
Compile-time Performance Predictionof Parallel SystemsIn: Proc. 8th Int'l Conf. on Model. Techn. and Tools for Comput. Perform. Evaluation,Heidelberg, Sept. 20-22, 1995.Arjan J.C. van GemundDept. of Electrical EngineeringDelft University of TechnologyP.O.Box 5031, NL-2600 GA Delft, The Netherlandse-mail: a.vgemund@et.tudelft.nlAbstract. A compile-time technique is outlined that yields low-cost,analytic performance models, intended for crude scalability analysis and�rst-order system design. The approach extends current static techniquesby accounting for any type of resource contention that may occur. In thispaper we report on the accuracy of the prediction method in terms of the-ory, simulation experiments, as well as measurements on a distributed-memory machine. It is shown that for series-parallel computations withrandom resource access patterns, the average prediction error is limitedwell within 50 % regardless the system parameters, where traditionalcompile-time methods yield errors up to orders of magnitude.1 IntroductionIn the performance prediction of parallel systems many approaches exist thatrepresent a speci�c trade-o� between accuracy and cost. Although compile-timetechniques entail a sacri�ce in accuracy when compared to, e.g., simulation, thisloss may be acceptable during the �rst phases of system design in view of thelow cost and high level of parameterization that can be achieved. Where thecost issue plays a prominent role in the development towards automatic systemoptimization, the symbolic nature of the models enables an e�cient parameter(e.g., scalability) study based on a one-only developed model.The quality of a performance modeling approach for parallel systems ishighly determined by the way in which task synchronization (condition synchro-nization) as well as resource contention (mutual exclusion) are accounted for.Whereas static techniques focus on task synchronization they do not account forresource contention except for ad hoc approaches. Queuing for resources alone,however, can already degrade performance by orders of magnitude. Clearly, astatic approach that sustains a minimum accuracy across a large parameter(search) space would be of value.Aimed to overcome the fundamental lack of prediction robustness of staticmethods, an extension has been proposed, that, at the same low cost, approx-imately accounts for resource contention. The analysis method is de�ned interms of a simulation formalism called Pamela (PerformAnce ModEling LAn-guage [8]). Both (parameterized) program and machine are modeled in terms of



separate Pamela submodels, which, when combined by substitution, results in amodel L of the complete system. Rather than simulating (executing) L to obtainthe execution time estimate T , L is compiled into a parameterized performancemodel [9] that computes an alternative, lower bound T l at much lower cost.Thus, the emphasis in our approach is the derivation of symbolic, low costperformance models while limiting the sacri�ce in accuracy by integrating con-tention analysis within the static scheme. In this paper we study the accuracy ofT l for series-parallel (SP) graphs both through simulation experiments as wellas experiments involving a distributed-memory machine. It is shown that for alarge class of task systems the average error of T l relative to T is limited withina factor of 2, regardless program or machine parameter settings.The rest of the paper is organized as follows. For the sake of completeness,in Section 2 we briey present the approach as well as a rationale in terms ofrelated work. In Section 3 we study the nature of the average prediction errorbased on 1000+ simulation experiments. In Section 4 we report on the case studyinvolving the distributed-memory machine. The paper is concluded in Section 5.2 PAMELA2.1 FormalismFor the sake of completeness we briey describe the subset of the formalismthat applies to the analysis of the SP models presented in the paper. A moreelaborate presentation appears in e.g., [10].Basically, Pamela is an imperative formalism extended with a number ofconstructs to express concurrency and (virtual) time. Apart from the condi-tional control ow operators if and while, Pamela includes binary (in�x) op-erators to describe sequentialism (i.e., ';') and fork/join parallelism (i.e., 'k').The parallel operator implicitly enforces barrier synchronization that allows forthe construction of SP models. Work is described by the use construct, like inuse(s; � ), in which the invoking process (task) exclusively acquires service fromserver s for � units time (excluding possible queuing delay). In the sequel wewill often refer to servers as (active) resources. A resource s has a multiplicity,denoted jsj that may be larger than 1. The service time � may be determinis-tic or stochastic. Although stochastic (simulation) models can be speci�ed, inthe compile-time calculus described in Section 2.2 only deterministic (or mean)values will be considered. Like in queuing networks, it is convenient to de�nean in�nite-server � such that j�j =1. Instead of use(�; � ) we will simply writedelay(� ). Replication is described by the reductions seq and par, de�ned byseq (i = a; b) Li = La ; : : : ; Lb ; par (i = a; b) Li = La k : : : k LbCorresponding to the formal approach towards model construction and analysis,we write a Pamela model according to the usual equation syntax, which impliesa simple substitution semantics. Consider the following Pamela model L, i.e.,L = delay(1) ; x = 2 ; delay(x). The ';' operators in the (process-algebraic)



expression L specify a sequence of three operations, two of which directly a�ectvirtual time. The resulting execution time is given by T = 1+2 = 3. The exam-ple illustrates that Pamela models may include data operations which indirectlya�ect timing behavior. Although performance simulation models generally ex-clude the original data operations, a part must sometimes be preserved in orderto account for data-dependent control ow.Example 1 Consider a machine repair model (MRM) in which P clients eitherspend a mean time �l on local processing, or request service from a server s(jsj = 1), with service time �s (both according to some distribution), with atotal cycle count of N iterations (unlike steady-state analysis, in our approachwe require models to terminate). The Pamela model is speci�ed byL = par (p = 1; P ) seq (i = 1; N ) fdelay(�l); use(s; �s)gin which the exclusive service is expressed by the use operation applied to re-source s that represents the server. The example illustrates the material-orientedmodeling approach [15] in which the server is modeled by a passive construct.In the machine-oriented approach, the server would be modeled by a separateprocess that synchronizes through message-passing. Despite the advantages ofmessage-passing in model construction, our approach permits a straightforwardmodel analysis. 2As the emphasis in this paper is on the analysis, the use of Pamela in modelingshared and distributed-memory programs and (vector) machines is discussedelsewhere [8, 10]. Note, that Pamela's operators essentially enable the samemodeling accuracy when compared to (hybrid) task graph and/or queuing ap-proaches, while hardware and software are modeled in terms of one formalism.Through the natural expression of data-dependent control ow even a larger de-gree of modeling exibility is possible. Being an imperative formalism, a Pamelamodel L can be directly executed (simulated). However, we will use this evalu-ation mode only in order to validate our analytic technique.2.2 AnalysisOur analytic approach is based on a lower bound approximation of contentionintegrated within a critical path analysis of the task graph. In the following webriey summarize the analysis for SP graphs. More details can be found in [9, 10].Although, typical for compile-time approaches, in many cases for each inputdata set conditional control ow will be accounted for in terms of e.g., branchprobabilities or statement frequencies, the transformation if (c) use(r; � ) !use(r; [c]� ) shows in principle how conditional control ow is formally handledin the symbolic analysis. The [: : :] construct denotes Iverson's operator de�nedby [false] = 0 and [true] = 1. Since a Pamela model is block-structured theabove transformation can be applied recursively, eventually yielding a modelwithout conditionals. Although this scheme enables preserving those parameter



dependencies that are of interest, usually the [: : :] terms are eventually reducedbased on the auxiliary information mentioned above [10].Task synchronization, as in conventional static approaches, is accounted forby critical path analysis in which we ignore the e�ects of contention (i.e., eachuse statement is interpreted as if it were a delay statement). Let '(L) denote theexecution time given by critical path analysis. Where for general task graphs thecomputation graph of '(L) is isomorphic to L (i.e., a set of symbolic expressions),for SP graphs '(L) forms one expression that is amenable to SP reduction. Interms of the Pamela operators ';' and 'k', the following recursion holds'(L) = 8<:'(L1) + : : :+ '(LN ); L = L1 ; : : : ; LN ;'(L1)max : : : max '(LN ); L = L1 k : : : k LN ;�; L = delay(� ) or L = use(r; � ). (1)Resource contention is approximated by a simple lower bound analysis basedon a computation of the total service demand as shown in the following. Let�(L) = (�1; : : : ; �M) denote the total service demand vector of L where M isthe total number of resources involved and �m denotes the service demand onresource rm. We will write �m(L) to denote the m-th element of �(L). Clearly,�(L) = � �(L1) + : : :+ �(LN ); L = L1 ; : : : ; LN or L = L1 k : : : k LN ;�em; L = use(rm; � ). (2)where em = (0; : : : ; 0; 1; 0; : : : ; 0) is the M -dimensional unit vector in the mdirection, and addition and multiplication are de�ned element-wise. Let ! denotethe lower bound on the execution time of L due to the fact that each access toa resource is at least serialized. Then!(L) = maxm=1:::M �m(L)jrmj (3)Combining the lower bound due to contention (!) with the result of critical pathanalysis (') it follows that the lower bound on T is predicted byT l(L) = max('(L); !(L)) (4)Where Eq. 4 applies to basic parallel sections, for general (possibly non-SP)models the following (recursive) generalization provides a much sharper boundas will be illustrated in Example 3.T l(L) = 8<:T l(L1) + : : :+ T l(LN ); L = L1 ; : : : ; LN ;T l(L1)max : : : max T l(LN )max !(L); L = L1 k : : : k LN ;max('(L); !(L)); otherwise. (5)Note, that conventional compile-time analysis disregards ! while queuing analy-sis (partially) disregards '. Due to the fact that, in addition to the critical path,we account for the serialization due to mutual exclusion, we have coined thislower bound approach serialization analysis. Like conventional analysis, for SPmodels serialization analysis has a linear solution complexity.



Example 2 Recall the MRM in Example 1. By Eq. 1 and Eq. 3 it follows' = maxp=1:::P NXi=1(�l + �s) = N (�l + �s) ; ! = PXp=1 NXi=1 �s = PN�sHence, by Eq. 4 (or Eq. 5) it follows T l = N max(P�s; �l + �s). Unlike conven-tional compile-time analysis T l accounts for the additional queuing delay whens is saturated. The above analysis yields the same result as asymptotic boundanalysis in queuing theory. Let R denote the response time and let Z = �l denotethe think time. Then the mean cycle time R + Z equals '=N for P � P � and!=N for P � P �, where the saturation point P � = (�s + �l)=�s denotes thecrossover between the asymptotes. 2Example 3 In order to demonstrate the vital importance of Eq. 5, considerthe following model, i.e., L = seq (i = 1; N ) par (p = 1; P ) use(ri; � ), inwhich resource usage is non-uniformly distributed over the length of the en-tire computation. Where Eq. 4 yields T l = max(P�;N� ), Eq. 5 yields T l =PNi=1max(P�; � ) = NP� . Thus applying applying Eq. 4 to each parallel sectioninstead of only once improves the bound by as much as a factor N . 22.3 Related WorkIn order to provide a rationale for our approach, in this section we review someof the many interesting approaches to the performance modeling of parallel sys-tems. For a more elaborate survey the reader is referred to [10].As mentioned earlier, modeling accuracy is highly determined by the way inwhich task synchronization and resource contention are accounted for. With itswell-established theory, (timed) Petri nets are frequently used either as an ex-plicit modeling formalism [2] or as an intermediate representation [23]. Althoughinherently capable to accurately model both types of synchronization the expo-nential complexity of the associated state space analysis prohibits an approachwhere low cost is of key interest. This also applies to stochastic process algebras,despite their attractive language properties [11].Many approaches focus on the analysis of task synchronization, using a taskgraph representation with stochastic task durations to account for the non-determinism of conditional control ow and contention. Aimed to circumvent theexponential analysis complexity due to the use of stochastic parameters, manyapproaches focus on SP reduction [7], sometimes in combination with a restric-tion to exponential-type distributions [20]. Other techniques either approximatethe graph structure in terms of an SP version [12] or approximate the task dis-tribution by a combination of deterministic and exponential terms [22]. Despitethe use of stochastic variables, the inherent inability of a task graph to modelresource contention prohibits the use of task graphs for performance predictionof systems where (machine) resource parameter variations are of interest.Alternative approaches are described that combine a stochastic graph witha queuing network which accounts for machine level contention. In order to



circumvent the exponential analysis complexity a number of approaches eitherfocus on SP reduction [17] or apply path analysis based on the fact that theactual variance in task times is usually very limited [1, 14]. Although the pathanalysis approach is very e�cient, due to the underlying queuing network thesolution complexity is polynomial at best.By tradition, compile-time approaches are based on the analysis of deter-ministic graphs in which case no state space analysis is required. As a result ofthe predominant data parallel structure of parallel programs, a simple, scalarSP reduction is applied which implies a solution cost that is only linear in thesize of the program source [5, 6, 21]. As SP reduction is applied to the programrather than the associated graph, a symbolic analysis scheme is possible whereprogram parameters (e.g., loop bounds) are retained within the resulting per-formance model [4, 19, 24]. Despite the fact that some of the techniques featurea (usually machine-speci�c) analysis of (processor, memory, and/or network)contention (e.g., [4, 24, 18]), the approach su�ers from the same inability tonaturally account for contention as mentioned above for stochastic graphs.In our approach, contention is naturally included by using a concurrent lan-guage as representation formalism. Unlike most simulation languages, however,we exploit the concept of compile-time analysis yielding highly parametric per-formance models, rather than just compiling simulators. Extending the determin-istic graph analysis mentioned earlier we do account for any form of contentionin order to provide the robustness needed in view of the large parameter rangetypically covered by a largely symbolic performance model. The basic premiseof our approach is the following. Due to the fact that task variance is relativelysmall [1], a deterministic approach (critical path analysis) will not entail largeerrors with respect to task synchronization e�ects. Assuming that control owfor a representative data set can be accounted for in terms of mean task dura-tions, it follows that a parametric analysis method is possible if contention canbe analytically approximated. In this paper we show that even for our simpleanalytical approach to contention analysis the average error is quite limited.3 Average Accuracy3.1 IntroductionIn this section, we study the deviation of T l relative to the mean value of Tbased on simulation experiments involving random task graphs. As illustratedby Example 2, for models in which the resource demand is reasonably uniformduring the entire computation (i.e., in contrast to models such as in Example 3),T l approaches the mean value of T either when '� ! (critical path dominates)or when ' � ! (queuing dominates). Thus the average error is often quiteacceptable (as experiments will show later on). As mentioned in Example 2 thechoice of the lower bound as a practical estimate is also inspired by similaritiesbetween the execution of L and interactive queuing systems. Although, formally,the resemblance is extremely remote it is interesting to relate the lower bound



approach to the asymptotic bound analysis of an (operationally) comparableinteractive queuing system1. If we de�ne Z as the think time, D as the totalservice demand and Dmax as the service demand at the bottleneck device, wecan interpret ' as the horizontal cycle time asymptote D + Z (Z accounts fortask synchronization delay), while ! corresponds to the NDmax asymptote. Thelargest deviation occurs at the saturation point, where D + Z = NDmax.Consequently, in order to present our experimental results we use an oper-ational metric called "serialization index" that characterizes the degree of con-tention within a system. The metric is de�ned by� = log�!'� (6)As will be shown, � characterizes a model as to the the likelyhood of T l beingan accurate prediction. For models with large j�j the average accuracy of T l isexpected to be better than for models where j�j � 0.3.2 ExperimentsExperiments have been performed involving 1000+ random SP graphs in whichthe predictions T l are compared to the simulation results T . The models aregenerated such that the � values lie around the (worst case) region of inter-est (j�j � 0). Apart from the fact, that many computations of interest are SPstructured2 , the choice for SP models is also motivated by the fact that it en-ables an evaluation of the improvement of Eq. 5 on the accuracy compared toEq. 4. Each model comprises N = 100 tasks while the number of resourcesinvolved varies from M = 2 : : :150. The graphs are generated by a simple al-gorithm that iteratively adds a new task ti to a random selected task tj withinthe graphs generated up to then (j is determined in each iteration). The prob-ability that ti is placed in series or parallel with tj is determined by an inputparameter, denoted s. Each task ti is characterized by a unique service demandvector �i = (�i;1; : : : ; �i;M) in which each element is i.i.d. uniformly over [0; 1].Thus, balanced systems are generated (on average). Experiments have veri�edthat this choice indeed provides the worst case with respect to the accuracy ofT l. Each resource m is accessed multiple times based on the existence of somedeterministic service time � . Thus each task executes �i;m=� accesses to resourcem. The order in which the resources are visited is random. In order to minimizesimulation time (many models are simulated), � is chosen such that the meanof T does not deviate signi�cantly from results for � ! 1 (values in the order1 Note, that the comparison is purely intuitive as we disregard many details, e.g., thefact that each task should map to a unique job class; possible transient phases likestartup and shutdown are ignored; the task graph should be cyclic in order to havesteady state execution, etc.2 Note, that the application range of Pamela SP models is essentially greater thanjust SP task graphs. For instance, pipelining can be expressed in terms of a parallelsection of contending tasks [8].



of 1 % of the largest service demand �i;m (� 100 visits) have been found to suf-�ce). As N is �xed (N = 100), the parameters M and s determine the (mean)� value of the generated models. As ' is proportional to M , large values of Mwill generate models with a negative �. For low s, however, many parallel tasksare created on average which has a positive inuence on �.Figure 1 shows the ratio T l=T based on 1200 random models exhibiting �values ranging from �2 < � < 2. Both the prediction ratios based on Eq. 4 (�)and Eq. 5 are shown (�). Each data point of both series of 120 points representsan average value based on 10 random draws in order to reduce noise. The results
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is still somewhat dependent on the problem size. However, N = 100 also appearsto be quite representative for larger models3 as well. Additional measurements(described in [10]) indicate that the minimum value of � at � = 0, i.e., ��, highlycorrelates withM . For instance, each of the following set of parameter tuples, i.e.,(N;M; s) 2 f(30; 8; 0:1); (100; 8; 0:3); (300;8; 0:5)g generates models with j�j � 0that yield �� � :6 on average. The results show the existence of an asymptote forlarge M given by �� � 0:5. Again, it is tempting to compare this upper boundon the (mean) deviation with the result from asymptotic bounding analysis ofinteractive queuing systems. For instance, consider the MVA recursion for an Mserver balanced system [25] with total service demand D, i.e.,R(N ) = D + DM R(N � 1)R(N � 1) + Z (N � 1) (7)where R(N ) denotes the response time as a function of the number of jobs in thesystem (N ). Let C(N ) = R(N ) +Z denote the mean cycle time (comparable toT ). From Eq. 7 it follows that for small N the slope of R(N ) is (still) less4 thanD=M . Consequently, at the saturation point N = N�, for which the deviationbetween C(N ) and its lower bound C l = D+Z is the largest, it holds C(N�) <Cl + (D=M )N�. With N� = (D + Z)=(D=M ) it follows C(N�) < 2C l, whichcorresponds to the lower bound on ��. Generating models with large M alsoimplies a large value for D. In terms of the analogy this implies a relativelydecreasing Z. Indeed, from Eq. 7 it is easily seen that limZ!0 C(N�) = 2C l.Thus the above theory intuitively supports the observations that the worst caseaverage deviation of T l relative to T is limited to a factor 2.A �rst glance, a worst case 50 % underestimation may seem unacceptableregardless howmuch worse conventional static techniques may be. Note, however,that in most cases the relative error is much less than 50 %. More importantly,our approach enables a fast, �rst-order analysis and ranking of di�erent designchoices (easily entailing larger performance di�erences than a factor 2) with asustained minimum accuracy regardless the system's parameter values.4 Case Study4.1 IntroductionIn this section we present a case study in which the measured execution timesof 14 random programs on a 4 � 4 mesh partition of a Parsytec GCel T800transputer system5 are compared with our predictions based on both simulationas well as our analytic technique. Each program involves the execution of ageneric task executive utility that reads a random SP task graph description �le3 For N = 10 the range of interest is j�j < 0:5. For N � 1000 the range still is j�j < 2.4 An accurate analysis of the balanced upper bound is given in [25]. However, for ourpurpose the above analysis su�ces.5 Kindly made available by the Interdisciplinary Center for Computer-based Complexsystems research Amsterdam (IC3A).



(that speci�es the user computation) and executes it in a data ow-style. Thetask graphs are generated by the same random generator as used in the previoussection. Again, N = 100. Each task ti executes a simple loop kernel with arandom loop count given by wi. A task ti is randomly mapped onto a processorpi according to a uniform distribution between 1 and P = 16. Thus, on average,100/16 multiple tasks are mapped onto the same processor. Each task is executedby a separate (lightweight) thread scheduled dynamically by a node's run-timekernel. In order to enable true data ow execution, after each task has executed,the (same) produced data set (li bytes) is asynchronously sent to each successortask (thread) except when a successor resides locally. A typical example of thistype of application is described in [16] where the task graphs represent sparse�nite element computations in structural analysis. A more detailed descriptionof the architecture of the task executive appears in [10].Due to the dynamic approach towards task computation and communication,the case study (intentionally) provides an excellent example of the added valueof serialization analysis compared to conventional static prediction techniques.Where static analysis inherently ignores the additional delay incurred by taskssharing a processor, our approach naturally accounts for this delay by modelingtask execution in terms of "processor contention". Apart from this, the use ofnon-blocking communication introduces the possibility of link contention as mul-tiple task communications may share the communication link(s) simultaneously.Again, conventional static analysis makes no provision to account for the addi-tional queuing delay, that may easily dominate performance (as will be shown).In our aim just to demonstrate the impact contention analysis may have, we sim-ply consider coarse grain task execution where each task entails a large amountof computation (O(106) oating point operations) as well as communication(O(106) byte transfers). Hence, without loss of generality we can simply con-centrate on computational and communication bandwidths rather than startuptimes (and other sources of overhead), which simpli�es the discussion. However,the method applies to small communication volumes as well.4.2 Computation ModelLet G denote the task graph to be executed, consisting of tasks ti; i = 1; : : : ; N .Let L denote the Pamela model of the executive, instantiated by data set G.Then L is given by starting with a graph topologically similar to G where eachtask i speci�es a computation model comp(i). In addition, every arc betweena task i and j is expanded by a communication model xfer(i; j; l) that ac-counts for the communication (l is message length in bytes) induced by thatarc (discussed at length elsewhere). Since G is an SP graph the resulting pro-gram model L is also an SP graph which implies that L can be expressed interms of one single (possibly complex) Pamela expression. As a result, L canbe directly compiled into a single expression T l based on the application ofEq. 5. For instance, consider the following 3-tasks graph G = t1; (t2 k t3).The Pamela model of the (instantiated) executive is given by the expressionL = comp(1); ((xfer(1; 2; l1); comp(2)) k (xfer(1; 3; l1); comp(3))).



The comp model represents the actual task computation. In our aim just toevaluate the analysis technique, we refrain from modeling the local loop kernelin detail and simply measure it as a whole. For the amount of work we consider(wi = 104 : : :106 loops) the execution time increases linearly with wi accordingto 6.1 �s per iteration (startup time negligible). Thus the execution time isexpressed by the following (contention) modelcomp(i) = seq (k = 1; 6:1wi=�c) use(pi; �c)expressed in �s where �c denotes the basic CPU time slice. The (small) e�ect ofmultithreading overhead is automatically accounted for in the coe�cient sinceduring the calibration the kernel is run as a thread.4.3 Communication ModelIn conventional static techniques a linear delay model is often used to predictthe transfer delay (e.g., [3, 13]) in terms of startup, hop count and bandwidth.Although precise for isolated transfers, these models do not account for addi-tional queuing delay induced by concurrent tra�c contending for the interme-diate (sending, forwarding, receiving) link and node services. This is especiallytrue in applications that exhibit a high level of parallel slackness (e.g., multiplethreads/communications with latency hiding).In the following we develop a simple transfer contention model that providesa �rst-order bandwidth approximation for simultaneous communications. In con-trast to the task indices used above, in the following we will consider xfer(s; r; l)where s and r denote sender and receiver processor, respectively (i = ps, j = pr).The communication service of the transputer system is based on a multiplex-ing scheme in which each 120 bytes of the message is packetized. Each packetis statically routed through the mesh in a pipelined fashion based on softwareforwarding pending a T9000 upgrade. With each physical link between neigh-boring transputers we will associate a service complex comprising a subsystemof physical (e.g., DMAs at both link ends) and/or semi-logical (software serversat both ends) resources. Without any loss of generality, we project the servicecomplex at the receiving node of each link, as shown in Fig. 2. In the followingwe consider the communication system at the packet level which is the small-est level of granularity with respect to resource sharing. Although the servicecomplex at each link comprises several software/hardware components, it canbe modeled as to provide two services at the packet level that are subsequentlydenoted e and f (see Fig. 2).The �rst service e represents the reception service at the packet destina-tion involving the exclusive transfer of one packet across the link (duration�x = 108 �s [10]), including the software overhead at both ends (e.g., moving,handshaking). The second service f represents the forwarding service (includingintermediate byte storage and protocol overhead) required for a packet destinedfor a di�erent node. Consequently, compared to e, f includes additional rout-ing/forwarding work load (duration �y = 73 �s). In general, a packet transfer



from node s = n1 to r = nK will require forwarding at n2 : : : nK�1 and onereception service at nK. Both services are based on an underlying service, rep-resented by the resource x that represents the basic link service that has to beshared. Consequently, e and f are logical resources (kernel servers) sharing theunderlying link service. Typical for the Pamela methodology, we use a material-
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s r Tm T T l T t(0) (1) 0.9 0.9 0.9 0.9(0) (2) 1.5 1.5 1.5 1.5(0,0) (1,1) 1.8 1.8 1.8 0.9(0,0) (1,2) 1.8 1.8 1.8 1.5(0,0) (2,2) 3.0 3.0 3.0 1.5(0,0,0) (1,2,2) 3.3 3.3 3.0 1.5(0,0,0,0,0,0) (1,1,1,2,2,2) 6.0 5.4 5.4 1.5Fig. 3. Results for 106 byte concur-rent communications (s)oriented approach to model packet propagation, in which we model the entiretransfer as a parallel section of contending tasks [10]. Let nk = s : : : r denote theindex of the K nodes involved in the pipeline route. Then the Pamela model6is given by the simple expressionxfer(s; r; l) = par (i = 1; l=120) fseq (k = 2;K � 1) f use(fnk ; �x + �y) k use(xnk ; �x) guse(xr ; �x)gNote, that this model ignores startup delay and approximates the work load interms of an integer number of packets. However, for large data communicationsthis model su�ces to accurately capture the e�ective bandwidth degradationwhen many virtual links are simultaneously active. The above model has beenvalidated for many types of concurrent communications (equal message lengths)as well as random patterns (as discussed later on). The table in Fig. 3 shows a fewtypical results for (106 byte) data transfers involving only the �rst three nodesof the �rst mesh row (nodes 0, 1, and 2). The nodes that are simultaneouslysending are expressed by the s vector, while the receivers are expressed by ther vector. Each pair (sn; rn) corresponds to one communication. Apart from themeasured value Tm and the simulation result T the lower bound prediction T las well as the traditional static prediction T t are listed. The simulation results6 The actual model is somewhat di�erent in that it features a nested resource usage. Inorder to enable the application of our compile-time technique, a slight approximationhas been applied that degrades accuracy by only a few percent. See [10] for details.



show that the xfer model is reasonably accurate. Only in a very few situations alimited deviation is measured (cf. last row). This optimistic prediction is due tothe precise packet scheduling which is left undetermined in the Pamela model.Nevertheless, the prediction accuracy of T l is within 10 % whereas the traditionalmodel yields errors up to hundreds of % [10].4.4 ResultsIn this section we present the measurement results for the execution of the 14random SP graphs G1 : : :G14 on the transputer mesh. The computational workload wi is i.i.d. uniformly over [104; 106] (loops) that corresponds to an averagetotal problem size of 305 s. In order for the communication to have a signi�cantimpact, the data size sent by each task to its successors is also i.i.d. uniformlyover [104; 106] (bytes) which corresponds to an average communication delaybetween 0.9 s and 1.5 s (per isolated transfer). As in the simulation experiment,the graphs are generated to cover the � region of interest. Table 1 summarizesG Tm T T t � � �G1 118.7 114.7 25.9 1.08 0.66 0.73G2 93.9 92.5 21.2 0.85 0.53 0.62G3 95.6 92.8 25.8 0.76 0.60 0.68G4 94.1 87.4 31.5 0.37 0.53 0.70G5 73.4 70.9 30.3 0.27 0.56 0.66G6 105.8 103.9 58.3 -0.19 0.55 0.55G7 98.4 87.0 47.4 -0.28 0.54 0.60 G Tm T T t � � �G8 89.2 87.1 52.5 -0.35 0.61 0.68G9 87.6 84.4 65.7 -0.73 0.78 0.78G10 109.5 106.4 79.5 -0.91 0.75 0.75G11 141.2 138.4 107.6 -1.23 0.78 0.80G12 149.5 144.8 125.0 -1.51 0.87 0.87G13 165.9 163.2 140.2 -1.62 0.86 0.86G14 172.3 171.0 165.4 -1.70 0.96 0.96Table 1. Measurements vs. predictions (s)the main results for each of the 14 programs. Tm denotes the measured executiontime (s). T denotes the simulation result (s) of the corresponding Pamela modelL (variance is negligible). The result T l of serialization analysis is representedin terms of �, �, and � that are de�ned as before. The total number of resourcesinvolved in the simulation and analysis is M = 144 (P processors, 4P link, and4P forwarding services). The T t value (i.e., ') has been included to demonstratethe (severe) prediction error of traditional static analysis.The results show that the performance of the executive is indeed capturedby the Pamela model with reasonable accuracy. On average, T under-estimatesTm with about 4 % which is entirely due to the fact that the above commu-nication model does not account for the e�ects of acknowledgement tra�c andthe minor decrease in computational bandwidth (explained in [10]). The resultsfor � and � show that the average prediction error is well within 50 %. As ex-pected, for relatively parallel graphs, the � values tend to be somewhat better



than the � values. The increase in accuracy for positive � is somewhat less whencompared to Fig. 1. This phenomenon is caused by the fact that for some taskmappings parallel communications involving the same resource may occur at rel-atively concentrated points in time. Thus, the (link) resource usage is not alwaysuniformly (randomly) distributed over the entire length of the computation (cf.Example 3). An elaborate explanation appears in [10]. Finally, note that for highcontention levels the error in T t is quite considerable.5 ConclusionWe have outlined a simple compile-time technique that yields an analytic per-formance model of a parallel system. The work is inspired by the need for lowcost, highly parametric models during the initial optimization loops in high-performance application design. Aimed to sustain an acceptable accuracy for anychoice of system parameters, the method integrates critical path analysis typi-cal for compile-time methods, with asymptotic bounding analysis from queuingtheory. Whereas a single simulation run (T ) requires hundreds of seconds ona typical workstation, the symbolic model T l evaluates in a split second. Ourresults show that the worst-case penalty for large random task systems is a mere50 % under-estimation on average.To the best of our knowledge the study concerning the merit of fully inte-grating contention analysis within a static performance modeling technique forparallel system design has not yet been described. Although the accuracy of themethod is inherently limited, the technique enables a fast, �rst-order analysis andranking of di�erent design choices with a sustained minimum accuracy regard-less any system parameter value. Further validation involving real applicationsas well as (stochastic) extensions of the technique are under way.AcknowledgementsIt is a pleasure to express my indebtness to Prof. G.L. Reijns for supporting thisresearch. The valuable comments of the referees are also gratefully acknowledged.References1. V.S. Adve, Analyzing the Behavior and Performance of Parallel Programs. PhDthesis, University of Wisconsin, Madison, Dec. 1993. Tech. Rep. #1201.2. M. Ajmone Marsan, G. Balbo and G. Conte, \A class of Generalized StochasticPetri Nets for the performance analysis of multiprocessor systems," ACM Tr. onComp. Syst., 2, May 1984, pp. 93{122.3. M. Annaratone, C. Pommerell and R. R�uhl, \Interprocessor communication andperformance in distributed-memory parallel processors," in Proc. 16th Symp. onComp. Archit., May 1989, pp. 315{324.4. D. Atapattu and D. Gannon, \Building analytical models into an interactive pre-diction tool," in Proc. Supercomputing '89, 1989, pp. 521{530.
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