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This paper describes the Multi-Radio Diversity (MRD)
wireless system, which uses path diversity to improve loss
resilience in wireless local area networks (WLANs). MRD
coordinates wireless receptions among multiple radios
to improve loss resilience in the face of path-dependent
frame corruption over the radio. MRD incorporates two
techniques to recover from bit errors and lower the loss
rates observed by higher layers, without consuming much
extra bandwidth. The first technique is frame combining,
in which multiple, possibly erroneous, copies of a given
frame are combined together in an attempt to recover the
frame without retransmission. The second technique is
a low-overhead retransmission scheme called request-for-
acknowledgment (RFA), which operates above the link
layer and below the network layer to attempt to recover
from frame combining failures. We present an analysis that
determines how the parameters for these algorithms should
be chosen.

We have designed and implemented MRD as a fully func-
tional WLAN infrastructure based on 802.11a. In our
testbed, we measured throughput gains of nearly 2.3x over
single radio communication schemes employing 802.11’s au-
torate adaptation scheme.
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1. INTRODUCTION

This paper describes the design and implementation of
the Multi-Radio Diversity (MRD) system, which reduces the
loss rate and improves the throughput observed by transport
protocols and applications running over wireless local area
networks (WLANSs). Our approach uses path diversity, rely-
ing on multiple access points (APs) covering a given area (for
uplink diversity) and multiple radios on the mobile user’s
device (for downlink diversity). The hypothesis underly-
ing this system is as follows: because frame losses are often
path-dependent (e.g., due to multi-path fading), location-
dependent (e.g., due to noise), and statistically independent
between different receiving radios, multiple radios that all
receive versions of the same transmission may together be
able to correctly recover a frame, even when any given indi-
vidual radio is not.

Most current WLAN deployments (e.g., those based on
802.11 [5]) use one or more APs that relay packets to and
from a WLAN client. Each AP operates independently and
each WLAN client can communicate with only one AP at
a time. Because the properties of a single path vary with
time and can undergo severe deterioration, the result is that
communication often suffers from high packet loss rates, long
delays, and even outages. These, in turn, degrade the per-
formance of protocols like TCP and applications like mobile
Internet telephony, streaming audio/video, and games.

In MRD, different APs with overlapping coverage and lis-
tening on the same radio frequency provide alternate com-
munication paths for each frame transmission from a given
WLAN client, while multiple wireless cards on the WLAN
client achieve the same result for transmissions to the client.
MRD coordinates packet receptions across the different ra-
dios to improve loss resilience against path-dependent bit
corruption. The idea is simple: even when each individual
reception of a data frame is erroneous, it might be possible
to combine the different versions to recover the correct ver-
sion of the frame. In MRD, the entity that performs this
frame combining task is the MRD Combiner (MRDC).

MRD’s frame combining algorithm divides each frame
into blocks. For each block, the algorithm assumes that
at least one of the received copies of a frame (including
any possible retransmissions) contains the correct bit val-



ues for that block. The algorithm then attempts to recon-
struct the correct frame by trying every version received for
each block. The process succeeds if a particular block com-
bination passes the checksum embedded in the data frame,
and fails once the search exhausts all possible block choices
for each block. The computational complexity of this al-
gorithm is exponential in the number of blocks for which
different versions were received, which depends on the num-
ber of blocks in each frame. We show how to pick the block
size and evaluate its performance using theoretical analysis
and real-world experiments. This approach to frame com-
bining is reminiscent of an old, well-studied idea called “re-
transmissions with memory” [30, 12], where retransmissions
of erroneous frames are combined with the original trans-
mission in an attempt to recover the correct version of the
data. Our contribution is to generalize this idea using a
block-based technique to incorporate the spatial dimension
as well.

The MRDC can often recover a corrupt frame without
requiring a retransmission from the client, but frame com-
bining will not always succeed. MRD uses a lightweight
retransmission scheme running above the WLAN link layer
to further improve error recovery. At the sender, the MRD
Sender (MRDS) buffers all frames that have not yet been
acknowledged (or given up on), and retransmits any frame
that it believes has not been successfully received by the
MRDC (after frame combining). To prevent adverse interac-
tions caused by ARQ schemes at two different layers, MRD
turns off link-layer retransmissions altogether. To keep over-
head low and to react quickly to channel contention, how-
ever, MRD uses two techniques: first, it retains 802.11’s syn-
chronous ACK mechanism,; with the MRDS clearing frames
thus acknowledged from its retransmission buffer. But be-
cause some frames can only be recovered after frame com-
bining, and because the MRDC does not know whether any
given link-layer ACK reached the MRDS, MRD uses a feed-
back protocol between the MRDC and MRDS. This protocol
is designed to have low overhead, using a request for ACK
(RFA) technique rather than traditional ACKs or NACKSs.
With RFA, the MRDS explicitly requests an ACK from the
MRDC for certain frames, and decides whether and when
to retransmit frames based on this feedback.

A noteworthy aspect of MRD is that it achieves significant
improvements in loss rates while consuming only a small
amount of additional bandwidth. As a result, it comple-
ments both automatic repeat request (ARQ) and rate adap-
tation [1, 9, 19], two common error-control techniques used
in contemporary WLANs. ARQ-based retransmissions work
well when the duration of channel degradation is short. But
when the channel’s quality deteriorates for a long period,
link-layer retransmissions triggered by a missing link-layer
ACK become ineffective and wasteful. Rate adaptation, on
the other hand, can work well even when the wireless chan-
nel experiences severe deterioration. However, efficient rate
adaptation is difficult to achieve when channel conditions
vary quickly and unpredictably, as is the case in many real-
world WLANS, particularly when users are mobile.

Sections 2 through 5 of this paper detail the different con-
tributions of this paper: the MRD architecture, the frame
combining algorithm and its theoretical analysis, the RFA
scheme, and the MRD modifications to the 802.11 WLAN
rate adaptation schemes. Section 6 describes our fully func-
tional 802.11a/b/g-based Linux implementation of MRD.

Section 7 presents the results of several experiments con-
ducted over an in-building 802.11a-based testbed at MIT’s
Computer Science and Artificial Intelligence Laboratory.
Experiments using a mobile WLAN client show through-
put improvements of about 2.3x compared to contemporary
802.11a with “autorate adaptation” [1]. We observe these
results when the mobile’s movements are over a relatively
small area (about 3 square meters).

2. MULTI-RADIO DIVERSITY ARCHI-
TECTURE
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Figure 1: MRD system architecture.

For ease of exposition, we describe the MRD architecture
in the context of uplink transmissions from the client to the
WLAN infrastructure. The same architecture can be used
when the MRD radios are co-located on the same device
(either in a single AP or on the WLAN client).

Figure 1 shows the MRD system architecture. Each AP in
the WLAN infrastructure offers a different physical commu-
nication path to the client. We configure the APs to listen
on the same radio frequency so they can each receive a copy
of the client’s uplink transmission. The AP forwards all
frames—including those that are corrupted—to the MRD
Combiner (MRDC), which filters redundant data frames re-
ceived by multiple radios and invokes the frame combining
procedure when needed. The MRDC maintains a packet
buffer to in-order packet delivery to the rest of the network.

At the WLAN client sender, the MRDS handles data
transmissions and retransmissions. The MRDS operates in
between the link-layer and the IP network layer. It keeps
track of unacknowledged transmissions and schedules their
retransmissions when it believes that the MRDC has failed
to receive a clean copy of the transmitted frame from any of
the APs or has failed to correct their errors frame combin-
ing. The MRDS uses the request-for-ACK (RFA) protocol
to obtain the results of the frame combining procedure from
the MRDC.

The MRD WLAN architecture does not preclude cellular
frequency reuse. Frequency reuse is a common method to
increase network capacity, which requires APs in neighbor-
ing cells to operate in different radio frequencies. In MRD,
the APs that are not explicitly associated with the client
need only listen for uplink transmissions passively. Thus,
one strategy to achieve frequency reuse is to install passive



radios in addition to the regular, active radio at each AP.!
The client associates with the active radio at each AP, which
serves the regular function of transmitting management and
control frames to the WLAN client, while the passive radios
are configured to listen on the neighbors’ radio frequencies.
Because the passive radios never transmit a frame, they do
not create any interference in the network. If installing mul-
tiple radios on a single AP is not possible, an operator can
install additional passive access points in the network. As
the costs of APs continue to decline, this approach is a vi-
able way to add path diversity (for uplink communication)
in WLANS.

MRD assumes that there is sufficient bandwidth in the
wired backbone to handle the additional traffic generated
by the passive APs. This assumption is reasonable because
the number of APs within reception range of a transmitter is
usually low and the speed of the wired backbone is usually
at least one or two orders of magnitude higher than the
wireless link.

MRD does not affect the functions of handoff and secu-
rity in a WLAN. The WLAN client would associate with and
handoffs between different APs using their active radios. Ex-
isting WLAN security standards such as WEP [5], 802.1x [6],
and WPA/802.11i [3] handle encryption/decryption and
other security functions in software and are easily imple-
mented in the MRDS and the MRDC, assuming that the
MRDC can establish a secure trust relationship with each
MRD radio in the network.

3. FRAME COMBINING

We describe how MRD recovers error-free versions of cor-
rupted data frames and analyze its performance. One ap-
proach is to run a simple linear time algorithm that attempts
to correct bit errors by selecting the majority bit value be-
tween three or more frames [13]. But this approach requires
at least three copies of the same transmitted frame, which
may not be available (without a retransmission) in the case
when only two MRD radios are within receiving range of the
sender. Therefore, we develop and analyze a block-based
frame combining scheme that can work even when only two
copies are available.

Suppose two copies of the same transmitted frame of size
S bits are received at two different receivers. Before frame
combining, if any of the data frames passes the link-layer
cyclic redundancy checksum (CRC) check, it is decoded as
the transmitted frame and forwarded (soft selection). Oth-
erwise, we run the block-based combining algorithm to re-
cover the packet. Block-based frame combining works by
first subdividing both frames into blocks, and then recon-
structing the frame by assembling the blocks selected from
each received frame of the transmitted packet. The process
succeeds if a block combination passes the CRC embedded
in the data frame, and fails once the search exhausts all
possible block combinations. We provide a summary of the
block combining algorithm below:

1. The input of the algorithm is two frames f =
{A, B} of size S, divided into fixed-sized blocks X =
(x{,x{,.,X{ }. Let A =|{i| X/ & XP # 0} (ie.,

'In fact, companies have begun selling radio chipsets that
can process and decode transmissions from multiple chan-
nels simultaneously (see, e.g., [2]).
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Figure 2: Bit-error analysis. Figure 2(a) shows
that the bit-errors are clustered in a regular pattern
within a frame. The number in the legend indicates
the number of corrupt frames received at each node.
The conditional probabilities in Figure 2(b) suggest
that bit-errors occur in bursts within a frame but
bit-errors between frames received at different loca-
tions have low correlation.

the number of blocks that do not have matching bit
values).

2. Assemble a combined frame that contains X =
{x!, x!, ...,XJ{,B} blocks from either frame A or B.
Each iteration of this step generates a new combined
frame by replacing Xif, with either X7* or X7 for each
i where X7* @ XB £0.

3. If either of the CRC value embedded in frames A or
B matches the CRC value computed over X', return
the combined frame containing X’. Otherwise, repeat
step 2 until all possible combinations of X’ have been
tried. If none of the block combinations X’ passes the
CRC check, declare a frame combining failure.

There are many ways of dividing a frame into roughly
fixed-size blocks. For simplicity, we divide each frame such
that blocks X{, Xg, - XI{,B_I contain B bits and the size
of the last block |X}:,B| is < B. Thus, Np = [S/B].

When the block-based frame combining algorithm de-
clares a failure, the MRDC can save the corrupt frames for
possible frame combining (using either bit-majority or block-
based combining) with any subsequent retransmissions of
the frame. In our current implementation, the MRDC saves
only one of the corrupt frames and apply block-based com-
bining to two corrupt frames at a time.

The block-based frame combining algorithm is simple but
its running time is exponential in A, the number of differ-
ing blocks. With two copies, it needs up to about 22 CRC
check operations to identify the correct combination. Since
A < Npg, one way to bound the number of CRC checks is
to reduce Np by increasing B. Inevitably, the frame com-
bining failure probability will increase as the likelihood of
simultaneous block errors increases with B. We evaluate
this tradeoff next.

3.1 Frame Combining Failure

We analyze how the frame combining failure probability,
ps, varies with Np under a burst bit-error channel model
parameterized by a burst length b. py is the fraction of



FLR(R:) 26.5%
FLR(R>) 23.4%
FLR(R:)FLR(R») | 6.21%
FLR(R1 N R3) 7.09%

Table 1: Frame loss rates (FLR) observed at twc
receivers (Figure 11) in an 802.11a broadcast exper-
iment.

frames that cannot be corrected with combining out of those
that could not be corrected by the soft selection in the first
place. To find the overall retransmission probability we as-
sume that each receiver observes independent losses, and
multiply ps with the independent frame loss rates (F'LR)
at each receiver FLR(R1) X FLR(R>) (i.e., the probability
that the frame goes uncorrected by soft selection).

We observe that losses do occur independently at dif-
ferent receivers in practice. Table 1 shows the frame loss
statistics of a broadcast experiment with two 802.11a re-
ceivers illustrated in Figure 11. In the experiment, a to-
tal of 500,000 frames were transmitted at a bit rate of
48 Mbps. We use FLR(R; N Ry) to represent the num-
ber of broadcast transmissions that were lost simultane-
ously at receivers R; and R;. Our results indicate that
FLR(R1)FLR(R;) =~ FLR(R1 N Ry), which suggest that
losses are largely independent at each receiver.

Using the same experiments, we validate the assumption
that bit-errors occur in bursts by analyzing the bit-error
patterns of over 36,000 corrupt data frames. Figure 2(a)
plots a histogram of the bit-error locations, which shows that
the error distribution is uneven, often clustered within 300-
400 bits, spaced between 800-1200 bit positions apart. At
the 48 Mbps bit-rate, 802.11a employs QAM-64 modulation
at 2/3 coding rate. This burst pattern is also observed in
other node placements on our testbed and also in another
802.11b testbed deployed in an industrial environment [32].

Figure 2(b) shows the auto-conditional and cross-
conditional bit-error probabilities for all the corrupt frames.
The cross-conditional probabilities remain flat even at the
bit level. The cross-conditional bit-error probabilities for
k < 100 are much lower than their counterpart auto-
conditional probabilities, which suggests that bit-errors
rarely occur simultaneously at nearby locations between two
frames received at different physical locations. In contrast,
the auto-conditional error probability at the bit level in-
creases dramatically at small k£ (< 100). The increased auto-
conditional probablity corresponds to the burst bit-error be-
havior and is most likely related to the clustered bit-error
patterns shown in Figure 2(a).

We believe that the periodic and burst nature of bit-errors
observed in our experiments is due to the orthogonal fre-
quency division multiplexing (OFDM) scheme employed in
802.11a. In this scheme, 52 separate subcarriers are used
to provide separate wireless pathways for sending the infor-
mation in parallel. Four of them are used for control, and
each of the remaining 48 sub-channels carries upto 1 Mbps
summing to 48 Mbps. We believe that the non-uniformity
of the losses is because different parts of a frame are carried
by different channels, and the periodicity of bit-errors arises
because the same set of data bits in each frame are consis-
tently assigned to the same sub-channel. Indeed, QAM-64
implies that there are 8 bits/symbol on each sub-carrier and
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Figure 3: The pmf for the number of bit-errors for
two different placements of the receiver pair.

hence the bunching of 8 x 48 = 400 bits is consistent with
this hypothesis. Also, the 1,200-bit spacing of the peaks
may be because each sub-channel contributes three symbols
at a time rather than just one.

These experimental observations motivated us to develop
an analytic model that allows us to examine how py is
affected by the bit-error burstiness in the communication
channel. In our model, we assume that bit-errors occur
in bursts of b > 1 bits. Moreover, we assume that these
sequences of consecutive b bit-errors are spread uniformly
over the frame. Thus, if there occur d such sequences in a
given frame, then it means there are a total of bd bit-errors
in that frame. We neglect the effect of two individual error
sequences starting within b bits of each other.

Let Dy ; represent the number of b-bit sequences with er-
rors in a given frame received at receiver R;. Then,

db
P(Dyi=d|Dp; >0)=n
d'=(d—1)b+1

P(Di=d). (1)

where n = (1 — P (D; = 0))"" and P (D; = d') is the proba-
bility that a frame received by R; contains d' bit-errors. We
obtain the distribution of number of bit-errors empirically.
Figure 3 shows the probability mass function of the number
of bit-errors for two broadcast experiments using different
node placements. We found that given a frame contains bit-
errors, P (D; = d') decays almost exponentially, i.e., as e~*¢
where a = 0.01—0.05.

In our model, we kept the average number of bit-errors
per packet fixed (independent of b) and b controls only the
burst size. This model of fixed sized bursts of error implies
that the autoconditional bit error probability distribution is
a step function with a jump at b. Even though this model is
approximate (as shown in Fig. 2(b)), it encompasses certain
flavors of wireless channels where losses occur in bursts.

Let us denote the set of blocks with errors at receiver R;
by Ni. Then |Ni N M| represents the set of blocks that
contain simultaneous errors at both R; and R».

To derive the frame combining failure probability, ps, we
make the following simplifying assumptions. First, we ignore
the possibility that two sequences at a given block of two
different frames have exactly the same position. Second, we
ignore the possibility that a sequence can spread over more
than one block. Third, we assume the boundaries of the
blocks are not fixed and that each one of them can hold
more than B bit-errors whereas in reality each block can
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Figure 4: The upper bound on ps as a function of
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contain at most [B/b] sequences of b bit error sequences.
All these assumptions are reasonable when b < B, which is
likely to be the case in reality.

If the sequences of bit-errors are uniformly distributed
over the frame, the probability of getting at least d simul-
taneous block errors, conditioned on the event that receiver
R; receives a frame with d; trains of burst errors is at most

P(IN1NN2| 2d|Dyy =di, Dbz = da)
(VB) (VB tdi-d=1) (Np+da-d-1)

d di1—d do—d (2)
G D [ e I
1 2

for d < min{d,,d2, Ng}. The analogy with a ball placement
problem is as follows. We have d; red and d> blue balls to
be placed in a total of Np bins randomly. We evaluate the
probability that at least d bins contain both red and blue
balls. First, we place d red balls and d blue balls in a given
combination of d bins so that each bin contains exactly one
red and one blue ball. Then we distribute the remaining
di —d red and d» — d blue balls randomly in all possible Np
bins. We end up with an upper bound because we count
certain combinations more than once.

Because a frame combining failure occurs when d > 1, the
conditional frame combining failure probability is simply

pf(d1,d2) = P(|N1 ﬂ./\/zl > 1|Dy,1 =d1,Dp2=d2). (3)

Hence, the upper bound on the unconditional probability
of combining failure can be found plugging (2) in

Np Np 2
pr < D Y pr(di,da) [[P(Dyi =dilDyi >0). (4)
d1=1dg=1 i=1

Figure 4 plots the upper bound on py as a function of
the burst size b for several values of the block size, Ng. If
the bit-errors are uniform (b = 1), py remains high (= 1)
regardless of Ng. However, the autoconditional probabili-
ties in Figure 2(b) suggests that bit-errors indeed occur in
bursts. In this case, we expect ps to decrease with increas-

ing Np. As Np gets larger, the difference between the two
curves for a given b becomes very small, which suggests that
increasing Np beyond a certain point does not yield much
improvement. Thus, we lose little performance by fixing Np
to some small value (say, 6-10) in order to bound complex-
ity. Because py is a highly convex function of b, we expect
the performance of frame combining to be sensitive with re-
spect to the changes in the burstiness of the bit-errors in the
channel. Moreover, the performance of frame combining will
improve as the available computational power increases.

3.2 False Positives

We now comment on the possibility of false positives in
the combining process caused by repeated trials for the CRC
to check with distinct frames. In essence, CRC is an n-bit
parity check field that detects any k& < n bit errors and
misses detection with probability 27" when k& > n. Thus,
if a 32-bit CRC is used, as in 802.11, any number of bit
errors < 32 is detected. Moreover, the probability that any
randomly produced frame will check the CRC is 272, which
implies that it is almost impossible for a random bit error
pattern to go undetected even if a frame contains more than
31 erroneous bits.

Now, with frame combining, even though a single check
leading to a false positive is highly unlikely, if we try it re-
peatedly many times, we may end up getting a false positive.
Indeed, if the number of differing blocks in two frames is A,
the number of swaps (and the number of tests for the CRC
to check) is 22. For independently produced 2° frames, the
false positive probability is
2A

P (false positive) =1 — (1 — 2732)
~1—exp (—2A732) .

Thus, if E [22] is close to 2°?, it is likely that the combin-
ing procedure leads to false positives. Even if the available
computational power can perform 232 CRC tests, we pick
a block size that is sufficiently large (i.e., Np is sufficiently
small) so that, even in the worst case, we do not perform
too many CRC checks. Hence, we guarantee by design that
22 < 2%? and keep the false positive probability sufficiently
small. Our implementation uses Np = 6.

4. RETRANSMISSIONS WITH RFA

MRD disables MAC-layer retransmissions to allow the
MRDC to recover packets that the active radios receive in
error. For packets that were not recovered by the MRDC,
the MRDS assumes the responsibility of performing retrans-
missions. To facilitate retransmissions, the MRDS uses the
request-for-acknowledgment (RFA) protocol to obtain the
status (success or failure) of each frame transmission. This
section describes the design of RFA.

4.1 Design

RFA operates in between the link layer and the network
layer, but uses the link-layer synchronous acknowledgments
(ACK) that is implemented in most WLANSs such as 802.11.
A synchronous ACK is a link-layer control packet that is sent
by the active radio (see Section 2) immediately after it suc-
cessfully receives a data frame. Thus, after each frame trans-
mission, the MRDS checks the link-layer transmission sta-
tus. A success implies that the active radio has received the



transmission correctly so the MRDS can proceed to transmit
the next available packet. A failure implies either a corrupt
link-layer ACK or a corrupt data transmission. In the for-
mer case, the MRDC simply forwards the correctly received
data packet or buffers it in the ordering buffer (explained be-
low). In the latter case, the MRDC may recover the frame
loss using frame combining. If the recovery is unsuccessful,
the MRDC saves the corrupt frames for possible frame com-
bining with any subsequent retransmissions of the frame. In
either case, the MRDC always knows the final status of each
frame transmission. Thus, when the MRDS fails to receive
a link-layer ACK, it can issue a RFA frame to the MRDC
to obtain a MRD acknowledgment (MRD-ACK), which con-
tains the final status of the transmission. The MRDS needs
to explicitly issue an RFA because only the MRDS knows
which packets are ACKed by the link-layer. To save over-
head, the MRDS can signal a RFA by setting a flag in the
frame header of subsequent data transmissions. We explain
the implementation details of RFA in Section 6.2.

The MRDS buffers the packet that fails to receive a link-
layer ACK for later retransmission and schedules the next
available packet for transmission. The subsequent transmis-
sions keep the wireless channel utilized while the MRDS
waits for the frame combining results from the MRDC,
which can take many milliseconds. To limit the size of the
retransmission buffer, the MRDS may transmit up to IV
different packets from the first unacknowledged packet. A
packet is removed from the transmission buffer after K un-
successful retransmission attempts. The MRDS schedules
a retransmission if the MRD-ACK indicates a frame recov-
ery failure. If the MRDS never receives an ACK from the
MRDC, the MRDS will schedule all outstanding unacknowl-
edged packets for retransmission after a timeout T;. Our
current implementation uses a static value of 90 ms.

There are two reasons why we chose to use the link-
layer ACK, instead of eliminating it and letting MRDS and
MRDC handle retransmissions using a standard automatic
repeat request (ARQ) protocol that operates strictly above
the link-layer. First, the synchronous ACKs are necessary
for carrier-sense multiple access (CSMA) to operate prop-
erly. CSMA uses a randomized backoff window and relies
on the absence of the synchronous ACK packet to detect
contention and adjust the backoff window after each frame
transmission. Because we allow transmissions to continue
while the MRDS waits for an MRD-ACK from the MRDC,
contention could occur before CSMA can adjust its backoff
window.?

Second, the wireless medium is already reserved for the
transmission of synchronous ACKs. Thus, they are de-
signed to not collide with transmissions from another nearby
source. In contrast, the acknowledgments from the MRDC
are asynchronous and must therefore contend for the chan-
nel and suffer potential collisions. Thus, it is a good idea to
avoid sending asynchronous ACKs as much as possible, es-
pecially during times when the channel quality is good and
link-layer losses are low.

4.2 Delaying Acknowledgments

To reduce overhead in the number of MRD-ACKs sent
to the sender, the MRDC delays for D frame transmissions

%It is conceivable to use some other channel access schemes
besides CSMA (e.g., TDMA). Doing that would require in-
troducing a major modification to the MAC-layer of 802.11.

times before returning a MRD-ACK packet. The value D
should be within the bounds of 0 < D < N. D should be
greater than 0 because the MRDC needs time to gather cor-
rupt frame copies from the MRD radios and perform frame
combining. A smaller D value would cause the system to in-
cur higher overhead as the MRDC sends MRD-ACKs more
often. A higher D reduces overhead, but can cause larger
transmission delay when the frame requires retransmission.
In practice, the added delay is of little concern to higher
layer transport protocols and most multimedia applications
because D is usually set to a few packet transmission times,
which is on the order of a few milliseconds. If D > 1, the
MRDC could process multiple packets before returning an
MRD-ACK to the MRDS. We can expand the MRD-ACK
packet with a bit-vector to indicate the final status of several
packets at once, instead of spreading the acknowledgment
across several different MRD-ACK frames.

4.3 Inorder packet delivery

The MRDC maintains an ordering buffer to ensure that
packets are forwarded in-order to the rest of the network.
When a frame requires retransmission, the MRDC inserts
all subsequently transmitted frames into the reorder buffer
until the missing frame has been successfully retransmitted
or dropped.

There are many applications, such as audio and video
streaming, which are sensitive to packet delays but do not
require in-order packet delivery. To cater to these appli-
cations, we can mark specific frames for out-of-order deliv-
ery. Such frames can avoid being delayed inside the ordering
buffer. Our current design does not include this feature but
we plan to incorporate it in the future.

5. RATE ADAPTATION IN MRD

Rate adaptation (or autorate) works well when the com-
munication channel severely deteriorates and should be used
in MRD when soft selection and frame combining can no
longer recover frame losses effectively. Traditional autorate
algorithms try to maximize throughput by using loss or sig-
nal strength information observed by a single-radio receiver.
In contrast, the throughput depends on multiple radios in
MRD. We argue that the current autorate algorithms be-
have sub-optimally under MRD because they do not use
information observed at all of the diversity radios that are
within range of the sender.

The interaction between rate adaptation and MRD loss
recovery is an interesting open topic. We present some sim-
ple modifications to an existing rate adaptation. Although
these modifications may not necessarily yield an optimal al-
gorithm for MRD, we found them to work well in our ex-
periments.

Our testbed implementation is based on 802.11 interfaces
that use the Atheros 5212 chipset, which are driven by the
Multiband Atheros Driver? for Wifi (Madwifi) [1]. The Mad-
wifi driver implements an autorate algorithm that adjusts
bit-rates based on the observed link-layer frame loss rate.
Due to the popularity of Madwifi, Madwifi’s autorate algo-
rithm is becoming a de facto benchmark. Its performance
has been studied extensively in [9] and [19] and is shown to
outperform the Auto Rate Fallback (ARF) algorithm that
is implemented in many 802.11 interfaces on market. We

3pci: v.0.8.6.1, hal: v.0.9.9.13, wlan: v.0.7.3.2



use Madwifi’s autorate algorithm as the basis of discussion
but the general ideas in this section can be applied to many
other loss-based autorate algorithms. Figure 5 provides a
pseudo-code of Madwifi’'s autorate algorithm. In our nota-
tion, bitrate is an integer with a range [0..MAX_BITRATE],
which represents the set of discrete bit-rates available to the
sender. There eight discrete bit-rates in 802.11a.

InIT()
stable < 0
numtz < 0
numtzok < 0

TxCALLBACK()
numtzr < numtz + 1
if (txsuccess)
numtzok < numtzok + 1

RATEADJUST()
if ((numtz > 0 and numtzok == 0) or
(numtz > 10 and numtzok/numtz < D))
if (bitrate > 0)
bitrate < bitrate — 1
Init()
elseif (numtz > 10 and numtzok/numtz > 0.90)
stable ¢ stable + 1
if (stable > S and bitrate < MAX BITRATE)
bitrate < bitrate + 1
Init()
else
stable < stable + 1

Figure 5: Pseudo-code of Madwifi’s autorate algo-
rithm.

MRDCALLBACK()
numitzok
numtzok + min(numacked, numtz — numtzok)

Figure 6: A procedure that helps autorate maintain
a better estimate of numtzok in MRD.

The Madwifi’s algorithm starts by calling INIT() and in-
vokes TXCALLBACK() to update the numtz and numtzok
counters after each frame transmission. The algorithm pe-
riodically invokes RATEADJUST() once every T seconds. If
the frame delivery rate is above 90% for at least S number
of successive periods, increase the bit-rate. If it falls below
a minimum delivery threshold D, decrease the bit-rate.

The original algorithm adjusts the numtrok counter
based on link-layer feedback. This can lead to an under-
stated numtzok value in MRD because the MRDC can re-
cover many frame transmissions through soft selection or
frame combining above the link-layer. To fix this problem,
we add the routine listed in Figure 6 to Madwifi's autorate
algorithm.

The MRDCALLBACK procedure is invoked whenever the
MRDS receives a MRD-ACK. numacked is the number of
frames that the MRD-ACK reports to have a successful

[ Scheme | Mean (Mbps) | Median (Mbps) |
Slow R1 4.95 4.68
Fast R1 8.25 7.07
Slow MRD-R1 19.29 19.85
Fast MRD-R1 18.76 19.06

Table 2: The mean and median throughput of one
second window samples across all five trials in each
mobile experiment.

delivery status at the MRDC, and is added to numtzok.
Thus, MRDCALLBACK helps the auto algorithm maintain
a correct estimate for numtzok as long as it receives some
MRD-ACKs. Even if MRD-ACK; packet is dropped due
to various reasons, the numtzok can still be adjusted to
the correct value by the subsequent MRD-ACKs because
the MRD-ACKs cumulate the acknowledgment bit vector
for any unacknowledged packet. However, numtzok can be
adjusted only upon receiving a MRD-ACK; packet. Thus,
long delays between MRD-ACK receptions can still cause
large understatement in the numtzok value. This is not
usually a problem in practice because 1) MRD-ACKs are
always transmitted at the lowest (most robust) bit-rate to
minimize loss and 2) we set a low delay threshold 16 ms for
transmitting MRD-ACKs.

Another problem with the original Madwifi’s algorithm
is that the default minimum delivery threshold D is fixed
at 50%, which, as noted in [9], is inefficient for 802.11a/g.
Ideally, D should be set as the ratio of the effective through-
put* of the lower bit-rate over the throughput of the higher
bit-rate. That is, let D, and R, be the expected delivery
rate and effective throughput using bit-rate . Then, the
following equation describes the break-even point at which
the throughput achieved by the lower bit-rate is the same
as the current bit-rate:

Dr—l X Rr—l = Dr X R'r

R,_1, R, are known values and in general, and D,_1 > D,
because lower bit-rates are more robust against loss. To
minimize loss, we set D,_1 = 1. Thus, the ideal minimum
delivery threshold for bit-rate r is D, = R,_1/R,.

In 802.11a, the typical value for R,_1/R, varies from 0.6
to 0.8. Thus, fixing D = 0.5 is too low and causes the
transmitter to maintain the current bit-rate even though its
delivery rate is well below the break even point. In light of
this, we modified Madwifi’s algorithm to lower bit-rates ac-
cording to the proper break even ratios in our experiments.

Finally, the default values for T' and S (T" = 1 second and
S = 10) cause the Madwifi algorithm react too slowly to the
rapid changes in the channel. Instead, we set lower values
T = 0.25 and S = 2 to improve its responsiveness. We ran
an experiment with a mobile transmitter (described in Sec-
tion 7.1) to compare the performance of the algorithm using
different parameter values. Table 2 shows that the modi-
fied parameter values (Fast) helped increase throughput by
about 67% over the default parameter values (Slow) for the
single radio experiments using R1.

Intriguingly, the performance difference between Slow
MRD and Fast MRD is negligible. This suggests that MRD

“The effective throughput is lower than the bit-rate because
of link-layer overhead.



is relatively insensitive to the particular parameter values
chosen for rate adaptation. Being able to perform consis-
tently under different parameter values is useful, because
determining the optimal parameter values for any kind of
adaptive algorithm is often difficult in practice.

6. IMPLEMENTATION

This section describes the MRD system implementation
and the implementation of RFA in detail.

6.1 System Implementation

We implemented the MRD system using commodity Pen-
tium II-III class PCs running Linux Kernel 2.4.20 and
802.11a/b/g wireless interfaces based on the Atheros 5212
chipset. We modified the Madwifi driver to implement the
MRDS component for a 802.11a/b/g WLAN client.

As described before, the primary function of the MRDS
is to schedule retransmissions. To handle retransmissions
within the driver software, we disable the wireless inter-
face from retransmitting packets by setting the retry limit
to zero. During our experimental evaluation, we discov-
ered that doing so caused the distribution of frame inter-
transmission times to peak at the nominal packet trans-
mission time, despite many transmission losses. In other
words, setting a zero retry limit also disabled exponential
backoff in the 802.11 interface. It turns out this is the be-
havior mandated by the original 802.11 standard [5]: the
contention window should reset to the lowest value after a
packet reaches its retransmission limit.

Consequently, our current MRD implementation does not
include CSMA exponential backoff. However, future re-
leases [4] of the Madwifi driver [1] will include software sup-
port for 802.11e [15], which includes a software API to allow
the driver to modify the contention window size. Meanwhile,
we have disabled exponential backoff in all of our exper-
iments to make fair performance comparison between the
802.11 standard and our MRD-enhanced 802.11 system.

We used desktop PCs equipped with a 802.11 wireless in-
terface as access points. One AP acts as the active radio
and is configured to run in the Madwifi’s AP Master mode.
The passive radios are configured to run in Madwifi’s Mon-
itor mode. On each of the APs, we run a user-level daemon
to capture data frames from the wireless interface and for-
ward them over a wire-backbone (100 Mbps Ethernet in our
experiments) to the MRDC running on another PC.

For increased efficiency, the AP daemon performs the
CTX header checksum and drops corrupt data frames that
would otherwise be dropped by the MRDC. Because the
system does not require the client to acknowledge the re-
ceipt of the MRD-ACK packet, the AP daemon prepends
the target client’s MAC address in the MRD-ACK payload
and transmits each MRD-ACK as a broadcast frame. The
benefit of saving the transmission of link-layer ACK packets
in unicast is much larger than the cost of expanding the size
of the MRD-ACK payload®. We transmit the MRD-ACK
packet at the lowest data rate (6 Mbps for 802.11a/g and 1
Mbps for 802.11b) for robust delivery.

The CRC computation is the bottleneck of the frame com-
bining process so it is important to make it as efficient as

5In our actual implementation, the AP daemon writes the
target client’s 6-byte MAC address in the source address
field of the 802.11 header, thus saving us from expanding
the MRD-ACK payload at all.

possible. The MRDC currently implements a widely-used
8-bit table lookup algorithm to compute the 32-bit CRC
checksum of a combined frame. Although the algorithm is
simple, it is rather inefficient to process the entire frame
to compute a new CRC value when the bit values for only
a small portion of the frame changes during each iteration
of the frame combining algorithm. In the future versions
of the MRDC, we plan to implement an incremental CRC
algorithm, which has been shown to reduce complexity by
over an order of magnitude [11, 29].

We implemented the MRDC as a user-level daemon run-
ning on a 1.5 GHz Pentium 4 PC. Implementing the MRDC
as a user-level daemon facilities debugging and running di-
agnostics. It forwards clean or corrected packets to the tun-
neling driver so that the kernel can forward the packet using
iptables in Linux.

6.2 Implementation of RFA

MAC | CTX PAYLOAD
1Byte | 1Byte | 1Byte 4Bytes

CTRL | SEQ | USEQ

N

4 bits
NTX ‘

\
RFA

CHECKSUM

(a) Headers in the transmitted data frame

2Bytes | 1Byte N bits
MAGIC| SEQ TX STATE

(b) MRD-ACK Packet

Figure 7: MRD-ACK control information.

Figure 7(a) shows the headers used by RFA. For every
data frame transmission, the MRDS inserts a 7-byte Com-
biner Transmit (CTX) header that is prepended to the pay-
load of the MAC-layer frame. The CTX header contains a
ctrl field, which uses 4 bits to indicate the number of at-
tempted transmissions (ntz) for the current data frame, 1
rfa bit to indicate that the sender has pending unacknowl-
edged packets and is requesting for acknowledgment, and 3
unused bits reserved for future options such as out-of-order
delivery. The 1-byte seq field labels the sequence number of
the data frame, while useq labels the oldest transmitted data
frame in the MRDS buffer that has not been acknowledged
by the MRDC. When packet useq exceeds its retransmission
limit, the MRDS advances useq to the seq number of the
next unacknowledged packet in the retransmission buffer (if
any). This allows the MRDC to detect packets that failed
all its retransmissions and flush the blocked packets in the
ordering buffer accordingly.

The MRDC uses the source address in the MAC header
and the seq value in the CTX header to identify the frames
that belong to the same packet. When the MRDC receives



at least 2 corrupt data frames that correspond to the same
packet, it attempts frame combining on the payload part of
the data frame. Since it is important that the MRDC cor-
rectly identifies the frames that belong to the same packet,
RFA uses a 4-byte CRC to protect the MAC and CTX
header. If either the MAC or the CTX header is corrupted,
the MRDC drops the entire frame.

The MRD-ACK packet contains a 2-byte “magic” value
that is used to distinguish the MRD-ACK packet from other
downlink data payload, a 1-byte sequence number, and an
N-bit bit vector to indicate the success or failures of up to
N consecutive frames. The sequence number is the seq value
of the first data frame in the bit vector being acknowledged.
The MRDS uses the link-layer data frame checksum to de-
tect errors in the MRD-ACK packet.

The size of the MRD-ACK payload is small (25 bytes in
our implementation). Thus, its overhead is largely domi-
nated by the preamble and header associated with the 802.11
frame. We can potentially decrease overhead further by pig-
gybacking MRD-ACK packets on data frames being trans-
mitted in the same direction.

Our RFA implementation allows the MRDC to delay ACK
transmissions in terms of the number of successive transmis-
sions made by the MRDS. Thus, MRDC can delay an ACK
either by a timeout of length equal to D packet transmis-
sion times or by counting D packet transmissions from the
MRDS. Delaying ACKs by counting packets removes the re-
quirement for sub-millisecond-granularity timers and allows
the MRDC to be implemented in user space for debugging
and running diagnostics. Note that retransmitted frames
are counted as a transmission while extra frames that are
simultaneously received by different MRD radios should not
be counted. Because both types of frames have identical
seq values, the MRDC uses the ntz value to distinguish the
retransmitted frames.

The MRDC sends MRD-ACKs to the MRDS via the ac-
tive radio (i.e., the AP with which the WLAN client is as-
sociated for MRDS running in the WLAN clients). The
MRDC may also independently use fine-grained path se-
lection [23] to choose the most reliable diversity radio for
transmitting the MRD-ACK packet to the WLAN client.

7. EVALUATION

We conducted several experiments to evaluate the per-
formance of MRD. We divide the presentation of the results
into two categories: mobile and stationary, based on whether
the WLAN client was mobile or stationary during the ex-
periment. In the following sections, we describe our experi-
mental setup and analyze the results of each experiment in
detail.

7.1 Setup

As described in the previous section, our MRD implemen-
tation is a fully functional WLAN based on 802.11a/b/g.
We chose to conduct experiments in 802.11a mode to avoid
interfering traffic from our regular WLAN in our lab facil-
ity. In all of our experiments, we configure one of the access
point receivers (R1 or R2) to be an active AP running in
Master mode. We configure the other AP receiver to run
passively in Monitor mode. We configure the client sender
C to run in 802.11 Managed mode. We run the MRDS on
the WLAN client to evaluate the performance for upstream
traffic, which is a class of traffic important in applications

such as wireless video surveillance and capturing devices,
voice over IP, and file sharing.

In all of the experiments, we set a maximum retransmis-
sion limit of 7 (initial transmission plus seven retransmis-
sions). In the MRD experiments, we used a MRD-ACK
delay of D = 8 packet transmissions, a sender buffer size of
N = 64 packets and a retransmission timeout of Ts = 90 ms.
We pick B = 256 bytes (.. Ng = 6), such that the maximum
processing time to search through 2V® block combinations
is less than S/r, where S is the size of the transmitted frame
and r is the bit-rate. Bounding B in this manner helps pre-
vent the processing queue at the MRDC from building up.

In each experiment, the WLAN client sends 100,000 UDP
packets as fast as possible to saturate the wireless link. We
repeat each experiment for 5 trials. On the first transmission
of each packet, we insert a timestamp into the frame’s pay-
load. The timestamp remains unchanged on frame retrans-
missions. The timestamp allows us to measure and compare
the packet delivery delay between MRD and the single ra-
dio communication schemes. Also, the payload of the packet
contains a known bit pattern so that we can post-process the
trace to analyze the probability of frame combining failure
ps as a function of different block sizes B.

Each MRD experiment involves two sub-experiments: in
the first set (MRD-R1), we configure R1 to be the active AP
with which the client associates and R2 to be the passive AP.
In the other set (MRD-R2), R2 is active and associates with
the client. We ran and compared the performance using
different active APs because the MRDS schedules retrans-
missions based on the link-layer feedback from the active
AP.

As mentioned in Section 6, performing software-based re-
transmissions in the driver effectively disables exponential
backoff in the wireless interfaces’ firmware. To make a fair
performance comparison between communication schemes,
we used software-based retransmissions (and thus, disabling
exponential backoff) in all of our experiments, including the
single radio communication schemes. We discuss how dis-
abling exponential backoff might affect our evaluation re-
sults in Section 8.

Because wireless communication is sensitive to the phys-
ical environment, we do not claim that the results of the
experiments presented here are exhaustive and representa-
tive of all situations. Our main objectives are to conduct a
set of experiments to illustrate the performance gains that
MRD can achieve in the implemented system under a real
environment, and to analyze the properties of the MRD sys-
tem in depth.

We present the results of our mobile and stationary exper-
iments in the following sections. The mobile experiments use
the modified autorate algorithm as described in Section 5
but the stationary experiments were conducted before we
implemented the modifications. Thus, the stationary exper-
iments use the standard Madwifi autorate algorithm, which
could have reduced the performance of MRD for those ex-
periments.

7.2 Mobile Experiments

We compare the performance of single radio communica-
tion schemes against MRD when the transmitter is in mo-
tion. Figure 8 illustrates the location of our APs and client
in our mobile experiments.
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Figure 8: Setup for the mobile experiments. R1 and
R2 are stationary receivers. C is a laptop transmit-
ter client that was carried by a walking person who
covered a 1.5m x 2m area during the experiments.

| Experiment | FL | FR | FRss | FRrc |
MRD-R1 | 0.345 | 0.497 | 0.423 0.073
MRD-R2 | 0.391 | 0.573 | 0.515 0.058

Table 3: Frame loss and recovery rates of the mobile
experiments.

7.2.1 Throughput Results

We define throughput to be the sum of the bits from
unique frames received divided by the time elapsed between
the first and last frame receptions. Note that the through-
put metric accounts for the overhead of MRD-ACK trans-
missions and all the processing delay associated with MRD.

The average throughput over 5 trials for the single radio
experiments R1 and R2 were 8.25 Mbps and 6.42 Mbps,
which are far below 802.11a’s theoretical maximum UDP
throughput of 31 Mbps. Both mobility and distance caused
the large throughput reduction in the single radio experi-
ments. Despite the harsh channel conditions, MRD-R1 and
MRD-R2 maintained a average throughput of 18.7 Mbps and
18.36 Mbps respectively, which constitute improvements of
2.27x and 2.23x over R1 (and more over R2).

We plot the throughput distribution of the one-second
non-overlapping window samples in Figure 9(a). For R1 and
R2, 80% of the samples are between 4-10 Mbps and fewer
than 10% of the samples achieved a throughput more than
15 Mbps. In contrast, MRD achieves a throughput greater
than 15 Mbps for more than 85% of the samples. These
results suggest that even if we allow the WLAN client for
the non-MRD cases to perform handoffs every second, the
average throughput will remain well below 15 Mbps.

We can see that both MRD-R1 and MRD-R2 achieved
similar throughput results. This suggests that the perfor-
mance of MRD is relatively insensitive to the choice of ac-
tive AP, even when there is a significant difference in link
quality between the two APs.

7.2.2  Source of Improvement

The large improvement comes from the fact that MRD can
recover many lost packets. Table 3 summarizes the statistics
of the raw frame loss rate (F'L) observed at the active AP
in each sub-experiment and the ratio of the lost frames that
were recovered (FR) by MRD. As shown, the active APs
in both sub-experiments suffered a raw frame loss rate of
about 35% to 39% but MRD was able to recover 50% to
57% of them. Because MRD was able to conceal a large

number of losses from the rate adaptation algorithm, the
sender was able to maintain a high bit-rate throughout both
sub-experiments, as depicted in Figure 9(b), where over 90%
of the frames were transmitted at a bit-rate of 24 Mbps or
higher. In contrast, the single radio communication schemes
suffers a high loss rate at the high bit-rates. Consequently,
these schemes operate at low bit-rates.

We decompose the recovered frames into frames recov-
ered by soft selection (FRss) and frame combining (FRrc).
Thus, FR = FRss + FRp¢. Our results show that most of
the gains were achieved by soft selection (i.e., those frames
that were received correctly by the passive AP but not by the
active one). There are two possible explanations for the rela-
tively small fraction of frames recovered by frame combining:
i) there were very few opportunities for running the packet
combining either because most of the transmissions were
already corrected by soft selection or because the MRDC
did not collect enough valid corrupt frames (due to corrupt
headers, etc.) to perform the combining; or ii) there were
many frame combining attempts but most of them failed to
recover the correct frame.

We analyzed the number of successful and failed frame
combining attempts. The total number of frame combining
attempts was high, constituting 34% and 26% of the total
number of frames that were not successfully received by the
active AP in MRD-R1 and MRD-R2. Although there were
many opportunities for error recovery with frame combining,
about 80% of those attempts failed to correct the errors in
the transmitted frame in both sub-experiments.

One cause for the high failure rate is the low number of
block subdivisions in a frame (Np = 6) we used for frame
combining. We post-processed® the data trace of our exper-
iments to analyze how py varies with other values for Np
and plot the results in Figure 10(a). The plot shows that
ps drops as INp increases, which is consistent with our an-
alytical model for burst bit error channels that we derived
in Section 3. For example, p; drops from 80% to 60% when
Np =91 (i.e., B =16 bytes).

As discussed in Section 3, increasing Np can potentially
increase A, the number of differing blocks between two
frames. To avoid overloading the MRDC, we may need to
abort the frame combining operations for frames received
with a large A. Thus, a high A for a large fraction of
combining attempts can offset the performance gain from
increasing Np. Figure 10(b) plots the distribution of the
number of unmatched blocks (Agycc) for the successfully
combined frames at various Np. For Np < 91, the 75th
percentile Agycc value are much smaller than Np (e.g., for
Np = 91, the 75th percentile of Agye is 10).” This suggests

5While the majority of frame combining attempts were per-
formed for corrupt frames that were simultaneously received
by the APs, a significant fraction of the frame combining at-
tempts were performed with retransmitted frames. For sim-
plicity, we excluded the retransmitted frames in our post
processing analysis. Nonetheless, our results should remain
representative because the retransmitted frames should have
an independent bit error behavior similar to the simultane-
ously received frames.

"Performing 2% = 2'° frame combining checksum opera-
tions for a 1500-byte packet takes about four milliseconds
on a 3.2 GHz Pentium IV PC. The processing time is rather
large and may cause the processing queue to build up at
the MRDC. However, it should be possible to reduce the
processing time substantially by using an incremental CRC
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Figure 10: Trace-driven simulation of py and A at various Ng.

that we could improve the performance of frame combining
by rerunning our experiments with a larger Np value.
Finally, the low overhead of RFA allows MRD to achieve
high gains. The number of MRD-ACKSs transmitted con-
stitute fewer than 7.5% of the total number of transmitted
packets and fewer than 0.1% of the total number of transmit-
ted bytes. The overhead of inserting an extra 7-byte CTX
header to the 1500-byte packet payload is also negligible.

7.2.3 Delay Analysis

A number of compelling wireless applications such as tele-
phony and video streaming require a relatively low packet
delivery delay in the range of 100 — 150 ms (or less) [18]. We
analyze MRD'’s delay performance here.

As described previously, we insert a timestamp in the pay-
load of a packet’s first transmission attempt to measure the
one way packet delivery delay. Because it is difficult to syn-
chronize PC clocks to within a few tens of microseconds®, we

update algorithm [11, 29] or using specialized hardware to
perform the CRC calculation.

8We require the fine clock synchronization granularity be-
cause the nominal transmission time of 802.11a at high bit-
rates is less than 0.5 millisecond.

do not measure the absolute packet delivery delay. Instead,
we measure the delay jitter above the minimum one-way
packet delivery time d; for packet 7, which does not require
clock synchronization between the sender and the receiver.
Let s; and r; be the start and receive timestamps associated
with packet 7 for all 0 < 7 < 100000 packets transmitted in
an experiment. Then d; = r; — s; — min;(r; — s;).

We also applied a piecewise linear regression algo-
rithm [25] to remove clock skews between the sender and
the receiver. Note that we can compute the one way packet
delivery delay by adding min;(r; — s;), which includes the
nominal transmission time and processing delay. In prac-
tice, this number is much less than a few milliseconds. We
will ignore this minor adjustment and use the terms “delay
jitter” and “delay” interchangeably.

Figure 9(c) shows the jitter distribution for our mobile ex-
periments. The MRD median packet delivery delay is below
1 ms and has 25% more packets delivered than R1 and R2
with a delay jitter below one millisecond due to its ability to
maintain a high bit-rate throughout the experiments. How-
ever, about 35% of the packets in MRD were delivered with
a significantly higher delay jitter than R1 and R2. Nonethe-
less, MRD was able to deliver 95% of the packets within a



delay of 35 ms, which is well below the delay bound of 150 ms
that can be tolerated by telephony and video applications.

We attribute the increased packet delivery delay in MRD
to the fact that there were a significant number of frames
that required retransmissions. In the design of the MRDC,
we assumed an in-order packet delivery service and added
a re-order buffer at the MRDC (Section 4.3). Whenever a
retransmission is required, the reorder buffer blocks subse-
quent packets from being forwarded and increases the packet
delivery delay for all of them.

Another source of delay comes from the losses of MRD-
ACKs in the reverse channel, which delays the trigger to
retransmit a packet. Also, the user space implementation of
the MRDC is inefficient as interrupts and user space buffer-
ing can add delays in generating and sending MRD-ACKs.

7.3 Stationary Experiments
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Figure 11: A diagram that illustrates the relative
positions of the transmitter C and the receivers R1
and R2 in the stationary experiments.

We evaluate the performance of MRD in a scenario where
all nodes are stationary, using the setup depicted in Fig-
ure 11. The parameters and methods we use for the station-
ary experiments are the same as the mobile experiments,
except that we use a stationary desktop transmitter instead
of a mobile one. Also, our measurements for the stationary
experiments were collected before we introduced our mod-
ifications to the Madwifi autorate algorithm in Section 5.
Thus, the autorate results presented in this section under-
state the performance of the MRD system. Nevertheless,
our results provide an interesting comparison of the system
operating under different situations.

7.3.1 Throughput Performance

Figure 12(a) shows the throughput averaged over 5 tri-
als for the stationary experiments. We ran different exper-
iments using two different fixed bit-rates (36 and 48 Mbps)
and using the standard rate adaptation algorithm (Auto)
implemented in the Madwifi WLAN driver. The figure
shows that the MRD schemes at fixed bit-rate of 48 Mbps
performed better than all other schemes. The dashed lines
marks the maximum 802.11a UDP throughput for a fixed
bit-rate 36 and 48 Mbps links, which are 23 and 27 Mbps
respectively. The MRD throughput is between 94.4% and
96.6% of the maximum UDP throughput at 48 Mbps. De-
spite the extra overhead of transmitting MRD-ACK packets,
MRD-R1 increases throughput over R1 by 54.6% at the fixed
bit-rate of 48 Mbps, while MRD-R2 improves throughput
over R2 by 20.2% at 48 Mbps. Similar to the mobile exper-
iments, both MRD-R1 and MRD-R2 achieved very similar

| Experiment | FL | FR | FRss | FRrc |
MRD-R1 | 0.359 | 0.895 | 0.694 | 0.200
MRD-R2 | 0.354 | 0.958 | 0.819 | 0.139

Table 4: Frame loss and recovery rates of the mobile
experiments.

throughput results. This again suggests that the perfor-
mance of MRD is relatively insensitive to the choice of active
AP.

Under autorate (Auto), the throughput gains by MRD-R1
and MRD-R2 diminish to 3.7% and 8.1% respectively. One
reason for the diminished gains is that the stationary MRD
experiments used the unmodified version of the autorate al-
gorithm. The algorithm ignores information from the MRD-
ACK, so it adapts its bit-rate based only on the observed
loss rate of the link-layer transmissions to the active AP.
Consequently, the algorithm selects a suboptimal bit-rate.
For example, Figure 12(b) shows that MRD-R2 (Auto) se-
lected 36 Mbps roughly 70% of the time even though our
fixed rate experiments shows that it could achieve a high
throughput at 48 Mbps.

We believe that the MRD throughput results would im-
prove if we used the modified autorate algorithm for MRD
in our stationary experiments. The potential throughput
performance could be as high as (if not higher than) the
48 Mbps fixed rate MRD experiments, which improved
throughput by 9% to 16% over R1 Auto and R2 Auto.

Another reason for the diminished gain is that the chan-
nel was relatively stable in our stationary experiments. Al-
though the frame loss rate was substantial at 48 Mbps, there
was almost no loss at 36 Mbps. Thus, the throughput for
R1 and R2 is lower bounded at the 36 Mbps bit-rate and
caps the maximum achievable throughput gain for MRD.

7.3.2 Source of Improvement

We analyze the sources of improvement for the 48 Mbps
fixed bit-rate stationary experiments and summarized the
results in Table 4. The active APs in the stationary experi-
ments observed similar frame loss rates to the ones observed
in the mobile experiments but the frame recovery ratio is
much higher. It ranged between 90% — 96% for stationary
compared to 50% — 57% for mobile. There were also a larger
number of frames recovered by frame combining in the sta-
tionary experiments.

We found that the total number of frame combining at-
tempts was proportionately similar to the mobile experi-
ments. It represents 37% and 25% of the total number of
frames that were not successfully received by the active AP
in MRD-R1 and MRD-R2. Thus, the increased number of
frame combining recoveries were due to a large decrease in
frame combining failure rate. Indeed, the frame combining
error rate py was about 45% in both sub-experiments, which
is a large drop from the 80% in the mobile experiments.

Like the mobile experiments, the average ps drops dra-
matically if the frame were subdivided into smaller blocks.
Our simulation shows that py = 17% for Np = 91 (i.e.,
B = 16 bytes). At the same time, Agyc. remains low for the
successfully combined frames: the 95th percentile Agyc. for
Np =91 is 10.

7.3.3 Delay Performance
We repeat the delay analysis in Section 7.2.3 for the sta-
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jitter above the minimum one-way packet delivery time.

tionary experiments. Figure 12(c) shows the delay jitter
distribution for the fixed and autorate experiments. Com-
pared to the mobile experiments, MRD delivered packets
with a lot smaller delay because it was able to recover al-
most all corrupt frame transmissions to the active AP. As
a result, the stationary experiments required much fewer
frame retransmissions than in the mobile experiments. Our
stationary experiments show that MRD delivered 99% of the
successfully received frames within 20 ms.

Finally, we observe a long tail in delay jitter (but only
representing a tiny fraction of the transmitted packets) for
the single radio communication schemes that last up to
several hundred milliseconds. This is mostly an artifact
of handling retransmissions in the driver, where kernel
interrupts can happen in between retransmissions. We
suspect that the long tails arise from packets that require a
large number of retransmissions because such packets may
experience more interrupts from the kernel than packets
delivered with fewer or no retransmissions. The MRD
scheme does not have the heavy tail delay distribution
because it successfully delivers packet with a lot fewer
(re)transmissions.

In summary, we found that MRD produced through-
put gains in both mobile and stationary experiments. In
our mobile experiments, we found that MRD was able to
increase throughput by 2.3x that of the best AP when only
a single radio is used. In our stationary experiments, MRD,
at a fixed bit-rate of 48 Mbps, the throughput improvement
is less impressive but still significant, between 9% and 16%.

8. DISCUSSION

In the previous section, we observed that MRD provided
a much larger performance gain in the mobile experiments
than the stationary experiments. Indeed, MRD performed
consistently well in both environment. However, we believe
that the large gains in the mobile experiments is mostly ac-
centuated by the inability for Madwifi’s autorate algorithm
to adapt to a rapidly and immensely varying channel in the
mobile experiments, despite our efforts in tuning the algo-

rithm to work better in Section 5.

It is likely that the single radio communication scheme can
work better if we had used a different autorate algorithm.
In fact, we can use the results from the previous section to
show this is the case. Table 3 and Figure 9(b) show that the
frame loss rate to the active AP in MRD-R1 was 35% and
that MRD-R1 selected a bit-rate of at least 24 Mbps over
90% of the time. Multiplying 1 — F LR with the the effective
througput of the 24 Mbps (17.8 Mbps) bit-rate yields 11.6
Mbps. Thus, we could have fixed the bit-rate to 24 Mbps
for the single radio mobile experiment (R1) to improve the
performance by 1.4x over Madwifi’s autorate algorithm.

We are not suggesting that a fixed bit-rate should be used
for rapidly and immensly varying channels: selecting an op-
timal fixed bit-rate for such a channel still requires an au-
torate algorithm. We wish to use the example to motivate
the following open questions: 1) Could other existing au-
torate schemes (e.g., RBAR [14], AARF [19], MiSer [26],
OAR [28], SampleRate [9]) be used to improve performance
in our mobile experiments? 2) Can we design an autorate
algorithm that performs well under a variety of channel
conditions (e.g., mobile and stationary) in a real environ-
ment? These are challenging open questions but we have
demonstrated—using real-life experiments—that we can use
MRD, where appropriate, to address these challenges.

As mentioned in Section 6, the MRDS needs to assume
control over the scheduling of retransmissions and thus,
we need to disable the wireless interfaces’ firmware from
performing automatic retransmissions to avoid redundancy.
However, performing software-based retransmissions in the
driver also has the side effect of disabling the exponential
backoff controlled by the firmware. To make a fair per-
formance comparison between communication schemes, we
used software-based retransmissions (and thus, disabling ex-
ponential backoff) in all of our experiments, which indicated
that our Multi-Radio Diversity system made substantial
throughput improvement over single radio communication
schemes in lossy channels.

However, we acknowledge that the relative throughput im-
provement by MRD may be reduced when exponential back-



off is enabled. That is because the link layer increases the
backoff window whenever a client fails to successfully trans-
mit a data frame to the target receiver (i.e., the active AP)
at the link layer. In our current design, the link layer is obliv-
ious to MRD. Even if the data frame is recovered through
soft selection or frame combining, the link layer may not
reduce the contention window (which is what CSMA does
when the link-layer tranmission succeeds). Consequently,
the backoff window may increase unnecessarily and reduce
MRD’s performance.

Conceivably, we can alleviate the problem by creating an
interface that allows MRD to inform the link layer back-
off mechanism about the results of frame recovery at the
MRDC. Designing a backoff control algorithm that can
adapt to MRD’s error recovery results is an interesting open
problem.

Despite the above caveat, MRD effectively reduces frame
losses and the total number of transmissions required to de-
liver a packet, without increasing the nominal frame trans-
mission time as in other existing approaches like using low-
ering data rates or employing forward error correction.

9. RELATED WORK

The idea of coordinating multiple radios in wireless LANs
has recently received considerable attention. The authors
in [8] proposed to embed multiple radios on a single de-
vice for better energy and mobility management, capac-
ity enhancement, and avoiding channel failures. A system
that uses fine grained path selection (FGPS) that switches
transmissions from among a set of nearby access points was
demonstrated to effectively reduce path dependent losses in
WLANS [23] and to improve the quality of video streaming
applications [22]. FGPS takes advantage of path diversity at
the transmit side of the system. MRD compliments FGPS
to reap the benefit of path diversity at the receive side of
the system.

Diversity reception is a common technique used to miti-
gate the effects of fading, and interference in wireless sys-
tems. Almost all WLAN devices have embedded more
than one antenna that gets selected based on packet loss
rates. Recently, the IEEE incorporated a more advanced an-
tenna diversity technique Multiple-Input Multiple-Output
(MIMO) [24] into the physical layer specifications of their
next generation WLAN devices known as 802.11n [33]. In
general, this class of techniques, known as microdiversity,
are tightly integrated with the physical layer and mostly
help in mitigating path-dependent effect localized at one re-
ceiver. In contrast, the MRD WLAN operates above the
physical layer and may be used to collect data frames re-
ceived by radios distributed across different access points
at different locations; thus, our system achieves diversity at
the macro level. Furthermore, a WLAN operator can build
a MRD WLAN using 802.11n hardware to exploit the path
diversity gains at different scales.

Coded Division Multiple Access (CDMA) cellular phone
networks have long used macrodiversity to improve perfor-
mance and to provide seamless handoff between base sta-
tions [27]. Both [20] and [31] applied the idea to use macro-
diversity and frame combining on frames received from ad-
jacent access points to improve uplink WLAN performance
in the same way as MRD. However, [20] presents simulated
results based on a capture model and ignores protocol level
issues such as ARQ. The contributions of [31] lie in the the-

oretical performance evaluation in the context of a WLAN
based on Bluetooth [10] radios. In contrast, our contribu-
tions lie in the design of a macrodiversity system that works
well in CSMA-based WLANs and conducting an extensive
performance study of a fully implemented receiver macrodi-
versity on a real 802.11 testbed.

The idea of recovering a frame by combining it with a
retransmitted version was first proposed in [30] and then
further analyzed in [12, 13]. Hybrid ARQ is an extension
of this technique, which combines forward error correction
(FEC) and retransmission to recover unsuccessful transmis-
sions [21]. Although numerous hybrid ARQ schemes are
available, we chose block-based combining because it has the
advantage that 1) there is no encoding and inserts no extra
bits into the packet for error correction, 2) it uses hard deci-
sion (i.e., it performs correction using only the received data
bits without requiring extra information from the physical
layer), and consequently 3) the algorithm is easy to imple-
ment. A scheme proposed in [7] use collaborative decoding
to improve link reliability. The scheme is complex and re-
quires the receivers to exchange soft decision estimates of
each data symbol, which is not accessible from any wireless
device on market today.

A method that uses 802.11’s request-to-send(RTS)/clear-
to-send(CTS) control packets to convey the results of packet
combining is proposed in [12]. Because RT'S/CTS is required
for every transmission, the proposed method will produce
much more overhead than our RFA protocol.

Like MRD, multi-user diversity [17] and medium-access
diversity [16] also exploit the fact that losses at different re-
ceivers occur independently. In both techniques, an AP has
a queue of packets destined for different clients and attempts
to improve network performance by scheduling transmis-
sions to the client receiver that has the best channel con-
dition in a given moment. In contrast to MRD, the tech-
nique requires explicit receiver selection and channel quality
feedback from each receiver. These requirements are nec-
essary for the usage scenario where the receivers are not
inter-connected by a high bandwidth back channel which
MRD relies upon.

10. CONCLUSION

MRD wuses wireless path diversity to improve loss re-
silience in wireless local area networks (WLAN). It coor-
dinates wireless receptions among multiple radios—either
co-located on the same device or distributed across different
access points in the WLAN infrastructure—to increase loss
resilience against path-dependent corruptions in the wireless
medium. Using multiple radios, MRD performs frame com-
bining, which attempts to correct bit errors by combining
corrupt copies of data frames received by each radio in our
system. Because losses are often independent among dif-
ferent receivers, which allowed MRD to achieve significant
improvement in loss rates.

Our experiments in an in-building testbed using commod-
ity PCs and 802.11a/b/g wireless interfaces demonstrate
throughput gains of up to 2.3x that of single radio com-
munication schemes, with the corresponding one-way delay
bounded to 35 ms for 95% of the delivered packets.

From the experience we gathered in building and evalu-
ating MRD, we discovered a number of performance opti-
mizations such as marking packets for low-latency and out-
of-order delivery, and sharing MRD feedback with the link-



layer to improve rate adaptation and contention window ad-
justments. We plan to pursue to design and integrate these
optimizations to further improve the performance of MRD
in the future.
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