even once that is understood there is the next step

of knowing the ways disturbing the existing world to meet the perceived needs. The important question

to ask is therefore: how do we build theories for crossing the gulf?

8Singley and Carroll [598] have described a related—but different—problem called the “analytic-synthetic gap”.
The analytic-synthetic gap refers to a putative limitation of deduction from theory for the purpose of generating new
designs.

7.1. THE TROUBLE WITH THEORY 245

One might suppose that application-oriented theoreticians spend a lot of time pondering just this ques-

tion. Indeed, one would hope they have by now come up with a number of satisfying and detailed ar-

guments as to how theory can be used to bridge the gulf of synthesis. In reality, we have only the barest

inklings of how to do so. The claim that a theory or framework provides “design insight” or “design

implications” can seem embarrassingly flimsy. This is not to say that existing theoretical works are not

useful. In many cases claims for improving design might very well be true. For instance, I am inclined

to believe Holland et al. [311] when they claim that a DC perspective really does provide “new insights

for the design of conceptually meaningful tools and work environments” [311, pg. 180]. However since

useful design theories are so hard to come by, the skeptic deserves a convincing argument. Alas, with

the exception of a rather sparse set of outliers (e.g., Shum et al. [86], Rasmussen et al. [531]), there are few

arguments that force us to believe the claims for improving design practice are more than hopeful wishes.

Perhaps one reason for this state of affairs is that too many theory developers succumb to the fallacy of

the “magician’s design method”.

The Magician’s Design Method

The magician’s method for designing good tools is to study the design context until magical insight occurs.

This method is diagrammed in Figure 7.4. The “magic” occurs at the boundary between understanding

and action, and it seems that too many theoreticians appear content to keep the synthesis step an enigma.

I do not doubt that if researchers study a problem domain for long enough, then a few good ideas might

pop into their heads. This seems especially likely for exceptionally clever researchers who publish papers

on design. Moreover, I am certain that expert designers will in most cases be able to call upon their vast

knowledge of past designs in order to come up with some workable ideas. In contrast with either of these

methods, I am searching for something that takes as input a partial understanding of a design context

and, by using explicit theory, generates useful design ideas and concepts.

EVALUATE
STUDY /

PSYCHOLOGY
SOCIAL

ENVIRONMENT
WORK

PSYCHOLOGY
USER

new design

MAGIC OCCURS HERE

understanding

tools
current

focus group

marketers

TASKS

synthesis
gulf of

Figure 7.4: The magician’s design method

7.1. THE TROUBLE WITH THEORY 246

This is not an unreasonable request. It is precisely what is required for any theory that can be directly

applied to cross the gulf of synthesis. The theory does not have to mechanically or infallibly generate

new designs as, for instance, an ideal automated designer might do. An automated designer would take

descriptions of the design context and design goal. It would use a theory to generate design moves (it can

be implicit), and would accordingly construct an appropriate artifact. For generating a restricted variety of

information displays, this theory-driven approach has already been tried (e.g., Casner [116], Zhang [725]).

Automating the construction of certain suitably restricted aspects of SE tools is certainly conceivable.

For example, it might be possible to automatically generate task-relevant program visualization displays

when given some description of a maintenance task (or at least partly automatically [195]). Automating

SE tool design to any significant degree still seems farfetched, however. But full automation of design

synthesis need not be the goal. The theory does not have to authoritatively or infallibly “dictate system

design characteristics” [370]. Instead theory can simply guide design reasoning.

On this view, the role of a design theory is to provide recommendations and suggestions, or to produce

guidelines [28]. Designers—even when the use a design theory—will still make poor design choices, rely

on intuition and craft knowledge, and iteratively test out new ideas. Nonetheless, it is entirely worthwhile

to take seriously the problem of constructing design theories. To not do so is to meekly accept the myster-

ies of the magician’s design method, and to thereby miss out on the possibility of reducing the reliance on

intuition and iterative testing. But what is first required is some way of making scrutable the processes of

idea creation and design decision making. Shedding some light on these is necessary in order to generate

a decent argument detailing how theories may be used during the critical step of synthesis. To make this

argument one needs some kind of model of the knowledge and resources used during design reasoning.

In the following subsection, I will propose one simple model. The purpose this model is to argue the

importance of theories allowing designers to reason about what I call “positive consequences” of tools,

that is, to facilitate FP-reasoning.

7.1.3 Theory for FP-reasoning
Theoretical integrations along the environment dimension ... are hardly ever attempted but are

critically needed to support the cross-environmental reasoning inherent in design. It should not

come as a surprise that most cognitive psychologists are not overly concerned with this type

of theoretical unification, because an acceptable scientific product is a model of behavior in a

specified environment, and rarely is reasoning backward from cognitive theory to environment

required.

– Alex Kirlik, “Requirements for Psychological Models to Support Design” [348], pg. 74

In order to demystify the magical synthesis step, it is necessary to model something about the design

process [62]. Fortunately a little detail will often go a long way. It is enough to consider here some

7.1. THE TROUBLE WITH THEORY 247

of the resources that designers rely on to synthesize new designs.9 The HASTI framework can actually

be employed to model the sorts of knowledge employed by designers.10 During synthesis the designer

explores what HASTI defines as the problem, i.e., designer’s overall goals, the constraints placed on their

design options, and the design moves that are possible. These define the designer’s problem space and

so design activity can be interpreted as an exploration of this space. That is, design is an exploration of

possible design moves according to the design goals while respecting the design constraints. Since this

definition of problem space changes as design and development progresses, we can therefore say that

these resources comprise the “synthesis state”. The point is that if we can understand something about

how the synthesis state is constructed we can consider how to impact synthesis without needing any

more of the gritty problem solving details. In other words the analysis can proceed at what Newell called

the “knowledge level” [445]. The question for this subsection is how theory can be applied to define the

problem space as it is constructed and explored by a designer.

To begin answering this question it is helpful to elaborate what things should be considered design

goals, constraints, and action possibilities. A short survey easily rendered:

1. Goals. Designers adopt design goals based on what they believe tools ought to be. From these

beliefs, designers adopt high level design goals that serve to globally organize their exploration of

design space. Examples of general design goals from the literature include (in no particular order):

(a) Automation. Designers may adopt a goal to try to automate as much as is possible.

(b) Reduce cognitive overhead. Navigation can be viewed as an extra burden, so the cognitive load it

imparts can be a focus for reduction (e.g., Storey et al. [619]).

(c) Information provision and formatting. The designer may think the purpose of software compre-

hension tools is to provide the right sort of information in the right format. This expecta-

tion may set up goals to pursue certain search and visualization tools (e.g., von Mayrhauser

et al. [668, 670]).

(d) Skilled performance. One may adopt the position that the goal of design is to provide environ-

ments in which manual and perceptual skills can be employed in place of intensive reasoning

(e.g., Kirlik [348]).

Note that none of the goals are directly operational, that is, one cannot actually generate designs just

by adopting them. Also note that one important aspect of goal setting in practice is that designers

are known to follow habitual paths in design space (e.g., Stacey et al. [615]). For example, Carroll and

Rosson, who have both a penchant and an aptitude for applying psychology during design, noted

offhand that “it seems that almost everything we design involves example-based learning” [110,

pg. 194].

9Design is frequently a group activity. Appropriate extensions to a group problem solving model may generalize,
but these extensions will not considered here.

10This observation was partly inspired by Rasmussen et al. [531] and Buckingham Shum et al. [86], who both ex-
pertly performed a similar trick of recursively applying design theory to designing theory.

7.1. THE TROUBLE WITH THEORY 248

2. Constraints. Design constraints effectively prune the design space: they identify the parts of design

space that should be avoided. That is, they identify which tools are impossible, unsuitable, or sim-

ply undesirable. Thus design constraints implicitly identify the negative consequences of tools [110]:

the undesirable implications of the tools such as usability problems. For instance a tool may force

the user to remember too many items, and therefore violate a constraint imposed by the memory

limitations of users. By respecting design constraints designers avoid usability problems.

3. Possibilities. Design possibilities are the steps that designers can take to achieve their design goals.

Since designers typically try to make useful tools the design possibilities correspond to the moves

that make useful artifacts. In other words, design possibilities are ways of creating artifact features

with positive consequences.

How can theory be applied to construct these three aspects of the designer’s problem space? In the

previous subsection I identified three main classes of theory application: backwards from artifact, forwards

from goals, and “informing” theories that help the designer generally analyze and understand the design

context. If one composes these three classes of theory application with the above three resource types, one

gets a matrix of 9 different possible applications of theory. I shall consider five of these: the four categories

defined by �forward� backward� � �negative consequences� positive consequences�, and the case where design

goals are inspired by a theory’s design stance. The first four types are abbreviated FN, FP, BN and BP where

B and F stand for “backwards” and “forwards”, and N and P stand for “negative” and “positive” conse-

quences, respectively. Each of these four categories of theory application assists in a different category of

design reasoning. These categories are thus called FN-, FP-, BN-, and BP-reasoning, respectively. The fifth

application (providing a design stance) can be said to enable strategic goal setting. These five applications

of theory are depicted in Figure 7.5 (the ones applied here are circled).

Theory Guided Reasoning

Each of the five applications of theory provide a way of guiding design reasoning by allowing the designer

to use theoretical resources to establish and consider goals, constraints, and possibilities. The problem

space that the designer may reason about is dependent on the forms of such theoretical resources. Table 7.1

summarizes the applications for the four types not concerned with goals. These are:

BN BN theory enables reasoning backwards from an artifact to the negative consequences that it em-

bodies. This is the prototypical form of using theory in HCI. Methods for invoking theories from

BACKWARD FORWARD

NEGATIVE predict / explain problems constrain design

POSITIVE rationalize / explain benefits expose solution space

Table 7.1: Four types of reasoning and roles of theory for supporting them

7.1. THE TROUBLE WITH THEORY 249

DESIGN CONTEXT

cognitive limitations

problems
environment

tasks

biases

goals

inform

ARTIFACT

forwards

backwards

possibilities constraints

SY
N

T
H

E
SIS

E
V

A
LU

A
T

IO
NFP FN

BP BN

design
stance

synthesis state

Figure 7.5: Resource flow model of theory application in design

artifacts include the various forms of “cognitive walkthroughs” [110, 272], or the execution of pro-

grammable models [86]. The role of theory in these methods is to predict usability problems in an

artifact without actually testing it (or else to explain their source).

BP BP theory enables reasoning backwards from an artifact to understand how the artifact can be con-

sidered useful or otherwise beneficial. The role of theory in this case is to either rationalize the

design decisions or else explain the source of the designed benefits. The CoSTH of Chapter 6 is a

collection of BP theories.

FN FN theory helps one reason forward from design goals to anticipate the possible negative conse-

quences that should be avoided. Normally this means helping steer design away from problematic

or unusable features and thereby shortcutting the need for BN theory during retrospective evalua-

tion.

FP FP theory allows reasoning forward from design goals to features of artifacts that can be beneficial.

These possibilities lay out parts of the design solution space. Although CoSTH is primarily a BP

theory, it also has some potential to enable FP reasoning since it identifies possible reengineerings

that could be accomplished. In particular, redistribution, substitution, and cognitive rearrangement

are theories for reengineering cognition to create support.

The fifth type of theory application being considered here is the provision of a design stance in order to

help generate goals. Theoretical frameworks often carry with them a way of looking at user problems and

7.1. THE TROUBLE WITH THEORY 250

the benefits of artifacts. The theories therefore provide a design philosophy or design stance for the designer.

Colloquially speaking, different design stances let designers try on differently tinted glasses. Each design

stance serves to highlight different problems in the design context, and to develop goals for achieving

them. For instance Kirlik [348] outlines a design stance that honors skill-based task execution as a way

of reducing cognitive burdens. Adopting this design stance can lead the designer to generate goals of

providing skill-based methods of completing cognitively challenging tasks. By providing a design stance,

the theory serves to bridge between problem comprehension and goal setting, and subsequently acts as

a heuristic strategy for searching the design space. Since designers tend to follow habitual paths, having

a collection of differently coloured glasses can open up the design space and afford to designers multiple

ways of tackling design problems.

7.1.4 Summary and Implications for Designing Design
... Viewed in this way, the user interface is not a gulf, but a resource for action. Unfortunately,

current cognitive models of how action is generated do not throw much light on the way such a

resource might be exploited.

– Stephen J. Payne, “Looking HCI in the I” [491], pg. 185.

In this section I have gradually constructed a taxonomy of ways of applying theory in HCI. The taxon-

omy has two main orthogonal application dimensions: (1) the direction for reasoning, and (2) the types of

artifact consequences to reason about. The two directions of reasoning were called “backwards” (B) and

“forwards” (F). Backward reasoning was characterized as starting with an existing artifact, prototype, or

design idea and working towards explaining or predicting properties of the resulting artifact. Forward

reasoning was characterized as starting out with a design goal to achieve and coming up with artifact

features that can achieve the goal. The artifact consequences to reason about were called “negative” (N)

or “positive” (P). Negative consequences are the “bad” implications of artifacts such as usability prob-

lems they create, and positive consequences are the “good” implications of artifacts such as the cognitive

benefits they provide. Using this taxonomy and a simple model of the design problem space, I consid-

ered five applications of theory to guide designers in constructing their design space: BN-, BP-, FN-, and

FP-theories, and design stances that help designers set design goals. I then argued that the DC theoretical

resources developed in previous chapters are potentially very well suited for BP- and FP-reasoning, and

for setting design stances.

In terms of designing cognitive artifacts, some of these five applications of theory have definitely re-

ceived more attention in the past. Most notably BN theory, but also to a lesser extent FN-theory. For

instance, human performance models are primarily useful for backwards reasoning. Returning to the

lever example of Section 2.3.1, performance models are analogous to engineering models that can deter-

mine the load limits of a given lever. This is an important, but complementary issue. Design theories

suggest instead that perhaps a lever might be appropriate solution. In addition, much of the less theoreti-

cal work in HCI (like checklists and usability inspection methods) can also be categorized as resources for

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 251

FN- or BN-reasoning. Chapters 3 and 6 showed that there are many different studies of cognitive support.

Yet the use of cognitive theories in HCI is still dominated by performance theories, and theories useful for

predicting or diagnosing usability problems. Why this particular focus? As Payne [491] has implied, HCI

researchers tend to treat interfaces as posing problems rather than providing aid. This bias could explain

a general tendency towards BN- and FN-theories.

The analysis in the earlier part of this section suggests that current prioritization of HCI research is

unwarranted. Specifically, the types of theories most keenly needed are FP-theories and theoretical frame-

works that can set a useful design stance. If one were to build a priority list for theories to develop, two

types of theories would top it: FP-theory that lays out the solution space, and design stance setting theo-

ries that provide strategies for navigating it. In addition, one would have to give a much higher priority

to broad-brush theories that provide global survey knowledge. These provide the biggest cost-to-benefit

ratio for the designer. The executive summary is most useful now; details can be filled in later. The

somewhat belaboured analysis presented in this section would be unnecessary if this prioritization were

acknowledged in more than a few isolated instances. Unfortunately this is not the case, and the result is

that the profile of theory application in HCI reveals unsightly gaps in the most inopportune places.

How can this insight into theory types and priorities be converted into theories fit for design? I propose

that cognitive support theories such as CoSTH can be employed to fill in some of the gaps. Although it

clearly has promise for FP-reasoning, CoSTH is a theory that is built primarily for BP-reasoning. Given

an artifact, one can use the CoSTH to understand what benefits are embodied by the artifact in terms

of various types of cognitive support. The question to settle is whether it is possible to more effectively

reverse the direction of reasoning, that is, whether RODS, HASTI, and CoSTH can be massaged to provide

a useful and usable design stance, and whether they can be put in a form that makes FP-reasoning simpler.

This is the question I tackle in the following section.

7.2 Cognitive Support Knowledge Fit For Design

The tacit assumption in the modeling world has always been that science and modeling is hard,

but that if one can get some results the design, while a little scruffy, is relatively easy. In fact, one

of the greatest difficulties [we found] has been in figuring out what designers could use models

for and what is a reasonable design method that would incorporate models. Theorists have been

observed to undergo severe culture shock when required to extract from their model or theory

some piece of information necessary to answer some design question.

– Stuart K. Card, “Theory-Driven Design Research” [93], pg. 506.

The main idea behind cognitive support is that artifacts can be a partner in cognitive work. Therefore

“support”, as a concept, is squarely aimed at explaining why tools are beneficial rather than merely toler-

able (or a hindrance). With the exception of Section 2.3, theories of cognitive support have been treated in

this work as a method of explaining how the support works: how a tool—or, properly speaking, changes

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 252

in the tool environment—alters a DC system in such a way as to improve cognition. In other words, in

their present forms RODS, HASTI, and CoSTH are tailored to analyze existing tools and are thus fit for

BP-reasoning. BP-reasoning is very important during design since, at the very least, it is necessary to

remember past successes [110]. But what can these resources contribute during synthesis without first

having a tool in hand to analyze? It seems that CoSTH in particular could be used to enable FP-reasoning

and provide a useful set of design stances. Even so, it is entirely likely that these resources are better

classified as basic design theories rather than applied design theories: they are not especially tailored to be

used by practitioners. The question is whether they can be changed in form to suit designers better, that

is, to make them both useful and usable.

In this section I will argue that they can. I shall put forward three different ideas for molding and

repackaging the concepts from RODS, HASTI, and CoSTH so as to be better suited for application. None

of the ideas for repackaging theoretical resources are novel, but since RODS, HASTI and CoSTH are new,

they can be applied in novel ways. With the exception of a few tentative forays [331,685] into doing so, the

results are all distinct from prior work. This avenue of research can be explored only briefly and tentatively

in this work. Although it is a poor substitute for thoroughness or rigour, I shall strive to convey the promise

of these approaches towards building applied design theories. If theories are designed artifacts, then what

I am proposing would qualify as early design envisionments or skeletal prototypes—they are not even

beta versions. Nonetheless, I think presenting these early prototypes is very worthwhile. Exploring these

ideas even briefly should help point out promising directions for future research. Hopefully, this foray

should also help convince the reader that the theoretical resources developed in other chapters have a

reasonable chance at providing knowledge fit for design.

The three theory-repackaging ideas are: (1) building a working vocabulary, (2) providing useful design

perspectives, and (3) reifying the design space by providing checklists and the like. These are outlined

in three subsections below. This is an exercise in designing design knowledge, and so the effort will

necessarily be tailored towards a particular type of design or designer. During each subsection I will thus

begin by introducing the design idea being pursued, and the intended target audience and design setting.

Then I will overview the ways that the design idea can conceivably be implemented by using RODS,

HASTI, and CoSTH. In Section 7.2.4, I will conclude with a brief summary of the design ideas.

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 253

7.2.1 Engineering Concepts and Vocabulary

The contribution of cognitive science to HCI research is to provide the conceptual background

against which the engineering principles can be understood.

– Barnard and May, “Cognitive Modelling for User Requirements” [30], pg. 102.

Design Ideas

Within linguistics there is a reasonably well known hypothesis—the so-called “Whorfian Hypothesis” or

“Shapir-Whorf Hypothesis”—that the languages a person is able to speak determines what they can or

cannot think about. While that hypothesis may not be entirely well founded, it is almost certainly the

case that a concise and appropriate vocabulary and its associated conceptual background can effectively

influence and aid thought [608]. To properly unpack the idea, one needs to consider the properties and

content of both the conceptual background in question, and the actual lexicon being proposed.

In terms of conceptual background, the important concepts for cognitive support are at the cognitivist’s

level. If one wishes to design tools that improve the cognitive work of software developers, it may be

wisest to analyze and reason about tools in cognitive terms. This was one of the lessons implied by the

lever scenario of Section 2.3.1. Reasoning about tools in cognitive terms abstracts away from the details

of the implementation (see also Section 4.1.6). Brooks [77] in fact argued that an appropriate abstract

conception of artifacts is a critical foundation for any design theory:

How then do engineering theories arise? A necessary kernel is the development of an appropriate

abstraction that discards irrelevant details while isolating and emphasizing those properties of artifacts

and situations that are most significant for design. Indeed, this property of abstraction may be more

important than the extent to which the abstraction gives rise to manipulatable formalisms or prediction; by

indicating what properties of an artifact really are significant, a good abstraction may lead both to invention

of new artifacts that produce these aspects in novel ways and to novel uses for existing artifacts. [77,

pg. 54] 11

Brooks makes the two relevant contentions: (1) the abstractions provided may be important than modeling

methods or prediction, and (2) abstractions are a crucial part of synthesis and invention. If true, the

implications are that a programme of concept and vocabulary building may ultimately be one of the most

important avenues for providing theory to designers.

If one wishes to try to support these claims with evidence from research, one possible place to look

is in studies of expertise. Experts are competent where novices are not, and capabilities of experts may

reveal what competent cognitive support designers need. Numerous studies have suggested that experts

owe much of their performance advantages to their ability to quickly abstract away from the low-level

11Brooks uses the term “engineering theories” which for the present purpose can just be considered a more specific
term than “design” theories.

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 254

details of a problem, and to more directly consider the abstract, function- or goal-relevant aspects of the

problem (e.g., Soloway et al. [6, 608]). It is reasonable to expect, therefore, that expert cognitive support

designers would be able to rapidly interpret tools in cognitive terms, especially their functional roles in

terms of how they aid performance. A cognition-oriented set of concepts that include cognitive function-

oriented ideas relating to design would likely be a necessary prerequisite. This is a direct extension of

Soloway’s argument [608] about teaching programming abstractions to programmers: one needs to teach

cognitive abstractions to cognitive support designers. Knowing about support-related abstractions does

not automatically make one an expert on designing cognitive support, but it is hard to imagine an expert

cognitive support designer that does not inherently use them.

Next, consider a vocabulary to go along with the concepts. Vocabulary building is an effort to influ-

ence the moment-to-moment thinking and conversation of designers [266]. Vocabulary building is a kind

of conversation-level analogue of the long standing belief in mathematics that coming up with an appro-

priate notation is sometimes the most important contribution one can make. The vocabulary in question

here relates to the concepts for generating positive consequences. A useful vocabulary for positive conse-

quences ensures that the appropriate concepts can be employed smoothly during analysis such that not

only are the ideas of cognitive support made more precise, but the terms themselves bring into the con-

versation, through connotation and association, important design issues and options. This programme

of vocabulary building is familiar to anyone acquainted with design patterns [205, 232] or taxonomic cat-

egorization [516]. The idea is that a common and well defined vocabulary simultaneously add control

and rigour to existing design practices, especially informal design practices like brainstorming and casual

design argumentation. It is a mechanisms for improving communication between designers by providing

a common vocabulary with which it is possible to quickly establish a common understanding or common

ground. As Green and Petre say:

Explicitly presenting one’s ideas as discussion tools is, we believe, a new approach to HCI, yet doing so is

doing nothing more than recognising that discussion among choosers and users carries on interminably,

in the corridors of institutes and over the Internet. Our hope is to improve the level of discourse and

thereby to influence design in a roundabout way. [272, pg. 132]

It is an open question as to whether more than one lexicon should be developed, each tailored for a

particular community based on their existing terminologies and conceptual backdrops. For instance, it

is easy to envision three separate vocabularies: one for cognitive scientists and HCI theoreticians, one

for SE researchers, and one for in-the-trenches practitioners. Green weighed in on the side of a common

vocabulary, arguing that a lingua franca is important for bridging the various communities [263]. He also

suggested that using psychology-laden engineering-oriented terms ensures that interest and acceptance

by both communities. Currently the dimensions work of Green et al. appears to be leaning towards a

single universal (English) vocabulary [54]. I will leave for others to consider the question of whether

a single lexicon should be developed. In the meantime, I shall advance one that I think will suit SE

researchers.

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 255

Target Audience and Setting

While our ability to build more powerful machine cognitive systems has grown and promulgated

rapidly, our ability to understand how to use these capabilities has not kept pace. Today we

can describe cognitive tools in terms of the tool building technologies (e.g. tiled or overlapping

windows). The impediment to systematic provision of effective decision support is the lack of an

adequate cognitive language of description...

– David D. Woods, “Commentary: Cognitive Engineering in Complex and Dynamic

Worlds” [713], pg. 116.

Most software tool researchers, and nearly every software tool practitioner, has little tolerance or en-

thusiasm for applying “real” psychology-oriented theory in design. It is only a small exaggeration to say

that many software developers actively dislike HCI theory—even HCI specialists tend to eschew HCI the-

ory [86, 183]. A compelling but challenging target audience are those tool researchers that are computing

science savvy but largely HCI and cognitive science theory illiterate—i.e., the majority. If a good vocabu-

lary and set of concepts can be developed for these potential clients, then perhaps it is not too farfetched

to think that informed practitioners could one day benefit from similar resources. As indicated above,

the vocabulary building effort will be aimed initially at informal design settings such as brainstorming

sessions and early design meetings.

Resources
Science is likely to pace technological progress when ... [it] provides tools for thought, either

conceptually or mechanically. That is, science can be effective when it helps us see a new

way for conceptualizing the design space or it allows us to make inventions that themselves aid

intuitive design.

– Stuart K. Card, “Theory Driven Design Research” [93], pg. 502.

RODS, HASTI, and CoSTH contain many important concepts, and I have tried to be conscientious

when choosing terms for each of them. The general naming rule that I established early on is to prefer

terminology familiar to computing scientists even if other terminology carries connotations important to

others. Consequently the key design-related concepts are all couched in computing science terms: the

support principles, and the support theories. It is not very productive to try to reconstruct all the impor-

tant concepts and vocabulary built here. Perhaps an appropriate handbook can be produced sometime in

the future as Green et al. [269] have done for the Cognitive Dimensions framework. In the meantime, I

will list some of the key terms and group them into broad categories:

1. General DC view of cognition. Important terms include: joint system, distributed processing, shared

processing, distributed knowledge, external knowledge, external memory, augmentation, media.

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 256

2. Modeling ideas. Virtual memory, caching, paging, memory management, agenda, goal, plan, prob-

lem, constraint, operation, problem state, history, snapshot, trace, path, perceptual operator, skills,

rules, skill-based, rule-based, knowledge-based, domain task, overheads (coordination, device, cop-

ing).

3. Support principles and support types. Distribution, distribution, specialization, optimization, substitu-

tion, reengineering. Offloading, allocation, precomputation, display-based problem solving, media-

tion, backtalk. Extended working memory.

4. Support targets. Cognitive overheads, overload, cognitive limitations, depth-first bias.

5. Support features. Memory bandwidth, access costs, update costs, reference locality, localization effect,

working set, effective working memory size, page fault rate.

Most of these terms are associated with concepts that I have already tried provide workable definitions

for. The third groups of terms is the most critical. The names of the support principles connote many

design-related issues of how to engineer positive consequences. The fourth group list cognition-related

motivators for finding support. The fifth group gives hints that design tradeoffs may be analyzed in terms

of measurable variables of a DC system.

Unfortunately, defining a useful vocabulary provides no assurance whatsoever that it will be taken

up and wielded effectively. It may be difficult to get non-psychologists to think in cognition oriented

terms—to view bookmarks as an extended memory, to see compilation errors as partial repair plans, and

so on. Nevertheless, if they do, then they will have a chance to key in on the relevant design issues in

response: an external memory is being used? What are the access costs? How is it indexed?; a plan is

constructed? How are plan steps ordered? Should execution state be stored externally? The hope for

vocabulary building for cognitive support is that discourse can be raised above the suffocating details of

keystrokes and colour schemes, and onto the cognitive level.

7.2.2 DC Design Stances
What is required is a description of level of discourse that ... actually supports valid descriptions

of human activities in a form that is most meaningful for system design. This is not an easy task

but one is helped by at least knowing where the goalposts are. Within the electronic text do-

main a suitable analytic framework should provide designers with a means of posing appropriate

questions and deriving relevant answers.

– Andrew Dillon, “Designing Usable Electronic Text” [183], pg. 65.

Design Idea

Design perspectives, or stances, are used by designers in order to decide what ought to be. In this sense

they are more of a philosophy than a science of design. Design stances allow designer to pose questions

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 257

about what goals to pursue; they predispose designers to consider certain options rather than other ones.

Craft disciplines often inherit culturally propagated design stances. For instance, a common theme that

keeps being propagated in SE is the belief that SE researchers should seek out and automate the mundane

and repetitious [275, 539, 596]. Designers who embrace this perspective will tend to set their sights on

just the mundane and automatable. Not that this is necessarily bad: no design perspective is right or

wrong in any absolute sense. However each stance biases the designer to explore a restricted area of

the design space. Since cognitive support is multifaceted and designers exhibit a tendency to follow

habitual design paths, a broad collection of available design stances is desirable. DC generally, and CoSTH

particularly, provide many different vantage points for thinking about how to design cognitive support.

If these can be documented and passed on, then there is hope that researchers would stop to think more

critically about broadening their goals when considering joint cognitive performance. They may provide

productive counterpoints to their existing design biases.

Target Audience and Setting

My particular concern is SE tools researchers, but researchers from other domains (and even the thinking

practitioner) could benefit from defining suitable design perspectives. SE tools researchers are of interest

because they are a special type of designer: by default they are trying to bend the status quo, and so they

are not generally satisfied with reusing prior tried and true solutions. The alternative design stances may

help them in this matter by steering them out of habitual solution paths. Furthermore, in the domain

of SE, cognitive costs are a central issue, and so SE researchers are likely to be interested in knowing

how to reason about how to lower cognitive costs with technology. This background may make them

more receptive to theoretical approaches than the average practitioner. As with vocabulary building, the

anticipated setting would be in early design reasoning when the core functionality and behaviour of the

tools is being considered.

Resources

The DC point of view takes seriously the ideas of joint and mediated cognition. Here I consider three

popular design stances that can be found in SE research, and then show that a DC point of view can offer

valuable alternative stances. These can help generate distinct design goals:

1. Automation. Many important software development tasks are nowhere near being automated. Yet

many researchers doggedly pursue full automation only to later resolve themselves to acknowledge

the limitations of their automations, and to duly note their points of failure. Typically, the failures

are considered to indicate “directions for future research” rather than being foreboding indications

of the limitations of the full-automation approach. Two examples from reverse engineering (where

the limitations of full automation are easily reached) are in cluster analysis [648] and program recog-

nition [714]. Neither cluster analysis nor program recognition can currently be automated, so semi-

automatic techniques must be eventually considered. This limitation of the full automation design

stance is widely acknowledged, yet there are comparatively few examples where alternative design

goals are rationally developed.

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 258

Counterpoint: Cooperative problem solving. Automation is an unrealistic goal for many interesting

tasks, so why not give it up at the start? Instead, one could begin by carefully analyzing the task

and look for ways of redistributing the data and processing between computer and human. On

this view, the overall design goal is to put the human deeply and intimately “into the loop” of

processing. Returning to the example of clustering and program recognition, there does exist work

that tries to integrate the human into the problem solving loop of the tool. For example in joint

clustering there is the body of Rigi work [359, 426], and for joint program recognition there is the

DECODE work [127]. Let us just consider Rigi for now. Rigi’s general view of joint clustering

is that humans bring in knowledge of how to specialize and run clustering algorithms, which the

computer performs. Then the human exercises further manipulation of the results and applies more

informed judgments. Rigi is an example where the design stance taken assumes joint performance

of tasks that cannot be automated.

Even though joint cognition is sometimes considered, existing design stances can be considerably

expanded in terms of what design goals can be developed. For instance Jahnke et al. [331] argued

that a useful design stance for reverse engineering tools is to assume that a specific, key objective is

to redistribute imperfect knowledge, i.e., knowledge that is tentative, contradictory, heuristic, or vague.

Once it is redistributed it can be manipulated externally and cooperatively processed. Design goals

under this stance then shift attention towards discovering the types of imperfect knowledge which

can be redistributed onto an external medium, and towards discerning how the external knowledge

can be manipulated (or cooperatively processed) to remove the imperfections. Even from this lone

example it is clear that the DC design stance can expand on our currently simple forms of design

reasoning, like the push towards full automation.

2. Right Information, Right Time. There is a rather entrenched perception within the reverse engi-

neering and program comprehension (RE/PC) community that “the purpose” of RE/PC tools is

primarily to display information. von Mayrhauser and Vans articulate this stance well:

If we can identify and present the programmer with information that best helps to understand code,

we can significantly improve quality and efficiency of program understanding... [680, pg. 316]

Researchers who adopt this stance typically focus their efforts on methods for information provision

and presentation. The resulting tools are typically structured in the form that might well be called

the “holy trinity” of RE/PC tool structures: the “parse–analyze–display” pipeline (e.g., see Tilley

et al. [424, 641, 642]). In visualization circles, this architecture is called the “visualization pipeline”.

Posing tools as a visualization pipeline channels attention towards techniques for gathering (pars-

ing, analyzing, etc.) and transforming (clustering, filtering, etc.) data into an understandable visual

presentation (graphing, layout, etc.). Since the guiding goal is to present the desired information

simply, easily, and at precisely the time it is needed, let us agree to call this the “right information,

right time” design philosophy, or RIRT for short. The overall goal of RIRT is to efficiently transmit

the information contained externally to the comprehender.

Counterpoint: Hands-on, Mediated Problem Solving. Most of the time the RIRT design stance implicitly

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 259

buys into the belief that comprehension and understanding is a rather simple one-way transference of

information or knowledge from tool to user. However transference, as a notion for comprehension,

certainly seems to be limited. Viewing software comprehension as a simple transmission of data

across a channel is almost certainly grossly simplistic. Many modern education research groups

present a stark contrast in design stance. It is fair to say that most modern educational psychologists

disagree in principle with simple transference models of learning (e.g., see Mayer [400]). Students

cannot learn complicated material simply by listening to a talking head at the front of a lecture

hall: they must work through examples, try hands-on experiments, and ask questions. Learning,

in this view, is not simply transmitting knowledge across a channel. Even in the field of informa-

tion retrieval—which is usually defined in terms of being able to supply information to satisfy a

user’s information demands—there is wide recognition that information seeking is an active pro-

cess involving problem finding and task reconceptualization (e.g., Bates [37], Savage-Knepshield

et al. [561]).

Taking heed of the limitations of simple transference as a model of comprehension necessarily alters

the designer’s stance. Trying to achieve simple knowledge transmission might conceivably be a rea-

sonable stance when the system being studied by the user is already well understood, but it breaks

down quickly when less is understood to begin with. In such cases comprehension is necessarily

a hands-on problem solving activity. Indeed, it frequently is better categorized as a learning or dis-

covery activity (e.g., see Corbi [149]), since frequently even experienced maintainers are inexpert in

the domain, language, or application type [679], and must work to even understand the nature of

the problems they must solve. The design focus in such circumstances can shift towards the active

processes of problem solving and problem finding, and thus towards how to support them. This

can involve searching for ways to elicit and then subsequently resolve inadequacies in a compre-

hender’s conceptions. It could therefore involve helping the comprehender to perform experiments

to probe and resolve their uncertainties and hypotheses. From the DC perspective, potential design

goals to adopt in response includes the provision of a medium for thought and reflection. Users can use

such a medium to externalize problematic aspects of their understanding so as to reflect upon it as

it evolves (see Jahnke et al. [331] again).

3. Comprehension = Internal Knowledge. The nearly universal aim of software comprehension re-

search is to effectively generate a complete and accurate model of a system within the mind of the

comprehender. Success of a comprehension tool is measured by the quantity, veracity, and com-

pleteness of the knowledge internalized.

Counterpoint: Distributed comprehension. From the cognitive support point of view, the above design

stance is fundamentally misguided. In DC systems, knowledge is always (at least potentially) dis-

tributed and jointly processed, albeit to lesser or greater degrees. There may be legitimate reasons for

why only the user is the appropriate holder and processor of system knowledge, but it must not be

accepted a priori as an immutable dogma and design goal. Instead, the design stance of redistribu-

tion is to seek to offload the knowledge from the human and therefore reduce the cognitive burden.

The need for full internal representation of the external system therefore represents the worst possible

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 260

situation—a complete failure to support maintainers with external memories, external knowledge

processing, or external media for thought.

If a distributed comprehension design stance is adopted, then attention can then shift towards ad-

dressing the balance between external and internal knowledge: determining what needs to be in-

ternally held for what tasks, and why; trying to build effective external memory systems; shifting

processing burdens onto tools so that comprehension burdens are lessened. Comprehension tools

are then evaluated on whether they avoid the need for the comprehender to unnecessarily be aware

of or memorize certain facts about the system (unless they are truly needed, in which case they

should be, of course, easily ascertained). This goal of reducing knowledge burdens to a need-to-

know basis is nearly universally recognized as a principle for language design12 but it is commonly

forgotten when it comes to maintenance tools.

Reclaiming the goal of avoiding comprehension may lead to a more productive exploration of tools.

In particular, the DC viewpoint suggests that software development can normally be considered to

involve a joint processing of a distributed understanding of a software system. Such a “comprehen-

sion redistribution” view therefore attenuates the “comprehension = internal knowledge” stance in

important ways. In the distributed comprehension view, knowledge about a subject system is dis-

tributed: some is maintained internally, but important aspects are essentially maintained externally,

with a certain expectation of overlap between externally and internally maintained knowledge [331].

One rule to apply in design is therefore to minimize the knowledge the user needs subject to the

costs of maintaining the distributed knowledge (see Section 3.1.2). This is a very general rule. But-

terworth et al. [89] utilized a simple version for screen design: “Our heuristic for screen design is that

the screen should contain the intersection of what information is necessary and what information is

difficult for the user to maintain.” [89, pg. 460].

This is essentially an argument about minimizing human memory use subject to coordination and

externalization costs. There are two sides to this coin. On the one side is the issue of knowledge

externalization: developers can externalize knowledge in order to forget it, and to allow the tool to

maintain it. On the other is the issues of minimizing the developer’s internal knowledge require-

ments, and of maximizing how much is storage and processed externally. In this view, the goal is to

allow the developers to internally maintain a thin veneer of key concepts, and a cadre of indexing

knowledge. The developers use this knowledge to crawl over external knowledge sources, much as

Simon’s ant crawls over the undulations of the beach. The knowledge maintained internally is also

used to negotiate the revelation of needed knowledge from other sources.

This design stance, incidentally, is very much in line with observations of what actual software

maintainers do. They rarely, if ever, sit down to fully comprehend a system, they try to avoid

deep comprehension if it is unnecessary [609], they work to comprehend parts of programs only

12For instance automated memory management in many languages make it possible to be blissfully unaware of
most memory allocation and reclaiming issues. The “maximal ignorance” principle also holds for the advantages of
ADTs (data layout ignorance), information hiding (internal details), and so on.

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 261

as needed [357, 595, 597], they seem to frequently remember only knowledge to access other knowl-

edge instead of full representations [11], and they tend to want to interleave comprehension with

action and only switch back to comprehending when an impasse occurs [64]. In short, in the field one

sees a fairly systematic attempt to minimize knowledge of the system and this frequently involves

utilizing tools and external representations effectively. But that is only half of the story. Software

developers make sure that knowledge is available and accessible externally. They carefully name

and organize their systems so tools can exploit this structure [278], they add documentation to code

so that they can refer to it when they forget what they wrote the code for, and they write little scripts

and programs to look up facts about their programs as needed. They take care of their external mem-

ories. Expert comprehenders minimize their personal knowledge of the system while maximizing

the joint system’s knowledge.

The ideals of automation, RIRT, and internal knowledge construction currently make up much of the re-

ceived wisdom of the RE/PC research field. Yet each of these design ideals are limited in terms of the way

they can set potentially fruitful design goals. These three examples illustrate that the philosophical and

theoretical backdrop of DC can provide potentially useful alternative design stances. I wish to mention

once again that none of the design stances should necessarily be considered superior. But being able to

state the alternatives is important because each stance develops quite distinct goals.

7.2.3 Reifying Design Space
The purpose of the cognitive dimensions framework is to lay out the cognitivist’s view of the

design space in a coherent manner, and where possible to exhibit some of the cognitive conse-

quences of making a particular bundle of design choices that position the artifact in the space.

– Green and Petre, “Usability Analysis of Visual Programming Environments” [272], pg. 133.

Design Idea

It is possible to reify—i.e., make concrete—a design space by representing design options, constraints, and

goals. In terms of CoSTH, this is data redistribution, specifically problem redistribution (D/D/PB). Reify-

ing the design problem in this way creates external structures that can be used as structuring resources

(see Section 3.1.3). Thus external structures can act as plans (D/D/P), which can be used to step system-

atically through the space of design options. All the familiar advantages of such an external structure are

possible: it can make the task of following progress easier, it can help ensure that important aspects are

not missed, and it can make the exploration more systematic. These three advantages help remedy some

of the many deficiencies of craft design, although probably the problem of missing design issues is the

most notorious [263, 272, 370].

Two classic examples of these sorts of external structures are the checklist and the cognitive model.

More complicated and inclusive external structures might be contemplated (see e.g., Denley et al. [175]),

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 262

but for the current purposes checklists and cognitive models are enough to consider. Checklists of design

principles or guidelines can lead the designer through a list of questions and issues that would or should

be considered during design [401, 525]. One well known drawback of checklists is that they can be over-

whelmingly large (lists thousands of items long not all that uncommon). For cheap, “discount” design

analysis during early tool envisionment, the lists should ideally be quite short [461]. A cognitive model

can effectively complement checklists since models are one of the most compact ways of representing

or summarizing many related checklist items. Probably the best known example of a using a cognitive

model for just this role is Norman’s multi-stage model of interaction [467]. That model depicts interac-

tion as a cyclic 7-stage activity involving activities such as goal and intention setting, planning, acting,

and perceiving. The model is simple and very general, so it can be applied in many situations. It can

be used during design [525] or analysis as a compact structure “that can be ‘walked through’ by the HCI

specialist with question prompts at each stage that indicate the type of new claim that may be discovered

at each stage.” [626, pg. 224]. Although Norman [469, pg. 53] generated his own specific checklist from

his model, such models can facilitate less structured and more open ended reasoning by the informed an-

alyst. For instance, Carroll et al. [110] explained that they came up with a list of both negative and positive

consequences for their tool

... by considering Norman’s stage theory of action For each stage, we imagined the general kinds of

psychological consequences an artifact might have, translating those possible consequences into ques-

tions that one might ask about the artifact. [110, pg. 194]

In sum, checklists and models are alternative ways of representing structure that can be used during

design reasoning. In the terminology of CoSTH, the external structures correspond to plans (D/D/P) since

the user tends to walk through the structure and consider each in turn.

The challenge here is not to try to supplant any of the existing resources, but to supplement them with

the unique capabilities of RODS, HASTI, and CoSTH. To know where supplementation is really needed,

it is helpful to first air some of the main problems with current checklists and models. Many problems are

already well known. For instance they are frequently too vague or only occasionally applicable. However,

there three essential complaints that need to be especially considered here:

1. Many principles and guidelines apply to rather low-level details of interfaces and interaction rather

than higher level cognitive issues that are core concerns of complicated tools. For instance May-

hew [401, pg. 496] lists the display design guideline “Avoid using saturated blues for text or other

small, thin line symbols.” This is simply too low a level of a view from which to properly address

cognitive support issues; ideally guidelines should abstract away the details of the tool and let the

designer think at the cognitive system level.

2. Many checklists include principles or guidelines which are not “actionable”, that is, they are non-

operational or “inert” in the sense that they provide goals but very rarely indicate ways of achieving

them. For example the analysis by Mayhew [401, pg. 44] suggests that one of the design goals

implied by the limitations of short term memory (STM) is to “Keep STM storage requirements at

any given time to a minimum.” This is a cognitively relevant principle that is hard to argue with in

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 263

most situations. But what designers need are hints at the sort of steps that can be taken to achieve

it. CoSTH’s vocabulary of positive consequences can provide some of these hints. For example

redistributing data from STM can reduce the cognitive burden. That is not a full prescription for

design, but it fundamentally replaces ends with means.

3. Many, perhaps most, checklists primarily contain items that are concerned with either (1) negative

consequences, or (2) minimizing user–tool communication efficiency. Neither of these make it easy

to directly state what useful features might be constructed for a tool. My goal here is to concentrate

exclusively on reifying the space of possibilities for generating positive consequences.

The first problem implies the need for structures defined at a cognitive level rather than implementational

level. The last two problems imply that the contents of the structure should not be design constraints (what

the designer should not produce), but actually the action possibilities available to the designer (steps toward

a good solution). Using the terminology of CoSTH, they should redistribute the possible operations of the

problem space (D/D/PB/O). They therefore constitute a type of ends–means [531] structure: the designer

has ends in mind and the structures designate means of achieving them.

One additional note to make is that there are many possible uses of external structures like checklists

and models. Although the traditionally cited use is to act as plans to help systematically search the design

space, other uses could be entertained. One possibility that is rarely cited is to intelligently drive the

research into the design context (see Kaptelinin et al. [340]). Prior to any synthesis step there is normally

an analysis step in which the design context is understood better: by observing users, analyzing tasks,

understand work domain problems, and so on (see e.g., Figure 7.4). In an idealized setting, all of the

design context is fully understood before design begins. However the reality is that the design context

will only ever be partially understood—usually very partially. What parts of this design context does one

explore? A list of design possibilities can be used to explore the design context for information concerning

how to apply them; with a means one may search for ends to apply them to. For example the designer

might initially hypothesize that the users will need support for complicated planning. Knowing that plan

redistribution and problem state redistribution are possible means to achieve support, the designer can

study users to understand how planning is currently achieved, and to determine what sorts of plans could

conceivably be redistributed.

Target Audience and Setting

If you think there are countless ways to organize information, you are not likely to want to try

them all during the design process. If you think there are only five, you can imagine trying all of

them in several variations.

– Marc Rettig, “Hat Racks for Understanding” [536], pg. 22.

Essentially the same as vocabulary building: trained designers performing early or informal design.

The design context is when trying to understand which features to pursue.

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 264

Resources

1. Model-based. The main resources for building applied design models are HASTI in combina-

tion with CoSTH. HASTI is something of a merged version of several modeling methods (see Sec-

tion 5.1.2). Significantly, the model features are explicitly associated with support principles (see

Section 6.1). This means that by “stepping through” HASTI, one can iterate through the associated

support principles. In other words, at each stage of considering HASTI features, the CoSTH can be

invoked to consider what design options are possible. For example, when considering the Problem

panel of the Agent architecture of HASTI, the designer may be prompted to investigate possibilities

for redistributing constraints (D/D/PB/C). Overall, HASTI presents a compact catalogue of model

features to consider. If a group of designers are brainstorming about how to build a reverse engi-

neering tool they could consider each feature of HASTI in turn to determine how it applies to the

reverse engineering situations in mind. They could then turn to CoSTH to consider how to add

the appropriate support which relates to these features. An example of stepping through HASTI in

this manner is provided in Section 8.1.4, where a model of distributed comprehension is stepped

through to examine ways of redistributing the data within the process.

2. Checklist-based. It would be a rather straightforward task to generate a checklist of design ques-

tions from CoSTH. For example from D/D/PG/H one could simply list items such as “Does the

user need to unnecessarily remember past progress states?” or “what task constraints can be exter-

nalized?” Such a checklist would just be a linearized form of CoSTH itself, but written in English

sentences. Obviously, since CoSTH is hierarchical, the checklist could be hierarchically decomposed.

It is not entirely clear that transforming CoSTH into a simple checklist form would be much of an

improvement. In fact, this doubt leads one to wonder if checklists are generally poor forms for

applied design resources. Since the checklist version of CoSTH is roughly equivalent, and CoSTH

is more clearly organized, then any preference for CoSTH over a checklist would suggest that the

many existing forms of checklists should ideally be replaced with model-based design theories. That

is, either checklists are a good alternative format for theories, or else they might best be junked in

preference for approximated design theories.

There may be one reasonable case for preferring a checklist-based representation over the CoSTH:

in cases where additional, more specific theoretical apparatus is needed. HASTI contains few psy-

chological details, in part because there is a cost–benefit tradeoff to adding details to the model. A

specialized checklist might possibly be a more appropriate place to add details when they are known

and relevant. For instance, in certain situations it may be helpful to have a list of perceptual oper-

ators (see e.g., Casner [116], Ware [687]) that can be enlisted for reasoning about how to engineer

perceptual substitutions. Such a checklist might resemble an expanded version of the “User Profile

Checklist” provided by Mayhew [401, pg. 61].

3. Tabular Worksheets. Besides the common prose question type of checklist, one may also consider

(more) graphical representations like tables. These representations can be created in the form of a

worksheet, which would allow the designer to fill in relevant information, or to sketch out design

7.2. COGNITIVE SUPPORT KNOWLEDGE FIT FOR DESIGN 265

options. Such a worksheet could collect together related design issues. This collection might be

especially well motivated if the design issues involve tradeoffs, or if they address orthogonal as-

pects of the design. Moreover, certain graphic representations make it simpler to express “vague”

or “sketchy” design reasoning: prose form checklists can sometimes be forced into using strict di-

chotomies (yes/no, true/false) or fixed categories. There are many possibilities for encoding CoSTH

options in such a looser, graphical worksheet format. As an example of the possibilities, consider

Figure 7.6. The intent of the table is to enable designers to think about and jot down various ideas

and concerns. The example table of Figure 7.6 is not meant to be taken too seriously. It is intended

to illustrate the general idea of directing designers to important possibilities, and then letting them

record thoughts in whatever format seems appropriate. The figure shows an example of how it

might be used in designing a debugging system. For instance, the check marks and question marks

might indicate prior and future design work. The underlined “bug!” under the “internal” data col-

umn might be used as a reminder that the designer is unhappy that the bug the programmer is

working on needs to be remembered due to too high of an “up front” cost of externalizing it first.

The “remind”, “prior”, and “todo” markings could be related in the sense that the designer thinks a

reminder agent for prioritized todo lists would be needed for bug tracking within the “bug base”.

7.2.4 Summary of Design Ideas
Developers of abstract design representations ... should be thinking from the start about the

eventual users of their techniques, just as the HCI community urges designers to ‘involve the

user’ from initial conception of the software artifact.

– Buckingham Shum and Hammond, “Delivering HCI Modelling to Designers” [86], pg. 312.

This section has explored three possible ways of packaging theoretically based knowledge about cog-

nitive support for use by designers. These were: vocabulary building, design stance construction, and

reifying the design space using various external structures. All of these theory repackaging ideas were

geared towards improving design reasoning at the earlier stages of design envisionment and analysis. The

main purpose of this exercise was to show that CoSTH, HASTI and RODS have potential to create highly

applied “bridging representations”. These bridging representations can effectively hide away many of

the complications of the theories from which they derive, and yet they can still be used for synthetic rea-

soning in design. The primary sources of optimism in this project are that (1) they make it possible to

reason about support at a high level, that (2) they present design alternatives before artifacts, prototypes,

or designs are even constructed, and that (3) they have the potential to improve the scientific foundations

of design practice, their approximated nature notwithstanding.

At this point none of these theory packaging ideas are explored in any but the most tentative manner.

One reason for this is that there is rather little in the way of prior research to suggest what repackaging

methods work well. What little is believed about how to package such theoretical knowledge comes

primarily from guesswork by other researchers, although there is some recent activity in analyzing [43,

7.3. SUMMARY AND IMPLICATIONS 266

DATA PROCESSING EXTERN. PRE- COSTS

� INT. EXT.� � INT. EXT.� LEARN? COMPUTED? EXTRN. COORD.

GOALS prior remind

PLANS todo day’s end

ENDS bug! up front

OPERATIONS ??

CONSTRAINTS sets a filter...

CURR STATE
�

HISTORY
�

bug base

WINDOW MGMNT

PAGE REPLCMNT focus bug map

VIEW MGMNT

WM SET MGMNT file?

LOCALIZATION

Figure 7.6: Hypothetical example of a tabular-form worksheet and its use

272] and testing [86, 625, 705] theory delivery vehicles. But the fact is that most theories in HCI tend to be

used primarily by their authors. This suggests that too little is currently known concerning how to make

theories useful and usable to designers at large.

Since it is far beyond the scope of this work to make further inroads on this aspect of the theory

delivery problem, there is little that can be done here other than think tentatively about future bridging

representations. Even so, I have shown that at least three previously proposed techniques for delivering

theory can be reasonably applied to RODS, HASTI, and CoSTH. The prospects for eventually creating

useful bridging representations with these seem bright. They show promise that they could provide a

valuable toolkit that can be used for FP-reasoning during synthesis. This type of design representation

has to this point proven to be very elusive.

7.3 Summary and Implications

From [our] vantage point, three difficulties suggest themselves: (1) we need a better understand-

ing of design, (2) many theories will never be useful for design, and (3) transfer of theoretical

knowledge to practice is hard for most engineering disciplines.

– Stuart K. Card, “Theory-Driven Design Research” [93], pg. 506.

In this chapter, I argued that most theory in HCI fails to be especially fit for design. There is a great deal

of research that has the potential to be relevant to design. However there is a real risk that such research

can fail to be fit for design if the nature of design and design reasoning is not taken into account. I argued

7.3. SUMMARY AND IMPLICATIONS 267

that, in the past, the various roles for theory in design have not been properly understood. Because of this,

the ways of prioritizing research in the field has been inappropriate. This argument was made by casting

design activities as a search in a “fitness landscape”, and then posing the problem of design reasoning as

a “gulf of synthesis”. The metaphors were used to argue that some of the most important roles for theory

in design is to provide survey knowledge of the fitness landscape, and to provide ways of performing what

was termed “FP-reasoning”: reasoning forward from design goals towards potential design actions that

could bring about positive consequences. Thus this chapter has essentially argued that a specific type of

theory is most important: broad-brush FP-theories.

Next I considered how to create broad-brush FP-theories for cognitive support. RODS, HASTI and

CoSTH can be used during design, and CoSTH can be used as a type of design theory. But they may

not ultimately be very usable in many realistic design contexts. So I outlined three different avenues for

trying to transform these theoretical resources into “bridging representations”, that is, representations of

the theories in a form that is more fit for design. These three ways of reformulating the theories included:

(1) building a vocabulary and matching set of concepts that can help raise the level of designer discourse,

(2) articulating alternative design stances based on the principles of DC, and (3) reifying the high level

design options using checklists or models. There already exists ongoing work on all of these avenues. The

work herein suggested that RODS, HASTI, and CoSTH may be able to provide valuable additions to all of

these ongoing streams of study. The work may be considered quite preliminary, but it strongly indicates

that design practices need not be so atheoretical as they are now.

In conclusion, it is important to consider the broader implications of this chapter. The problem of

creating usable design theories for cognitive support is a veritable juggernaut that simply cannot be con-

quered in a work such as this. Nevertheless, this chapter was still able to present some initial evidence to

suggest that the theoretical resources like CoSTH and HASTI have potential for creating theories or other

“bridging representations” that are truly fit for design. Although the steps being presented are small, the

conclusions they point to have far reaching consequences for theoreticians. Many excuses have been given

for why psychological theory has failed to make inroads in HCI and other design fields. Failure has, more

often than not, been attributed to theoretical or methodological weakness, or to the existence of usability

problems in the bridging representations. But rarely is it suggested that the problem is that the wrong

sort of theories are being pursued. The arguments in this chapter suggest that this may indeed be the

case. HCI is driven by a nearly single minded pursuit of finely accurate evaluation theories that primarily

serve to help reason about usability problems. It is time to begin working in earnest towards broad-brush

survey theories that enable reasoning about positive consequences like the cognitive benefits of tools.

Chapter 8

Application: Where Craft and Science

Meet

Cognitive Engineering ... is a type of applied Cognitive Science, trying to apply what is known

from science to the design and construction of machines. It is a surprising business. On the one

hand, there actually is quite a lot known in Cognitive Science that can be applied. But on the

other hand, our lack of knowledge is appalling.

– Donald Norman, “Cognitive Engineering” [467], pg. 31.

�oftware engineering tools research is at a point where there are a great number of questions floating

around regarding tool efficacy, but few scientific answers. Our knowledge about cognitive support, in

particular, is grounded almost entirely in craft knowledge and folk psychology. The status quo is not

ideal. It would no doubt be better if this craft basis could somehow be replaced with a more solidly

scientific foundation. But the scientific basis is currently sparse, contentious, and difficult to apply. If we

were to insist on working only with rigorous and widely accepted theories, then we would be exiled onto

some tiny islands of knowledge, and be unable to talk about important issues. Shoring up the necessary

science base is a long term proposition. Realistically speaking, we shall have to make do with something

less than a fully adequate scientific practice for a long time—possibly forever. In the interim, what are we

to do? In SE, our tools are rife with psychological implications; simply ignoring them is not a satisfactory

option. That tactic merely ensures that explanations of tool usefulness will remain tacit, and be grounded

mainly in folk psychology. Then the cognitive support within tools will continue to be hard to compare,

difficult to teach, and impossible to test. So some measures should be taken to strengthen the scientific basis

of tools research and design—some middle ground must be found between staunch, rigorously scientific

proof, and folksy, unreliable craft skill. What can these measures be? The answer, it may turn out, might

best involve a coordinated attack by tools researchers and applied theoreticians.

268

269

One step forward would be to begin making better claims as to the cognitive support offered by our

tools. Our current level of claim explicitness does not lead to effective testing and comparison of tool

ideas. So it is important to further open up our arguments, make our claims as explicit as possible, and

at least try to be diligent at building good arguments for these claims. If we fail to be thoroughly and

convincingly scientific, at least we can strive to be credible. Credibility demands competent exposure of

support claims, and due diligence in justifying them. It is not realistic to insist that all cognitive support

claims be empirically tested and verified. A single tool may embody dozens of interesting claims, and

each claim could take months of work to test; tools research would grind to a virtual standstill. Moreover,

from a developer’s standpoint, the purpose of theory testing is to ensure that when the theory is applied,

the need for validating the results is abated. This is simply good decomposition of research efforts. Tools

researchers build tools, make claims about them, and justify them using applied theories. But it is beyond

the scope of that research to evaluate or develop these theories. Until such applied theories are available,

it seems unlikely that the status quo in SE research will change. Cognitive support claims might still be

made, but without a reasonable applied theory, the claims and their justification are apt to be based on

folk psychology. Thus application reaches out to science for applicable theories.

Changing the practices of tools researchers is only part of the story. The field may in some ways lack

a certain amount of scientific respectability, but it is not just to blame only the tools researchers [263]. It is

important that applied theoreticians supply SE with the right applied theories, even if they are tentative

and weak. Applied theoreticians can use their knowledge of the basic sciences to construct new theories

suitable for application. In this way, applied theories are structures that mediate a SE researcher’s inter-

action with the scientific knowledge from other disciplines [257]. In many cases these theories must be

abstractions and idealizations of the basic science theories they represent. This is because the applied the-

ories must typically apply in settings that are much broader in scope than the basic science theories from

which they draw. To some scientists, this view shall will undoubtedly seem unappealing and unscientific.

Nonetheless it is required. Some interim relaxing of scientific hauteur is needed if many of our interesting

claims are to be advanced. It is important to provide abstracted theories of broad scope, and it is even

more important that they can be used to argue claims of interest to the tools researchers.

These last two points were argued well by Young and Barnard [720], albeit in a slightly different con-

text. They proposed that theoretical works in HCI be “test driven” according to a set of scenarios that act

as “sufficiency filters”. Given a collection of scenarios, the test driving process

involves taking each theoretical approach and attempting to formulate an account of each behavioral

scenario. The accuracy of the account is not at stake. Rather, the purpose of the exercise is to see

whether a particular piece of theoretical apparatus is even capable of giving rise to a plausible account.

The scenario material is effectively being used as a set of sufficiency filters and it is possible to weed out

theories of overly narrow scope. If an approach is capable of formulating a passable account, interest

focuses on the properties of the account offered. [28, pg. 115]

Their idea is to weed out theoretical treatments that fail to apply in interesting situations, or that fail to

say something of interest to the applicant. The overall aim is to establish a way of achieving a markedly

different goal for theoretical works:

270

...one of the main reasons for using scenarios as sufficiency filters is to try to redress the balance be-

tween scope and accuracy, shifting the trade-off point towards a greater emphasis on generality. In fact

(and although for saying it we risk being drummed out of the psychological societies we belong to), the

empirical accuracy of the scenarios is comparatively unimportant. If what the scenario claims to happen

is wrong, then some different statement, but like it, is right, and either way it can serve its purpose of

making sure that the theory has sufficient scope to cope with the scenario, i.e. to say something about

it. [720, pg. 293]

Their point is that some way of favouring and establishing generality and relevance is needed. Whether

the scenario method of Young et al. is the best way of doing so is, ultimately, not that important for

the present purposes. What is important is that some method is established for placing a high priority

on applicability. Right now, the way that applied theories tend to be developed is to take a pet theory

and try to extend it to see where it might conceivably be applied [259]. To many tools researchers, this

approach seems completely backwards. It might eventually work, but it risks being far too slow and

undirected. To them, the right way of building applied theories is to first determine what sorts of theories

are most needed and then do the best one can to supply them, tentatively filling in missing knowledge

with approximations and generalizations. Theory building, in this light, springs from the important issues

in a domain of application. In Young et al.’s proposal, the collection of scenarios stand in for the concerns

of the HCI practitioners. The scenarios embody the criteria for scope and relevance; they are proxies

and advocates for the developers who seek to apply them. Thus applied theories reach out to application for

problems to solve.

With this point we reach the main issue of this chapter. There is an important relationship between

theory application and applied theory building. Craft disciplines depend upon applied theories to effect

scientific reform, and applied theory generation is helpfully driven by the problems of domains to which

they may apply. It is a mistake to consider these two issues completely independently. Application is

where craft and science meet. There may be considerable synergy if applied theories are evaluated for

applicability to current research and trends in their domain of application. In particular, it may be helpful

to “test drive” theories using scenarios derived from current research tools. A list of points may be drawn

up in favour of this approach:

1. Tentative, idealized, and approximated theories are only partly anchored in solid data and exper-

iment. Applying theories derived in controlled settings always brings up the question of whether

their application to some uncontrolled situation is warranted, or even valid (e.g., see Wolf et al. [711]).

In a complementary way, craft disciplines often build a wealth of experience-based knowledge they

do not have scientific explanations for. If the theories align well with the received wisdom in the

domain, it lends some credence to the theory, and to the validity of its application.

2. In a symmetrical way, if the craft knowledge aligns well with science-backed theories, it adds cred-

ibility to the craft knowledge. Reformulating this craft knowledge using a theoretical framework

takes an important step towards converting craft knowledge to science knowledge (see Figure 2.1).

Doing so does not add new knowledge. Nonetheless, casting it from a different theoretical angle can

add another valuable layer of understanding within the field.

271

3. It is all too easy to under-estimate the difficulty of applying theories in realistic situations. Exam-

ples of applying a theory can be pragmatically important for would-be applications. In the present

situation, the theories of these past few chapters are likely to be novelties to most SE researchers—

that is, they will likely be novices in the application of RODS and HASTI. Examples have been

known to be invaluable in other learning situations (e.g., see Fischer et al. [215]). Examples bind

the abstract theory to accessible, concrete instances. The concreteness may help researchers under-

stand the relevance of the theory. And the theory application can be “reused”—assuming judicious

modification—in analyzing tools that are similar to the ones analyzed in the examples. This facility

is bound to be easily recognized by any Unix programmer who has ever used man pages to cut and

paste example code into their own programs. In a similar way some salient examples of theory ap-

plications can serve as analysis templates that an analyst may reuse by “cutting and pasting” from.

In addition, such application examples may be inspiring. They can convey a theory’s potential uses

to those who did not realize them. It is thus an eminently sensible strategy to promote new applied

theories by showcasing their applicability to several of topical examples from a client domain.

For the above reasons, this chapter presents two examples of applying the theoretical resources devel-

oped in earlier chapters. They are applied to existing research tools from program comprehension and

reverse engineering. The main example is an analysis of a reverse engineering tool called RMTool [430].

For the purposes of establishing breadth, a second reverse engineering tool, Rigi [425] is considered. Both

RMTool and Rigi are tools which are of current research interest within the SE community, show encour-

aging promise, and have few explanations of their merits concerning cognitive support. They are thus

outstanding sufficiency filters. Analyses of these tools are performed in Sections 8.1 and 8.2, respectively.

These examples of theory application are analogous to—but not identical to—the scenario-driven eval-

uation method proposed by Young and Barnard. Recall that theories are tools to their wielders (see Sec-

tion 2.4). In the examples being considered here, scenarios are being envisioned in which researchers

(users) are applying theories (tools) to analyze or design cognitive support. The issue is whether the theo-

ries can be applied in these scenarios, and what they say. This approach differs from that of Young et al. in

that the scenarios are not detailed accounts of interactions with the tools; rather they are informal analyses

of how or if the theories could be applied in analysis or design situations. Nonetheless, the approach is

analogous in that a collection of cases is drawn up with the intention of capturing the salient scope of

applicability for the theories.

The result of this exploration into theory application advances the causes of tools researchers in SE.

For tools researchers, it recasts experiences within the community in a new theoretical light, adding cred-

ibility and a distinguished viewpoint. It also provides salient examples of the sort of analysis that can

be performed using HASTI and CoSTH. At the same time, this exploration continues the evaluation of

HASTI and CoSTH. It establishes that they are can be applied to analyze important tools issues within

this research domain. Not only that, but it also shows that they have interesting things to say about them.

8.1. RMTOOL EXAMPLE 272

8.1 RMTool Example

RMTool [428–430] is a prototype tool that was designed for reverse engineering and software comprehen-

sion. Although nothing really precludes it from being applied to other tasks and problem domains (e.g., as

Rigi has been [643]), the original intent for RMTool was to understand software systems. Consequently

that is the application scope adopted in this section.

RMTool is an interesting case to examine for several reasons. Firstly, it is a relatively general tool that

can be used to perform several different tasks. This makes it a good “test driving” case. It immediately

provides a strong bias against explanations of support that are overly task-specific because the explana-

tions need to generalize across tasks. Furthermore, it is a relatively novel tool within the field. It differs

from many other tools in the way it combines visualization and automated software analysis. In terms of

tools research, it is important to understand the novelty so that the lessons learned can be easily applied

elsewhere [331]. In addition, RMTool has good craft credibility. Its publications contain evidence gathered

from authentic and realistic case studies using the tool. And, for a research prototype, the tool is success-

ful and well received; several other researchers have adopted it or similar approaches (e.g., Sidarkeviciute

et al. [589], Clayton et al. [139]). Finally, RMTool is an interesting tool to analyze because the authors of

RMTool have a reasonably well-documented design iteration cycle. They iteratively refined the design

after they presented prototype tools to engineers in the field. Thus it is possible to travel back in time

to earlier design stages to see if design theories could have anticipated the changes the designers made.

Being able to doing could suggest that the theories have generative capabilities.

This section unfolds as follows. A brief description of RMTool and its use is presented first (readers

are encouraged to refer to its literature for more thorough descriptions). Following that, the main features

of the tool are analyzed for cognitive support using HASTI and CoSTH. This theory-based account is

compared to the experience reports for RMTool. Then, in Section 8.1.4, CoSTH is shown to be able to

reconstruct some of the design insights that have been gained through experience.

8.1.1 Tool and Usage Description

RMTool is a “lightweight” tool that is designed largely in the Unix tradition: it can be flexibly pro-

grammed, and it combines easily with a variety of other tools. This makes its boundaries and features

somewhat difficult to establish. In essence, it consists of five logical entities:

1. A low-level model (LLM) extractor. This analyzes source code to interpret its features according to

some (possibly weak) semantic understanding of them (functions, variables, function calls, etc.),

that is, according to some ontology (e.g., see Welty [696]). This extractor produces a low-level model

of the code.

2. A high-level model (HLM) editor. RMTool does not actually implement this editor: the user is pre-

sumed to be able to define the HLM in some manner, either by modeling it in the head, or by using

a piece of paper, a whiteboard, etc. The model is specified using a simple text format, so any text

editor could be used.

8.1. RMTOOL EXAMPLE 273

3. A Map editor. Maps specify relations between HLMs and LLMs. Maps are represented as text strings,

so in reality the editor is any text processor the user finds handy. The key enabling technology is a

declarative map specification language. The main advantage of the map specification language is

it has a simplicity and flexibility so that it can leverage regularities in the way that source entities

are textually represented (e.g., regular naming). The Map and HLM combine to form what may be

called an interpretation of the LLM.

4. A reflexion model calculator. This is an automatic tool that takes as input the HLM, LLM, and Map,

and generates a reflexion model. Loosely speaking a reflexion model is a representation of how well

the HLM and Map correspond to the actual structure of the system. It is appropriately described

as evidence for the accuracy of the interpretation. This is described in more detail below in the use

scenario.

5. A few tools to investigate reflexion models. One is a graph visualizer that depicts the reflexion model in

a graphical form. This tool allows the engineer to examine the evidence. Another tool summarizes

the way in which the (declarative) Map is interpreted.

The software actually constituting RMTool consists of Items 4 and 5.

Context of Use

RMTool is designed to be used in situations where an experienced systems developer is trying to modify

or evaluate a system with which she is unfamiliar. Because of her experience, she has a great deal of

knowledge that can be applied when understanding the system. The particular software development

tasks being pursued by the user are not that important; it is only required that some understanding is

needed of how the system is structured.

Use Scenario

One of the best ways to understand RMTool is through a scenario of use. A scenario of a software engineer

understanding a Unix kernel is used here. This is the same scenario used in the RMTool literature [428]

(although the narrative is modified slightly for presentation purposes), so the reader may refer to that liter-

ature for more details. An illustration of the general process of using the technique is shown in Figure 8.1.

It goes as follows:

1. EXTRACT LLM. The engineer selects and configures tools to extract the low-level source features

and relationships of interest. In this example, let us assume that some tool is configured to scan the

source code and generate a graph of all functions and their calling relationships.

2. DEFINE AN INTERPRETATION. The interpretation summarizes the engineer’s current focus and be-

liefs about the possible structure of the system. Defining the interpretation involves defining two

entities:

8.1. RMTOOL EXAMPLE 274

compute
reflexion model

investigate
evidence

define/modify
interpretation

HLM &
Map

RM
calculator

reflexion
model

User Actions

extract LLM

5

1

Tools

visualizers

System Data

extractor LLM

2

3

4

HLM
editor

Map &

Figure 8.1: Simplified flow of RMTool sessions

(a) Define a HLM. Using deep domain knowledge, the software engineer generates an model of the

expected structure of the Unix system being considered. This is an abstract and partial model.

This model defines a set of high-level entities and relationships that can be mapped onto a

LLM. A simplified illustration appears in Figure 8.2(a). In this diagram, boxes represent logical

entities and arrows represent expected relationships between them. In the present example, the

relationships are presumed to be calling relationships between modules.

(b) Define a Map. The engineer defines a Map between the HLM and LLM. The intention of the

Map is to map HLM features to LLM features, and map relationships between HLM features

to relationships amongst LLM features. For this example, assume the Map for the HLM in Fig-

ure 8.2(a) maps all functions in the file pager.c to the Pager node, and all functions declared

in the file filesall.h to the FileSystem node.

Kernel Fault
Handler

FileSystemPager

21

21

21

Kernel Fault
Handler

FileSystemPager

LEGEND

divergences
convergences

absences

12

21

2

0

(a) HLM (b) reflexion model

Figure 8.2: Illustrations of RMTool’s HLM and reflexion model outputs

8.1. RMTOOL EXAMPLE 275

3. COMPUTE A “REFLEXION” MODEL. This generates the evidence. An illustration of a reflexion model

appears in Figure 8.2(b). A reflexion model consists of two main classes of entities:

(a) convergences — relationships defined between HLM entities are supported by an analogous

relationship within the LLM. Figure 8.2(b) shows two convergences between the Pager and

Kernel Fault Handler. In this example, this means that (in the LLM) two function calls

occur from functions of pager.c to those of filesall.h.

(b) divergences, absences — divergences are relationships between LLM entities that were not an-

ticipated by the interpretation; absences indicate expected relationships were not found in the

LLM. Figure 8.2(b) shows two sets of divergences, and one set of absences. The divergences

mean that 12 function calls occur which are unaccounted for between functions defined in

filesall.h and those in pager.c, and 21 within pager.c itself.

4. INVESTIGATE THE RESULTS. The reflexion model indicates where the interpretation of the LLM is

accurate or inaccurate. Since the engineer in this scenario believed the interpretation matched the

LLM structure (step #2), this evidence makes implications as to the validity of the engineer’s current

beliefs. The engineer is free to investigate the results in any way desired. The main aim of this

investigation is to establish the validity of the interpretation, that is, of the HLM and Map.1 As a

rule of thumb, the convergences generally indicate the interpretation is accurate, and the divergences

and absences generally indicate problems with the interpretation. More specifically, divergences

usually indicate that the engineer did not anticipate some relationships in the LLM, and the absences

generally indicate that the engineer expected certain relationships when, in reality, there was none.

There are many potential circumstances where this rule of thumb may be broken, so the engineer

often has to investigate the evidence to see if it is based on unimportant or unrelated issues. For

instance, the engineer may find that the divergences result from relatively minor or unimportant

violations in the modularity of a system. She may choose to ignore these exceptions.

5. Go to step 2 and refine the interpretation. The evidence drives refinement.

The process is one of (hopefully) convergent evolution. The HLM and Map are iteratively refined until

they are found to abstract the actual LLM structure to a satisfactory degree. Investigation of the evidence

drives the refinement, particularly investigation of the contradictory evidence (divergences and absences).

Since the initial interpretation is a “guess” as to the structure of the system, the length of the iteration cycle

is related to how good this initial guess is. In other words, one of the best reasons for using RMTool to

refine a HLM is that there are inaccuracies in the user’s knowledge, or uncertainty in its accuracy. Thus the

tool externally represents imperfect knowledge [331]. In addition, the engineer investigates most or all of

the contradictory evidence at one point or another. In the end, the engineer gains both an understanding

of the system, and an increased level of confidence that her interpretation is valid.

1A secondary aim is to establish the suitability of the LLM extracted by the tools. Its scope may need to be ex-
panded, for example. Although this activity can be significant, the present analysis focuses primarily on the fixes
to HLM and map. Repairing or updating the LLM can be added to the ensuing discussion without changing its
character—but that is left as an exercise for the reader.

8.1. RMTOOL EXAMPLE 276

So far, reported experience with RMTool has indicated that this general process is relatively simple,

quick, and successful. Knowledgeable engineers do not have trouble defining the HLM. They are able

to specify maps after some quick browsing of the source base to determine names and likely candidates.

There are no undue difficulties in sorting through the evidence in order to discard superfluous arcs in the

reflection model.

8.1.2 Interpreting RMTool Using HASTI

The RMTool literature does a good job of describing many of the advantages of the overall RMTool ap-

proach. Nevertheless, the literature is thin on advancing clear explanations for the apparent success of

RMTool. This is not a knock on RMTool or its authors, for there is only so much that can be done in a sin-

gle dissertation and a few papers. Still the problem of adequate explanation remains. To wit, no references

are made to psychological principles even though the primary goal is to aid in software comprehension—a

task that is obviously laden with psychological implications. Should it not be the case that a tool for aiding

software comprehension should be successful, at least in part, as a result of principles from psycholog-

ical sciences? This subsection provides one possible interpretation of the cognitive support principles

underlying RMTool.

To perform this explanation, HASTI has to be augmented with a domain-specific model of compre-

hension activities. Recall that HASTI is a framework for modeling, and it is assumed that this framework

will be augmented and added to as required for the area of application. In the case of analyzing RMTool,

some features of the general comprehension task and comprehension processes need to be added. For the

present purposes, this can be done without proposing many modeling novelties. Instead, it is possible to

rather directly refine HASTI with a prior model of software comprehension: Brooks’ model [76].

Although such a preexisting comprehension model does not lead directly to design ideas, it can be

employed as a starting point [685] for further analysis. Specifically, once HASTI is so augmented, it is

relatively straightforward to use CoSTH to examine how RMTool distributes cognition (Section 8.1.3). The

distribution analysis provides a complementary understanding of RMTool’s features from the viewpoint

of cognitive distribution. In addition, a realistic design scenario is evaluated. The motivating context

for the design scenario is provided by published reports of a design iteration. The analysis proceeds to

show how aspects of the design improvements can be reconstructed using CoSTH. This is explored in

Section 8.1.4.

Brooks’ “Top-Down” Comprehension Model

Many years ago, Brooks [76] proposed a model of expert comprehension of software. Although Brooks’

original works studied modestly sized programs, recent evidence suggests that some of the basic points

generalize to large-scale system comprehension [674]. The central argument behind Brooks’ model is that

in some circumstances expert software developers will use their extensive knowledge to drive their com-

prehension processes. Such a knowledge-based process is precisely the context expected for the effective

use of RMTool. This suggests that if one wishes to understand the benefits of RMTool, it may be fruitful

to attempt to use Brooks’ model as a starting point in analysis. Specifically, the match between Brooks’

8.1. RMTOOL EXAMPLE 277

model and the context for using RMTool suggests that Brooks’ model might be used to refine HASTI to

the point where interesting arguments can be made about how RMTool supports comprehension. This

can be done as follows.

Brooks’ model contains three key features: (1) a cognitive task analysis, (2) a suggestion as to the mental

representations being used during comprehension, and (3) an analysis of comprehension processes. Each

of these can be inserted as augmentations of the Agent model in HASTI.

1. Cognitive Task Analysis. Brooks argues that comprehending a program amounts to generating (or

reconstructing) a hierarchical mapping of models. He called this “domain bridging” [73, 76]. The

models start at the domain level and proceed through various intermediate levels such as mathe-

matical methods, or system structure models. Each model consists, in part, of a set of objects and re-

lations; the mapping between models consists of bindings between higher-level objects (or relations)

to lower-level objects (or relations). There is nothing particularly unusual in this hierarchical way

of modeling software systems, as it resembles many other hierarchical models of software systems

(e.g., Byrne [91], Müller et al. [425]). Comprehension of a system is posed as a problem of generat-

ing an internal representation of this hierarchical mapping, that is, a mental model. Brooks explicitly

argues that for specific tasks, the required model will be partial, consisting of a partial mapping of

relevant aspects. Cognitive tasks involved in generating such a model include: retrieving relevant

structures from expert memory, verifying a binding, searching for evidence of a binding, recognizing

conditions that contradict the current assumptions, and backtracking by refining the model. These

tasks are described in more detail below when discussing the processing model.

2. Mental Representation Model. At any point in the comprehension process, it is assumed that the

mental model of the system is a tentative collection of hypotheses. The models at any level are con-

sidered high-level hypotheses about the system (e.g., “this is a standard Unix virtual memory sys-

tem”). Bindings to lower level models are considered sub-hypotheses (e.g., “The file system must

be implemented in these functions here...”). As evidence is accumulated about hypotheses, the

comprehender’s certainty about the hypotheses are assumed to be recorded somehow. In that way,

if contradictory evidence is found later, then the comprehender can determine how to refine the

model.

3. Processing Model. Brooks’ model is called “top-down”. Partly this is because it portrays compre-

hension as a knowledge-driven activity; it is also called “top-down” because the hierarchical mapping

is built by starting at the high-level domain models and working “downwards” to low-level code

models. This aligns with so-called “top-down” software development methods, which propose that

programs are to be hierarchically refined in an analogous manner. Brooks argues that somehow com-

prehenders will develop high level hypotheses about the meaning and structure of the system being

studied (e.g., because of the program’s name). These set up the gross hypotheses which are hierar-

chically refined until bindings are considered verified. Verification of a hypothesis is performed by

searching for confirmations or disconfirmations. Sometimes this search fails, or encounters contra-

dictory evidence. This leads to a failure to verify a hypothesized binding. This causes backtracking

8.1. RMTOOL EXAMPLE 278

to occur, resulting in refinements to higher level hypotheses. Processing occurs until the full (or

partial) hierarchical model is constructed and confirmed to the degree required.

There are other significant aspects of Brooks model, but they are not used in the following.

Refining HASTI with Brooks’ Model

Most aspects of Brooks’ model can quite easily be integrated into the Agent model of HASTI. Let us call

this integration “TD-HASTI”. It has the following features:

1. The mental model refines the Process panel, becoming its primary contents. History within this

panel includes prior states and revisions.

2. The Control and Agenda panels contain pointers into the mental model. In the case of the Con-

trol panel, the pointers indicate that high-level hypotheses (model guesses) organize (plan) the

exploration of sub-hypotheses. In the case of Agenda, the they indicate that attention is divided

between various related hypotheses, often on different model levels.

3. The main cognitive tasks of Brooks’ model are assigned to separate agents. For the time being,

relatively few considerations will be made as to SRKM stratification or D2C2 strata. For now, let us

merely assume that the memory and recognition processing occur at the rule level or below (since

these do not seem to show up in verbal protocols [76]), and the remaining can be assumed to occur

at the knowledge level or above.

It may be helpful to visualize the resulting model; a sample is given in Figure 8.3.

Although this is a simple extension of the Agent model, using other aspects of TD-HASTI can lead us

to consider some properties of this comprehension process. Using the Agent-to-Hardware map of HASTI,

it is possible to anticipate both the hypothesis (Progress) and sub-hypothesis exploration state (Agenda)

will be subjected to restricted STM capacities. This suggests that understanding complicated software or

complicated hypotheses will be difficult because they will overload the limited STM resources. It suggests

that pending hypotheses will be occasionally forgotten and systematic hypothesis investigation will suffer

planning failures. The SRKM taxonomy suggests that backtracking, searching, and hypothesis verification

processes will seem effortful since they will not normally be done through skilled actions. In addition,

the D2C2 analysis generally suggests that coping strategies may be employed to reduce the number of

hypotheses explored at once.

8.1.3 Tool Analysis Scenario

TD-HASTI is essentially a disembodied, unassisted model of comprehension. It is tacitly assumed that

comprehension occurs within a context of simple tools (e.g., a simple editor or set of code printouts).

Even so, Brooks’ model is compatible with the projected applications of RMTool. The trick to analyzing

cognitive support in RMTool is to re-conceive of RMTool use as a distribution of TD-HASTI. This ex-

poses a number of cognitive supports. This re-interpretation of RMTool is done by viewing its features

8.1. RMTOOL EXAMPLE 279

backtrack

verify

SOURCE

recognize
search

retrieve

RSMK

− traverse model 1

CONTROL

I/O Buffers

HLM

LLM

map

PROBLEM

AGENDA
− refine model 1
− verify hyp 1a

Evidence against

Evidence for

Figure 8.3: Refining the Agent model with Brooks’ comprehension model

as mechanisms for distributing the data and processing modeled in TD-HASTI (hypotheses, verification,

etc.). This can be done as follows:

1. Data distribution: hypotheses. A HLM can be identified as a high-level hypothesis in TD-HASTI.

The Map can be considered the collection of sub-hypotheses (bindings) associated with the model

hypothesis. Thus the construction of an interpretation is RMTool’s version of domain bridging.2 The

key step in RMTool is thus the externalization of the hypothesis to be refined (D/D/PG/state). As

Brooks notes, initially this is extracted from expert knowledge, but the comprehender is uncertain

as to its veracity.

2. Processing distribution: hypothesis verification. Hypothesis verification is partially distributed by RM-

Tool. This involves externalizing the search and verify cognitive tasks from TD-HASTI (see Fig-

ure 8.3). Computing the reflexion model uses the interpretation to effectively search for possible

2A small aside is required here. Brooks’ domain bridging is more complicated than the example interpretations in
the RMTool literature, which are high-level structural interpretations. However these are still consistent with Brooks’
theory; besides nothing seems to preclude RMTool from being applied more generally to what Brooks had in mind in
terms of domain bridging.

8.1. RMTOOL EXAMPLE 280

evidence that may confirm or disconfirm the hypothesis. The arcs in the resulting reflexion model

constitute potential sources of evidence for the accuracy of the sub-hypotheses (bindings). Both con-

firmation evidence and disconfirmation evidence is generated. This is only a partial distribution of

verification because many of these arcs must be investigated by the engineer in order to determine

what implications they make (the reflexion processing is not capable of determining evidence rele-

vance for the user). However even this saves a great deal of work because otherwise these would

have to be individually navigated to and examined. Because hypothesis exploration in TD-HASTI

depends upon the diligence and capability to remember pending goals, the wholesale processing of

the hypotheses also suggests that evaluation of hypotheses will be more systematic and thorough.

In this view, RMTool distributes the computation of TD-HASTI without significantly altering its essential

qualities. To visualize this, consider the illustration in Figure 8.4. It shows a rough illustration of what

RMTool use might look like if it were drawn using a virtual blackboard architecture (uninteresting features

are omitted, as in a partial HLM). The idea behind this virtual blackboard architecture is to encapsulate the

details of how the user and computer share memory and coordinate processing. From the viewpoint of

the virtual abstraction, blackboard memory is directly shared between user and computer, and processing

on it can be done by either human or computer. From this abstract view, RMTool merely shuffles around

the location of data and processing.

Using the above analysis, the main cognitive support that RMTool provides is the distribution of the

hypotheses and their processing. Externalizing the hypotheses can reduce cognitive burdens and increase

the complexity of the hypotheses explored. The external processing means that cognitive processing loads

are reduced. New task burdens are introduced, of course: externalizing the interpretation, invoking tools,

etc. These are overheads in the form of device and cooperation overheads. These burdens can be tolerated

because of the cognitive support they provide. This overall evaluation of cognitive support in RMTool

aligns nicely with the analysis of Murphy et al. The main difference between the two accounts is that here

the considerations stem entirely from (1) an application of a pre-existing task analysis, and (2) a theory of

cognitive support applied to this analysis. The two evaluations are completely independent but eminently

compatible.

retrieve

backtrack

verify pt 1

search

recognize pt 1

verify pt 2

recognize pt 2

HUMAN COMPUTER

LLM

map

PROBLEM

SHARED
BLACKBOARD

HLM

Evidence against

Evidence for

Figure 8.4: “Virtual blackboard” illustration of RMTool processing

8.1. RMTOOL EXAMPLE 281

Other arguments about the cognitive support in RMTool can be made using HASTI and CoSTH, al-

though they are less significant than the above, and are not supported by RMTool documentation. For

example, consider the visual presentations provided by RMTool for accessing the evidence. The main facil-

ity provided for this is a source summary that is displayed when an arc in the reflexion model visualization

is clicked. The summary displays the LLM features that the interpretation is bound to. This presentation

serves to collect together (i.e., localize) references to these LLM features. If the source code is viewed as

external knowledge held in external memory, this localization can be viewed as a way of collecting to-

gether these memory references so that paging (scrolling, file loading, etc.) need not be performed. That

can be considered an example of automating memory management operations (D/P/VH).

The above investigation is an informative first “test drive” of HASTI and CoSTH. This tool evaluation

“scenario” gives a strong indication that HASTI and CoSTH are broad enough in scope, and say interesting

things to the analyst. RMTool is a real tool of current research interest. HASTI is quite easily refined so

that it applies to RMTool. CoSTH is able to recast many of the arguments about RMTool in terms of being

instances of cognitive support.

8.1.4 Design Envisionment Scenario

Early prototypes of RMTool lacked some of the features that were added to later versions in response

to user feedback [428, 431]. This type of iterative development is not in any way unusual within HCI or

SE. For instance, software development tools are frequently refined to better match the work practices of

individual organizations, users, or tasks (e.g., Singer et al. [596], Gillies [237]). The question is, can design

theories be used to help anticipate some of the requirements for tools so that the necessary features do

not have to be discovered after the tools are delivered to the users? It is impossible to fully answer this

question with a retrospective analysis of prior design histories: hindsight, as they say, is 20:20. But the

results can be suggestive. RMTool’s published design history provides a good case in point.

Given the analysis in the prior subsection, other types of support may be considered. It is sensible

to suggest that analyzing this distribution could turn up several points the RMTool authors originally

missed. One particular aspect of the above analysis may quickly draw an analyst’s attention: the partiality

of the processing distribution. Specifically, if one adopts a design stance (see Section 7.2.2) which places a

high priority on distributing problem solving data, then this stance can lead to a search of the design space

(see Section 7.2.3) for additional ways of doing so. The following presents a summary of how this sort of

design reasoning might reasonably have progressed using CoSTH.

Thinking About Distributing TD-HASTI

Although much of the evidence analysis is automated by RMTool, it is only partially checked: the user

needs to sort through the evidence provided, and to refine the interpretation appropriately. This is an

example of where human and computer must coordinate their efforts. Specifically, they must coordinate

over the resolution of the evidence. The computer does not fully evaluate the evidence and relies on

the human to be able to distinguish irrelevant and important cases and to account for them. The user

makes a series of decisions regarding the salience and meaning of the various bits of evidence. If the

8.1. RMTOOL EXAMPLE 282

computer is to take this into account in further processing, the user must work towards incrementally

externalizing the relevant decisions and interpretations. At the same time, it may be fine to say that the

user should keep track of their decisions about evidence, but the Hardware model (state is mapped onto

limited memory) suggests that this is apt to be forgotten. Thus it should often be helpful to offload this

knowledge. Moreover, if the computer can display the externalized state of evaluation, this can in turn

help regulate and coordinate the user’s actions. So in addition to being an external memory, it can act

like a shared memory used for coordination (the computer records and displays action cues for the user).

Finally, note that the retrieval and backtrack steps are unsupported. It may pay dividends to consider how

to distribute these sub-process.

The preceding analysis leads to a few suggestions of cognitive support:

1. D/D/PG/state. Memory for the state of evidence evaluation could be offloaded. This includes

decisions to ignore particular LLM features, and to remove from consideration those features that

have already been understood as being important and accounted for in the interpretation. Another

term for this data might be “evaluation tracking state”.

2. D/P/VH/VM. Evidence processing (reflexion model calculation) can take externalized evaluation

tracking state into account. Reflexion model processing can use the decisions to ignore evidence to

improve the display of evidence. A prime candidate is to filter the ignored evidence and thus pare

down the effective working set size of the problem state. This would reduce the contention for working

memory (i.e., reduce display clutter).

3. DBPS. The display could be made to indicate the system’s progress in evaluating evidence. Specif-

ically, the evidence visualizing programs can use the externalized exploration state to display the

visited/unvisited status in some form. In combination with the elision of unimportant links, this

implies that the unexplored plan states (i.e., hypotheses yet to be evaluated fully) are externalized

(D/D/PG/state). This externalized plan-execution state can structure ensuing sub-hypothesis res-

olution. In many cases, these unexplored plan steps will form an agenda of pending sub-goals

(D/D/agenda). The user can then employ a strategy of using the externalized agenda to determine

the next sub-hypothesis to examine. This type of externally-cued activity is a form of display-based

problem solving (DBPS).

4. S/S/SP. DBPS is assisted if perceptual cues are available to determine what action to perform next.

For instance, it might be helpful to visually highlight the arcs in the reflexion model visualization

which contain unevaluated evidence. The user might be able to use visual search to determine which

evidence to examine next.

5. O,C,S,SP,SA (backtalk): Generating an initial HLM may not be a simple matter of “recall” since

the user may not be able to simply “transcribe” their internal understanding of the system. Such

knowledge externalization difficulties are well-known in the knowledge engineering community.

The implication is that the model externalization process itself might be a problem-solving step in

many circumstances. The general notion of backtalk (refer to Section 6.5.2) can be applied to the

8.1. RMTOOL EXAMPLE 283

HLM editing tool as a way of helping users reflect upon their own knowledge by encouraging back-

talk. RMTool’s current implementation currently allows only a roundabout form of feedback. More

immediate feedback gained while externalizing the model may be very helpful. In particular, the

modeler might be able to use their skills at visually judging the correctness of a model’s diagram as it

is being externalized. In this view, the externalization process can become a minimally-planned skill-

based loop, with feedback serving to quickly correct anomalies. Little is mentioned in the RMTool

literature regarding initial HLM generation, other than that it was found that users easily external-

ized a working initial hypothesis. For instance, it is not mentioned whether the users worked the

HLM out beforehand on some suitable medium such as a whiteboard or scrap paper. These would

provide a reasonable medium for backtalk.

Regardless of the specifics of the examined cases, the above analysis makes suggestions as to other

possible usage contexts. In cases where the modeler is uncertain as to what structure might be

employed in a system, a modeling tool may be important for externalizing a good working hypoth-

esis. In such cases, the modeling tool may closely resemble knowledge modeling tools used for

brainstorming and knowledge acquisition (e.g., see Kremer [363]). In certain other cases, extensive

modeling may be considered to be a prerequisite step before trying to map these models onto code

(e.g., Clayton et al. [139]). In such cases, the support provided by an externalization medium may es-

pecially come to the fore since the complexity of the modeling process may require such an external

memory.

6. D/D/PG/state/history. Backtracking can be expected when hypotheses fail, or when unantic-

ipated interactions in the LLM are found. Backtracking may involve unrolling (1) decisions about

the features of the HLM or Map, (2) commitments to ignore certain aspects, or (3) judgments and

interpretations about supportive evidence. Since all of these problem solving states are partly ex-

ternalized, mechanisms for recording their past states or derivations may be helpful. Specifically, it

would offload some of the memory requirements for the user. In addition, if rollback methods are

made available (undo, version management systems, etc.) then some rollback processing (D/P) is

distributed.

The updated RMTool contains some features that implement the above cognitive distributions [428,

431]. In particular, the second version added tagging and annotation features. Tagging features allow the

user to “tag” specific arcs in the reflexion model, indicating that they are to be considered temporarily

irrelevant. The visualization engine uses these tags to elide the evidence arcs. If the interpretation is

changed such that the relevance of that evidence might change, these tags are undone. The annotation

mechanism allows the user to externalize whether and how an arc is resolved. The visualization engine

subsequently indicates this resolution status visually (by displaying the fraction of evidence resolved

for any given arc on the diagram). Although this might not enable visual search for the next goal to

examine, it still enables a form of display-based processing. Thus the tagging and annotation facilities

effectively implement the first three cognitive distributions suggested above. Experience has shown that

these features are significant aspects of the overall RMTool approach.

The fourth, fifth, and sixth considerations (visual search, backtalk, backtracking) are currently poorly

8.1. RMTOOL EXAMPLE 284

explored by RMTool’s implementation. The point of including them is to illustrate the relatively system-

atic way in which design considerations can be brought up. What was needed was a task analysis and a

collection of cognitive restructurings provided by CoSTH. The result reconstructed three supports offered

in the design iteration, but it also suggested three additional design choices. This suggests that CoSTH is

not limited to purely retrospective analysis.

8.1.5 Summary and Implications of RMTool Analyses

An analysis scenario and a design scenario were described for applying HASTI and CoSTH to the problem

of rationalizing RMTool’s design. The analyses generated for these scenarios demonstrate that HASTI and

CoSTH have powers to reconstruct central rationales of RMTool’s design. The analysis involved under-

standing how RMTool can reorganize cognition in comparison to a relatively unsupported cognitive task

analysis. Support analysis consisted of using CoSTH theories to reconstruct arguments for specific design

features. Design envisionment analysis consisted of “walking” through CoSTH to see how different ways

of distributing or otherwise supporting the cognitive tasks could be performed.

It seems important to note how HASTI and CoSTH interact with existing cognitive models. HASTI

was shown to be able to be sufficiently compatible with an existing cognitive model to let HASTI-guided

support analysis to proceed. This is an example of being able to use prior scientific work to jump-start tool

analysis [685]. At the same time, the application of CoSTH highlights the limitations of prior cognitive

modeling methods. For instance, consider the problems of applying a cognitive model of software com-

prehension such as that of von Mayrhauser et al. [675]. The model by itself cannot capture the important

roles of the externalized hypotheses or the automated reflexion analysis. The main reason is obvious: the

model by itself does not explain how RMTool changes cognitive processing for the better. It is assumed

that the model holds regardless of the tools employed. Thus the comprehender would still be modeled

as posing hypotheses and trying to answer them, but the contributions of RMTool would need to be ac-

counted for in some other—probably ad hoc—fashion. Past experience with these sorts of models have

not led to similarly methodological design argument reconstruction. For instance, in the past the model

of von Mayrhauser et al. has primarily been used to critique toolsets that did not provide adequate in-

formation access methods [665], or which over-constrained program investigation methods [619]. As a

sufficiency filter for analytic theories, RMTool clearly demonstrates that HASTI and CoSTH encompass a

pragmatically important scope of application, and can say interesting things to tool analysts.

The design scenario is also enlightening because it props up the drive towards theory-based design.

The main purpose of a design theory is to suggest design options based on an understanding of a problem

context. CoSTH clearly could do this for RMTool. Recall that I quoted Singer et al. [597], who asked

“...how does knowing that programmers will sometimes use a top-down strategy to understand code ...

inform tool design? It doesn’t tell us what kind of tool to build... .” I concur wholeheartedly. What is

required in addition is a design theory similar in form to CoSTH. This small design scenario demonstrates

that a top-down model of code comprehension (TD-HASTI) is helpful indeed—but only if considered

in combination with design theories. Design theories can not only provide interesting theory-backed

explanations of the usefulness of tools, but they appear to hold promise for being able to suggest useful

8.2. RIGI EXAMPLE 285

tool features.

8.2 Rigi Example

The prior section on RMTool has established the general procedure for applying HASTI and CoSTH to

analysis and design scenarios. This section considers the reverse engineering tool Rigi [425]. The purpose

of looking at Rigi is to reinforce this view using another example, and to expand on the breadth of scope

to show that the theoretical frameworks are not limited to analyzing RMTool-like tools. This example

further emphasizes the independence of the theory-based derivation by presenting an analysis of program

comprehension in advance of the tool descriptions.

8.2.1 Bottom-up Comprehension: BU-HASTI

Brooks’ model of top-down comprehension can be “reversed”, that is, the hierarchy of mappings can be

constructed from the bottom up. This means that the processing will be primarily data-driven, that is, it

will be based on inductively interpreting lower-level inputs. The implied context is that the comprehender

does not have suitable knowledge to generate good hypotheses about the code. She must therefore begin

interpretation by looking at the code and inducing useful abstractions. Many blackboard models assume

that processing will be a mixture of top-down and bottom-up interpretation (see e.g, Carver et al. [113]).

Consequently a bottom-up model, BU-HASTI, can be defined as a relatively simple extension to TD-

HASTI. In addition, other studies and models of bottom-up comprehension can be employed to fill in the

details to TD-HASTI.

The following analysis enlists the studies by Pennington [497, 498] in order to augment HASTI. As

was the case for Brooks’ model, these prior works have primarily considered intra-modular compre-

hension, yet there are strong hints that they also generalize for inter-modular comprehension (e.g., see

von Mayrhauser et al. [674]). The research of Pennington will be used to supply a cognitive task anal-

ysis. Only certain aspects of these studies are used here. Pennington’s work contains some important

arguments which are mostly irrelevant for the current analysis. For example, she makes a strong and

important distinction made between external structures (stimuli) and the internal representations that are

induced. That issue is muted in the following.

TD-HASTI can be “reversed” with the help of Pennington’s models as follows:

1. Cognitive Task Analysis. The process of comprehension is modeled as the incremental construc-

tion of a (partial) hierarchical mapping as in TD-HASTI. This involves a number of cognitive tasks,

including: recognizing familiar structuring idioms (e.g., by the idiom of assigning functions to files

by their logical module), cross-referencing related items, and inducing higher-level abstractions based

on the cross-referencing. The abstraction-generation task makes use of the properties of the source

and cross-referencing relationships to make judgments about the best interpretation of the source.

Specifically, the cross-references help determine the functional relationships between entities that

work in close concert [498, pg. 326-327]. These are then interpreted, or “chunked”, as forming cohe-

sive, functionally-related units. To remain consistent with prior terms used, these abstractions can

8.2. RIGI EXAMPLE 286

all be referred to as HLMs.

2. Mental Representation Model. This is analogous to TD-HASTI, however the binding evidence is

of a different sort: cross-references made between entities in the LLM combine to either support

or contradict any particular abstracted interpretation of them. Specifically, functionally-related and

closely cross-referenced entities tend to be interpreted as forming entities within HLMs. In a simi-

lar manner loose bindings provide evidence to separate entities within the HLM. Thus inter-entity

cross-referencing densities in combination with functional cohesiveness are the primary evidence

used to decide on mappings from LLMs to HLMs. For instance, in SE terms, program modules are

normally decided upon by collecting together functionally-related items such that the “coupling”

between modules are minimized. All HLM abstractions are considered tentative collections of hy-

potheses that need to be refined based on evaluating the cross-referencing evidence.

3. Processing Model. Bottom-up processing means that the external cross-referencing structures to a

great degree drive comprehension processes. When evidence about clichéd structuring is found,

standard structuring schemas (TS schemas in Pennington’s model [498]) can be recalled to organize

the ensuing interpretation. For instance, if function location conventions are used in the source

base (e.g., the pager.c in the RMTool example), regularities in the source base can be used to

generate an initial abstraction hypothesis (i.e., the engineer might suppose initially that the functions

in pager.c together form a page management module). Iterative cross-referencing is presumed to

incrementally and hierarchically build up and refine the resulting HLMs.

8.2.2 CoSTH Analysis of BU-HASTI

An analysis of the possibilities for restructuring cognition in BU-HASTI can proceed in a similar manner

as for TD-HASTI. The following points can be made:

1. D/D/state. STM limitations in the Hardware model suggest that only for small HLMs is it easy

to hold the hierarchical abstractions in internal memory. Some sort of external representation can

be postulated to offload this data. Significantly, this representation will need to be able to represent

HLMs, LLMs, and the evidence for their structure (cross-references).

2. D/P (structuring). When looking at a system, structuring clichés known to the engineer may be

recalled. These can be used as a basis for constructing an initial HLM hypothesis. The construction

of the initial HLM might therefore be externalized. This would involve either some mechanism

for defining the structure (a declarative map), or for representing how to construct it (procedural

methods).

3. D/P (evidence). Evidence evaluation can be partially externalized by formalizing a decision proce-

dure or metric space for evaluating cross-referenced entities. In the case of a formalized decision

procedure, this corresponds to externalizing clustering mechanisms (D/P/GD/abstraction).

4. S/S/SP/cluster (evidence evaluation). Evaluating cross-referencing evidence requires the en-

gineer to somehow integrate all the various pieces of cross-referencing data and then to mentally

8.2. RIGI EXAMPLE 287

create and compare alternative groupings. A critical problem is to recognize which functions might

belong together. According to SRKM, it would help to be able to substitute some of this work with

specialized perceptual operators. A visual cluster perception operator is a candidate if visual cluster

perception can be made to substitute for the analysis of related functions. This would require map-

ping cross-referencing evidence onto a suitable visual presentation (i.e., classic cross reference tables

would likely not be enough).

5. D/P/VH/VM (layout). Processing may be done by the computer to lay out the visual presentation in

order to invoke cluster perception.

6. SP,SA (backtalk): If the visual presentation can be manipulated manually, the user can use cluster

perception as visual feedback in order to try to arrange the presentation into better configurations.

That is, the visual interface becomes a medium for generating feedback to those skilled in its manip-

ulation.

8.2.3 Matching Features in Rigi

Rigi can be interpreted to implement each of the six distributions suggested in the prior subsection:

1. D/D/state. Rigi’s primary external state is the “resource-flow graph”, or “RFG” [426]. This

logical entity is represented using a formalism of the same name. It can represent hierarchically

decomposed abstractions and interconnections between lower-level entities. The RFG’s contents are

made available through a variety of visualizations.

2. D/P (structuring). Knowledgeable engineers are able to script Rigi to make use of recognized

existing structures (such as file naming conventions and file hierarchy information) [712] (clusters).

3. D/P (evidence), D/P/GD/abstraction. Rigi defines and allows various metric spaces for com-

puting initial abstractions. These include business rules, and cohesion/coupling metrics [426]. As

in the case of evaluating RMTool’s evidence, it is still up to the user to verify the interpretation by

examining the evidence closely, if necessary.

4. S/S/SP/cluster (evidence evaluation). Cluster perception is made possible in Rigi by repre-

senting the entities and cross-referencing relationships using nested box-and-line graph presentation

format [427].

5. D/P/VH/VM (layout). Rigi provides several layout methods for organizing nodes in the RFG vi-

sualization [426]. Some layout algorithms are chosen to map logical clustering to visual-spatial

clustering.

6. SP,SA (backtalk): Rigi provides many different methods for manipulating the graph, including

spatially arranging nodes [426,427]. This allows users to move entities around in order to get visual

feedback.

8.3. SUMMARY 288

8.2.4 Summary of Rigi Analysis

Rigi is a complicated research product. It contains features other than the ones listed in the previous

section, and there are many rationales for its design other than the ones covered here. This does not detract

in any way from the fact that rationales for many of its features can be derived solely from a theory-based

account of cognitive support. Several of the published rationalizations of Rigi’s features are consonant

with the foregoing analysis (perhaps most particularly Müller et al. [427]). Experience reports appear

to bear witness to the advantages expected (predicted) by CoSTH. As a result, Rigi provides another

example of where applied theory and field experience are mutually reinforcing.

This analysis of Rigi helps to outline a lesson about the possibilities of design theories. The thing to

note is that the design analysis may preceded tool feature elaboration. Whiteside and Wixon once asked

HCI theoreticians “Where does the design come from initially?” [702, pg. 365]. This scenario answers

they may spring from quite systematic application of design theories. It is therefore tempting to suggest

that Rigi’s basic form could have been originally developed by using relatively unremarkable theoretical

resources. What was required was a reasonably straightforward task analysis based on existing theories,

and a design theory similar to CoSTH. As far as I am aware, Rigi was not constructed by such a sys-

tematic application of design theory, but by basic ingenuity in combination with long and incremental

exposure to the problems that software developers face. This is not to suggest that many of the basic

design insights did not in some way underscore Rigi’s genesis. On the contrary, Rigi’s authors seem

to have been quite aware of most or all of the essential insights all along. That is, they appeared to use

a craft design theory of sorts. The contrast made in this section is between explicit and implicit design

knowledge and methods. The extra lesson here is thus not about Rigi per se, but about the prospects for

using design-based theories. It suggests that the design of cognitively supportive tools might not have to

be a result of heroic insight, but of relatively methodical analysis and application of design theories.

8.3 Summary

This chapter paints a picture that may be interpreted on at least two levels. The first level deals with the

benefits shared mutually between applied theory evaluation and theory application. From the applied

theory evaluation side, it demonstrates that HASTI and CoSTH are broad enough in scope to deal with

high-level tool design issues from a relevant tools research discipline. RMTool and Rigi are research

tools that are of current interest. Not only are the theories shown to be broad in scope, they also “say”

things of interest to researchers in the discipline. They provide a second interpretation on the experiences

within the field. Particularly interesting is that they can reconstruct many of the perceived advantages of

the tools.

From the theory application side, this is a welcome sight. The applied theories provide mediated

access to underlying science theories. Tools research has plowed along without many of these sorts of

science-backed accounts. Certainly, significant attempts have been made in the past to apply various the-

ories to explain development tools (e.g., Choi et al. [129], Redmiles [532]). However these efforts have

been infrequent and have been, so far, less than satisfying. In addition, the intuitions about these tools

8.3. SUMMARY 289

have been building along similar lines within the field, but they have to this point lacked a suitable and

powerful enough framework with which to articulate these ideas. This chapter demonstrates that latent

psychological claims existing in research tools can be articulated. This means that they can be explicitly

tested for, both for evaluating existing ideas, and when designing new tools and variations of them. Right

now, little else is known about how to systematically evaluate such tools. Currently we pit tools against

one another and pick through the secondary evidence of performance data. Being able to articulate psy-

chological claims about tools makes it possible to test the claims more directly. For instance, do perceptual

judgments in Rigi substitute for knowledge-based reasoning? This is (at least in principle) a directly

testable hypothesis. The deeper implication is that tool building expertise within the field can be made

more credibly founded by exposing such claims and encoding them in independently validated theories.

Thus, if domain wisdom is the raw materials for tools knowledge, then applied theories appear to be the

most likely catalyst for scientific reform; credible claims about tools are the precipitate. Unfortunately

there is a veritable sea of tools to analyze: one chapter’s worth of claims analysis will make only the

smallest of advances. Nonetheless, sometimes the symbolic first move is the most difficult to make.

The second layer of interpretation for this chapter concerns the relationship between applied theoriz-

ing and tools research. Specifically, this chapter provides a strong indication that they are best performed

hand in hand. The tools research disciplines set a motivating context for theory breadth and content, and

the applied research discipline provides a parallel and longitudinal accumulation of experience suggest-

ing how well the theories generalize to practice. So far as I can tell, this close relationship has not received

its fair share of attention. Building applied theories has for the most part been seen as a problem of taking

existing theories and trying to adapt them so as to be able to apply them as widely as possible (e.g., see

Barnard [28]). The alternative presented here is that a research discipline comes up with a list of interest-

ing questions it wants to answer, and appropriate applied theories are pieced together from whatever is

most suitable.

From the other side of the fence, transforming a craft discipline into a scientifically-backed discipline

has been treated more or less as a process of accreting tiny, point-form results. For instance, one particular

theory from cognitive science may be imported to explain some small aspect of some particular tool. A

small experiment is run to “validate” this explanation. This is like painting a large picture by dropping

small points of paint here and there. The alternative presented here is of using broader-stroke, integrated

applied theories to mediate access to the science base. This is akin to drawing a painting by starting out

with a fuzzy—but panoramic—outline of the result, and then incrementally filling in details. Starting out

with integrated theories might help avoid the problem of getting the individual drops of paint to come

together as a coherent picture. This has been a problem for cognitive science in the past [446]. More

importantly though, the intermediate results are much more likely to be useful.

Before concluding this chapter, I find it impossible to resist including a small historical analysis com-

paring theory development and tool development across fields. A review of the history of some of the

various works referred to in HASTI, CoSTH, and this chapter reveals some curious facts. A selected 20-

year timeline appears in Figure 8.5. Some of these publication dates cluster around the same year, so in

some cases they are merely placed in rough proximity. A number of relevant building blocks for HASTI

8.3. SUMMARY 290

and CoSTH are shown on the right hand side. The rightmost column indicates some of their main contri-

butions to those theories. On the left hand side are listed the early genesis dates for the tools of this section.

Also listed on that side are a few reference points and background works. For reference, the citations for

both the left hand and right hand sides of the timeline are listed in Table 8.1, in order from top to bottom.

As can be seen from the timeline, many of the critical parts of HASTI and CoSTH were clicking into

place in the fertile years of 1983–1989. Analytic frameworks similar in many ways to HASTI and CoSTH

could conceivably have been constructed soon afterwards—all before (or at about the same time) as the

first version of Rigi, and a decade before RMTool. It is grossly unfair—but tantalizing—to speculate that

it would have been possible to create and refine Rigi and RMTool using theory-based design and analysis

methods. Likewise, the rationale for RMTool, or a tool very much like it, could have been conceived

through theory-based analysis at about the same time; certainly more than 15 years ago. This is certainly

not brought up to suggest that these tools could or would have been constructed earlier. Rather, the point

is that, as a field, we could have been applying similar theory-based methods to design and analyze tools

for quite some time. This chapter has been a long time in coming. I mentioned in Chapter 1 that integrated

theoretical accounts of cognitive support are overdue, that it is important to begin collecting functional

theory together in order to analyze and design tools. This timeline, I suggest, strongly argues the case.

SIDE REFERENCES OR SECONDARY REFERENCES

left [71], [73], [299], [465], [418], [76], [94], [526], [466], [296], [92], [567], [498], [375], [267],
[374], [257], [61], [470], [116], [667], [472], [727], [320]

right [594], [432], [582], [564], [423], [741], [623], [469], [101], [307], [767], [766], [430]

Table 8.1: Summary of references in Figure 8.5

8.3. SUMMARY 291

distributed problem solvingLarkin’s display−based problem solving

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1978

1986

1994

Schonpflug’s study

Hayes−Roth et. al BB1 model

Hayes−Roth’s opportunistic planning

DC analytic framework

seminal DC text

perceptual substitution analysis

important blackboard model

cognitive task analysis

external memory tradeoffs

cyclical external update model

comput. explanation of graphics

GOMS, model human proc.

substitution hierarchy

hypothesis binding model

cognitive task analysis

influential opportunism model

Brooks’ top−down model

Card et. al’s "Psychology of HCI"

Rasmussen’s SRK model

Pennington’s bottom−up model

Zhang&Norman’s dist. representations

Green et. al’s Parsing−gnisraP model
Larkin & Simon’s "1000 words"

Casner’s perceptual operator analysis

Hutchins’ "Cognition in the Wild"

Brooks’ domain bridging analysis

Suchman’s "Plans & Situated Action"

1980

1982

1984

1988

1990

1992

Norman adapts model to HCI similar simplified model

precursor simplified model

Moran’s CLG device vs. domain analysis

Kittle−House Workshop
on HCI theory

Norman’s multi−stage model

First ESP Workshop

First WPC Workshop influential integrated modelvon Mayrhauser/Vans model

Card & Moran’s VM analysis of HCI early virtual memory analysis

Schon’s

"Reflective Practitioner"

RIGI’s origins

RMTool’s origins

1976

1975 Brooks’ coding model includ. external memory use

model integration attemptBoehm−Davis’ comprehension model
Green’s Cognitive Dimensions broad−brush design theory

PPIG Book

First WCRE Workshop analysis of cognitive artifactsNorman’s "Things that Make Us Smart"

(1969) Simon’s

1st ed.
Sciences of the Artificial

Hutchins studies precomputation early DC work

Myers’ debugging strategies

Shneiderman’s "Software Psychology"

"Psychology of Everyday Things"

Norman’s

Figure 8.5: Timeline of main ideas and tools

Chapter 9

A Field Study of Cognitive Support

RODS, HASTI and CoSTH are proposed as an intellectual toolkit for tools researchers and developers.

They are candidate theories and frameworks built specifically for the purpose of raising and answering

questions about cognitive support. To fully realize this potential, researchers must have access to effective

methods for using the toolkit, either analytically or empirically. Chapters 6, 7, and 8 have developed ways

of applying RODS, HASTI, and CoSTH analytically. In this chapter, the aim is to begin answering the

question of how to apply them empirically. The theories encode knowledge; the question is how to wield

it empirically to yield answers regarding tool design questions. By this, I mean using the toolkit in the

context of a laboratory or field study for the purposes of exploring cognitive support issues not directly

answered by the theories. Theories are not all-powerful, and they often lead to important questions rather

than answering them outright. Data gathered from careful observation can be a powerful way of aug-

menting the toolkit. If suitable techniques are made available, then theory-driven empiricism may have

the potential to be another weapon in the arsenal of methods for systematically designing and engineering

cognitive support.

Applying cognition-related theories empirically in such a way is a relatively unusual proposition. In

cognitive science and HCI, the main reasons for going to the lab or field are to validate or verify theories, to

gain some new understanding suitable for deriving new theories, or to otherwise refine one’s knowledge

about the context for design. For instance, consider the research programme advanced by von Mayrhauser

et al. [678]. They proposed to apply a cognitive model of software comprehension in field studies. Their

purpose for proposing this was to further validate their cognitive model, and to use it to understand new

things about comprehender behaviour. This type of empirical study programme is not at all unusual. Even

proposals to study tools typically place a priority on discovery and theory building rather than importing

and applying theories as is (e.g., see Redmiles [532]). Theories and models are generally proposed to be

developed empirically, and used analytically (e.g., GOMS [94]). Being used empirically to answer directed

questions about tools is a relative rarity for these sorts of theories.

Nevertheless, there are sometimes valid reasons for combining theory and empiricism. What if you

do not question the validity of a cognitive support theory, but it does not say enough to you analytically?

Then one may be forced to observe tools being used—in a “user study”, for instance. In a user study,

292

293

good theoretical frameworks are important assets to have (see Section 2.2.2). A theory can guide the

interpretation of activity, and it can focus both observation and analysis. Thus different types of theories

have been proposed as a way of guiding user studies. For example, the cognitive dimensions framework

can be helpful in directing attention to important issues in HCI [54]. Furthermore, theories and models are

also useful for interpreting HCI so that tool implications can be understood. For instance, von Mayrhauser

et al. [665, 669] used a cognitive model of software comprehension to interpret a comprehender’s needs

for information. These needs could be compared to what information a tool easily provides, thereby

rendering judgment on the tool’s efficacy. Thus theoretical frameworks can be useful even if they do

not give answers by computation and prediction alone. Theories can guide and assist in either focused

or relatively open-ended exploration. A key question is therefore to understand the potential of various

models and theories: to know how they can be used and what sort of information they can yield in

observational studies. Theories and models are tools for empiricism, but they need a user manual—an

operator’s handbook.

The main aim of this chapter is to explore possibilities for using HASTI and CoSTH empirically. Essen-

tially then, this chapter is primarily an exploration of techniques rather than theories. The goal is to provide

techniques which are useful for exploring cognitive support questions whenever they pop up during tool

design and evaluation. The particular focus is on understanding possibilities for leveraging the theories

to yield directed insight from observations of tool use. The overall objective is to make it possible to per-

form routine, efficient, and reliable theory-based investigations of cognitive support in realistic situations.

In other words, this chapter is engineering-oriented rather than discovery-oriented. Consonant with this

goal is the choice to focus on efficient and “lightweight” empirical techniques.

The search for lightweight empirical techniques is an important challenge to meet. In many research

and development contexts, timetables are measured in months, weeks, or even days. This puts tight

constraints on the sort of empirical techniques that can be used. Many existing theory application methods

break these constraints. Many are known to be incredibly tedious and expensive (see e.g., von Mayrhauser

et al. [678]). Sometimes, the needed experiments or fieldwork are lengthy, costly, and difficult; other

times, the analysis methods become arduous. As a result, many empirical techniques are at odds with the

schedules and predilections of tools developers. Recently, suggestions for reducing the costs have been

advanced, especially for making it simpler to collect and process data from fieldwork. Examples of such

lightweight techniques include variations of “discount ethnography”, “rapid ethnography” [408], and

motivated rapid observation techniques [596]. However little work has been done to apply reasonably

fine-grained cognitive theories such as CoSTH and HASTI in a suitably lightweight manner. To a great

extent, the possibilities of theories like CoSTH have remained untapped.

Towards these goals, an exploratory field study of software developers was performed. Although it

may sometimes be useful to study cognitive support in laboratory conditions, field studies can be effective

also. Furthermore, a field study provides a “litmus test” for lightweight methods: chances are, if an

observation technique can be applied in the field, it could be applied in the lab too, where conditions

can be controlled more effectively. Thus the field study was performed in order to serve as a basis for

exploring different ways of applying the theories; it was intended to be a “testbed” of sorts. The study

provided a corpus of data on which to set the theories loose. In addition, the field study provided an

294

opportunity to experience firsthand some of the challenges of collecting and interpreting data while using

HASTI, RODS, and CoSTH as guiding frameworks. As an added benefit, the study also provides a way

of establishing ballpark evaluations of the validity of HASTI and RODS. Although this possibility is not

ignored (see Section 9.5), it is not the central focus. The central focus remains exploring the potential for

engineering-oriented observation and analysis.

The choice to collect observations from practicing developers in the field is strategically and philosoph-

ically significant. Hutchins [320] has made a strong argument that we must study cognitive processes “in

the wild” if we are to study genuine ones. We get unnatural behaviour if we study it in the lab. This

contention in more detail in Section 9.1. For now, suffice it to say that “the wild” is one place where the

natural use of cognitive support is likely to be observed. Hutchins’ call to study cognition the wild is

appropriate for discovery-based inquiry: for discovering situation-specific facts about a particular cogni-

tive ecosystem, or for building novel theories. The present chapter has a different aim. It is an attempt at

employing existing theory to shed light on uncertainties regarding the support provided by tools. Thus,

although one may choose to work in the wild, it may be with the specific intentions of bringing an existing

theory into it, rather than returning home with a new one. This focus attenuates the call to study cognition

in the wild.

This chapter unfolds in five main sections. First, in Section 9.1, the field study design and objectives

are described, and my initial experiences are outlined. This section begins to examine how to make obser-

vation techniques lightweight. Specifically, ways of using HASTI and CoSTH to perform in-situ “shad-

owing” observation methods are considered. Second, a particular observation session is chosen from the

corpus of collected data. This session will be used as a test case for applying HASTI and CoSTH. The

test case is described in Section 9.2, and an analysis is performed to enumerate some of the cognitive

support involved. The specific cognitive support issue in question will be support for repairing errors in

programs. Third, Section 9.3 explores techniques for coding and analyzing the test case. This analysis is

used to drive an exploratory evaluation of the cognitive support found. The effect of the these first three

sections is that they provide a context for evaluating some research scenarios. Since the purpose of the

study was to explore methods that others might use, the study is documented such that data collection

and analysis methods are highlighted.

Section 9.4 begins to consider scenarios in which these techniques might be applied. Two tool devel-

opment scenarios are considered, both of which are adaptations of scenarios first presented in Chapter 2.

The purpose of these scenarios is to argue that the analyses presented in Sections 9.2 and 9.3 may be use-

ful for answering certain support related questions. The first scenario is of a tool analyst who has built a

cognitive support claim and then wishes to find some evidence for its validity. Theory in this case allows

the analyst to make claims, and empiricism acts as a check on the theory application (or as an inexpensive

alternative to applying more powerful theories). The second scenario is a scaled-down adaptation of the

design scenario from Chapter 2. The scenario is of a cognitive support designer who wishes to understand

the specific support types that need to be investigated. Theory in this case acts as a heuristic for examining

specific design options, and empiricism acts to fill in parameters and values missing from the theory. In

this manner it fuels considerations of tradeoffs. The section illustrates that methods from the first three

sections have application in both of these scenarios.

9.1. FIELD STUDY DESCRIPTION 295

Section 9.5 provides a brief evaluation of how the field observations comment on the validity and

usefulness of HASTI and CoSTH. Although this study was not conducted as a validation experiment, it

is still reasonable to present an analysis of what evidence has been uncovered in support of the theories.

At the very least, this is merely responsible reporting. Reporting even highly preliminary indications of

validity may be helpful for future researchers who wish to expand the validation studies. The chapter is

rounded out with a brief conclusion section.

9.1 Field Study Description

As a means for developing a testbed for exploring theory application methods, a field study of software

developers was performed. This section incrementally introduces the study. Only the basic mechanics

and outcomes are described here; later sections contain more detailed theory-based analyses of the result-

ing data. The motivations for the study are considered, the study design is outlined, the observational

techniques that were used are reported, and an initial summary of the study is described.

9.1.1 Motivation and Background
The science of mind is, I assert, not the science of what the mind can do in a laboratory situation

artificially rigged to make it relevant to one of our theories, but what it does in a situation naturally

or artificially rigged by itself and its culture... Given this view, the only way to find out what the

mind is like, and to stumble across questions that need to be understood more fully, is to study it

in its natural habitat. Since the mind does not have any set natural habitat, we need to study it in

the habitats in which it frequently finds or wishes to find itself. At the moment it seems to wish to

find itself in constant interaction with computer systems, so this is where we must track it down.

– Thomas K. Landauer, “Relations Between Cognitive Psychology and Computer Science” [369]

(1987), pg. 19–20.

The motivations for this study are generated initially from considerations of the plight of tools devel-

opers, not of theory developers. When studying or designing software development tools, theories and

frameworks are important for building and analyzing support claims. But all analytic techniques have

their limits, and when these limits are reached it usually is necessary to augment them with empirical

methods. When theories cannot help answer a question about a tool, observing somebody using the tool

can be extraordinary helpful. However going to the lab or field to observe users raises many challenges

(see Chapter 2). Cognitive support is a slippery thing to observe and to understand. It easily goes un-

noticed because it removes problems instead of creating them. One possibility is that cognitive support

theories can assist in making the most of observation effort in the field or the lab (Section 2.2.2). A field

study was performed in an attempt to assess this possibility. Why was a field study chosen as a testing

ground? Why not a more controlled laboratory study? Three answers are offered here.

9.1. FIELD STUDY DESCRIPTION 296

The first reason for a field study is a concession to the needs of this particular dissertation. This work

proposes theoretical resources derived from many different cognitive science and HCI studies. Many

of these are generated and validated using laboratory studies. When these lab-generated theories are

incorporated into any applied theory, there always remains the issue of whether the resulting theory

works in real-world (non-laboratory) settings. Do they generalize? Furthermore, there is always the

question of whether the models apply to significant behaviour actually occurring in the field. Are the

theories and models relevant? It may not be possible to answer these questions completely here, but what

is abundantly clear is that another controlled laboratory study will do little to increase confidence in the

generalizability or applicability of the theories in real-world development contexts. Going to the field is

a preemptive defense against the charge that the theory will not be usable in realistic tool deployment

situations (e.g., in commercial settings). Later, in Section 9.5, the theories are evaluated for their capability

to work well in the field. This is a limited study. Limited evidence for validity could be collected. The

impact of this evidence would have been significantly blunted if the task context were manipulated in

the laboratory to generate the expected behaviour. In this study, industrial strength tools being used by

semi-professional developers were examined in the field. It is hard to imagine controlling the observation

conditions any less. If the theories strike paydirt here, it makes it all that more believable that they will

also apply in many real-world design settings.

The second reason for attempting a field study has more to do with the problems of tools developers

than with theory evaluation. It is reasonable to expect that CoSTH and HASTI could be used in both

controlled conditions and in the field. Performing field studies generally presents the greater technical

challenge for finding the relevant behaviour and collecting suitable observations of it. For instance, in

a field study it will be normally impossible (and unnatural) to get subjects to wear eye tracking head-

gear (e.g., Crosby et al. [152]), or to set up a horde of video cameras to capture behaviour on a forced

task in a restrictive task environment (e.g., Pohthong et al. [512]). Unfortunately, instruments like an eye

tracker might be one of the few good ways of determining whether or not certain cognitive supports are

being used (e.g., if perceptual substitution is effective). Therefore a field study quickly brings up many

limitations for “lightweight” theory application. Perhaps more importantly, it guards against attempting

studies requiring unnatural task conditions or unrealistic data gathering techniques. The observational

constraints inherent in field studies better reflects the realities of tools researchers. It keeps the exploration

of realistic observation techniques honest.

The final reason for attempting a field study is that it is likely that much of the behaviour that tools

developers wish to study is only available in the field or in highly realistic simulated situations. Although

realistic work scenarios can often be set up to elicit ecologically valid behaviour [348, 402], it is often

difficult or expensive to do so. For this reason, many developers may need to observe tool use in the wild.

This third reason for choosing a field study is the most significant from a theory user’s point of view, and

is therefore worth discussing in more detail.

9.1. FIELD STUDY DESCRIPTION 297

Advantages of Field Research for Studying Cognitive Support

For a period of months, the programmers generic skills in programming design, comprehension

and debugging are made ineffective. The programmers attempts are thwarted by their lack of

facility with the concepts and details of their new language, the software system, and the myriad

of ancillary programs.

– Lucy M. Berlin, “Beyond Program Understanding:

A Look at Programming Expertise in Industry” [44], pg. 22.

Up until recently, models of cognition in software development have been primarily disembodied,

history-free models. These tend to portray comprehension or development processes as essentially uni-

versal and purely mental activities. In this way they ignore the details and capabilities of the tools, and

fail to acknowledge the importance of many of the interactions with these tools. They also remove from

consideration differences in individual problem solving knowledge and skills. Although it is true that

different models for novices and experts are often proposed, developers within any category are painted

with the same brush. It is assumed that they can be sampled at random with little concern about their

expertise in tool use. Laboratory studies or constrained studies with packets of printouts are often consid-

ered sufficient for exploring such cognitive models. To be sufficient for this purpose, it must be assumed

that the environment will not impact the aspects of behaviour being modeled.

Although tool use is downplayed in most cognitive modeling work in the field, tool use is precisely

the focus for tools researchers. Any model that cannot make statements about how tools affect behaviour

will be of limited use in studying them. In this sense the universality and tool-independence of the mod-

els are of great concern. In fact, the questions of universality and tool-independence go hand in hand:

universality of the models is broken by tool and environmental dependencies. Specifically, experts are

adapted differently to their specific environments: they have individual “ecological expertise”. So when

one studies expertise, it is not simply a matter of studying a generalized expertise that is universal across

all capable software developers. Expertise is adapted; it has an environmental component. Several differ-

ent aspects of adaptations are important when studying tools.

One aspect of adaptation is the development of fluid skills which enable higher-level problem solving

to flow naturally. When a user is experienced with using a tool, skills can often be employed, and this

frees cognitive resources to be used to pursue hard problems. For instance, consider the experience of

constructing a tricky program within an unfamiliar editor. Figuring out how to work the editor becomes

a task requiring conscious problem solving, and this is likely to intrude on the programming problem

solving. For (primarily) this reason, classifications of expertise in HCI are usually not made according

to a single dimension of skill (novice vs. expert). For example, one popular distinction is made between

domain and tool expertise [218], with both types having an affect on overall levels of expertise.

Another aspect of adaptation is that expert use of many tools requires strategic knowledge. Often

this strategic knowledge develops only after a great deal of experience in applying the tools to various

tasks. This has shown to be true even for simple forms of support. For example Bhavnani et al. [47,

9.1. FIELD STUDY DESCRIPTION 298

49] demonstrated that even relatively simple tool features are ignored by users unless special training is

provided. Their result holds for simple forms of cognitive support; we can expect that the importance of

ecological expertise will only be magnified for less routine problem solving. Then, deep strategic skill can

be involved. The type of skill in question was described in Section 3.1.1. An example of such skill is the

flexible and strategic uses of grep by certain experts [380,696]. Although grep is a simple tool to describe,

it requires a great deal of strategic knowledge to use it for cross referencing and impact analysis. Another

example is the clever use of type checking to perform impact analysis as described by Cardelli [96]. In

Cardelli’s example, a developer would need to call on a skill for recognizing that the compiler could be

mobilized for solving the problem of finding program dependencies. If this skill were not developed,

other methods would doubtless be pursued.

A third aspect of adaptation is the number of local ecosystems of expertise involved in software devel-

opment (what Hutchins called “cognitive ecosystems” [320]). In some cases the ecosystem is relatively

uniform across developers, and therefore tool expertise can also be relatively uniform. For example,

sometimes an organization will foster an enculturation process of using tools similarly. This can be done

through formalized mechanisms (e.g., tools training programs [282]), or through more informal means

(such as apprenticing junior developers with senior ones [44]). Thus corporate culture and training reg-

imens can lead to some similarity in tool expertise. However, frequently the ecological expertise of soft-

ware developers is created through long years of self-directed exploration. And often the tool sets used in

this process differ greatly. Certainly this accords with my own observations and experience. In other jobs

and professions (e.g., airline pilots [321, 323], navy crews [320], radiologists, air traffic controllers, etc.),

learning how to solve problems with the available tools is significantly systematic and explicit, or based

strongly on apprenticeship. In contrast, software developers—like many other tools users—learn substan-

tially by doing [98]. That is, they learn how to use the tools available as the needs arise, and by performing

work during the learning process. Learning thusly will be haphazard. As a result, individual offices may

develop vastly different tool use cultures, and these will affect the tool use strategies of its workers [49].

Furthermore, real (professional) development environments are rich and complex. Undirected learning

in this flexible space leads to idiosyncrasies [190, 275, ch. 3]. The specific history of problems tackled may

lead to a different repertoire of tool uses [275, 550]. Program editors are a simple but prime example: pro-

grammers become greatly attached to specific editors, and this leads to efficiency and strategic use of the

individual command sets. Their proficiency on complicated editing tasks drop quickly with unfamiliar

editors. Some developers may make heavy use of a programmable text editor, while others may become

sophisticated users of programmable tools like sed or awk.

A fourth aspect of adaptation comes from the specializations that developers make to their own envi-

ronment. Developers are known to adapt their environment by writing scripts and macros, customizing

their windowing environments, and organizing their information space (file systems, documents, etc.)

strategically [550]. Berlin [44] found this to be true in her field study of programmer expertise. Effectively,

the developers construct their own local ecosystem in which they work best. Often times this leads to a

familiar condition in which one developer will find it significantly awkward to use another developer’s

environment and setup. Such cases of co-adaptation of user and environment help to blur the distinction

9.1. FIELD STUDY DESCRIPTION 299

ADAPTATION PROBLEMS FOR LABORATORY STUDIES

low level skills expert users typically are needed
strategic knowledge expert users typically are needed
local cognitive ecosystems population sampling is problematic
environmental customization poor transfer of expertise to lab situations

Table 9.1: Potential problems caused by dependency of cognitive support use on adaptations

between humans as a topic of study and human–tool systems as a topic of study. Although expert devel-

opers may be quick to adapt to different environments, that is not the point: in unfamiliar terrain, they

will not be able to easily use their tools and problem solving strategies that they are familiar with.

Implications for Empirical Studies of Cognitive Support

All of these aspects of ecological dependence pose potential problems for studying cognitive support. A

table summarizing these problems is presented in Table 9.1. To actually observe fluid use of cognitive

supports, the subjects may need to possess (1) deep familiarity with the tools, (2) skills for using them

efficiently, and (3) problem solving knowledge for using them strategically. The first requirement is chal-

lenged by idiosyncrasies in tool expertise and by the number of local cognitive ecosystems that developers

work in. Furthermore, for this knowledge and skill to be elicited, the tool environment and task demands

may need to closely match those of the field. In some contexts, some of these problems are less prominent,

or they may be compensated for in some way. In many other cases, the easiest route for satisfying these

conditions is to observe tools as they are used in actual work settings. This need plays out differently for

practitioners and researchers.

Practitioners are interested in developing cognitive supports that work in real client settings. They of-

ten work with quite well-polished and comprehensive tools; sometimes there is an established client base.

For practitioners who develop commercial tools, the main implication of adaptation dependency is that

they may often need to visit client worksites in order to understand how the tool is used in practice. Only

there can the many contextual factors which impact tool use be observed. Many times the importance of

apparently mundane artifact features can only be realized by watching how these features are actually

used [311].

Tools researchers are normally interested in developing techniques that are generalizable. They fre-

quently deal with research prototypes on which perhaps nobody can truly be called an expert. For many

researchers, the main implication of adaptation dependency is that they will usually be unable to find

subjects with enough experience on the tools or the tasks. Simple training sessions will not normally be

enough for the subjects to use the tools effectively and strategically [64, 359, 618]. Even for relatively sim-

ple programming tasks, a week of learning will likely not even be enough to elicit informative uses of a

development tool [407]. Even if experts can be found, it is often very difficult to get much of their time to

do a study. Watching them do their own work is much less demanding on subjects.

In sum, field studies are frequently desirable for studying cognitive support, and the challenges they

present make them good sufficiency filters for any techniques being proposed. For all of these reasons a

9.1. FIELD STUDY DESCRIPTION 300

field study was thought to be the most worthwhile method for exploring cognitive support theory appli-

cability.

9.1.2 Study Design

This subsection describes the design of the study, including its stated objectives, format, participant re-

cruitment procedures, study session procedures, and interview session procedures.

Objectives

The study was designed as an exploratory investigation. In a more directed study, there is usually a

clearly articulated study objective or a hypothesis to test. In this case, the objective not was to discover

something novel from the observations, but to show that cognitive support could be effectively analyzed

using HASTI and CoSTH. In addition, it was assumed that much would be learned about the possibilities

and difficulties of fieldwork just by performing such a study. During the time of the study design, CoSTH

and even HASTI were in an early prototype form. Although I had some ideas as to how they would

eventually be applied, it was not entirely clear at that time exactly how this would be done. For all of

these reasons, there was considerable uncertainty throughout the study design phase.

This uncertainty impacted the study design by creating its own objectives and problems to overcome.

Because it was unclear at the time which data needed to be collected, I was concerned with recording

a rich collection of data that could be later analyzed at leisure. I wished to have a corpus of realistic

observational data that could provide a suitable testbed for later analysis work. Thus the main objectives

of the fieldwork were to establish what was possible under limited time constraints to gather rich and

authentic observations of developers using their tools. An important secondary objective was to try the

“shadowing” method of in-situ coding to determine its advantages and pitfalls. This is described in more

detail in Section 9.1.3.

Study Format

The study took place over a three week span. Participants were instructed to contact me at suitable times

when they were prepared for me to observe them. The observation sessions could be scheduled for specific

times in the future, and I made it clear that I could normally be ready to collect the observations with short

notice (during the full time of the study, I was located at the work site within moderate walking distance

of all participants). The participants were encouraged to initiate at least two sessions, but were informed

that any number of sessions from zero to a maximum of five were allowed. Only one session per day was

permitted. An optional interview session was also encouraged. Because of this format, each participant

was engaged in two or more sessions: a recruitment session, one or more study sessions, and (optionally)

an interview session.

The participant-initiated observation technique was an important part of the study strategy for two

reasons. Firstly, it helped limit observations to relevant development activities. All of the participants

9.1. FIELD STUDY DESCRIPTION 301

were expected to perform a variety of activities during any given day or week. By initiating the obser-

vation times, the participants themselves could ensure that the sessions being observed would be “pro-

ductive”, that is, be filled primarily with tool-using development activity. Since I wished to collect data

from authentic tasks rather than assigned tasks, the alternative would have been to follow them around

for a great deal of time. Doing so would have made it much more difficult to gather the detailed data

that I was able to capture. Secondly, the participant-initiated protocol was expected to be beneficial for

the participants. They would have control over the sorts of activities that they permitted me to observe.

This allowed them to select activities they were comfortable with me observing (or permitted to let me

observe). It also allowed them to schedule the observation sessions when it was convenient for them. In

my informal discussions with the participants, my impression was that they were satisfied that neither of

our time would be wasted.

It should be noted that, in other circumstances, this self-selection setup could be criticized as suffer-

ing from a participant selection bias. For example, it might be charged that the participants select only

“showcase” tasks which they felt comfortable and competent in. In an exploratory study such as this, this

threat to accurate behaviour sampling was considered inconsequential. Moreover, from the observations

I have collected, I can confidently say that none of the participants selected “showcase” activities: they all

appeared to be solving ordinarily challenging activities in which they displayed a considerable degree of

difficult problem solving.

Participants

Six participants were recruited from a large research institution. All of the participants were involved in

ongoing research and development work. Participation in the study was in all cases with the expressed

knowledge and approval of the participants’ supervisors. Participants were unpaid volunteers. All were

pre-screened to ensure that they had at least two years of programming experience, were working on a

programming-related project that was at least 1500 lines of code, and had at least four months of experi-

ence in the general programming environment they were working in.

Recruitment Protocol

With the exception of recruiting one subject directly through a personal contact, recruitment was per-

formed in a two stage process. First, a supervising manager of a team was approached, and the general

purpose of the study was explained. Permission to carry out studies on employees was then sought. It

was considered important to first receive permission to recruit participants for inclusion in the study. In

addition, the supervising manager was asked to recommend potential participants based on the aims of

the study. Specifically, the supervisor was asked to recommend active software developers.

At the initial recruitment meetings with participants, the general aims of the study were explained,

and the methods for collecting observations were described. All potential participants were advised that

their participation was entirely voluntary and that they could withdraw at absolutely any time. They

were informed that they could request at any time to have any or all collected data destroyed. It was

emphasized that the study was concerned with their tools and how they were being used, rather than

9.1. FIELD STUDY DESCRIPTION 302

on their performance or their particular work. They were told that the main aim of the study was to help

future researchers build better tools. They were told that each session would last at most 40 minutes. They

were also informed that they could schedule an informal interview session after finishing the observation

sessions. At the recruitment session they were also provided a short questionnaire that was intended to

establish simple facts about their backgrounds. The text of the recruitment invitation, research description

card, survey questionnaire, and participant instruction card are presented Appendixes A, B, C, and D,

respectively. Each participant received a copy of these four items during the recruitment session.

A key part of the recruitment meeting was the provision of instructions for establishing a suitable

time for an observation session. The participants were informed that the goal of these sessions was to

observe tool use during program maintenance and program understanding. They were told that I would

like to observe them for between 30 and 40 minutes, but certainly no longer than 40 minutes. They were

instructed to contact me via email to schedule subsequent sessions; they were informed that I would

respond to their email as soon as possible. They were also allowed to schedule an initial session right

then. Four of the six participants chose to do so.

Observation Session Description and Protocol

The main part of the study consisted of a sequence of one or more observation or “study” sessions. These

took place in the participants’ normal workplaces. Before starting the first session, recording software

was installed on their workstations (see below). In addition, survey responses were collected, if they

were completed. At the beginning of the first session, instructions were given as to how to generate a

verbal report. The instructions closely matched those given in Appendix E. These are slightly modified

instructions taken from a standard experimenter’s handbook [256]. On subsequent study sessions I asked

if they wished to review the instructions for verbal report generation. None did.

At the beginning of each session I configured the recording equipment (see below), and I ensured that

the workplace was private by shutting doors as necessary. All participants worked alone in their normal

office space; none of them shared this office space. Working alone in this manner appeared to be a routine

activity for all participants. During the observations, I would interrupt the participant only if they fell

silent for an extended period of time, upon which time I would gently reminded them to think aloud.

This happened twice.

Interview Sessions

The study protocol included an optional post-study interview session. Only one of the participants chose

to make use of this post-study interview. Instead of such a formal interview setting, all participants except

one chose to chat with me informally before and after study sessions. I made notes of these conversations

afterwards. These less formal notes have so far proven to be valuable, however the interviews may have

been better if they were pursued more vigorously, and if they could have been conducted after reviewing

the collected data first.

9.1. FIELD STUDY DESCRIPTION 303

VIDEO
CAMERA
ON
TRIPOD

CAMERA’S
FIELD OF

VIEW

MICROPHONE

OBSERVER

LAPTOP COMPUTER

PARTICIPANT

WORKSTATION
PARTICIPANT’S HIGH−SPEED

NETWORK

RECORDING
SERVER

Figure 9.1: Typical observation configuration

9.1.3 Observation Methods

Data were collected using automated recording techniques, in combination with notemaking. Figure 9.1

illustrates the typical configuration for each study session. I was positioned to the side of the video camera,

and both myself and the camera were outside the participant’s line of sight.

Video and Audio

A video camera was trained on the screen of the participant’s workstation, with a wide enough field of

view to capture both the screen and participant during normal interaction with the computer. Usually

the user’s screen filled roughly 1/3 the resulting field of view. The intent of the video was to capture

activities such as looking to read printed documentation, pointing to the screen, etc. Although some

basic features of the computer screen could be made out, the goal of the video record was to focus on

the participant rather than the computer screen. A sensitive and separate microphone was placed nearby

the individual. It was able to create a suitably crisp recording of the subject’s keystrokes, mouse clicks,

and verbalizations—all except for the softest mumblings. It was a lapel-type microphone (but it was not

clipped on), so it was unobtrusive.

Computer Screen Recording

A detailed recording of the computer screen was made by using specially modified instrumentation soft-

ware. The recording software is reminiscent of other commercial screen capturing products which have

been utilized in similar observational settings (e.g. Graham et al. [252]). This verbatim capture of the screen

was critical to have for later study. Screen sizes for the participants ranged from 1024x768 to 1152x884,

and the monitors often had high refresh rates. It is impossible to capture details of screens with this reso-

lution well on standard videotape—certainly not unobtrusively. It is worthwhile describing this software

9.1. FIELD STUDY DESCRIPTION 304

since it is a key enabling factor in this sort of field study.

The recording software was a specially modified version of the free (GNU-licensed) software called

VNC [540]. “VNC” stands for “Virtual Network Computing”. Its original purpose was to remotely view or

control one computer from another, including over relatively slow network links. This software runs on

multiple platforms, including Unix, Windows, and Macintosh computers. The portability of the software

was important for this study since the participants used a mixture of Unix and Windows NT. The software

consists of two parts, a server and a client. The server is the machine to control or view; in this case, the

server was the participant’s machine. Standard, unmodified VNC server software was installed on each of

the participants’ machines. The VNC software is small, and it imparts only a small load on the machine in

many common computer activities.

A Unix version of the client software was modified to record the server’s (participant’s) screen data.

The recording software was kept running on a networked Linux machine with a large hard disk (see

Figure 9.1). All data from the participants’ machines were thus saved automatically to central location.

This obviated the need to recover the captured data from the participants’ machines; it made it impossible

to forget the data there, and it made it extremely difficult to run out of disk space while recording. All

recorded screen updates (e.g., a mouse movement) were stamped with the date and time. Although time

stamping was done by the recording server and therefore had inaccuracies1, the advantage was that off-

the-shelf VNC server software could be installed on the participant’s machines, and that it did not matter

if the participant’s machine’s clock was inaccurate.

Reaction to installing the software was uniformly favourable. The server software was easily instal-

lable (and removable, although no participants asked me to remove it afterwards). All six participants

were interested in the functionality of this software. Three participants were glad that I was able to install

the software and were interested in controlling their own machines from home and from the desks of

their colleagues. After one study session, one of the participants eagerly requested that I show him how

it worked across the network, and to replay for him his recorded session. He also rather excitedly called

one of his co-workers in to discuss it and its possibilities to transform their existing work practices.

The VNC recording software is efficient for the type of work the participants were doing. With the ex-

ception of one participant, none of them appeared to notice any appreciable slow downs in their machines

(I asked them to report any slow-downs when I was installing the software). Partly this is because of the

way the server software operates (for example, only screen updates are sent, and the update frequency

is throttled by the effective network bandwidth). In addition, the generated data files are quite small.

The largest of the 10 computer protocols collected is 55 megabytes in length; this for over 40 minutes of

computer recording at a screen resolution of 1152x884x24bit (about 23 kilobytes/second on average,

but it has high burst rates). Most computer logs hovered between 20-30 megabytes for 35-45 minutes.

This small data footprint made it feasible to capture a large quantity of computer protocols. With the size

1Recording on the client side instead of the server side caused certain errors in the resolution for accurately stamp-
ing the time. The problem is that networking latencies caused stochastic skew in the arrival times of the updates.
Although the arrival times were recorded to the machine’s clock resolution (about a microsecond) their arrival times
were randomly shifted. Test runs suggested that the time skew would not be a problem for the intranet being used
during the study. My subjective experience using this specific network was that the time skews were perceptible but
not significant—much better than, say, IP telephony delays.

9.1. FIELD STUDY DESCRIPTION 305

TIME CODE TEXT

11 14:20:57 COMM does the split screen represent search and its context (two context/plan
state)?

12 14:22:19 COMM note that he doesn’t use RCS or undo as a revision checkpointing system
13 14:22:43 COMM a ritualized backup when he thinks he’s going to do massive changes

(checkpointing)
14 14:24:27 COMM temporary memory for plan: he was about to write something comlex and

took time to try documenting

Figure 9.2: Snippet of coded field nodes (verbatim).

of inexpensive modern hard drives, it makes it reasonable to consider automatically collecting computer

recordings for several months of average work days in this manner!

In addition to the recording software, a small conversion program was written to convert the resulting

data into an “AVI” file. An AVI file is a standard Windows file format for encoding time-synchronized data

streams such as audio and video. A compressor/decompressor component (“codec”) was also written

for Windows so that any Windows-based machine could use off-the-shelf display and editing software

to display and manipulate the corresponding AVI file. My experience was that it was best for me to

post-process the resulting AVI file to re-compress it using another free codec. A few free codecs were

tried; all reduced the quality of the recording and expanded the file size, but both of these tradeoffs were

manageable. The main advantage of recoding the computer logs was that it made it easier to use them

for exploratory viewing and protocol coding. Partly this was due to the fact that the large displays of the

participants could be modestly resized in the recoding process without sacrificing legibility. This made it

possible to view the large screens on modestly sized computer screens. This in turn made it possible to

add a synchronized display of a transcripted verbal protocol or action codes. This was accomplished by a

simple Perl script that created closed-captioning commands (playing closed-captioning commands is a

standard feature of Windows Media Player). Another advantage of post processing was that the recoding

could support efficient seeking and skipping.2 I also digitized the recorded audio and added it to this AVI

file. The result of all this post-processing is a full recording of the computer screen, with synchronized

playback of the verbal protocol and synchronized display of its transcription. These AVIs can be played

on virtually any Windows-based machine (and Mac and Linux machines as well). In the future, it would

probably be better to be able to record this verbal protocol on the participant’s machine at the same time

as the screen data is recorded. It would also be useful to have a streamlined way of producing the AVIs.

Notemaking Techniques

I recorded notes during and after the study session. During the study session, notes were written on a

laptop computer. The notemaking technique was an adaptation of the “shadowing” field technique used

by Singer et al. [596]. In this technique, a real-time “coding” of the activities is performed by observers

2“Keyframes” could be introduced in the video stream.

9.1. FIELD STUDY DESCRIPTION 306

CODE DESCRIPTION SAMPLE(S) FROM LOGS

COMM comment; usually used to
record thoughts on the partic-
ipant’s work, or questions for
later research

“so did the program work the way he wanted to, or
is it just the answer he wanted?”

“fluid motion of finding within the debugger—
skilled.”
“note that the calling relationships are incredibly
simple, yet he didn’t know it.”

STRUCT follow structure in the external
environment (an external plan)

“note the use of the history mechanism”

TALKBACK instance of talkback from tool or
system

“so he didn’t think that it would work as it did”

EXTERN externalizing information or
structures

“the testing environment is explicitly being struc-
tured so that he can quickly set up the state that
he needs to test the new code.”

EXPERT example of strategic expertise
for using a tool

“scrolling to gain context in forward search (func-
tion name)”
“did stacking by splitting window–it represented
history”

Table 9.2: Codes for event types in “shadowing” observation technique

with laptops.3 The laptop runs a word processor with a few simple macros that help enter time-stamped

notes in a stylized manner. Each time-stamped note is invoked by typing in a simple control-key sequence.

A time-stamp is written to the record and the cursor is left on a comment field for the observer to type

in notes to associate with the event. A different key sequence is defined for each event type or “code”.

The codes used in this study are replicated in Table 9.2 (examples are taken verbatim from logs of a single

session). During observations, the observer watches the action and tries to interpret what the participants

are doing. The observer then records events only when they seemed significant for cognition distribution

and tool support. A sample of these notes is reproduced in Figure 9.2.

Although I had practiced this coding in the test run, I found that after a few sessions the coding method

was not working as well as first envisioned. I felt that the notemaking was productive, but the coding

technique was not directed enough to be useful for this work. For instance, the “COMM” code was by far

the most common noted event (around 70% of all events logged), but frequently I felt that a more directed

coding scheme would have used more specific codes rather than the “catch-all” “COMM” code. Moreover,

after reviewing the notes, it became clear that assigning codes could likely be done post hoc just as easily

as in situ. After three sessions I changed to use only comment style notes tagged by time. Although the

result is an in-situ, time-stamped log of comments, they were not coded in-situ. Some comments will be

made about this experience below.

In addition to the in-situ notes, free-form notes were also generated post hoc. Immediately after each

session, I sat down alone and wrote out notes about my impressions and ideas without trying to deeply

3The work of Singer et al. is a “synchronized” shadowing technique in which two (or more?) observers code
different aspects of the interaction using this shadowing technique. In this work, only one shadowing coder is used.
Instead of a second observer coding the computer, automated computer logging was used instead.

9.1. FIELD STUDY DESCRIPTION 307

NOTES NOTES

PARTICIPANT # OF TOTAL IN SITU POST HOC

ID TASK DESCRIPTION SESSIONS MINUTES (ENTRIES) (PAGES)
A adaptive maintenance 4 120 167 5.5
B unit testing 2 33 17 2.0
C coding 2 80 41 0.5
D source change merging 1 40 46 2.5
E design and coding 2 80 34 4.0

TOTALS: 10 353 305 14.5

Table 9.3: Summary of data collected during the study

interpret them. This two-staged notemaking technique was tried for both theoretical and practical reasons.

On the theoretical front, ethnographers rightly place a great deal of emphasis on making notes in the

field. The observer in the field has access to a great deal of context that is simply unavailable from the

limited slice of data collected automatically. Thus one can view the situated observer as a type of highly

sensitive and intelligent instrument; their notes are secondary data for aiding post hoc interpretation. On

the practical front, the notes were considered a possible way of allowing researchers to quickly zero in

on interesting observations. Generally speaking not all of a protocol will contain activity of interest to a

tools researcher. A highly-directed observer may notice particularly interesting parts of the protocol right

away. Notes made to this effect can direct post hoc coding to the relevant data quickly. I wished to see if

the notes could have been used in this way.

9.1.4 Test Run (Pilot)

Before the study began, a test run of the protocol was conducted with a volunteer. The volunteer was a

student but otherwise the conditions for observation closely resembled the conditions for the participants

in the study. The test run was performed primarily to ensure that the study session scheduling, video

taping, and notemaking techniques ran as expected. The test run was also taken as an opportunity to test

out and subsequently tweak the note coding scheme used. In addition, the test run served as a rehearsal

for the session introductions, and provided some practice for making useful field notes. No computer

protocols were recorded for the test run.

9.1.5 First Stage Summary of Study

Before continuing on with the analysis of the data, an overview of it will be given, and a summary of

notemaking experiences are reported.

Overview of Data Collected

Table 9.3 presents a summary of the observational data collected. Only a small fraction of it will be directly

used in the subsequent analysis. Partly this is due to the exploratory nature of the study: only a few

questions can be investigated within the scope of this work. Moreover, the types of activities and qualities

9.2. CONTEXT FOR RESEARCH SCENARIOS 308

of tool interactions vary considerably between participant, and also between individual study sessions.

The activities in any one session may not be useful for investigating any given theory-application scenario.

At this point, however, I should point out that the terms of the study were such that open-ended analysis

was allowed for, and permission was granted to archive the collected data for a number of years. This

could permit a return to the data in the future as new analysis methods are proposed. An example of such

an approach is Flor’s studies of programmer pairs [223, 224]. It should be noted that there was at first

some resistance to obtaining ethical approval for longer-term data archival. It helped to point out that

such methods are typical for other fields such as those from cultural anthropology (they could argue for

archiving data permanently). In this study, a limited time frame was instituted; this seemed appropriate

for this type of exploratory study with open-ended analysis requirements.

Only one observation session is examined in the remainder. This limited scope of analysis reflects

primarily the limited amount of time and space that can be devoted to the exploration. In addition, the

limits are partly a function of the reporting techniques that appear necessary for this work. The problem

is that many details of the individual contexts need to be conveyed if the activity is to be understood.

This requirement makes it difficult to use more than one participant since the length of the chapter would

balloon considerably. For these reasons, one particular participant’s observation session was chosen early

on in the analysis stage as the one to analyze. The session is relatively simple, and yet it appears to

demonstrate several types of cognitive support well. This should not be taken to mean that none of the

other sessions contained interesting observations.

Notes on Notemaking

The “shadowing” technique that was attempted met with mixed success. In the “synchronized shad-

owing” work of Singer et al. [596] a key goal was to reduce the reliance on tedious and time-consuming

post-observation coding. The coding was done in-situ and in real-time in the field. This means also that

the observer can use the rich context to help interpret the activity. The main problem encountered with

applying a similar coding technique in this case was that I was not looking to extract any particular ob-

servations or data from the observations. The codes that were tried were generic, and they did not seem

to be helpful at the time (and they do not now). In other cases, a tools researcher may have a specific

hypothesis to evaluate, or a specific issue to investigate. Then a highly-specific coding technique may be

helpful. Further comments are made on this possibility in Section 9.3.4.

9.2 Context for Research Scenarios

In the sections following this one, the observations from one particular participant are analyzed in some

detail. These observations all come from the first study session with participant E from Table 9.3. The

purpose of the present section is to present some of the background and context needed in the following

sections. In Section 9.2.1, the participant, his motivations, and his work context are described. In Sec-

tion 9.2.2, an analysis is conducted of the cognitive support provided by one of E’s tools, Visual Café.

Specifically, Visual Café is examined for its ability to distribute planning and support plan-following.

9.2. CONTEXT FOR RESEARCH SCENARIOS 309

This type of cognitive support analysis was presented briefly in Chapter 6. The intent of this analysis is

that it should simulate a claims analysis of cognitive support—as if the Visual Café design or quality

assurance team could have generated it. Later in this chapter field study scenarios will be presented in

which this claims analysis will be used as a background to the scenario.

9.2.1 Description of Participant Context

The following description is a summary of the information known about E and his work context. The

description is based on the recorded data (computer record, verbal reports), as well as the notes from

informal interviews.

E was developing a software system in Java4 while using a UML-based object-oriented (OO) design

method. His main tools were the modeling tool Rational Rose for UML-based design, and the inte-

grated development environment Visual Café for the Java coding. In the jargon of CASE (Computer-

Aided Software Engineering) tool vendors, Rational Rose was the “upper-CASE” tool, and Visual

Café the “lower-CASE” tool. E developed this code under Windows. The system he was working on

was part of a large, ongoing research and development project that contained a web-based interface to a

complicated AI-based information system. He was familiar with OO development. Throughout all of his

recorded observations he has shown a high degree of familiarity with OO design concepts, UML-based

design (sequence diagrams, use cases, etc.), and the Java language and its coding idioms (exception throw-

ing, memory management, etc.). It was my opinion that he could be classified as an expert developer. In

this judgment of expertise I am not considering whether or not he demonstrated behaviour consistent with

currently understood “best practices” of software engineering. It is wise to reserve judgment on expertise

in engineering (which is largely based on normative or idealized models of behaviour); his development

skills and experience seemed advanced enough to warrant the term “expert developer” within common

programmer expertise classification schemes (e.g., Adelson et al. [6]).

Since the following deals with his skilled use of his tools, some prefacing notes need to be made re-

garding the qualities of his tool use and tool setup. E kept a number of applications running throughout

the sessions, and he frequently switched between them. These applications include Visual Café, Ra-

tional Rose, and Netscape Navigator. He switched between these applications both by clicking on

their icons in the Windows task bar, and by using the alt-TAB keyboard shortcut to navigate the applica-

tion MRU (most-recently used) stack that Windows maintains. The Rational Rose and Visual Café

applications were kept “maximized” (full-screen) during the full time for which I observed him (he did

not display them side-by-side or overlapping).

E displayed a high level of expertise and familiarity with the applications he used. He never had to

look up tool usage information in a printed help manual or online help system, and he never appeared

to search the menus for actions to perform. His use of navigation panes, button bars, and menus, in fact,

seemed practiced, skilled, and effortless. In the episodes reported in the following, no verbalizations as to

how to perform actions on the tools were evident.

4Java, Rational Rose, Visual Café, Netscape Navigator, and Windows are all registered trademarks.

9.2. CONTEXT FOR RESEARCH SCENARIOS 310

9.2.2 Distributed Planning in Visual Café

Visual Café is a Java compiler and editing environment. The interface of this environment is a multi-

paneled environment that has become common for “integrated development environments” (IDEs) since

the 1980s (e.g., see Teitelman [636]). Although Visual Café is the particular tool being used by the

participant, the following analysis is not intended to evaluate the tool as good or bad in any respect.

Neither is the analysis specific to this tool (the version of the tool is not even mentioned), but rather to a

broad class of tools with similar functionality.

The main activity of interest in this analysis is the interaction between automated program checking

and manual program repair. The typical working context is the common edit–compile–debug iterative

development cycle. Visual Café (the compiler portion) can generate a list of warnings and errors re-

garding violations in a program’s (partial) correctness. Each of these violations are associated with a

program position which is thought to be the likely location for the cause of the violation. For simplicity,

let us call each error or warning simply an “error”. The programmer can invoke a check of the program’s

correctness5 at (nearly) any time by hitting a key sequence, pressing a button on a button bar, or selecting

a menu item. The output of the correctness check is, in part, a list of reports of errors. These reports are

“specified” using a fixed list of schematized report categories (“undeclared identifier”, “type mismatch”,

etc.). This output is displayed in a special “error list” panel that can be scrolled. The error list panel is not

a simple text display panel: it is effectively an action menu. The user can click on a error report which

forces an editor window to jump to display the location for which the report is associated. The error list

panel also maintains an internal state of the “currently visited report”. A key sequence or menu command

can be invoked to step this internal state and invoke the corresponding display jump.

The above description is straightforward, but it does not highlight the cognitive support offered to the

developer. A simplified CoSTH analysis of a similar sort of environment was already given in Section 6.5.1

for the compile mode in Emacs. That prior analysis is revisited below, related specifically to Visual

Café, and then expanded slightly to consider how the support relates into the code fixing process. As

with the analyses of RMTool and Rigi, the trick is to perform a bit of task analysis to figure out how the

tools reengineer cognition. The portion of the development task in question here concerns generating code

within correctness constraints. The Java language defines partial correctness criteria for valid programs

(syntax, access control, scoping rules, typing rules, etc.). These constraints can be checked completely

automatically. The automated checking of Visual Café distributes these constraint checks (D/P/CF). In

cases where the programmer is not assisted in this manner (e.g., using only a pen and a pad of paper on a

long flight from Australia), the programmer must check for such violations herself.

The partial automation of program correctness checking is well understood and appreciated in the

community. What is somewhat less well appreciated is the partiality of the distribution, and the subse-

quent human–tool coordination design issues that crop up. A claims analysis using CoSTH can bring it

into sharper focus. Like in the RMTool and Rigi examples, the correctness checking is a fractional part

5Note that for historical and efficiency reasons correctness checking and object code generation (compilation) are
performed at the same time. In common usage both the correctness checking and code generation are called “compi-
lation”. There is no fundamental reason for requiring these to be performed simultaneously.

9.2. CONTEXT FOR RESEARCH SCENARIOS 311

SUPPORT TYPE TOOL FEATURE DESCRIPTION

D/P/CF correctness checking compiler
D/P/CF/planning error list generator generates repair plan
D/D/plans error list plan of steps to repair program
D/D/PB/options error reports cue repair actions possible
D/P/VH/VM clickable reports automatically pages in program location
D/D/PG/state error iteration count holds state in sequential following order
D/D/goals next-error sequence holds sequence of future goals

Table 9.4: A list of cognitive support claims for Visual Café

of the overall programming task. In the case of RMTool, a human and automated checking cooperatively

refined a shared representation of a hypothesized model of the system being studied. Part of this cooper-

ation consisted of cooperative planning of which hypotheses to check. In the case of automated program

correctness, this cooperative planning is also given high prominence.

In the programming context being studied, a programmer can use the correctness checker to partially

distribute program repair planning and plan following. Automated correctness checking in the context of

interactive programming environments offers more than merely a check for correctness: the checker can

be reasonably interpreted as a repair plan generator. That is, it partially distributes the planning of repair

work (D/P/CF/planning). To see why it is not merely correctness testing, notice that Visual Café (1)

attempts to find many errors, (2) tries to determine likely source line locations for the cause of each error,

and (3) renders an ordered list of messages that are intended to be diagnostic so as to cue repair actions.

If the purpose were merely to test correctness, a simple “yes” or “no” answer would suffice. Instead,

the purpose is to create a list of the errors in such a way that the programmer can effectively determine

and execute reparations. This is an external resource that can structure the programmer’s subsequent

repair activities. In such cases the programmer can refer to the external plan instead of an internal one

(D/D/plans). Moreover, the diagnostic reports suggest the possible actions that could be performed to

repair the program, that is, the reports reify a portion of the space of possible moves (D/D/PB/options).

If the error reports merely listed line numbers, this supportive role would not be granted.

In combination with generating such external plans, Visual Café contains some features that allow

for opportunistic or systematic plan following. Like Emacs’ compile mode, Visual Café makes it so

that when an error report is clicked on, the appropriate external memory location is paged in (D/P/VH/VM).6

The paging in of the code does not remove the error list panel from the display, so its contents remain

visible, making it unnecessary to remember them. These features allow for random access to the plan,

enabling flexible and ad hoc exploration of the error list by clicking on various reports. In addition, Vi-

sual Café provides facilities for a more systematic traversal of the error list. Visual Café maintains an

internal iterator state for traversing the linear list of errors, and a key sequence to advance the state. This

allows for a systematic iteration of the plan steps. In this case, the iterator state distributes plan step fol-

lowing state (D/D/PG/state). Since the programmer does not need to decide the next goal to select, the

“next-error” state of Visual Café implicitly serves as an externalized agenda of repair goals to perform

6This is a relatively new capability of the compile mode in Emacs.

9.2. CONTEXT FOR RESEARCH SCENARIOS 312

in sequence (D/D/agenda).

The plan step iteration facilities make it easier to systematically step through the repair plan. However,

in many cases there is little need to do so since the correctness checker can be re-invoked at low cost to

regenerate and refresh the error list. In this sense, frequent invocation of the correctness checker amounts

to a type of incremental re-planning. As in other incremental planning accounts (e.g., see Young et al. [722])

the external plan is updated as a result of new knowledge or as a result of changes to the task context.

In fact, in the case of Visual Café, unless the plan step iteration facilities are used, it is sensible to

follow a strategy of frequently updating the repair plan by re-compiling. One reason this strategy is

sensible stems from the fact that Visual Café has no way of visually indicating plan completion status.

Frequently recompiling gets around this limitation by removing errors that were repaired. This makes it

simpler to follow the plan since the programmer need not remember the plan steps already performed.

Another reason is that repairs made may generate a cascade of newly necessary repairs, or may expose

new errors that could not be checked automatically before (e.g., semantic errors are usually not caught

until syntax errors are fixed). Thus incremental re-planning in Visual Café rewards the developer by

maintaining an updated external plan that can be referred to for determining subsequent action. This

allows the programmer to adopt a shallow individual planning strategy which maintains a minimum

agenda internally: pick an error or two and repair them, re-run the checker, and then iterate until the

errors disappear.

Note that the error list can only be reasonably interpreted as a repair plan in the context of the user’s

goals for invoking the correctness check. To illustrate this, consider an alternative context: performing

impact analysis. An example, due to Cardelli, was cited earlier (page 298). Cardelli’s example is of a

developer using a compiler to create a list of all uses of a particular type so as to be able to make a

systematic change to these uses. This requires the use of a trick of changing the name of the type in

question so that the uses of the type will generate errors. In this case, the goal of running the check is not

to perform a set of repair operations, but to perform a sequence of manual checks of the uses of the type.

In such a situation, systematic and complete iteration through the error list is an important desideratum.

A quick recap is in order for the tool usage being contemplated. The context of use occurs when a

programmer has generated or modified code, and then wishes to engage in a cycle of program fixing.

The programmer invokes the checker to find errors (D/P/PF), and thus construct a partial repair plan

(D/P/CF/planning). This plan structures her subsequent activities. She consults the external plan, and

then engages in a sequence of repair actions indicated by the plan. Thus the error list plays the role of

an external plan for action (D/D/plans). To use the repair plan, the programmer can follow a systematic

iteration strategy using a next-error sequence operator, or she can follow a more flexible exploration by

clicking on items in the error list. Re-invoking the checker updates the external plan.

The above analysis contains plausible support claims that may be made for Visual Café by an imag-

inary researcher or engineer. These claims are listed in Table 9.4. They will be used in the following as a

basis for generating scenarios in which researchers perform field studies to test and examine these claims.

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 313

9.3 An Exploration of Data Analysis Techniques

If a theory-based cognitive support research stream is to blossom in SE, a critical component of the stream

will undoubtedly be ways of leveraging the theories for interpreting and analyzing observations. One

obvious context is when trying to validate a claim about cognitive support, that is, when trying to verify

that a proposed support exists as predicted. For instance, if memory is thought to be offloaded, such of-

floading could be looked for in real uses. Another possible context is measuring properties of the support.

For instance, one may wish to know how much memory is offloaded so it can be compared to the cost of

doing so. The purpose of this section is to explore ways of interpreting and analyzing field observations

so these sorts of questions can be answered.

Consequently, in this section observations of participant E are analyzed using the claims analysis of the

previous section. Once this analysis is done, it will form the “base” analysis for Section 9.4. In that section,

scenarios similar to the ones described above will be investigated. These will use the “base” analysis of

this section as a starting point.

The section proceeds as follows. First, an overview of the general data analysis approach is outlined

in Section 9.3.1. Next, a coding scheme is described in Section 9.3.2 for coding up the collected protocols.

The coding scheme is a key technology for making focused observations, and for relating these to cogni-

tive support theory. The coding scheme is tailored specifically for the cognitive support claims of Visual

Café which were identified earlier. The relevant episodes from E’s protocol were coded up using this

coding scheme. The results from this coding process are described in Section 9.3.3. The results indicate

that E utilized the support in more or less the expected manner. A visualization is shown to illustrate

several aspects that are explained well only as an instance of distributed planning. Several simple statis-

tical measures are applied to these results. A short discussion is included in Section 9.3.4 concerning the

potential for applying similar techniques in a more lightweight manner in the future.

9.3.1 Analysis Methods

The technique used here for analyzing the observational data is similar to prior verbal protocol analysis

methods. It consisted of a sequence of 5 main steps:

1. Develop a Coding Scheme. Identify possible activities relating to the claims and develop a special-

ized coding scheme to identify and tag such activities. The goal during this phase is to generate

codes for the activities related to the claim, and to ignore all other activities. This goal is adopted so

that the analysis can be as focused as possible.

2. Extract Activity Episodes. Isolate the activity episodes that contain claim-relevant behaviour. First,

start out by reviewing the notes and protocols in order to home in on the activity of interest. Then

review the protocols one or more times to become familiar with them.

3. Transcribe and Segment Episodes. Make transcriptions of the protocols for the selected episodes

according to perceived phrasing and timing of the activity. These transcriptions are made both for

the verbal reports and for the computer logs. In the case of verbal reports, the transcriptions are

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 314

annotated English. In the case of computer logs, the transcriptions are short descriptions of human–

computer interaction activity. Segmentation is the process of breaking up the protocol stream into

“atomic” events.

4. Code Episodes (Generate Trace). Code up the selected portions of the protocols using the coding

scheme. The result of the coded protocols is a coded sequence of events. These are aptly called at

trace of the distributed computation.

5. Visualize/Perform Analyses on Trace. Extract measurements from the coded protocols relating to

the cognitive support predicted. In exploratory situations, this is a mining exercise. The trace could

also be visualized for comprehension.

In classic verbal protocol analysis, steps 1–4 are often iterated, especially when a good coding scheme is

not known in advance. In the case reported in the following, the claims analysis was able to generate an

effective coding scheme. The only tweaking of the coding scheme that needed to be done was to change

some of the code names, and to remove codes for sequential plan exploration (they were not used).

Notes on Transcription and Segmentation

A short note is required regarding the transcription and segmentation techniques that were used. Tran-

scription and segmentation of verbal reports is a relatively well-studied problem, with many prior ex-

amples to consider [207, 256, 518]. Transcription of verbal protocols is typically just written English (or

whichever language is used) possibly augmented with phrasing punctuation (commas, etc.). Segmenta-

tion can be done on a lexical or grammatical basis, or based on the content or inferred content of the verbal

protocols (goals, questions [382], type of information being studied [373], etc.). The techniques are simi-

lar in many domains, even in “lightweight” applications of verbal protocol analysis (e.g., Nielsen [458]).

Transcribing and segmenting human–computer interaction activities are rather more varied and ad hoc.

Some comments need to be made as to how this was performed here.

Computer actions and user–computer interactions were transcribed using simple descriptions at a

level that seemed suitably course grained for the activities of interest. For instance, a transcription of

“types snausage” would be made instead of a stream “types s, types n, types a, ...”. Attending to

information on the screen was also transcribed as an interaction. Self-generated computer events (e.g.,

popup menus) were coded as necessary. Relatively similar types of codings of external actions can be

found elsewhere, however frequently the external action is intermixed with the sequential flow of verbal

reports (as it is done by Flor et al. [224]). For clarity purposes and for segmentation purposes, the verbal

transcriptions were placed in parallel with the interaction transcriptions (see e.g., Figure F.1). The main

reason for doing so was for segmentation: segmentation made heavy use of both verbal reports and

computer logs. The verbal reports were treated as evidence for a stream of internal events that occurred

asynchronously but in a coordinated manner with action and computer events. A single coherent event

might consist of a user reading something aloud, or expressing surprise at something the computer did.

Given that the issue was planning and plan following for a program repair task, the segmentation took this

into account. Segments were constructed based on the types of codes that were to be used. For instance,

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 315

CODE ACTION DESCRIPTION

Gi.gp push goal/plan gp onto stack (from internal)
Ge.p push goal/plan gp onto stack (from external)
Pi.g push goal g from plan onto stack (from internal)
Pe.g push goal g from plan onto stack (from external)
Fi no internal goal, derive or page in
Xe planning/replanning (external)
repair code repairing action
enable plan-related enabling action
other other episodes or actions

Table 9.5: Coding scheme for Visual Café example

if E added an import line to resolve a missing declaration error, it was considered a single repair event

even if much backspacing and fumble-fingered typing occurred.

9.3.2 Coding Scheme

There are few considerations to bear in mind when developing a coding scheme for cognitive support.

First, one must have codes for both internal and external cognitive action within the overall distributed

cognitive task. For instance, if the use of an external memory is being examined for offloading, one may

need to code for memory storage, retrieval, and management activities. Second, the codes must often be

couched in cognitivist terms. For instance, if an error list is acting as an external plan, then actions on the

error list are coded as planning, plan following, and so on.

In the context of the Visual Café cognitive support claims being examined, a coding scheme focusing

on distributed planning was decided upon. Several of the claims in Table 9.4 fell outside this particular

scope. The coding scheme is quite simple, containing only nine codes. They are listed in Table 9.5. Such

a small coding scheme should probably be taken to signify the tight focus of study rather than theoretical

weakness [518]. The naming scheme for the codes are in part hierarchically defined based on an internal

versus external resource dichotomy, and by using the CoSTH naming scheme. This naming and code

organizing scheme is similar to other published coding schemes [373]. The coding scheme can be broken

down into three distinct sections as indicated by dividing lines in Table 9.4.

The top six are the primary codes. These codes relate to planning activity. They are divided into four

categories: goal selection, plan selection, plan generation (i.e., planning), and “faulting”. These are la-

belled “G”, “P”, “X”, and “F”, respectively. “Faulting” refers to conditions where the developer runs out

of internal goals to accomplish (new goals are then “paged in”). Each of G, P, and X categories can be

divided into internal or external action types, so each action category is suffixed with “i” or “e”, corre-

spondingly. Since no internal planning actions were observed, category Xi is not presented in the coding

scheme. This type of plan coding scheme is consonant with published accounts of goal/plan action de-

compositions (e.g., Black et al. [51]).

The code “repair”, denotes error fixing activities. These could include code fixing activities not re-

lated to the repair plans being considered. In the observation session being examined, however, all of

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 316

the repairs were directly associated with a goal in a repair plan associated with the studied episodes.7

repair actions are interpreted quite loosely to correspond to any reasonable activity related to fixing a code

flaw (removing a syntax error, adding missing declarations, and so on). repair actions—moreso than the

prior codes—may be relatively macroscopic. Specifically, a single repair event may be decomposed into

a relatively extended sequence of low-level actions. For instance, in the episode being examined, E adds

a missing import statement. Adding the import statement is a single repair action even though it is

performed using an extended sequence of keystrokes, mouse movements, and selections from menus.

The last two code are intended to capture activity which is not directly related to planning and ex-

ecuting a sequence of repairs. The enable action is intended to label actions which are clearly a part of

utilizing the cognitive support in question, but which do not contribute directly to the support in ques-

tion. Examples of these sorts of enable actions would include moving a window into position to follow

a plan, saving a file to disk so that it can be analyzed, or putting a tool into a mode where planning ac-

tions can be invoked. The other code is assigned to any other discrete event. This is a common “catch-all”

category that is normally included in protocol coding schemes [256]. Distinct other events are identified

through segmentation of the protocol just as the previously described event types are. This ensures that

several other events are not merged into a single macroscopic other event. Sometimes when many interest-

ing events end up being assigned an other code, it is hint that the coding scheme misses important aspects

of behaviour [256] (e.g., metacognition [17]). In this case, other coded activities are more likely to signify

activities that are outside of our highly focused attention on repair planning and plan following. Never-

theless, an analyst that is even more pressed for time might decide to ignore both enable and other events

completely, and continue on as if the events in question did not occur. These codes were included in this

scheme for the purposes of certain analyses that will be made later on. In reference to this, note that the

enable actions could have been coded as other events. However enable actions indicate strategic expertise

in using the toolset to enable the cognitive support to be used effectively. More will be said about these

actions in the discussion section.

9.3.3 Results

The main activity in E’s first session was the design and coding of a method that generated a web page. E

planned out how to write the method, coded an initial (skeletal) implementation, and then began a repair

sequence to get it into runnable form. Only a fraction of the entire 40 minute session used the relevant

features of Visual Café. The Visual Café use being studied here consisted of a sequence of three

incremental code generation episodes (about 2 minutes in length total). These three episodes were coded

according to the coding scheme described above. The complete contents of these codings are reported

in Appendix F. The results of analyzing these episodes are described below. The results are based on

analyzing a trace of the distributed planning state and how it evolves. The technique for constructing this

trace is described below, and its analysis follows.

7These repairs may also be planned. For instance, to output a line of code, the programmer may need to have
a plan (either planned, or retrieved from memory) for the sequence of tokens to write. Planning decomposition,
however, is not broken down further here.

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 317

Methods for Generating Distributed Planning Trace

The coding scheme focuses on distributed planning activities—activities revolving around the construc-

tion and manipulation of plans, following plans, adopting goals, and so on. From the DC point of view,

they are a trace of events in a distributed computational system. In this sense, the sequence of coded

events is precisely analogous the “interesting events” of program visualization. In program visualization

it is typical (and often difficult) to first identify classes of “interesting events” [516] in order to somehow

generate a trace of these events. This is the function served by the coding scheme: to focus on and iden-

tify interesting events. In the present case, the events in question are ones that manipulate goal and plan

states. An important objective in support analysis is to understand how plan and goal states are gener-

ated, manipulated, and pursued. In traditional DC terminology, the aim is to trace the “propagation of

representational state” [224]. Here the simple term “state” (meaning computational state), is more than

sufficient. Overall then, a problem for analyzing coded protocols is to analyze or visualize the path of

states that the distributed computational system traces through, and the events that generate this path.

This state transition path has been called the system’s “trajectory” [224]. How to adequately represent

and understand such a trajectory is an imperfectly solved question.

The technique explored here is an adaptation of standard techniques for visualizing AI algorithms.

These techniques are often used in AI textbooks to show planning and search algorithms. To understand

these algorithms, one must understand aspects such as how plans are generated or updated and how

goals are managed or adopted. For instance, a planning visualization could show the contents of a goal

stack at each point in the execution of the algorithm. In the present case, the only essential difference is

that the planning is distributed between the programmer and the tools. The trick, then, is to display the

programmer’s internal state in combination with the state presented externally. In other words, one is

careful to display the distributed system state. Then one could visualize how and where goals and plans

are generated, stored, and modified.

In order to do this, a way of determining the plan-related computational state at any point in time is

required. Also, the coded event sequence must be matched against this to determine how events serve to

modify it. The programmer’s internal goal stack (i.e., agenda) could not, obviously, be directly observed.

It had to be inferred from the verbal reports, the visible activities of E and his computer, and from E’s

ability to perform certain activities. For instance, at one point (28:00), E was able to repair two errors

in a row without appearing to refer to the compiler’s error list between repair events. It is presumed

that somehow E internally maintained (or generated) a plan for performing those repair events in turn.

This is indicated by his comments while reading the error list previously, saying “oh we may also need to

um,,, import our,,, own DTD interface stuff” (27:34-27:40). Here it is reasonable to assume that E knows the

“interface stuff” includes two classes, so that he internally maintained a plan to import one and then the

other. External planning state was determined by examining the contents of the computer logs at each

relevant point, and then interpreting them in terms of cognitive state.

Figure 9.6 shows a simple (tabular) visualization of the trace of repair planning activity that was ex-

tracted from the three repair episodes. The overall scheme is reminiscent of how a UML sequence dia-

gram [554] is laid out in two dimensions. The trace events are laid out on the vertical axis with the flow

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 318

INTERNAL EXTERNAL

TIME CODE GOAL STACK PLAN ACTION PLAN

26:36 Gi.G0 G0
26:36 Xe G0 �� P1(G1,G2,G3,G4,G5,G6)
26:43 Ge.P1 G0, P1 �P1 P1(G1,G2,G3,G4,G5,G6)
26:48 Gi.fault G0, P1, ! P1(G1,G2,G3,G4,G5,G6)
26:50 Pe.G1 G0, P1, G1 G1 �G1 P1(G1,G2,G3,G4,G5,G6)
27:13 Gi.fault G0, P1, ! P1(G1,G2,G3,G4,G5,G6)
27:17 Pe.G6 G0, P1, G6 G6 �G6 P1(G1,G2,G3,G4,G5,G6)
27:30 Gi.G0 G0
26:36 Xe G0 �� P2(G2,G3,G7)
27:34 Ge.P2 G0, P2 �P2 P2(G2,G3,G7)
27:37 Pe.�G2,G3� G0, P2, G2 �G2,G3� ��G2,G3� P2(G2,G3,G7)
28:00 Pi.G3 G0, P2, G3 G3 P2(G2,G3,G7)
28:21 Xe G0 �� P3(G7)
28:25 Ge.P3 G0, P3 �P3 P3(G7)
28:26 Pe.G7 G0, P3, G7 G7 �G7 P3(G7)

bold = active goal, ! = faulted goal, ��� = tuple, �� = compiler invocation, � = read goal

Table 9.6: Trace table for distributed planning activity in episodes V1 and V2

of time going from top to bottom. On the horizontal axis are laid out “timelines” for internal and external

components storing state. In this table, the joint system state is composed of the external plan in combina-

tion with E’s internal control (plan) and agenda (goal) panels. When events generate or modify this joint

system state, the “actions” are represented in another column. These actions include commanding the

computer to generate the external plans, and reading plan elements off the external display. Event times

are indicated in the first column so that they can be cross-referenced to the coded protocols in Appendix F.

Distinct goals and plans are given different labels. The labels used in Figure 9.6 are shown in Table 9.7.

Plans are represented as a flat structure of goals to achieve. For instance “P2(G2,G3,G7)” denotes a plan

labeled P2 which indicates the intention to solve three goals G2, G3, and G7 (in that order). For simplicity,

LABEL DESCRIPTION

G0 check to see if repairs are needed
G1 fix error missing include HttpServeletResponse

G2 fix error missing include WebMakerClass

G3 fix error missing include WebDataClass

G4 fix error undeclared method in call makeMethod

G5 fix error missing include PrintWriter

G6 fix error missing include PrintWriter

G7 fix error uncaught exception java.io.IoException

P1 fix sequence in first error list (Figure F.1)
P2 fix sequence in second error list (Figure F.2)

P3 fix sequence in third error list (Figure F.3)

Table 9.7: Description of goal and plan labels used in Figure 9.6

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 319

a plan label is allowed to be on the goal stack. In that case, it is meant to represent an intention to follow

a plan. Internally E may be thought to store only a reference to the plan (a “pointer”), either to internal or

external memory (e.g., “lets fix these errors”, where “these” is effectively a pointer to the external plan).

Simple Measures On The Trace

Given the coded protocol, and a trace of the joint system’s trajectory (Figures F.3 and 9.6), measures and

statistics can be taken to help analyze their contents. Table 9.8 shows the frequency of codes within the

three episodes. In this table, the different types of shared and internal memory uses are collected together

under the “shared” and “internal” categories. Using this table, several points can be backed by simple

statistical measures:

 15 out of 31 events (48%) of the coded events in the episode are related to generating or manipulat-

ing plans and goals. This rather high number gives some confidence that these episodes are good

examples of planning activity.

 There is no evidence to suggest that any significant internal planning of repair activities is performed

by E. Yet from a joint performance point of view the code was repaired quite systematically. In

addition, 10 out of 15 plan related events (66.6%) are generated externally. In other words, 2/3 of all

of the action structuring activity has an external locus. This gives a rough indication of the extent

that external planning resources are relied upon. Although deep planning is obviously not required

for this particular task (error fixes are relatively independent), the complexity of the plan is not the

issue at stake. Thus one can still say that the 66.6% statistic is a measure of the cognitive support

that is provided and relied upon. The statistic immediately following bolsters this argument.

 The trace in Figure 9.6 shows that shallow plan and goal knowledge is maintained internally by E.

E may have remembered multiple repairs once, but otherwise he relied upon the external plan—

“paging” repair goals (error messages) into internal memory as needed.

9.3.4 Discussions

There are two distinct issues to discuss: (1) the results from the analysis and what they say about cognitive

support, and (2) the experience gained in performing this analysis and what it implies for lightweight

theory application techniques. These two sets of issues are described below.

CODE TYPE FREQ. FREQUENCY CHART

Xe 3
shared memory 7
internal memory 5

repair 4
enable 5

other 7

Table 9.8: Frequencies of coded actions by type

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 320

Discussion of Cognitive Support

Points about joint system activity and cognitive support are briefly outlined below.

1. Skilled Interaction. No verbal reports are given for most computer interactions. The notable ex-

ception is that E does verbalize much of his typing, although many of the typed words are missing

from the report, and they are often mumbled under his breath. Otherwise his interactions appear to

be consistent with the “cognitive skill” levels of task execution noted by Card et al. [94].

2. Dependencies and Step Ordering. The first goal in the external plan is chosen by E after each

compilation invocation. One likely way of explaining this is that E is generally biased to select the

first elements in the plan, possibly by habitually starting at the top of the list and scanning down.

This may be a winning heuristic for repair ordering. The reason is that in Java programs most

of the dependencies between program elements within a single file are concentrated on the initial

portion of the file, where declarations (e.g., imports) are concentrated. Repairing errors at the top

may remove many dependent errors within the list. Planning is most effective in conditions where

there are dependencies or constraints on the ordering of actions. In this sense, the compiler’s error

ordering technique and E’s bias towards selecting the first element is an example of good planning.

The fact that the compiler’s error listing ordering seems “obvious” is irrelevant. In other similar

situations (e.g., exploring hits from a search engine), ranking techniques are more convoluted, but

not fundamentally more significant.

This raises the possibility of using similar studies to determine the efficacy of alternative error report

orderings.

3. Coping Strategies for Plan Following. In the first repair episode the last goal is selected after the

first one, indicating that errors may be opportunistically followed (i.e., opportunistically selected

from the list). Issues regarding visual search and visual popout may affect the ordering. In this case,

it is unclear why E selected G6 after G1. G2 and G3 were overlooked completely (E exhibited some

surprise at seeing these errors at 27:34). E may have pursued a habit of frequently re-compiling to

refresh the repair plan regularly instead of systematically going through the error list. So long as

correctness checks are quick, this may be a winning heuristic for two reasons.

First, the automated error checking generally8 keeps any errors that are not resolved. This means

that there is usually little penalty for missing a plan step since it will be retained during re-planning.

In other circumstance this is not so, and it is much more important to be thorough in executing plans.

Second, each repair can remove many of the dependent errors in the list, and it is effortful to fig-

ure out which errors are dependent. It may be better to let the re-compilation prune the error list.

This removes the errors already repaired (and checks the repairs early), making it easier to select a

new goal. The goal selection is made easier in this manner because E does not need to remember

or determine which errors were already selected. In this sense, frequent re-compilation is a coping

8It is possible to “mask” an error by making a repair, especially an erroneous one. For instance, a globally declared
variable might mask an error where a local variable of the same name is undeclared.

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 321

strategy used to avoid the need for tracking state internally. Visual indication of repair status would

reduce the importance of this strategy. So this example illustrates an instance where a coping strat-

egy can be identified, and where the need for this coping strategy may be reduced by the provision

of cognitive support.

4. System-level Understanding of Planning. The external planning and plan resources effectively

remove repair planning from E’s personal workload. His goal stack and internal plans are very

shallow indeed. They are more characteristic of display-based problem solving, where actions are

cued by display state, and no explicit planning is performed. Nevertheless, from the system point

of view the action is structured by incremental planning. The difference is that the evolving plan is

constructed, maintained, and evolved externally (this point will be brought up again in Section 9.5

while discussing theory validity). This is a case where distributed processing cannot be understood

fully by looking at only one processing element: a system-level understanding is required (see Sec-

tion 4.2.3).

It is obviously impossible to generalize from such a limited set of observations, but the above comments

are consistent with experience with these sorts of tools.

Theory Application Techniques Evaluation

The preceding analysis is fairly typical of post hoc verbal protocol analysis, at least in terms of overall

procedure and coding techniques. These are acknowledged to be onerous. Some previous techniques

have been discussed elsewhere of reducing the burdens of this form of work. For instance, there exist

techniques for automating or guiding aspects of protocol analysis, including segmentation [125] and trace

analysis and visualization [217]. But what does the current experience imply as to how to make the above

sorts of analyses more lightweight? The experiences from this test case suggest four potential ways of

realizing speedups, and two limitations for the techniques.

One way of realizing a speedup over traditional techniques is by being extremely targeted in the in-

vestigation. In this particular example, once it was determined which cognitive support claims would be

investigated, a highly targeted search for exemplary episodes was invoked. Out of a total of 40 minutes

of recorded data, only 2 minutes of data needed to be transcribed and coded. The target episodes could

easily be identified by a pass through the recorded logs. If I had known in advance that I would be pursu-

ing this aspect of cognitive support, I would almost certainly have made a note of the relevant activities

in my notemaking. Note that the session initialization method (participant-initiated observations) play an

important role in this overall strategy. Another aspect of being highly targeted is that a small set of rela-

tively macroscopic codes can be used. In the above analysis, only 6 “interesting” codes were used. This

makes coding relatively simple because aspects of cognitive support falling outside the scope are more

or less ignored. Overall, this suggests that at least some of the time the transcription and coding burdens

will be tolerable in some research and development contexts. The key is the tight focus on a particular

aspect of cognitive support. For comparison, notice that it is unlikely that a controlled experiment testing

two variations on the tools would be a faster way of determining similar sorts of support issues.

9.3. AN EXPLORATION OF DATA ANALYSIS TECHNIQUES 322

A second way of realizing a speedup is to avoid the transcription and coding completely. This might

be feasible if a particular issue is being considered. For instance, consider the case where a plan-following

cognitive support is being pursued, and the question being pondered is whether or not plan steps will

be accidentally skipped (e.g., because the state is not sufficiently visible). In such specific contexts it

may be sufficient to simply watch the recorded tapes and note instances where errors are not explored

systematically. The argument is that with a sufficiently narrow focus, the targeted issue is relatively easy

to pick out, and so the transcription and coding techniques need not be so systematic. This argument is

similar to Nielsen’s argument for why protocol analysis could be useful for usability engineering:

In most realistic development situations, each hour of thinking aloud observation probably only needs to

be followed by half an hour of combined analysis and report writing, since the experimenter will have no-

ticed all the important usability catastrophes as they occurred during the thinking aloud experiment. [458,

pg. 70]

The differences in this case are that (1) aspects of support are being examined, not usability blunders, and

(2) theory is used to narrow down the focus enough so that one does not have to rely so heavily on the

luck and insight of the experimenter.

The above point brings up a third way of realizing speedups in analysis: focused coding. The cod-

ing and analysis in this example was, for the most part, set up from the beginning during the claims

analysis. In other protocol analysis work, this is not so. Often times iterative coding and re-coding is

performed [207]. This is especially required when a novel aspect of cognition is being studied (e.g., see

Gray et al. [255]), or when a holistic and fully bottom-up approach is being pursued (e.g., see Purcell

et al. [518]). In this experience, much of the interesting work was already done by applying the cognitive

support theory in the claims analysis. What was left to do for analysis was to establish codes and execute a

straightforward analysis. Thus the argument being advanced is that as a discovery tool, protocol analysis

is often intensive, but as a theory-honed search tool, it can be done much more nimbly.

Another way of realizing a speedup is to avoid verbal report recording and post hoc transcription and

coding altogether. This might be done by using a shadowing technique. As it was reported in Section 9.1.5,

the in-situ coding technique attempted was not successful. One possible reason for the failure was that the

codes were not specific enough so that the coder could be properly prepared. If I had known to specifically

look for programmer goals and actions to look for, it might have been feasible to perform in situ coding

of the verbal protocol. Depending upon the aspect of cognitive support being studied, it might be easier

or harder to do in situ coding. In the present experience one aspect suggests that in situ coding might

be possible: assigning codes to the recorded protocol was found to be easy. In other cases of protocol

analysis, coding is often iterative because it is unclear what codes to assign. In addition to verbal report

coding, sometimes the synchronized shadowing technique of Singer et al. [596] could be feasible too, and

in that way remove the need for recording low-level data completely (video, audio, computer logging).

One clear limitation of the techniques tried was that it would make certain forms of cognitive support

difficult to observe or measure in the field. For example, much of E’s lower-level interactions (reading,

graph manipulation, etc.) with tools were highly skilled and no verbal reports were generated. Thus

9.4. THEORY APPLICATION SCENARIOS 323

determining if a specialization substitution is occurring (like a visual operator substitution) may be chal-

lenging without more specialized data like that from gaze tracking hardware. Otherwise it may require

some manipulation of the task context (e.g., providing different visualizations) to be able to determine the

impact of such skilled activity. In other words, one of the main limitations of this sort of field study is the

type of data that is easily observable and recordable in the field. Only certain facts can be ascertained by

verbal protocols, computer logs, and ordinary video taping. These limit the types of cognitive support

that can be readily analyzed.

Another limitation suggested by the present experience is that in many circumstances the “shadowing”

technique will not be sufficient, and post hoc coding from protocols will be necessary. The problem is

that many activities are rapid and could occur faster than they can be noted and written down. In the

synchronized shadowing of Singer et al. [596], the goals were generated at a relatively slow rate. The

present experience leaves the issue unresolved. Only 15 events of interest were generated in roughly a 2

minute span (see Figure 9.6). A trained observer may or may not have been able to accurately pick out and

write down the sequence of goals pursued by E. It can be argued that all users are limited processors who

can pursue only so many verbalizable goals per minute. Trained coders might therefore have a chance

of matching this limited rate of goal pursuit (contrast, for example, a “twitch” video game [353]). This is

a potentially testable supposition in many cases. Regardless, the rub occurs if one tries to follow skilled

activities such as visual search.

9.4 Theory Application Scenarios

If a theory-based tool evaluation and design stream is to become a reality in SE, it will likely be necessary

to be able to efficiently test and explore cognitive support claims. This section proposes two plausible

research scenarios and then looks to the results of the above field study to determine the potential of field

research in similar scenarios. The first scenario is of a claims check. The second scenario is of attempting

to measure support. These two scenarios are important contexts for future SE tools researchers. In these

scenarios the above field investigation suggests potential ways of using empiricism to answer important

support questions.

9.4.1 A Claims Check

In the future, cognitive claims analysis could be an important aspect of tools research and design. When

claims are generated, they may need to be evaluated in many different contexts. One obvious context is

when trying to validate a claim for the purpose of publishing a scientific report about the tool. Another

important context is during the normal course of tool analysis and design. This latter evaluation context

was implied by Scenarios 4 and 7 from Chapter 2. During the design iteration cycle, a type of cognitive

support may be proposed, a tool may be designed, and the claim may need to be checked. In any of these

sorts of cases, the researcher might wish to go to the field or lab to determine if they are on the right track.

This is the sort of claim evaluation context that will be explored in this section.

9.4. THEORY APPLICATION SCENARIOS 324

Claims Check

April is a “usefulness engineer”9 on the design team of Visual Café. The design team has performed

a cognitive support claims analysis on Visual Café, and the results are similar to Table 9.4. April is

concerned about the claim for offloading plan steps. Although she does not doubt the theory that memory

can be usefully offloaded, she has uncertainties about the claims. She is unsure if her design team has

done a good job of matching Visual Café features to the support they presume they provide (e.g.,

whether error lists really are used as plans). She is also uncertain if the various features (windowing,

key bindings, etc.) of Visual Café will make the offloading effective. And even if these are true, is the

offloading used in realistic development situations? Before continuing on with design and analysis, it

seems important to April to lay some of these uncertainties to rest.

April decides on a short user study. She knows of a capable programmer from another department

within the company who uses Visual Café to support the company’s web presence. This programmer,

Kylee, is willing to help in a study. First she generates a coding scheme to code events related to error step

offloading: when error list steps are internalized, and when they are attended to. Then she adds a tracing

statement to an internal development version of Visual Café so that it logs all error lists generated

and window events. She then sets her laptop coding system to code for the error internalization and

use events. She has Kylee phone her when she’s doing some code writing. During the development she

records the errors that are fixed. She also records the error messages she thinks Kylee reads off the screen,

and the errors she appears to recall from memory. Back in her office, April matches up the computer log to

the timestamped codes from her notemaking. Rarely does Kylee appear to use internal memory for error

messages. In the instances where Kylee does, she notes interesting extenuating circumstances (perhaps

simplicity or regularity in fixes, screen crowding, etc.). Overall, though, April comes to appreciate the

importance of error list offloading and the progression of fixes that occur. She brings this knowledge

back to the design team, who can then better evaluate likely design choices (highlighting errors, etc.)

This scenario is of a simple claims check. The empirical work suggested was a modest extension of

the current field study. In this scenario, it may be considered far-fetched to think that an experienced

designer of a tool like Visual Café would not know if the error list offloads memory or not. Most

compiler environment designers have a good understanding of the importance of frequently consulting

the error list. However this is not the point of the scenario. The scenario is meant to be illustrative of the

possibilities of claims checks without prejudice to whether the claim is obvious to the reader. In this case,

a reasonable argument can be made that a simple and tightly focused user study could be performed to

gain confidence in the claims being made during design. In circumstances where the claim appears less

obvious, the same basic approach could be tried. Furthermore, the empirical approach is most important

when the claim is wrong. For instance, it may be the case that seemingly reasonable ideas for offload

memory may turn out to be wishful thinking. Even experienced designers may be wrong. Thus the main

use of the scenario is to envision a case where an empirical can be cheap and effective.

9This is an alternate spin on “usability engineer”, a common title for HCI practitioners. As far as I know, there is no such
title in existence, but I would argue it makes equal sense.

9.4. THEORY APPLICATION SCENARIOS 325

The scenario is a speculative extension of the techniques tried for participant E. The claims analysis is

not unusual, since it was assumed to be substantially as the one given already. Thus the main speculative

part of the scenario is the observation and analysis techniques. A few notes about these differences are

therefore in order. The most notable difference between April’s techniques and the ones used here are

that it is assumed that April can use a lightweight observation and coding technique. The assumption is

perhaps reasonable. It is unlikely that Kylee will be able to read an error list item and then make a code

fix in less than a few seconds. In E’s protocol, it was readily apparent on most occasions when he read an

error list and verbalized his intention to make a corresponding fix. Even if this assumption is not borne

out, April has the option of videotaping Kylee and performing more traditional coding. The computer

logs should help in this regard for determining which sequences of activity to look at. The main point to

note is that a clearly defined cognitive support claim is the factor that enabled a tightly focused approach

to observation and analysis. In addition, note that it seems unlikely that a controlled experiment involving

two different design options could have yielded similarly informative results.

9.4.2 Measurement Scenario

CoSTH does not quantify cognitive support. This is a shortcoming common to broad-brush theories,

however it is one that might be counteracted using empirical techniques.

Offloading Measure

Rico is a usefulness engineer in the quality assurance team for Visual Café. He is in charge of

making sure the cognitive support requirements are met, and for measuring quality of the delivered

product. One of the goals of the Visual Café team was to make an environment that offloaded repair

memory effectively. Many factors—including usability factors—can affect this. Rico examined the

requirements and decided to measure the offloading achieved in order to quantify the usefulness targets

met.

Rico contacts three beta testers of Visual Café who are located nearby and are willing to be used

as a focus group. He makes sure one is a new user to Visual Café, another is a heavy developer who

makes extensive use of Visual Café and is always willing to test the new improvements, and the

third is an occasional developer. He brings two of them into the company’s usefulness testing lab and

visits the heavy user at her work site. He collects the observational techniques deposited by April in the

design team’s repository of design documents. Rico uses the same shadowing methods used by April,

although in the usefulness lab there are video cameras set up, and he uses these also. In this way he

double-checks his codings. Rico then enters his codes into a spreadsheet. He calculates the frequency of

internal versus external plan step usage (as in Table 9.8), and the total internal load (goal stack depth

plus plan step count) carried by the developers. Armed with these measures, Rico reports back to the

quality assurance team.

One complaint that has been raised about usability engineering is that it too infrequently resembles

quantifiable, theory-backed engineering practices [391]. One argument that has been put forward in re-

sponse to this charge is that it may be possible be more quantifiably systematic in design and engineering

9.4. THEORY APPLICATION SCENARIOS 326

of interfaces. One place to start is in “usability specifications” [108]. These would be usability goals that

are to be met in design, and they could be included in a system’s specification just as functional require-

ments are. Once specified, they can guide development. During development goals are set to meet the

specification, and early prototypes are evaluated as to how well they meet the specification. For usabil-

ity issues, quantification and measurement has been problematic [108, 309]. The wrinkle added here is

that usefulness in the form of cognitive support may be specified, quantified, and measured. In this con-

text, it means more then measuring an intermediate performance factor like cognitive load (e.g., Chandler

et al. [118]). In the context of measuring a cognitive support claim, measuring support principles such as

offloading binds the quantification to the features thought to produce the benefit.

9.4.3 Summary and Discussion

Cognitive support theories like CoSTH can be used to generate and explore claims during tool develop-

ment or evaluation. However in many circumstances it might be beneficial to perform a field or laboratory

study in order to examine the claims. In this section two scenarios were proposed for which empirical ex-

aminations of cognitive support appeared important. These were for testing a claim to see if it was well

founded, and in measuring the support claimed of a tool. In both these scenarios, the field study de-

scribed earlier in the chapter was employed to argue the possibilities for empirical studies of the claims.

Techniques similar to the ones used in this study were proposed. It might be reasonable to use the exact

same field study techniques as were used here. Nonetheless in the spirit of exploring the possibilities of

lightweight techniques, more “discount” investigation methods were suggested. These methods could

not be tried in the context of this study, however they suggest future lines of research.

The attention here was on the techniques explored in this field study. Nonetheless, other claim eval-

uation techniques are possible. For instance it could be proposed that various forms of intervention and

control could be effectively used to explore the claims. For instance, it is possible to manipulate task de-

mands in order to see how the cognitive supports are used in various circumstances. An example might

be in study memory offloading. In difficult tasks, a user’s short term memory may be in great demand, so

offloading may be more important, and the user may make more systematic use of externally stored state.

For instance it might be useful to increase cognitive load by having the users perform concurrent tasks

such as an “articulatory suppression” [164] activity. Such interventions might be used to test the efficacy of

the offloading by varying the task demands. Similarly, changing the cost structure of operations [164,478]

in the tool may help expose aspects of cognitive support. For instance, it might be fruitful to see whether

raising the delay for compilation would cause users to make more systematic passes through error lists.

9.5. VALIDITY AND EVALUATION 327

9.5 Validity and Evaluation

The excerpt of cockpit activity presented above is only approximately 1.5 minutes in duration,

yet it is very rich. It contains within it illustrations of many of the central concepts of a theory of

distributed cognition.

– Hutchins and Klausen, “Distributed Cognition in an Airline Cockpit” [323], pg. 15.

In science, when a theory is proposed there is naturally a call to validate the theory by setting up an

experiment or otherwise collecting evidence for its veracity. In cognitive science, there are a variety of cri-

teria for establishing the validity of any cognitive model (sufficient, necessary, psychologically plausible,

neurologically plausible, etc., see e.g., Thagard [639]). But the theories (CoSTH) and models (HASTI-

based) being proposed here are meant to be broad-brush approximations. Instead of being considered

valid models in any strong sense, these and other similar sorts of models should probably be thought of

as tool for inquiry. Thus they should be evaluated primarily on their merits as tools for real investigation.

Real debate over scientific merit should be reserved for the basic science literature upon which they draw.

It seems to a degree incongruous to question the validity of a purposefully simplified account built from

previously tested theories.

Nonetheless, CoSTH and HASTI are theories and models of DC activity and cognitive support, so

establishing parameters for their validity is desirable. At minimum, one should wish to make sure that

all validity is not lost by purposeful simplification. Yet question remains as to what type of evaluation

is appropriate. In works with similar aims, the key issue is whether the model or theory “says” some-

thing interesting about the behaviour it is used to analyze (see Whitefield [700], Vinze et al. [660], Wright

et al. [719]). Validating models and theories built for insight normally consists of relatively informally eval-

uating how consistent they are to observed behaviours. Dillon [183] provides a good argument for this

approach in the context of his framework for modeling reading behaviours. He argues that his framework

is not intended to provide a precise model of human mental activity during reading. To test for this would

therefore be pointless. In its form as a generic description of the reading process at a level appropriate

for design however, it is proposed as valid, and a test of this would be relevant. One test of suitable form

would be to examine readers’ behaviour and verbal protocols when using a document, parse them into

their various components and then relate these to the components in the framework. If the framework

is valid, such protocols should provide clear examples of the behavioural and cognitive elements that

constitute the framework. If it is an invalid description, the protocols should fail to provide such a match

or should indicate the presence of activities not accounted for in the elements of the framework. [183,

pg. 138]

HASTI can be evaluated10 in a similar manner. If one were to take Dillon’s procedure and apply it to

10I hesitate to follow Dillon’s use of the term “valid”. Although his usage can be defended, I think that it is ap-
propriate to limit the interpretation of the term herein. Thus I shall restrict the use of the term “valid” to stronger

9.5. VALIDITY AND EVALUATION 328

HASTI and CoSTH, one should hope to find that: (1) events are well accounted for by a distributed com-

putational interpretation consistent with HASTI, and (2) attributions of cognitive benefit are consistent

with the arguments made by CoSTH.

To this end, let us revisit the small segment of Visual Café use that was analyzed in Section 9.3.

This is an example taken from uncontrolled field observations. The analysis of claims involved in Vi-

sual Café were a minor elaboration of support arguments made for a different tool. The analysis of joint

action was based on HASTI modeling techniques for distributed planning and plan following. Therefore

it is reasonable to start with this analysis of Visual Café, and merely consider the merits of the expla-

nation here. Unfortunately, since this sample analysis uses a limited portion of HASTI and CoSTH in its

construction, it is possible to evaluate only parts of them.

Several aspects of the analysis are consistent with HASTI. The main aspects of HASTI applied in the

example are the control and agenda facets of the Agent model. The protocol shows some direct evidence

that internal plans and a goal stack drove part of E’s behaviour. For example, it is fairly evident that E

would maintain a goal (P2 and P3 of Figure 9.6) of trying to fix up a number of repairs in the external

repair plan. Another aspect of HASTI demonstrated incidentally in the episodes are the limitations in

memory encoded by the Hardware model of HASTI. The protocols contain indirect evidence for this

limitation in the form of the minimal use of internal memory by E. Except for one plan step, E relied

on external memory to furnish the goal to work on next. This is not a strong proof by any means that

short term memory is limited, but he did not show any strong memory capability such as recalling all

the error messages after reading them once. Although this presents a weak set of evidence in favour of a

complicated model, it shows that the basic description is consistent with observable behaviour.

Perhaps more important is the fact that HASTI is a distributed model. It assumes that plans or goals

can be located externally or internally and still organize behaviour. The analysis in Section 9.3 reveals

quite strongly that this is the case. Although internally E maintained little goal or plan state, the three

episodes can beneficially be viewed as being organized by planning. It may be opportunistically followed

and incrementally generated, but the activity was structured. Goals G1, G6, G2, and G3 (Figure 9.6) were

attended to in that order. This shows rather limited opportunism. External plans were updated twice

during performance, but only one goal was added: the other changes were limited to the removal of goals

that were achieved (so that state need not be remembered). This shows limited incremental planning due

to feedback from actions. As a joint system, E and his computer acted in a systematic and planful manner.

The system set up a goal to fix the program and systematically determined a course of action and followed

it.

The main point to notice is not necessarily how systematic and goal-driven the activity was, but the

fact that only from the distributed planning point of view does this understanding become apparent.

If just the programmer was examined, it would seem that virtually no planning was performed—just

shallow cue-directed activity. It could be pointed out that the programmer’s behaviour was “structured”

by external artifacts. But what “structure”? Without a realization of the role of the external planning,

the contributions of the compiler towards systematic activity are lost. However when one looks at the

concepts associated with traditional cognitive science validation, and speak merely of “evaluation” in the remainder
of this section.

9.6. CONCLUSIONS 329

joint system, one sees a joint system state that evolves by first generating a plan of action which is quite

routinely followed and updated. This point helps validate the importance of HASTI’s DC view of activity.

The episode is also consistent with CoSTH. To take stock, let us consider in turn the cognitive supports

analyzed in Table 9.4. Regarding constraint processing distribution, it is difficult to doubt that the auto-

mated checking reduced cognitive work on the part of the programmer. Regarding distributed planning,

it is fairly easy to see that the repair steps taken by E (i.e., G1, G6, G2, and G3) were a direct result of

the repair plan. The result is that E’s verbal reports contained virtually no planning. Thus it is reason-

able to say that the planning was offloaded. The third item in Table 9.4 refers to the location of control

information. Again, the protocol strongly suggests that E did not maintain the control information (plan)

internally, but kept it externally, referring to it whenever no more internal goals were available. This is

comfortably construed as plan offloading. The remaining items in Table 9.4 were not examined or used

during the observed activity. From this review it seems clear that the account of cognitive assistance made

by CoSTH is consistent with the observed activity.

From the above short review, it can be argued reasonably well that the account made by HASTI and

CoSTH are consistent with real cognitive system behaviour. To use Dillon’s words, they “provide clear

examples of the behavioural and cognitive elements that constitute the framework[s]”. This is not a vali-

dation, but it does help evaluate how reasonable HASTI and CoSTH are.

9.6 Conclusions

As of this moment, the empirical evaluation of existing tools has not benefited from usefulness theories.

When theories have been used, they have been relatively unsuccessful in systematically identifying tool

benefits. Design is similarly affected, since it has not been possible to state and test for usefulness design

goals. A cognitive support theory like CoSTH has a chance to change this state of affairs. To make inroads,

however, the empirical techniques must be lightweight. Methods of effectively deploying such techniques

in realistic scenarios must be explored to ensure that systematic engineering of cognitive support is possi-

ble. To date, little is known about the ways to do such empirical investigations in practical tools research

and engineering settings.

In response, this chapter has presented an exploratory attempt at investigating relatively lightweight

field techniques. An example of analyzing a recorded set of field observations was worked through.

Overall, this analysis showed that useful answers can be obtained relatively cheaply by a field study. It did

this for a professional tool in real practice. Because the observed behaviour matched HASTI and CoSTH

explanations well, the field study also provided some assurance that HASTI and CoSTH are reasonable

and trustworthy, and can be expected to work in real-world situations.

This analyzed example served to exercise poorly understood data gathering techniques to gauge their

promise and efficacy. These two data gathering techniques were an in-situ shadowing technique and a

computer logging technique that is generic and reasonably lightweight enough to be deployed in many

field scenarios. The in-situ shadowing technique was not effective for this study. Nonetheless, suggestions

were made as to how theory-based support analyses might be used to make the observations focused

enough to make the technique work.

9.6. CONCLUSIONS 330

The example observation session also served to highlight two possibilities for employing empirical

studies to answer support related questions. First, it was argued that claims checking or validation might

be performed efficiently. This capability could be important for checking that the claims made are reason-

able. Second, it was suggested that certain aspects of cognitive support could be measured. This capa-

bility could be valuable in many software development settings, including quality assurance settings. As

a whole, the scenarios bring into focus the question of usefulness engineering—could real-life cognitive

support engineers be using such techniques? The results here were tentative and weak, but they should

be evaluated within the larger context of the aims of this dissertation. The overarching goal has been to

provide a theoretical tool in the form of cognitive support theories—to integrate it into working research

and (eventually) development practices. This chapter was a step in that direction.

Chapter 10

Conclusions

�hroughout this work, the guiding thesis was that a solid, theory-based understanding of cognitive sup-

port is possible, and that time has come for SE research to begin developing and using applied cognitive

support theories in earnest. There is a strong need for them, for we build tools with undeniable cognitive

consequences, and trade in cognitive support ideas. There already exists a psychological and scientific

base which, so far, has been underutilized in part due to its fragmentary nature. As of now, craft knowl-

edge and folk psychology fill the theoretical void. Evaluation and design suffers from the inability to

systematically explore cognitive support, and to do so at a level above the details and features of individ-

ual tools. It would be a shame to continue leaving the existing theory untapped; it should be collected

together and simplified for use. Methods for applying these must be made practical, for informal contexts

as well as more rigorous studies. A critical contribution of this dissertation is therefore a vision for trans-

forming SE research from by putting it on a firmer theoretical and science-backed foundation, and a set

of core theoretical tools and methods needed to do so. This is basic, necessary equipment for a research

programme investigating cognitive support in SE. A core infrastructure.

Bound up tightly in this overarching thesis is a second thesis: that RODS, HASTI, and CoSTH are a

suitable initial basis for starting the project of injecting existing theory into SE research. They should be

a good first step towards crystallizing scientific knowledge about cognitive support into a form that is

suitable for use in SE. They may be useful in more broad contexts, but the domain of interest here was

SE, and in particular software comprehension and reverse engineering. The second major contribution

of this work is therefore a toolkit of theories, models, and methods for investigating cognitive support

in SE. The overarching thesis and this more specific thesis are complementary. It would be suspicious to

argue that SE ought to embark on a theory-based research programme without being able to point to a

credible basis for doing so. RODS, HASTI, and CoSTH are an initial proof of concept in support of the

primary thesis. Furthermore, the theoretical toolkit might be interesting enough alone, however within a

vision for transforming SE research, the toolkit becomes an agent for evolution of the field. This has been

a dissertation concerning the SE research infrastructure as much as it was an investigation into applied

theories of cognitive support.

331

10.1. SUMMARY OF CONTRIBUTIONS 332

The main conclusion to be drawn from this study is that a theory-driven research programme in SE is

currently possible, and that RODS, HASTI, and CoSTH are resources to lead the way with. The vision and

the applied theories were the main contributions, but there were also a number of secondary ones along

the way. The following recapitulates these contributions and summarizes the implications for future work

in the field.

10.1 Summary of Contributions

For exposition purposes this dissertation was organized as a sequence of topics suitable for individual

chapters. Although this groups the contributions according to those topics (phenomena, design theory,

etc.), it is also possible to categorize the contributions according to what types of advances they provide

(basic framework, model, etc.). This latter method of organization is used here. Using this method of

decomposition there were four primary contributions made, and three supporting contributions. Fig-

ure 10.1 depicts an incidence matrix showing how the contributions are spread out across the chapters.

Short summations of these contributions follow.

Primary Contributions

1. Basis for Applied Theorizing. A theoretical basis for researching and designing cognitive support

in SE tools was provided.

(a) Basic Analytic Framework. A DC framework was detailed for explaining cognitive support in

computational terms. This basic framework includes:

i. DCAF: a set of DC convictions for understanding human–computer systems in joint cogni-

tive terms. Such a framework is needed in order to interpret tool contributions in cognitive

terms

ii. RODS: a set of support principles. These provided the core principles for explaining cog-

nitive support as computational advantage.

iii. Claims Method: a way of making cognitive support claims. This explains the steps needed

for claiming that a tool feature supports cognition.

iv. Modeling Methods: DC architectures and virtual hardware models were proposed as mod-

est extensions of current DC theorizing. These establish a basis for generalizing cognitive

support arguments, and for raising the analysis level above low-level interaction.

For the most part, this framework is a collection and unification of prior work on DC theory,

modeling techniques, and claims analysis. Even so, the selection, collection, and integration

adds value. Psychological research in SE appears to have become fixated on cognitive theories

and not support theories, and little is currently known in the field as to how to apply cognitive

theory to explain tool value. This dissertation provides a solid foundation for doing so.

(b) Research Vision. A vision was provided of a cognitive support oriented research stream in SE

tools research. The vision established roles and boundaries for tools research as separate from

10.1. SUMMARY OF CONTRIBUTIONS 333

CHAPTER

CONTRIBUTION 2 3 4 5 6 7 8 9
primary

Basis for Applied Theorizing
basic analytic framework

research vision

Model/Theory Principles
model decomposition framework

support (de-)composition framework

Models and Theories
HASTI

CoSTH

Theory Application Principles
design representations

empirical techniques

secondary
Reviews and Summaries

cognitive support phenomena
applied model building principles

Debates and Clarifications
inadequacies of non-theoretical SE

role for theory in design

Generated Resources/Byproducts
design idea cookbook

theory application examples
design stances

Chapter Contents

2 vision
3 phenomena
4 RODS
5 HASTI
6 CoSTH
7 design
8 test drive
9 field study

Table 10.1: Diagram of how contributions are spread across the chapters

cognitive support theory research, and it provided a glimpse at what theory-based research

might do for SE tools research.

2. Principles of Applied Models and Theories of Cognitive Support. Principles and rules were de-

scribed for constructing useful models and theories for cognitive support.

(a) Model Decomposition Framework. They key principle for constructing HASTI was to usefully

decompose the modeling issues of interest, and to match the computational structure of HASTI

to this decomposition. The framework is a critical structure for deciding on how to integrate

the disparate theoretical content found in the literature.

(b) Support (De-)Composition Framework. There are many different variations of cognitive support

ideas but these were shown to be hierarchically decomposable into three main families.

10.1. SUMMARY OF CONTRIBUTIONS 334

3. Models and Theories. Integrative, broad-brush models and theories were proposed for analyzing

and explaining cognitive support.

(a) HASTI. This was a modeling framework constructed from a variety of different prior models.

Based on the main modeling components, one could view this as a kind of integration of four

well-known modeling methods: the Model Human Processor [94], blackboard models for op-

portunism [298], the Resources model [719], and the Skills–Rules–Knowledge framework [526].

(b) CoSTH. This is a hierarchically refined collection of theories of cognitive support. At a fun-

damental level, the hierarchy is merely an elaboration of the tree generated by applying the

support factors (RODS) to the DC model framework (HASTI).

Both of these are substantially based on existing theory. This shows that integrative accounts are not

premature. The collection and hierarchical structuring brings added value.

4. Theory Application Principles. Principles and techniques were outlined for applying cognitive

support theory in tools research.

(a) Design Representations. Three methods (vocabulary and concepts, design stances, and reified

design space) were explored for making cognitive support theory directly usable in design.

(b) Empirical Techniques. Ways of cheaply applying theories in experimental and field contexts were

explored. Lightweight methods are required if cognitive support theories are to be effectively

deployed in relatively informal or commercial contexts.

Secondary Contributions

In order to be able to make the primary contributions of the dissertation, some minor and secondary

advances had to be made to fill in some missing details, and to solidify a position from which to argue the

main points.

1. Reviews and Summaries. This work rests on collected wisdom rather than hinging on specific

experiments, theories, or papers. Reviewing and summarizing many prior works was necessary to

bring the diffuse elements into a coherent arrangement that was strong enough to hang the required

arguments on.

(a) Review Of Support Phenomena. A broad range of cognitive support phenomena were collected,

organized, and described. This breadth helped ensure that the applied theorizing was not too

limited of scope to be especially useful.

(b) Applied Model Building Principles. Principles for building useful applied models for SE research

were summarized. These principles are generally quite different from typical principles from

cognitive science. This review is important because it appears that many times the assump-

tions and ideals from cognitive science have been imported into SE research without much

explicit consideration. This review of contrasting principles act as a foil, as much as it acts as

an organizing force for defining the applied theories.

10.1. SUMMARY OF CONTRIBUTIONS 335

2. Debates and Clarifications. Making progress in the presence of many conflicting positions and

views on the subject matter can be difficult. Debates and clarifications of positions were engaged

in to deflect unnecessary conflicts. In these cases the issues were too complex to be briefly refuted

in a few introductory paragraphs: the various positions needed to be unfolded, the unimportant

challenges needed to be pruned, and the critical ones needed to be singled out.

(a) Inadequacy of Non-theoretical Work in SE. The central importance and possibilities of cognitive

support theories was debated. This debate countered contentions that the current course of

research is adequate. Essentially, the debate served to establish an argument that pursuing

explicit cognitive support theories may be the only realistic hope of answering many questions

that are important to SE tools research.

(b) Role for HCI Theory in Design. Using the metaphors of a fitness landscape and a gulf of syn-

thesis, the essential requirements and qualities of design theories in HCI-related design were

considered. A useful taxonomy of theory applications was also described, and this was used to

emphasize the importance of FP-reasoning (forward reasoning about positive consequences).

This summarized the crucial role for broad-brush, summative approximations suitable for rea-

soning about positive consequences. CoSTH was built to exhibit these qualities: this summary

makes it possible to fully appreciate the design decisions underlying the construction of HASTI

and CoSTH.

3. Generated Resources (“byproducts”). A thesis about how to improve tools research using cognitive

support theories was investigated. Along the way, other artifacts of value were created which could

be useful in their own right.

(a) Design Idea “Cookbook” and Index. CoSTH was described using a combination of abstract ex-

planations and concrete examples. Collectively, the examples sample and illustrate a diverse

range of supportive techniques and technologies. In a sense, they provide a simple (although

very preliminary) catalogue of design ideas that might be useful to thumb through for inspi-

ration. Moreover, they are hierarchically organized according to the types of support that they

offer. That is, they are design knowledge indexed by solution type. This is a promising area of

development for building reusable design knowledge repositories.

(b) Examples of Theory Applications. Another source of useful reusable knowledge consists of ex-

amples of applying HASTI and CoSTH to analyze cognitive support in existing tools. Similar

tools should beget similar analyses, which may mean being able to reuse much of the rea-

soning, modeling methods, or protocol coding techniques. Prime examples from the field of

reverse engineering (RMTool and Rigi) were analyzed, and a number of smaller analyses of

various tools (including the commercial tool Visual Café) were also performed.

(c) Design Stances. A small collection of design stances were supplied for building reverse engi-

neering and software comprehension tools. These were developed primarily from the basic DC

commitment to viewing engineers as one part of a joint computational system. They provided

useful contrasts to the currently dominant—but limited—design stances.

10.2. FUTURE WORK 336

10.2 Future Work

It is not much of an exaggeration to say that at the end of this work, what we are left with is not a

resolution of a simple question, but a new beginning for research. In a very real sense what was done

here was to wrestle the very complicated issues of cognitive support theory development into a position

where research into applied cognitive support can begin in earnest. There are many ways of expanding

the resources and analyses given in this dissertation. Also, there are many possibilities for applying them

to improve SE research. Here, I have listed some of the possibilities that, to me, seem most promising at

the present time.

Expanding The Current Work

In many places I have made it clear that I consider the theories and models developed here to be mere

starting points—as works in progress. There are a number of promising ways of expanding the current

resources in the future:

1. Expanded Support Analysis. Once a theory is proposed there is often a tendency to begin pointing

out its inaccuracies, and then to begin fixing these by tweaking the theory. This is almost always a

very inward looking process. My instinct says that the main advantage of CoSTH comes primarily

from its ability to tackle a variety of different types of support at once. Although CoSTH provides

explanations for a very interesting variety of cognitive support, it is not nearly exhaustive enough.

Some of these shortcomings were pointed out in Section 6.7, but doubtlessly more will emerge. A key

challenge is to temporarily resist the temptation to quibble about minor aspects of the framework,

and to try to expand the frameworks to encompass other important support concepts and issues.

2. Design Tradeoffs. One limitation of CoSTH is that the design tradeoffs are not made explicit. For

instance, there is a cost to externalizing data, so data redistribution is only sometimes cost effective.

Somehow integrating an analysis of design tradeoffs into CoSTH seems very important. It may help

to be able to quantify and measure important costs and benefits (below).

3. Quantification and Measurement of Costs and Benefits. External memories expand the effective

size of problem solving memory: how large is a joint system’s effective working memory size?

An external memory creates external memory maintenance costs: what is the maximum average

external memory maintenance cost that typical code refactoring tasks will bear? A tool is being

developed to meet certain cognitive support requirements: can the cognitive support offered be

measured to assure quality? How much memory is offloaded by a tool? To create an engineering

discipline for cognitive support, some quantification and measurement methods are needed. With

support explanations firmly in place, this possibility can be entertained. What it may take to make

this a reality is to extend CoSTH or related theories with measurements regarding important system

variables like effective working memory size. This basic route has been very successfully taken by

Card et al. [94] for building engineering models of performance. The approximation and calculation

which result appear important for engineering applications [309, 448]. Analogous approximated

theories for measurable aspects of cognitive support may be feasible.

10.2. FUTURE WORK 337

4. Groups and Multi-Agent Systems. To make this work even half decently tractable, multi-person

systems have not been considered. However DC as a theoretical framework has attracted a fair share

of attention for being able to focus on social and group issues, and being able to integrate them into

a holistic account. It may be fruitful to expand HASTI (and possibly CoSTH, if needed) to consider

multi-agent systems.

Many of these sorts of lists are written “in no particular order”. Not so this list. The order I have listed

these indicate what I consider to be an appropriate priority list. Nothing prevents future work from

exploring all at once, but the priorities, I feel, are as listed.

Applying The Current Work

In Chapter 2, I recalled the aphorism stating that there is nothing so useful as a good theory. RODS,

HASTI and CoSTH are effectively new weapons in the arsenal that an investigator of SE tools can apply to

research and design problems. Ultimately, their most important impact might be realized if they are taken

up and integrated into a discipline of cognitive claims analysis and testing. Even before then, however,

one can look to attack the level of craft knowledge in the field by applying the theoretical toolkit in a

number of ways. Some of the especially promising lines of attack include:

1. Generalizable and Reusable DC Architectures. Although humans are highly adaptable, and tasks

are numerous and varied, it is unlikely that in practice more than a smallish number of basic tool and

interaction types will be in common use at once. For instance, many software development IDEs are

very similar, and many windowing systems have a very similar underlying logical structure even if

the particulars for interaction change. When one combines this fact with the assumption that these

tools are part of a DC system, it strongly suggests that it will be fruitful to search for common DC

structures that apply to many different tools or tool types. If true, a number of common HASTI

analyses would tend to crop up. These might be codified as “standard” DC architecture that can be

pulled out of a textbook as required. Virtual architectures may also need to be defined in order to be

able to reason about these architectures at a higher level.

2. Design Catalogs and Patterns. The presentation of CoSTH in Chapter 6 effectively provides an

indexing structure that matches needs (e.g., offloading knowledge) with examples of means for

achieving them (e.g., wizards). This is a fundamental design resource. In addition, Section 6.5.2

presented examples where cognitive support appear to compose into particularly harmonious com-

binations; they seem to do so in a patterned way. The analysis suggests that the CoSTH theoretical

apparatus can be used to mine the existing craft knowledge base for examples of support techniques

and excellent patterns of combination. These could spark a fruitful research programme of mining

and codifying design knowledge for cognitive support.

3. Evaluating and Comparing Software Tools. Even before new tools are created, our current crop

of tools are poorly understood from a cognitive support point of view. It may help to expand the

analysis and empirical investigations started in Chapters 8 and 9.

10.3. CODA 338

10.3 Coda

Research involving SE tools needs to begin importing and using cognitive support theories instead of

avoiding the topic or trying to build them from within. RODS provides a basic foundation for doing

this. HASTI and CoSTH are a modeling framework and a cognitive support theory framework that are

suitable starting points. They collect together and abstract many existing theories from cognitive science.

They are demonstrably applicable to analyzing current reverse engineering tools and even commercial

development tools. Cognitive support is an important concern for SE. For far too long, we have lived with

an itch we just could not effectively scratch. My hope is that SE can use this toolkit to explore the nearly

uncharted research stream of applying cognitive support theories in SE tools.

Appendix A

Invitation to Participate

INVITATION TO PARTICIPATE IN A STUDY

You are invited to participate in a study of programmer tool use. We are studying how programmer tools help or hinder

the work of those who use them. We’re hoping to be able to help people build better programmer tools such as the

ones you use. These studies could eventually help us do that.

STUDY DESCRIPTION

In short (no more than 40 minute) study sessions I will come to your work place and watch and record how you

use computer tools such as your compiler and editor. I’ll be asking you to talk about what you’re thinking while you

work and will be recording you work, either with a video camera or audio-only. I would like to do as many as five of

these sessions, but you are not obligated in any way to participate in five sessions. For practical reasons we can do

at most one of these per day. You’ll control when I should come to your office, so it might take no more than a week,

but if you only occasionally call me in I might take a lot longer so we will allow up to 3 months.

You’ll also be given a short questionnaire about your background and how you’ve set up your work environment.

You’ll probably finish the questionnaire in 5 to 10 minutes. After the observation sessions you’ll be given a chance to

meet with me so that we can discuss what I observed, and so we can both ask questions about what you did and how

you used your tools. This last session is entirely optional. I expect that should take no more than half an hour.

VOLUNTEER REQUIREMENTS

Volunteers must meet the following criteria:

1. You must be a relatively experienced programmer. Specifically you must have had at least two years of pro-

gramming experience.

2. You must be currently working on a project involving programming. This should involve understanding or main-

taining programs of at least 1500 lines of code.

3. You should have significant (at least 4 months) experience in the programming environment that you are using.

Preference is made for Unix-based programmers, such as those working with Emacs, vi, grep, or other more

involved Integrated Development Environments such as Centerline C++.

339

Appendix B

Research Description

STUDY DESCRIPTION

Why?

I wish to study how programming tools are used by programmers to do their work. Programmers and tools have

been studied independently, but very little is known about how programmers and tools interact in “in the field”, or as

some call it, in the “real world.” I am trying to develop a model and theory of how programmer tools help program-

mers understand and modify their programs. I believe that this study will help me develop these models and theories.

These theories may in turn may help other researchers build better tools that make programming easier or reduce the

number of bugs in the software that is developed.

How?

The main part of the study is actually watching how you use your computer tools and your working environment

to solve the problems you face. In order to understand what you’re doing, I need to understand what you’re thinking,

so I’ll be asking you to talk aloud while you work, and recording what you say and what you do. If feasable, I’ll be

using a video camera, but may have to use only an audio tape record. In similar work most people quickly become

accustomed to the camera and have no trouble ignoring it as if its not there. Most people also find talking while work-

ing unproblematic. I’ll also be recording some of what you do using programs on your computer. How I do this will

depend upon your setup and what tools you use, but I will figure this out and you will not have to concern yourself with

it. You’ll be deciding when these observation sessions occur since only you know when you’ll be the type of program

maintenance work I’m interested in watching. These study sessions will likely last around a half hour but won’t go past

40 minutes.

Although watching your use of tools is the main goal, this type of observation-based research frequently requires

help from questionnaires and interviews. Consequently I’ll want you to fill in a short questionnaire about yourself and

your environment. This should take between 5 and 10 minutes. Also, after the observation sessions, both you and I

may be curious about what you did and how the tools helped you do them. So I’ll want to set up an short (typically

half hour) interview session in which you can ask me questions and I can ask questions back. Throughout all of this

your participation is voluntary, and you may choose to cut any of our meetings short, stop the study at any time, and

340

341

ask me to erase any part of the video or other records. You can also ask to destroy these records any time after the

study is finished.

Privacy and Confidentiality

All of our conversations and the observations I make will be considered private and confidential. No one other than

myself and qualified researchers in my research group will have direct access to the observations that I gather. The

data I gather will be held confidential to the full extent of the law and destroyed after I have finished studying it. Mind

you, I hope to be able to publish models or theories that were derived from me observing you work. For scientific pur-

poses certain facts about the observations may need to be published. However none of the specific details that could

identify you or your work will be published. I will do this by referring to you in code and disguising the actual details

of your work where it is needed. This is a common practice in scientific reporting and it works extremely well. Be-

fore publishing any work that directly uses your data I will contact you and give you a preprint and ask for your consent.

Likelihood Of Harm

There is very little risk of harm to yourself if you choose to participate in this study. There is a chance that you

might feel somewhat uncomfortable with me observing what you do. However most people quickly become quite

accustomed to being observed. Also, I will be monitoring your computer work by running programs that record your

keystrokes and the responses by the computer. There is a small possibility that these programs will interfere with your

computer or its operations. You are free to examine these programs before they are installed and operated.

Withdrawing

You may withdraw from participation at absolutely any time, in whole or in part. You can ask me to destroy any of

the observations of your work that I gather. There will be no obligation for you to continue.

Appendix C

Questionnaire

1. Approximately how many years of programming experience have you had?

(a) less than 2 years

(b) 2-4 years

(c) 4-10 years

(d) more than 10 years

2. List the programming language or languages you feel most familiar with.

3. Approximately how long have you been using the editor or editors that you regularly use for programming (or

similar ones)?

(a) less than 2 months

(b) 2-12 months

(c) 12-24 months

(d) more than 24 months

4. Approximately how long have you been using the operating system you primarily program on (or similar ones)?

(a) less than 2 months

(b) 2-12 months

(c) 12-24 months

(d) more than 24 months

5. Did you customize your program editor (for instance, by adding macros or scripts)?

6. Did you customize your windowing environment (if any)?

7. Imagine a computer error occurs and the customizations you have made to your editor and windowing environ-

ment were destroyed and could not be restored automatically. Approximately how long do you think it would

take you to re-establish your customizations?

(a) 0-2 hours

(b) 2-10 hours

(c) probably more than 10 hours

(d) I might not be able to do it

(e) I don’t know

342

Appendix D

Instruction Card

Instructions for Study Volunteers

1. I am trying to study computer tool use during program maintenance and program understanding. I do not expect

that you will be understanding or maintaining your programs continually, so to minimize the interference with

your own work, I will request that you find parts of your work that you will allow me to observe. We’ll arrange for

me to come in and observe how you use tools in your work. I am especially interested in situations where you

don’t understand your program well, such as in debugging or understanding how something works.

2. Please take time to occasionally monitor your work. If you become aware that you might be starting a program

maintenance task of interest to the experimental study, you are asked to hold off on that work, if you can,

until I can come in and observe it. At that point you can email me (Andrew Walenstein) at the email address

walenste@cs.sfu.ca. We can then set up a time that is convenient for you. I will endeavour to be near your

workplace during normal working hours for the duration of my study.

3. Generally speaking I am interested in how tools are used to understand and modify programs during relatively

difficult program maintenance or program modification. You should use the following points as a guideline in

evaluating whether your activity might be of interest to this study. Your work is generally of interest if the following

hold:

(a) You anticipate doing some work either modifying your program or trying to understand some aspect of it

that you don’t understand (e.g. debugging).

(b) You expect your work to take somewhere between five or ten minutes and an hour.

(c) You have some uncertainty as to exactly how you will accomplish your task. For instance you might be

uncertain as to whether or not you will be able to successfully modify your program as you wish to.

4. Please do not begin working on your maintenance problem before I arrive to observe you doing it. This includes

planning what you are about to do to perform that work. It is important for me to understand how tools are used

right from the beginning and working on it beforehand makes it hard for me to understand all of this process.

343

Appendix E

Instructions For Producing Verbal

Reports

In this study, I’m interested in how you use computer tools, and am interested in what you think about

when you work on your program. In order to find this out, I am going to ask you to THINK ALOUD as you

work on your program. What I mean by “think aloud” is that I want you to tell me EVERYTHING you are

thinking from the time you first start your work until the end of our session. I would like you to talk aloud

CONSTANTLY while you work. I don’t want you to plan out what you say or try to explain to me what you

are saying. Just act as if you are alone in this room speaking to yourself. It is most important that you

keep talking. If you are silent for any long period of time, I will ask you to talk. Please try to speak as

clearly as possible, as I shall be recording you as you speak. Do you understand what I want you to do?

Notes:

 phrases in CAPITALS mean that emphasis will be placed on those words when they are spoken.

 practicing the report generation for any session was optional

344

Appendix F

Coding for Participant E

This appendix contains a listing of relevant observational data for the tool use episodes studied in Chap-

ter 9. The main contents are a series of figures. These figures are briefly listed here with notes describing

their contents and notational conventions.

Visual Café Protocols

Figures F.1, F.2, and F.3 are transcripted and coded protocols of participant E’s three repair episodes. The

following notes apply to these figures:

 For each of the episodes, a few lines of protocol transcripts are included before and after the actual

episode in question. This is intended to help provide some context for the activity in the episode.

For reference, all three episodes are presented consecutively in Figure F.4. In that figure, single

horizontal lines indicate the start of an episode and double lines indicate an end.

 Computer interaction and responses are “transcripted” by short descriptions of the action at the

computer interface. The aim of these transcriptions is to convey the content of the actions without

trying to interpret the significance or meaning of them. Interpretation of action is accomplished

elsewhere by using the coding scheme.

 Individual events are a combination of verbalizations and computer interactions. Each individual

event is identified by its start time in the protocol. Times are reported only to the second. In the case

that two events are labelled with the same time, the events can be identified uniquely by the time

and code (no events with the same code are labelled with the same time). Note that using a finer time

resolution is will not generally solve the issue of multiple events per time label. The system being

observed is a joint multiprocessing system in which multiple events can occur effectively simultane-

ously. Furthermore, humans are multiprocessing. The participants were observed to verbalize their

thought while performing other (usually skilled) activities at the same time.

 Italicized interaction transcriptions indicate inferred actions. In these cases, there is evidence that

points to the described action occurring, but the action could not be detected with a sufficient level

345

346

1 | Error C:\src\...\servingClass.cpp[47]:
| Class org.HttpServeletResponse not found in type declaration

2 | Error C:\src\...\servingClass.cpp[47]:
| Class org.WebMakerClass(int) not found in type declaration

3 | Error C:\src\...\servingClass.cpp[47]:
| Class org.WebDataClass(int) not found in type declaration

4 | Error C:\src\...\servingClass.cpp[49]:
| Class org.HttpServeletResponse not found in void
| makeMethod(org.WebDataClass, org.WebMakerClass

5 | Error C:\src\...\servingClass.cpp[52]:
| Class org.PrintWriter not found in type declaration

6 | Error C:\src\...\servingClass.cpp[52]:
| Class org.PrintWriter not found in type declaration

7 | 6 errors, 0 warning(s)
8 | Build Failed

Figure F.1: Fascimilie of Participant E’s first error list

of certainty. For instance, usually the videotape indicated the general area that E was glancing at,

but it is impossible to tell precisely what he gazes at.

 No special transcripting codes are used in the verbal protocols except two minor points: (1) emotions

and inflections are noted within “[]” brackets, and (2) multiple commas indicate a pause. Two com-

mas indicate a short pause, three indicate a longer one. The lengths of pauses were not a concern, so

no more

 Computer interactions are occasionally annotated with the interaction method used in parentheses.

For instance, the compiler may be invoked by a menu selection or a key sequence, and these are

denoted with “(menu)” and “(keys)”, respectively.

 The symbol “�” is not an action code, but a denotation that the immediately preceding code applies

to the current event. � typically indicates that a composite action spans several unit events.

 The term “dropdown” refers to a context-sensitive menu that “drops down” near the point of typing.

The dropdowns in the protocol allow a form of word completion by listing the identifiers known to

be valid at the current cursor insertion point.

Visual Café Error Lists

Figures F.1, F.2, F.3 contain replicas of the compiler error messages that are generated in each of the three

repair episodes. These are included so that E’s action context can be better appreciated. As in the facsimi-

les, no special visual indications were given in Visual Café (bold facing, colouring, etc.). The names of

the files and classes involved have been modified to preserve anonymity. In addition, because of space

limitations the error lines have been reformatted to span several lines. On the participant’s screen, each

error message appears on a single line. Line numbers for each output line are displayed at the left to help

avoid confusion.

347

TIME VERBAL REPORT COMPUTER INTERACTION CODE

. start of episode .

26:36 ready to compile,, see what we got Gi.G0
26:36 invokes compiler (menu) Xe
26:43 see compile other
26:44 error list displayed other
26:45 [with surprise] woah,,okaya Ge.P2
26:47 resizes error list enable
26:48 gotta import some stuff reads error list (�2 sec.) Gi.fault
26:50 notices first item Pe.G1
26:50 oyakay, so here we go back up to the top scrolls manually to top of file enable
26:55 types import repair
26:57 import uh javax dot Servlet types javax.Servlet. �
27:05 http dot clicks http on dropdown menu �
27:09 HttpServletResponse that we need to import types HttpS & clicks dropdown �
27:12 starts new import line enable
27:13 we need to import looking at error list (�3 sec.) Gi.fault
27:17 notices last item(s) Pe.G5
27:17 ah java dot io dot types java.io. repair
27:21 I think it’s print types p & scrolling dropdown �
27:25 PrintWriter class selects PrintWriter �

. end of episode .

27:27 saves file (keys) enable
27:30 so we’ll try that again Gi.G0
27:30 invokes compiler (keys) Xe
27:33 error list refreshed other
27:34 oh we may also need to um Ge.P2

Table F.1: Protocol and codes for first Visual Café episode (Episode V1)

1 | Error C:\src\...\servingClass.cpp[50]:
| Class org.WebMakerClass(int) not found in type declaration

2 | Error C:\src\...\servingClass.cpp[50]:
| Class org.WebDataClass(int) not found in type declaration

3 | Error C:\src\...\servingClass.cpp[52]:
| Exception java.io.IOException must be caught, or it must be
| declared in a throws clause of this method

4 | 3 errors, 0 warning(s)
5 | Build Failed

Figure F.2: Fascimilie of Participant E’s second error list

1 | Error C:\src\...\servingClass.cpp[57]:
| Exception java.io.IOException must be caught, or it must be
| declared in a throws clause of this method

2 | 1 errors, 0 warning(s)
3 | Build Failed

Figure F.3: Fascimilie of Participant E’s third error list

348

TIME VERBAL REPORT COMPUTER INTERACTION CODE

27:27 saves file (key) enable

. start of episode .

27:30 so we’ll try that again Gi.G0
27:30 invokes compiler (keys) Xe
27:33 error list refreshed other
27:31 reads error list (�2 sec.) Ge.P2
27:34 oh we may also need to um notices first item Pe.G3
27:37 import our,,, own DTD repair
27:40 interface stuff so it’s a starting new import line �
27:44 import org,,package,,uh,, types org., uses dropdowns �
27:52 anonML,, storage,, � �
28:00 and the storage interface Pi.G3
28:00 begins new import line repair
28:06 org dot,, package,, storage,,, types org. �

and,,,the interface clicking dropdowns

. end of episode .

28:21 saves file (key) enable
28:21 invokes compiler (key) Xe
28:23 error list refreshed other
28:25 so what error do we get? scanning errors Ge.P3

Table F.2: Protocol and codes for second Visual Café episode (Episode V2)

TIME VERBAL REPORT COMPUTER INTERACTION CODE

28:21 saves file (key) enable

. start of episode .

28:21 invokes compiler (key) Xe
28:23 error list refreshed other
28:25 so what error do we get? scanning errors Ge.P3
28:26 oh we have to catch the io exception reading error Pe.G7
28:30 throws clause for the method um reading error report aloud other

. end of episode .

28:35 rereading? (�4 sec.) other
28:37 yeah now it’s the interesting thing what other
28:40 how should we handle this now? �

Table F.3: Protocol and codes for third Visual Café episode (Episode V3)

349

TIME VERBAL REPORT COMPUTER INTERACTION CODE

26:36 ready to compile,, see what we got Gi.G0
26:36 invokes compiler (menu) Xe
26:43 see compile other
26:44 error list displayed other
26:45 [with surprise] woah,,okaya Ge.P2
26:47 resizes error list enable
26:48 gotta import some stuff reads error list (�2 sec.) Gi.fault
26:50 notices first item Pe.G1
26:50 oyakay, so here we go back up to the top scrolls manually to top of file enable
26:55 types import repair
26:57 import uh javax dot Servlet types javax.Servlet. �
27:05 http dot clicks http on dropdown menu �
27:09 HttpServletResponse that we need to import types HttpS & clicks dropdown �
27:12 starts new import line enable
27:13 we need to import looking at error list (�3 sec.) Gi.fault
27:17 notices last item(s) Pe.G5
27:17 ah java dot io dot types java.io. repair
27:21 I think it’s print types p & scrolling dropdown �
27:25 PrintWriter class selects PrintWriter �
27:27 saves file (key) enable
27:30 so we’ll try that again Gi.G0
27:30 invokes compiler (keys) Xe
27:33 error list refreshed other
27:31 reads error list (�2 sec.) Ge.P2
27:34 oh we may also need to um notices first item Pe.G3
27:37 import our,,, own DTD repair
27:40 interface stuff so it’s a starting new import line �
27:44 import org,,package,,uh,, types org., uses dropdowns �
27:52 anonML,, storage,, � �
28:00 and the storage interface Pi.G3
28:00 begins new import line repair
28:06 org dot,, package,, storage,,, types org. �

and,,,the interface clicking dropdowns

28:21 saves file (key) enable
28:21 invokes compiler (key) Xe
28:23 error list refreshed other
28:25 so what error do we get? scanning errors Ge.P3
28:26 oh we have to catch the io exception reading error Pe.G7
28:30 throws clause for the method um reading error report aloud other

Table F.4: Full Visual Café protocol for the three episodes

Bibliography

[1] SNiFF+ Release 2.2 User’s Guide and Reference, July 31, 1996 ed. , Product Number SNiFF-URG-022.

[2] Ackerman, M. S., and Halverson, C. A. Reexamining organizational memory. Communications of the ACM, 43(1),

Jan. 2000, pp. 59–66.

[3] Ackermann, D., and Tauber, M. J., Eds. Mental Models and Human-Computer Interaction 1, vol. 3 of Human Factors

in Information Technology. North Holland, Amsterdam, The Netherlands, 1990.

[4] Adelson, B. When novices surpass experts: The difficulty of a task may increase with expertise. Journal of

Experimental Psychology: Learning, Memory and Cognition, 10(3), 1984, pp. 483–495.

[5] Adelson, B. Modeling software design within a problem-space architecture. In Program of the Tenth Annual

Conference of the Cognitive Science Society (Montreal, Québec, Aug 17–19 1988), Lawrence Erlbaum Associates,

1988, pp. 174–180.

[6] Adelson, B., and Soloway, E. M. A model of software design. In Chi et al. [123], pp. 185–208.

[7] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. Data Structures and Algorithms. Addison-Wesley, Reading, MA,

1983.

[8] Allen, B., and Brown, S. W. Introduction to the special issue on multimedia and interactivity. Instructional

Science, 25(2), Mar. 1997, pp. 75–77.

[9] Allen, B. L. Information Tasks: Toward a User-Centered Approach to Information Systems. Academic Press Limited,

1996.

[10] Altmann, E. M. Episodic memory for external information. Tech. Rep. CMU–CS–96–167, Carnegie Mellon

University, School of Computer Science, Aug. 1996. Phd Thesis.

[11] Altmann, E. M., Larkin, J. H., and John, B. E. Display navigation by an expert programmer: A preliminary

model of memory. In CHI’95 [733], pp. 3–10.

[12] Anderson, J. R. Methodologies for studying human knowledge. Behavioural and Brain Sciences, 10, 1987, pp. 467–

505.

[13] Anderson, J. R. Cognitive Science and its Implications, 3rd ed. Freeman, 1990.

[14] Anderson, J. R., Boyle, C. F., Farrell, R., and Reiser, B. J. Cognitive principles in the design of computer tutors.

In Modelling cognition. Wiley, New York, 1996, ch. 4, pp. 93–134.

[15] Arias, E., Eden, H., Fischer, G., Gorman, A., and Scharff, E. Transcending the individual human mind—creating

shared understanding through collaborative design. ACM Transactions on Computer-Human Interaction, 7(1), Mar.

2000, pp. 84–113.

350

BIBLIOGRAPHY 351

[16] Arnold, R. S., and Bohner, S. A. Impact analysis—towards a framework for comparison. In Proceedings of

the IEEE Conference on Software Maintenance – 1993 (Montreal, Québec, Sep 27–30 1993), D. Card, Ed., IEEE

Computer Society Press, 1993, pp. 292–301.

[17] Arunachalam, V., and Sasso, W. Cognitive processes in program comprehension: An empirical analysis in the

context of software reengineering. The Journal of Systems and Software, 34(2), 1996, pp. 177–189.

[18] Bacon, D. F., Graham, S. L., and Sharp, O. J. Compiler transformations for high-performance computing. ACM

Computing Surveys, 26(4), Dec. 1997, pp. 345–420.

[19] Baecker, R. M. Experiments in on-line graphical debugging: The interrogation of complex data structures

(summary only). In Proceedings of the First Hawaii International Conference on the System Sciences, 1968, pp. 128–

129.

[20] Baecker, R. M., and Buxton, W. A. S. Design principles and methodologies. In Readings in Human-Computer

Interaction: A Multidisciplinary Approach [21], ch. 11, pp. 483–491.

[21] Baecker, R. M., and Buxton, W. A. S., Eds. Readings in Human-Computer Interaction: A Multidisciplinary Approach.

Morgan Kaufmann, Los Altos, CA, 1987.

[22] Baecker, R. M., Nastos, D., Posner, I. R., and Mawby, K. L. The user-centred iterative design of collaborative

writing software. In INTERCHI’93 [757], pp. 399–405.

[23] Baker, M. J., and Eick, S. G. Visualizing software systems. In ICSE’94 [754], pp. 59–67.

[24] Ball, L. J., and Ormerod, T. C. Applying ethnography in the analysis and support of expertise in engineering

design. Design Studies, 21(4), July 2000, pp. 403–423.

[25] Balmas, F. Query by outlines: A new paradigm to help manage programs. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (Toulouse, France, Sep 6 1999), Associ-

ation for Computing Machinery, 1999, pp. 86–94.

[26] Bannon, L. J., and Bødker, S. Beyond the interface: Encountering artifacts in use. In Carroll [101], ch. 12,

pp. 227–253.

[27] Barnard, P., May, J., Duke, D., and Duce, D. Systems, interactions, and macrotheory. ACM Transactions on

Computer-Human Interaction, 7(2), June 2000, pp. 222–262.

[28] Barnard, P. J. Bridging between basic theories and the artifacts of human-computer interaction. In Carroll [101],

ch. 7, pp. 103–127.

[29] Barnard, P. J., and Harrison, M. D. Integrating cognitive and system models in human computer interaction. In

HCI’89 [747], pp. 87–103.

[30] Barnard, P. J., and May, J. Cognitive modelling for user requirements. In Byerley et al. [90], ch. 2.2, pp. 101–145.

[31] Barwise, J., and Shimojima, A. Surrogate reasoning. Cognitive Studies: Bulletin of the Japanese Cognitive Science

Society, 2(4), Nov. 1995, pp. 7–27.

[32] Basalla, G. The Evolution of Technology. Cambridge University Press, 1988.

[33] Basili, V. R. A plan for empirical studies of programmers. In ESP’86 [741], pp. 252–255.

[34] Basili, V. R., and Mills, H. D. Understanding and documenting programs. IEEE Transactions on Software Engi-

neering, SE-8(3), May 1982, pp. 270–283.

[35] Basili, V. R., Shull, F., and Lanubile, F. Building knowledge through families of experiments. IEEE Transactions

on Software Engineering, 25(4), July 1999, pp. 456–473.

BIBLIOGRAPHY 352

[36] Bass, L., Kazman, R., and Little, R. Toward a software engineering model of human-computer interaction. In

Engineering for Human-Computer Interaction, Proceedings of the IFIP WG2.7 Working Conference (Ellivuori, Finland,

Aug 10–12 1993), North Holland, 1993, pp. 131–153.

[37] Bates, M. J. The design of browsing and berrypicking techniques for the online search interface. Online Review,

13(5), 1989, pp. 407–424.

[38] Baya, V., and Leifer, L. J. Understanding information in conceptual design. In Cross et al. [153], pp. 151–168.

[39] Bellamy, R. K. E. Strategy analysis: An approach to psychological analysis of artifacts. In Gilmore et al. [242],

pp. 57–67.

[40] Bellamy, R. K. E. What does pseudo-code do? A psychological analysis of the use of pseudo-code by experi-

enced programmers. Human Computer Interaction, 9(2), 1994, pp. 225–246.

[41] Bellamy, R. K. E., and Gilmore, D. J. Programming plans: Internal or external structures? In Lines of Thinking:

Reflections on the Psychology of Thought, K. J. Gilhooly, M. T. G. Keane, R. H. Logie, and G. Erdos, Eds., vol. 2.

John Wiley and Sons, 1990, ch. 4, pp. 59–72.

[42] Bellay, B., and Gall, H. An evaluation of reverse engineering tool capabilities. Software Maintenance: Research

and Practice, 10(5), 1998, pp. 305–331.

[43] Bellotti, V., Shum, S. B., MacLean, A., and Hammond, N. Multidisciplinary modeling in HCI design ...in theory

and in practice. In CHI’95 [733], pp. 146–153.

[44] Berlin, L. M. Beyond program understanding: A look at programming expertise in industry. In ESP’93 [744],

pp. 6–25.

[45] Beynon, M., Roe, C., Ward, A., and Wong, A. Interactive situation models for cognitive aspects of user-artefact

interaction. In CT’2001 [738], pp. 356–372.

[46] Bhavnani, S. K. Designs conducive to the use of efficient strategies. In DIS’2000 [739], pp. 338–345.

[47] Bhavnani, S. K., and John, B. E. From sufficient to efficient usage: An analysis of strategic knowledge. In

CHI’97 [735], pp. 91–98.

[48] Bhavnani, S. K., and John, B. E. Delegation and circumvention: Two faces of efficiency. In CHI’98 [736], pp. 273–

280.

[49] Bhavnani, S. K., and John, B. E. The strategic use of complex computer systems. Human-Computer Interaction,

15(2/3), 2000, pp. 107–137.

[50] Bibby, P. A. Distributed knowledge: in the head, in the world or in the interaction? In Rogers et al. [548], ch. 7,

pp. 93–99.

[51] Black, J. B., Kay, D. S., and Soloway, E. M. Goal and plan knowledge representations: From stories to text editors

and programs. In Carroll [100], ch. 3, pp. 36–60.

[52] Blackler, F. Activity theory, CSCW and organizations. In Monk and Gilbert [415], ch. 10, pp. 223–249.

[53] Blackwell, A. F. Metacognitive theories of visual programming: What do we think we are doing? In 12th

International IEEE Symposium on Visual Languages (Boulder, Colorado, Sep 3–6 1996), IEEE Computer Society

Press, 1996, pp. 240–246.

[54] Blackwell, A. F., Britton, C., Cox, A., Green, T. R. G., Gurr, C., Kadoda, G., Kutar, M. S., Loomes, M., Nehaniv,

C. L., Petre, M., Roast, C., Roe, C., Wong, A., and Young, R. M. Cognitive dimensions of notations: Design tools

for cognitive technology. In CT’2001 [738], pp. 325–341.

BIBLIOGRAPHY 353

[55] Blackwell, A. F., and Engelhardt, Y. A taxonomy of diagram taxonomies. In Proceedings of Thinking with Diagrams

98: Is there a science of diagrams?, 1998, pp. 60–70.

[56] Blaha, M., and Benson, I. Teaching database reverse engineering. In WCRE’2000 [765], pp. 79–85.

[57] Blandford, A. E., Buckingham Shum, S. J., and Young, R. M. Training software engineers in a novel usability

evaluation technique. International Journal of Human-Computer Studies, 49(3), 1998, pp. 245–279.

[58] Blandford, A. E., Harrison, M. D., and Barnard, P. J. Using Interaction Framework to guide the design of

interactive systems. International Journal of Human-Computer Studies, 43(1), 1995, pp. 101–130.

[59] Block, L. G., and Morwitz, V. G. Shopping lists as an external memory aid for grocery shopping: Influences on

list writing and list fulfillment. Journal of Consumer Psychology, 8(4), 1999, pp. 343–375.

[60] Blomberg, J. L. Ethnography: Aligning field studies of work and system design. In Monk and Gilbert [415],

ch. 8, pp. 175–198.

[61] Boehm-Davis, D. A. Software comprehension. In Helander [302], ch. 5, pp. 107–133.

[62] Bonnardel, N. Creativity in design activities: The role of analogies in a constrained cognitive environment. In

Proceedings of the Third Conference on Creativity and Cognition (Loughborough, UK, Oct 11–13 1999), Association

for Computing Machinery, 1999, pp. 158–160.

[63] Bowdidge, R. W., and Griswold, W. G. Automated support for encapsulating abstract data types. In Proceedings

of the 2nd ACM SIGSOFT Symposium on the Foundations of Software Engineering (New Orleans, Louisiana, Dec 6–9

1994), Association for Computing Machinery, 1994, pp. 97–110.

[64] Bowdidge, R. W., and Griswold, W. G. How software engineering tools organize programmer behavior during

the task of data encapsulation. Empirical Software Engineering, 2(3), Sept. 1997, pp. 221–267.

[65] Boy, G. A. Intelligent Assistant Systems, vol. 6 of Knowledge-Based Systems. Academic Press Limited, 1991.

[66] Boy, G. A. Cognitive function analysis for human-centered automation of safety-critical systems. In CHI’98

[736], pp. 265–272.

[67] Brade, K., Guzdial, M., Steckel, M., and Soloway, E. M. Whorf: A visualization tool for software maintenance. In

Proceedings of the 1992 IEEE Workshop on Visual Languages (Seattle, WA, Sep 15–18 1992), IEEE Computer Society

Press, 1992, pp. 148–154.

[68] Brooks, A., Miller, J., Roper, M., and Wood, M. Criticisms of an empirical study of recursion and iteration. Tech.

Rep. EFoCS–1–92, University of Strathclyde, Empirical Studies of Computer Science, Department of Computer

Science, 1992.

[69] Brooks, R. A. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1),

Mar. 1986.

[70] Brooks, R. A. Intelligence without reason. In Proceedings of the 12th International Joint Conference on Artificial

Intelligence (Sydney, Australia, Aug 20–24 1991), J. Mylopoulos and R. Reiter, Eds., Morgan Kaufmann, 1991,

pp. 569–595.

[71] Brooks, R. E. A model of human cognitive behavior in writing code for computer programs. In Proceedings of

the Fourth International Joint Conference on Artificial Intelligence (Tbilisi, Georgia, USSR), William Kaufman, 1975,

pp. 878–884.

[72] Brooks, R. E. Towards a theory of the cognitive processes in computer programming. International Journal of

Man-Machine Studies, 9(6), 1977, pp. 737–751.

BIBLIOGRAPHY 354

[73] Brooks, R. E. Using a behavioral theory of program comprehension in software engineering. In Proceedings of

the 3rd International Conference on Software Engineering, 1978, pp. 196–201.

[74] Brooks, R. E. Studying programmer behaviour experimentally: the problems of proper methodology. Commu-

nications of the ACM, 23(4), 1980, pp. 207–213.

[75] Brooks, R. E. A theoretical analysis of the role of documentation in the comprehension of computer programs.

In Proceedings of Human Factors in Computer Systems (Gaithersburg, Maryland, Mar 15–17 1982), M. Schneider,

Ed., Association for Computing Machinery, 1982, pp. 125–129.

[76] Brooks, R. E. Towards a theory of the comprehension of computer programs. International Journal of Man-

Machine Studies, 18(6), 1983, pp. 543–554.

[77] Brooks, R. E. Comparative task analysis: An alternative direction for human-computer interaction science. In

Carroll [101], ch. 4, pp. 50–61.

[78] Brooks Jr., F. P. No silver bullet: Essence and accidents of software engineering. Computer, 20(4), Apr. 1987,

pp. 10–19.

[79] Brooks Jr., F. P. The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Addison Wesley,

1995.

[80] Brouwer-Janse, M. D., and Harrington, T. L., Eds. Human-Machine Communication for Educational Systems Design,

vol. 129 of NATO ASI Series. Series F, Computer and System Sciences. Springer-Verlag, 1994.

[81] Brown, A., and Wallnau, K. A framework for systematic evaluation of software technologies. IEEE Software,

13(5), Sept. 1996.

[82] Brown, A. W., Earl, A. N., and McDermid, J. A. Software Engineering Environments: Automated Support for Software

Engineering. McGraw-Hill, 1992.

[83] Brown, P. J. Integrated hypertext and program understanding tools. IBM Systems Journal, 30(3), 1991, pp. 363–

391.

[84] Buckingham Shum, S. Practise what we preach: Making HCI design techniques usable. In STIMDI-95: Annual

Conference of the Swedish Interdisciplinary Interest Group for Human-Computer Interaction (University of Uppsala,

Sweden, May 22–23 1995), 1995.

[85] Buckingham Shum, S., and Hammond, N. Argumentation-based design rationale: What use at what cost?

International Journal of Human-Computer Studies, 40(4), Apr. 1994, pp. 603–652.

[86] Buckingham Shum, S., and Hammond, N. Delivering HCI modelling to designers: A framework and case

study of cognitive modelling. Interacting With Computers, 6(3), 1994, pp. 314–341.

[87] Bush, V. As we may think. Interactions, 3(2), Mar. 1996. Originally published in “The Atlantic Monthly”, July,

1945.

[88] Butler, S. Erewhon, or Over the Range, vol. 2 of The Shewsbury Edition of the Works of Samuel Butler. AMS Press,

1968.

[89] Butterworth, R., Blandford, A., and Duke, D. Using formal models to explore display-based usability. Journal

of Visual Languages and Computing, 10(5), 1999, pp. 455–479.

[90] Byerley, P. F., Barnard, P. J., and May, J., Eds. Computers, Communication and Usability: Design Issues, Research and

Methods for Integrated Services. Elsevier Science Ltd., Amsterdam, 1993.

[91] Byrne, E. J. A conceptual foundation for software re-engineering. In Proceedings of the IEEE Conference on Software

Maintenance – 1992, IEEE Computer Society Press, 1992, pp. 226–235.

BIBLIOGRAPHY 355

[92] Card, S., and Moran, T. User technology: From pointing to pondering. In HPW’86 [751], pp. 183–198. Reprinted

in “Readings in Human–Computer Interaction: Toward the Year 2000”, R. M. Baecker, J. Grudin, W. A. S. Buxton

and S. Greenberg, ed., 2nd ed., Morgan-Kaufmann, 1995.

[93] Card, S. K. Theory-driven design research. In Applications of Human Performance Models to System Design (Pro-

ceedings of the NATO Reserach Study Group 9 Workshop, Orlando, Fla, 1988), G. R. McMillan, D. Beevis,

E. Salas, M. H. Strub, and R. Sutton, Eds., Plenum, 1989, pp. 501–509.

[94] Card, S. K., Moran, T. P., and Newell, A. The Psychology of Human-Computer Interaction. Lawrence Erlbaum

Associates, Hillsdale, NJ, 1983.

[95] Card, S. K., Robert, J. M., and Keenan, L. N. On-line composition of text. In INTERACT’84 [755], pp. 51–56.

[96] Cardelli, L. Type systems. In Handbook of Computer Science and Engineering. CRC Press, 1997, ch. 103, pp. 2208–

2236.

[97] Carpenter, P. A., and Just, M. A. Computational modeling of high-level cognition versus hypothesis testing. In

Sternberg [617], ch. 8, pp. 245–292.

[98] Carroll, J., and Mack, R. Learning to use a word processor: By doing, by thinking, and by knowing. In Human

Factors in Computer Systems, J. C. Thomas and M. L. Schneider, Eds., Ablex Publishing Corporation, 1984, pp. 13–

51.

[99] Carroll, J. M. Psychology and the user interface: Science is soft at the frontier. In Proceedings of Graphics Interface

’86 and Vision Interface ’86 (Vancouver, BC, May 26–30 1986), Canadian Information Processing Society, 1986,

pp. 186–187.

[100] Carroll, J. M., Ed. Interfacing Thought: Cognitive Aspects of Human-Computer Interaction. MIT Press, Cambridge,

MA, 1987.

[101] Carroll, J. M., Ed. Designing Interaction: Psychology at the Human-Computer Interface. Cambridge University Press,

1991.

[102] Carroll, J. M. Artifacts and scenarios: An engineering approach. In Monk and Gilbert [415], ch. 6, pp. 121–144.

[103] Carroll, J. M. Human–computer interaction: Psychology as a science of design. International Journal of Human-

Computer Studies, 46(4), 1997, pp. 501–522.

[104] Carroll, J. M., and Campbell, R. L. Artifacts as psychological theories: The case of human-computer interaction.

Behaviour and Information Technology, 8(4), 1989, pp. 247–256.

[105] Carroll, J. M., and Kellogg, W. A. Artifact as theory-nexus: Hermeneutics meet theory-based design. In CHI’89

[730], pp. 7–14.

[106] Carroll, J. M., Kellogg, W. A., and Rosson, M. B. The task-artifact cycle. In Carroll [101], ch. 6, pp. 74–102.

[107] Carroll, J. M., Mack, R. L., Robertson, S. P., and Rosson, M. B. Binding objects to scenarios of use. International

Journal of Human-Computer Studies, 41(1/2), 1994, pp. 243–276.

[108] Carroll, J. M., and Rosson, M. B. Usability specification as a tool in iterative development. In Advances in

Human–Computer Interaction, H. R. Hartson, Ed., vol. 1 of Human/Computer Interaction Series. Ablex Publishing

Corporation, Norwood, NJ, 1985, pp. 1–15.

[109] Carroll, J. M., and Rosson, M. B. Paradox of the active user. In Carroll [100], ch. 5, pp. 80–111. Online at

http://www.winterspeak.com/columns/paradox.html, Checked 2001/09/04.

[110] Carroll, J. M., and Rosson, M. B. Getting around the task-artifact cycle: How to make claims and design by

scenario. ACM Transactions on Information Systems, 10(2), 1992, pp. 181–212.

BIBLIOGRAPHY 356

[111] Carroll, J. M., Singer, J. A., Bellamy, R. K. E., and Alpert, S. R. A view matcher for learning smalltalk. In

CHI’90 [731], pp. 431–437.

[112] Carswell, C. M. Choosing specifiers: An evaluation of the basic task models of graphical perceptions. Human

Factors, 34(5), 1993, pp. 535–544.

[113] Carver, N., and Lesser, V. The evolution of blackboard control architectures. Tech. Rep. TR–92–71, Department

of Computer Science, University of Massachusetts, 1992. Expanded version of paper in Expert Systems with

Applications, 7(1), pg. 1–30, 1994.

[114] Cary, M., and Carlson, R. A. External support and the development of problem-solving routines. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 25(4), 1999, pp. 1053–1070.

[115] Casner, S., and Larkin, J. H. Cognitive efficiency considerations for good graphic design. In Proceedings of the

11th Annual Conference of the Cognitive Science Society (Aug 16–19 1989), Lawrence Erlbaum Associates, 1989,

pp. 275–282.

[116] Casner, S. M. A task-analytic approach to the automated design of graphic presentations. ACM Transactions on

Graphics, 10(2), 1991, pp. 111–151.

[117] Chalmers, D. J. A computational foundation for the study of cognition. Cogprint ID cog000000319,

http://cogprints.soton.ac.uk. An extended version of the paper “On Implementing a Computation”, Minds and

Machines, 4, 1994, pp. 391–402.

[118] Chandler, P., and Sweller, J. Cognitive load while learning to use a computer program. Applied Cognitive

Psychology, 10(2), 1996, pp. 151–170.

[119] Chandrasekaran, B. Design problem solving: A task analysis. AI Magazine, 11(4), 1990, pp. 59–71. Reprinted

in “Knowledge Aided Design”, vol. 10 of Knowledge Based Systems, Marc Green, ed., Academic Press, 1992,

pp. 25–46.

[120] Chen, C., and Rada, R. Interacting with hypertext: A meta-analysis of experimental studies. Human-Computer

Interaction, 11(2), 1996, pp. 125–156.

[121] Chen, Z. Toward a better understanding of idea processors. Information and Software Technology, 40(10), 1998,

pp. 541–553.

[122] Cheng, P. C.-H. Functional roles for the cognitive analysis of diagrams in problem solving. In Proceedings of the

Eighteenth Annual Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, 1996, pp. 207–212.

[123] Chi, M. T. H., Glaser, R., and Farr, M. J., Eds. The Nature of Expertise. Lawrence Erlbaum Associates, 1988.

[124] Chignell, M., Hancock, P. A., and Takeshita, H. Human—computer interaction: The psychology of augmented

human behavior. In Hancock [287], ch. 11, pp. 291–327.

[125] Chignell, M. H., Motoyama, T., and Melo, V. Discount video analysis for usability engineering. In HCII’95 [750],

pp. 323–328.

[126] Chikofsky, E. J., and Cross II, J. H. Reverse engineering and design recovery: A taxonomy. IEEE Software, 7(1),

Jan. 1990, pp. 13–17.

[127] Chin, D. N., and Quilici, A. DECODE: A cooperative program understanding environment. Software

Maintenance—Research and Practice, 8(1), 1996, pp. 3–34.

[128] Chipman, S. F., Schraagen, J. M., and Shalin, V. L. Introduction to cognitive task analysis. In Schraagen et al.

[570], ch. 1, pp. 3–23.

BIBLIOGRAPHY 357

[129] Choi, E. M., and von Mayrhauser, A. Assessment of support for program understanding. In Proceedings of the

Second Symposium on Assessment of Quality Software Development Tools (May 27–29 1992), E. Nahouraii, Ed., 1992,

pp. 102–111.

[130] Christensen, S., Jorgensen, J. B., and Madsen, K. H. Design as interaction with computer based materials. In

DIS’97 [740], pp. 65–71.

[131] Christie, J. M., and Just, M. A. Remembering the location and content of sentences in a prose passage. Journal

of Educational Psychology, 68(6), 1976, pp. 702–710.

[132] Cioch, F. A., Palazzolo, M., and Lohrer, S. A documentation suite for maintenance programmers. In Proceedings

of the IEEE Conference on Software Maintenance – 1996 (Monterey, California, Nov 4–8 1996), IEEE Computer

Society Press, 1996, pp. 286–295.

[133] Clancey, W. J. AI: Inventing a new kind of machine. ACM Computer Surveys, 27(8), Sept. 1995.

[134] Clancey, W. J. Situated Cognition: on Human Knowledge and Computer Representations. Cambridge University

Press, Cambridge, UK, 1997.

[135] Clancey, W. J. Interactive coordination processes: How the brain accomplishes what we take for granted in

computer languages—and then does it better. In Pylyshyn [521], ch. 9, pp. 165–189.

[136] Clark, A. Being There: Putting Brain, Body, and World Together Again. MIT Press, 1997.

[137] Clark, A., and Chalmers, D. The extended mind. Analysis, 58, 1998, pp. 10–23. Reprinted in The Philosopher’s

Annual, 1998.

[138] Clarke, C., Cox, A., and Sim, S. Searching program source code with a structured text retrieval system. In

Proceedings on the 22nd Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval (Berkeley, CA, Aug 15–19 1999), Association for Computing Machinery, 1999, pp. 307–308.

[139] Clayton, R., Rugaber, S., Taylor, L., and Wills, L. M. A case study of domain-based program understanding. In

WPC’97 [770].

[140] Clegg, C. Psychology and information technology: The study of cognition in organizations. The British Journal

of Psychology, 85, Nov. 1994, pp. 449–477.

[141] Cole, E., and Dehdashti, P. Computer-based cognitive prosthetics: Assistive technology for the treatment of cog-

nitive disabilities. In Proceedings of the Third International ACM Conference on Assistive Technologies (ASSETS’98)

(Marina del Rey, CA, Apr 15–17 1998), 1998, pp. 11–18.

[142] Cole, M., and Engeström, Y. A cultural-historical approach to distributed cognition. In Salomon [558], ch. 1,

pp. 1–46.

[143] Cole, M. I. Algorithmic skeletons: A structured approach to the management of parallel computations. Tech.

Rep. CST–56–88, University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road,

Edinburgh, EH9 3JZ, Oct. 1988. PhD. Thesis.

[144] Collberg, C., Thomborson, C., and Low, D. A taxonomy of obfuscating transformations. Tech. Rep. TR–148,

Department of Computer Science, The University of Auckland, Auckland, N.Z., 1997.

[145] Consens, M. P. Creating and filtering structural data visualizations using Hygraph patterns. Tech. Rep. CSRI–

302, Computer Systems Research Institute, University of Toronto, Toronto, Canada M5S 1A1, Feb. 1994. PhD.

Thesis.

[146] Consens, M. P., and Mendelzon, A. O. Hy+: A hypergraph-based query and visualization system. ACM

SIGMOD Record, 22(2), 1993, pp. 511–516.

BIBLIOGRAPHY 358

[147] Cooper, R., and Shallice, T. Soar and the case for unified theories of cognition. Cognition, 55(2), 1995, pp. 115–149.

[148] Coplien, J. O. Software Patterns. SIGS Books & Multimedia, NY, NY, 1996.

[149] Corbi, T. A. Program understanding: Challenge for the 1990s. IBM Systems Journal, 28(2), 1989, pp. 294–306.

[150] Corkill, D. D. Blackboard systems. AI Expert, 9(6), Sept. 1991, pp. 40–47.

[151] Craig, I. D. From blackboards to agents. In Online Proceedings of the VIM Project Spring Workshop on

Collaboration Between Human and Artificial Societies (Lanjarón, Spain, May 1–3 1997), 1997. Retrieved from

http://www.maths.bath.ac.uk/�jap/VIM/lanjaron.html, 2000/08/31.

[152] Crosby, M. E., and Stelovsky, J. How do we read algorithms? A case study. Computer, 23(1), Jan. 1990, pp. 24–35.

[153] Cross, N., Christiaans, H., and Dorst, K., Eds. Analysing Design Activity. John Wiley and Sons, 1996.

[154] Cummaford, S., and Long, J. Towards a conception of HCI engineering design principles. In Proceedings of

ECCE-9: Ninth European Conference on Cognitive Ergonomics (Limerick, Ireland, Aug 24–26 1998), Published on-

line at http://www.cs.vu.nl/ eace/ECCE9/, 1998.

[155] Curtis, B. By the way, did anyone study any real programmers? In ESP’86 [741], pp. 256–268.

[156] Curtis, B. Five paradigms in the psychology of programming. In Helander [302], ch. 4, pp. 87–105.

[157] Curtis, B. Empirical studies of the software design process. In INTERACT’90 [756], pp. xxxv–xl.

[158] Curtis, B. Techies as non-technological factors in software engineering? In ICSE’91 [753], pp. 147–148.

[159] Curtis, B., Krasner, H., and Iscoe, N. A field study of the software design process for large systems. Communi-

cations of the ACM, 31(11), Nov. 1988, pp. 1268–1287.

[160] Curtis, B., and Walz, D. The psychology of programming in the large: Team and organizational behaviour. In

Hoc et al. [307], ch. 4.1, pp. 253–270.

[161] Daly, J., Brooks, A., Miller, J., Roper, M., and Wood, M. An empirical study evaluating depth of inheritance on

the maintainability of object-oriented software. Empirical Software Engineering, 1(2), 1996, pp. 109–132.

[162] Daly, J. W. Replication and a Multi-Method Approach to Empirical Software Engineering Research. PhD thesis, De-

partment of Computer Science, University of Strathclyde, Glasgow, 1996.

[163] Davies, S. P. Characterizing the program design activity: Neither strictly top-down nor globally opportunistic.

Behaviour and Information Technology, 10(3), 1991, pp. 173–190.

[164] Davies, S. P. The role of expertise in the development of display-based problem solving strategies. In Proceedings

of the 14th Annual Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, 1992, pp. 797–802.

[165] Davies, S. P. Externalising information during coding activities: Effects of expertise, environment and task. In

ESP’93 [744], pp. 42–61.

[166] Davies, S. P. Display-based skills in a complex domain: The use of external information sources in computer

programming. In HCII’95 [750], pp. 641–646.

[167] Davies, S. P. Display-based problem-solving strategies in computer programming. In ESP’96 [745].

[168] Davies, S. P. External information sources in computer programming. the role of textual and graphical repre-

sentations in support of complex problem solving activities. In IEE Colloquium on Thinking with Diagrams (Jan

18 1996), Institute for Electrical Engineers, 1996, pp. 21–22.

[169] Davies, S. P., and Castell, A. M. Linking theory with ITS implementation: Models of programming and the

development of programming tutors. In NATO.ASI.111 [759], pp. 172–184.

BIBLIOGRAPHY 359

[170] Dawkins, R. The Blind Watchmaker. Longmans, London, 1986.

[171] de Greef, H. P., and Neerincx, M. A. Cognitive support: Designing aiding to supplement human knowledge.

International Journal of Human-Computer Studies, 42(5), 1995, pp. 531–571.

[172] de Vries, E., and de Jong, T. The design and evaluation of hypertext structures for supporting design problem

solving. Instructional Science, 27(3), 1999, pp. 285–302.

[173] Decker, K. S., and Lesser, V. R. Coordination assistance for mixed human and computational agent systems.

In Proceedings of the Second International Conference on Computational Agents (McLean, Virginia, Aug 23–25 1995),

1995. Available as tech. rep. CSTR–95–31, Computer Science Dept., U. of Massachusetts, 1995.

[174] Demirors, E., and Coyle, F. Behavioral factors in software development. In HCII’95 [750], pp. 665–670.

[175] Denley, I., and Long, J. A planning aid for human factors evaluation practice. Behaviour and Information Technol-

ogy, 16(4/5), 1997, pp. 203–219.

[176] Dennett, D. C. Real patterns. Journal of Philsophy, LXXXVIII(I), Jan. 1991, pp. 25–51. Reprinted in Brainchildren:

Essays on Designing Minds, MIT Press, 1998, ch 5.

[177] Dennett, D. C. Darwin’s Dangerous Idea: Evolution and the Meanings of Life. Simon and Schuster, New York, NY,

1995.

[178] Derry, S. J., and Lajoie, S. P., Eds. Computers as Cognitive Tools. Lawrence Erlbaum Associates, 1993.

[179] Devanbu, P. T., Brachman, R. J., Selfridge, P. G., and Ballard, B. W. LaSSIE: A knowledge-based software

information system. Communications of the ACM, 34(5), May 1991, pp. 34–49.

[180] Dillenbourg, P. Distributing cognition over humans and machines. In Vosniadou et al. [684], ch. 9, pp. 165–183.

[181] Dillenbourg, P., and Self, J. A. A computational approach to socially distributed cognition. European Journal of

Psychology of Education, 7(4), 1992, pp. 352–373.

[182] Dillon, A. Reading from paper versus screens: A critical review of the empirical literature. Ergonomics, 35(10),

1992, pp. 1297–1326.

[183] Dillon, A. Designing Usable Electronic Text: Ergonomic Aspects of Human Information Usage. Taylor and Francis,

London, 1994.

[184] Dillon, A. TIMS: A framework for the design of usable electronic text. In van Oostendorp and de Mul [652],

ch. 5, pp. 99–120.

[185] Dillon, A., and Watson, C. User analysis in HCI: the historical lessons from individual differences research.

International Journal of Human-Computer Studies, 45(6), 1996, pp. 619–637.

[186] diSessa, A. A. Local sciences: Viewing the design of human–computer systems as cognitive science. In Carroll

[101], ch. 10, pp. 162–202.

[187] Dishaw, M. T., and Strong, D. M. Assessing software maintenance tool utilization using task–technology fit and

fitness-for-use models. Software Maintenance—Research and Practice, 10(3), 1998, pp. 151–179.

[188] Dishaw, M. T., and Strong, D. M. Supporting software maintenance with software engineering tools: A com-

puted task–technology fit analysis. The Journal of Systems and Software, 44, 1998, pp. 107–120.

[189] Dowell, J., and Long, J. Conception of the cognitive engineering design problem. Ergonomics, 41(2), 1998,

pp. 126–139.

[190] Draper, S. W. The nature of expertise in UNIX. In INTERACT’84 [755], pp. 465–471.

BIBLIOGRAPHY 360

[191] Draper, S. W. The notion of task in HCI. In INTERCHI’93 [757], pp. 207–208.

[192] Duke, D. J., Barnard, P. J., Duce, D. A., and May, J. Syndetic modelling. Human Computer Interaction, 13(4), 1998,

pp. 337–393.

[193] Dunson, P. J., and Ridgeway, V. G. The effect of graphic organizers on learning and remembering information

from connected discourse. Forum for Reading, 22(1), 1990, pp. 15–23.

[194] Eastman, C. M. Cognitive processes and ill-defined problems: A case study from design. In Proceedings of the

International Joint Conference on Artificial Intelligence: IJCAI-69 (Washington, DC, May 9 1969), 1969, pp. 669–690.

[195] Ecker, C., Kelly, I., and Stacey, M. Cognitive foundations for interactive generative systems in early design.

In Proceedings of the 12th International Conference on Engineering Design, ICED 99: Communication and Cooperation

of Practice and Science (Munich, Germany, Aug 24–26 1999), U. Lindemann, H. Birkhofer, H. Meerkamm, and

S. Vajna, Eds., Technische Universität München, 1999.

[196] Edwards, W., and Fasolo, B. Decision technology. Annual Review of Psychology, 52, 2001, pp. 581–606.

[197] Egan, D. E. Individual differences in Human–Computer Interaction. In Helander [302], ch. 24, pp. 543–568.

[198] Eick, S. G., Steffen, J. L., and Sumner Jr., E. E. Seesoft - A tool for visualizing line oriented software statistics.

IEEE Transactions on Software Engineering, 18(11), Nov. 1992, pp. 957–968.

[199] Engelbart, D. The augmented knowledge workshop. In HPW’86 [751], pp. 73–83.

[200] Engelbart, D. C. Special considerations of the individual as a user, generator, and retriever of information.

American Documentation, 12(2), Apr. 1961, pp. 121–125. Presented at the Annual Meeting of the American Doc-

umentation Institute, Berkeley, CA, October 23–27, 1960.

[201] Engelbart, D. C. Toward augmenting the human intellect and boosting our collective IQ. Communications of the

ACM, 38(8), Aug. 1995.

[202] Engestroöm, Y., and Middleton, D., Eds. Cognition and Communication at Work. Cambridge University Press,

1996.

[203] Engestroöm, Y., Miettinen, R., and Punamäki, R.-L., Eds. Perspectives on Activity Theory. Cambridge University

Press, 1999.

[204] Erdem, A., Johnson, W. L., and Marsella, S. User and task tailored software explanations. Retrieved from

http://www.isi.edu/isd/I-DOC/ASE99J.ps, 2001/03/01.

[205] Erickson, T. Lingua Francas for design: Sacred places and pattern languages. In DIS’2000 [739], pp. 357–368.

[206] Ericsson, K. A., and Chase, W. G. Exceptional memory. American Scientist, 6, 1982, pp. 607–612.

[207] Ericsson, K. A., and Simon, H. A. Protocol Analysis. MIT Press, 1984.

[208] Fagan, M. E. Design and code inspections to reduce errors in program development. IBM Systems Journal, 15(3),

1976, pp. 182–211. Reprinted in IBM Systems Journal, 38(2/3), 1999, pp. 258–287.

[209] Fensel, D., and Motta, E. Structured development of problem solving methods. In Eleventh Workshop on Knowl-

edge Acquisition, Modeling and Management (Banff, Canada, Apr 18–23 1998), 1998.

[210] Fields, B., Wright, P. C., and Harrison, M. D. Designing human-system interaction using the resource model.

In Human Factors of IT: Enhancing Productivity and Quality of Life (Proceedings of the 1st Asia-Pacific Conference on

Human Computer Interaction) (Singapore), June 1996.

[211] Fields, B., Wright, P. C., and Harrison, M. D. Objectives, strategies and resources as design drivers. In Human

Computer Interaction: INTERACT’97 (Sidney, Australia, Jul 14–18 1997), S. Howard, J. Hammond, and G. Lin-

gaard, Eds., Chapman & Hall, 1997, pp. 164–171.

BIBLIOGRAPHY 361

[212] Findlay, J. M., Davies, S. P., Kentridge, R., Lambert, A. J., and Kelly, J. Optimum display arrangements for

presenting visual reminders. In HCI’88 [746], pp. 453–464.

[213] Finnigan, P. J., Holt, R. C., Kalas, I., Kerr, S., Kontogiannis, K., Müller, H. A., Mylopoulos, J., Perelgut, S. G.,

Stanley, M., and Wong, K. The software bookshelf. IBM Systems Journal, 36(4), Nov. 1997.

[214] Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles, D., Reeves, B., and Shipman, F. Seeding, evolutionary

growth and reseeding: The incremental development of collaborative design environments. In Coordination The-

ory and Collaboration Technology, G. M. Olson, T. W. Malone, and J. B. Smith, Eds. Lawrence Erlbaum Associates,

Mahwah, NJ, 2001, pp. 447–472.

[215] Fischer, G., Henninger, S., and Redmiles, D. F. Cognitive tools for locating and comprehending software objects

for reuse. In ICSE’91 [753], pp. 318–328.

[216] Fischer, G., Lemke, A. C., McCall, R., and Morch, A. I. Making argumentation serve design. In Moran and

Carroll [420], ch. 9, pp. 267–293.

[217] Fisher, C. Advancing the study of programming with computer-aided protocol analysis. In ESP’87 [742],

pp. 198–216.

[218] Fisher, J. Defining the novice user. Behaviour and Information Technology, 10(5), 1991, pp. 437–441.

[219] Flach, J., Hancock, P., Caird, J., and Vicente, K. J., Eds. Global Perspectives on the Ecology of Human–Machine

Systems. Lawrence Erlbaum Associates, 1995.

[220] Flach, J., Hancock, P., Caird, J., and Vicente, K. J. Preface. In Global Perspectives on the Ecology of Human–Machine

Systems [219], pp. xi–xiv.

[221] Flach, J. M. The ecology of human-machine systems: A personal history. In Flach et al. [219], ch. 1, pp. 1–13.

[222] Fleishman, E. A., and Quaintance, M. K. Taxonomies of Human Performance: The Description of Human Tasks.

Academic Press, Boston, MA, 1984.

[223] Flor, N. V. Side-by-side collaboration: Case study. International Journal of Human-Computer Studies, 49(3), 1998,

pp. 201–222.

[224] Flor, N. V., and Hutchins, E. L. Analyzing distributed cognition in software teams: A case study of team

programming during perfective software maintenance. In ESP’91 [743], pp. 36–64.

[225] Flower, L. Problem-solving Strategies for Writing, 4th ed. Harcourt Brace Jovanovich College Publishers, Fort

Worth, 1993.

[226] Fogel, D. B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, 1995.

[227] Foltz, P. W. Comprehension, coherence and strategies in hypertext and linear text. In Rouet et al. [552], ch. 6,

pp. 109–136.

[228] Ford, L., and Tallis, D. Interacting visual abstractions of programs. In Proceedings of the 1993 IEEE Symposium on

Visual Languages (Bergen, Norway, Aug 24–27 1993), E. P. Glinert and K. A. Olsen, Eds., IEEE Computer Society

Press, 1993, pp. 93–99.

[229] Freed, M. A., and Shafto, M. G. Human-system modeling: Some principles and a pragmatic approach. In

Design, Specification and Verification of Interactive Systems ’97: Proceedings of the Eurographics Workshop (Grenada,

Spain, Jun 4–6 1997), M. D. Harrison and J. C. Torres, Eds., Springer-Verlag, 1997. Retrieved preprint from

http://human-factors.arc.nasa.gov/cognition/papers/freed/dsvis97.html, 2000/08/31.

[230] Furnas, G. W. Generalized fisheye views. In Proceedings of ACM CHI’86 Conference on Human Factors in Comput-

ing Systems (Boston, MA, Apr 13–17 1986), Association for Computing Machinery, 1986, pp. 16–23.

BIBLIOGRAPHY 362

[231] Gaines, B. R., and Shaw, M. L. G. Concept maps as hypermedia components. International Journal of Human-

Computer Studies, 43(3), 1995, pp. 323–361.

[232] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of Reusable, Object-Oriented Software.

Addison Wesley, 1994.

[233] Gannod, G., and Cheng, B. A framework for classifying and comparing software reverse engineering and

design recovery tools. In Proceedings of the Sixth Working Conference on Reverse Engineering (Atlanta, Georgia, Oct

6–8 1999), IEEE Computer Society Press, 1999, pp. 389–398.

[234] Garg, P. K., and Scacchi, W. On designing intelligent hypertext systems for information management in software

engineering. In Proceedings of the ACM Conference on Hypertext (Chapel Hill, NC, Nov 13–15 1987), Association

for Computing Machinery, 1987, pp. 409–432.

[235] Gedenryd, H. How Designers Work. PhD thesis, Cognitive Studies, Lund University, 1998.

[236] Gibson, J. J. The Ecological Approach to Visual Perception. Houghton-Mifflin, Boston, MA, 1979.

[237] Gillies, A. C. Making information systems fit user needs. In Proceedings of the Fifth International Conference on

Human–Computer Interaction (HCI International ’93) (Orlando, Fla, Aug 8–13 1993), M. J. Smith and G. Salvendy,

Eds., vol. 19A–19B of Advances in Human Factors/Ergonomics, Elsevier Science Ltd., 1993, pp. 391–396.

[238] Gilmore, D. J. Methodological issues in the study of programming. In Hoc et al. [307], ch. 1.5, pp. 83–98.

[239] Gilmore, D. J. Visibility: A dimensional analysis. In HCI’91 [748], pp. 317–329.

[240] Gilmore, D. J., and Green, T. R. G. Comprehension and recall of miniature programs. International Journal of

Man-Machine Studies, 21(1), 1984, pp. 31–48.

[241] Gilmore, D. J., and Green, T. R. G. Programming plans and programming expertise. Quarterly Journal of Experi-

mental Psychology, 40A(3), 1988, pp. 423–442.

[242] Gilmore, D. J., Winder, R. L., and Détienne, F., Eds. User-Centred Requirements for Software Engineering Environ-

ments, vol. 123 of NATO ASI Series F. Springer-Verlag, 1994.

[243] Goel, V. Sketches of Thought. MIT Press, Cambridge, MA, 1995.

[244] Goel, V., and Pirolli, P. I. The structure of design problem spaces. Cognitive Science, 16(3), 1992, pp. 395–429.

[245] Goguen, J. Tossing algebraic flowers down the great divide. In People and Ideas in Theoretical Computer Science,

C. S. Calude, Ed. Springer, New York, 1999, pp. 93–129.

[246] Goldman, S. R. Reading, writing, and learning in hypermedia environments. In van Oostendorp and de

Mul [652], ch. 2, pp. 7–42.

[247] Goldman, S. R., Zech, L. K., Biswas, G., Noser, T., and The Cognition and Technology Group at Vanderbilt. Com-

puter technology and complex problem solving: Issues in the study of complex cognitive activity. Instructional

Science, 27(3), 1999, pp. 235–268.

[248] Golovchinsky, G. Hypertext interfaces for programmers. In SEHCIW’94 [762].

[249] Good, J. The ‘right’ tool for the task: An investigation of external representations, program abstractions, and

task requirements. In ESP’96 [745].

[250] Good, J. Programming Paradigms, Information Types and Graphical Representations: Empirical Investigations of Novice

Program Comprehension. PhD thesis, The University of Edinburgh, 1999.

[251] Gould, J. D., and Lewis, C. Designing for usability: Key principles and what designers think. Communications

of the ACM, 28(3), Mar. 1985, pp. 300–311.

BIBLIOGRAPHY 363

[252] Graham, M., Kennedy, J., and Benyon, D. Towards a methodology for developing visualizations. International

Journal of Human-Computer Studies, 53(5), 2000, pp. 789–807.

[253] Gray, W. D., and Altmann, E. M. Cognitive modeling and human-computer interaction. In Karwowski [341],

pp. 387–391.

[254] Gray, W. D., John, B. E., and Atwood, M. E. Project Ernestine: Validating a GOMS analysis for predicting and

explaining real-world task performance. Human Computer Interaction, 8(3), 1993, pp. 237–309.

[255] Gray, W. D., and Kirschenbaum, S. S. Analyzing a novel expertise: An unmarked road. In Schraagen et al. [570],

ch. 17, pp. 275–290.

[256] Green, C., and Gilhooly, K. Protocol analysis: Practical implementation. In Handbook of Qualitative Research

Methods for Psychology and the Social Sciences, J. T. E. Richardson, Ed. British Psychological Society, 1996, ch. 5,

pp. 55–74.

[257] Green, T. R. G. Cognitive dimensions of notations. In HCI’89 [747], pp. 443–460.

[258] Green, T. R. G. The cognitive dimension of viscosity: A sticky problem for HCI. In INTERACT’90 [756], pp. 79–

86.

[259] Green, T. R. G. Limited theories as a framework for human-computer interaction. In Ackermann and Tauber [3],

ch. 1, pp. 3–40.

[260] Green, T. R. G. The nature of programming. In Hoc et al. [307], ch. 1.2, pp. 21–44.

[261] Green, T. R. G. Programming languages as information structures. In Hoc et al. [307], ch. 2.2, pp. 117–137.

[262] Green, T. R. G. Describing information artifacts with cognitive dimensions and structure maps. In HCI’91 [748],

pp. 297–315.

[263] Green, T. R. G. Why software engineers don’t listen to what psychologists don’t tell them anyway. In Gilmore

et al. [242], pp. 323–333.

[264] Green, T. R. G. Looking through HCI. In HCI’95 [749], pp. 21–36.

[265] Green, T. R. G. Commentary: The conception of a conception. Ergonomics, 41(2), 1998, pp. 143–146.

[266] Green, T. R. G. Instructions and descriptions: Some cognitive aspects of programming and similar activities. In

Proceedings of Working Conference on Advanced Visual Interfaces (AVI 2000) (Palmero, Italy, May 23–26 2000), V. D.

Gesù, A. Levialdi, and L. Tarantino, Eds., ACM Press, 2000, pp. 21–28.

[267] Green, T. R. G., Bellamy, R. K. E., and Parker, J. M. Parsing and gnisrap: A model of device use. In ESP’87 [742],

pp. 132–146.

[268] Green, T. R. G., and Benyon, D. R. The skull beneath the skin: Entity-relationship models of information

artifacts. International Journal of Human-Computer Studies, 44(6), 1996, pp. 801–828.

[269] Green, T. R. G., and Blackwell, A. Cognitive Dimensions of Information Artefacts: a Tutorial, Oct. 1998. From

http://www.ndirect.co.uk/�thomas.green/workStuff/Papers/, retrieved 2000/11/30.

[270] Green, T. R. G., Davies, S. P., and Gilmore, D. J. Delivering cognitive psychology to HCI: the problems of

common language and knowledge transfer. Interacting With Computers, 8(1), 1996, pp. 89–11.

[271] Green, T. R. G., Gilmore, D. J., Blumenthal, B. B., Davies, S. P., and Winder, R. L. Towards a cognitive browser

for OOPS. International Journal of Human-Computer Interaction, 4(1), 1992, pp. 1–34.

[272] Green, T. R. G., and Petre, M. Usability analysis of visual programming environments: A ‘cognitive dimensions’

framework. Journal of Visual Languages and Computing, 7(2), 1996, pp. 131–174.

BIBLIOGRAPHY 364

[273] Green, T. R. G., Petre, M., and Bellamy, R. K. E. Comprehensibility of visual and textual programs: A test of

superlativism against the ’match-mismatch’ conjecture. In ESP’91 [743], pp. 121–146.

[274] Green, T. R. G., Schiele, F., and Payne, S. J. Formalisable models of user knowledge in human–computer inter-

action. In Working With Computers: Theory Versus Outcome, G. C. van der Veer, T. R. G. Green, J.-M. Hoc, and

D. Murray, Eds. Academic Press Limited, 1989, pp. 3–46.

[275] Greenberg, S. The Computer User as Toolsmith: The Use, Reuse, and Organization of Computer-based Tools. Cambridge

University Press, 1993.

[276] Greenberg, S., and Thimbleby, H. The weak science of human-computer interaction. In CHI’92 Research Sympo-

sium on Human–Computer Interaction (Monterey, CA), 1992.

[277] Greeno, J. Situations, mental models, and generative knowledge. In Klahr and Kotovsky [355], ch. 11, pp. 285–

318.

[278] Griswold, W. G. Coping with software change using information transparency. Tech. Rep. CS98–585, University

of California, San Diego, Department of Computer Science and Engineering, Apr. 1998.

[279] Griswold, W. G., Chen, M. I., Bowdidge, R. W., and Morgenthaler, J. D. Tool support for planning the restruc-

turing of data abstractions in large systems. In Proceedings of the ACM SIGSOFT Conference on the Foundations of

Software Engineering (FSE-4) (San Francisco, CA, Oct 16–18 1996), Association for Computing Machinery, 1996.

[280] Grudin, J. The computer reaches out: The historical continuity of interface design. In CHI’90 [731], pp. 261–268.

[281] Guarino, N. Formal ontology, conceptual analysis and knowledge representation. International Journal of

Human-Computer Studies, 43(5–6), 1995, pp. 625–640.

[282] Guinan, P. J., Cooprider, J. G., and Sawyer, S. The effective use of automated application development tools.

IBM Systems Journal, 36(1), 1997, pp. 124–139.

[283] Guindon, R. Designing the design process: Exploiting opportunistic thoughts. Human Computer Interaction,

5(2-3), 1990, pp. 305–344.

[284] Guindon, R. Requirements and design of DesignVision, an object-oriented graphical interface to an intelligent

software design assistant. In CHI’92 [732], pp. 499–506.

[285] Guindon, R., and Curtis, B. Control of cognitive processes during software design: What tools are needed?

In Proceedings of ACM CHI’88 Conference on Human Factors in Computing Systems (Washington, D.C., May 15–19

1988), Association for Computing Machinery, 1988, pp. 263–268.

[286] Hale, D. P., and Haworth, D. A. Towards a model of programmers’ cognitive processes in software maintenance:

A structural learning theory approach for debugging. Software Maintenance—Research and Practice, 3(1), 1991,

pp. 85–106.

[287] Hancock, P. A., Ed. Human Performance and Ergonomics. Academic Press Limited, 1999.

[288] Hansen, W. J. User engineering principles for interactive systems. In AFIPS Conference Proceedings 39, AFIPS

Press, 1971, pp. 523–532.

[289] Harnad, S. Interactive cognition: Exploring the potential of electronic quote/commenting. In Cognitive Technol-

ogy: In Search of a Humane Interface, B. Gorayska and J. L. Mey, Eds. Elsevier, 1995, ch. 25, pp. 397–414.

[290] Harrison, M. D., Fields, B., and Wright, P. C. Supporting concepts of operator control in the design of function-

ally distributed systems. In ALLFN’97: Revisiting the Allocation of Functions Issue. IEA Press, 1997, pp. 215–225.

[291] Hartman, H. J. Metacognition in teaching and learning: An introduction. Instructional Science, 26(1), 1998,

pp. 1–3.

BIBLIOGRAPHY 365

[292] Hatcliff, J., Magensen, T. A., and Thiemann, P., Eds. Partial Evaluation: Practice and Theory, vol. 1706 of Lecture

Notes in Computer Science. Springer, New York, 1999.

[293] Hayes, J. R., and Nash, J. G. The nature of planning in writing. In Levy and Ransdell [383], ch. 2, pp. 29–55.

[294] Hayes, P. Aristotelian and platonic views of knowledge representation. In CS’94 [737], pp. 1–10.

[295] Hayes-Roth, B. BB1: An architecture for blackboard systems that control, explain, and learn about their own

behavior. Tech. Rep. CS–TR–84–1034, Stanford University, Department of Computer Science, Dec. 1984.

[296] Hayes-Roth, B. A blackboard architecture for control. Artificial Intelligence, 26(3), 1985, pp. 251–322.

[297] Hayes-Roth, B. Architectural foundations for real-time performance in intelligent agents. Real-Time Systems:

The International Journal of Time-Critical Computing, 2, 1990, pp. 99–125.

[298] Hayes-Roth, B. Architectural foundations for real-time performance in intelligent agents. In Second Generation

Expert Systems, J.-M. David, J.-P. Krivine, and R. Simmons, Eds. Springer-Verlag, 1993, pp. 643–672.

[299] Hayes-Roth, B., and Hayes-Roth, F. A cognitive model of planning. Cognitive Science, 3, 1979, pp. 275–310.

[300] Hayes-Roth, B., Hewett, M., Washington, R., Hewett, R., and Seiver, A. Distributing intelligence within an

individual. Tech. Rep. CS–TR–88–1229, Stanford University, Department of Computer Science, Nov. 1988.

[301] Hearst, M., Kopec, G., and Brotsky, D. Research in support of digital libraries at Xerox PARC: Part II: Paper and

digital documents. D-Lib Magazine, June 1996. Retrieved from http://www.dlib.org/dlib/june96/06hearst.html,

2000/09/08.

[302] Helander, M., Ed. Handbook of Human–Computer Interaction. North Holland, 1988.

[303] Henderson, Jr., D. A., and Card, S. K. Rooms: the use of multiple virtual workspaces to reduce space contention

in a window-based graphical user interface. ACM Transactions on Graphics, 5(3), July 1986, pp. 211–243.

[304] Hertel, P. T. Implications of external memory for investigations of mind. Applied Cognitive Psychology, 7(7), Dec.

1993, pp. 665–674.

[305] Hoc, J.-M., Ed. Expertise and Technology: Cognition and Human–Computer Cooperation. Lawrence Erlbaum Asso-

ciates, 1995.

[306] Hoc, J.-M. From human–machine interaction to human–machine cooperation. Ergonomics, 43(7), 2000, pp. 833–

843.

[307] Hoc, J.-M., Green, T. R. G., Samurcay, R., and Gilmore, D. J., Eds. Psychology of Programming. Academic Press

Limited, San Diego, 1990.

[308] Hoc, J.-M., Green, T. R. G., Samurcay, R., and Gilmore, D. J. Theoretical and methodological issues. In Hoc

et al. [307], ch. 1.0, pp. 1–7. Introduction to Chapter 1.

[309] Hockey, G. R. J., and Westerman, S. J. Commentary: Advancing human factors involvement in engineering

design: a bridge not far enough? Ergonomics, 41(2), 1998, pp. 147–149.

[310] Holbrook, S. H. The Golden Age of Quackery. Macmillan, New York, 1959.

[311] Hollan, J., Hutchins, E., and Kirsh, D. Distributed cognition: Toward a new foundation for human–computer

interaction research. ACM Transactions on Computer-Human Interaction, 7(2), June 2000, pp. 174–196.

[312] Hollnagel, E., Cacciabue, P. C., and Hoc, J.-M. Work with technology: Some fundamental issues. In Hoc [305],

ch. 1, pp. 1–42.

[313] Holt, P. O., and Williams, N., Eds. Computers and Writing: State of the Art. Kluwer Academic Publishers, 1992.

BIBLIOGRAPHY 366

[314] Howes, A. An introduction to cognitive modelling in human–computer interaction. In Monk and Gilbert [415],

ch. 5, pp. 97–119.

[315] Howes, A., and Young, R. M. The role of cognitive architecture in modelling the user: Soar’s learning mecha-

nism. Human Computer Interaction, 12(4), 1997, pp. 311–343.

[316] Hubka, V., and Eder, W. E. Design Science: Introduction to the Needs, Scope and Organization of Engineering Design

Knowledge. Springer-Verlag, London, 1996.

[317] Hunt, E. What is a theory of thought? In Sternberg [617], ch. 1, pp. 3–49.

[318] Hunter, I. M. L. Memory in everyday life. In Applied Problems in Memory, M. M. Gruneberg and P. E. Morris,

Eds. Academic Press Limited, 1979, ch. 1, pp. 1–13.

[319] Hutchins, E. L. Learning to navigate. In Understanding Practice: Perspectives on Activity and Context, S. Chaiklin

and J. Lave, Eds. Cambridge University Press, 1993, ch. 2, pp. 35–63.

[320] Hutchins, E. L. Cognition in the Wild. MIT Press, 1995.

[321] Hutchins, E. L. How a cockpit remembers its speed. Cognitive Science, 19, 1995, pp. 265–288.

[322] Hutchins, E. L., Hollan, J. D., and Norman, D. A. Direct manipulation interfaces. In Norman and Draper [475],

ch. 5, pp. 87–124.

[323] Hutchins, E. L., and Klausen, T. Distributed cognition in an airline cockpit. In Engestroöm and Middleton [202],

ch. 2, pp. 15–34.

[324] Imagix. Imagix-4D User’s Manual.

[325] Intons-Peterson, M. J. External memory aids and their relation to memory. In Cognitive Psychology Applied,

C. Izawa, Ed. Lawrence Erlbaum Associates, 1993, ch. 6, pp. 135–158.

[326] Intons-Peterson, M. J., and Fornier, J. External and internal memory aids: When and how often do we use them?

Journal of Experimental Psychology: General, 115(3), Mar. 1986, pp. 267–280.

[327] Jackson, D. Aspect: Detecting bugs with abstract dependencies. ACM Transactions on Software Engineering and

Methodology, 4(2), Apr. 1995, pp. 109–145.

[328] Jackson, D., and Rollins, E. J. Abstraction mechanisms for pictorial slicing. In WPC’94 [768], pp. 82–88.

[329] Jackson, S. L., Krajcik, J., and Soloway, E. M. The design of guided learner-adaptable scaffolding in interactive

learning environments. In CHI’98 [736], pp. 187–194.

[330] Jahnke, J. H. Management of Uncertainty and Inconsistency in Database Reengineering Processes. PhD thesis, Fach-

bereich Mathematik-Informatik, Universität Paderborn, Aug. 1999.

[331] Jahnke, J. H., and Walenstein, A. Reverse engineering tools as media for imperfect knowledge. In WCRE’2000

[765], pp. 22–31.

[332] Jarvenpaa, S. L., and Dickson, G. W. Graphics and managerial decision making: Research-based guidelines.

Communications of the ACM, 31(6), June 1988, pp. 764–774.

[333] Jennings, N. R. Coordination techniques for distributed artificial intelligence. In Foundations of Distributed

Artificial Intelligence, G. M. P. O’Hare and N. R. Jennings, Eds. John Wiley and Sons, 1996, ch. 6, pp. 187–210.

[334] Jennings, N. R., Sycara, K., and Wooldridge, M. A roadmap of agent research and development. Autonomous

Agents and Multi-Agent Systems, 1, 1998, pp. 275–306.

[335] John, B. E., and Kieras, D. E. Using GOMS for user interface design and evaluation: Which technique? ACM

Transactions on Computer-Human Interaction, 3(4), Dec. 1996, pp. 320–351.

BIBLIOGRAPHY 367

[336] Johnson, P., Johnson, H., and Wilson, S. Rapid prototyping of user interfaces driven by task models. In Scenario-

based Design: Envisioning Work and Technology in System Development, J. Carroll, Ed. John Wiley, 1995, pp. 209–246.

[337] Jones, W. P. On the applied use of human memory models: The memory extender personal filing system.

International Journal of Man-Machine Studies, 25(2), 1986, pp. 191–228.

[338] Kaindl, H. How to identify binary relations for domain models. In Proceedings of the 18th International Conference

on Software Engineering (Berlin, Germany, Mar 25–29 1996), IEEE Computer Society Press, 1996, pp. 28–36.

[339] Kaptelinin, V. Human computer interaction in context: The activity theory perspective. In East-West Interna-

tional Conference on Human-Computer Interaction: Proceedings of the EWHCI’92 (St.-Petersburg, Russia, Aug 4–8

1992), J. Gornostaev, Ed., International Centre for Scientific and Technical Information (ICSTI), 1992, pp. 7–13.

[340] Kaptelinin, V., Nardi, B. A., and MacAulay, C. The activity checklist: A tool for representing the space of context.

Interactions, 6(4), 1999, pp. 27–39.

[341] Karwowski, W., Ed. International Encyclopedia of Ergonomics and Human Factors. Taylor and Francis, New York,

2001.

[342] Kellner, M. I. Non-technological issues in software engineering: Panel session overview. In ICSE’91 [753],

pp. 144–146.

[343] Kieras, D. E., and Meyer, D. E. An overview of the EPIC architecture for cognition and performance with

application to human-computer interaction. Human Computer Interaction, 12(4), 1997, pp. 391–438.

[344] Kieras, D. E., and Meyer, D. E. The role of cognitive task analysis in the application of predictive models of

human performance. In Schraagen et al. [570], ch. 15, pp. 237–260.

[345] Kim, J., Lerch, F. J., and Simon, H. A. Internal representation and rule development in object-oriented design.

ACM Transactions on Computer-Human Interaction, 2(4), 1995, pp. 357–390.

[346] Kiper, J. D., Howard, E., and Ames, C. Criteria for evaluation of visual programming languages. Journal of

Visual Languages and Computing, 8(2), Apr. 1997, pp. 175–192.

[347] Kirlik, A. Modeling strategic behavior in human–automation interaction: Why an aid “can” (and should) go

unused. Human Factors, 35(2), 1993, pp. 221–242.

[348] Kirlik, A. Requirements for psychological models to support design: Toward ecological task analysis. In Flach

et al. [219], ch. 4, pp. 68–120.

[349] Kirlik, A. The ecological expert: Acting to create information to guide action. In Proceedings of the Fourth

Symposium on Human Interaction with Complex Systems (Dayton, Ohio, Mar 22–25 1998), 1998, pp. 15–28.

[350] Kirlik, A. Everyday life environments. In A Companion to Cognitive Science, W. Bechtel and G. Graham, Eds.

Blackwell, Malden, MA, 1998, ch. 56, pp. 702–712.

[351] Kirlik, A., and Bisantz, A. M. Cognition in human–machine systems: Experiential and environmental aspects

of adaptation. In Hancock [287], ch. 2, pp. 47–68.

[352] Kirsh, D. Complementary strategies: Why we use our hands when we think. In Proceedings of the Seventeenth

Annual Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, 1995.

[353] Kirsh, D., and Maglio, P. P. On distinguishing epistemic from pragmatic actions. Cognitive Science, 18(4), 1994,

pp. 513–549.

[354] Kjaer-Hansen, J. Unitary theories of cognitive architectures. In Hoc [305], ch. 3, pp. 45–54.

BIBLIOGRAPHY 368

[355] Klahr, D., and Kotovsky, K., Eds. Complex Information Processing: The Impact of Herbert A. Simon. Lawrence

Erlbaum Associates, Hillsdale, NJ, 1989.

[356] Knuth, D. E. Computer-drawn flow charts. Communications of the ACM, 6(9), Sept. 1963, pp. 555–563.

[357] Koenemann, J., and Robertson, S. P. Expert problem solving strategies for program comprehension. In Proceed-

ings of ACM CHI’91 Conference on Human Factors in Computing Systems (New Orleans, LA, Apr 27–May 2 1991),

Association for Computing Machinery, 1991, pp. 125–130.

[358] Kontogiannis, K. A. Partial design recovery using dynamic programming. In Proceedings of the 1994 CAS

Conference (Toronto, Ontario, Oct 1994), IBM Centre for Advanced Studies, 1994.

[359] Koschke, R. Atomic Architectural Component Recovery for Program Understanding and Evolution: Evaluation of

Automatic Re-Modularization Techniques and Their Integration in a Semi-Automatic Method. PhD thesis, Institut für

Informatik, Universität Stuttgart, Oct. 1999.

[360] Kosslyn, S. M. Visual mental images as re-presentations of the world: A cognitive neuroscience approach. In

VSRD’99 [764].

[361] Koubek, R. J., and Salvendy, G. Cognitive performance of super-experts on computer program modification

tasks. Ergonomics, 34(8), 1991, pp. 1095–1112.

[362] Kraemer, E., and Stasko, J. T. Issues in visualization for the comprehension of parallel programs. In WPC’94

[768], pp. 116–127.

[363] Kremer, R. Concept mapping: Informal to formal. In CS’94 [737].

[364] Kruchten, P. Architectural blueprints—the “4+1” view model of software architecture. IEEE Software, 12(6),

Nov. 1995, pp. 42–50.

[365] Kulpa, Z. Diagrammatic representation and reasoning. Machine Graphics and Vision, 3(1–2), 1994, pp. 77–103.

[366] Kuutti, K. Activity theory as a potential framework for human–computer interaction research. In Nardi [436],

ch. 2, pp. 17–44.

[367] Kuutti, K., and Kaptelinin, V. Rethinking cognitive tools: From augmentation to mediation (extended abstract).

In Proceedings of the Second International Conference on Cognitive Technology: Humanizing the Information Age (Aizu,

Japan, Aug 25-28 1997), 1997, pp. 31–32.

[368] Laitenberger, O., El Emam, K., and Harbich, T. G. An internally replicated quasi-experimental comparison of

checklist and perspective-based reading of code documents. IEEE Transactions on Software Engineering, 27(5),

May 2001, pp. 387–420.

[369] Landauer, T. K. Relations between cognitive psychology and computer science. In Carroll [100], ch. 1, pp. 1–25.

[370] Landauer, T. K. Let’s get real: A position paper on the role of cognitive psychology in the design of humanly

useful and usable systems. In Carroll [101], ch. 5, pp. 60–73.

[371] Landauer, T. K. The Trouble with Computers: Usefulness, Usability, and Productivity. MIT Press, 1995.

[372] Landauer, T. K., Foltz, P. W., and Laham, D. Introduction to latent semantic analysis. Discourse Processes, 25,

1998, pp. 259–284.

[373] Lang, S., and von Mayrhauser, A. Building a research infrastructure for program comprehension observations.

In WPC’97 [770], pp. 165–170.

[374] Larkin, J. H. Display-based problem solving. In Klahr and Kotovsky [355], ch. 12, pp. 319–341.

BIBLIOGRAPHY 369

[375] Larkin, J. H., and Simon, H. A. Why a diagram is (sometimes) worth ten thousand words. Cognitive Science,

11(1), 1987, pp. 65–99.

[376] Lave, J. Cognition in Practice: Mind, Mathematics and Culture in Everyday Life. Cambridge University Press, 1988.

[377] Law, L.-C. A situated cognition view about the effects of planning and authorship on computer program

debugging. Behaviour and Information Technology, 17(6), 1998, pp. 325–337.

[378] Lehman, M. M. Process improvement—the way forward. In Advanced Information Systems Engineering; 7th

International Conference, CAiSE’95 (Jyväskylä, Finland, Jun 12–16 1995), J. Iivari, K. Lyytinen, and M. Rossi, Eds.,

Springer-Verlag, 1995, pp. 1–11.

[379] Lehrer, R. Authors of knowledge: Patterns of hypermedia design. In Derry and Lajoie [178], ch. 7, pp. 197–227.

[380] Lethbridge, T. C., and Singer, J. A. What’s so great about ‘grep’? implications for program comprehension

tools”. Online experience report. Retrieved from http://wwwsel.iit.nrc.ca/seldocs/eassedocs/grepSinger.pdf,

2000/08/01.

[381] Lethbridge, T. C., and Singer, J. A. Understanding software maintenance tools: Some empirical research. In

Proceedings of the 1997 IEEE Workshop on Empirical Studies of Software Maintenance (WESS 97) (Bari, Italy, Oct 3

1997), 1997, pp. 157–162.

[382] Letovsky, S. Cognitive processes in program comprehension. In ESP’86 [741], pp. 58–79.

[383] Levy, C. M., and Ransdell, S., Eds. The Science of Writing: Theories, Methods, Individual Differences, and Applications.

Lawrence Erlbaum Associates, 1996.

[384] Lewis, C. Inner and outer theory in human-computer interaction. In Carroll [101], ch. 9, pp. 154–162.

[385] Licklider, J. C. R. Man–computer symbiosis. IRE Transactions on Human Factors in Electronics, HFE-1, Mar. 1960,

pp. 4–1.

[386] Lieberman, H., Ed. Your Wish is my Command: Programming by Example. Morgan Kaufmann, San Francisco, CA,

2001.

[387] Linos, P. K., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P., and Tulula, P. Visualizing program dependencies:

An experimental study. Software–Practice and Experience, 24(4), Apr. 1994, pp. 387–403.

[388] Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E. M. Mental models and software maintenance. In ESP’86

[741], pp. 80–98.

[389] Lloyd, P., Lawson, B., and Scott, P. Can concurrent verbalization reveal design cognition? In Cross et al. [153],

pp. 437–463.

[390] Long, J. Specifying relations between research and the design of human-computer interactions. International

Journal of Human-Computer Studies, 44(6), 1996, pp. 875–920.

[391] Long, J., and Dowell, J. Conceptions of the discipline of HCI: Craft, applied science, and engineering. In

HCI’89 [747], pp. 9–32.

[392] Long, J., and Dowell, J. Cognitive engineering human–computer interactions. The Psychologist, 9, July 1996,

pp. 313–317.

[393] Macaulay, C., Benyon, D., and Crerar, A. Ethnography, theory and systems design: From intuition to insight.

International Journal of Human-Computer Studies, 53(1), 2000, pp. 35–60.

[394] Mackay, W. E. Responding to cognitive overload: Co-adaptation between users and technology. Intellectica,

30(1), 2000, pp. 177–193.

BIBLIOGRAPHY 370

[395] Maes, P. Modeling adaptive autonomous agents. In Artificial Life, An Overview, G. Langton, Ed. MIT Press,

Cambridge, 1995.

[396] Marchionini, G. Information Seeking in Electronic Environments. Cambridge University Press, 1995.

[397] Marshall, C. C., and Irish, P. M. Guided tours and on-line presentations: How authors make existing hypertext

intelligible for readers. In HT’89 [752], pp. 15–26.

[398] Mathewson, J. H. Visual-spatial thinking: An aspect of science overlooked by educators. Science Education,

83(1), 1999.

[399] Mathieson, K., and Keil, M. Beyond the interface: Ease of use and task/technology fit. Information and Manage-

ment, 34(4), Nov. 1998, pp. 221–230.

[400] Mayer, R. E. Learners as information processors: Legacies and limitations of educational psychology’s second

metaphor. Educational Psychologist, 1996, pp. 151–161.

[401] Mayhew, D. J. Principles and Guidelines in Software User Interface Design. Prentice Hall, Englewood Cliffs, NJ,

1992.

[402] McCarthy, J. Applied experimental psychology. In Monk and Gilbert [415], ch. 4, pp. 75–97.

[403] McKeithen, K. B., Reitman, J. S., Rueter, H. H., and Hirtle, S. C. Knowledge organization and skill differences

in computer programmers. Cognitive Psychology, 13, 1981, pp. 307–325.

[404] McKim, R. H. Thinking Visually: a Strategy Manual for Problem Solving. Lifetime Learning Publications, Belmont,

Calif., 1980.

[405] McKim Jr., J. C. Programming by contract: Designing for correctness. Journal of Object-Oriented Programming,

9(2), May 1996, pp. 70–74.

[406] McPhee, K. Design theory and software design. Tech. Rep. TR 96–26, Department of Computing Science,

University of Alberta, Oct. 1996.

[407] Meyers, S. D., and Reiss, S. P. An empirical study of multiple-view software development. In SIGSOFT’92 [763],

pp. 47–57. Published Proceedings of the ACM SIGPLAN/SIGSOFT Conference, 1992.

[408] Millen, D. R. Rapid ethnography: Time deepening strategies for HCI field research. In DIS’2000 [739], pp. 280–

286.

[409] Miller, J. Applying meta-analytical procedures to software engineering experiments. Tech. Rep. EFOCS–30–98,

Empirical Foundations of Computer Science, University of Strathclyde, 1998.

[410] Miller, J., Daly, J., Wood, M., Roper, M., and Brooks, A. Statistical power and its subcomponents—missing and

misunderstood concepts in empirical software engineering research. Information and Software Technology, 39,

1997, pp. 285–295.

[411] Miller, J., and Macdonald, F. Statistical analysis of two experimental studies. Tech. Rep. EFOCS–31–98, Empiri-

cal Foundations of Computer Science, University of Strathclyde, 1998.

[412] Miller, J., and Macdonald, F. An empirical incremental approach to tool evaluation and improvement. The

Journal of Systems and Software, 51(1), 2000, pp. 19–35.

[413] Moher, T., and Schneider, G. M. Methodology and experimental research in software engineering. International

Journal of Man-Machine Studies, 16(1), 1982, pp. 65–87.

[414] Monk, A. F. Modeling cyclic interaction. Behaviour and Information Technology, 18(2), 1999, pp. 127–139.

[415] Monk, A. F., and Gilbert, G. N., Eds. Perspectives on HCI: Diverse Approaches. Academic Press Limited, 1995.

BIBLIOGRAPHY 371

[416] Monk, A. F., Walsh, P., and Dix, A. J. A comparison of hypertext, scrolling and folding as mechanisms for

program browsing. In HCI’88 [746], pp. 421–435.

[417] Moore, J. L., and Rocklin, T. R. The distribution of distributed cognition: Multiple interpretations and uses.

Educational Psychology Review, 10(1), 1998, pp. 97–113.

[418] Moran, T. P. The command language grammar: A representation for the user interface of interactive computer

systems. International Journal of Man-Machine Studies, 15(1), 1981, pp. 3–50.

[419] Moran, T. P. Guest editor’s introduction: An applied psychology of the user. ACM Computing Surveys, 13(1),

Mar. 1981, pp. 1–11.

[420] Moran, T. P., and Carroll, J. M., Eds. Design Rationale: Concepts, Techniques, and Use. Lawrence Erlbaum Asso-

ciates, Mahwah, NJ, 1996.

[421] Moriconi, M., and Hare, D. The PegaSys system: Pictures as formal documentation of large programs. ACM

Transactions on Programming Languages and Systems, 8(4), Oct. 1986, pp. 524–546.

[422] Mulholland, P. A Framework for Describing and Evaluating Software Visualization Systems: A Case-Study in Prolog.

PhD thesis, Knowledge Media Institute, The Open University, 1994.

[423] Müller, H. A. Rigi – A model for software system construction, integration, and evolution based on module

interface specifications. Tech. Rep. TR86–36, Department of Computer Science, Rice University, Houston, Texas,

Aug. 1986. PhD. Thesis.

[424] Müller, H. A., Jahnke, J. H., Smith, D. B., Storey, M.-A., Tilley, S. R., and Wong, K. Reverse engineering: A

roadmap. In The Future of Software Engineering. ACM, 2000, pp. 47–60.

[425] Müller, H. A., and Klashinsky, K. Rigi—a system for programming-in-the-large. In Proceedings of the 10th

International Conference on Software Engineering (Singapore, Apr 11–15 1988), IEEE Computer Society Press, 1988,

pp. 80–85.

[426] Müller, H. A., Orgun, M. A., Tilley, S. R., and Uhl, J. S. A reverse engineering approach to subsystem structure

identification. Software Maintenance—Research and Practice, 5(4), Oct. 1993, pp. 181–204.

[427] Müller, H. A., Tilley, S. R., Orgun, M. A., and Corrie, B. D. A reverse engineering environment based on spatial

and visual software interconnection models. In SIGSOFT’92 [763], pp. 88–98. Published Proceedings of the

ACM SIGPLAN/SIGSOFT Conference, 1992.

[428] Murphy, G. C. Lightweight Structural Summarization as an Aid to Software Evolution. PhD thesis, Department of

Computer Science and Engineering, University of Washington, 1996.

[429] Murphy, G. C., and Notkin, D. Reengineering with reflexion models: A case study. Computer, 30(8), Aug. 1997,

pp. 29–36.

[430] Murphy, G. C., Notkin, D., and Sullivan, K. J. Software reflexion models: Bridging the gap between source

and high-level models. In Proceedings of the Third SIGSOFT Symposium on the Foundations of Software Engineering

(Washington, DC, Oct 12–15 1995), G. E. Kaiser, Ed., Association for Computing Machinery, 1995, pp. 18–28.

[431] Murphy, G. C., Notkin, D., and Sullivan, K. J. Extending and managing software reflexion models. Tech. Rep.

TR–97–15, University of British Columbia, Department of Computer Science, Sept. 1997.

[432] Myers, G. J. The Art of Software Testing. John Wiley & Sons, New York, NY, 1979.

[433] Narayanan, N. H., and Hübscher, R. Visual language theory: Towards a human-computer interaction perspec-

tive. In Visual Language Theory, K. Marriott and B. Meyer, Eds. Springer-Verlag, 1998, ch. 3, pp. 87–128.

BIBLIOGRAPHY 372

[434] Nardi, B. Studying context: A comparison of activity theory, situated action models, and distributed cognition.

In Nardi [436], ch. 4, pp. 7–16.

[435] Nardi, B. A. Activity theory and human-computer interaction. In Context and Consciousness: Activity Theory and

Human–Computer Interaction [436], ch. 1, pp. 7–16.

[436] Nardi, B. A., Ed. Context and Consciousness: Activity Theory and Human–Computer Interaction. MIT Press, Cam-

bridge, MA, 1996.

[437] Nardi, B. A., and Zarmer, C. L. Beyond models and metaphors: Visual formalisms in user interface design.

Journal of Visual Languages and Computing, 4, 1993, pp. 5–33.

[438] Naur, P. Program development studies based on diaries. In The Psychology of Computer Use, A. t-r g), A. stephen

j), and G. C. van der Veer, Eds. Associated Press, 1983, pp. 159–170.

[439] Naur, P. Computing: A Human Activity. Association for Computing Machinery, 1990.

[440] Naur, P. The place of strictly defined notation in human insight. In Computing: A Human Activity [439], ch. 7.5.

Originally published in the Proceedings of the Workshop on Proprumming Logic, ed. P. Dybjer, L. Hallnãs, B. Nord-

strom, K. Petersson, and J. M. Smith. Report 54, Programming Methodology Group, Univ. of Göteborg and

Chalmers University of Technology, Göteborg, Sweden, May 1989.

[441] Neuwirth, C. M., and Kaufer, D. S. The role of external representations in the writing process: Implications for

the design of hypertext-based writing tools. In HT’89 [752], pp. 319–341.

[442] Newell, A. Some problems of the basic organization in problem-solving programs. In Proceedings of the Second

Conference on Self-Organizing Systems, M. C. Yovits, G. T. Jacobi, and G. D. Goldstein, Eds., Spartan Books, 1962,

pp. 393–423.

[443] Newell, A. Heuristic programming: Ill-structured problems. In Progress in Operations Research: Relationship

Between Operations Research and the Computer, J. Aronofsky, Ed., vol. 3. John Wiley & Sons, New York, 1969,

pp. 360–413.

[444] Newell, A. You can’t play ‘20 questions’ with nature and win: Projective comments on the papers in this

symposium. In Visual Information Processing, Academic Press, 1972, pp. 283–308.

[445] Newell, A. The knowledge level. Artificial Intelligence, 18(1), 1982, pp. 87–127.

[446] Newell, A. Unified Theories of Cognition. Harvard University Press, 1990.

[447] Newell, A. Précis of unified theories of cognition. Behavioral and Brain Sciences, 15, 1992, pp. 425–492.

[448] Newell, A., and Card, S. K. The prospects for psychological science in human-computer interaction. Human

Computer Interaction, 1(3), 1985, pp. 209–242.

[449] Newell, A., and Simon, H. A. Human Problem Solving. Prentice-Hall, Inc., 1972.

[450] Newell, A., and simon-herbert a. Computer science as empirical inquiry: Symbols and search. Communications

of the ACM, 19(3), Mar. 1976, pp. 113–126.

[451] Newell, A. F., and Gregor, P. Extra-ordinary human–machine interaction: What can be learned from people

with disabilities? Cognition, Technology and Work, 1(2), 1999, pp. 78–85.

[452] Newman, W. A preliminary analysis of the products of HCI, using pro forma abstracts. In Proceedings of ACM

CHI’94 Conference on Human Factors in Computing Systems (Boston, MA, Apr 24–28 1994), B. Adelson, S. Dumais,

and J. Olson, Eds., vol. 1, Association for Computing Machinery, 1994, pp. 278–284.

BIBLIOGRAPHY 373

[453] Nickell, J. Peddling snake oil. Skeptical Briefs Newsletter, Dec. 1998. Retrieved from http://www.csicop.org/-

sb/9812/snakeoil.html, 2001/01/10.

[454] Nickerson, R. S. On the distribution of cognitions: Some reflections. In Salomon [558], ch. 8, pp. 229–262.

[455] Nickerson, R. S. Basic versus applied research. In Sternberg [617], ch. 12, pp. 409–442.

[456] Nielsen, J. A virtual protocol model for computer-human interaction. International Journal of Man-Machine

Studies, 24(3), 1986, pp. 301–312.

[457] Nielsen, J. The matters that really matter for hypertext usability. In HT’89 [752], pp. 239–248.

[458] Nielsen, J. Evaluating the thinking aloud technique for use by computer scientists. In Advances in Human–

Computer Interaction, H. R. Hartson and D. Hix, Eds., vol. 3. Ablex, Norwood, NJ, 1992, pp. 69–82.

[459] Nielsen, J. A layered interaction analysis of direct manipulation. Unpublished online paper. Retrieved from

http://www.useit.com/papers/direct manipulation.html, 2000/09/28, 1992.

[460] Nielsen, J. Usability Engineering. Academic Press, Boston, MA, 1993.

[461] Nielsen, J., and Mack, R. L., Eds. Usability Inspection Methods. John Wiley & Sons, New York, NY, 1994.

[462] Nii, H. P. Blackboard systems. Tech. Rep. CS–TR–86–1123, Stanford University, Department of Computer

Science, June 1986.

[463] Nii, H. P. Blackboard systems. AI Magazine, 7(2), 1986, pp. 38–53. Two parts, second in v7 n3, pp. 82–106.

Revised version published in Handbook of Artificial Intelligence, vol 4, A. Barr, P. Cohen, E. Feigenbaum, ed.,

Addison-Wesley, 1989, p. 1–82.

[464] Nix, R. P. Editing by example. ACM Transactions on Programming Languages and Systems, 7(4), Oct. 1985, pp. 600–

621.

[465] Norman, D. A. Twelve issues for cognitive science. Cognitive Science, 4, 1980, pp. 1–32. Reprinted in Chapter

11, Perspectives on Cognitive Science. Norman, D. A., ed., Norwood, NJ: Ablex., 1981.

[466] Norman, D. A. Four stages of user activities. In INTERACT’84 [755], pp. 507–511.

[467] Norman, D. A. Cognitive engineering. In Norman and Draper [475], ch. 3, pp. 31–65.

[468] Norman, D. A. Cognitive engineering—cognitive science. In Carroll [100], ch. 12, pp. 325–336.

[469] Norman, D. A. The Psychology of Everyday Things. Basic Books, 1988.

[470] Norman, D. A. Cognitive artifacts. In Carroll [101], ch. 2, pp. 17–38.

[471] Norman, D. A. Cognition in the head and in the world: An introduction to the special issue on situated action.

Cognitive Science, 17, 1993, pp. 1–6.

[472] Norman, D. A. Things That Make Us Smart: Defending Human Attributes in the Age of the Machine. Addison-Wesley,

Reading, Massachusetts, 1993.

[473] Norman, D. A. The Invisible Computer: Why Good Products Can Fail, The Personal Computer is So Complex, and

Information Appliances are the Solution. The MIT Press, 1998.

[474] Norman, D. A. Affordance, conventions, and design. Interactions, 6(3), 1999, pp. 38–42.

[475] Norman, D. A., and Draper, S. W., Eds. User Centered System Design: New Perspectives on Human-Computer

Interaction. Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

[476] Oberg, B., and Notkin, D. Error reporting with graduated color. IEEE Software, Nov. 1992, pp. 33–38.

BIBLIOGRAPHY 374

[477] O’Hara, K. Towards a typology of reading goals. Tech. Rep. EPC–1996–107, Rank Xerox Research Centre,

Cambridge UK, 1996.

[478] O’Hara, K. P., and Payne, S. J. Planning and the user interface: The effects of lockout time and error recovery

cost. International Journal of Human-Computer Studies, 50(1), 1999, pp. 41–59.

[479] Olson, G. M., and Moran, T. P. Commentary on “damaged merchandise?”. Human Computer Interaction, 13(3),

1998, pp. 263–323.

[480] Orhun, E. Design of computer-based cognitive tools. In NATO.ASI.146 [761], pp. 305–320.

[481] Ormerod, T. Human cognition and programming. In Hoc et al. [307], ch. 1.4, pp. 63–82.

[482] Paige, J. M., and Simon, H. A. Cognitive processes in solving algebra word problems. In Problem Solving:

Research, Method, and Theory (Carnegie Institute of Technology, Apr 15-16 1966), B. Kleinmuntz, Ed., 1966, pp. 51–

118.

[483] Palincsar, A. S. Social constructivist perspectives on teaching and learning. Annual Review of Psychology, 49(1),

1998, pp. 345–375.

[484] Parasuraman, R. Designing automation for human use: empirical studies and quantitative models. Ergonomics,

43(7), 2000, pp. 931–953.

[485] Parnas, D. L. On the criteria to be used in decomposing systems into modules. Communications of the ACM,

15(12), Dec. 1972, pp. 1053–1058.

[486] Parnas, D. L. On the design and development of program families. IEEE Transactions on Software Engineering,

SE-2(1), 1976, pp. 1–9.

[487] Parnas, D. L. Software aspects of strategic defense systems. Communications of the ACM, 28(12), Dec. 1985,

pp. 1326–1335.

[488] Parnas, D. L., and Clements, P. C. A rational design process: How and why to fake it. IEEE Transactions on

Software Engineering, SE-12(2), Feb. 1986, pp. 251–257.

[489] Patalano, A. L., and Seifert, C. M. Opportunistic planning: Being reminded of pending goals. Cognitive Psychol-

ogy, 34(1), Oct. 1997, pp. 1–36.

[490] Paul, S., and Prakash, A. A framework for source code search using program patterns. IEEE Transactions on

Software Engineering, 20(6), June 1994, pp. 463–475.

[491] Payne, S. J. Looking HCI in the I. In INTERACT’90 [756], pp. 185–191.

[492] Payne, S. J. Interface problems and interface resources. In Carroll [101], ch. 8, pp. 128–153.

[493] Payne, S. J. On mental models and cognitive artefacts. In Rogers et al. [548], ch. 8, pp. 103–118.

[494] Payne, S. J. Conitive psychology and cognitive technologies. The Psychologist, 9, July 1996, pp. 309–312.

[495] Pea, R. D. Practices of distributed intelligence and designs for education. In Salomon [558], ch. 2, pp. 47–87.

[496] Pemberton, L., Shurville, S., and Sharples, M. External representations in the writing process and how to

support them. In Artificial Intelligence in Education (EuroAIED-96) (Lisbon, Portugal, Sep 30–Oct 2 1996), 1996.

[497] Pennington, N. Comprehension strategies in programming. In ESP’87 [742], pp. 100–113.

[498] Pennington, N. Stimulus structures and mental representations in expert comprehension of computer pro-

grams. Cognitive Psychology, 19, 1987, pp. 295–341.

[499] Pennington, N., and Grabowski, B. The tasks of programming. In Hoc et al. [307], ch. 1.3, pp. 45–62.

BIBLIOGRAPHY 375

[500] Perkins, D. N. The fingertip effect: How information-processing technology shapes thinking. Educational Re-

searcher, 14, Aug. 1985, pp. 11–17.

[501] Perkins, D. N. Person-plus: A distributed view of thinking and learning. In Salomon [558], ch. 3, pp. 88–110.

[502] Perry, M. Cognitive artefacts and collaborative design. In IEE Colloquium on Design Systems with Users in Mind:

The Role of Cognitive Artefacts, 1995, pp. 2/1–2/2.

[503] Perry, M., and Thomas, P. Externalising the internal: Collaborative design through dynamic problem visualisa-

tion. In HCI’95 [749], pp. 149–154. Adjunct Proceedings.

[504] Perry, M. J. Distributed Cognition and Computer Supported Collaborative Design: The Organisation of Work in Con-

struction Engineering. PhD thesis, Department of Information Systems and Computing, Brunel University, U.K.,

1997.

[505] Peterson, D., Ed. Forms of Representation: An Interdisciplinary Theme for Cognitive Science. Intellect, Exeter, UK,

1996.

[506] Petre, M. Why looking isn’t always seeing: Readership skills and graphical programming. Communications of

the ACM, 38(6), June 1995, pp. 33–44.

[507] Petre, M., and Blackwell, A. F. Mental imagery in program design and visual programming. International Journal

of Human-Computer Studies, 51(1), 1999, pp. 7–30.

[508] Petre, M., Blackwell, A. F., and Green, T. R. G. Cognitive questions in software visualization. In Software

Visualization: Programming as a Multimedia Experience, J. T. Stasko, J. Domingue, B. A. Price, and M. H. Brown,

Eds. MIT Press, 1998, pp. 453–480.

[509] Petre, M., and Green, T. R. G. Learning to read graphics: Some evidence that ‘seeing’ an information display is

an acquired skill. Journal of Visual Languages and Computing, 4(1), 1993, pp. 55–70.

[510] Petroski, H. The Evolution of Useful Things. A. Knopf, New York, NY, 1992.

[511] Pirolli, P. I. Towards a unified model of learning to program. In NATO.ASI.111 [759], pp. 34–48.

[512] Pohthong, A., and Budgen, D. Reuse strategies in software development: an empirical study. Information and

Software Technology, 43(9), Aug. 2001, pp. 561–575.

[513] Polya, G. How to Solve It: A New Aspect of Mathematical Method, 2nd ed. Doubleday, Garden City, NJ, 1957.

[514] Poon, J., and Maher, M. L. Emergent behaviour in co-evolutionary design. In International Conference on Artificial

Intelligence in Design (4th, 1996) (Stanford, CA), J. S. Gero and F. Sudweeks, Eds., Kluwer Academic Publishers,

1996, pp. 703–722.

[515] Preston, B. Cognition and tool use. Mind & Language, 13(4), 1998, pp. 513–547.

[516] Price, B. A., Baecker, R. M., and Small, I. S. A principled taxonomy of software visualization. Journal of Visual

Languages and Computing, 4(3), 1993, pp. 211–266.

[517] Purcell, A. T., and Gero, J. S. Drawings and the design process. Design Studies, 19(4), 1998, pp. 389–430.

[518] Purcell, T., Gero, J., Edwards, H., and McNeill, T. The data in design protocols: The issue of data coding, data

analysis in the development of models of the design process. In Cross et al. [153], pp. 151–168.

[519] Purchase, H. C. Performance of layout algorithms: Comprehension, not computation. Journal of Visual Languages

and Computing, 9(6), 1998, pp. 647–657.

[520] Pylyshyn, Z. The role of cognitive architecture in theories of cognition. In Architectures for Intelligence, K. Van-

Lehn, Ed. Lawrence Erlbaum Associates, Hillsdale, NJ, 1988, pp. 189–223.

BIBLIOGRAPHY 376

[521] Pylyshyn, Z., Ed. Constraining Cognitive Theories: Issues and Options. Ablex Publishing Corporation, 1998.

[522] Pylyshyn, Z. W. Some remarks on the theory-practice gap. In Carroll [101], ch. 3, pp. 39–49.

[523] Pylyshyn, Z. W. Introduction: Cognitive architecture and the hope for a science of cognition. In Pylyshyn [521],

ch. 1, pp. 1–8.

[524] Quilici, A. Reverse engineering of legacy systems: A path towards success. In 17th International Conference on

Software Engineering (Seattle, Washington, Apr 24–28 1995), IEEE Computer Society Press, 1995, pp. 333–336.

[525] r m), A., and Buxton, W. A. S. Design and evaluation (introduction). In Baecker and Buxton [21], ch. 2, pp. 73–91.

[526] Rasmussen, J. Skills, rules, knowledge: Signals, signs, and symbols and other distinctions in human perfor-

mance models. IEEE Transactions on Systems, Man, and Cybernetics, 13(3), 1983, pp. 257–267.

[527] Rasmussen, J. A framework for cognitive task analysis in system design. Tech. Rep. RISØ–M–2519,

RisøNational Laboratory, DK-4000 Roskilde, Denmark, Aug. 1985.

[528] Rasmussen, J. Information Processing and Human–Machine Interaction: An Approach to Cognitive Engineering. North

Holland, New York, 1986.

[529] Rasmussen, J. Mental models and the control of action in complex environments. In Ackermann and Tauber [3],

ch. 2, pp. 41–72.

[530] Rasmussen, J., and Pejtersen, A. M. Virtual ecology of work. In Flach et al. [219], ch. 5, pp. 121–156.

[531] Rasmussen, J., Pejtersen, A. M., and Goodstein, L. P. Cognitive Systems Engineering. John Wiley & Sons, Inc.,

New York, NY, 1994.

[532] Redmiles, D. F. Observations on using empirical studies in developing a knowledge-based software engineering

tool. In Proceedings of the Eighth Knowledge Based Software Engineering Conference (Chicago, Illinois, Sep 20–23

1993), IEEE Computer Society Press, Sept. 1993, pp. 170–177.

[533] Redmiles, D. F. Reducing the variability of programmers’ performance through explained examples. In INTER-

CHI’93 [757], pp. 67–73.

[534] Retkowsky, F. Software reuse from an external memory: the cognitive issues of support tools. In PPIG Work-

shop’98 Proceedings (Open University, Milton Keynes, UK, Jan. 1998), Psychology of Programming Interest

Group, 1998. Retrieved from http://ppig.org/papers/10th-retkowsky.pdf, 2000/05/18.

[535] Retkowsky, F. P. A Cognitive Approach to Supporting Reuse. PhD thesis, University of Sussex, June 2000.

[536] Rettig, M. Hat racks for understanding. Communications of the ACM, 35(10), Oct. 1992, pp. 21–25.

[537] Rheingold, H. Tools for Thought: The History and Future of Mind-Expanding Technology. MIT Press, 2000.

[538] Rich, C. A formal representation for plans in the Programmer’s Apprentice. In Proceedings of the 7th International

Joint Conference on AI (Vancouver, BC, Aug 1981), A. Drinan, Ed., 1981, pp. 1044–1052.

[539] Rich, C., and Waters, R. C. The Programmer’s Apprentice. Association for Computing Machinery, 1990.

[540] Richardson, T., Stafford-Fraser, Q., Wood, K. R., and Hopper, A. Virtual network computing. IEEE Internet

Computing, 2(1), Jan. 1998, pp. 33–38.

[541] Rittel, H. W. J., and Webber, M. M. Dilemmas in a general theory of planning. Policy Sciences, 4, 1973, pp. 155–

169.

[542] Ritter, F. E., and Larkin, J. H. Developing process models as summaries of HCI action sequences. Human

Computer Interaction, 9(3), 1994, pp. 345–383.

BIBLIOGRAPHY 377

[543] Robbins, J. E., Hilbert, D. M., and Redmiles, D. F. Extending design environments to software architecture

design. In KBSE’96 [758].

[544] Robbins, J. E., and Redmiles, D. F. Software architecture design from the perspective of human cognitive needs.

In Proceedings of the California Software Symposium (CSS’96) (University of Southern California, Los Angeles, CA,

Apr 17 1996), 1996, pp. 16–27.

[545] Robson, D. J., Bennett, K. H., Cornelius, B. J., and Munro, M. Approaches to program comprehension. The

Journal of Systems and Software, 14, Feb. 1991, pp. 79–84.

[546] Rogers, Y., Bannon, L. J., and Button, G. Report on the INTERCHI-93 workshop “Rethinking Theoretical Frame-

works for HCI”, Amsterdam, 24-25th April, 1993. ACM SIGCHI Bulleting, 26(1), Jan. 1994, pp. 28–30.

[547] Rogers, Y., and Ellis, J. Distributed cognition: an alternative framework for analysing and explaining collabo-

rative working. Journal of Information Technology, 9(2), 1994, pp. 119–128.

[548] Rogers, Y., Rutherford, A., and Bibby, P. A., Eds. Models in the Mind: Theory, Perspective and Application. Academic

Press Limited, 1992.

[549] Rosenblum, D. S. Towards a method of programming with assertions. In 14th IEEE International Conference on

Software Engineering (Melbourne, Australia, May 11–15 1992), IEEE Computer Society Press, May 1992, pp. 92–

104.

[550] Rosson, M. B. The role of experience in editing. In INTERACT’84 [755], pp. 45–50.

[551] Rosson, M. B., Maass, S., and Kellogg, W. The designer as user: Building requirements for design tools from

design practice. Communications of the ACM, 31(11), Nov. 1988, pp. 1288–1298.

[552] Rouet, J.-F., Levonen, J. J., Dillon, A., and Spiro., R. J., Eds. Hypertext and Cognition. Lawrence Erlbaum Asso-

ciates, Mahwah, NJ, 1996.

[553] Rouet, J.-F., and Tricot, A. Task and activity models in hypertext usage. In van Oostendorp and de Mul [652],

ch. 11, pp. 239–264.

[554] Rumbaugh, J., Jacobson, I., and Booch, G. The Unified Modeling Language Reference Manual. Addison-Wesley,

Reading, MA, 1999.

[555] Rumelhart, D. E., and Norman, D. A. Representation in memory. In Stevens’ Handbook of Experimental Psychology,

R. C. Atkinson, R. J. Herrnstein, G. Lindzey, and R. D. Luce, Eds., 2nd ed., vol. 2: Learning and Cognition. John

Wiley & Sons, New York, 1988, pp. 511–587.

[556] Sagan, C. The Demon-Haunted World: Science as a Candle in the Dark. Random House, New York, NY, 1995.

[557] Sajaniemi, J., and Niemelainen, A. Program editing based on variable plans: A cognitive approach to program

manipulation. In Proceedings of the Third International Conference on Human-Computer Interaction (Boston, MA,

Aug 18–22 1989), G. Salvendy and M. J. Smith, Eds., Elsevier Science Ltd., 1989, pp. 66–73.

[558] Salomon, G., Ed. Distributed Cognitions: Psychological and Educational Considerations. Cambridge University

Press, 1993.

[559] Salomon, G. On the nature of pedagogic computer tools: The case of the writing partner. In Derry and Lajoie

[178], ch. 6, pp. 179–196.

[560] Sass, M. A., and Wilkinson, W. D., Eds. Symposium on Computer Augmentation of Human Reasoning (Washington,

D.C., Jun 1965), Spartan Books, Inc.

[561] Savage-Knepshield, P. A., and Belkin, N. J. Interaction in information retrieval: Trends over time. Journal of the

American Society for Information Science, 50(12), Oct. 1999, pp. 1067–1082.

BIBLIOGRAPHY 378

[562] Scaife, M., and Rogers, Y. External cognition: How do graphical representations work? International Journal of

Human-Computer Studies, 45(2), 1996, pp. 185–213.

[563] Schauble, L., Raghavan, K., and Glaser, R. The discovery and reflection notation: A graphical trace for support-

ing self-regulation in computer-based laboratories. In Derry and Lajoie [178], ch. 11, pp. 319–337.

[564] Schön, D. The Reflective Practitioner: How Professionals Think in Action. Basic Books, New York, 1983.

[565] Schön, D. Educating the Reflective Practitioner: Toward a New Design for Teaching and Learning in the Professions.

Jossey-Bass, San Francisco, 1987.

[566] Schön, D., and Bennett, J. Reflective conversation with materials: An interview with Donald Schön by John

Bennett. In Bringing Design to Software, T. Winograd, J. Bennett, L. De Young, and B. Hartfield, Eds. Association

for Computing Machinery, 1996, ch. 9, pp. 171–184.

[567] Schönpflug, W. The trade-off between internal and external information storage. Journal of Memory and Language,

25(6), 1986, pp. 657–675.

[568] Schönpflug, W. Retrieving texts from an external store: the effects of an explanatory context and of semantic fit

between text and address. Psychological Research, 50, 1988, pp. 19–27.

[569] Schönpflug, W., and Esser, K. B. Memory and its graeculi: Metamemory and control in extended memory

systems. In Discourse Comprehension: Essays in Honor of Walter Kintsch, C. A. Weaver III, S. Mannes, and C. R.

Fletcher, Eds. Lawrence Erlbaum, 1995, ch. 14, pp. 245–255.

[570] Schraagen, J. M., Chipman, S. F., and Shalin, V. L., Eds. Cognitive Task Analysis. Lawrence Erlbaum, Mahwah,

NJ, 2000.

[571] Sen, A., Vinze, A., and Liou, S. Role of control in the model formulation process. Information Systems Research,

5(3), 1994, pp. 219–248.

[572] Sengler, H. E. A model of the understanding of a program and its impact on the design of the programming

language Grade. In The Psychology of Computer Use, T. R. G. Green, S. J. Payne, and G. C. van der Veer, Eds.

Academic Press Limited, 1983, pp. 91–106.

[573] Sharples, M. The development of a cognitive model for computer support of collaborative writing. Journal of

Computer Assisted Learning, 7(3), 1991, pp. 203–204.

[574] Sharples, M. Designs for new writing environments. In Sharples and van der Geest [577], ch. 7, pp. 97–115.

[575] Sharples, M. Writing as creative design. In Levy and Ransdell [383], pp. 127–148.

[576] Sharples, M., and Pemberton, L. Representing writing: External representations and the writing process. In

Holt and Williams [313], ch. 21, pp. 319–336.

[577] Sharples, M., and van der Geest, T., Eds. The New Writing Environment: Writers at Work in a World of Technology.

Springer-Verlag, London, 1996.

[578] Shaw, M. Larger scale systems require higher-level abstractions. In Proceedings of the Fifth International Workshop

on Software Specification and Design (Pittsburgh, Pennsylvania, May 19–20 1989), Association for Computing

Machinery, 1989, pp. 143–146. Published in Software Engineering Notes, 14(3).

[579] Shaw, M. Prospects for an engineering discipline of software. IEEE Software, 7(6), Nov. 1990, pp. 15–24.

[580] Shaw, M., and Garlan, D. Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall, Upper

Saddle Road, NJ, 1996.

[581] Sheil, B. A. The psychological study of programming. ACM Computing Surveys, 13(1), Mar. 1981, pp. 101–120.

BIBLIOGRAPHY 379

[582] Shneiderman, B. Software Psychology: Human Factors in Computer and Information Systems. Winthrop, Cambridge,

MA, 1980.

[583] Shneiderman, B., and Carroll, J. M. Ecological studies of professional programmers: An overview. Communica-

tions of the ACM, 31(11), Nov. 1988, pp. 1256–1258.

[584] Shneiderman, B., and Mayer, R. E. Syntactic/semantic interactions of programming behaviour: A model. Inter-

national Journal of Computer and Information Sciences, 8(3), 1979, pp. 219–238.

[585] Shneiderman, B., Shafer, P., Simon, R., and Weldon, L. Display strategies for program browsing. In Proceedings

of the IEEE Conference on Software Maintenance – 1985 (Washington, DC, Nov 11–13 1985), IEEE Computer Society

Press, 1985, pp. 136–143.

[586] Shukla, S. V., and Redmiles, D. F. Collaborative learning in a software bug-tracking scenario. In Workshop on

Approaches for Distributed Learning through Computer Supported Collaborative Learning (Boston, MA, Nov 16–20

1996), Nov. 1996.

[587] Shum, S. B., and Hammond, N. Transferring HCI modelling and design techniques to practitioners: A frame-

work and empirical work. In People and Computers IX, Proceedings of HCI’94 (Glasgow, Scotland, Aug 23–26

1994), G. Cockton, S. W. Draper, and G. R. S. Weir, Eds., Cambridge University Press, 1994, pp. 21–36.

[588] Shurkin, J. Engines of the Mind: A History of the Computer. W. W. Norton & Company, New York, 1984.

[589] Sidarkeviciute, D., Tyugu, E., and Kuusik, A. A knowledge-based toolkit for software visualisation. In KBSE’96

[758], pp. 125–133.

[590] Sim, S. E., Clarke, C. L. A., and Holt, R. C. Archetypal source code searching: A survey of software developers

and maintainers. In WPC’98 [771].

[591] Sim, S. E., and Holt, R. C. The ramp-up problem in software projects: A case study of how software immigrants

naturalize. In Proceedings of the 20th International Conference on Software Engineering (Kyoto, Japan, Apr 19–25

1998), IEEE Computer Society Press, Apr. 1998, pp. 361–370.

[592] Simon, H. A. The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), Dec. 1962,

pp. 467–482.

[593] Simon, H. A. On the forms of mental representation. In Perception and cognition: Issues in the foundations of

psychology, vol. 9 of Minnesota Studies in the Philosophy of Science, University of Minnesota Press, 1978, pp. 3–18.

[594] Simon, H. A. The Sciences of the Artificial, 3rd ed. MIT Press, 1996.

[595] Singer, J. A., and Lethbridge, T. C. Just-in-time-comprehension vs. the full-coverage strategy. In Proceedings of

the 1998 Workshop on Empirical Studies of Software (Online) (Bethesda, MD, Nov 16 1998), 1998. Position Paper.

Retrieved from http://www.cs.umd.edu/�sharip/wess/papers/singer.html.

[596] Singer, J. A., and Lethbridge, T. C. Studying work practices to assist tool design in software engineering. In

WPC’98 [771], pp. 173–179.

[597] Singer, J. A., Lethbridge, T. C., Vinson, N., and Anquetil, N. An examination of software engineering work

practices. In Proceedings of the Seventh Centre for Advanced Studies Conference (Toronto, Ontario, Nov 10–13 1997),

IBM Centre for Advanced Studies, Nov. 1997, pp. 209–223.

[598] Singley, M. K., and Carroll, J. M. Synthesis by analysis: Five modes of reasoning that guide design. In Moran

and Carroll [420], ch. 8, pp. 241–265.

[599] Singley, M. K., Carroll, J. M., and Alpert, S. R. Psychological design rationale for an intelligent tutoring system

for Smalltalk. In ESP’91 [743], pp. 196–209.

BIBLIOGRAPHY 380

[600] Singley, M. K., Carroll, J. M., and Alpert, S. R. Incidental reification of goals in an intelligent tutor for Smalltalk.

In NATO.ASI.111 [759], pp. 145–155.

[601] Sinha, A., and Vessey, I. Cognitive fit in recursion and iteration: An empirical study. IEEE Transactions on

Software Engineering, 18(5), May 1992, pp. 386–379.

[602] Skillicorn, D. B., and Talia, D. Models and languages for parallel computation. ACM Computing Surveys, 30(2),

1998, pp. 123–169.

[603] Smith, J. B. Collective Intelligence in Computer-Based Collaboration. Lawrence Erlbaum Associates, Mahwah, NJ,

1994.

[604] Smith, J. B., and Lansman, M. A cognitive basis for a computer writing environment. In Computer Writing

Environments: Theory, Research and Design, B. K. Britton and S. M. Glynn, Eds. Lawrence Erlbaum Associates,

Hillsdale, NJ, 1989, ch. 2, pp. 17–56.

[605] Smith, J. B., and Lansman, M. Designing theory-based systems: A case study. In CHI’92 [732], pp. 479–488.

[606] Smolensky, P. On the proper treatment of connectionism. Behavioral and Brain Sciences, 11(1), 1988, pp. 1–23.

[607] Snelting, G. Concept analysis — A new framework for program understanding. In Proceedings of the 1998 ACM

SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE) (Montreal, Canada,

Jun 1998), 1998, pp. 1–10.

[608] Soloway, E. M. Learning to program = learning to construct mechanisms and explanations. Communications of

the ACM, 29(9), Sept. 1986, pp. 850–858.

[609] Soloway, E. M., Adelson, B., and Ehrlich, K. Knowledge and processes in the comprehension of computer

programs. In Chi et al. [123], pp. 129–152.

[610] Soloway, E. M., Bonar, J., and Ehrlich, K. Cognitive strategies and looping constructs: An empirical study.

Communications of the ACM, 26(11), 1983, pp. 853–860.

[611] Soloway, E. M., and Ehrlich, K. Empirical studies of programming knowledge. IEEE Transactions on Software

Engineering, SE-10(5), Sept. 1984, pp. 595–609.

[612] Soloway, E. M., Jackson, S. L., Klein, J., Quintana, C., Reed, J., Spitulnik, J., Stratford, S. J., Studer, S., Eng, J., and

Scala, N. Learning theory in practice: Case studies of learner-centered design. In CHI’96 [734], pp. 189–196.

[613] Sommerville, I. Software Engineering. Addison-Wesley, Reading, Massachusetts, 1989.

[614] Spence, R., and Tweedie, L. The Attribute Explorer: Information synthesis via exploration. Interacting With

Computers, 11(2), 1998, pp. 137–146.

[615] Stacey, M., Clarkson, J., and Eckert, C. Signposting: an AI approach to supporting human decision making

in design. In 20th Computers and Information in Engineering Conference, Proceedings of the ASME 2000 Design

Engineering Technical Conferences. (Baltimore, MD, Sep 10–14 2000), American Society of Mechanical Engineers,

2000. DETC2000/CIE–14617.

[616] Star, S. L. Working together: Symbolic interactionism, activity theory, and information systems. In Engestroöm

and Middleton [202], ch. 13, pp. 296–318.

[617] Sternberg, R. J., Ed. The Nature of Cognition. MIT Press, 1999.

[618] Storey, M.-A. D. A Cognitive Framework for Describing and Evaluating Software Exploration Tools. PhD thesis, School

of Computing Science, Simon Fraser University, 1998.

BIBLIOGRAPHY 381

[619] Storey, M.-A. D., Fracchia, F. D., and Müller, H. A. Cognitive design elements to support the construction of a

mental model during software visualization. The Journal of Systems and Software, 44(3), Jan. 1999, pp. 171–185.

[620] Storey, M.-A. D., Wong, K., Fong, P., Hooper, D., Hopkins, K., and Müller, H. A. On designing an experiment

to evaluate a reverse engineering tool. In Third Working Conference on Reverse Engineering (WCRE-3) (Monterey,

CA, Nov 8–10 1996), IEEE Computer Society Press, Nov. 1996.

[621] Storey, M.-A. D., Wong, K., Fracchia, F. D., and Müller, H. A. On integrating visualization techniques for

effective software exploration. In Proceedings of the 1997 IEEE Symposium on Information Visualization (InfoVis ’97)

(Phoenix, AZ, Oct 20–21 1997), 1997, pp. 38–45.

[622] Storey, M.-A. D., Wong, K., and Müller, H. A. How do program understanding tools affect how programmers

understand programs? Science of Computer Programming, 36(2), Mar. 2000, pp. 183–207.

[623] Suchman, L. A. Plans and Situated Actions: The Problem of Human-Computer Communication. Cambridge Univer-

sity Press, New York, 1987.

[624] Sugiyama, K., and Misue, K. ”Good” graphic interfaces for “good” idea organizers. In INTERACT’90 [756],

pp. 521–526.

[625] Sutcliffe, A. On the effective use and reuse of HCI knowledge. ACM Transactions on Computer-Human Interaction,

7(2), June 2000, pp. 197–221.

[626] Sutcliffe, A. G., and Carroll, J. M. Designing claims for reuse in interactive systems design. International Journal

of Human-Computer Studies, 50(3), 1999, pp. 213–241.

[627] Suwa, M., Purcell, T., and Gero, J. Macroscopic analysis of design processes based on a scheme for coding

designers’ cognitive actions. Design Studies, 19(4), 1998, pp. 455–483.

[628] Suwa, M., and Tversky, B. What architects see in their sketches: Implications for design tools. In CHI’96 [734],

pp. 191–192.

[629] Swetz, F. J. Bodily mathematics. In From Five Fingers to Infinity: A Journey Through the History of Mathematics.

Open Court, Chicago, 1994, p. 52.

[630] Szwillus, G., and Neal, L., Eds. Structure-Based Editors and Environments. Academic Press Limited, 1996.

[631] Tallis, D. J. Using Software Visualisation to Support Program Comprehension. PhD thesis, University of Exeter,

Department of Computer Science, July 1996.

[632] Tateishi, A., and Walenstein, A. Applying traditional Unix tools during maintenance: An experience report. In

WCRE’2000 [765], pp. 203–206.

[633] Tauscher, L., and Greenberg, S. How people revisit web pages: Empirical findings and implications for the

design of history systems. International Journal of Human-Computer Studies, 47(1), 1997, pp. 97–137.

[634] Taylor, M. M. Layered protocols for computer-human dialogue. I: Principles. International Journal of Man-

Machine Studies, 28(2/3), 1988, pp. 175–218.

[635] Teasley, B. M. Program comprehension skills and their acquisition: A call for an ecological paradigm. In

NATO.ASI.111 [759], pp. 71–79.

[636] Teitelman, W. A display oriented programmer’s assistant. International Journal of Man-Machine Studies, 11(2),

1979, pp. 157–187.

[637] Tennyson, R. D., and Schott, F. Instructional design theory,research, and models. In Instructional Design: In-

ternational Perspectives, R. D. Tennyson, F. Schott, N. M. Seel, and S. Dijkstra, Eds., vol. 1. Lawrence Erlbaum

Associates, 1997, ch. 1, pp. 1–16.

BIBLIOGRAPHY 382

[638] Terrins-Rudge, D., and Jorgensen, A. H. Supporting the designers: Reaching the users. In Byerley et al. [90],

ch. 1.4, pp. 87–98.

[639] Thagard, P. Mind: Introduction to Cognitive Science. The MIT Press, Cambridge, MA, 1996.

[640] Tichy, W. F. Should computer scientists experiment more? Computer, 31(5), May 1998, pp. 32–40.

[641] Tilley, S. The canonical activities of reverse engineering. Annals of Software Engineering, 9, May 2000, pp. 249–271.

[642] Tilley, S. R., Paul, S., and Smith, D. B. Towards a framework for program understanding. In WPC’96 [769],

pp. 19–28.

[643] Tilley, S. R., Whitney, M. J., Müller, H. A., and Storey, M.-A. D. Personalized information structures. In ACM

Eleventh International Conference on Systems Documentation (Kitchener, ON, Oct 5–8 1993), Association for Com-

puting Machinery, 1993, pp. 325–337.

[644] Toleman, M. A., and Welsh, J. Systematic evaluation of design choices for software development tools.

Software—Concepts and Tools, 19(3), 1998, pp. 109–121.

[645] Tweedie, L. A. Interactive visualisation artifacts: How can abstractions inform design? In HCI’95 [749], pp. 247–

265.

[646] Tweedie, L. A. Characterizing interactive externalizations. In CHI’97 [735].

[647] Tzerpos, V., and Holt, R. C. A hybrid process for recovering software architecture. In Proceedings of CASCON

1996 (Toronto, Canada, Nov. 1996), 1996.

[648] Tzerpos, V., and Holt, R. C. ACDC: An algorithm for comprehension-driven clustering. In Proceedings of the

Seventh Working Converence on Reverse Engineering, WCRE-2000 (Brisbane, Australia, Nov 23–25 2000), 2000,

pp. 258–267.

[649] Ulam, S. Adventures of a Mathematician. Scribner, New York, 1976.

[650] Valkenburg, R., and Dorst, K. The reflective practice of design teams. Design Studies, 19(3), July 1998, pp. 249–

271.

[651] Van de Velde, W. Cognitive architectures—from knowledge level to structural coupling. In The Biology and

Technology of Intelligent Autonomous Agents, L. Steels, Ed., vol. 144 of NATO ASI Series F: Computer and Systems

Science. Springer-Verlag, 1995, pp. 197–221.

[652] van Oostendorp, H., and de Mul, S., Eds. Cognitive Aspects of Electronic Text Processing, vol. LVIII of Advances in

Discourse Processes. Ablex Publishing Corporation, Norwood, NJ, 1996.

[653] van Welie, M., van der Veer, G. C., and Eliëns, A. An ontology for task world models. In Proceedings of the 5th

International Eurographics Workshop on Design Specification and Verification of Interactive Systems (Abingdon, UK,

Jun 3–5 1998), 1998.

[654] Vans, A. M. A Multi-Level Code Comprehension Model for Large Scale Software. PhD thesis, Colorado State Univer-

sity, Department of Computer Science, Nov. 1996.

[655] Vessey, I. Expertise in debugging computer programs: A process analysis. International Journal of Man-Machine

Studies, 23(5), 1985, pp. 459–494.

[656] Vessey, I. Cognitive fit: A theory-based analysis of the graphs versus tables literature. Decision Sciences, 22(2),

1991, pp. 219–240.

[657] Vicente, K. Cognitive Work Analysis: Toward Safe, Productive, and Healthy Computer-Based Work. Lawrence Erlbaum

Associates, Mahwah, NJ, 1999.

BIBLIOGRAPHY 383

[658] Vicente, K. J. A few implications of an ecological approach to human factors. In Flach et al. [219], ch. 3, pp. 54–67.

[659] Vinze, A. S., Sen, A., and Liou, S. F. T. AEROBA: A blackboard approach to model formulation. In Proceedings of

the Twenty-Fifth Hawaii International Conference on System Sciences (Jan 7–10 1992), V. Milutinovic, B. D. Shriver,

J. J. F. Nunamaker, and J. R. H. Sprague, Eds., vol. 3, 1992, pp. 551–562.

[660] Vinze, A. S., Sen, A., and Liou, S. F. T. Operationalizing the opportunistic behavior in model formulation.

International Journal of Man-Machine Studies, 38(3), Mar. 1993, pp. 509–540.

[661] Visser, W. More or less following a plan during design: Opportunistic deviations in specification. International

Journal of Man-Machine Studies, 33(3), 1990, pp. 247–278.

[662] Visser, W. Planning and organization in expert design activities. In Gilmore et al. [242], pp. 25–39.

[663] Visser, W., and Hoc, J.-M. Expert software design strategies. In Hoc et al. [307], ch. 3.3, pp. 235–249.

[664] von Mayrhauser, A. Maintenance and evolution of software products. In Advances in Computers, Volume 39,

M. C. Yovits and M. V. Zelkowitz, Eds., vol. 39 of Advances in Computers. Academic Press Limited, 1994, pp. 1–

49.

[665] von Mayrhauser, A., and Lang, S. Evaluating software maintenance support tools for their support of program

comprehension. In Proceedings of the 1998 IEEE Aerospace Conference (Mar 21–28 1998), 1998, pp. 173–187.

[666] von Mayrhauser, A., and Lang, S. A coding scheme to support systematic analysis of software comprehension.

IEEE Transactions on Software Engineering, 25(4), July 1999, pp. 527–540.

[667] von Mayrhauser, A., and Vans, A. Code comprehension model. Tech. Rep. CS–92–145, Computer Science

Department, Colorado State University, Fort Collins, CO 80523-1873, 1992.

[668] von Mayrhauser, A., and Vans, A. M. From code comprehension model to tool capabilities. In Proceedings of

the 1993 International Conference on Computers and Information (May 27–29 1993), Abou-Rabia, C. K. Chang, and

W. W. Koczkodaj, Eds., IEEE Computer Society Press, 1993, pp. 469–473.

[669] von Mayrhauser, A., and Vans, A. M. From code understanding needs to reverse engineering tool capabilities.

In Proceedings of the Sixth International Conference on Computer Aided Software Engineering (Institute of Systems

Science, National University of Singapore, Singapore, Jul 19–23 1993), H.-Y. Lee, T. F. Reid, and S. Jarzabek,

Eds., IEEE Computer Society Press, 1993, pp. 230–239.

[670] von Mayrhauser, A., and Vans, A. M. From program comprehension to tool requirements for an industrial

environment. In Proceedings of the Second Workshop on Program Comprehension (Capri, Italy, Jul 8–9 1993), IEEE

Computer Society Press, 1993, pp. 78–86.

[671] von Mayrhauser, A., and Vans, A. M. Comprehension processes during large scale maintenance. In ICSE’94

[754], pp. 39–48.

[672] von Mayrhauser, A., and Vans, A. M. Dynamic code cognition behaviors for large scale code. In WPC’94 [768],

pp. 74–81.

[673] von Mayrhauser, A., and Vans, A. M. Industrial experience with an integrated code comprehension model.

Software Engineering Journal, Sept. 1995, pp. 171–182.

[674] von Mayrhauser, A., and Vans, A. M. Program comprehension during software maintenance and evolution.

Computer, 28(8), Aug. 1995, pp. 44–55.

[675] von Mayrhauser, A., and Vans, A. M. Program understanding: Models and experiments. In Advances in Com-

puters, Volume 40, M. C. Yovits and M. V. Zelkowitz, Eds., vol. 40 of Advances in Computers. Academic Press

Limited, 1995, pp. 1–38.

BIBLIOGRAPHY 384

[676] von Mayrhauser, A., and Vans, A. M. Identification of dynamic comprehension processes during large scale

maintenance. IEEE Transactions on Software Engineering, 22(6), June 1996, pp. 424–437.

[677] von Mayrhauser, A., and Vans, A. M. On the role of hypotheses during opportunistic understanding while

porting large scale code. In WPC’96 [769], pp. 68–77.

[678] von Mayrhauser, A., and Vans, A. M. On increasing our knowledge of large-scale software comprehension.

Empirical Software Engineering, 2(2), 1997, pp. 159–163.

[679] von Mayrhauser, A., and Vans, A. M. Program understanding behavior during debugging of large scale soft-

ware. In Empirical Studies of Programmers: Seventh Workshop (Alexandria, VA, Oct 24–26 1997), S. Wiedenbeck

and J. C. Scholtz, Eds., Association for Computing Machinery, 1997, pp. 157–179.

[680] von Mayrhauser, A., and Vans, A. M. Program understanding during software adaptation tasks. In Proceedings

of the 1998 International Conference on Software Maintenance (CSM ’98) (Bethesda, MD, Nov 16–19 1998), IEEE

Computer Society Press, 1998, pp. 316–416.

[681] von Mayrhauser, A., Vans, A. M., and Howe, A. E. Program understanding behaviour during enhancement of

large-scale software. Journal of Software Maintenance—Research and Practice, 9(5), 1997, pp. 299–327.

[682] von Mayrhauser, A., Vans, A. M., and Howe, A. E. Program understanding behaviour during enhancement of

large-scale software. Software Maintenance—Research and Practice, 9(5), 1997, pp. 299–327.

[683] Vosniadou, S. From cognitive theory to educational technology. In NATO.ASI.137 [760], pp. 11–18.

[684] Vosniadou, S., De Corte, E., Glaser, R., and Mandl, H., Eds. International Perspectives on the Design of Technology-

Supported Learning Environments. Lawrence Erlbaum Associates, 1996.

[685] Walenstein, A. E. Developing the designer’s toolkit with software comprehension models. In Proceedings of the

13th IEEE International Conference on Automated Software Engineering (Honolulu, Hawaii, Oct 13–16 1998), IEEE

Computer Society Press, 1998, pp. 310–313.

[686] Ware, C. The foundations of experimental semiotics: a theory of sensory and conventional representation.

Journal of Visual Languages and Computing, 4(1), 1993, pp. 91–100.

[687] Ware, C. Information visualization: perception for design. Morgan Kaufman, San Francisco, 2000.

[688] Ware, C., and Franck, G. Evaluating stereo and motion cues for visualizing information nets in three dimen-

sions. ACM Transactions on Graphics, 15(2), Apr. 1996.

[689] Warren, Jr., W. H. Constructing an econiche. In Flach et al. [219], ch. 8, pp. 210–237.

[690] Waterson, P. E., Clegg, C. W., and Axtell, C. M. The interplay between cognitive and organizational factors

in software development. In Proceedings of Interact ’95–the Fifth International Conference on Human-Computer

Interaction (Lillehammer, Norway, June 1995), K. Nordby, P. Helmersen, D. J. Gilmore, and S. A. Arnesen, Eds.,

Chapman and Hall, 1995, pp. 32–37.

[691] Webb, S., and MacMillian, J. Cognitive bias in software engineering. Communications of the ACM, 38(6), June

1995, pp. 57–63.

[692] Weiser, M. Programmers use slices when debugging. Communications of the ACM, 25(7), July 1982.

[693] Weiser, M., and Lyle, J. R. Experiments on slicing-based debugging aids. In ESP’86 [741], pp. 187–197.

[694] Weiser, M., and Shneiderman, B. Human factors of software design and development. In Handbook of Human

Factors/Ergonomics, G. Salvendy, Ed. John Wiley and Sons, 1986, pp. 1398–1415.

BIBLIOGRAPHY 385

[695] Weizenbaum, J. Computer Power and Human Reason: From Judgment to Calculation. W. H. Freeman and Company,

San Francisco, 1976.

[696] Welty, C. Augmenting abstract syntax trees for program understanding. In Proceedings of The 1997 International

Conference on Automated Software Engineering (ASE’97) (Lake Tahoe, CA, Nov 2–5 1997), Nov. 1997.

[697] Welty, C. A. An Integrated Representation for Software Development and Discovery. PhD thesis, Rensselaer Poly-

technic Institute, Department of Computer Science, July 1995.

[698] Wexelblat, A., and Maes, P. Footprints: History-rich tools for information foraging. In Proceedings of ACM

CHI 99 Conference on Human Factors in Computing Systems (Pittsburgh, PA, May 15–20 1999), Association for

Computing Machinery, 1999, pp. 270–277.

[699] Whitefield, A. A model of the engineering design process derived from hearsay-II. In INTERACT’84 [755].

[700] Whitefield, A. Constructing appropriate models of computer users: The case of engineering designers. In

Cognitive Ergonomics and Human-Computer Interaction, J. Long and A. Whitefield, Eds., vol. 1 of Cambridge Series

on Human-Computer Interaction. Cambridge University Press, Cambridge, UK, 1989, ch. 3, pp. 66–94.

[701] Whitefield, A., Esgate, A., Denley, I., and Byerley, P. On distinguishing work tasks and enabling tasks. Interacting

with Computers, 5(3), 1993, pp. 333–347.

[702] Whiteside, J., and Wixon, D. Discussion: Improving human-computer interaction—a quest for cognitive. In

Carroll [100], pp. 353–365.

[703] Whitley, K. N. Visual programming languages and the empirical evidence for and against. Journal of Visual

Languages and Computing, 8(1), Feb. 1997, pp. 109–142.

[704] Wiecha, C., and Henrion, M. Linking multiple program views using a visual cache. In Proceedings of IFIP

INTERACT’87: Human-Computer Interaction (Stuttgart, Germany, Sep 1–4 1987), H. J. Bullinger and B. Shackel,

Eds., IFIP, North-Holland, 1987, pp. 689–694.

[705] Wilde, N. P. Using cognitive dimensions in the classroom as a discussion tool for visual language design. In

CHI’96 [734].

[706] Williges, R. C., Williges, B. H., and Han, S. H. Sequential experimentation in human computer interface design.

In Advances in Human–Computer Interaction, H. R. Hartson and D. Hix, Eds., vol. 4. Ablex, Norwood, NJ, 1993,

pp. 1–30.

[707] Wills, L. M. Automated program recognition by graph parsing. Tech. Rep. TR–1358, MIT, Artificial Intelligence

Laboratory, 1992. Phd Thesis.

[708] Winn, W. An account of how readers search for information in diagrams. Contemporary Educational Psychology,

18, 1993, pp. 162–185.

[709] Winograd, T. From programming environments to environments for designing. Communications of the ACM,

38(6), June 1995, pp. 65–74.

[710] Winograd, T., and Flores, F. Understanding Computers and Cognition: A New Foundation for Design. Ablex, Nor-

wood, NJ, 1986.

[711] Wolf, C. G., Carroll, J. M., Landauer, T. K., John, B. E., and Whiteside, J. The role of laboratory experiments in

HCI: Help, hindrance, or ho-hum? In CHI’89 [730], pp. 265–268.

[712] Wong, K., Tilley, S. R., Müller, H. A., and Storey, M.-A. D. Structural redocumentation: A case study. IEEE

Software, 12(1), Jan. 1995, pp. 46–54.

BIBLIOGRAPHY 386

[713] Woods, D. D. Commentary: Cognitive engineering in complex and dynamic worlds. In Cognitive Engineering

in Complex Dynamic Worlds, E. Hollnagel, G. Mancini, and D. D. Woods, Eds. Academic Press Limited, 1988.

Originally published in International Journal of Man-Machine Studies, 27(5-6), pp. 571–585.

[714] Woods, S., Quilici, A., and Yang, Q. Constraint-based Design Recovery for Software Reengineering: Theory and

Experiments. Kluwer Academic Publishers, 1997.

[715] Wortham, S. Interactionally situated cognition: A classroom example. Cognitive Science, 25(1), 2001, pp. 37–66.

[716] Wright, P. Cognitive overheads and prostheses: Some issues in evaluating hypertexts. In Proceedings of the Third

Annual ACM Conference on Hypertext (San Antonio, TX, Dec 15–18 1991), Association for Computing Machinery,

1991, pp. 1–12.

[717] Wright, P. The textbook of the future. In Hypertext: A Psychological Perspective, C. McKnight, A. Dillon, and

J. Richardson, Eds. Ellis Horwood, 1993, pp. 137–152.

[718] Wright, P. C., Fields, B., and Harrison, M. D. Distributed information resources: A new approach to interaction

modelling. In Proceedings of ECCE8: Eighth European Conference on Cognitive Ergonomics (Grenada, Spain, Sep

10–13 1996), 1996.

[719] Wright, P. C., Fields, R. E., and Harrison, M. D. Analyzing human–computer interaction as distributed cogni-

tion: The resources model. Human Computer Interaction, 15(1), Mar. 2000, pp. 1–41.

[720] Young, R. M., and Barnard, P. J. The use of scenarios in human-computer interaction research: Turbocharging

the tortoise of cumulative science. In Proceedings of ACM CHI+GI’87 Conference on Human Factors in Computing

Systems and Graphics Interface (Toronto, Canada, Apr 5–9 1987), Association for Computing Machinery, 1987,

pp. 291–296.

[721] Young, R. M., Green, T. R. G., and Simon, T. Programmable user models for predictive evaluation of interface

designs. In CHI’89 [730], pp. 15–19.

[722] Young, R. M., and Simon, T. Planning in the context of human-computer interaction. In Proceedings of the

Conference on People and Computers III (Exeter, UK, Sep 7–11 1987), D. Diaper and R. Winder, Eds., Cambridge

University Press, 1987, pp. 363–370.

[723] Zachary, W., Le Mentec, J.-C., and Ryder, J. Interface agents in complex systems. In Human Interaction With

Complex Systems: Conceptual Principles and Design Practice, C. A. Ntuen and E. H. Park, Eds. Kluwer Academic

Publishers, 1996, pp. 35–52.

[724] Zelkowitz, M. V., and Wallace, D. R. Experimental models for validating technology. Computer, 31(5), May 1998,

pp. 23–31.

[725] Zhang, J. A representational analysis of relational information displays. International Journal of Human-Computer

Studies, 45(1), 1996, pp. 59–74.

[726] Zhang, J. The nature of external representations in problem solving. Cognitive Science, 21(2), 1997, pp. 179–217.

[727] Zhang, J., and Norman, D. A. Representations in distributed cognitive tasks. Cognitive Science, 18, 1994, pp. 87–

122.

[728] Zimmermann, B., and Selvin, A. M. A framework for assessing group memory approaches for software design

projects. In DIS’97 [740], pp. 417–426.

[729] Ziv, H., and Osterweil, L. J. Research issues in the intersection of hypertext and software development environ-

ments. In SEHCIW’94 [762], pp. 268–279.

BIBLIOGRAPHY 387

[730] CHI’89. Proceedings of ACM CHI’89 Conference on Human Factors in Computing Systems (Austin, TX, Apr 30–May

4 1989), Association for Computing Machinery.

[731] CHI’90. Proceedings of ACM CHI’90 Conference on Human Factors in Computing Systems (Seattle, WA, Apr 1–5

1990), Association for Computing Machinery.

[732] CHI’92. Proceedings of ACM CHI’92 Conference on Human Factors in Computing Systems (Monterey, CA, May 3–7

1992), Association for Computing Machinery.

[733] CHI’95. Proceedings of ACM CHI’95 Conference on Human Factors in Computing Systems (Denver, Colorado, May

6–7 1995), Association for Computing Machinery.

[734] CHI’96. Bilger, R., Guest, S., and Tauber, M. J., Eds. Proceedings of CHI’96 Conference on Human Factors in

Computing (Vancouver, BC, Apr 13–14 1996), Association for Computing Machinery.

[735] CHI’97. Pemberton, S., Ed. Proceedings of CHI’97 Conference on Human Factors in Computing (Atlanta, GA, Mar

22–27 1997), Association for Computing Machinery.

[736] CHI’98. Proceedings of ACM CHI 98 Conference on Human Factors in Computing Systems (Los Angeles, CA, Apr

18–23 1998), Association for Computing Machinery.

[737] CS’94. Tepfenhart, W. M., Dick, J. P., and Sowa, J. F., Eds. Conceptual Structure: Current Practices — Proceedings

of the Second International Conference on Conceptual Structures (College Park, Maryland, Aug 16–20 1994), vol. 835

of Lecture Notes in Artificial Intelligence, Springer-Verlag.

[738] CT’2001. Benyon, M., Nehaniv, C. L., and Dautenhahn, K., Eds. Instruments of Mind: Proceedings of The Fourth

International Conference on Cognitive Technology, vol. 2117 of Lecture Notes in Artificial Intelligence, Springer-Verlag,

2001.

[739] DIS’2000. Proceedings on Designing Interactive Systems: Processes, Practices, Methods, and Techniques (Brooklyn, NY,

Aug 17–19 2000), Association for Computing Machinery.

[740] DIS’97. Proceedings of Designing Interactive Systems: Processes, Practices, Methods, & Techniques (DIS’97) (The

Netherlands, Aug 18–20 1997), Association for Computing Machinery.

[741] ESP’86. Soloway, E. M., and Iyengar, S., Eds. Empirical Studies of Programmers (Washington, DC, Jun 5–6 1986),

Ablex Publishing Corporation.

[742] ESP’87. Olson, G. M., Sheppard, S., and Soloway, E. M., Eds. Empirical Studies of Programmers: Second Workshop

(Washington, DC, Dec 7–8 1987), Ablex Publishing Corporation.

[743] ESP’91. Koenemann-Bellinveau, J., Mohen, T. G., and Robertson, S. P., Eds. Empirical Studies of Programmers:

Fourth Workshop (New Brunswick, NJ, Dec 7–9 1991), Ablex Publishing Corporation.

[744] ESP’93. Cook, C. R., Scholtz, J. C., and Spohrer, J. C., Eds. Empirical Studies of Programmers: Fifth Workshop (Palo

Alto, CA, Dec 3–15 1993), Ablex Publishing Corporation.

[745] ESP’96. Gray, W. D., and Boehm-Davis, D. A., Eds. Empirical Studies of Programmers: Sixth Workshop (Alexandria,

VA, Jan 5–7 1996), Ablex Publishing Corporation.

[746] HCI’88. Jones, D. M., and Winder, R. L., Eds. People and Computers IV: Proceedings of the Fourth Conference of the

British Computer Society Human-Computer Interaction Specialist Group (University of Manchester, Sep 5–9 1988),

British Informatics Society, Cambridge University Press.

[747] HCI’89. Sutcliffe, A., and Macaulay, L., Eds. People and Computers V: Proceedings of the Fifth Conference of the

British Computer Society Human-Computer Interaction Specialist Group (University of Nottingham, UK, Sep 5–8

1989), British Informatics Society, Cambridge University Press.

BIBLIOGRAPHY 388

[748] HCI’91. Diaper, D., and Hammond, N. V., Eds. People and Computers VI: Proceedings of the HCI’91 Conference

(Edinburgh, Scotland, Aug 20–23 1991), British Informatics Society, Cambridge University Press.

[749] HCI’95. Kirby, M. A. R., Dix, A. J., and Finlay, J. E., Eds. People and Computers X, Proceedings of HCI’95 (Hudder-

sfield, England, Aug 29–Sep 1 1995), Cambridge University Press.

[750] HCII’95. Anzai, Y., Ogawa, K., and Mori, H., Eds. Symbiosis of Human and Artifact: Future Computing and

Design for Human-Computer Interaction (Tokyo, Japan, Jul 9–14 1995), vol. 20A/20B of Advances in Human Fac-

tors/Ergonomics, Elsevier Science Ltd.

[751] HPW’86. Proceedings of the ACM Conference on History of Personal Workstations (Palo Alto, CA, Jan 9–10 1986),

Association for Computing Machinery.

[752] HT’89. Proceedings of the Second Annual ACM Conference on Hypertext (Pittsburgh, PA, Nov 5–8 1989), Association

for Computing Machinery.

[753] ICSE’91. 14th IEEE International Conference on Software Engineering (Austin, TX, May 13–17 1991), IEEE Computer

Society Press.

[754] ICSE’94. IEEE International Conference on Software Engineering – 1994 (May 16–21 1994), IEEE Computer Society

Press.

[755] INTERACT’84. Shackel, B., Ed. Proceedings of IFIP INTERACT’84: Human-Computer Interaction (London, U.K.,

Sep 4–7 1984), IFIP, North-Holland.

[756] INTERACT’90. Diaper, D., Ed. Proceedings of IFIP INTERACT’90: Human-Computer Interaction (Cambridge,

U.K., Aug 27–31 1990), IFIP, North Holland.

[757] INTERCHI’93. Ashlund, S., Ed. INTERCHI ’93 : Conference Proceedings : Bridges Between Worlds (Amsterdam,

The Netherlands, Apr 24–29 1993), Association for Computing Machinery.

[758] KBSE’96. Proceedings of the Eleventh Knowledge-Based Software Engineering Conference (Syracuse, NY, Sep 25–28

1996), IEEE Computer Society Press.

[759] NATO.ASI.111. Lemut, E., Dettori, G., and du Boulay, B., Eds. Cognitive Models and Intelligent Environments

for Learning Programming, vol. 111 of NATO ASI Series. Series F, Computer and System Sciences, NATO, Springer-

Verlag, 1993.

[760] NATO.ASI.137. Vosniadou, S., Corte, E. D., and Mandl, H., Eds. Technology-based Learning Environments: Psy-

chological and Educational Foundations, vol. 137 of NATO ASI Series. Series F, Computer and System Sciences, NATO,

Springer-Verlag, 1994.

[761] NATO.ASI.146. Computers and Exploratory Learning, vol. 146 of NATO ASI Series. Series F, Computer and System

Sciences, Springer-Verlag, 1995.

[762] SEHCIW’94. Taylor, R. N., and Coutaz, J., Eds. Software Engineering and Human-Computer Interaction; ICSE ’94

Workshop on SE-HCI: Joint Research Issues (Sorrento, Italy, May 16–17 1994), Springer-Verlag.

[763] SIGSOFT’92. Proceedings of the ACM SIGPLAN/SIGSOFT Conference, 1992 (Washington, DC, Dec 9–11 1992),

vol. 17, Association for Computing Machinery. Published Proceedings of the ACM SIGPLAN/SIGSOFT Con-

ference, 1992.

[764] VSRD’99. Gero, J. S., and Tversky, B., Eds. Visual and Spatial Reasoning in Design (MIT, MA, Jun 15–17 1999), Key

Centre of Design Computing and Cognition, University of Sydney.

[765] WCRE’2000. Proceedings of the 7th Working Conference on Reverse Engineering (Brisbane, Australia, Nov 23–25

2000), IEEE Computer Society Press.

BIBLIOGRAPHY 389

[766] WCRE’93. Proceedings of the 1993 Working Conference on Reverse Engineering (Baltimore, Maryland, May 21–23

1993), IEEE Computer Society Press.

[767] WPC’92. Proceedings of the Program Comprehension Workshop, IEEE Computer Society Press, 1992.

[768] WPC’94. Sipple, R. S., Ed. Proceedings of the Third Workshop on Program Comprehension (Washington, DC, Nov

14–15 1994), IEEE Computer Society Press.

[769] WPC’96. Cimitile, A., and Müller, H. A., Eds. Proceedings of the Fourth Workshop on Program Comprehension

(Berlin, Mar 29–31 1996), IEEE Computer Society Press.

[770] WPC’97. Proceedings of the Fifth Workshop on Program Comprehension (Dearborn, Michigan, May 28–30 1997),

IEEE Computer Society Press.

[771] WPC’98. Proceedings of the Sixth IEEE International Workshop on Program Comprehension (Ischia, Italy, Jun 24–26

1998), IEEE Computer Society Press.

