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a b s t r a c t

Univariate dependencies in market volatility, both objective and risk neutral, are best

described by long-memory fractionally integrated processes. Meanwhile, the ex post

difference, or the variance swap payoff reflecting the reward for bearing volatility risk,

displays far less persistent dynamics. Using intraday data for the Standard & Poor’s 500 and

the volatility index (VIX), coupled with frequency domain methods, we separate the series

into various components. We find that the coherence between volatility and the volatility-

risk reward is the strongest at long-run frequencies. Our results are consistent with

generalized long-run risk models and help explain why classical efforts of establishing a

naı̈ve return-volatility relation fail. We also estimate a fractionally cointegrated vector

autoregression (CFVAR). The model-implied long-run equilibrium relation between the two

variance variables results in nontrivial return predictability over interdaily and monthly

horizons, supporting the idea that the cointegrating relation between the two variance

measures proxies for the economic uncertainty rewarded by the market.

& 2013 Elsevier B.V. All rights reserved.
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1. Introduction

We develop a unified framework for jointly modeling
the dynamic dependencies and interrelatedness in aggre-
gate stock market returns, realized volatilities, and options
implied volatilities. Our estimation results rely on newly
available high-frequency intraday data for the Standard &
Poor’s (S&P) 500 market portfolio and the corresponding
Chicago Board Options Exchange (CBOE) Market Volatility
Index (VIX), along with frequency domain inference proce-
dures that allow us to focus on specific dependencies in the
data. Our formal model setup is based on the co-fractional
vector autoregression (VAR) of Johansen (2008a,b). We
show that the longer-run dependencies inherent in the
high-frequency data are consistent with the implications
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from the stylized equilibrium model in Bollerslev, Sizova
and Tauchen (2012) that directly links the dynamics of the
two volatility measures and the returns. Further corrobor-
ating the qualitative implications from that same theoretical
model, we show that the variance risk premium estimated
as the long-run equilibrium relation within the fractionally
cointegrated system results in nontrivial return predictabil-
ity over longer interdaily and monthly return horizons.

An enormous empirical literature has been devoted to
characterizing the dynamic dependencies in stock market
volatility and the linkages between volatilities and returns.
The most striking empirical regularities to emerge from this
burgeon literature are that volatility appears to be highly
persistent, with the longer-run dependencies well described
by a fractionally integrated process (see, e.g., Ding, Granger,
and Engle, 1993; Baillie, Bollerslev, and Mikkelsen, 1996;
Andersen and Bollerslev, 1997a; Comte and Renault, 1998);
volatilities implied from options prices typically exceed the
corresponding subsequent realized volatilities, suggesting
that the reward for bearing pure volatility risk is negative on
average (see, e.g., Bakshi and Kapadia, 2003; Carr and Wu,
2009; Bollerslev, Gibson, and Zhou, 2011); the volatility risk
premium, defined as the difference between options implied
and realized volatilities, tends to be much less persistent
than the two individual volatility series, pointing to the
existence of a fractional cointegration-type relation (see,
e.g., Christensen and Nielsen, 2006; Bandi and Perron,
2006); volatility responds asymmetrically to lagged nega-
tive and positive returns, typically referred to as a leverage
effect (see, e.g., Black, 1976; Nelson, 1991; Bollerslev,
Litvinova, and Tauchen, 2006); and counter to the implica-
tions from a traditional risk-return trade-off-, or volatility
feedback-, type relation, returns are at best weakly posi-
tively related, and sometimes even negatively related, to
past volatilities (see, e.g., French, Schwert, and Stambaugh,
1987; Glosten, Jagannathan, and Runkle, 1993; Campbell
and Hentschell, 1992).

The co-fractional VAR for the S&P 500 returns, realized
volatilities, and VIX developed here is generally consistent
with all of these empirical regularities. In contrast to most
of the studies cited above, which are based on daily or
coarser sampled data, our use of high-frequency five-
minute observations on returns and volatilities allows for
much sharper empirical inference concerning the second-
order dynamic dependencies and frequency-specific lin-
kages between the different variables. This, in turn, helps
us to identify the periodicities in volatility and risk premia
that are likely more important economically.

Our formal theoretical motivation for the use of high-
frequency data are essentially twofold. First, the spectral
density on ½�p,p� of a discretely sampled continuous time
covariance stationary process could be seen as a folded-up
version of the spectral density of the underlying continuous
time process.1 If the five minutes are thought of as very
close to continuous time, the distortions invariably induced
by the use of discretely sampled data are, therefore,
1 More technically, the spectral density of a discrete time scalar

process could be thought of as identical copies over ð�1,1Þ on intervals

½ð2k�1Þp,ð2kþ1Þp�, k¼0,71,72, y, with the obvious analogy in the

m-dimensional vector case on ½ð2k�1Þp,ð2kþ1Þp�m .
minimal. In the same vein, the estimation in the time
domain of the co-fractional VAR captures nearly all
dynamics with arguably minimal distorting aliasing effects.
Second, the coefficients of the co-fractional VAR are defined
by second-order moments. These are known to be more
precisely estimated the more finely sampled the data, so
long as the number of parameters to be estimated remains
small relative to the size of the data. As such, the efficiency
of the inference is generally enhanced by the use of high-
frequency data.

The plan for the rest of the paper is as follows. Section
2 provides a description of the high-frequency data
underlying our empirical investigations. Section 3 char-
acterizes the long-run dynamic dependencies in the two
variance series, including the variance risk premium and
the evidence for fractional cointegration. Section 4 details
the risk-return relations inherent in the high-frequency
data based on different variance proxies across different
frequency bands. These results, in turn, motivate our
empirical implementation of the fractionally cointegrated
VAR system discussed in Section 5. Section 6 concludes.

2. Data

Our analysis is based on high-frequency tick-by-tick
observations on the Chicago Mercantile Exchange (CME)
futures contract for the S&P 500 aggregate market port-
folio and the corresponding CBOE VIX volatility index. The
data were obtained from Tick Data Inc. and cover the
period from September 22, 2003 to January 31, 2012 and
to December 30, 2011, respectively; further details con-
cerning the data are available in Bollerslev, Sizova, and
Tauchen (2012), where the same data have been analyzed
from a different perspective over a shorter time period.
Following standard practice in the literature as a way to
guard against market-micro structure contaminants (see,
e.g., Andersen, Bollerslev, Diebold, and Ebens, 2001), we
transform the original tick-by-tick data into equally
spaced five-minute observations using the last price
within each five-minute interval. We denoted the corre-
sponding geometric (log) returns by

rtþ1 ¼ logðPtþ1Þ�logðPtÞ, ð1Þ

where the time subscript t refers to the 77 intraday return
observations plus the one overnight return per trading
day. We define the corresponding risk-neutral return
variation from the CBOE VIX as follows:

VIX2
t ¼

30
365ðVIXCBOE

t Þ
2, ð2Þ

where the scaling by 30/365 transforms the squared
annualized observations on the CBOE index into monthly
units.

It is well known that return volatility varies over the
trading day and that it is typically higher around the open
and close of trading than during the middle of the day
(see, e.g., Andersen and Bollerslev, 1997b). The average
variation of the overnight returns also far exceeds that of
the intraday five-minute returns. This diurnal pattern in
the return volatility could in turn result in a few observa-
tions each day dominating the analysis. To guard against
this, we further standardize the raw returns in Eq. (1) by



Table 1
Summary statistics.

The table reports standard summary statistics for the returns, rt, monthly realized variances, rvt, and risk-neutral variances, vix2
t . All of the statistics are

based on five-minute observations from September 22, 2003 through December 30, 2011, for a total of 162,786 observations.

Autocorrelations

Mean Standard 1 2 3 10 78 78�22

deviation

rt �0.0000 0.1478 �0.0343 �0.0151 �0.0075 �0.0041 �0.0016 0.0039

rvt 2.9914 0.9948 1.0000 1.0000 1.0000 0.9999 0.9981 0.8045

vix2
t

3.4133 0.8259 0.9999 0.9997 0.9996 0.9985 0.9884 0.8630

2 One notable exception is Bandi and Perron (2006), who argue that

d is in excess of 0.5 and, thus, outside the stationary region. There is also

a long history of using superpositions of short-memory processes as a

way to capture long-range dependence in realized volatilities (see, e.g.,

Barndorff-Nielsen and Shephard, 2002; Corsi, 2009).
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the sample standard deviations for each of the 78 time
intervals. All of the estimation results reported on below
are based on these standardized returns. However,
when assessing the return predictability implied by
the different models, we always report the relevant
measures in terms of the unstandardized returns of
practical interest.

Following the simple realized volatility estimators
of Andersen, Bollerslev, Diebold, and Labys (2001) and
Barndorff-Nielsen and Shephard (2002), a number of
alternative nonparametric procedures have been devel-
oped for more efficiently estimating the ex post return
variation from high-frequency data, including the realized
kernels of Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2008), the multi-scale estimators of Zhang, Mykland, and
Aı̈t-Sahalia (2005), and the pre-averaging estimator of
Jacod, Li, Mykland, Podolskij, and Vetter (2009). Here we
rely on a simple-to-implement subsampling and averaging
estimator for the one-month (or 22 trading days) ex post
return variation obtained by summing the within month
five-minute and overnight squared returns. Specifically,

RVt ¼
1

5

X5

j ¼ 1

X78�22

i ¼ 1

r2
tþ iþðj�1Þ=5, ð3Þ

where rtþ iþðj�1Þ=5 for j¼ 1, . . . ,5 refer to the five different
five-minute return series obtained by initializing the day at
five different one-minute time stamps. This averaging of
the five separate squared return series naturally enhances
the efficiency of the estimator relative to the basic realized
volatility estimator based on a single five-minute return
series, or j¼1. The one-month forward horizon of RVt, as
defined in Eq. (3), exactly matches the return variation
prized by the VIX2

t , as defined in Eq. (2). As such, the
difference between VIX2

t and RVt corresponds directly to the
ex post payoff from selling a variance swap contract.

Finally, to help stabilize the two variance measures
and render them more amenable to linear time series
modeling, we transform both into logarithmic units:

rvt ¼ logðRVtÞ, ð4Þ

vix2
t ¼ logðVIX2

t Þ: ð5Þ

With the loss of one month at the end of the sample due
to the calculation of rvt, our common data set for the three
series thus covers the period from September 22, 2003 to
December 30, 2011, for a total of T ¼ 2087� 78¼ 162,786
observations; comparable results based on a shorter
sample through December 31, 2008 are available in an
earlier working paper version of the paper.

Standard summary statistics for each of the three
series are reported in Table 1. The high-frequency returns
are approximately serially uncorrelated, with a mean
indistinguishable from zero. Consist with the extant
literature, the unconditional mean of the realized variance
is lower than the mean of the risk-neutral variance,
indicative of an on average positive risk premium for
bearing volatility risk. At the same time, the risk-neutral
variance appears slightly less volatile than the realized
variance. Both of the variance series exhibit substantial
persistence with extremely slow decay in their autocor-
relations. The next section further details these dynamic
dependencies in the two variance series.

3. Variance dynamics

3.1. Long-run volatility dependencies

The notion of fractional integration often provides a
convenient statistical framework for capturing long-run
dependencies in economic time series (see, e.g., the
discussion in Baillie, 1996). A stationary time series yt is
said to be fractionally integrated of order d 2 ð0,0:5Þ,
written I(d), if

Ddyt ¼ et , ð6Þ

where et is an Ið0Þ process and Dd
¼ ð1�LÞd denotes the

fractional difference operator

Dd
� ð1�LÞd ¼

X1
i ¼ 0

ð�1Þi
d

i

� �
Li: ð7Þ

The spectral density of the process yt has a pole of the
order o�2d for frequency o near the origin, while the
filtered series Ddyt has finite spectral density at the origin.

Ample empirical evidence shows that financial market
volatilities are well described by covariance stationary
I(d) processes with fractional integration parameter close
to but less than one-half.2 For instance, Andersen,
Bollerslev, Diebold, and Ebens (2001) report average



Fig. 1. Periodograms for realized and risk-neutral variances. The figure plots the sample periodograms of the realized variance rvt (Panel A) and the risk-

neutral variance vix2
t (Panel B). The periodograms are plotted on a double logarithmic scale. The estimates are based on five-minute observations from

September 22, 2003 to December 30, 2011.

T. Bollerslev et al. / Journal of Financial Economics 108 (2013) 409–424412
fractional integration parameters for a set of realized
equity return volatilities of approximately 0.35, and the
results for foreign exchange rates in Andersen, Bollerslev,
Diebold, and Labys (2003) suggest that d is close to 0.4.
Similarly, Christensen and Nielsen (2006) find that daily
realized and options implied equity index volatilities are
fractionally integrated with d around 0.4.

Most of the existing literature, including the above-
cited studies, have relied on daily or coarser sampled
realized and options implied volatility measures for
determining the order of fractional integration.3 By con-
trast, both of our volatility series are recorded at a five-
minute sampling frequency. Hence, as a precursor to our
more detailed joint empirical analysis, we begin by
double-checking that the folding of the spectral densities
associated with the lower sampling frequency have not
distorted the previously reported estimates for d.

To this end, Fig. 1 shows the raw log-periodograms of the
five-minute vix2

t and rvt series at the harmonic frequencies
3 Some studies have also sought to estimate d based on high-

frequency squared, or absolute, returns interpreted as noisy proxies

for the true volatility. See, e.g., Andersen and Bollerslev (1997a) and

Ohanissian, Russell, and Tsay (2009) and the many references therein.
oj ¼ ð2p=TÞj, j¼1, 2, y, T/2. The periodograms of the two
variance variables are similar, with most of the power
concentrated at the low frequencies. At the same time, there
appears to be three distinct regions within the frequency
domain: a relatively short left-most low-frequency region up
until o � 0:0010, where the log-periodograms are linear and
nearly flat; an intermediate region between o and
o � 0:0806, with more steeply sloped periodograms; and a
third right-most region to the right of o corresponding to
the within-day variation in the volatilities, where the period-
ograms are erratic.

The approximate linearity of the log-periodograms for
the low frequencies close to zero directly points to long-
memory dependencies, or fractional integration. We esti-
mate the fractional integration parameter d using both
the log-periodogram regression of Geweke and Porter-
Hudak (1983) and the local-Whittle likelihood procedure
of Künsch (1987). For both estimators, we set the required
truncation parameter to jmax ¼ 26, corresponding to o and
periodicities of 3.5 months and longer being used in the
estimation. Based on visual inspection of Fig. 1 this
seemingly covers the frequency range where the long-
memory behavior hold true; see also the related discus-
sion in Sowell (1992). The resulting estimates for d, with



5 Compared with frequency-domain filters (see, e.g., Hassler,

Lundvik, Persson, and Söderlind, 1994), the time-domain filters applied

here have the advantage that the filtered series are time invariant and do

not depend on the length of the sample. Similar filters to the ones used

here have previously been applied by Andersen and Bollerslev (1997a)

for decomposing high-frequency foreign exchange rates into interday

and intradaily components. For additional discussion of band-pass

filtering see Baxter and King (1999), where the same techniques have
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asymptotic standard errors in parentheses, for the vix2
t

series are 0.398 (0.126) using the log-periodogram and
0.416 (0.098) using the local Whittle approach. For the rvt

series, the same two estimates are 0.399 (0.126) and 0.403
(0.098), respectively. As such, our findings for the two five-
minute volatility series are entirely consistent with the
typical estimates for d reported in the existing literature.

3.2. Fractional cointegration in variances

The preceding results strongly suggest that each of the
two high-frequency variance series are individually long-
memory processes. At the same time, one might naturally
expect that the two variance series are tied together in the
long run in the form of fractionally cointegrated-type
relation. Following Granger (1986), if a linear combination
of two fractionally integrated variables is integrated of a
lower order than those of the individual series, then the
variables are said to be fractionally cointegrated; see also
Robinson and Marinucci (2003).

The simplest case of fractional cointegration occurs
when the two individual series share the same order of
fractional integration, but their difference is integrated
of a lower order. In the present context, this difference
naturally corresponds to the ex post payoff from selling a
variance swap, VIX2

t�RVt , or in logarithmic form

vdt ¼ vix2
t�rvt : ð8Þ

The fact that vdt exhibits less persistence than the two
individual variance series has previously been documen-
ted with daily and lower frequency data by Christensen
and Nielsen (2006), Bandi and Perron (2006), and Chernov
(2007), among others.4

To establish a similar long-run relation between our
two high-frequency variance series, we begin by testing
for equality of the fractional difference parameters using
the Wald test of Robinson (1995). The asymptotically
distributed w2

1 test statistic equals 0.018 when the ds are
estimated by the local Whittle procedure and 0.000
for the d’s estimated by the log-periodogram estimator.
Either way, little evidence seems to exist against the
hypothesis that the two variance series are fractionally
integrated of the same order.

To further explore the possibility of fractional cointe-
gration, we next consider the following linear regression:

rvt ¼ b0þb1vix2
t þnt : ð9Þ

This regression is analogous to the Mincer-Zarnowitz
style regression commonly used for evaluating the quality
of macroeconomic time series forecasts. That is, it evalu-
ates whether vix2

t is conditionally unbiased for the ex post
realized variance rvt. The residuals from this regression
reduce to the variance difference defined in Eq. (8) for
b0 ¼ 0 and b1 ¼ 1. However, instead of restricting the
relation between rvt and vixt to be the same across all
frequencies, we estimate the regression using low-pass
frequency domain least squares (FDLS) (see, e.g.,
4 The overlapping nature of rvt invariably generates substantial

serial correlation in the high-frequency vdt series.
Robinson, 1994). As before, we truncate the regression
at jmax ¼ 26, corresponding to periodicities of 3.5 months
and longer. We rely on the local Whittle approach for
estimating d for the error term nt , together with the
techniques developed by Christensen and Nielsen (2006)
and Shimotsu and Phillips (2006) for estimating the
asymptotic standard errors.

The resulting FDLS estimate for the degree of fractional

integration of the residuals equals d̂
ðnÞ
¼ 0:093ð0:110Þ,

clearly supporting the idea that the high-frequency vix2
t

and rvt series are fractionally cointegrated. Moreover, the

FDLS estimate of b1 equals 1.090(0.116), slightly larger
than unity but insignificantly so.

3.3. Dynamic dependencies across frequencies

In addition to assessing the integration order of rvt and
vix2

t , and the long-run relation between the two variance
measures, the joint distribution of the variance measures
could be illuminated by decomposing each of the vari-
ables into their long-run, intermediate, and short-run
components. In order to do so, we rely on time-domain
band-pass filters for extracting the specific periodicities
from the observed series.5

Fig. 1 reveals a change in the slopes of the period-
ograms for the realized and risk-neutral variances for
frequencies around o � 0:0010, or periods around 3.5
months. Motivated by this observation, we, therefore,
extract a low-frequency, or long-run, component corre-
sponding to dependencies in excess of 3.5 months. That is,
for frequency o we define a lowpass-filtered series by

yðlowÞ
t ¼

Xk

i ¼ �k

aiL
iyt , ð10Þ

where

ai ¼

sinðioÞ
ip �

o
p þ2

Xk

j ¼ 1

sinðjoÞ
jp �1

0
@

1
A=ð2kþ1Þ, i¼ 71, . . . ,7k,

1�
X�1

h ¼ �k

ah�
Xk

h ¼ 1

ah, i¼ 0:

8>>>>>><
>>>>>>:

ð11Þ

Intuitively, the yðlowÞ
t series essentially equates the part of

the spectrum in Fig. 1 to the right of o to zero.
Looking at the two sample periodograms in Fig. 1, a

distinct change is evident in the general patterns for
frequencies in excess of the daily frequency
o � 0:0806.6 To isolate the interdaily component with
been used for extracting business cycle components of macroeconomic

times series.
6 It is well known that the volatilities of high-frequency returns, or

point-in-time volatilities, exhibit strong U-shaped patterns across the
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periodicities of less than 3.5 months from the intraday
dynamics, we, therefore, compute an intermediate-
frequency series. Specifically, for frequencies in the band
ooooo, we define the band-pass filtered series by

yðbandÞ
t ¼

Xk

i ¼ �k

ðbi�aiÞL
iyt , ð12Þ

where

bi ¼

sinðioÞ
ip �

o
p þ2

Xk

j ¼ 1

sinðjoÞ
jp �1

0
@

1
A=ð2kþ1Þ, i¼ 71, . . . ,7k,

1�
X�1

h ¼ �k

bh�
Xk

h ¼ 1

bh, i¼ 0:

8>>>>>><
>>>>>>:

ð13Þ

Finally, the high-pass filtered series corresponding to
periodicities of a day and shorter is simply computed by

yðhighÞ
t ¼ yt�

Xk

i ¼ �k

biL
iyt : ð14Þ

By definition, yt � yðlowÞ
t þyðpassÞ

t þyðhighÞ
t .

The higher the value of the truncation parameter k, the
closer the gains of the approximate filters in Eqs. (10),
(12), and (14) are to the ideal gains of zero for the
frequencies that are filtered out and unity for the desired
frequency bands. In the implementation reported on
below, we set k¼ 78� 22 for all of the three filters,
resulting in a loss of one month of observations at the
beginning and the end of the sample.

We first focus on the dynamics of the long-run
components. Assuming that the effects of market frictions
and short-run fluctuations disappear in the long run, the
dynamics of the low-pass filtered series should, therefore,
more clearly reveal the underlying equilibrium relations
between the variables. Fig. 2 plots the two filtered
variance measures rvðlowÞ

t and vix2ðlowÞ
t defined by applying

the filter in Eq. (10). Consistent with the results in Section
3.2, the figure reveals strong co-movements between the
two low-frequency variance components. Indeed, the
sample correlation between the two low-pass filtered
series equals CorrðrvðlowÞ

t ,vix2ðlowÞ
t Þ ¼ 0:916.

We further detail the relation between vix2
t and rvt

across all frequencies through measures of their inter-
relatedness, or coherence. Our estimates of the coherence
measures are based on the classic Tukey-Hanning
method; see, e.g., the discussion in Granger and
Hatanaka (1964). The coherence is analogous to the
square of the correlation between two series, taking
values from zero (no relation) to one (perfect correlation).
In contrast to the standard correlation coefficient, how-
ever, the coherence is a function of frequency. The
coherence being close to zero for a certain frequency
range thus indicates the absence of any relation between
the two series across those periodicities. As follows from
(footnote continued)

trading day. See, e.g., Harris (1986) and Andersen and Bollerslev (1997b).

By contrast, the two volatility series analyzed here both measure the

variation over a month, and as such even though they behave differently

intraday they do not show the same strong, almost deterministic,

intraday patterns.
the first panel in Fig. 3 labeled ‘‘Total,’’ the coherence
between vix2

t and rvt is close to one for the lowest
frequencies but decreases to close to zero for the higher
frequencies. The almost perfect dynamic relation between
the vix2

t and rvt series, therefore, holds only in the
long run.

To get a more nuanced picture of these dependencies,
the remaining panels in Fig. 3 show the coherence for the
high-pass, band-pass, and low-pass filtered variance ser-
ies. The coherence for the long-run components is large
and generally in excess of 0.6, across all frequencies. The
coherence for the band-pass filter variances is substan-
tially lower and around 0.05, and the coherence for the
high-frequency components is practically zero.

To interpret these patterns, it is instructive to think
about vix2

t as the sum of the ex post realized volatility rvt,
a premium for bearing volatility risk, vrpt, along with the
corresponding forecast error, say xt:

vix2
t ¼ rvtþvrptþxt : ð15Þ

For low frequencies the coherence between vix2
t and rvt is

close to one, implying that the influences of xt and vrpt are
both fairly minor. This is also consistent with the findings
that rvt is integrated of a higher order than vdt ¼ xtþvrpt

and that most of the low-frequency dynamics in vix2
t are

due to changes in the volatility. This close coherence is
broken at the intermediate and ultra-high intraday fre-
quencies, in which most of the changes in vix2

t stem from
changes in the risk premium or expectational errors vis-�a-
vis the future realized volatility. These same arguments
also facilitate the interpretation of the empirical risk-
return relations, which we discuss next.

4. Risk-return relations

A large empirical literature has been devoted to the
estimation of risk-return trade-off relations in aggregate
equity market returns (see, e.g., the discussion in Rossi
and Timmermann, 2012, and the many references
therein). Much of this research is motivated by simple
dynamic capital asset pricing model (CAPM)-type reason-
ing along the lines of

Etðrtþ1Þ ¼ gs2
t , ð16Þ

where s2
t represents the local return variance and g is

interpreted as a risk-aversion parameter.7 The actual
estimation of this equation necessitates a proxy for s2

t .
By far the most commonly employed empirical approach
relies on the (G)ARCH-M model (Engle, Lilien, and Robins,
1987) for jointly estimating the conditional mean of the
returns together with the conditional variance of the
returns in place of s2

t ¼ Vartðrtþ1Þ. Instead, by relying
on the variance measures analyzed above as directly obser-
vable proxies for risk, Eq. (16) can be estimated directly. The
following subsection explores this idea in our high-frequency
7 The Merton (1980) model sometimes used as additional justifica-

tion for this relation formally involves the excess return on the market.

The requisite Jensen’s correction term for the logarithmic returns

analyzed here simple adds 1=2 to the value of g. Also, the risk-free rate

is essentially zero at the five-minute level.



Fig. 2. Co-movement between low-frequency realized and risk-neutral variances. The figure plots the low-pass filtered realized variance rvt (solid line)

and risk-neutral variance vix2
t (dashed line) over the October 22, 2003 to November 28, 2011 sample period.

Fig. 3. Relation between realized and risk-neutral variances across frequencies. The figure plots the coherence between the realized variance rvt and the

risk-neutral variance vix2
t , as well as their high-pass (less than one day), band-pass (one day to 3.5 months), and low-pass (longer than 3.5 months)

filtered counterparts. All of the estimates are based on five-minute observations from October 22, 2003 to November 28, 2011.
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data setting, keeping in mind the preceding characterization
of the underlying volatility dynamics.8
8 The use of high-frequency-based realized volatility measures in

the estimation of a daily risk-return trade-off relation has previously

been explored by Bali and Peng (2006).
4.1. Return-variance regressions

The basic risk-return relation in Eq. (16) can be
conveniently expressed in regression form as

rtþ1 ¼ aþbvtþutþ1, ð17Þ

where vt denotes the specific variance proxy used in place
of s2

t . The first two rows of Table 2 labeled ‘‘Raw’’ show



Table 2
Univariate return regressions.

The table reports five-minute return regressions, rt ¼ aþbvt�1þut ,

based on data from September 30, 2003 to December 30, 2011. The first

two columns report the ordinary least squares estimates for b and the

corresponding Newey-West standard errors (SE). The last column

reports the regression R2’s. The fractional difference parameter is fixed

at d¼0.40.

Risk proxy ðvtÞ b SE R2

Level

rvt �0.00144 0.00066 0.0094%

vix2
t

0.00028 0.00082 0.0002%

Long-memory adjusted

Ddrvt
�0.0599 0.0123 0.0210%

Ddvix2
t

0.0480 0.0170 0.0151%

Variance difference

vdt ¼ vix2
t�rvt

0.00554 0.00077 0.0410%

Table 3
Risk-return relations across frequencies.

The table reports the correlations between the short-, medium-, and

long-run components of the returns rt, the realized variance rvt, the risk-

neutral variance vix2
t , and the variance difference vdt. All of the correla-

tions are based on five-minute observations from October 22, 2003 to

November 28, 2011, along with the band-pass filtering procedures

discussed in the text for decomposing the series into the different

components. The standard errors (reported in parentheses) are based

on heteroskedasticity and autocorrelation consistent (HAC) covariance

matrix estimator, using a Bartlett kernel with bandwidth equal to

78�5¼390.

rhigh
tþ1

rband
tþ1 rlow

tþ1

rvt

high
�0.012

(0.003)

rvt

band
�0.074

(0.014)

rvt

low
�0.433

(0.064)

vixt

high
0.173

(0.004)

vixt

band
�0.041

(0.020)

vixt

low
�0.193

(0.067)

vdt

high
0.165
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the results of this regression fitted with our high-
frequency data using either rvt or vix2

t in place of vt. The
results are very weak. This is perhaps not surprising, in
view of the difficulty to detect a significant relation in
daily and coarser frequency data reported in the extant
literature.

But these raw regressions are also unbalanced and
likely not very informative. They involve an essentially
white noise Ið0Þ variable on the left-hand side (the return)
and a strongly persistent I(d) variable on the right-hand
side (the realized or risk-neutral variance). This same
statistical problem has also previously been discussed in
the context of regression-based tests for unbiasedness in
the forward foreign exchange market by Baillie and
Bollerslev (2000). Several means to cope with such unba-
lanced regressions have been suggested in the literature.
Maynard, Smallwood, and Wohar (2013), in particular,
focus explicitly on the case in which the predictor variable
is fractionally integrated and propose an approach to
rebalance the regression. A similar approach has also been
applied by Christensen and Nielsen (2007), who consider a
VAR framework in which the level of returns is predicted by
the fractionally filtered variance series.

A simplified version of the return equation in
Christensen and Nielsen (2007) is given by

rtþ1 ¼ aþbDdvtþutþ1, ð18Þ

where Dd
� ð1�LÞd denotes the fractional difference fil-

ter.9 In implementing the fractional filters, we truncate
the series expansion for ð1�LÞdvt at the beginning of the
sample, discarding the first week of filtered observations.
Based on the results reported in Section 3 we fix d� 0:4.
The resulting long-memory-adjusted regressions using
D0:4rvt or D0:4vix2

t as risk proxies are reported in the next
two rows of Table 2. All of the regressions reported in the
table are based on the identical sample period from
September 30, 2003 to December 30, 2011.
9 More precisely, Christensen and Nielsen (2007) consider a mod-

ified version of Eq. (18), where both rtþ1 and vt are detrended by their

unconditional means and a� 0. In addition, their VAR structure allows

past returns to affect current returns.
Compared with the ‘‘raw’’ regressions, both of the R2’s
are somewhat higher. The estimated coefficient for the
realized variance is now strongly statistically significant
but signals a negative risk-return trade-off. By contrast,
the fractionally differenced risk-neutral variance results
in a statistically significant positive b̂ estimate, albeit a
lower R2. These mixed results are perhaps again not
surprising in view of the existing literature.

As highlighted in Section 3.2, another way to render the
two variance series stationary, and, in turn, balance the
regression, is to consider their difference. The last row in
Table 2 labeled ‘‘Variance difference’’ reports the results
from the regression considering vdt as a proxy for risk,

rtþ1 ¼ aþbvdtþutþ1: ð19Þ

The estimate of b is now positive and statistically signifi-
cant. The regression R2 is also larger than for any of the
other regressions reported in the table. Thus, the difference
between the two variance variables appears far more
informative for the returns than each of the two variance
variables in isolation, whether in their raw or fractionally
filtered form. To help further gauge these simple regression-
based results, it is informative to decompose the variables
into their periodic components.

4.2. Risk-return relations across frequencies

Following the analysis in Section 3.3, the return rt and
the variance variables rvt, vix2

t , and vdt are naturally
decomposed via band-pass filtering into their short-, inter-
mediate-, and long-run components. Table 3 summarizes
the correlations between the resulting components for the
(0.004)

vdt

band
0.025

(0.016)

vdt

low
0.664

(0.035)



Fig. 4. Co-movement between low-frequency variance difference and returns. The figure plots the low-pass filtered variance difference vdt (dashed line)

and the returns rt (solid line) for the October 22, 2003 to November 28, 2011 sample period.

10 The sign of the relation between returns and variances have also

previously been called into question on theoretical grounds by Backus

and Gregory (1993), among others.

T. Bollerslev et al. / Journal of Financial Economics 108 (2013) 409–424 417
different variance variables with the same components of
the return. Evidently, not much of a relation exists at the
high and intermediate frequencies. Again, this is not sur-
prising as one might expect the association between risk
and return to be more of a long-run than a short-run
phenomenon. These results are also consistent with the
monthly return regressions in Bollerslev, Tauchen, and
Zhou (2009), which suggest that the return predictability
of the variance risk premium is maximized at a four-month
horizon. Four months lie within the frequency-band classi-
fied as low-frequency here.

Corroborating this conjecture, the low-frequency cor-
relations reported in the right-most column in the table
are much higher in magnitude for rvt and vdt and margin-
ally higher for vix2

t . Somewhat paradoxically, however,
the correlations are negative for both of the individual
variance variables, but positive and larger in magnitude
for the variance difference. To visualize this relation, Fig. 4
shows the low-pass filtered vdðlowÞ

t and rðlowÞ
t series. The co-

movement between the two series is apparent.
In a sum, neither of the two variance series, rvt and vix2

t ,
exhibit dynamic co-movements with the returns over any
of the three frequency bands that would support the notion
of a positive risk-return trade-off relation. If instead their
difference is employed as a proxy for risk, the results are
more in line with intuitive expectations regarding a positive
low-frequency risk-return trade-off relation.

The continuous time model developed by Bollerslev,
Sizova, and Tauchen (2012) is useful for interpreting these
results. In the first place, the volatility s2

t in the basic
dynamic CAPM and Eq. (16) does not have the actual
role of a volatility risk premium per se but can rather be
viewed as a time-varying price on endowment (consump-
tion) risk. The only variable in that simplistic framework
that carries a risk premium is consumption, so, despite
the intuitive appeal of model (16), there really is no
reason to expect raw variance variables to relate to
returns in any manner, except, perhaps, through some
indirect mechanism that could be of either sign.10 How-
ever, in a generalized long-run risk model with uncer-
tainty about the variability of economic prospects (vol-of-
vol), the difference in the variance variables, or the
variance risk premium corresponding to vrpt in Eq. (15),
is the key factor connecting returns and variability. The
difference is most highly associated with the vol-of-vol
and overall economic uncertainty, and that factor com-
mands a substantial risk premium by investors with
recursive utility and a strong preference for early resolu-
tion of uncertainty. Consequently, the regression in
Eq. (18) is entirely consistent with more sophisticated
versions of the dynamic CAPM.

To fully explore these relations between the return and
the two variance measures, and the implications thereof
for return predictability, we next turn to the estimation of
a joint model for rt, rvt, and vix2

t , explicitly designed to
accommodate the intricate dynamic and cross-variable
dependencies highlighted so far.
5. Co-fractional system

The co-fractional VAR model of Johansen (2008a,b)
affords a convenient statistical framework to distinguish
long-run and short-run effects in a system setting invol-
ving fractionally integrated I(d) variables. Specifically, let
zt � ðrvt ,vix2

t ,rtÞ
0 denote the five-minute 3�1 vector pro-

cess. Guided by the empirical findings in the previous
sections, the simplified versions of the co-fractional VAR
model for zt estimated here, say CFVARdðpÞ, takes the form

Ddzt ¼ gðd0ð1�Dd
Þztþr0Þþ

Xp

i ¼ 1

Gið1�D
d
Þ
iDdztþEt , ð20Þ
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where Et denotes a vector white noise process with
unconditional covariance matrix O.11

This dynamic CFVAR representation directly parallels
the classical error-correction-type representation with
cointegrated Ið1Þ variables. The process zt contains the
fractionally integrated I(d) variables, analogous to the
Ið1Þ-level variables in standard cointegration. The frac-
tional difference operator Dd

¼ ð1�LÞd thus reduces the
left-hand side of Eq. (20) from an I(d) to an Ið0Þ process,
just like the first-difference operator for standard coin-
tegrated systems reduces the Ið1Þ variables to Ið0Þ.12 The
right-hand side of the equation, therefore, must also be
Ið0Þ. The first term ð1�Dd

Þzt is what remains after apply-
ing the fractional difference operator and, thereby, must
be I(d). The matrix gd0, therefore, has to be of reduced rank
for this to be an Ið0Þ process. In this situation, d0ð1�Dd

Þzt

has the interpretation of a (fractional) error-correction
matrix, with g the conformable matrix of impact coeffi-
cients. The second term on the right-hand side, involving
the matrix fractional distributed lag and powers of ð1�Dd

Þ

applied to Ddzt , directly mirrors the matrix distributed lag
in standard error-correction models, in which powers of L

are applied to first-differences of the underlying variables.
The corresponding Gi matrices are essentially nuisance
parameters, with p taken sufficiently large to render the
disturbance term Et serially uncorrelated.

The empirical evidence presented in Section 3 suggests
that rvt and vix2

t are both I(d) but that they fractionally
cointegrate to an Ið0Þ process, while rt is Ið0Þ. Conse-
quently, the column rank of gd0 should be equal to two,
with the natural normalization

d0 ¼
� ~d 1 0

0 0 1

 !
ð21Þ

and the corresponding matrix of impact coefficients

g¼
g11 g12

g21 g22

g31 g32

0
B@

1
CA ð22Þ

left unrestricted. The parameter ~d naturally governs the
long-run tie between rvt and vix2

t , which in turn defines
the variance error correction term as a linear combination
of multiple lags of ð1�Dd

Þðvix2
t�

~drvtÞ.
13

The parameters g11 and g21 capture any internal long-
run relations between the variance error-correction term
and the variance variables themselves, while g31 captures
the relation between the variance error-correction term
and the returns, or the long-run dynamic ‘‘volatility
feedback’’ effect implied by the model. The corresponding
short-run counterparts are determined by the Gð31Þ

i and
Gð32Þ

i parameters. Similarly, the long-run dynamic ‘‘lever-
age effect’’ depends on the values of g12 and g22, with the
11 Formal regularity conditions for the Et white noise process are

spelled out in Johansen (2008a,b).
12 The application of the fractional difference operator Dd to the

returns might seemingly result in over-differencing. However, as shown

in Appendix A.1 for the specific representation of the CFVAR model

adopted here, the resulting return series is still Ið0Þ.
13 Note, the operator ð1�Dd

Þ involves only lags Lj , jZ1, with no

L0 term.
corresponding short-run effects determined by Gð13Þ
i and

Gð23Þ
i . The overall degree of return predictability implied

by the model is jointly determined by the g3j and Gð3jÞ
i

parameters.
In sum, by estimating the CFVARdðpÞ model we draw

on a richer information set than we did in the previous
sections. Importantly, by separately parameterizing the
long-run and the short-run dynamics of returns and the
variance series, the model is able to accommodate empiri-
cally realistic I(d) long-memory in the realized and the
risk-neutral variances and their fractional cointegration,
while maintaining that the returns are Ið0Þ.
5.1. Estimation results

To facilitate the estimation of the CFVARdðpÞ model we
begin by fixing the value of the fractional integration
parameter d. The estimation then proceeds in two stages.
In the first step, we use the preset fractional differencing
parameter d to construct the vector time series Ddzt

of filtered realized variances, risk-neutral variances, and
returns.14 In the second stage, we obtain parameter
estimates for the co-fractional model by iterated see-
mingly unrelated regression (SUR). We separately select
the number of lags for each of the three equations,
allowing for different number of lags of rvt, vix2

t , and rt

in each of the equations as determined by Schwarz’s
Bayesian Information Criterion (BIC). Finally, we select
the value of d that maximizes the Gaussian likelihood
function subject to the BIC chosen lag specifications.

Turning to the actual CFVAR estimation results
reported in Table 4, we find that the likelihood function
is maximized at d¼0.4. This value of d is directly in line
with the semiparametric estimates discussed in Section
3.1. According to the BIC, the short-run dynamics of the
realized variance depends on five lags of the differenced
rvt series and three lags of the differenced vix2

t series, and
the short-run dynamics of the implied variance depends
on two lags of the differenced rvt series, three lags of the
differenced vix2

t series, and one lag of the differenced rt

series. Meanwhile, the return equation does not require
the inclusion of any short-run lags. We refer to this
particular specification as the CFVAR0:4ð5Þ model below.
The corresponding standard errors for the parameter
estimates reported in the right column of the table are
based on three thousand replications of a moving block
bootstrap. Specifically, using the semiparametric esti-
mates for d we first fractionally filter the two variance
series. We then jointly resample blocks of the trivariate
Ið0Þ vector ðDdrvt ,Ddvix2

t ,rtÞ
0, with the length of the blocks

set to 3.5 months. We then apply the inverse fractional
filter to the resampled variance series and finally reesti-
mate the CFVAR model using the same SUR approach
discussed in the text. With the exception of the
14 We again truncate the fractional filter at the beginning of the

sample, discarding the first weeks worth of observation, so that the

estimation is based on the identical September 30, 2003 to December 30,

2011 sample period underlying the previously reported results in

Tables 2 and 3.



Table 4
Co-fractional vector autoregression (CFVAR) model estimates.

The table reports seemingly unrelated regression (SUR) estimates of the CFVAR0:40ð5Þ model,

Ddzt ¼ gðd0ð1�Dd
ÞztþrÞþ

X5

i ¼ 1

GiD
d
ð1�Dd

Þ
iztþEt ,

based on five-minute observations from September 30, 2003 to December 30, 2011. The fractional difference parameter is fixed at d¼0.40. The reported

standard errors (SE) for the parameter estimates are calculated from the bootstrap procedure discussed in the text.

Parameters Estimates SE

r0 (�0.000 �0.0000) (0.111 0.0001)

g0 0:000473 �0:00212 0:00542

�0:00201 �0:0325 �1:089

� �
0:000078 0:00030 0:00124

0:00131 0:0065 0:010

� �
d0 �1:070 1 0

0 0 1

� �
0:202 � �

� � �

� �
G1 1:639 �0:048 0

0:071 1:445 0:0076

0 0 0

0
B@

1
CA

0:066 0:034 �

0:030 0:022 0:0027

� � �

0
B@

1
CA

G2 �0:542 0:090 0

�0:101 �0:233 0

0 0 0

0
B@

1
CA

0:112 0:073 �

0:033 0:043 �

� � �

0
B@

1
CA

G3 �0:062 �0:053 0

0 �0:207 0

0 0 0

0
B@

1
CA

0:049 0:040 �

� 0:030 �

� � �

0
B@

1
CA

G4 0:140 0 0

0 0 0

0 0 0

0
B@

1
CA

0:104 � �

� � �

� � �

0
B@

1
CA

G5 �0:159 0 0

0 0 0

0 0 0

0
B@

1
CA

0:046 � �

� � �

� � �

0
B@

1
CA
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semiparametric first-step estimation of d, this bootstrap
approach closely mimics that of Davidson (2002).

To gauge the model fit, Fig. 5 compares the spectra of
the estimated CFVAR0:4ð5Þ model with the sample period-
ograms for rvt, vix2

t , and rt, as well as the variance difference
vdt ¼ vix2

t�rvt . The match between the model-implied and
empirical spectra are exemplary. Particularly noteworthy,
the CFVAR model correctly matches the slopes of the
spectra near the origin that define the long-run behavior
of the two variance series and the less persistent variance
difference.

The cointegrating vector associated with the realized
and risk-neutral variances is estimated to ð�1:070,1,0Þ.
This fully parametric CFVAR-based estimate for ~d is even
closer to unity (numerically) than the FDLS estimate
discussed in Section 3.2. A simple t-test does not reject
the hypothesis that ~d ¼ 1 either, while the absence of
fractional cointegration, or ~d ¼ 0, is strongly rejected by
the data. As such, our results are fully supportive of the
notion of long-run unbiasedness in variances.15

To more clearly illuminate the dynamic dependencies
implied by the CFVAR0:4ð5Þ model, it is instructive
to consider Impulse-Response Functions (IRF) associated
with the shocks to the ‘‘permanent’’ and two transitory
components defined within the model. By definition, the
effect of the permanent shock decays hyperbolically
and, therefore, persists over relatively long time periods.
15 Comparable results based on coarser sampled monthly realized

and options implied variances and semiparametric estimates for ~d � 1

have previously been reported by Bandi and Perron (2006), among

others.
The two transitory shocks both decay at a fast exponential
rate. The identification of these shocks does not depend a
priori on any known relations between the volatility and
return series.16 However, given the estimates of g and d in
Table 4, the three shocks have clear meanings. The first
transitory shock, in particular, drives the wedge between
vix2

t and rvt, i.e., the variance difference, and contains the
changes to the variance risk premium. The second tran-
sitory shock affects only the returns. The permanent
shock is effectively a shock to rvt that is unrelated to
changes in the variance difference. This shock naturally
also affects vix2

t through expectations of future variances.
Panel A in Fig. 6 shows the effect of the permanent

shock on vix2
t and rvt. The initial effect is largest for the

vix2
t , but this reverses after a couple of days when the

impact on rvt is the largest. Some discrepancy remains in
the effect of the shock up until the 3.5-month horizon, but
the overlapping nature of the rvt series complicates the
interpretation of this difference. After 3.5 months, the IRFs
seem to merge and decay at a common hyperbolical rate.
Even at the one-year horizon, however, the permanent
shock still exercises a non-negligible effect on the rvt and
vix2

t series.
Panel B in Fig. 6 shows the IRFs for the first orthogo-

nalized transitory shock associated with the variance
difference. This shock fully dissipates after approximately
3.5 months. It essentially reflects a shock to the variance
16 Following Gonzalo and Granger (1995), the permanent and

transitory shocks could be constructed mechanically from the Et ’s by

multiplication with the matrix G¼ ½g?d�0 . The shocks are further ortho-

gonalized using the method in Gonzalo and Ng (2001).



Fig. 5. Co-fractional vector autoregression (CFVAR) model implied spectra. The figure plots the CFVAR model implied spectra (solid lines) for the realized

variance rvt, the risk-neutral variance vix2
t , the variance difference vdt, and the returns rt, along with their corresponding sample periodograms (grey

lines). All of the estimates are based on five-minute observations from September 30, 2003 to December 30, 2011.

Fig. 6. Impulse response functions for realized and risk-neutral variances. The figure plots the co-fractional vector autoregression (CFVAR) model implied

impulse response functions (IRF) for the realized variance rvt (solid line) and the risk-neutral variance vix2
t (dashed line) with respect to the permanent

variance shock (Panel A), the transitory shock to the variance difference (Panel B), and the transitory shock to the returns (Panel C). All of the estimates

are based on five-minute observations from September 30, 2003 to December 30, 2011.
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Fig. 7. Impulse response functions for returns. The figure plots the co-fractional vector autoregression (CFVAR) model implied impulse response

functions (IRF) for the return rt with respect to the permanent variance shock (dashed line) and the transitory shock to the variance difference (solid line).

All of the estimates are based on five-minute observations from September 30, 2003 to December 30, 2011.

17 The BIC implies that the short-run dynamics of the backward-

looking realized variance depends on eight lags of the differenced ~rvt

series and one lag of the differenced vix2
t series, while the short-run

dynamics of the implied variance depends on three lags of the differ-

enced vix2
t series and one lag of the differenced returns. The short-run

dynamics of the returns depends on two lags of the differenced rvt

series. Additional details concerning these estimation results are avail-

able upon request.
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risk premium and a shock to the realized variance forecast
error, or vrpt and xt , respectively, in the notation of
Eq. (15). The first effect naturally increases vix2

t , and the
second effect decreases rvt. The first effect is by far the
largest over within-day horizons.

Panel C in the figure shows the effects of the second
transitory return shock, from which the simultaneous
correlations with the variance and variance difference
shocks have been removed. This shock has no initial effect
on either variance series. However, there is a negative
impact on the vix2 lasting for up to a week akin to a multi-
period dynamic leverage effect, as previously discussed by
Bollerslev, Litvinova, and Tauchen (2006).

In Fig. 7, we show the IRFs for the returns and the two
variance shocks. The initial effect both shocks is to
decrease the returns. This is entirely consistent with the
widely documented leverage effect and negative contem-
poraneous correlations between returns and volatilities.
Both of the shocks, in turn, result in an increase in future
returns, as would be expected by a volatility feedback-
type effect.

Taken as a whole, the IRFs suggest the potential for
nontrivial return predictability through the joint CFVAR
modeling of the returns and the two variance measures.

5.2. Return predictability

Until now we have relied on the forward monthly rvt,
or the realized variance over the subsequent month
relative to time t. This ensures that rvt is properly aligned
with the future expected variance underlying the defini-
tion of vix2

t . This also ties in more directly with the
theoretical model in Bollerslev, Sizova, and Tauchen
(2012) and the forward (expected) variance risk premium
defined therein.

However, the ‘‘structural’’ CFVAR0:4ð5Þ model for zt ¼

ðrvt ,vix2
t ,rtÞ

0 estimated above does not easily lend itself to
out-of-sample forecasting, as rvt is not known at time t. To
circumvent this problem, we replace rvt with ~rvt �

rvt�78�22 in the estimation of a CFVAR model for the
~zt � ð ~rvt ,vix2

t ,rtÞ
0 vector process. The CFVAR0:4ð5Þ model

for zt formally implies a CFVAR0:4ðpÞ model for ~zt . We,
therefore, fix d¼0.4 and rely on the same BIC used above
for determining the number of lags in each of the three
equations in this new CFVAR0:4ð8Þ model for ~zt .

17

To convert the dynamic relations implied by the
CFVAR model for ~zt into forecasts for the returns and
corresponding predictive R2’s, it is convenient to repre-
sent the model in moving average form. In particular, let
e30 � ð0,0,1Þ so that rt ¼ e30 ~zt . The implied infinite moving
average representation for the returns can then be
expressed as

rt ¼ e30
X1
j ¼ 0

FjEt�j, ð23Þ

where the impulse responses matrices Fj follow the
recursion

F0 ¼ I,

Fj ¼
Xj�1

i ¼ 0

Xj�iFi, ð24Þ

for

Xi ¼�Iyð0Þi ðdÞ�ðgd
0
Þyð0Þi ðdÞþ

Xi

j ¼ 1

ð�1ÞjGjy
ðjÞ
i ðdÞ, ð25Þ

and the previously defined parameters of the fractional
filter are given by yð0Þi ðdÞ ¼ ð�1ÞiðdiÞ and yðjÞi ðdÞ ¼

Pi�1
l ¼ j�1

yð0Þi�lðdÞy
ðj�1Þ
l ðdÞ, jZ1, respectively. These expressions read-

ily allow for the calculation of h-step ahead return
forecasts by simply equating all of the values of Etþh�j

for h�j40 to zero in the corresponding expression for
rtþh in Eq. (23).

In practice, we are typically interested in the cumula-
tive forecasts of the high-frequency returns over longer
time intervals, as opposed to the multi-period forecasts of
the high-frequency returns themselves. For illustration,
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consider the case of one-day returns. With 78 intraday
returns per trading day, the continuously compounded
daily return can be written as

rðdayÞ
t ¼

X78�1

j ¼ 0

rtþ j ¼ e30
X78�1

j ¼ 0

X1
i ¼ 0

FiEtþ j�i: ð26Þ

Going one step further, this expression for the daily return
is naturally decomposed into an expected and an unex-
pected part,

rðdayÞ
t ¼ e30

X78�1

j ¼ 0

X1
i ¼ jþ1

FiEtþ j�iþe30
X78�1

j ¼ 0

Xj

i ¼ 0

FiEtþ j�i, ð27Þ

with the first term on the right-hand side corresponding
to the former and the second term the latter. Conse-
quently, the R2 for the daily return implied by the CFVAR
model can be conveniently expressed as

R2
day ¼

P1
k ¼ 1 e30ð

P78�1
j ¼ 0 Fkþ jÞOð

P78�1
j ¼ 0 Fkþ jÞ

0e3P1
k ¼ �ð78�1Þ e30ð

P78�1
j ¼ maxð0,�kÞFkþ jÞOð

P78�1
j ¼ maxð0,�kÞFkþ jÞ

0e3
:

ð28Þ

Similar expressions for the R2’s associated with forecast-
ing five-minute, hourly, weekly, and monthly returns are
readily available by replacing 78 in the equation above
with 1, 12, 390, and 1,716. For returns that are initially
standardized by the diurnal pattern weights f1=w1, . . . ,
1=w78g for frt , . . . ,rtþ78�1g respectively, the impulse
response functions Fkþ j in Eq. (28) are replaced by
wjþ1Fkþ j. The unconditional R2

day is calculated by aver-
aging over possible combinations of weights fw1, . . . ,w78g

for different times of the day.
The results obtained from evaluating the comparable

expression in Eq. (28) for the five-minute, hourly, weekly,
and monthly forecast horizons at the CFVAR0:4ð8Þ model
estimates for ~zt are reported in the first row in Table 5.18

As seen from the table, the CFVAR model for ~zt implies
substantial R2’s of 1.683% and 6.354% at the weekly and
monthly horizons, respectively. As such, these results
further corroborate the empirical evidence pertaining to
return predictability and a significant risk-return trade-off
relation discussed above.

To help gauge where this predictability is coming from,
we calculate the implied R2’s for three restricted versions
of the CFVAR0:4ð8Þ model. In the first and second models,
we restrict the returns to depend on the lags of ~rvt and
vix2

t , respectively, leaving the other dynamic dependen-
cies in the CFVAR0:4ð8Þ model intact. The third restricted
CFVAR model rules out any volatility feedback effects, so
that the returns simply follow an autoregressive model.
In each case, we reestimate the CFVAR model with the
relevant restrictions imposed on the return equation
and compute the corresponding VAR representation and
implied R2’s. Further details concerning the calculation of
the R2’s for the restricted CFVAR models are given in
Appendix A.2.
18 In carrying out the numerical calculations, we truncated the

infinite sum in Eq. (28) at 100,000. Additional robustness checks using

longer truncation lags and longer return horizons reveal the same basic

conclusions.
The resulting R2’s are reported in rows 2 through 4 in
Table 5. The models that include only the lagged ~rvt and
vix2

t in the return equation result in almost no predict-
ability at the daily horizon, but the R2’s increase to 1.390%
and 4.789%, respectively, at the monthly horizon. By
contrast, a simple autoregressive model for the returns,
which does not include any of the variances in the return
equation, performs comparatively well in predicting five-
minute and hourly returns, but it has less forecasting
power over longer horizons. By accounting for the joint
dynamic dependencies in the returns and the two sepa-
rate variance measures, the general CFVAR0:4ð8Þ model
effectively combines the forecasting performance of the
autoregressive model at the highest frequencies with that
of the risk-based models at lower frequencies and, in turn,
the predictability inherent in the variance risk premium.

To further underscore the gains afforded by jointly
modeling the three series, the last three rows in Table 5
report the results from a set of simple univariate balanced
predictive regressions, in which we regress the five-
minute, hourly, daily, weekly, and monthly future returns
on Dd ~rvt , Ddvix2

t , and vpt ¼ vix2
t� ~rvt . These regressions

directly mirror the non-predictive regressions of the
contemporaneous returns on the same three predictor
variables reported in Table 2. In parallel to the results for
CFVAR models, all of the regressions are estimated with
the standardized returns, while the reported R2’s are
based on the raw returns. As expected, all of the R2’s are
noticeably lower than those for the general CFVAR0:4ð8Þ
model reported in the first row of the table.

6. Conclusion

We provide a detailed characterization of the dynamic
dependencies and interrelatedness in aggregate stock mar-
ket returns and volatilities using newly available high-
frequency intraday data on both. The time series of actual
realized volatilities and the market’s risk-neutralized
expectation thereof are both well described by long-
memory fractional integrated processes. At the same time,
the two volatility processes appear to be fractionally coin-
tegrated and move in a one-to-one relation with one
another in the long run. Using frequency domain inference
procedures that allow us to focus on specific components of
the spectra, we also uncover strong evidence for an other-
wise elusive positive risk-return trade-off relation in the
high-frequency data. Instead of a trade-off between returns
and variances, however, the data clearly point to a trade-off
between returns and the cointegrating relation between the
two variance series. Moreover, we show that the strength of
this relation varies importantly across frequencies and, as a
result, simple risk-return regressions, as estimated in much
of the existing literature, can easily give rise to misleading
conclusions. Combining these results, we formulate and
estimate a fractionally cointegrated VAR model for the
high-frequency returns and two variance series that is able
to accommodate all of these dependencies within a coher-
ent joint modeling framework. Going one step further, we
show how this high-frequency-based multivariate model
implies nontrivial return predictability over longer monthly
horizons.



Table 5
Multi-period return predictions.

The first row reports the predictive R2’s for five-minute, hourly, daily, weekly and monthly returns implied by the predictive CFVAR0:40ð7Þ model

discussed in the text. Rows 2 through 4 give the predictive R2’s for the restrictive co-fractional vector autoregression (CFVAR) models in which the return

equation includes only lagged values of ~rvt , vix2
t , and the returns, respectively. The final three rows give the R2’s from simple univariate predictive return

regressions. All of the regressions are estimated with the standardized returns, as discussed in the text, while all of the reported R2’s are calculated for the

raw unstandardized returns. The five-minute observations underlying the estimates span the period from September 30, 2003 to December 30, 2011.

Model rð5 minÞ
t rðhourÞ

t rðdayÞ
t rðweekÞ

t rðmonthÞ
t

CFVAR0:40ð7Þ 0.160% 0.150% 0.375% 1.638% 6.354%

CFVAR with ~rvt only 0.008% 0.050% 0.030% 0.222% 1.390%

CFVAR with vix2
t only 0.003% 0.073% 0.184% 1.135% 4.789%

CFVAR with no volatility feedback 0.137% 0.083% 0.013% 0.012% 0.856%

Regression with Dd ~rvt
0.000% 0.003% 0.039% 0.316% 0.870%

Regression with Ddvix2
t

0.014% 0.012% 0.000% 0.000% 0.069%

Regression with vpt ¼ vix2
t� ~rvt

0.003% 0.026% 0.153% 0.592% 0.604%
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The cointegrating relation between the two variance
series uncovered in the paper is intimately related to the
variance risk premium. The new class of stochastic vola-
tility models proposed by Barndorff-Nielsen and Veraart
(2013) provides a direct link between the variance risk
premium and time-varying volatility-of-volatility. Our
quantitative findings are also consistent with the quali-
tative implications from the stylized equilibrium model in
Bollerslev, Sizova, and Tauchen (2012), in which the
variance risk premium is linked to notions of aggregate
economic uncertainty and time-varying equity risk pre-
mia. It would be interesting to further expand on these
models to allow for a more structural explanation of the
intricate cross-frequency empirical relations and dynamic
dependencies in returns and risk-neutral and realized
variances documented here.
Appendix A

A.1. CFVAR model solution for returns

Let e10 � ð1,0,0Þ, e20 � ð0,1,0Þ, and e30 � ð0,0,1Þ. The
preliminary univariate estimates for the two variance
series in Section 3 suggest that the first and the second
equations of the CFVARdðpÞ, e10Ddzt �Ddrvt and e20Ddzt �

Ddvix2
t , respectively, are both Ið0Þ. But the fractional filter

Dd is also applied to the third equation e30Ddzt and the
returns. This seemingly could result in over-differencing.
However, following Theorem 8 of Johansen (2008b), if the
conditions for inversion of the CFVARdðpÞ are satisfied and
do 1

2, then Eq. (20) has the solution

zt ¼D
X1
i ¼ 0

yð0Þi ð�dÞLiEtþYtþmt , ð29Þ

where yð0Þi ð�dÞ ¼ ð�1Þið�d
i Þ are the coefficients of the

inverse fractional filter, mt is a function of the restricted
constant r, Yt is a stationary Ið0Þ series, and the parameter
matrix D is defined by

D¼ d? g0? I�
Xp

i ¼ 1

Gi

" #
d?

 !�1

g0?, ð30Þ

where g? and d? are 3�1 vectors such that g0g? ¼ 0 and
d0d? ¼ 0, respectively. With g and d defined by Eqs. (22)
and (21), the last row of D, therefore, has only zero
elements. Consequently, the solution of the CFVAR model
for the third equation and the return process reduces to

rt ¼ e30Ytþe30mt , ð31Þ

which is an Ið0Þ process, plus the initial contribution
associated with r.

A.2. CFVAR restricted R2’s

For illustration, consider a daily forecast horizon. Let

zt ¼
X1
j ¼ 0

~F j ~Et�j ð32Þ

denote the moving average representation of the CFVAR
model for zt with the appropriate restrictions on the
return equation imposed on the coefficients. Moving
average coefficients are calculated using the recursions
in Eq. (24). Define the polynomial

C1þC2LþC3L2
þ � � �

¼
X1
j ¼ 1

X78�1

i ¼ 0

~F jþ iL
j

0
@

1
A X1

j ¼ 0

~FjL
j

0
@

1
A�1 X1

j ¼ 0

FjL
j

0
@

1
A: ð33Þ

The daily return forecast implied by the restricted CFVAR
model is then given by e30 �

P1
j ¼ 1 CjEt�j. The fraction of

the cumulative daily returns that can be explained by the
restricted model could, therefore, be computed as

~R
2

day ¼

P1
k ¼ 1 e30CkOð

P78�1
j ¼ 0 Fkþ jÞ

0e3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1
k ¼ 1 e30CkOCk

0e3�
P1

k ¼ �ð78�1Þ e30SF,kOSF,k
0e3

q ,

ð34Þ

where SF,k ¼
P78�1

j ¼ maxð0,�kÞFkþ j. Again, similar expres-
sions for the five-minute, hourly, weekly, and monthly
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returns are readily available by replacing 78 in the
formula above by the integer value corresponding to the
relevant forecast horizon.
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