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Abstract

Consider a communications network consisting of mobiles, each of
which can be scheduled to serve as a receiver and/or transmitter. There
are random external data processes arriving at some of the mobiles, each
destined for some set of destinations. Each mobile can serve as a node in
the possibly multi-hop path from source to destination. At each mobile the
data is queued according to the source-destination pair until transmitted.
Time is divided into small scheduling intervals. The capacity or quality
of the connecting channels are randomly varying due to the motion of the
mobiles and consequent scattering. At the beginning of the intervals, the
channels are estimated via pilot signals and this information can be used
for the scheduling decisions. The issues are the allocation of transmis-
sion power and/or time, bandwidth, and perhaps antennas, to the various
queues at the various mobiles in a queue and channel-state dependent way
to assure stability and good operation. Lost packets might or might not
have to be retransmitted. The decisions are made at the beginning of the
scheduling intervals. In a recent work, stochastic stability methods were
used to develop scheduling policies for the simple system where there is a
single transmitter communicating with many mobiles. The resulting con-
trols were readily implementable and allowed a range of tradeoffs between
current rates and queue lengths, under very weak conditions. Here the
basic methods and results are extended to the network case. The choice
of Liapunov function allows a choice of the effective performance criteria.
All essential factors are incorporated into a “mean rate” function, so that
the results cover many different systems. Because of the non-Markovian
nature of the problem, we use the perturbed Stochastic Liapunov func-
tion method, which is designed for such problems. Extensions concerning
acknowledgments, multicasting, non-unique routes, and others are given
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to illustrate the versatility of the method, and a useful method for getting
the a priori routes is discussed.

keywords: Scheduling in stochastic networks, randomly-varying link capaci-
ties, mobile networks, stochastic stability, stability of networks with randomly
varying links, routing in ad-hoc networks, perturbed stochastic Liapunov func-
tions,

1 Introduction

Consider a network of M mobiles (to be referred to as nodes). There are S
external sources that create bursty data processes. Each one sends its data to its
unique origin node in the network, and the data is to be sent through the network
to a destination node. Until Section 4 the destination node for each source will
be unique. Some of the mobiles can act as intermediate nodes in the possibly
multi-hop connections between sources and destinations. The routing is a priori
fixed for each of the source-destination pairs. A useful method for getting such
a priori routes is discussed in the final section. The route for each source-
destination pair need not be unique, and will not generally be so if the links
are subject to failure. Comments on the few changes needed for the non-unique
route case are discussed in Section 4. At each mobile the data is queued, until
transmitted, in an infinite buffer depending on the source-destination pair. The
issues are the allocation of transmission power and/or time and bandwidth to
the various queues at the various mobiles in a queue and channel-state dependent
way to assure stability and good operation. Time is divided into small scheduling
intervals. The capacities of the connecting channels are a correlated random
process, possibly due to the motion of the mobiles and consequent scattering.
At the beginning of the intervals, the capacities (or surrogates such as the S/N
ratios) are estimated where possible via pilot signals and this information is
used for the scheduling during that interval. The resource allocation decisions
are made at the beginning of the intervals. Such an approach greatly improves
the performance [1]. An origin node for one source might be an intermediate
node for another. This ties the analysis for all nodes together. Owing to the
random nature of the arrival and channel processes, the computation or even
the existence of stabilizing policies is not at all obvious. The approach is a
network extension of the development for the one-node case in [4].

Owing to the usually non-Markovian nature of these processes,1 classical
stability methods cannot be used, and a perturbed Liapunov function method
[4, 8] is adapted to obtain stabilizing scheduling policies. Loosely speaking,
with this method, and X denoting the vector of queue values at all the nodes
(all data quantities are measured in packets), one starts with a basic Liapunov
function V (X) that works for a special type of “mean flow” system. Then one
seeks a perturbation δV (n) to this basic Liapunov function so that V (X(n)) +
δV (n) can be used as a Liapunov function for the actual non-Markov physical

1For example, Rayleigh fading is not Markovian, but will satisfy the assumptions.
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system and imply the desired stability. Analogously to the usual “stability
method” procedure that is used to get controls, the controls are determined
by “approximately” minimizing the (conditional expectation, given the current
data) of the rate of change of the basic (not the perturbed) Liapunov function
along the random path. The algorithm is readily implemented. For notational
simplicity, the development uses a basic Liapunov function that is a polynomial
which is the sum of terms, each depending on only one component of the state of
the queue. This seems adequate, but strictly convex separable functions can also
be used. See the comments below. The basic result is that, if a certain “mean
flow” or fluid approximation process is stable, then so is the physical system
under our scheduling rule. This stabilizability of the mean flow approximation
can often be readily verified. It will be argued that the condition is “nearly”
necessary as well.

To illustrate the versatility of the approach, a sampling of extensions are dis-
cussed in Section 4. Up to that section, it is not required that acknowledgments
of receipt be sent to the source, and it is shown there how to include the failure
to receive an ack. Under broad conditions, if the probability of packet loss on
the path for source i is pi, then the path must be able to handle a “mean flow”
that is 1/(1− pi) greater, to account for the retransmissions. Multicasting and
non unique routes are discussed, as is the case where there is “opportunistic”
scheduling, where channels become available depending on the need of priority
users. Some channels might be unavailable on random intervals due to other
uses or breakdowns. Various cases where the number of users varies randomly
can also be handled.

Let the (n + 1)st scheduling interval be called the nth slot. The time ar-
gument (n) denotes the beginning of the nth slot, and is referred to as “time
n.” Let Xi,k(n) denote the queue size at time n at node k of data coming from
source i. If node k is not on the path for source i, then Xi,k(n) ≡ 0. Define the
vectors Xk(n) = {Xi,k(n), i ≤ S} and X(n) = {Xk(n), k ≤M}, with canonical
values Xk and X, resp. The basic Liapunov function will be2

V (X) =
∑
i,k

wi,kX
p
i,k, p ≥ 2, (1.1)

where the wi,k ≥ 0 are weights. More generally, one could use powers de-
pending in i, k, with the same end result. The form V (X) =

∑
i,k Vi,k(Xi,k),

where the Vi,k(·) are strictly convex non-negative functions, whose first deriva-
tive (with respect to Xi,k) DVi,k(Xi,k) is o(Vi,k(Xi,k)) and second derivative
is o(DVi,k(Xi,k)) can be used. One can choose the functions, for example, to
model upper bound constraints on some queues. The choice of the functions
and powers allows a variety of tradeoffs between queue size and throughput. We
use (1.1) since the notation is simpler. But the development is parallel for the
other cases, and the same conditions would be used.

2In analogy to what was done in [4] one could use the form
∑

i,k
wi,k[Xi,k + hi,k]pi,k ,

where pi,k ≥ 2, hi,k ≥ 0. In this paper, due to the greater notational complexity due to the
network formulation, we prefer to compute with a simpler Liapunov function (1.1)
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Part of the interest in stability is that it assures a robustness of behavior to
small changes in the system. For this reason, as well as because {X(n)} is rarely
Markovian, it is preferable to use methods that do not require Markovianness.
The perturbed Liapunov function method is a powerful tool for checking such
robustness since it does not require Markovianness. Generally, there are many
criteria that are of interest to each of the users, e.g., mean delay and variance
of delay. One should experiment with the form of the Liapunov function to
see what the tradeoffs are between competing criteria, a procedure that yields
better results than simply working with a single fixed rule, whatever it is, and
this variety is facilitated by the wide choice of possibilities for the functions
V (X).

There is much good work on scheduling in the face of various types of ran-
domness. But very little is available on scheduling for the general network case
when the channels are randomly varying in a non-trivial way. For the one-node
case, if the rate of transmission is proportional to power, then [1, 10] gets rules
for power allocation whose form is similar to ours when p = 2 (and are called
“max weight” rules there), and which are based on stability considerations. The
method uses large deviations estimates and the setup is Markovian. The refer-
ence [13] considered the problem of dynamic power allocation when the channels
are time-varying. But, since their channel-rate and data-arrival processes are
all i.i.d. sequences, the range of applications is very small.

The papers [2, 3] deal with related problems, again essentially for one-node
systems. There is a set of parallel processors, and the connectivities between
the sources and the processors (but not the outgoing channels) vary randomly.
They prove results concerning the limit (as t→∞) of (queue length at t)/t, and
show that (under appropriate conditions) this limit is zero. This is used to show
that the integral of the “rates” of transmission per unit time converges. Such
a result does not imply stability of the queue length process, since it can grow
sublinearly. They allocate a single resource (e.g., bandwidth) and the rate is
proportional to the allocation. Their proof is much more complicated than that
here. Our proof could be easily adapted to that problem, with the definition
of stability to be used here. See comments on non-unique routing in Section 4.
The work [12], for a one node model, has a Markovian channel-state process,
the data input sequence is i.i.d., and a “complete resource pooling” condition
is required. The decision rule is the same as ours for a quadratic Liapunov
function. The emphasis is on stability in the heavy traffic limit, and showing
how the problem simplifies there. See also [5] for a stability analysis as the
heavy traffic regime is approached.

2 Definitions and Assumptions

We refer to the queue for source i at node k as queue (i, k). If the path for source
i does not use node k, then the queue does not exist. Let k denote a canonical
node, and f(i, k) the node that the queue of source i at node k feeds to after
leaving node k. I.e., queue (i, k) feeds to queue (i, f(i, k)). If node k is the final
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destination for source i data, then terms involving f(i, k) are ignored. Let b(i, k)
denote the node that queue i at node k is fed from. I.e., queue (i, b(i, k)) feeds
to queue (i, k). If node k is the origin node for source i, then terms involving
b(i, k) are ignored. Let Fn denote the minimal σ-algebra that measures all of
the systems data up until time n as well as the channel state in slot n. Recall
that this channel state is assumed to be available at time n, the beginning of
the nth slot. Let En denote the expectation conditioned on Fn. For simplicity
of terminology, we say that the packets sent in slot n are sent at time n. Let
di,k(n) denote the number of packets sent from queue (i, k) at time n. It will
depend on the channel state at that time and will be a function of the resources
(e.g., power, frequency, bandwidth) allocated to that queue. It is zero if node k
is not on the path for source i. Let ai,k(n) denote the actual random number of
arrivals in slot n from the exterior, if any, from source i at node k. These will
be non-zero only for the unique node k(i) at which source i enters the network.

Stability: Definition. Owing to the non-Markovianess, an appropriate
definition of stability is a “uniform mean recurrence time” property, as follows.
This is the definition used in [4]. Suppose that there are 0 < q0 < ∞ and a
real-valued function F (·) ≥ 0 such that the following holds: For any n, and
σ1 = min{k ≥ n : |X(k)| ≤ q0}, we have3

En [σ1 − n] ≤ F (X(n))I{|X(n)|≥q0}. (2.1)

Then the system is said to be stable. The definition implies recurrence to some
compact set. If |X(n)| reaches a level q1 > q0, then the conditional expectation
of the time required to return to a value q0 or smaller is bounded by a function
of q1, uniformly in the past history and in n. This implies that the sequence
{X(n)} is tight or bounded in probability (see, for example, [8, Theorem 2,
Chapter 6]).4 It is worth noting that the right side of (2.1) depends only on
X(n). It does not depend on any other data, even though there is a conditional
expectation En on the left side, and the channel and arrival processes are random
and correlated.

The decision rule. The number of packets transmitted from queue (i, k) in
slot n is di,k(n), and this depends on the fundamental resources that are com-
mitted; e.g., power, bandwidth, time, etc. The assignments are always subject
to constraints. These might simply be bounds on the total power available at
a node or on the number of packets than can be sent in a slot, in which case
the determination of the di,k(n) for all i can be made at node k. If the con-
straints involve more than one node (e.g., if neighboring nodes cannot use the
same carrier frequency in narrowband communications), then the assignments
require coordination among the nodes.

Following the idea in classical stability-control theory, the idea is to choose
3σ1 = ∞, unless otherwise defined.
4A sequence {Xn} is bounded in probability if limκ→∞ supn P{|Xn| ≥ κ} = 0.
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the di,k(n) that attains (subject to constraints)

min
{di,k;i,k}

[EnV (X(n+ 1))− V (X(n))]

as well as possible. To motivate the form of the decision rule, let us evaluate
EnV (X(n+ 1))− V (X(n)). We have

wi,k

[
EnX

p
i,k(n+ 1)−Xp

i,k(n)
]

= wi,kX
p−1
i,k (n)

[
−di,k(n) + Enai,k(n) + di,b(i,k)(n)

]
+ terms of order (p− 2) in Xi,k(n).

Summing over i and k yields, modulo terms of order p − 2 in X(n) and the
“arrival” terms,

−
∑
i,k

[
wi,kX

p−1
i,k (n)− wi,f(i,k)X

p−1
i,f(i,k)(n)

]
di,k(n) (2.2)

or, equivalently,

−
∑
i,k

wi,kX
p−1
i,k (n)

[
di,k(n)− di,b(i,k)(n)

]
. (2.3)

The lower order terms in Xi,k(n) are nonlinear functions of di,k(n) and higher
conditional moments of the ai,k(n), and would be much too hard to deal with.
It turns out, as in [4], that is is enough to work with the term that is first order
in the decisions, which are just the terms in (2.2) and (2.3).

If the decisions are made independently at each node k, then our decision
rule (for each node k) is a maximizer in

max
{di,k(n):i}

∑
i

[
wi,kX

p−1
i,k (n)− wi,f(i,k)X

p−1
i,f(i,k)(n)

]
di,k(n), (2.4)

subject to the constraints at node k. If there are constraints that involve the
decisions at a set of nodes, then the decisions for the nodes in such a set must
be made together, and decision rule is a maximizer in

max
{di,k(n);i,k}

∑
i,k

[
wi,kX

p−1
i,k (n)− wi,f(i,k)X

p−1
i,f(i,k)(n)

]
di,k(n), (2.5)

or in
max

{di,k(n);i,k}

∑
i,k

wi,kX
p−1
i,k (n)

[
di,k(n)− di,b(i,k)(n)

]
. (2.6)

It is always understood that the maximizations in (2.4), (2.5), or (2.6) are
subject to whatever constraints there are.

V (X) is rarely a Liapunov function for the system since X(n) is rarely
Markovian, so classical stochastic stability theory [7] cannot be used directly.
However the perturbed Liapunov function method [4, 8, 9] allows us to show,
under very reasonable conditions, that the maximizing rules (2.4), (2.5), or (2.6)
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yield a stable system. The appropriate perturbations to the Liapunov function
will be given in the next section.

Let Lk(n) denote the (vector) set of channel states, at time n, of all of
the channels originating at node k. It is the channel state for the set of links
{(i, k), (i, f(i, k)) : all i using node k}. For example, if there are Nk possible
links from node k to other nodes, then Lk(n) is an Nk-vector, and at node k,
the canonical channel state j is also an Nk-vector. Lk(n) could be just the set of
S/N ratios at the receiver corresponding to unit transmitted power, or it might
be some other indicator of capacity, or it might indicate that no information is
available. It is notationally convenient to work with the vector Lk(n), rather
than with the individual links, since the decisions at each node k depend on the
states of all of the outgoing links. Lk(n) might denote other quantities besides
the channel quality. For example, there might be power constraints that vary
randomly due to interference issues from exogenous sources. These could be
included in the Lk(n). If some link at node k is unavailable at time n, then that
fact could also be included in Lk(n). For notational simplicity, we suppose that
the range of values of the channel state vector is a finite set for each node k.
We use the (vector-valued) symbol j for the canonical value of Lk(n), for any
k, n. The range of the variable j will depend on the node k in question, and,
for simplicity, will not be specified in the notation.

Let ui,k(j,X) denote the control function at queue i at node k. It represents
the allocated resources (power, time, bandwidth, etc.) at queue (i, k). Also,
unless otherwise noted, its dependence on the queues is only on Xk and the
required queue values at the immediate upstream nodes, namely the Xi,f(i,k)

for all i. If source i does not use node k, then ignore ui,k(j,X). The con-
trol ui,k(j,X) determines the amount of data that is sent. Let the function
gi,k(j,Xi,k, ui,k(j,X)) denote the actual amount of data that is sent from queue
(i, k) under channel state j and control ui,k(·). This defines di,k(n); i.e., the
channel rate for queue (i, k) associated with current channel state j = Lk(n)
and control ui,k(j,X(n)) is di,k(n) = gi,k(j,Xi,k(n), ui,k(j,X(n))). The Xi,k ap-
pears as an argument of gi,k(·) only because the amount sent cannot be larger
than the queue content.

Assumptions. The following assumptions are network analogs of those used
in [4] and will be commented on after being stated. (A2.4) basically requires
that there are controls under which the mean service rate at queue (i, k) for any
i that uses node k is slightly greater than λ̄a

i for all (i, k). Similar conditions
occur frequently in studies of stability in stochastic networks.

A2.1. There are constraint sets Uk such that {ui,k(j,X), i ≤ S} ∈ Uk. It is
always assumed that the maximizing constrained di,k(n) exist and are Borel
functions of the {X(n), Lk(n), i, k}.

A2.2. There is a constant K1 such that for all i, En|ai(n)|p ≤ K1. There are
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λ̄a
i,k such that, for all i, the sums

δV a
i,k(n) =

v∑
l=n

[
Enαi,k(l)− λ̄a

i,k

]
converge as v →∞, uniformly in n, ω.

The λ̄a
i,k, which we call the mean external data arrival rate for source i at

node k, is zero if node k is not the source node for source i. For future use, write
λ̄a

i = λ̄a
i,k(i) the mean input rate for source i (measured in packets per slot).

A2.3. For each node k there are Πk,j ≥ 0 such that
∑

j Πk,j = 1 and∑v
l=n

[
EnI{Lk(l)=j} −Πk,j

]
converges as v →∞, uniformly in n, ω.

A2.4. DefineK0 = maxi,k,j,u,X gi,k(j,Xi,k, ui,k(j,X)). There is a control {ũi,k(·); i, k}
such that the following holds under it. There are {q̃j

i,k; i, k} such that q̃j
i,k =

gi,k(j,Xi,k(n), ũi,k(j,X(n))) ifXi,k(n) ≥ K0. 5 Also, gi,k(j,Xi,k(n), ũi,k(j,X(n))) ≤
q̃j
i,k if Xi,k(n) < K0. The q̃j

i,k satisfy

q̄i,k =
∑

j

q̃j
i,kΠk,j > λ̄a

i . (2.7)

Comments on (A2.1)–(A2.3). (A2.1) states only that there are constraints
on the resources and allocations. (A2.2) and (A2.3) are simply mixing condi-
tions on the data arrival and channel processes, resp., and do not appear to be
restrictive. For example, let Πk,j in (A2.3) denote the steady state probability
of channel state j at node k. Then (A2.3) says that the conditional probability
of state j at time l given the data to time n converges to the steady state value
as l− n→∞, and that this convergence is fast enough for the sum to exist. It
holds for the the received signal power associated with Rayleigh fading. Sup-
pose that at node k, there are Nk possible links out, with the channel states
in the links being mutually independent. Write the canonical channel state j
as the Nk-vector j = (j1, . . . , jNk

), with each jl taking finitely many values.
Then Πk,j is the product of the probabilities of the states of the individual Nk

channels. If the channel character of the individual links are determined by
the discretized S/N ratio resulting from, say, Rayleigh fading with unit signal
power, then the probabilities of the states of the individual links are obtained
from the associated stationary distribution. The condition (A2.2) is discussed
in [4]. It is shown there that it holds under broad conditions. Loosely speaking,
it is a quantification of the condition of asymptotic independence of the arrivals
in the distant future with those in the remote past.

5The lower bound K0 is introduced in (A2.4) only because if the queue content is smaller
than the maximum of what can be transmitted on a scheduling interval, then the mean
(weighed with the Πk,j) output might be too small to assure the −c0 value. For example if a
queue is empty, then there are no departures.
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Note on (A2.4). By the definition of the q̄i,k, for k 6= k(i), the origin node
for source i, we have q̄i,b(i,k) =

∑
j q̃

j
i,b(i,k)Πb(i,k),j . Define q̄i,b(i,k(i)) = λ̄a

i . It is

implied by (A2.4) that there is c0 > 0 such that the q̃j
i,k can be chosen to satisfy

λ̄a
i − q̄i,k(i) ≤ −c0, (2.8a)

and, for k 6= k(i),

average into (i, k)− average out of (i, k) = q̄i,b(i,k) − q̄i,k ≤ −c0 (2.8b)

See Section 5 for further discussion of the choice of the q̃j
i,k and the a priori fixed

routes.

Consider an example, where the control is over either power, bandwidth or
time within the slot and the rates are proportional to the allocated resources.
Let the allocated resource at (i, k) be denoted by Bj

i,k, let the constants of
proportionality be cji,k and let the associated rate be qj

i,k = cji,kB
j
i,k. There are

the available resource constraints
∑

iB
j
i,k ≤ Bk for each j, k, and the mean

throughput constraints
∑

j q
j
i,kΠk,j > λ̄a

i , all k. If there is a solution, then the
corresponding qj

i,k satisfy (A2.4).

3 Liapunov Function Perturbations and Proof

Motivational comment on the perturbed Liapunov function method.
Suppose that, for a random process {x(n)}, EnV (x(n+1))−V (x(n)) = cn, where
{cn} is a “mixing” random sequence. Let there is a constant c̄ < 0 such that
δVn =

∑∞
i=nEn[ci − c̄] is well defined and bounded. Define Vn = V (x(n∆)) +

δVn. Then EnδVn+1−δVn = −(cn− c̄) and EnVn+1−Vn = cn− [cn− c̄] = c̄ < 0.
Thus, with the use of the perturbation we have replaced cn by a “mean.” The
perturbed Liapunov function method is a development of this idea. It is applied
as follows. Start by evaluating EnV (X(n + 1)) − V (X(n)). This will contain
terms depending on the random arrivals and random channel states. Then add
terms δV (n) which are small relative to V (X(n)), but such that in

En[V (X(n+ 1))− V (X(n))] + En[δV (n+ 1)− δV (n)]

the “bad” terms are cancelled and replaced by “averages,” modulo terms that
are suitably dominated.

The perturbations. We will now define the Liapunov function perturbation
δV (n). This will be a sum of terms, one corresponding to each input process
and one corresponding to the input and one to the output of each queue. The
motivation for the structure of the perturbations should be apparent from the
way that they are used in the proof. Additional motivation is in [5, 8]. Recall
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that k(i) denotes the arrival node for data from source i. The perturbations for
the arrival terms are

δV a
i,k(n) = wi,kX

p−1
i,k (n)

∞∑
l=n

En

[
ai,k(l)− λ̄a

i,k

]
. (3.1)

By the definitions, this is zero if k 6= k(i).
Keep in mind that the channel state j is a vector and that for node k it

denotes the canonical state of the set of channels on the forward links, those
from the (i, k) to (i, f(i, k)) for all i that use node k. In (3.2), we define two sets
of perturbations. The first one (δV d,+

i,k,j(n)) is concerned with the effects of the
departure of packets from a queue (i, k) on the value of EnX

p
i,k(n+1)−Xp

i,k(n),
when the channel state at node k is j, and under the “reference” rates q̃j

i,k of
(A2.4). The second one (δV d,−

i,k,j(n)) is concerned with the effects on this value
of the inputs to (i, k) from queue (i, b(i, k)), when the channel state at node
b(i, k) is j, and under the “reference” rates q̃j

i,b(i,k). Define

δV d,+
i,k,j(n) = −wi,kX

p−1
i,k (n)q̃j

i,k

∞∑
l=n

En

[
I{Lk(l)=j} −Πk,j

]
,

δV d,−
i,k,j(n) = wi,kX

p−1
i,k (n)q̃j

i,b(i,k)

∞∑
l=n

En

[
I{Lb(i,k)(l)=j} −Πb(i,k),j

]
.

(3.2)

Finally, define the Liapunov function perturbation δV (n) and the full time-
dependent Liapunov function Ṽ (n) as

δV (n) =
∑
i,k

δV a
i,k(n) +

∑
i,k,j,±

δV d,±
i,k,j(n),

Ṽ (n) = V (X(n)) + δV (n).
(3.3)

Theorem 3.1. Under (A2.1)–(A2.4) the system is stable.

Proof. The details are more complicated than those for the single node case
due to the network structure. The function Ṽ (n) is the (time-varying) Liapunov
function that is to be used. We need to show that is has the supermartingale
property for large queue state values; i.e, that there is c < 0 such that EnṼ (n+
1) − Ṽ (n) ≤ −c when |X(n)| is large enough, and then that this inequality
together with the bounds on the perturbations imply (2.1).

As usual in stability proofs, the first step is to evaluate

EnṼ (n+ 1)− Ṽ (n) =
∑
i,k

wi,kEn

[
Xp

i,k(n+ 1)−Xp
i,k(n)

]
+

∑
i,k

En

[
δV a

i,k(n+ 1)− δV a
i,k(n)

]
+

∑
i,k,j,±

En

[
δV d,±

i,k,j(n+ 1)− δV d,±
i,k,j(n)

]
.
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This will be done component by component, and then the results added. In the
course of adding the components, many “undesirable” terms will be cancelled
and replaced either by averages or by terms that can be suitably dominated.
This is the key to the effectiveness of the method. Below, by “terms of order
(p−2)” we mean terms that are bounded by K|X(n)|p−2 +K for some constant
K.

For the main component (1.1), a first order Taylor expansion yields∑
i,k

wi,kEn

[
Xp

i,k(n+ 1)−Xp
i,k(n)

]
=∑

i,k

wi,kX
p−1
i,k (n)

[
Enai,k(n)− di,k(n) + di,b(i,k)(n)

]
+ terms of order (p− 2).

(3.4)
Now consider the “arrival” component (3.1) for node (i, k). Note that, if k

is the origin node for source i data, then a first order expansion yields

EnδV
a
i,k(n+1)−δV a

i,k(n) = −wi,kX
p−1
i,k (n)

[
Enai,k(n)− λ̄a

i,k

]
+terms of order (p−2).

Thus,∑
i,k

En

[
δV a

i,k(n+ 1)− δV a
i,k(n)

]
= −

∑
i,k

wi,kX
p−1
i,k (n)

[
Enai,k(n)− λ̄a

i,k

]
+ terms of order (p− 2).

(3.5)

For future reference, note that by adding (3.4) and (3.5), the wi,kX
p−1
i,k (n)Enai,k(n)

terms are cancelled, and the mean value term wi,kX
p−1
i,k (n)λ̄a

i,k term and an “er-
ror” term of order p−2 appear. The error term will be dominated by the terms
of order p−1 for large values of the queue state. The replacement of the random
arrival term by its mean value is crucial and was the main motivation for the
form of the perturbation (3.1).

Now deal with the “departure” perturbation that is the first term in (3.2).
This will eventually help to “average” the di,k(n) term in (3.4). By the defini-
tions,

En

[
δV d,+

i,k,j(n+ 1)− δV d,+
i,k,j(n)

]
=

−wi,kEnX
p−1
i,k (n+ 1)q̃j

i,k

∞∑
l=n+1

En+1

[
I{Lk(l)=j} −Πk,j

]
+wi,kX

p−1
i,k (n)q̃j

i,k

∞∑
l=n

En

[
I{Lk(l)=j} −Πk,j

] (3.6)

By splitting off the lowest summand from the sum in the last line, this expression
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can be written as

wi,kX
p−1
i,k (n)q̃j

i,k

[
I{Lk(n)=j} −Πk,j

]
−wi,kEnX

p−1
i,k (n+ 1)q̃j

i,k

∞∑
l=n+1

En+1

[
I{Lk(l)=j} −Πk,j

]
+wi,kX

p−1
i,k (n)q̃j

i,k

∞∑
l=n+1

En

[
I{Lk(l)=j} −Πk,j

]
.

(3.7)

Writing Xp−1
i,k (n+ 1) = Xp−1

i,k (n) + [Xp−1
i,k (n+ 1)−Xp−1

i,k (n)] and expanding the
bracketed term yields the representation of (3.7)

En

[
δV d,+

i,k,j(n+ 1)− δV d,+
i,k,j(n)

]
= wi,kX

p−1
i,k (n)q̃j

i,k

[
I{Lk(n)=j} −Πk,j

]
+ terms of order (p− 2).

(3.8)

Analogously, one can show that

En

[
δV d,−

i,k,j(n+ 1)− δV d,−
i,k,j(n)

]
=

−wi,kX
p−1
i,k (n)q̃j

i,b(i,k)

[
I{Lb(i,k)(n)=j} −Πb(i,k),j

]
+ terms of order (p− 2).

(3.9)
Adding all terms in (3.4), (3.5), (3.8), and (3.9), and cancelling where pos-

sible yields

EnṼ (n+ 1)− Ṽ (n) =
∑
i,k

wi,kX
p−1
i,k (n)λ̄a

i,k

+
∑
i,k

[
−wi,kX

p−1
i,k (n)di,k(n) + wi,kX

p−1
i,k (n)di,b(i,k)(n)

]
+

∑
i,k,j

wi,kX
p−1
i,k (n)q̃j

i,k

[
I{Lk(n)=j} −Πk,j

]
−

∑
i,k,j

wi,kX
p−1
i,k (n)q̃j

i,b(i,k)

[
I{Lb(i,k)(n)=j} −Πb(i,k),j

]
+ terms of order (p− 2).

(3.10)

Separate out the terms in the middle three lines of (3.10) that do not involve
the Πk,j variables, getting

−
∑
i,k

wi,kX
p−1
i,k (n)

[
di,k(n)− di,b(i,k)(n)

]
+

{ ∑
i,k

wi,kX
p−1
i,k (n)

∑
j

[
q̃j
i,kI{Lk(n)=j}

]
−

∑
i,k

wi,kX
p−1
i,k (n)

∑
j

[
q̃j
i,b(i,k)I{Lb(i,k)(n)=j}

] }
.

For each k, the indicator functions in the sums over j merely pick out the current
channel state j = Lk(n) or Lb(i,k)(n), as appropriate. Hence, we can rewrite the
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last expression as

−
∑
i,k

wi,kX
p−1
i,k (n)

[
di,k(n)− di,b(i,k)(n)

]
+

∑
i,k

wi,kX
p−1
i,k (n)

[
q̃

Lk(n)
i,k − q̃

Lb(i,k)(n)

i,b(i,k)

]
.

(3.11)

Suppose, for the moment, that all Xi,k(n) ≥ K0. Then, by (A2.4) there is a
resource allocation {ũi,k(·)} such that, for each state j, the output from queue
(i, k) will be q̃j

i,k = gi,k(j,Xi,k(n), ũi,k(j,X(n))). Since the di,k(n) are chosen
either by the maximization rule (2.4) (which is implied by both (2.5) and (2.6)),
or by the rules (2.5) or (2.6) (which are equivalent), and the q̃j

i,k outputs defined
in (A2.4) are not necessarily maximizers in (2.6), the expression (3.11) is non-
positive. Using this fact in (3.10) together with the definition of q̄i,k in (A2.4)
yields the following upper bound to (3.10):∑

i,k

wi,kX
p−1
i,k (n)

[
λ̄a

i,k − q̄i,k + q̄i,b(i,k)

]
+ terms of order (p− 2).

(3.12)

By (2.7), the terms in the brackets in the first line of (3.12) are ≤ −c0 < 0.
Thus we have proved that

EnṼ (n+ 1)− Ṽ (n) ≤ −c0
∑
i,k

wi,kX
p−1
i,k (n) +O(|X(n)|p−2), (3.13)

We also have
|δV (n)| = O(|X(n)|p−1) (3.14)

and, by (3.13),

EnṼ (n+ 1)− Ṽ (n) →∞, uniformly in n as X(n) →∞. (3.15)

By (3.15), there are c1 > 0 and q0 > 0, such that, for |X(n)| ≥ q0,

EnṼ (n+ 1)− Ṽ (n) ≤ −c1. (3.16)

Given small δ > 0, (3.14) implies that for q0 sufficiently large,

|V (X(n))− Ṽ (n)| ≤ δ(1 + V (X(n)). (3.17)

Let σ0 be a stopping time for which |X(σ0)| = c2 > q0, and define the stopping
time σ1 = min{n > σ0 : |X(n)| ≤ q0}. Then, by (3.16), we have

Eσ0 Ṽ (σ1)− Ṽ (σ0) ≤ −c1Eσ0 [σ1 − σ0]. (3.18)

Using (3.18) and the bound (3.17) on Ṽ (n) − V (X(n)) to bound Ṽ (σi) −
V (X(σi)), i = 0, 1, yields

−δEσ0 [1 + V (X(σ1))] + Eσ0V (X(σ1))

≤ Eσ0 Ṽ (σ1) ≤ −c1Eσ0(σ1 − σ0) + [δ + V (X(σ0))(1 + δ)]
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or

Eσ0(σ1 − σ0) ≤
2δ + V (X(σ0))(1 + δ) + δEσ0V (X(σ1))

c1
,

which implies that the definition of stability (2.1) holds since V (X(σ1)) ≤
sup|x|≤q0

V (x).
Now, let us complete the details when some components ofX(n) are less than

K0. The required adjustments are minor. Recall the definition of ũi,k(·) and q̃j
i,k

in (A2.4). Define g̃i,k(Lk(n), X(n)) = gi,k(Lk(n), Xi,k(n), ũi,k(Lk(n), X(n))).
ForXi,k(n) ≥ K0 we have g̃i,k(Lk(n), X(n)) = q̃

Lk(n)
i,k . Otherwise g̃i,k(Lk(n), X(n))

is smaller. By adding and subtracting identical terms, rewrite (3.11) as follows.

−
∑
i,k

wi,kX
p−1
i,k (n)

[
di,k(n)− di,b(i,k)(n)

]
+

∑
i,k

wi,kX
p−1
i,k (n)

[
g̃i,k(Lk(n), X(n))− g̃i,b(i,k)(Lb(i,k)(n), X(n))

]
+

∑
i,k:Xi,k(n)≥K0

wi,kX
p−1
i,k (n)

[
q̃

Lk(n)
i,k − g̃i,k(Lk(n), X(n))

]
+

∑
i,k:Xi,k(n)<K0

wi,kX
p−1
i,k (n)

[
q̃

Lk(n)
i,k − g̃i,k(Lk(n), X(n))

]
−

∑
i,k

wi,kX
p−1
i,k (n)

[
q̃

Lb(i,k)(n)

i,b(i,k) − g̃i,b(i,k)(Lb(i,k)(n), X(n))
]

Just as for the case where all Xi,k(n) ≥ K0, the sum of the first two lines is
non-positive, since the di,k(n) are chosen by the maximization rule. The third
line is zero since the terms in the brackets are zero, by the definition of the
g̃i,k when Xi,k(n) ≥ K0. Also, by (A2.4), the bracketed terms in the last line
are non-negative, hence the last line is non-positive. Thus the only possible
positive line is the fourth, and this is O(1) since it is a sum over i, k for which
Xi,k(n) ≤ K0. Thus (3.11) is O(1). The rest of the details are as for the case
where all Xi,k(n) ≥ K0.

Comments. The rule (2.4) requires that each node k know the value of the
Xi,k(n) and Xi,f(i,k)(n) for all i that use node k. It is easily seen that the value
of Xi,f(i,k)(n) need only be known approximately at node k. Suppose that node
k knows it subject to a bounded error, random or not. Then the proof still
goes through under the same conditions. So, we need only have an occasional
approximate estimate of the queues at the upstream nodes. The theorem asserts
stability. But the quantities q0, δ, c1 all depend on the values of the sums in
(A2.2) and (A2.3) and on the excess capacity of the system as quantified by c0.
If the rate of mixing of the channel process is very slow, then the queues will
often have very large excursions, despite the fact of stability. The channel state
can have “fast” and “slow” components, provided that (A2.3) hold. Suppose
that no information is ever available on a channel. Then its state is constant,
and the probabilistic information that is available will be the basis of the coding.
Consider the possibility that some links are preempted by priority users from
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time to time, where the intervals of availability are defined by a renewal process
that is independent of the arrival and channel rate processes. Then it can be
shown that the results continue to hold, but with the q̄i,k multiplied by the
fraction of time that the channel is available, so the capacity must be sufficient
to handle the down times. See also the comments concerning non-unique routes
in the next section.

Under the other assumptions, (A2.4) is sufficient but not necessary for stabil-
ity, but it is “nearly” necessary in the following sense. Suppose that for each al-
lowable choice of the {q̃j

i,k}, there is some (i0, k0) such that q̄i0,b(i0,k0)−q̄i0,k0 > 0.
Then the system is not stable.

4 Extensions

The basic idea has useful extensions in many directions. Only a few will be
described, in order to illustrate some of the possibilities. It is also possible to
model situations where the number of users and destinations vary randomly or
routes change randomly.

1. Acknowledgments of packet receipt required. The discussion up to
this point supposed that if a packet were lost, then it would not be retrans-
mitted, an assumption that is common in discussions of ad-hoc networks (eg.,
[6]). Suppose that packets that are not acknowledged within an appropriate
interval must be retransmitted. We can include in such non-acks packets that
are believed to have too many decoding errors. In the most general case, the
loss process for packets leaving any given node will depend on the traffic in
the channels that are travelled, the channel characteristics, the contents of the
upstream buffers and the delays. Taking all of this into account in the analysis
is very difficult. Because of this one often supposes that the loss is largely a
consequence of uncontrolled traffic and imposes a predetermined loss model.

Starting from the last observation, we will take the following common ap-
proach. Acks of received packets at the destination are sent through the network
to the source node. It is supposed that these are always received. (Otherwise,
the packet is assumed to be lost.) We are assuming that acks go to the ori-
gin node. An alternative is to suppose that transmissions on all links must be
acknowledged. The development is essentially the same for both cases. We
use the origin node since the notation is simpler. In particular, if an ack for
a source i packet, originating at node k = k(i), is not received there within a
(source-destination-dependent) delay of Wi,k scheduling intervals, then it must
be retransmitted. The development in Section 3 is readily modified to account
for the losses and ack requirement. 6

Let ζi,k(n) denote the fraction of the packets transmitted from (i, k) at time
n−Wi,k that were not acknowledged by time n and must be readded to queue
(i, k) and retransmitted. This addition takes place during the nth slot, and so

6One could use a more detailed model that accounts for the reduction in the intermediate
queues due to a loss. In effect, we obtain an upper bound to the necessary increase in capacity.
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the ζi,k(n) are not known until time n + 1. If k 6= k(i) then set ζi,k(n) = 0.
Suppose that the loss process (i.e, non-receipt of an ack) within the desired
windows is random. The ack processes are thus mutually independent and
independent of the channel states, queue lengths, decisions, and arrivals, and
iid for the packets from each source. Augment Fn by adding the ack/no-ack
processes up to but not including time n. Thus it measures {ζi,k(l); i, k, l < n}
but not ζi,k(n). Define pi,k = Enζi,k(n) = Eζi,k(n). Thus pi,k = 0 if k 6= k(i). It
is useful to keep the k subscript to simplify the representations of various sums
that will appear.

Taking into account the packets that need to be retransmitted, the queue
dynamics are

Xi,k(n+ 1) = Xi,k(n) + ai,k(n)− di,k(n) + di,b(i,k)(n) + di,k(n−Wi,k)ζi,k(n),

Xp
i,k(n+ 1) = Xp−1

i,k (n)
[
−di,k(n) + di,b(i,k)(n) + di,k(n−Wi,k)ζi,k(n)

]
+Xp−1

i,k (n)ai,k(n) + terms of order (p− 2).
(4.1)

The new consideration is the di,k(n −Wi,k)ζi,k(n) term and this must be ac-
counted for in the construction of the perturbation. The new component of the
perturbation is

δV W (n) =
∑
i,k

pi,kwi,kX
p−1
i,k (n)

n−1∑
m=n−Wi,k

di,k(l). (4.2)

This component will help us deal with averaging the increases in the source
queue due to acks not arriving in time. Since Enζi,k(n) = pi,k, we can write

En[V (X(n+ 1))− V (X(n))] + En[δV W (n+ 1)− δV W (n)]

=
∑
i,k

wi,kX
p−1
i,k (n)

[
Enai,k(n)− di,k(n) + di,b(i,k)(n) + pi,kdi,k(n−Wi,k)

]
+

∑
i,k

pi,kwi,kX
p−1
i,k (n) [di,k(n)− di,k(n−Wi,k)]

+terms of order (p− 2),
(4.3)

where the second line is the dominant (highest order) term in EnV (X(n +
1)) − V (X(n)), and the third line is the dominant term from the expansion of
En[δV W (n + 1) − δV W (n)]. Note that the terms with di,k(n − Wi,k) in the
second and third lines cancel each other. This was the motivation for the form
of the perturbation component (4.2).

The appropriate decision rule is (2.4), (2.5), or (2.6) with di,kwi,kX
p−1
i,k mul-

tiplied by 1− pi,k: I.e., replace (2.4) by

max
{di,k(n):i}

∑
i

[
wi,kX

p−1
i,k (n)di,k(n)(1− pi,k)− wi,f(i,k)X

p−1
i,f(i,k)(n)di,k(n)

]
.
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For use below, note that, if k is the origin node for source i, then di,b(i,k)(n) = 0.
Define the new perturbed Liapunov function

Ṽ W (n) = V (X(n))+δV W (n)+
∑
i,k

δV a
i,k(n)+

∑
i,k,j

(1−pi,k)δV d,+
i,k,j(n)+

∑
i,k,j

δV d,−
i,k,j(n),

(4.4)
where we recall that pi,k = 0 if k 6= k(i). Then, using (4.3), (3.5), (3.8), and
(3.9),

EnṼ
W (n+ 1)− Ṽ W (n) =

∑
i,k

wi,kX
p−1
i,k (n)λ̄a

i,k

+
∑
i,k

[
−(1− pi,k)wi,kX

p−1
i,k (n)di,k(n) + wi,kX

p−1
i,k (n)di,b(i,k)(n)

]
+

∑
i,k,j

(1− pi,k)wi,kX
p−1
i,k (n)q̃j

i,k

[
I{Lk(n)=j} −Πk,j

]
−

∑
i,k,j

wi,kX
p−1
i,k (n)q̃j

i,b(i,k))
[
I{Lb(i,k)(n)=j} −Πb(i,k),j

]
+ terms of order (p− 2).

The second line is due to (the non-arrival parts of) the second and third lines
of (4.3). The third line is due to δV d,+

i,k,j(n) and the fourth line to δV d,−
i,k,j(n).

Dominating terms as in the part of the proof of the theorem concerning (3.11)
yields the following upper bound to the last expression:∑

i,k

wi,kX
p−1
i,k (n)

[
−(1− pi,k)q̄i,k + q̄i,b(i,k)

]
+ terms of order (p− 2),

where we define q̄i,b(i,k(i)) = λ̄a
i , where k(i) is the origin node for source i. Keep

in mind that pi,k > 0 only for k = k(i).
The net effect of the loss if packets is: for the same input rates, the channel

along the path for source i must be able to handle a mean rate flow that is
increased by a factor of 1/(1− pi,k(i)).

The assumed independence of the queue-length processes and the process of
node k(i) not receiving an ack from the final destination for source i, within the
Wi,k(i) intervals, is questionable. But the same approach can be used for the
case where acks for each link are required. Then (A2.4) is modified to require
that, for each (i, k), (1 − pi,k(i))q̄i,k(i) > λ̄a

i , and, for k 6= k(i), (1 − pi,k)q̄i,k ≥
(1− pi,b(i,k))q̄i,b(i,k), where pi,k is now defined to be the probability of loss of a
packet on the link from node k to node f(i, k) and the losses on the individual
inks are mutually independent.

2. Non-unique routes. Up to now, we have supposed that the route from
source to destination is unique. The results are readily extendable to the case
where several different routes can be used. The main differences are notational.
If node k is on some route for source i, then packets in queue (i, k) might be
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sent to and/or received from several different nodes. The term di,k(n) previously
denoted the amount to be sent from queue i at node k, to the unique upstream
node f(i, k). Replace di,k(n) and f(i, k) by di,k,α(n) and f(i, k, α), resp., where
the index α denotes the canonical upstream node and takes values in a set
that depends on (i, k) and is known at node k. Analogously, replace b(i, k) by
b(i, k, β), where β indexes the possible nodes that can transmit to queue (i, k).
The index β takes values in a set that depends on (i, k) and is known at node
k.

Define ui,k,α(·), ũi,k,α(·), gi,k,α(·) and q̃j
i,k,α analogously to the definitions

without the α. Replace (2.4) by

max
{di,k.α(n);i,α}

∑
i,α

[
wi,kX

p−1
i,k (n)− wi,f(i,k,α)X

p−1
i,f(i,k,α)(n)

]
di,k,α(n),

subject to the constraints at node k. Condition (A2.4) needs to be modified as

q̄i,k =
∑
i,k,α

qj
i,k,αΠk,j > λ̄a

i .

Lk(n) still denotes the set of channel states of all possible links out of node
k. For each node k and its channel state vector value j, the decision rule
will make a unique (or indifferent) allocation of resources among the possible
outgoing links. The method of Section 5 for getting the a priori routes might
yield multiple routes for some source-destination pairs.

An important case where non-unique routes are useful is where the links
can break down, be preempted by priority users, or be severely impaired from
time to time. A special case is that of random connectivity as in [2, 3]. Let us
incorporate these variations in the process Lk(·) and suppose that (A2.3) holds.
Then, under the other conditions, appropriately modified as noted above, the
stability results hold.

3. Multicasting. Suppose that some sources have multiple destinations, with
a unique route for each source-destination pair. Let the route network for each
source form a tree, with the source as the root and the final destinations as the
end branches. Suppose that if the tree branches at node k, then transmissions
must be done to all of the branches simultaneously. Redefine f(i, k, γ) to index
the forward nodes for queue (i, k), where γ indexes the next nodes in the tree.
Then (2.4) is replaced by

max
{di,k(n):i}

∑
i,γ

[
wi,kX

p−1
i,k (n)−

∑
γ

wi,f(i,k,γ)X
p−1
i,f(i,k,γ)(n)

]
di,k(n),

subject to the constraints at node k. Modify (2.5) and (2.6) analogously. The
criterion (A2.4) is modified in an obvious manner to take account of the new
flows.

4. Randomly available frequencies: Opportunistic frequency alloca-
tion. Consider the problem where there is a set (say, F ) of available carrier
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frequencies, and these must be assigned to the mobiles in a way that precludes
interference between other nodes transmitting at the same frequencies. This
requires a centralized control. Of particular interest is the so-called “oppor-
tunistic” frequency scheduling, where several frequencies have a priority assign-
ment to other users, but they are available to the controlled users when not
required by the priority ones. They will be available on random intervals. The
frequency availability process could be incorporated into the definition of the
channel processes {Lk(·), k} and (2.5) or (2.6) used. The frequency assignments
will vary randomly due to the random periods of availability. The perturbed
Liapunov function method can be used to “average” the frequency assignments
and use the associated mean approximation to prove that the rules (2.5) or
(2.6) are stabilizing. Our main interest is the illustration of the definition and
use of the perturbations. So, for simplicity, let us suppose that a node can be
assigned at most one carrier frequency in each slot and that it, in turn, can
be assigned to its links, it in any way that is consistent with the coding and
modulation limitations. The frequency assignments are made a priori in some
fair way, and each node knows well in advance if it will be assigned a particular
frequency at a specific time, if that frequency will be available. The availability
is the random part. Hence the a priori frequency assignments can be supposed
to be independent of the channel and queue values. If a node cannot use an
assigned frequency due to empty queues at that time, then it can be reassigned
to another node.

Let us spell this out in a little more detail. Let ψm
k (n) denote the indicator

function of the event that frequency m has been a priori assigned to node k for
use at time n. First suppose that there are ψ̄m

k , the average fraction of time
that frequency m is available and is assigned to node k, such that the sums

∞∑
l=n

En

[
ψm

k (l)I{Lk(l)=j} − ψ̄m
k Πk,j

]
are well defined and bounded uniformly in n, ω. Functions gm

i,k(·) and um
i,k(·)

are defined analogously to gi,k(·) and ui,k(·), resp., and are the outputs and
controls, resp., when frequency m is assigned to (i, k). Suppose that there are
allowable outputs {q̃m,j

i,k ; i, k,m, j} such that Condition (A2.4) holds with the
definition q̄i,k(X) =

∑
j,m q̃m,j

i,k Πj,kψ̄
m
k ,

Replace the set of perturbations {δV d,+
i,k,j(n); i, j, k} by a set {δV d,m,+

i,k,j (n); i, j, k,m},
where

δV d,m,+
i,k,j (n) = wi,kX

p−1
i,k (n)q̃j,m

i,k

∞∑
l=n

En

[
ψm

k (l)I{Lk(l)=j} − ψ̄m
k Πk,j

]
,

with analogous replacements for the set {δV d,−
i,k,j(n); i, j, k}. Then it can be

shown that the theorem continues to hold.
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5 An A Priori Routing Selection

Various approaches to getting the a priori routes have been suggested; for ex-
ample, minimal hop routes, selecting the next node to be the one closest to
the destination, or averaging the channels and then selecting a minimum power
route. None of these account for the random variations in the channels nor
are sufficiently sensitive to the total power requirements. A potentially useful
approach for getting the routing and the ũ(·) functions is based on a type of
fluid controlled-flow approximation. In applications the algorithm would be run
periodically to produce acceptable routings as conditions change. For the pur-
pose of of exposition we concentrate on one simple situation. The example is
intended to be illustrative of the possibilities only.

Suppose that power only is to be allocated and that any received packet
must have a given minimum signal to noise ratio. We allow that the routing for
each source-destination pair is not necessarily unique and they might depend
on the channel states. The development below gets a routing. But, given the
routing, the decision rules (2.4), (2.5), or (2.6) are used and for each (i, k, j,X)
will yield a unique choice of outgoing link, subject to random selection due to
ties. Since we are concerned only with getting the routings, we need only deal
with flows when all the queue levels are large.

Let qj
i,k,m denote the number of packets scheduled to be sent per slot from

queue (i, k) to queue (i,m) at node m when the channel state is j. Suppose
that there are upper bounds Qk such that for each j, k,∑

i,m

qj
i,k,m ≤ Qk. (5.1)

This constraint reflects the fact that each packet takes a fixed time, and the slot
duration is fixed. Suppose that, for the connection from queue (i, k) to node m
under channel state j, each packet must have pj

i,k,m units of energy to attain
the minimum required S/N ratio at the receiver at m. Suppose that each node
k has a constraint of the form∑

i,m

pj
i,k,mq

j
i,k,m ≤ Pk, each j, (5.2)

where Pk is the total energy/slot available at node k.7 8

We also need a constraint that assures that the average output for each
non-source node equals the average input, and we write this as follows, for each
i, k:

out =
∑
m,j

qj
i,k,mΠk,j ≥

∑
l,j

qj
i,l,kΠl,j = in . (5.3)

7If the constraint is over average power, then use
∑

i,m,j
pj

i,k,m
qj
i,k,m

Πk,j ≤ Pk.
8Since qj

i,k,m
might be positive for more than one value of m for some (i, k, j), the func-

tions ui,k(·) and gi,k(j, X, ui,k) and the ũi,k(·), q̃j
i,k

of (A2.4) are replaced by ui,k,m(·) and

gi,k,m(j, X, ui,k,m), and ũi,k,m(·), q̃j
i,k,m

, resp. Then, for large queue levels we can suppose

that q̃j
i,k,m

= ũi,k,m(j, X) = gi,k,m(j, Xi,k, ũi,k,m(j, X))= qj
i,k,m

.
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If node k(i) is the input node for source i, then replace (5.3) by

out =
∑
m,j

qj
i,k(i),mΠk(i),j = λ̄a

i + ε. (5.4)

The (arbitrarily small) ε > 0 is used to assure slight overcapacity so that (A2.4)
will hold and the stability argument of Theorem 3.1 can be used. Suppose that
c(i) is the destination node for source i. Then to assure that all packets end up
where they are intended, for each i use the constraint∑

k,j

qj
i,k,c(i)Πk,j = λ̄a

i + ε. (5.5)

Any flows qj
i,k,m that satisfy the constraints (5.1)–(5.5) will yield an accept-

able a priori route. But it makes sense to select one via an optimization problem.
One reasonable cost criterion is the total average power given by∑

i,k,m,j

pj
i,k,mq

j
i,k,mΠk,j . (5.6)

Minimize (5.6), subject to (5.1)–(5.5). The above approach to getting the a
priori routes might yield a distributed flow for some sources. However, given
these routes, the maximization rules (2.4), (2.5), or (2.6), still work. At any
node k, we queue all of the packets for each source i together. Replace (2.4) by

max
{di,k,m(n);i,m}

∑
i

[
wi,kX

p−1
i,k (n)− wi,f(j,i,k,m)X

p−1
i,f(j,i,k,m)(n)

]
di,k,m(n),

where for each i, j, k, f(j, i, k,m) indexes the links for which qj
i,k,m > 0 and

di,k,m(n) is the amount sent to node m. The proof of Theorem 3.1 requires the
slight modification discussed in the note concerning non-unique routes in the
previous section.

For multicasting, simply use (5.5) for all destination nodes for source i.

Comment. In any application, to get feasible routes and q̃j
i,k or q̃j

i,k,m, one must
use the correct relations between the resources and the rates, and (5.2) and (5.6)
appropriately modified, as might be required. The optimization criterion (5.6)
is reasonable. However, for an alternative criterion that might be of interest,
rewrite (5.3) as ∑

m,j

qj
i,k,mΠk,j −

∑
l,j

qj
i,lkΠl,j = bi,k,

where bi,k > 0. With appropriate definitions, this can be made to include
(5.3) and (5.4). Then maximize

∑
i,k bi,k, or, alternatively, seek maxmini,k bi,k

where the max is over all feasible solutions. This approach will get routes
and q̃j

i,k,m that yield the best c0 in (A2.4). In addition, the dual variables
associated with the constraints provide “price” guidelines, that tell us the places
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where an increase in the resources would do the most good (in the sense of the
mathematical programming formulation). Constraints on the minimal distance
between communicating nodes can be added if we are concerned with routes
with too many hops.

Comment on bandwidth allocation. Suppose that the basic control is
over bandwidth allocation, with the number of packets/slot being proportional
to bandwidth as qj

i.k,m = bji,k,mp
j
i,k,m, where the pj

i,k,m are the constants of
proportionality and bji,k,m is the assigned bandwidth.. There would be a total
BW constraint of the form

∑
i,m bji,k,m ≤ Bk at each node, replacing (5.2). The

input-output constraints (5.3), (5.4), and (5.5), are still to hold. To get the
routes, one could minimize the total average bandwidth:∑

i,k,m,j

bji,k,mΠk,j .
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