
Graph-Based XACML Evaluation

Santiago Pina Ros
∗

University of Murcia
Murcia, Spain

santiago.pina1@um.es

Mario Lischka
†

AGT Group (R&D) GmbH
Darmstadt, Germany

mlischka@agtgermany.com

Félix Gómez Mármol
NEC Laboratories Europe

NEC Europe Ltd.
Heidelberg, Germany

felix.gomez-marmol@neclab.eu

ABSTRACT
The amount of private information in the Internet is con-
stantly increasing with the explosive growth of cloud com-
puting and social networks. XACML is one of the most im-
portant standards for specifying access control policies for
web services. The number of XACML policies grows really
fast and evaluation processing time becomes longer. The
XEngine approach proposes to rearrange the matching tree
according to the attributes used in the target sections, but
for speed reasons they only support equality of attribute
values. For a fast termination the combining algorithms are
transformed into a first applicable policy, which does not
support obligations correctly.

In our approach all comparison functions defined in XACML
as well as obligations are supported. In this paper we pro-
pose an optimization for XACML policies evaluation based
on two tree structures. The first one, called Matching Tree,
is created for a fast searching of applicable rules. The second
one, called Combining Tree, is used for the evaluation of the
applicable rules. Finally, we propose an exploring method
for the Matching Tree based on the binary search algorithm.
The experimental results show that our approach is orders
of magnitude better than Sun PDP.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls

General Terms
Performance

Keywords
XACML, Evaluation

∗This paper is based on the authors work during an intern-
ship at NEC Laboratories Europe
†This paper is based on the authors work while being em-
ployed at NEC Laboratories Europe

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMATŠ12, June 20–22, 2012, Newark, New Jersey, USA.
Copyright 2012 ACM 978-1-4503-1295-0/12/06 ...$10.00.

1. INTRODUCTION AND MOTIVATION
OASIS eXtensible Access Control Language (XACML) [11,

12] is a widely deployed standard language for access control
policy specifications. It follows an attribute based model to
identify atomic authorization elements (e.g subject and re-
source). The rules encoded in XACML are evaluated against
a given request by a component called Policy Decision Point
(PDP). Once a policy is specified, it evolves by and by to
address new requirements and becomes large both in content
and number of cases covered. This causes issues in policy
evaluation run-time. Due to this known problem, there is a
line of research to effectively handle large number of rules
and policies with varying number of attributes.

Among the various efforts on this field, XEngine [5, 6]
represents the state-of-the-art for XACML based authoriza-
tion decision. XEngine has performance gains in orders of
magnitude compared to SUN XACML engine (Corp.). It
employs efficient data structures and special pre-processing
techniques to improve the evaluation. The key idea is to pre-
process the target section of the hierarchy formed by policy
sets, policies and rules, and take into account that the con-
ditions of a rule are only evaluated in case all the attributes
in the target sections along the path are matching with a
given request.

It is important to note that these attributes may be evalu-
ated in any order, as long as the correct condition is reached
in the end, or, in case of XEngine, just the final decision
of accept or deny. In contrast to the evaluation of the tar-
get sections of policy sets, policies and rules, whose num-
bers could increase dramatically in large organizations, the
run-time of this approach is limited by the number of at-
tributes Ids (a), and their values (va) used in the target
sections. Thus , XEngine has an average runtime of O(a ∗
log(max(va))) but as some limitations and drawbacks:

• The normalization process described in XEngine does
not support XACML obligations although they are a
fundamental construct in XACML.

• XEngine supports equal functions, while complex func-
tions and comparison functions are not supported.

• The internal data structure (i.e. multi-valued decision
diagram) causes extreme memory consumption.

Motivated by these issues, an enhanced concept for eval-
uation is presented in this paper. While we focused on the
first two points of the above list, the multi-value requests
and policies are currently not supported.



2. RELATED WORK
Since XACML was standardized by OASIS in 2003, a

striking number of research works have been done on XACML
so far. Most of the research work has been focused on ver-
ification, modelling, analysis and testing of XACML poli-
cies [1, 4, 8, 13].

Some recently researches are focused in XACML optimiza-
tion [6,7,10]. The proposals presented in [5,6] and [7] consti-
tute the current state of the art in XACML optimization. [7]
is based on statistics of the past requests and its matched
rules, which are categorized according to a clustering-based
technique, and tries to reorder policies and rules according to
the statistics results. This approach, however, has two main
flaws: i) reordering of policies does not support obligations,
as we will see in section 4, and ii) the statistic method does
not improve the processing time when the access requests
are not uniform.

XEngine [5,6] focuses on improving the performance of the
PDP by numericalization and normalization of the XACML
Policies. In the implementation1 numericalization is a hash
function that converts every attribute type into integers and
stored in a hash table with the objective of an efficient com-
parison. By doing like this, they achieve an improvement
in performance, but are unable to handle any comparison
functions. The normalization, in turn, converts every com-
bining algorithm into a first applicable combining algorithm
in order to build a flat policy structure from the original
policies tree structure. Finally they build a tree with the
numericalized and normalized policies for efficient process-
ing of requests.

Our proposal has some similarities and differences with
XEngine. The approaches are similar since both works try
to achieve an improvement in the performance of the PDP
using a tree data structure. Essentially both approaches
build a decision path and store the matched rules at the end
of the paths, but the differences are in the details. Since
numericalization does not support comparison functions and
our goal is to try to support most XACML specifications, we
decided not to use it. For the same reason we also refused
to use normalization, since reordering rules and policies does
not support obligations, as mentioned before.

In our approach we build two types of trees, namely:
Matching Tree and Combining Tree. The Matching Tree
is similar to the tree built in XEngine without the numer-
icalization process, and with different end nodes. As each
edge in the tree is representing a concrete value2, thus our
approach does not support multi-valued requests or target
sections.

The leaf nodes in XEngine are the normalized rules in a
flat structure, while leaf nodes of a Matching Tree are ac-
tually Combining Trees. The latter consist basically of a
structure that stores policies and rules preserving the origi-
nal tree structure of the policy set. We will explain deeply
the concepts of Matching Tree and Combining Tree in sec-
tion 4.

3. PROBLEM STATEMENT
XEngine [5, 6] is based on the idea of using decision dia-

grams for a faster evaluation, and experimental results have
shown that the approach provides a number of magnitude

1In [5, 6] all occuring attribute values are just enumerated.
2 [5, 6] are using the combination of multi value rules.

faster evaluation compared to the SUN Reference Implemen-
tation (SUN RI).

The key idea is to transform the target matching of the
policy sets, policies and rules into a decision diagram (DD).
Decision Diagrams are widely used in verification tools, in
particular, software systems used for hardware design. A
DD is a directed acyclic graph, G = (V,E), where the nodes
V represent attributes (used in the target sections) and E
represent the equality of the attributes in the request with a
particular value. The edges are leading to the next attribute
present in the target sections.

Binary decision diagrams (BDDs) have been studied ex-
tensively in the literature [2], and many variants [3], [9] have
been introduced. A decision based on decision diagrams is
obtained by combinations of variable assignments that lead
to a terminal node in G.

The reason for the performance advantage of this ap-
proach is the limitation of the evaluation time by the length
of the evaluation paths in the decision diagrams. In turn,
the maximum length is limited by the number of attributes
used in the various target sections and is not bound to the
number of policy sets, policies and rules. In XEngine a tech-
nique called forwarding tables is used to find the correct
edges in constant time. If the transformation is not used,
some fast search algorithms are required to find the edge to
the next node. While the general approach of XEngine is
quite convincing, their decision diagrams lack support for
several concepts:

• Incomplete list of attributes. In general, a subset of
the attributes could lead to a decision. Yet, XEngine
needs all the attributes to be able to reach a decision.

• Support of comparison functions. The domain ap-
proach especially causes problems if the value area is
countable, but theoretically infinite (e.g. time of the
request has to be larger than a specific date).

• Support of regular expressions match functions. As the
algorithm for matching could not be transformed to a
simple comparison, this functionality is not supported.

• Correct handling of DenyOverrides and PermitOver-
rides. In case the dominant effect does not determine
the result, the correct set of obligations is not returned.

As one of our requirements has been to fully support the
OASIS XACML 2.0 standard (having a clear view on how to
support XACML 3.0 as well), we have carefully considered
the aforementioned features in our solution.

4. IMPROVED CONCEPT OF
GRAPH EVALUATION

In this section we will present an improved concept for
XACML evaluation making use of a graph based on the at-
tribute IDs of a policies tree. In Figure 1 a sample policy
set, policies and rules are shown, which we will use to illus-
trate our concept. The hierarchical structure of this graph
entails the inclusion of rules, policies and policy set (button
up).

In our approach we are distinguishing between the search
of the applicable rules for a request and the search of the
correct effect in the applicable rules. Furthermore, we will
show why this approach solves the limitations presented in



Figure 1: Example Policies Tree

previous Section 3, in particular the correct support of obli-
gations and all types of target matching functions.

In order to develop this separation we have created two
data structures, namely: Matching Tree and Combining
Tree.

The Matching Tree is used to find the applicable rules
based on the values of the attributes in the various target
sections. This tree has one level per different attribute Id,
and the edges are represented by disjoint intervals of dif-
ferent comparable elements (e.g., [“SE10”,“SE20”], [5.3,7.8],
[14:00, 15:30]). The evaluation of a request begins from
the root node, it takes from the request the attribute value
that corresponds to the attribute id of the current level, it
searches the interval that contains such attribute value, and
repeats the process with the node pointed by the selected
interval. The evaluation is successful when a terminal node
is reached, indicating that there is at least one rule whose
target attributes are matching the request. When an at-
tribute value taken from the request is not contained in any
interval, there is no matching rule.

In Figure 2 we can see the Matching Tree built with the
policies described in Figure 1. While the structure as such
has been used in XEngine, we will discuss some optimiza-
tions regarding the sorting of the attributes in section 5.2.
In the next sections the path (sequence of nodes) from the
root node to a terminal node in the Matching Tree will be
called the MatchingPath of this terminal node. In contrast
to XEngine, each terminal node of the tree contains, in turn,
a Combining Tree built with the rules that match with the
path followed to reach this terminal node.

A Combining Tree is a structure based on the policies
tree containing a subset of all the rules, where the targets
of all the elements are empty, since a Combining Tree is
built only with those rules which are actually applicable.
This approach allows us to find the result of the request
in a shorter time. In addition this structure preserves the
original hierarchy of combining algorithms, which have to

Figure 2: Corresponding Matching Tree

be applied to the obligations also included in the combining
tree.

Regarding the support of incomplete list of attributes and
complex functions (regular expressions, etc), we have to cre-
ate special edges that need a separate evaluation. In that
case the evaluation can take multiple paths in the Matching
Tree, and we have to merge all the Combining Trees belong-
ing to each path. There is a similar problem with requests
with multi-valued attributes, and the solution is to make a
separate evaluation for each attribute value and merge all
the resulting Combining Trees again.

4.1 Combining algorithms
For XEngine, the policy combining algorithms DenyOver-

rides and PermitOverides are transformed into a FirstAp-
plicable algorithm. This approach is only valid in the case
where obligations are not used. In case the policy sets and
their underlying policies contain obligations, then such so-
lution is not longer valid, as the obligations of all evaluated
policies or policy sets which have the same effect as the final
decision have to be provided to the PEP [11, sec 7.14]. Let’s
assume a policy set applies DenyOverrides: if the resulting
effect to the request is permit, then all underlying policies
have to be evaluated and the evaluations have to check if
there is an applicable rule with the effect deny. According
to the standard, all obligations with the effect of the decision
(i.e. Permit or Deny) have to be attached to the result, not
only those of the first policy with the effect permit.

In case of incomplete attribute lists, usage comparison
or regular expression functions, the evaluation is forked.
Hence, multiple terminating nodes could be reached. This
represents the case where multiple rules provide a result dur-
ing the evaluation and policy combining has to be applied.

During the creation of the decision diagram, the original
tree of policy sets and policies has to be examined and a
Combining Tree is built with the rules of each terminat-
ing node. A Combining Tree preserves the tree structure
of policy sets and policies, keeping the obligations and the
combining algorithm of each node. In a Combining Tree the
corresponding terminating nodes are rules, which can be re-
ordered, assigning priorities to the rules with empty targets,
in order to achieve a faster evaluation. If multiple terminat-



Figure 3: Example Combining Tree

ing nodes are reached during the evaluation, we will have to
merge all Combining Trees.

4.1.1 Combining Tree
A Combining Tree (see Figure 3) is an auxiliary data

structure based on the policies tree. It is essentially a subset
of the tree without any target section. Initially one could
think of reordering the policies or even changing the tree
structure to a list with a special order of the rules, but if
we want to preserve obligations, we have to keep the tree
structure and the order of the policies. The policies have to
be evaluated in the same order because otherwise the result
could get a different obligation, and therefore the returned
effect could be wrong.

Our goal is to keep all the applicable rules of a Matching
Path in the corresponding leaf node. In order to preserve
obligations we will create a Combining Tree with those ap-
plicable rules. At this point we should highlight that, as
we can see in Figure 2, the same rule could be at the end
of different Matching Paths, and subsequently, in different
Combining Trees. As an example Figure 3 shows the Com-
bining Tree CT3 of the Matching Tree shown in Figure 2

4.1.2 Rule Combining Algorithms
Since rules does not have obligations (at least in XACML

2.0; this is introduced in XACML 3.0 [12]), we can reorder
them in the Combining Tree. The new order of the rules will
depend on the combining algorithm of their parents in the
Combining Tree. We will assign priorities to the rules in the
original policies trees, to make it easier to build the Combin-
ing Tree with the sorted rules. When building a Combining
Node referencing to a policy, its children rules will be added
in descending order starting with the highest priority rule.
The priorities are assigned as follows, depending on the rule
combining algorithm:

• In case of a first-applicable combining algorithm, the
priority is assigned to the rules in reverse order of the
occurrence in the policy and increased each time, start-
ing with priority 1.

• In case of a deny-overrides combining algorithm, all
policies with the effect permit get the priority 1. The
remainder rules with effect deny are assigned a priority
in the reverse order of their occurrence in the policy.

 

FA ���� first-applicable 

DO � deny-overrides 

PO � permit-overrides 

ODO � ordered-deny-overrides 

OPO � ordered-permit-overrides 

P ���� permit 

D � deny 

Priority 

OPO 

P D D P 

4 2 1 3 

ODO 

P D D P 

2 4 3 1 

FA 

P D D P 

4 3 2 1 

DO 

P D D P 

1 3 2 1 

PO 

P D D P 

3 1 1 2 

Figure 4: Priorities example

• In case it is ordered-deny-overrides combining algo-
rithm, the priority to those rules with effect permit
is again assigned in reverse order and increased by one
each time starting with 1. Then those rules with ef-
fect deny are assigned in reverse order with a priority
starting from the highest priority of the last permit
rule plus one.

• In case of permit-overrides the assignment is done sym-
metrically (first rules with effect deny, then those with
effect permit).

• In case of a ordered-permit-overrides combining algo-
rithm, the priority to those rules with effect deny is
again assigned in reverse order and increased by one
each time starting with 1. Then those rules with effect
permit are assigned in reverse order with a priority
starting from the highest priority of the last deny rule
plus one.

An example is shown in Figure 4 where the order of the
leaf nodes correspond to the order in the containing policy,
and the numbers are indicating the priority assigned based
on the approach presented above.

4.2 XEngine comparison
XEngine represents the state-of-the-art for fast XACML

based authorization decision, being currently, as far as we
know, the fastest way to evaluate XACML policies. How-
ever, it also has some limitations. The main differences in
the structures presented in this paper and the ones presented
in XEngine are twofold:

• XEngine maps every attribute value to a numerical
value and the PDD based in numerical intervals, while
we build a Matching Tree with only one level per at-
tribute value and the edges are represented with generic
intervals.

• XEngine transforms the policies tree structure to a
flat structure with the first-applicable combining algo-
rithm. On the other hand we build Combining Trees,
that preserve the tree structure and the combining al-
gorithms.



In the following we present a qualitative comparison be-
tween XEngine and our approach.

4.2.1 Correctness
XEngine presents a formal proof of the correctness of Nor-

malization, but since we do not modify the tree structure of
the policy sets and policies it is easy to see that our approach
find the correct solution. We separate the evaluation in two
parts, first we search the applicable rules with the Matching
Tree; once we have the applicable rules we create a Com-
bining Tree preserving the original structure of the overall
policy set, and we use the original algorithms to evaluate
the request. So, we use the original structure, containing
the applicable rules and we evaluate the response using the
original algorithms, then the response must be the same. In
this case both approaches are correct.

4.2.2 Support of comparison functions
Decision diagrams are optimized to support the check of

equality of attribute values. In XEngine a range check is
used for String values, but these ranges are determined by
the values parsed in the policies. However, the request may
contain additional values not yet known. Thus, the mapping
to integer technique does not seem to be adequate.

The reason is simple, you can always find an string be-
tween any two given strings, but you can not find an integer
between any two given integers. For example, you can not
find any integer between 4 and 5, but given the string “x”
and the string “y”, with “x” < “y”, (“x” +“a”) is between
“x” and “y”. For that reason we can not find any bijective
function from strings to integers.

A first approach is to find a bijective function from strings
to a real number, but it present two problems:

• String comparison seems to be faster than most map-
ping functions, since you have to explore every char in
the string.

• The precision of the mapping could be as much be-
tween 7 and 10 chars, due to the precision of doubles.

In order to solve this problem we use data-intervals. A
data-interval is a structure similar to a numerical interval
but composed by a different comparable data type. Intervals
of dates, char, etc., are “natural”, but we need to add two
new values to the value set of each data type: left infinity,
and right infinity.

They are ordered according to the attributes given in the
target section and used for comparison. During the evalua-
tion these lists are checked and whenever the attribute value
given in the request is valid for a particular comparison, the
corresponding edge has to be evaluated has well. As in the
aforementioned case of missing attributes, it has to be de-
termined whether this should be done in a concurrent or
sequential fashion. As the lists are ordered according to the
respective comparison operator, they are traversed until the
first comparison fails.

In addition, some early experiments have indicated that
computing the hash value of a string takes significantly more
time than a string comparison.

Mapping String to Integer is a good idea, since Integer
comparison is fast than String comparison, but as explained
before we lost the String comparison functions support. So if
String comparison functions are needed it is recommended to

choose the MatchingTree solution rather than the Decision
Diagram solution.

4.2.3 Incomplete lists of attributes
Assuming a variety of different attributes used in the tar-

get sections, it is more than likely that not all known at-
tribute Ids are used in a decision path. The order in which
the attributes are checked, i.e., on which level they are present
in the decision diagram, is arbitrary or subject to further op-
timization strategies. At some point (due to the presence of
the attribute in one target section and the absence in an-
other target section) a special handling is necessary. In this
case two paths have to be evaluated: the one which con-
tains the attribute (assuming that the attribute is present
in the request) and the one which does not introduce such
attribute.

Whether this forked evaluation is done in a concurrent
fashion or the open ends are stored for a sequential analysis
has to be determined at a later stage. Both approaches intro-
duce some coordination overhead. Obviously, empty target
categories for subjects, resources or actions are handled in
the same way.

Special edges built specifically for empty attributes IDs
are needed to support empty targets sections in a decision
diagram solution, but XEngine does not mention this case
and cannot supports it.

4.2.4 Regular expression support
The use of regular expression in the target sections has to

be handled in a similar way than comparisons. As there is no
simple replacement for this function, the matching has to be
evaluated. In case of a match, the respective edge has to be
evaluated (concurrently or sequentially). Since the regular
expression match operations are quite expensive computa-
tions, the attributes which are checked with this function
should be moved to the end of the potential decision paths.
For this reason a special edge has to be created for each
match function. This way, an earlier missing or mismatch-
ing attribute might already terminate the evaluation before
these nodes are reached.

Regular expression can not be mapped to a single integer
value, so the numericalizarion method can not be applied to
this kind of function and the regular expression has to be
evaluated. On the other hand the Matching Tree creates a
special edge for this kind of functions and fork the evalu-
ation. This issue should be studied deeply in future work
since both approaches seem to be computational expensive.

4.2.5 Indeterminate response support
In XACML specification is described the policy combin-

ing algorithms and the response of the evaluation of the
algorithm can be deny or permit if the policy combining
algorithm get an Indeterminate response evaluation a rule.
This issue is not contemplated in flat structures of rules like
the one used in XEngine, so it is needed preserve the tree
structure if we want to give an adequate response in this
cases.

4.2.6 Obligations handling
In the traditional evaluation like SUN PDP, a decision is

reached on rule level and the result is sent up again. During
this backtracking, the obligations specified in the traversed
policy sets and policies have to be collected. This collection



is then sent to the PEP as part of the result. During the
creation of the decision diagram, the obligations specified in
the policy sets and policies have to be tracked, and it has
to be ensured that all obligations which are along a specific
path are stored in the final node which also contains the
condition to be evaluated. This way whenever a terminating
node is reached, the related obligations just have to be sent
with the result. In our solution we propose Combining Trees
for the final evaluation of a request and, according to this
approach, we can handle obligations with the algorithm of
the XACML specification.

A solution with obligation support also needs to preserve
the tree structure of the applicable rules, in order to collect
the obligations once the result is found. The flat structure
of rules and the reordering into first-applicable combining
algorithms used in XEngine does not take into account the
special cases where the none dominant result (i.e. deny in
case of permit-overrides) is determined. Thus XEngine only
provides the set of obligations related to the first applica-
ble policy (set), instead of all the obligations of all policies
evaluated according to [11,12] and done in our approach.

4.2.7 Multi-valued policies and requests
As we have previously mentioned, our approach supports

requests with multi-valued attributes, but the Matching Tree
does not support policies (or more precisely predicate path
lists) with multi-valued attributes. This is due to the current
concept in which each level of the Matching Tree represents
a different attribute Id and the edges of the tree are dis-
joint intervals. Based on this, it is not possible to build an
edge with an interval that match only with two given values.
As part of our future working we are evaluating the idea of
adding dedicated edges or sets of edges to support policies
with multi-valued attributes.

On the other hand, XEngine support this characteristic
with the use of several levels per attribute Id. This point
could be important in some environments, so in this case
the use of XEngine could be more interesting.

4.2.8 Processing time
An important goal of this paper is to reduce the process-

ing time of evaluation and, as we will see in section 6, our
approach is several times faster than SUN implementation.
XEngine is also several time faster than SUN RI and two
points lead us to think that XEngine could be faster than
our approach:

• The use of Integer comparison is faster than the use of
String comparison. and the numericalization process
convert every String to Integer. This numericalization
is done in XEngine by a mapping. Initial experiments
indicated that hashing the attribute values of the re-
quest will void the advantage of integer comparison.
Thus, we preserve the string values, also to support
comparison and regular expression functions.

• XEngine transform every combining algorithm to first-
applicable combining algorithm, and the response is
found faster with this algorithm. Since obligations are
not supported with this kind of transformation, we de-
cided to preserve the correct combining algorithms in
the Combining Tree.

So in environments were the speed is valued over function-
ality XEngine is more suitable, but in environments were

functionality is valued over speed our approach is more ap-
propriate.

5. SOLUTION DETAILS
In this section we will describe the needed algorithms for

building the Matching Tree and the Combining Tree, as well
as the algorithms for a correct evaluation of these trees.

5.1 Preliminary concepts
Here we present some concepts and terms needed to better

understand the aforementioned algorithms:

• Predicate (P = (att, f, v)): It is a tuple of the three
elements, namely attribute id, function and attribute
value, where the function could be any of the ones
presented in the XACML specification. The function
specifies if a request matches with the Predicates.

• PredicatePath (PP = (P1, . . . , Pn)): It is a list of
Predicates. It is used to represent all the Predicates
that a request has to satisfy for matching the target
of a series of elements (policy sets, policies or rules).
A request matches one PP iff the request matches
Pi ∈ PP ∀ i ∈ [1, n] .

• PredicatePathList (PPL = (PP1, . . . , PPn)): It is a
list of PredicatePaths. A request matches one PPL iff
∃ i ∈ [1, n] such that the request matches PPi.

• IntervalPath (IP = (I1, . . . , In)): It is a list of Inter-
vals of different data-types. This list contains exactly
one interval for each different attribute Id.

• IntervalPathList (IPL = (IP1, . . . , IPn)): It is a list
of IntervalPaths.

• Element (E): One Element can represent a Rule, a
Policy or a PolicySet and it conserves their properties
(i.e. obligations, effect, etc).

• CombiningNode (CN): A CombiningNode is a node
of the Combining Tree and it is defined by an Element
E.

• CombiningNodeList (CNL = (CN1, . . . , CNn)): It is
a list of CombiningNodes. It is used to collect a com-
plete branch where CN1 is the root node, and CNn is
one leaf.

• Builder (B = (CNL, IPL)): It is an auxiliary struc-
ture used to collect information and to build both trees
(Matching Tree and Combining Tree).

• BuilderList (BL = (B1, . . . , Bn)): A BuilderList is a
list of Builders, and it is the starting point for building
the Matching Tree.

• Node (N = (leaf, CT, edges)): N represents a node of
the Matching Tree composed by three elements. leaf
is a boolean value that indicates whether the node is
a leaf or not. CT is the Combining Tree created with
the rules that match with the path, and it is empty if
the node is not a leaf. Finally edges represent a list
with the edges of the node.

• Edge (e = (I,N)): The edges of the Matching Tree, e,
represent the pair (I,N), where I is an interval and N
is a node.



5.2 Transformation algorithm
Once we know the concepts used in the algorithms, we

will describe some functions used that will help us to better
understand the process of building both the Matching and
the Combining Trees.

• extractPredicatePaths(E): this function, used in the
line 6 of the algorithm 1, extracts a PPL from the
target of the element E such that a request matches
with the target iff the request matches with one of the
PP ∈ PPL.

• addRestriction(I,P): this function, applied in the
line 9 of the algorithm 2, adds the restriction extracted
from the predicate P to the interval I (i.e. function =
(x < “E10”) ⇒ return I ∩ (−∞, “E10”) ). If the func-
tion is a “complex function” (i.e. regular expression)
it is attached to the interval and it has to be executed
each time that you check if x ∈ I.

• sort(IP): as we know, each interval I in the interval-
Path IP depends on one attribute id. Then we can
find a bijective function F : IP → AT , where AT
is the set of every attributesIds. If we have an order
in AT then we can define an order in IP such that
I1 < I2 ⇔ F(I1) < F(I2); I1 > I2 ⇔ F(I1) > F(I2);
and I1 = I2 ⇔ F(I1) = F(I2). The order in AT has
to be always the same regardless of the IP of the ar-
gument. How to order AT is a difficult question and
we will present one possible order at the end of this
subsection.

In the following lines we will describe 4 algorithms used
for the construction of the Matching Tree and the Combin-
ing Tree. We can separate the algorithms in two principal
functions, one collect the information used to build the trees
and the second builds the tree using the collected informa-
tion, So first we need an algorithm to extract the important
information from the policies tree and store it in new struc-
ture. We want to use this structure to build the trees, so we
will extract the relevant information of each rule and later
we will add the rules one by one to the Matching Tree. Then
we will store two things for each rule of the PolicySet in the
structure BL:

• The list of IntervalPaths that a request has to satisfy
for being applicable to that rule.

• The list of CombiningNodes built with the parents’
policies.

We extract them using the recursive function extract-

Paths() described in Algorithm 1, that explores the policies
tree and return the mentioned information. Once have all
the information needed to build the Matching Tree and the
Combining Tree we need an algorithm to add the rules into
a given Matching Tree (starting empty) using this informa-
tion. This algorithm is described in Algorithm 3, and for
each node of the existing Matching Tree the function takes
the interval information of the given rule and builds the cor-
respondent edge and node. When the algorithm reach a ter-
minal node the Combining Tree of the given rule is added.
So once we have the information in the structure BL we
have to add the rules one by one with this algorithm.

So the first step is to obtain the BL using the function
extractPaths() described in Algorithm 1. The function cal-
culates the BL starting from E, and using the information
of CNL and PPL0 that is relative to the parents of E. The
algorithm explores the policies tree, it takes for each element
the CNL and the PPL of its parents and joins them with
its own CN and PPL. When the current element is a rule,
we transform the PPL into an IPL with the function pred-

icatesToInterval(), described in Algorithm 2, and return
a new BL containing its B. When the current element is
not a rule the algorithm calculate the BL of its children,
and returns the union of them.

Algorithm 1: extractPaths() function
1 Input: PPL0 = (PP1, . . . , PPn);
2 CNL = (CN1, . . . , CNm);
3 E, where E ∈ {′Rule′,′ Policy′,′ PolicySet′}
4 Output: {BL0 = (B1, . . . , Bn)}
5
6 PPL1 ← extractPredicatePaths(E);
7
8 if (PPL0 = ∅)
9 PPL2 ← PPL1;

10 if (PPL1 = ∅)
11 PPL2 ← PPL0;
12
13 for each PPi ∈ PPL1

14 for each PPj ∈ PPL0

15 PPL2.PPn+1 ← (PPi ∪ PPj);
16
17 CN.E ← E;
18 if (E =′ Rule′) {
19 CNL1 ← CNL0 ∪ (CN);
20 B.CNL← CNL1;
21 B.IPL← predicatesToInterval(PPL2);
22 BL0 ← (B);
23 return BL0;
24 } else {
25 CNL1 ← CNL0 ∪ (CN);
26 for each (child ∈ E.children) {
27 BL1 ← extractPaths(PPL2, CNL1, child);
28 BL0 ← BL0 ∪BL1;
29 }
30 return BL0;
31 }

The function predicatesToInterval(), described in the
Algorithm 2, transforms a PPL to an IPL. For each pred-
icate P of each PP , the algorithm adds the restriction es-
tablished by the function of the predicate, to the interval
associated to the attributeId of the predicate. Then it forms
an IP with the intervals extracted form the PP . The result
is the union of this IP in an IPL.

Algorithm 2: predicatesToInterval() function
1 Input: PPL = (PP1, . . . , PPn)
2 Output: IPL = (IP1, . . . , IPn)
3
4 for each PPi ∈ PPL {
5 for each (attributeId k)
6 Ik ← (−∞,+∞);
7
8 for each Pj ∈ PPi

9 IPj .attId ← addRestriction(IPj .attId, Pj);
10
11 for each (attributeId k)
12 IPi ← IPi ∪ (Ik);
13



14 IPL← IPL ∪ (IPi);
15 }
16 return IPL;

The function addNodes() (Algorithm 3) is a recursive al-
gorithm that adds to the Matching Tree the corresponding
nodes and edges, extracting the information from a sorted
IntervalPath IP . If the current node is not terminal, the al-
gorithm add a new edge to N built with the interval IL; but
since the intersection of the edge’s intervals must be empty,
we need to modify the current edges of N and add some
news. For each e ∈ N .edges, such that e.I ∩IL 6= ∅, we need
to add the edge e′.I ← e.I ∩IL, and then e′.N will be the
combination of e.N and IL+1 using the function addNodes().
Once we have added the interval e.I ∩IL to a new edge, we
need to modify the old edge e.I ← e.I - (e.I ∩IL). Finally
we need to subtract to IL every e.I such that e ∈ N .edges,
and add a new edge with the resulting interval IL. When we
reach a terminal node we have to merge the existing Com-
bining Tree with the given CNL.

Algorithm 3: addNodes() function
1 Input: N , a node of the Matching Tree;
2 IP = (I1, . . . , In);
3 CNL = (CN1, . . . , CNm);
4 L, depth level of N
5 Output: N ′

6
7 if (L = n + 1) {
8 N ′.leaf ← true;
9 N ′.CT ← N .CT ∪ CNL;

10 } else {
11 N ′.leaf ← false;
12
13 for each (edge e ∈ N .edges) {
14 e′.I ← e.I ∩ IP.IL;
15 e′.N ← addNodes (e.N, IP , CNL, L + 1);
16 N ′.edges ← N ′.edges ∪ (e′);
17 e.I ← e.I − e′.I;
18 N ′.edges ← N ′.edges ∪ (e);
19 }
20
21 for each (edge e ∈ N ′.edges)
22 IP.IL ← IP.IL − e.I;
23
24 e′.I ← IP.IL;
25 e′.N ← addNodes(∅, IP , CNL, L + 1);
26 N ′.edges ← N ′.edges ∪ (e′);
27 }
28
29 return N ′;

Finally, the Algorithm 4 builds the Matching Tree based
on the above functions. The algorithm extracts the Predi-
catePathLists PPL and CombiningNodeList CNL of each
rule starting from the root of the policies tree. Then it sorts
every IntervalPath IP , as we will explain next, and adds
each one with its corresponding CombiningNodeList CNL
to the tree with the function addNodes() (algorithm 3).

Algorithm 4: Obtaining the Matching Tree
1 Input: RootPolicy
2 Output: MT , the Matching Tree
3
4 BL← extractPaths(RootPolicy);
5
6 for each (Bi ∈ BL)

7 for each (IPj ∈ Bi.IPL) {
8 sort(IPj);
9 MT ← addNodes(MT , IPj , Bi.CNL, 0);

10 }
11
12 return MT ;

As we commented before, we need to order the attributeIds.
We propose to sort the attributeIds in increasing order by
the complexity of the attributeIds. Thus, the algorithm
should reach less“complex functions”during the search when
a path is truncated. For calculating the complexity of an
attributeId in the variable C=0, we take all the predicates
that contain this attribute id an depending on the complex-
ity of the functions we add a different value (equal→ C+=
1, compare→ C+= 10, regexp→ C+= 100). By this way the
evaluation will do less unnecessary complex functions. This
is just a first approach and it is a good point for optimize in
future researches.

5.3 Evaluation Algorithm
Algorithm 5 shows how to obtain the appropriate Combin-

ing Tree corresponding to a given Request. It explores the
Matching Tree obtained from algorithm 4 using a “depth-
first search” and merging all the reached Combining Trees.

Finally, the resulting merged Combining Tree is evaluated
against the Request according to the combining algorithms
described in the XACML standard.

Algorithm 5: Obtaining the Combining Tree
(getCombiningTree() function)

1 Input: Request; N , a node of the Matching Tree
2 Output: CT , the Combining Tree
3
4 if (N .leaf = true)
5 return N .CT;
6
7 for each (attribute att ∈ Request.Attributes)
8 for each (edge ei ∈ N .edges)
9 if (att ∈ ei.I) {

10 CT ′ ← getCombiningTree(Request, ei.N);
11 CT ← CT ′ ∪ CT ;
12 }
13
14 return CT ;

5.4 Binary Search Evaluation Algorithm
With the aim of enhancing even more the evaluation pro-

cessing time, it is possible to make some modifications in the
data structures and in the evaluation algorithm. The first
modification is to sort the list of edges of each node in the
Matching Tree. To this end, we should have two lists: one
with the special edges, and a sorted list with the interval
edges. The second modification is to use a binary search
algorithm in the evaluation algorithm for finding the correct
edge in the interval edges. The main reasons for using this
algorithm are:

• Intervals are disjoint, so an attribute can only be con-
tained in one interval.

• Intervals have comparable data-type, so it is easy to
sort the edges.

The new evaluation algorithm uses the method binary-

Search(), as shown in algorithm 6. This method returns:



• The edge, extracted from Edges, whose interval con-
tains the attribute.

• An empty edge if the attribute is not contained in any
interval from Edges.

Algorithm 6: Obtaining the Combining Tree using
binary search (getCombiningTreeBS() function)

1 Input: Request; N
2 Output: CT , the Combining Tree
3
4 if (N .leaf = true)
5 return N .CT;
6
7 for each (attribute att ∈ Request.Attributes) {
8 edge e← binarySearch(att ∈ N .intervalEdges);
9 if (e 6= ∅) {

10 CT ′ ← getCombiningTreeBS(Request, e.N);
11 CT ← CT ′ ∪ CT ;
12 }
13 for each (edge e′ ∈ N .specialEdges)
14 if (att ∈ e′.I) {
15 CT ′ ← getCombiningTreeBS(Request, e′.N);
16 CT ← CT ′ ∪ CT ;
17 }
18 }
19
20 return CT ;

6. EXPERIMENTAL COMPARISON
For an experimental examination of our approach we cre-

ated several policy sets with a different amount of attribute
IDs (ranging from 6 to 12) and different total number of
policies (ranging from 20 to 400) each policy with 10 rules.
The number of levels of each policy set depends on the num-
ber of policies contained, then the overall policy sets formed
with 20 to 60 policies has 2 levels of depth, the policy sets
composed with 80 to 200 policies has 3 levels of depth, and
the ones with 220 to 400 policies has 4 levels of depth. A
random mixture of combining algorithm has been used based
on [14].

The targets of each policy set are composed by ”equal
functions”and ”complex functions”(string-greater-than, string-
greater-or-equal, etc), the 70% are ”equal functions” and the
rest are ”complex functions”. Every combining algorithm is
presented in each test set the same number of times, so each
combining algorithm represents the 25% of the total number
of combining algorithms. We did not include obligations in
our experiments since the processing time is not affected by
the obligations.

These testing sets have been generated in a similar way
than those presented in [14]. The target attributes of syn-
thetic policies used in the experiments of [5, 6] only differ-
entiate in their attribute values i.e. one attribute ID for
subject, one for resource and one for action. Thus, the main
effect of a faster evaluation is gained from the quick lookup
of the matching attribute value.

The algorithms has been implemented in Java, using some
auxiliar data structures (List, Hashtable, etc) available in
Java framework. The PDP developed has been integrated
in NEC XACML implementation, so during the experiments
we have compared just evaluation time of the PDP in both
implementations.

Each setup has been tested with the reference implemen-
tation (SUN), our simple solution (Tree), and our solution
based on Binary Search (BsTree). As mentioned in sec-
tion 4.2 our goal is to improve XEngine functions support
but keeping faster than SUN PDP, as we do not targeted
to improve XEngine speed an experimental comparison is
not necessary at this point. For each experiment we mea-
sured the processing time of the given policy sets, required
to evaluate 100 requests.

Figure 5: Comparison with SUN RI

The experimental results show that our first approach is
one order of magnitude faster than Sun PDP, as shown in
Figure 5. The problem is that the processing time of SUN
and Tree growth linearly with the number of policies-rules.
It is worth noticing that the growth rate of Tree is lower.
this fact motives for our second approach: Binary Search

Evaluation Algorithm, explained in the subsection 5.4.
The Figure 5 shows the comparison of the processing time

of a request evaluation with the SUN implementation and
the one of our first tree based approach for 6 and 12 different
attribute IDs. The processing time with our approach is one
order of magnitude faster than the SUN PDP. Due to the
scale an increase of the processing time in our approach with
a rising number of policies is barely notable. The evaluation
time roughly doubles when we quadruple the number of poli-
cies. As discussed in Section 4 the number of levels of the
Matching Tree is the number of different attribute IDs used
in the policies represented by the tree; thus the processing
time should increase significantly with the number of levels
of the tree. In addition the Matching Tree becomes wider
with the number of policies, because each policy adds new
functions to the tree; then processing time should increase
with the number of policies.

In Figure 6 we compare the processing time of a request
evaluation of our different approaches.The processing time
of the Binary Search Evaluation Algorithm is about two
times faster than the simple approach. We assume that the
fluctuation in the results is based on the preciseness of the
measurement in combination with the tree structure we are
utilizing to store the attribute values. Overall the processing
time of the Binary Search Evaluation Algorithm grows
logarithmically with the number of policies, while the result



Figure 6: Comparing Tree and Binary Search

of the simple Evaluation Algorithm indicate a linear with
the number of policies.

For real systems which concurrently receive a huge number
of request, reducing the linear dependency on the number
of policies to be evaluated to a logarithmical one has a large
impact. Although the improvement of a binary search tree
over the initial tree result shows quite some fluctuations,
we can detect that the evaluation only took half the time.
In real systems with a large number of requests, this is a
notable improvement.

7. CONCLUSIONS AND FUTURE WORK
Nowadays XACML policies are used in a large number of

applications and some of them receive a big amount of re-
quests. These application could range from a web service, to
an identity prover, or an application. Thus there is a general
need for an high performance XACML PDP, independent of
specific use case characteristics. Therefore instead of focus-
ing of one particular scenario we utilized the generic set of
test policies as presented in [14].

In this paper we presented an optimization of XACML
policies evaluation which support most of the XACML speci-
fications, while future work will include the support of multi-
valued requests. We explained two new concepts: Matching
Tree, based in XEngine tree, and Combining Tree. We built
a new data structure with these concepts and presented two
different evaluation algorithms over this structure. The first
was a simple evaluation algorithm, while the second was
an enhanced version based on a binary search. Finally we
showed that our approach is orders of magnitudes better
than SUN PDP but still being completely aligned with all
features required by the XACML standard. Since our ap-
proach supports multi-valued requests, but not multi-valued
policies, the future work is focusing on the support of multi-
valued policies without increasing the memory utilization.

8. REFERENCES
[1] Dhiah Diehn I Abou-Tair, Stefan Berlik, and Udo

Kelter. Enforcing Privacy by Means of an Ontology
Driven XACML Framework. In Proceedings of the
Third International Symposium on Information

Assurance and Security, pages 279–284, Manchester,
United Kingdom, 2007. IEEE Computer Society.

[2] Randal E Bryant. Graph-Based Algorithms for
Boolean Function Manipulation. IEEE Transactions
on Computers, C-35(8):677–691, 1986.

[3] M. Fujita, P. C. McGeer, and J. C.-Y. Yang.
Multi-terminal binary decision diagrams: An efficient
datastructure for matrix representation. Form.
Methods Syst. Des., 10(2-3):149–169, April 1997.

[4] Dan Lin, Prathima Rao, Elisa Bertino, and Jorge
Lobo. An approach to evaluate policy similarity.
Proceedings of the 12th ACM symposium on Access
control models and technologies SACMAT 07, page 1,
2007.

[5] Alex X. Liu, Fei Chen, JeeHyun Hwang, and Tao Xie.
Designing Fast and Scalable XACML Policy
Evaluation Engines. IEEE Transactions on
Computers, 60(12):1802–1817, December 2011.

[6] A.X. Liu, F. Chen, J.H. Hwang, and T. Xie. XEngine:
A fast and scalable xacml policy evaluation engine. In
ACM SIGMETRICS Performance Evaluation Review,
volume 36, pages 265–276. ACM, 2008.

[7] Said Marouf, Mohamed Shehab, Anna Squicciarini,
and Smitha Sundareswaran. Adaptive Reordering &
Clustering Based Framework for Efficient XACML
Policy Evaluation. IEEE Transactions on Services
Computing, 4(4):300–313, October 2011.

[8] Pietro Mazzoleni, Bruno Crispo, Swaminathan
Sivasubramanian, and Elisa Bertino. XACML Policy
Integration Algorithms. ACM Transactions on
Information and System Security, 11(1):1–29, 2008.

[9] Shin-ichi Minato. Zero-suppressed bdds for set
manipulation in combinatorial problems. In
Proceedings of the 30th international Design
Automation Conference, DAC ’93, pages 272–277,
New York, NY, USA, 1993. ACM.

[10] Philip L Miseldine. Automated xacml policy
reconfiguration for evaluation optimisation.
Proceedings of the fourth international workshop on
Software engineering for secure systems SESS 08,
pages 1–8, 2008.

[11] OASIS. eXtensible Access Control Markup Language
(XACML) Version 2.0, February 2005.

[12] OASIS. eXtensible Access Control Markup Language
(XACML) Version 3.0, April 2009. Comittee Draft 1.

[13] Shariq Rizvi, Alberto Mendelzon, S Sudarshan, and
Roy Pollock. Extending query rewriting techniques for
fine-grained access control. In Proceedings of the
International Conference on Management of Data,
pages 551–562, 2004.

[14] Fatih Turkmen and Bruno Crispo. Performance
evaluation of XACML PDP implementations.
Proceedings of the 2008 ACM workshop on Secure
Web Services, pages 37–44, 2008.


