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Abstract—Recently, analog Joint Source-Channel Coding
(JSCC) has been shown to approach the optimal distortion-cost
trade-off when transmitting over AWGN channels. In this work
we consider analog JSCC over frequency-selective channels using
Orthogonal Frequency Division Multiplexing (OFDM) modula-
tion. Due to its high complexity, optimal MMSE analog JSCC
decoding is infeasible in OFDM, hence a practical two-stage
decoding approach made up of a MMSE estimator followed by a
Maximum Likelihood (ML) decoder is proposed. Three different
alternatives for system optimization are considered: non-adaptive
coding, adaptive coding, and adaptive coding with precoding.
We show that the three analog JSCC transmission strategies
approach the optimal distortion-cost trade-off although much
better performance is obtained with the adaptive coding with
precoding method, specially in Multiple Input Multiple Output
(MIMO) OFDM systems.

I. INTRODUCTION

Source compression and channel coding are typically per-
formed separately in most digital communication systems.
This strategy, known as the “separation principle”, has been
shown to be optimum for both lossless compression [1] and
lossy compression of analog sources [2]. However, when
digital communication systems are designed to perform close
to the optimal distortion-cost trade-off, sources have to be
compressed using powerful Vector Quantization (VQ) and
entropy coding methods. In addition, data has to be transmitted
using capacity approaching digital codes that use long block
lengths and introduce significant delay and high computational
complexity. Moreover, full redesign of the digital system is
required whenever we want to change either the data rate or
the distortion target.

Recently, discrete-time analog communication systems
based on the transmission of continuous amplitude channel
symbols have been proposed as an alternative to digital com-
munication systems. As shown in [3]–[5], using appropriate
analog Joint Source Channel Coding (JSCC) techniques, it is
possible to approach the optimal distortion-cost trade-off at
extremely high data rates with very low complexity and an
almost negligible delay.

Most previous work in analog JSCC focuses on AWGN
channels. An exception is [6] where the implementation on a
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Fig. 1. Block diagram of an analog JSCC system over an AWGN channel.

Software Defined Radio testbed of a wireless system based
on analog JSCC is presented. Excellent performance over
wireless channels is attained when the encoder parameters
are continuously adapted to the time-varying Channel Signal
to Noise Ratio (CSNR). Another exception is [7] where the
transmission of analog samples over Multiple Input Multiple
Output (MIMO) fading channels is considered.

In this work we consider analog JSCC over frequency-
selective channels using OFDM modulation. When combined
with MIMO transmission over multiple transmit and receive
antennas, the resulting signaling method is referred to as
MIMO-OFDM. MIMO-OFDM is the transmission method
adopted by the last generation of broadband wireless commu-
nication systems due to its ability to achieve large spectral
efficiencies while enabling low-complexity equalization of
frequency-selective channels.

This paper is organized as follows. Section II reviews the
basics of analog JSCC systems while Section III focuses on
analog JSCC in MIMO-OFDM systems. Section IV explores
the adaptation of the encoder parameters to improve per-
formance. Further improvements can be achieved by linear
precoding as explained in Section V. Section VI presents the
results of computer experiments and Section VII is devoted to
the conclusions.

II. ANALOG JOINT SOURCE-CHANNEL CODING

Figure 1 plots the block diagram of a discrete-time N:1
bandwidth compression analog JSCC transmission system over
an AWGN channel. At the transmitter of such a system, N
independent and identically-distributed (i.i.d.) source symbols
are packed into the source vector x = (x1, x2, ..., xN ) and
compressed into one channel symbol s. The compression con-
sists of three steps: mapping, Mδ(·), non-linear transformation,
Tα(·), and normalization, 1/

√
γ.

Recent work in analog JSCC [3]–[5], [8] proposes the use
of analog mappings based on geometric curves. An example
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is the Archimedes spiral [9] whose mathematical expression
for N = 2 is given by

zδ(θ) =

(
sign(θ)

δ

π
θ sin θ,

δ

π
θ cos θ

)
, (1)

where δ is the distance between the two neighboring spiral
arms and θ is the angle from the origin to the point z =
(z1, z2) on the curve. Given a specific spiral defined by its
δ value, the compression function Mδ(·) calculates the value
θ̂ corresponding to the point on the spiral that minimizes the
distance to x, i.e.

θ̂ =Mδ(x) = argmin
θ
‖x− zδ(θ)‖2. (2)

It is important to use the optimum encoding value δ in order
to achieve the best performance. This parameter determines
how the bi-dimensional space is filled up and, therefore, how
protected the source symbols are against the noise.

After the mapping, the nonlinear invertible function
Tα(θ̂) = θ̂α, denoted the stretching function in [5], is used to
transform the channel symbols prior to transmission. Although
in most of the literature [3]–[5] α = 2 is used, the system
performance can be significantly improved if α is optimized
together with δ [10]. We have empirically determined, via
computer simulations, that using α = 1.3 provides a good
overall performance for the case of 2:1 compression in AWGN
channels and a wide range of CSNR and δ values. Since the
analytical optimization of δ is not feasible when α 6= 2 [4],
we numerically determined the optimum values of δ and store
them in a lookup table [11].

Finally, the coded value is normalized by
√
γ to ensure the

average transmitted power is equal to one. Hence, the symbol
sent over the channel is given by

s =
Tα(Mδ(x))√

γ
. (3)

When transmitting over an AWGN channel, the received
symbol is given by y = s+n where n ∼ N (0, N0) is a zero-
mean Gaussian random variable that represents the channel
noise. At reception, the transmitted analog source symbols
are decoded from the observation y. Although sub-optimum
in analog JSCC, Maximum Likelihood (ML) decoding has
been studied in [3], [8] and shown to provide a satisfactory
performance over AWGN channels at medium and high CSNR
values. The ML estimate x̂ML is the tuple (x̂1, x̂2, . . . , x̂N ) that
belongs to the non-linear curve and maximizes the likelihood
function p(y|x), i.e.

x̂ML = argmax
x∈curve

p(y|x)

= {x|x ∈ curve and Tα(Mδ(x))/
√
γ = y}. (4)

As shown in [3], [8], ML decoding is equivalent to first
applying the inverse function T−1α to the observation y after
de-normalization to find an estimate θ̃ of the transmitted angle
θ̂, i.e.

θ̃ = T−1α (
√
γy) = sign(y)|√γy|−α (5)

S/P

IFFT

IFFT

FFT

FFT

Fig. 2. Block diagram of an analog JSCC MIMO-OFDM system.

and then obtaining

x̂ML = (x̂1, x̂2, . . . , , x̂N ) = zδ(θ̃). (6)

Notice that the overall ML decoder complexity is extremely
low, since the two decoding steps previously described only
involve simple mathematical operations.

III. ANALOG JSCC IN MIMO-OFDM

Figure 2 plots the block diagram of a MIMO-OFDM system
with analog JSCC. Discrete-time continuous-amplitude sym-
bols are transmitted over a frequency-selective MIMO channel
with nT transmit antennas and nR receive antennas, using
OFDM modulation with K subcarriers.

Source symbols are first spatially multiplexed over the nT
transmit antennas. At each transmit antenna, a set of KN
analog source symbols is encoded into K channel symbols
using the N :1 analog encoding method explained in Section II.
Then, each block of K channel symbols is normalized and
transformed into an OFDM symbol. The OFDM symbol si =
{si,1, . . . , si,K} is then transmitted through antenna i.

We assume a block-fading channel that remains unchanged
during the transmission of one OFDM symbol but may vary
from one OFDM symbol to another. In the time-domain, the
block-fading MIMO channel is represented by the sequence of
nR × nT matrices H[l] for l = 0, . . . L− 1, being L the size
of the channel memory. In a Rayleigh fading MIMO channel,
the entries to H[l] are complex-valued zero-mean circularly-
symmetric Gaussian i.i.d. random variables. In the frequency-
domain, the channel response matrix can be expressed as [12]

Hk =

L−1∑
l=0

R[l]1/2H[l]T[l]1/2 exp

(
−j2πlk
K

)
, (7)

where Hk is the frequency-domain nR × nT channel matrix
response at the k-th subcarrier (k = 1, . . . ,K) in the OFDM
symbol. Matrices R[l] and T[l] are the receive and transmit
spatial-correlation matrices, respectively.

Thus, if an OFDM symbol is transmitted from each antenna
over the MIMO channel, the received observations yk at
subcarrier k are given by

yk = Hksk + nk, k = 1, · · · ,K (8)

where sk is the length nT channel symbol vector correspond-
ing to that subcarrier and nk is an i.i.d. circularly symmetric
complex Gaussian random vector that represents the additive
spatially white channel noise.

In analog JSCC, MMSE estimation is the optimal decoding
strategy. When considering a MIMO-OFDM system, optimal
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decoding consists in the calculation, at each subcarrier k, of
the MMSE estimate of the NnT transmitted source symbols
xk from the received symbol vector yk, i.e.

x̂k,MMSE = E [xk|yk] =
∫

xk p(xk|yk)dxk

=
1

p(yk)

∫
xk p(yk|xk)p(xk)dxk. (9)

Since the conditional probability, p(yk|xk), involves the map-
ping function Mδ(·) which is discontinuous and highly non-
linear, the integral in (9) can only be calculated numerically.
This implies that the discretization of the set of all possible
source values, xk, is needed. If L discrete-points are selected
per source dimension, we would have to calculate LNnT

values for p(yk|xk) and p(xk), and then compute the integral
in (9). This is infeasible in MIMO-OFDM even for a small
number of transmit antennas and subcarriers.

Alternatively, analog JSCC decoding in MIMO-OFDM can
be done using a two-stage receiver similar to the one consid-
ered in [11]. This receiving strategy involves a first stage where
the received symbols are filtered with the aim of minimizing
the MSE between the transmitted and estimated symbols,
and a second step where ML decoding is applied to the
filtered symbols to obtain an estimate of the transmitted source
symbols. As shown in [11], the performance of this decoding
strategy approaches closely that of the optimal MMSE decoder
in AWGN and Rayleigh fading channels while having a
complexity similar to that of ML decoding.

Assuming perfect Channel State Information (CSI) available
at the receiver, the linear filter Wk that minimizes the Mean
Squared Error (MSE) between the channel symbol vector sk
and the estimated symbol vector ŝk = Wkyk is given by

Wk =
(
HH
k Hk + nTN0InT

)−1
HH
k , (10)

where the super-index H represents conjugate transposition.
Thus, the set of estimated symbols ŝk can be demodulated
and used by the ML decoder given by (5) and (6) to calculate
an estimate x̂ of the source symbols.

IV. ADAPTIVE ANALOG JSCC

As explained in Section II, better performance is obtained
when using the optimal values for δ which, at the same
time, depend on the CSNR. If no information about the
channel is available at the transmitter, it is sensible to use
the same δ, corresponding to the average expected CSNR, to
encode all the analog source symbols. This may be adequate
in frequency-flat and quasi-static channels where the CSNR
remains approximately the same at all subcarriers during a
long time but can lead to serious degradation in practical
MIMO-OFDM channels where each subcarrier is expected to
have a different time-varying CSNR.

Better performance is obtained following an adaptive coding
strategy. If we assume that our system is equipped with a
feedback channel that regularly sends the CSNRi,k values cor-
responding to the i-th transmit antenna and the k-th subcarrier,

the encoding parameter δ can be continuously adapted to the
channel time variations

In order to calculate CSNRi,k we must take into account
the detector. When MMSE detection is considered, the filter
Wk does not completely cancel the spatial interference of the
MIMO channel. If we consider the residual spatial interference
as Gaussian noise that adds to the thermal noise, it can be
shown that the equivalent output CSNR can be expressed as
[13]

CSNRi,k =
µ2
i,k

µi,k − µ2
i,k

=
µi,k

1− µi,k
, (11)

where µi,k = (WkHk)ii. Thus, the MMSE detector trans-
forms a MIMO-OFDM channel into a set of nT SISO-OFDM
parallel channels, each one with an equivalent CSNR per
subcarrier given by (11).

An important issue regarding system optimization is power
normalization. At a first glance, it seems that all subcarriers
in the OFDM symbol transmitted over the i-th antenna should
be normalized using the same factor γi per antenna. However,
notice that this would change the effective CSNRi,k of the
equivalent channel. A better idea is to exploit the CSI provided
by the feedback channel and use different factors to normalize
the subcarriers with different CSNR. In our case, this idea was
implemented calculating a factor γi,z for different CSNR = z
values and employing them to normalize the channel symbols
transmitted into subcarriers with CSNRi,k ≈ z. This method
is only applied when adaptive coding is used. Notice that this
normalization factor must be send alongside the rest of the
information, so this normalization adds some extra overhead.

V. ANALOG JSCC MIMO-OFDM WITH LINEAR
PRECODING

If CSI is available at transmission, further performance im-
provements can be obtained if channel symbols are precoded
prior to its transmission in a MIMO-OFDM system. As in
[14] we will follow the MMSE criterion to jointly design a
linear precoder and a linear detector suitable for analog JSCC
in MIMO-OFDM.

Recall the MIMO-OFDM signal model defined by (8).
Let Pk be the linear precoder and Wk the linear detector
per subcarrier, respectively. The channel symbol estimations
obtained at the detector output are given by

ŝk = Wk(HkPksk + nk),

and, thus, the error between the estimated and transmitted
symbols per subcarrier is measured as

ek = ‖sk − ŝk‖ = ‖sk −Wk(HkPksk + nk)‖ (12)

The MMSE linear precoder and detector are obtained after
solving the following constrained optimization problem

argmin
Pk,Wk

K∑
k=1

E[tr(ekeHk )]

subject to
K∑
k=1

tr(PkP
H
k ) ≤ Ptx, (13)
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where E[·] and tr(·) denote the expectation and trace opera-
tors, respectively, and Ptx is the total power available at the
transmitter.

Substituting the error expression (12) in (13), differentiating
with respect to PHk and WH

k and using the Karush-Kuhn-
Tucker (KKT) conditions, we arrive at the following equations
to obtain the optimal Pk and Wk matrices

Pk = (λI+HH
k WH

k WkHk)
−1(HH

k WH
k ), (14)

Wk = (PHk HH
k )(nTN0I+HkPkP

H
k HH

k )−1, (15)

where N0 is the AWGN noise variance and λ ≥ 0 is the
Lagrange multiplier that ensures the total transmit power is
equal to Ptx. Since both equations depend on each other we
must calculate the precoder and the detector iteratively. We
start assuming an initial precoder equal to the identity matrix
and, at each iteration, both the detector and the precoder
are sequentially updated using (14) and (15). Notice that the
Lagrange multiplier λ must be recalculated at each iteration
using Newton’s method in order to satisfy the transmit power
constraint.

VI. SIMULATION RESULTS

Computer simulations were carried out to assess the perfor-
mance of the different analog JSCC MIMO-OFDM systems
considered in previous sections. Three different configurations
were evaluated: non adaptive coding, adaptive coding and
adaptive coding with precoding. Two types of channels were
considered: spatially white Rayleigh fading channels, in which
the time-domain matrix coefficients are i.i.d. complex-valued
circularly symmetric zero-mean Gaussian random variables;
and MIMO-OFDM fading channels following standard mod-
els.

System performance in terms of the Signal to Distortion
Ratio (SDR) with respect to the CSNR. The distortion is the
Mean Square Error (MSE) between decoded and source analog
symbols, i.e.

MSE =
1

N
E{‖x− x̂‖2}. (16)

The optimal distortion-cost trade-off is the minimum attainable
SDR for a given CSNR. In the literature, this theoretical
limit is known as the Optimum Performance Theoretically
Attainable (OPTA) and is calculated by equating the rate
distortion function to the channel capacity [15]. For N :1
compression over a generic nR × nT channel matrix H, the
OPTA is given by

1

N
log

(
1

MSE

)
=

1

nT
EH

[
log det

(
InR

+
CSNR
nT

HHH

)]
,

where EH [·] represents expectation with respect to H. In
a system with a linear precoding matrix P the capacity
corresponds to the one of an equivalent MIMO channel HP.

We started by considering the case nT = nR = 1, i.e.
SISO-OFDM. Figures 3 and 4 show the performance of analog
JSCC with N = 2 in a SISO-OFDM system over a Rayleigh
fading channel and a channel following the ITU-Pedestrian B
model described in [16], respectively. We consider Gaussian
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Fig. 3. Performance of an analog JSCC SISO-OFDM system over a Rayleigh
fading channel.
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Fig. 4. Performance of an analog JSCC SISO-OFDM system over a
Pedestrian B model.

sources and K = 64 subcarriers in the OFDM modulation.
In the simulated Rayleigh fading channel the memory is L =
10. Doppler shift is assumed low enough so that the channel
remains static during the transmission of an OFDM symbol
and equation (7) is valid. In the ITU-Pedestrian B channel
model this condition is met for a reasonable large number of
subcarriers.

As observed in both figures, the three proposed strategies
approach the OPTA in the whole CSNR region. As expected,
the worst performance is obtained when no CSI is available
at the transmitter (i.e. non-adaptive coding and no precoding)
specially when the CSNR is high (2.5 dB below the OPTA).
Using adaptive coding or adaptive coding with precoding
increases the performance up to only 1 dB from the OPTA.
Notice that the complexity of the first approach is lower than
that of the adaptive ones, since it is not required a feedback
channel to send the CSI to the transmitter.

Figures 5 and 6 show the performance of analog JSCC
in MIMO-OFDM with nT = nR = 4 and K = 64 over a
spatially white MIMO Rayleigh fading channel and a channel
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Fig. 5. Performance of an analog JSCC 4× 4 MIMO-OFDM system over
a Rayleigh fading channel.

following the case D Intelligent Multi-element Transmit and
Receive Antennas (I-METRA) channel model described in
[17], respectively. Again, for the Rayleigh fading channel we
assume that the memory is L = 10.

In MIMO-OFDM, similar conclusions as those from the
SISO case can be extracted, although the effect of adaptive
coding and precoding is more significant. The performance
when the non-adaptive strategy is employed quickly degrades
when increasing the CSNR. Also, the distance between the
performance curves corresponding to adaptive coding with
precoding is larger (1−1.5 dB). Hence, the knowledge of CSI
at transmission in MIMO-OFDM makes it possible to protect
the transmitted symbols more strongly against the channel
distortion. It is interesting to note that the OPTA of a MIMO-
OFDM system with precoding is actually lower than that of
the system without precoding. This is because the precoder
has been designed to minimize the MSE and not to maximize
capacity. Nevertheless, notice that the actual performance of
the precoded system is significantly better that that of the
system without precoding.

VII. CONCLUSIONS

We have studied the analog transmission of discrete-time
coded samples in MIMO-OFDM systems. Source symbols
are analog JSCC encoded and sent as OFDM symbols over
frequency selective MIMO fading channels. As an alternative
to optimal MMSE decoding, we proposed a more practical
two-stage receiver made up of a MMSE estimator followed
by a Maximum Likelihood (ML) decoder. We studied three
different alternatives for system optimization: non-adaptive
coding, adaptive coding and adaptive coding with precoding.
Simulation results show that the three analog JSCC transmi-
sion strategies approach the OPTA although much better per-
formance is obtained with the adaptive coding with precoding
method, specially as the number of antennas increases.
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Fig. 6. Performance of an analog JSCC 4× 4 MIMO-OFDM system over
an I-METRA CASE D channel.
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