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Abstract. A compile-time technique is outlined that yields low-cost,
analytic performance models, intended for crude scalability analysis and
first-order system design. The approach extends current static techniques
by accounting for any type of resource contention that may occur. In this
paper we report on the accuracy of the prediction method in terms of the-
ory, simulation experiments, as well as measurements on a distributed-
memory machine. It is shown that for series-parallel computations with
random resource access patterns, the average prediction error is limited
well within 50 % regardless the system parameters, where traditional
compile-time methods yield errors up to orders of magnitude.

1 Introduction

In the performance prediction of parallel systems many approaches exist that
represent a specific trade-off between accuracy and cost. Although compile-time
techniques entail a sacrifice in accuracy when compared to, e.g., simulation, this
loss may be acceptable during the first phases of system design in view of the
low cost and high level of parameterization that can be achieved. Where the
cost issue plays a prominent role in the development towards automatic system
optimization, the symbolic nature of the models enables an efficient parameter
(e.g., scalability) study based on a one-only developed model.

The quality of a performance modeling approach for parallel systems is
highly determined by the way in which task synchronization (condition synchro-
nization) as well as resource contention (mutual exclusion) are accounted for.
Whereas static techniques focus on task synchronization they do not account for
resource contention except for ad hoc approaches. Queuing for resources alone,
however, can already degrade performance by orders of magnitude. Clearly, a
static approach that sustains a minimum accuracy across a large parameter
(search) space would be of value.

Aimed to overcome the fundamental lack of prediction robustness of static
methods, an extension has been proposed, that, at the same low cost, approx-
imately accounts for resource contention. The analysis method is defined in
terms of a simulation formalism called PAMELA (PerformAnce ModEling LAn-
guage [8]). Both (parameterized) program and machine are modeled in terms of



separate PAMELA submodels, which, when combined by substitution, results in a
model L of the complete system. Rather than simulating (executing) L to obtain
the execution time estimate T, L is compiled into a parameterized performance
model [9] that computes an alternative, lower bound 7" at much lower cost.

Thus, the emphasis in our approach is the derivation of symbolic, low cost
performance models while limiting the sacrifice in accuracy by integrating con-
tention analysis within the static scheme. In this paper we study the accuracy of
T for series-parallel (SP) graphs both through simulation experiments as well
as experiments involving a distributed-memory machine. It is shown that for a
large class of task systems the average error of T relative to 7" is limited within
a factor of 2, regardless program or machine parameter settings.

The rest of the paper is organized as follows. For the sake of completeness,
in Section 2 we briefly present the approach as well as a rationale in terms of
related work. In Section 3 we study the nature of the average prediction error
based on 1000+ simulation experiments. In Section 4 we report on the case study
involving the distributed-memory machine. The paper is concluded in Section 5.

2 PAMELA

2.1 Formalism

For the sake of completeness we briefly describe the subset of the formalism
that applies to the analysis of the SP models presented in the paper. A more
elaborate presentation appears in e.g., [10].

Basically, PAMELA is an imperative formalism extended with a number of
constructs to express concurrency and (virtual) time. Apart from the condi-
tional control flow operators if and while, PAMELA includes binary (infix) op-
erators to describe sequentialism (i.e., ;") and fork/join parallelism (i.e., ’||’).
The parallel operator implicitly enforces barrier synchronization that allows for
the construction of SP models. Work is described by the use construct, like in
use(s, 7), in which the invoking process (task) exclusively acquires service from
server s for 7 units time (excluding possible queuing delay). In the sequel we
will often refer to servers as (active) resources. A resource s has a multiplicity,
denoted [s| that may be larger than 1. The service time 7 may be determinis-
tic or stochastic. Although stochastic (simulation) models can be specified, in
the compile-time calculus described in Section 2.2 only deterministic (or mean)
values will be considered. Like in queuing networks, it is convenient to define
an infinite-server p such that |p| = co. Instead of use(p, 7) we will simply write
delay (7). Replication is described by the reductions seq and par, defined by

seq(i=a,b)Li=Lg; ... Ly , par(i=a,b) Li=Lg| ... ] Ls

Corresponding to the formal approach towards model construction and analysis,
we write a PAMELA model according to the usual equation syntax, which implies
a simple substitution semantics. Consider the following PAMELA model L, i.e.,
L = delay(1) ; # = 2 ; delay(x). The ’;’ operators in the (process-algebraic)



expression L specify a sequence of three operations, two of which directly affect
virtual time. The resulting execution time is given by T'= 142 = 3. The exam-
ple illustrates that PAMELA models may include data operations which indirectly
affect timing behavior. Although performance simulation models generally ex-
clude the original data operations, a part must sometimes be preserved in order
to account for data-dependent control flow.

Example 1 Consider a machine repair model (MRM) in which P clients either
spend a mean time 7; on local processing, or request service from a server s
(Is| = 1), with service time 75 (both according to some distribution), with a
total cycle count of N iterations (unlike steady-state analysis, in our approach
we require models to terminate). The PAMELA model is specified by

L=par (p=1,P)seq (i =1,N) {delay(n); use(s,7s)}

in which the exclusive service is expressed by the use operation applied to re-
source s that represents the server. The example illustrates the material-oriented
modeling approach [15] in which the server is modeled by a passive construct.
In the machine-oriented approach, the server would be modeled by a separate
process that synchronizes through message-passing. Despite the advantages of
message-passing in model construction, our approach permits a straightforward
model analysis. O

As the emphasis in this paper is on the analysis, the use of PAMELA in modeling
shared and distributed-memory programs and (vector) machines is discussed
elsewhere [8, 10]. Note, that PAMELA’s operators essentially enable the same
modeling accuracy when compared to (hybrid) task graph and/or queuing ap-
proaches, while hardware and software are modeled in terms of one formalism.
Through the natural expression of data-dependent control flow even a larger de-
gree of modeling flexibility is possible. Being an imperative formalism, a PAMELA
model L can be directly executed (simulated). However, we will use this evalu-
ation mode only in order to validate our analytic technique.

2.2 Analysis

Our analytic approach is based on a lower bound approximation of contention
integrated within a critical path analysis of the task graph. In the following we
briefly summarize the analysis for SP graphs. More details can be found in [9, 10].

Although, typical for compile-time approaches, in many cases for each input
data set conditional control flow will be accounted for in terms of e.g., branch
probabilities or statement frequencies, the transformation if (¢) use(r,7) —
use(r, [¢]7) shows in principle how conditional control flow is formally handled
in the symbolic analysis. The [...] construct denotes Iverson’s operator defined
by [false] = 0 and [true] = 1. Since a PAMELA model is block-structured the
above transformation can be applied recursively, eventually yielding a model
without conditionals. Although this scheme enables preserving those parameter



dependencies that are of interest, usually the [...] terms are eventually reduced
based on the auxiliary information mentioned above [10].

Task synchronization, as in conventional static approaches, is accounted for
by critical path analysis in which we ignore the effects of contention (i.e., each
use statement is interpreted as if it were a delay statement). Let (L) denote the
execution time given by critical path analysis. Where for general task graphs the
computation graph of ¢(L) is isomorphicto L (i.e., a set of symbolic expressions),
for SP graphs ¢(L) forms one expression that is amenable to SP reduction. In

terms of the PAMELA operators ’;” and ’||’, the following recursion holds
(L) + ...+ (L), L=1Li;...; Ln;
(L) =< ¢(L1)max ... max ¢(Ln), L=L1 || ... || Ln; (1)

- L = delay(r) or L = use(r, 7).

Resource contention is approximated by a simple lower bound analysis based
on a computation of the total service demand as shown in the following. Let
0(L) = (d1,...,0n) denote the total service demand vector of L where M is
the total number of resources involved and §,, denotes the service demand on
resource rpy,. We will write d,, (L) to denote the m-th element of §(L). Clearly,

where ¢™ = (0,...,0,1,0,...,0) is the M-dimensional unit vector in the m

direction, and addition and multiplication are defined element-wise. Let w denote
the lower bound on the execution time of L due to the fact that each access to
a resource 1s at least serialized. Then

w(lL) = max Om(L)

m=1..M |rpy|

(3)
Combining the lower bound due to contention (w) with the result of critical path
analysis () it follows that the lower bound on T is predicted by

T'(L) = max(p(L), (L)) (4)

Where Eq. 4 applies to basic parallel sections, for general (possibly non-SP)
models the following (recursive) generalization provides a much sharper bound
as will be illustrated in Example 3.

THLy) + ...+ T (Ln), L=0Li;...; Ly;
Tl(L) = Tl(Ll)max ... max Tl(LN)max w(L), L=L1||...|| Ln; (5)
max(p(L),w(L)), otherwise.

Note, that conventional compile-time analysis disregards w while queuing analy-
sis (partially) disregards ¢. Due to the fact that, in addition to the critical path,
we account for the serialization due to mutual exclusion, we have coined this
lower bound approach serialization analysis. Like conventional analysis, for SP
models serialization analysis has a linear solution complexity.



Example 2 Recall the MRM in Example 1. By Eq. 1 and Eq. 3 it follows

N P N
= max m+7)=Nn+7), w= 7s = PNty
Py Lt =Naen) w2 3
Hence, by Eq. 4 (or Eq. 5) it follows 7" = N max(Pr,, 7 + 7). Unlike conven-
tional compile-time analysis 7" accounts for the additional queuing delay when
s 1s saturated. The above analysis yields the same result as asymptotic bound
analysis in queuing theory. Let R denote the response time and let Z = 7; denote
the think time. Then the mean cycle time R + Z equals ¢/N for P « P* and
w/N for P > P* where the saturation point P* = (r; + 7)/7s; denotes the
crossover between the asymptotes. O

Example 3 In order to demonstrate the vital importance of Eq. 5, consider
the following model, i.e., L = seq ({ = 1,N) par (p = 1,P) use(r;, 7), in
which resource usage is non-uniformly distributed over the length of the en-
tire computation. Where Eq. 4 yields 7' = max(Pr, N7), Eq. 5 yields 7" =
Zf\;l max(Pr,7) = N Pr. Thus applying applying Eq. 4 to each parallel section
instead of only once improves the bound by as much as a factor N. O

2.3 Related Work

In order to provide a rationale for our approach, in this section we review some
of the many interesting approaches to the performance modeling of parallel sys-
tems. For a more elaborate survey the reader is referred to [10].

As mentioned earlier, modeling accuracy 1s highly determined by the way in
which task synchronization and resource contention are accounted for. With its
well-established theory, (timed) Petri nets are frequently used either as an ex-
plicit modeling formalism [2] or as an intermediate representation [23]. Although
inherently capable to accurately model both types of synchronization the expo-
nential complexity of the associated state space analysis prohibits an approach
where low cost is of key interest. This also applies to stochastic process algebras,
despite their attractive language properties [11].

Many approaches focus on the analysis of task synchronization, using a task
graph representation with stochastic task durations to account for the non-
determinism of conditional control flow and contention. Aimed to circumvent the
exponential analysis complexity due to the use of stochastic parameters, many
approaches focus on SP reduction [7], sometimes in combination with a restric-
tion to exponential-type distributions [20]. Other techniques either approximate
the graph structure in terms of an SP version [12] or approximate the task dis-
tribution by a combination of deterministic and exponential terms [22]. Despite
the use of stochastic variables, the inherent inability of a task graph to model
resource contention prohibits the use of task graphs for performance prediction
of systems where (machine) resource parameter variations are of interest.

Alternative approaches are described that combine a stochastic graph with
a queuing network which accounts for machine level contention. In order to



circumvent the exponential analysis complexity a number of approaches either
focus on SP reduction [17] or apply path analysis based on the fact that the
actual variance in task times is usually very limited [1, 14]. Although the path
analysis approach is very efficient, due to the underlying queuing network the
solution complexity is polynomial at best.

By tradition, compile-time approaches are based on the analysis of deter-
ministic graphs in which case no state space analysis is required. As a result of
the predominant data parallel structure of parallel programs; a simple, scalar
SP reduction is applied which implies a solution cost that is only linear in the
size of the program source [5, 6, 21]. As SP reduction is applied to the program
rather than the associated graph, a symbolic analysis scheme is possible where
program parameters (e.g., loop bounds) are retained within the resulting per-
formance model [4, 19, 24]. Despite the fact that some of the techniques feature
a (usually machine-specific) analysis of (processor, memory, and/or network)
contention (e.g., [4, 24, 18]), the approach suffers from the same inability to
naturally account for contention as mentioned above for stochastic graphs.

In our approach, contention is naturally included by using a concurrent lan-
guage as representation formalism. Unlike most simulation languages, however,
we exploit the concept of compile-time analysis yielding highly parametric per-
formance models, rather than just compiling simulators. Extending the determin-
istic graph analysis mentioned earlier we do account for any form of contention
in order to provide the robustness needed in view of the large parameter range
typically covered by a largely symbolic performance model. The basic premise
of our approach is the following. Due to the fact that task variance is relatively
small [1], a deterministic approach (critical path analysis) will not entail large
errors with respect to task synchronization effects. Assuming that control flow
for a representative data set can be accounted for in terms of mean task dura-
tions, it follows that a parametric analysis method is possible if contention can
be analytically approximated. In this paper we show that even for our simple
analytical approach to contention analysis the average error is quite limited.

3 Average Accuracy

3.1 Introduction

In this section, we study the deviation of T% relative to the mean value of T
based on simulation experiments involving random task graphs. As illustrated
by Example 2, for models in which the resource demand is reasonably uniform
during the entire computation (i.e., in contrast to models such as in Example 3),
T approaches the mean value of 7" either when ¢ > w (critical path dominates)
or when ¢ < w (queuing dominates). Thus the average error is often quite
acceptable (as experiments will show later on). As mentioned in Example 2 the
choice of the lower bound as a practical estimate is also inspired by similarities
between the execution of . and interactive queuing systems. Although, formally,
the resemblance is extremely remote it is interesting to relate the lower bound



approach to the asymptotic bound analysis of an (operationally) comparable
interactive quening system!. If we define Z as the think time, D as the total
service demand and D, ., as the service demand at the bottleneck device, we
can interpret ¢ as the horizontal cycle time asymptote D 4+ Z (7 accounts for
task synchronization delay), while w corresponds to the N Dy, asymptote. The
largest deviation occurs at the saturation point, where D 4+ Z = N D40 .

Consequently, in order to present our experimental results we use an oper-
ational metric called ”serialization index” that characterizes the degree of con-
tention within a system. The metric is defined by

0 = log (%) (6)

As will be shown, @ characterizes a model as to the the likelyhood of 7% being
an accurate prediction. For models with large |f| the average accuracy of 1% is
expected to be better than for models where |6] = 0.

3.2 Experiments

Experiments have been performed involving 10004 random SP graphs in which
the predictions T* are compared to the simulation results 7. The models are
generated such that the @ values lie around the (worst case) region of inter-
est (|6] = 0). Apart from the fact, that many computations of interest are SP
structured?, the choice for SP models is also motivated by the fact that it en-
ables an evaluation of the improvement of Eq. 5 on the accuracy compared to
Eq. 4. Each model comprises N = 100 tasks while the number of resources
involved varies from M = 2...150. The graphs are generated by a simple al-
gorithm that iteratively adds a new task ¢; to a random selected task ¢; within
the graphs generated up to then (j is determined in each iteration). The prob-
ability that ¢; is placed in series or parallel with ¢; is determined by an input
parameter, denoted s. Each task t; 1s characterized by a unique service demand
vector §; = (0i1,...,d; ar) in which each element is i.i.d. uniformly over [0, 1].
Thus, balanced systems are generated (on average). Experiments have verified
that this choice indeed provides the worst case with respect to the accuracy of
T'. Each resource m is accessed multiple times based on the existence of some
deterministic service time 7. Thus each task executes d; , /T accesses to resource
m. The order in which the resources are visited is random. In order to minimize
simulation time (many models are simulated), 7 is chosen such that the mean
of T does not deviate significantly from results for 7 — oo (values in the order

! Note, that the comparison is purely intuitive as we disregard many details, e.g., the
fact that each task should map to a unique job class; possible transient phases like
startup and shutdown are ignored; the task graph should be cyclic in order to have
steady state execution, etc.

2 Note, that the application range of PAMELA SP models is essentially greater than
just SP task graphs. For instance, pipelining can be expressed in terms of a parallel
section of contending tasks [8].



of 1 % of the largest service demand §; ,,, (& 100 visits) have been found to suf-
fice). As N is fixed (N = 100), the parameters M and s determine the (mean)
# value of the generated models. As ¢ is proportional to M, large values of M
will generate models with a negative 8. For low s, however, many parallel tasks
are created on average which has a positive influence on 6.

Figure 1 shows the ratio 7°/T based on 1200 random models exhibiting 6
values ranging from —2 < 0 < 2. Both the prediction ratios based on Eq. 4 (@)
and Eq. b are shown (7). Each data point of both series of 120 points represents
an average value based on 10 random draws in order to reduce noise. The results
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Fig.1. T accuracy («, 3) based on 1200 random SP models (N = 100)

clearly show a high correlation between (a,3) and ¢ in which the deviation
from unity is indeed maximal for models that exhibit § = 0. Thus, for random
graphs the diagnostic value of the operational parameter § appears to be quite
significant, especially when considering the fact that two graphs with comparable
f values usually have quite a different structure. While the essential necessity
of Eq. 5 has already been demonstrated (cf. Example 3), even for the models
with uniform resource demand (in time) as produced by the random generator,
its application (8) still yields an improvement for models with highly parallel
subsections (e.g., ¢ > 0). In the following we will only consider «. In the above
experiments the models are generated for s = 0.1 with M varying from M = 2
(0 = 2) to M = 150 (6 ~ —2). Models with 6 ~ 0 are generated for M = 20. For
each value of M the variance of # is approximately 0.05 which accounts for the
reasonably continuous plot. Although no extensive experiments have yet been
performed for different values of NV, measurements indicate that the a curves tend
to be more 'v’-shaped for small N, corresponding to the fact that the scale of 8



is still somewhat dependent on the problem size. However, N = 100 also appears
to be quite representative for larger models® as well. Additional measurements
(described in [10]) indicate that the minimum value of o at # = 0, i.e., o, highly
correlates with M . For instance, each of the following set of parameter tuples, 1.e.,
(N, M,s) €{(30,8,0.1), (100, 8,0.3), (300,8,0.5) } generates models with |#| ~ 0
that yield a* ~ .6 on average. The results show the existence of an asymptote for
large M given by a* =~ 0.5. Again, it is tempting to compare this upper bound
on the (mean) deviation with the result from asymptotic bounding analysis of
interactive queuing systems. For instance, consider the MVA recursion for an M
server balanced system [25] with total service demand D, i.e.,

D R(N-1)

R(N):D-I-—

Mm(]v—l) (7)

where R(N) denotes the response time as a function of the number of jobs in the
system (N). Let C(N) = R(N)+ 7 denote the mean cycle time (comparable to
T). From Eq. 7 it follows that for small N the slope of R(N) is (still) less than
D/M. Consequently, at the saturation point N = N*, for which the deviation
between C(N) and its lower bound C! = D + 7 is the largest, it holds C(N*) <
C' + (D/M)N*. With N* = (D + Z)/(D/M) it follows C(N*) < 2C", which
corresponds to the lower bound on «*. Generating models with large M also
implies a large value for D. In terms of the analogy this implies a relatively
decreasing 7. Indeed, from Eq. 7 it is easily seen that limz_,o C(N*) = 2C.
Thus the above theory intuitively supports the observations that the worst case
average deviation of 7" relative to 7" is limited to a factor 2.

A first glance, a worst case 50 % underestimation may seem unacceptable
regardless how much worse conventional static techniques may be. Note, however,
that in most cases the relative error is much less than 50 %. More importantly,
our approach enables a fast, first-order analysis and ranking of different design
choices (easily entailing larger performance differences than a factor 2) with a
sustained minimum accuracy regardless the system’s parameter values.

4 Case Study

4.1 Introduction

In this section we present a case study in which the measured execution times
of 14 random programs on a 4 x 4 mesh partition of a Parsytec GCel T800
transputer system® are compared with our predictions based on both simulation
as well as our analytic technique. Each program involves the execution of a
generic task executive utility that reads a random SP task graph description file

® For N = 10 the range of interest is |§] < 0.5. For N > 1000 the range still is |§] < 2.

* An accurate analysis of the balanced upper bound is given in [25]. However, for our
purpose the above analysis suffices.

® Kindly made available by the Interdisciplinary Center for Computer-based Complex
systems research Amsterdam (IC*A).



(that specifies the user computation) and executes it in a data flow-style. The
task graphs are generated by the same random generator as used in the previous
section. Again, N = 100. Each task ¢; executes a simple loop kernel with a
random loop count given by w;. A task ¢; is randomly mapped onto a processor
p; according to a uniform distribution between 1 and P = 16. Thus, on average,
100/16 multiple tasks are mapped onto the same processor. Each task is executed
by a separate (lightweight) thread scheduled dynamically by a node’s run-time
kernel. In order to enable true data flow execution, after each task has executed,
the (same) produced data set (I; bytes) is asynchronously sent to each successor
task (thread) except when a successor resides locally. A typical example of this
type of application is described in [16] where the task graphs represent sparse
finite element computations in structural analysis. A more detailed description
of the architecture of the task executive appears in [10].

Due to the dynamic approach towards task computation and communication,
the case study (intentionally) provides an excellent example of the added value
of serialization analysis compared to conventional static prediction techniques.
Where static analysis inherently ignores the additional delay incurred by tasks
sharing a processor, our approach naturally accounts for this delay by modeling
task execution in terms of ”processor contention”. Apart from this, the use of
non-blocking communication introduces the possibility of link contention as mul-
tiple task communications may share the communication link(s) simultaneously.
Again, conventional static analysis makes no provision to account for the addi-
tional queuing delay, that may easily dominate performance (as will be shown).
In our aim just to demonstrate the impact contention analysis may have, we sim-
ply consider coarse grain task execution where each task entails a large amount
of computation (O(10%) floating point operations) as well as communication
(O(10%) byte transfers). Hence, without loss of generality we can simply con-
centrate on computational and communication bandwidths rather than startup
times (and other sources of overhead), which simplifies the discussion. However,
the method applies to small communication volumes as well.

4.2 Computation Model

Let G denote the task graph to be executed, consisting of tasks ¢;,¢ =1,...  N.
Let L denote the PAMELA model of the executive, instantiated by data set G.
Then L is given by starting with a graph topologically similar to G where each
task ¢ specifies a computation model comp(i). In addition, every arc between
a task ¢ and j is expanded by a communication model zfer(i,j,!) that ac-
counts for the communication (! is message length in bytes) induced by that
arc (discussed at length elsewhere). Since G is an SP graph the resulting pro-
gram model L is also an SP graph which implies that L can be expressed in
terms of one single (possibly complex) PAMELA expression. As a result, L can
be directly compiled into a single expression 7% based on the application of
Eq. 5. For instance, consider the following 3-tasks graph G = t1; (t2 || ?3).
The PAMELA model of the (instantiated) executive is given by the expression
L = comp(1); ((afer(1,2,11); comp(2)) || (zfer(1,3,11); comp(3))).



The comp model represents the actual task computation. In our aim just to
evaluate the analysis technique, we refrain from modeling the local loop kernel
in detail and simply measure it as a whole. For the amount of work we consider
(w; = 10%...10° loops) the execution time increases linearly with w; according
to 6.1 pus per iteration (startup time negligible). Thus the execution time is
expressed by the following (contention) model

comp(i) = seq (k= 1,6.1w;/7.) use(p;, 1)

expressed in ps where 7. denotes the basic CPU time slice. The (small) effect of
multithreading overhead is automatically accounted for in the coefficient since
during the calibration the kernel is run as a thread.

4.3 Communication Model

In conventional static techniques a linear delay model is often used to predict
the transfer delay (e.g., [3, 13]) in terms of startup, hop count and bandwidth.
Although precise for isolated transfers, these models do not account for addi-
tional queuing delay induced by concurrent traffic contending for the interme-
diate (sending, forwarding, receiving) link and node services. This is especially
true in applications that exhibit a high level of parallel slackness (e.g., multiple
threads/communications with latency hiding).

In the following we develop a simple transfer contention model that provides
a first-order bandwidth approximation for simultaneous communications. In con-
trast to the task indices used above, in the following we will consider zfer(s, r,[)
where s and r denote sender and receiver processor, respectively (¢ = ps, j = pr).
The communication service of the transputer system is based on a multiplex-
ing scheme in which each 120 bytes of the message is packetized. Each packet
is statically routed through the mesh in a pipelined fashion based on software
forwarding pending a T9000 upgrade. With each physical link between neigh-
boring transputers we will associate a service compler comprising a subsystem
of physical (e.g., DMAs at both link ends) and/or semi-logical (software servers
at both ends) resources. Without any loss of generality, we project the service
complex at the receiving node of each link, as shown in Fig. 2. In the following
we consider the communication system at the packet level which 1s the small-
est level of granularity with respect to resource sharing. Although the service
complex at each link comprises several software/hardware components, it can
be modeled as to provide two services at the packet level that are subsequently
denoted e and f (see Fig. 2).

The first service e represents the reception service at the packet destina-
tion involving the exclusive transfer of one packet across the link (duration
T, = 108 ps [10]), including the software overhead at both ends (e.g., moving,
handshaking). The second service f represents the forwarding service (including
intermediate byte storage and protocol overhead) required for a packet destined
for a different node. Consequently, compared to e, f includes additional rout-
ing/forwarding work load (duration 7, = 73 ps). In general, a packet transfer



from node s = ny to r = ng will require forwarding at ns...ng_1 and one
reception service at nx. Both services are based on an underlying service, rep-
resented by the resource = that represents the basic link service that has to be
shared. Consequently, e and f are logical resources (kernel servers) sharing the
underlying link service. Typical for the PAMELA methodology, we use a material-
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Fig.2.  Message-passing  service Fig. 3. Results for 10° byte concur-
model of the T800 transputer mesh rent communications (s)

oriented approach to model packet propagation, in which we model the entire
transfer as a parallel section of contending tasks [10]. Let ny = s...7 denote the
index of the K nodes involved in the pipeline route. Then the PAMELA model®
is given by the simple expression

zfer(s,r,l) = par (i = 1,1/120) {
seq (k=2 K —1) { use(fn,, ™ +7y) || use(z,,, ) }
use(z,, )

Note, that this model ignores startup delay and approximates the work load in
terms of an integer number of packets. However, for large data communications
this model suffices to accurately capture the effective bandwidth degradation
when many virtual links are simultaneously active. The above model has been
validated for many types of concurrent communications (equal message lengths)
as well as random patterns (as discussed later on). The table in Fig. 3 shows a few
typical results for (10° byte) data transfers involving only the first three nodes
of the first mesh row (nodes 0, 1, and 2). The nodes that are simultaneously
sending are expressed by the s vector, while the receivers are expressed by the
r vector. Each pair (s,,r,) corresponds to one communication. Apart from the
measured value 7™ and the simulation result 7" the lower bound prediction T*
as well as the traditional static prediction 7% are listed. The simulation results

% The actual model is somewhat different in that it features a nested resource usage. In
order to enable the application of our compile-time technique, a slight approximation
has been applied that degrades accuracy by only a few percent. See [10] for details.



show that the zfer model is reasonably accurate. Only in a very few situations a
limited deviation is measured (cf. last row). This optimistic prediction is due to
the precise packet scheduling which is left undetermined in the PAMELA model.
Nevertheless, the prediction accuracy of T* is within 10 % whereas the traditional
model yields errors up to hundreds of % [10].

4.4 Results

In this section we present the measurement results for the execution of the 14
random SP graphs (G; ...G 14 on the transputer mesh. The computational work
load wj is i.i.d. uniformly over [10* 10°] (loops) that corresponds to an average
total problem size of 305 s. In order for the communication to have a significant
impact, the data size sent by each task to its successors is also 1.1.d. uniformly
over [10%,10°] (bytes) which corresponds to an average communication delay
between 0.9 s and 1.5 s (per isolated transfer). As in the simulation experiment,
the graphs are generated to cover the # region of interest. Table 1 summarizes

Gl 7] T[T 6] of 8] ¢ [T T| T 6 of 4
G1(118.7|114.7(25.9| 1.08]0.66|0.73 Gs | 89.2| 87.1| 52.5/-0.35[0.61|0.68
Go| 93.9| 92.5|21.2| 0.85|0.53|0.62 Gy | 87.6| 84.4| 65.7]-0.73]0.78|0.78
Gs| 95.6| 92.8]25.8| 0.76]0.60|0.68 G10]109.5(106.4| 79.5]-0.91{0.75|0.75
G4| 94.1| 87.4|31.5| 0.37]0.53|0.70 G11(141.2(138.4|107.6|-1.23(0.78|0.80
Gs| 73.4| 70.9|30.3| 0.27]0.56|0.66 G12(149.5(144.8|125.0|-1.51]0.87|0.87
G (105.8{103.9(58.3|-0.19|0.55|0.55 G12]165.9(163.2|140.2|-1.62|0.86|0.86
Gr| 98.4| 87.0]47.4|-0.28]0.54|0.60 G14(172.3(171.0|165.4]-1.70{0.96|0.96

Table 1. Measurements vs. predictions (s)

the main results for each of the 14 programs. 7" denotes the measured execution
time (s). T denotes the simulation result (s) of the corresponding PAMELA model
L (variance is negligible). The result 7" of serialization analysis is represented
in terms of #, «, and 3 that are defined as before. The total number of resources
involved in the simulation and analysis is M = 144 (P processors, 4P link, and
4P forwarding services). The T* value (i.e., ¢) has been included to demonstrate
the (severe) prediction error of traditional static analysis.

The results show that the performance of the executive is indeed captured
by the PAMELA model with reasonable accuracy. On average, T under-estimates
T™ with about 4 % which is entirely due to the fact that the above commu-
nication model does not account for the effects of acknowledgement traffic and
the minor decrease in computational bandwidth (explained in [10]). The results
for @ and 3 show that the average prediction error is well within 50 %. As ex-
pected, for relatively parallel graphs, the § values tend to be somewhat better



than the a values. The increase in accuracy for positive  is somewhat less when
compared to Fig. 1. This phenomenon is caused by the fact that for some task
mappings parallel communications involving the same resource may occur at rel-
atively concentrated points in time. Thus, the (link) resource usage is not always
uniformly (randomly) distributed over the entire length of the computation (cf.
Example 3). An elaborate explanation appears in [10]. Finally, note that for high
contention levels the error in 7% is quite considerable.

5 Conclusion

We have outlined a simple compile-time technique that yields an analytic per-
formance model of a parallel system. The work is inspired by the need for low
cost, highly parametric models during the initial optimization loops in high-
performance application design. Aimed to sustain an acceptable accuracy for any
choice of system parameters, the method integrates critical path analysis typi-
cal for compile-time methods, with asymptotic bounding analysis from queuing
theory. Whereas a single simulation run (7") requires hundreds of seconds on
a typical workstation, the symbolic model 7% evaluates in a split second. Our
results show that the worst-case penalty for large random task systems is a mere
50 % under-estimation on average.

To the best of our knowledge the study concerning the merit of fully inte-
grating contention analysis within a static performance modeling technique for
parallel system design has not yet been described. Although the accuracy of the
method is inherently limited, the technique enables a fast, first-order analysis and
ranking of different design choices with a sustained minimum accuracy regard-
less any system parameter value. Further validation involving real applications
as well as (stochastic) extensions of the technique are under way.
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