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ABSTRACT

Multidisciplinary studies of the particle cycle were carried out during
two cruises in July-August and November-December 1979 at 5°N 82°W in
the Panama Basin as part of the Sediment Trap Intercomparison Experiment
(STIE) and Composition, Flux and Transfer Experiments (C-FATE). Measure-
ments included: primary production; new production; hydrography; nutrient
distributions; 12-kHz echo sounding; macrozooplankton biomass and group
abundances; microzooplankton group abundances; vertical distributions,
chemistry, and morphology of suspended and sinking particulate matter;
and vertical particulate matter fluxes.

Comparisons were made among particle fluxes determined by several means.
Size distributions of fecal matter and fecal pellets determined an
samples from the Large Volume <n-situFiltration System (LVFS) were used
in settling models to calculate vertical particle fluxes. These results
were compared with fluxes estimated from measurements of new production,
with fluxes determined by short-term deployments of sediment traps in
the upper 300m, and with fluxes recorded by moored time-series traps
at 1268m.

Previous C-FATE results had shown that the rates of primary production
and new production are determined by the physical and chemical environ-
ment of the euphotic zone at this Tlocation. Results presented here
indicate that new production and particle flux are 1in balance in the
euphotic zone on the time scale of days. The data also demonstrate that
particulate matter distributions, chemistry and fluxes in the water
column extending from the euphotic zone to 1000m are closely related
to rates of primary production and new production in the euphotic zone.
Finally, the data show that the vertical particle flux gradient in the
upper 1000m is determined by the instantaneous distributions, feeding
activities, and migratory behaviour of zooplankton and fish present

in the water column.
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1. INTRODUCTION

Particulate matter production, sinking and decomposition is a major process which causes
non-conservative behaviour of many stable and radioactive chemical species 1in the ocean.
The major source of particulate matter to the upper ocean is photosynthetic activity in
the euphotic zone which is usually restricted to the upper 100m. The major agents of particle
decomposition in the oceanic water column are bacteria, zooplankton, and nekton (invert-
ebrates and fish). Furthermore, the sinking of fecal material at hundreds of meters per
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day is a major mode of transport of chemical species from the euphotic zone to the deep
ocean (FOWLER and KNAUER, 1986). Zooplankton and nekton resident in the deeper water column
are responsible for the transformation, consumption and repackaging of particles (ANGEL,
1984), and therefore play a major role in determining the release sites of particle bound
elements in the deep sea. Thus, the cycling of many chemical species is closely tied to
biological activity in the water column.

The rates of particle formation and destruction are governed by processes which occur over
a large range of time scales. For example, rates of particle formation by photosynthesis
are closely linked to the physical and chemical environments of the euphotic zone. Events
that affect production may be as short as tens of minutes (the passage of internal waves
within the euphotic zone which causes modulation of light, or entrainment of nutrients into
the euphotic zone due to internal wave breaking) or may be as long as months (seasonal up-
welling). Factor of two changes in the euphotic zone particle load are possible over 1
to 2 days because of the short growth time scales of phytoplankton. In contrast to phyto-
plankton producers, the growth time scales of the particle consumers (zooplankton and fish)
co-vary with organism size, and range from days to months (SHELDON, PRAKASH and SUTCLIFFE,
1972). Exceptions to this rule are some of the gelatinous zooplankton which have growth
time scales as short as one day (ALLDREDGE, 1984). Because of the different growth time
scales of particle producers and consumers, the efficiency and zones of particle recycling
in the upper 1000m will be dependent on the instantaneous balance between rates of food
production in the euphotic zone and the biomass distributions and activities of feeders
in the oceanic water column. These considerations suggest that particulate matter flux
at depth will vary temporally as well as spatially but not as a simple function of the pri-
mary productivity of overlying waters.

Time-series sediment trap observations below 1000m have provided an important first-order
understanding of the temporal variability of particle flux to the deep sea (DEUSER and ROSS,
1980; HONJO, 1984;  ITTEKKOT, DEGENS and HONJO, 1984). None of these studies included a
simultaneous characterisation of water column hydrography or biological activities and had
to rely on historical data for interpretations of temporal variations in flux. Only recently
has the linkage of deep particle fluxes to mixed layer depth and temperature been described
where both kinds of data were simultaneously determined (DEUSER, 1986).

Short-term studies of the particle cycle in upper water column using drifting sediment traps
and large volume in-situ filtration have provided evidence that particle distributions and
flux are closely related to the physical and chemical environment of the euphotic zone and
that particle flux varies non-linearly with primary production (BISHOP, KETTEN and EDMOND,
1978; BISHOP, COLLIER, KETTEN and EDMOND, 1980; BETZER, SHOWERS, LAWS, WINN, DUTULLIO and
KROOPNICK, 1984). These studies demonstrated that particle flux at a given depth is a greater
fraction of primary production as primary production increases. On the other hand, KNAUER,
MARTIN and KARL (1984) examined the relationship between particle flux and primary product-
ivity at 9 VERTEX stations and concluded that no such relationship could be found. They
suggested instead that particle flux should be closely related to new production, which
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is the fraction of primary production supported by nitrate ion entrained into the euphotic
zone (DUGDALE and GOERING, 1967). We know of no published studies in which particle flux
and new production have been measured in the same water column in order to test this hypo-
thesis. One reason for the disagreement over the relationship between primary production
and particle flux is that the few studies of particle flux in the upper 1000m have been
conducted have been widely dispersed over different seasons and oceanographic environments.
Another reason may be that the roles played by zooplankton and micronekton in the particle
cycle have been ignored (ANGEL, 1984).

Although processes important to the sinking, decomposition and repackaging of particulate

matter have been identified, few oceanic studies have been designed to learn either about

the rates at which these processes operate or about factors which control them, especially
in the upper kilometer of the ocean where large concentration gradients of dissolved non-

conservative chemical species are found. Gaining a knowledge of particle dynamics will

contribute to the understanding of the sources, reactions and sinks of these chemical species.
It will also help provide constraints on models of ocean circulation by providing better

source and sink terms for non-conservative dissolved species.  Furthermore, a knowledge

of the particle cycle will provide clues to the redistribution of many particle-reactive

anthropogenically produced compounds in the ocean.

Since the particulate matter contributing to the vertical flux in the upper 1000m has a
transit time of one week or less (FOWLER and KNAUER, 1986), it is possible to investigate
directly the linkages between rates of particle formation in the euphotic zone and particle
flux through the base of the euphotic zone during an oceanographic cruise. Furthermore,
it should be possible to establish the dependence of vertical particle flux gradient on
the activities and distributions of particle consumers in the water column.

An opportunity to conduct such investigations occurred during the Sediment Trap Intercom-
parison Experiment (STIE) which took place near 5°N 82°W in the Panama Basin between July
and December 1979 (Fig.1). The Composition Flux and Transfer Experiments {C-FATE) occurred
on the deployment (RV Knorr 73-17; July-August 1979) and recovery (RV Gilliss 7904/3;
November-December 1979) cruises of STIE. C-FATE was designed to complement STIE by measuring
water column primary production, hydrography, nutrient distributions, nephelometry, and
zooplankton distributions during the two cruises. New production measurements were made
by E. Renger and R. Eppley as part of the STIE during the July-August cruise and were used
by BISHOP and MARRA (1984) to model new production during the November-December cruise.

The site of the STIE/C-FATE experiment was in a narrow basin extending to nearly 4000m depth
at the base of the Coiba Ridge (Fig.1). Topography as shallow as 300m was found approxim-
ately 15km to the north and 25km to the south. Sills at depths of 3000 and 3500m close
the trough to the west and east, respectively. A 3km thick nepheloid layer extended from
the bottom of the trough to 900m indicating significant lateral inputs of particulate matter
from the walls of the trough (GARDNER, BISHOP and BISCAYE, 1984).
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FORSBERGH (1969} provides the only available summary of the climatology and biology of the
Panama Bight (defined as the area of the equatorial Pacific between 1° and 9°N and east
of 81°W) which lies to the east of the STIE/C-FATE location. In the Panama Bight, upwelling
and shallowest mixed layer conditions occur between January and March. Coincident with
these conditions are highest primary production rates and chlorophyll concentrations. Zoo-
plankton populations lag behind the phytoplankton, and double between January and March.
They increase by another 50% by June, thereafter they decline to minimum levels in November
and December. Fish harvest in the Bight generally parallels the zooplankton abundance
patterns.

BISHOP and MARRA (1984) have shown that the seasonal trends of primary production in the
Panama Bight and STIE area are similar. We therefore expected the temporal changes of zoo-
plankton and fish biomass in the STIE area would follow the trend established for the Panama
Bight.

The focus of this paper is to present an integrated study of the cycling of biogenic chemical
elements in the upper 1000m using STIE/C-FATE data. In the sections below we will describe
the hydrography (Section 3.1), chlorophyll distributions (Section 3.2), and primary product-
ivity of the STIE water column. The distributions of macrozooplankton, fish, and micro-
zooplankton (all major particle consumers) are described in Sections 3.3, 3.4 and 3.5 respec-
tively. Large volume in-situ Filtration System (LVFS) data are used to describe particulate
matter chemistry ({Section 3.6), abundances of fecal material (Section 3.7), and calculated
vertical fluxes (Sections 3.8 and 3.9). Comparisons are made between calculated vertical
particle fluxes and surface-tethered sediment traps deployed in the upper 100m and also
with time-series sediment trap collections at 1268m (Section 3.9). By extending the inter-
comparison of particle distributions and fluxes to include biological and physical data,
we will show: (1) that the physical and chemical environment of the euphotic zone determines
both the rate of particle production and the particle flux through the base of the euphotic
zone; and (2) that the distributions of particle consumers in the water column determine
the vertical gradient of particle concentration and flux.

2. METHODS

2.1 Large Volume in-situ Filtration

The LVFS is capable of filtering <n-situ up to 20,0001 of seawater through a filter series
consisting of acid-cleaned 53um Nitex mesh and two identical acid cleaned Tum Mead 935-BJ
glass fibre filters. These three filter samples are operationally described as the >53um,
1-53um and <1um size fractions (BISHOP and EDMOND, 1976). Since the particle collection
efficiency of the glass fibre filter drops sharply below 1um, the <1um fraction is non-
guantitative. Up to 4 such size-fractionated samples may be collected serially during a
LVFS cast and a three cast profile of the upper 1500m can be obtained in approximately 2 days
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of station time. The methodology of sample collection, treatment and analysis of LVFS
samples has been described by BISHOP, EDMOND, KETTEN, BACON and SILKER (1977) and by BISHOP
et al.(1978, 1980).

Recent (1981) calibrations of the LVFS flowmeter revealed mathematical error in the calib-
ration reported by BISHOP and EDMOND (1976). A1l LVFS data on particle concentrations and
fluxes published up to and including 1980 should be multiplied by a constant factor of 1.2
to correct for this error. Data from these publications discussed in this paper have been

corrected already.

The LVFS was used in an identical configuration to that described by BISHOP et aZ. (1980)
with the exception of the filterholders, which were modified by the addition of a 30cm dia-
meter, 60cm tall PVC cylinder to the top baffle plate of each filter holder. This addition
was intended to enhance the retention of particles on the 53um Nitex filters in conditions
of high turbulence.

During the STIE/C-FATE experiment, a total of 44 sampies of particulate matter were obtained
from the upper 1300m during 11 casts of the LVFS (Table 1, Fig.1). The telemetering of
flow meter data failed on the first and third LVFS casts during the November cruise. Volumes
filtered for the affected samples were estimated from total volume filtered for the four
samples of each cast and apportioned according to filtration time.

During a deep LVFS cast on each cruise, one filter set, exposed at depth but not used, was
used for blank purposes. Six samples were collected from 530m over a 24 hour period during
the July-August cruise to study the diel variability of particle distributions and fluxes.

The resulting samples have been analysed for dry weight and for the elements, Na, K, Mg,
Sr, Ca, Si, C, N and P (Table 2). The Na data have been used to correct results for Mg,
K, Ca and Sr in order to remove contributions from contamination by residual sea salt on
the filters. The >53um organic carbon concentration was estimated from the difference between
dry weight and the sum of inorganic constituents. The 1-53um Si concentration was estimated
by separate Niskin sampling and filtration of 2-10 1 samples through 0.4um Nuclepore filters
followed by Si analysis (BISHOP et al., 1977). High and variable major element blanks were
found in the glass fiber filters used during the July-August cruise. For this reason no
1-53um Mg and K data will be reported. The filter blank problem was completely eliminated
in subsequent sampling by adopting microquartz fiber filters instead of the glass fibre
filters (BISHOP, SCHUPACK, SHERRELL and CONTE, 1985).

LVFS prefilters were also analysed for fecal pellet and fecal matter abundances. Fecal
pellets can be classified into elliptical, spherical, and tubular shape categories (BISHOP
et al. 1980). Elliptical pellets had rounded ends and ranged in length from 50-500um with
length/width ratios ranging from 2-5. Spherical pellets were nearly spherical in shape.
Tubular pellets (Fig.2) were less dense (i.e. more optically transparent) than the others.
These ranged in length from several hundred um to nearly 4mm, and their widths ranged from
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FIG.2.

Polarised and unpolarised transmitted 1light photograph mosaic, of a
long tubular fecal pellet typical of those found in near surface waters
during the July-August cruise.
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25um to approximately 200um. Most fecal pellets occurred individually in the samples.

Subcategories of fecal pellet classification included characterisation of particle raggedness
optical density and birefringence. These sub-categories were used to assess respectively
pellet degradation and thus its potential for breakup during sedimentation, particle density

and calcium carbonate content.

Fecal matter (BISHOP et al.1980) is a class of macroscopic aggregates which have irregular
symmetry, range in size from 50um to 1cm and contain the same kinds of particles as found
in fecal pellets. This class of particles is a subset of the Targe macroscopic particles
observed by cameras (HONJO, DOHERTY, AGRAWAL and ASPER, 1984} and from submersibles (ALLLREDGE
and YOUNGBLUTH, 1985) described collectively as "marine snow".

Experiments to determine the efficiency of recovery of >1mm fecal pellets and fecal matter
by the LVFS as a function of flow rate indicated that it has a recovery efficiency of >30%
for these particle classes (BISHOP, 1982). Since smaller fecal pellets are more cohesive,
it is assumed that the LVFS is an efficient sampler for all classes of fecal material.

LVFS samples were enumerated for the two classes of fecal material and for phytoplankton
and microzooplankton groups in three steps. Two subsamples of each 53um Nitex filter were
prepared for light microscopy using a phenol/toluene wash treatment (BISHOP et al ., 1977)
The first subsample, representing approximately 1/60 of the sample, was counted at 250 x
for organism distributions (Table 3) and for >50um long fecal pellets and fecal matter.
The second subsample, comprising 1/30 of the sample, was enumerated for >100um fecal pellets
only. The third step was to count the whole 53um Nitex filter for abundances of >1mm long
material in the tubular fecal pellet and fecal matter categories. Size distributions of
fecal pellets and fecal matter from the three analyses were merged to provide a single data
set describing the abundances of these particles in the water column (Table 4); these were
used in flux calculations.

2.2 Flux Models

Two empirically derived settling models were used to calculate the fecal pellet and fecal
matter fluxes described in Section 3.8 (Table5). The relationship of KOMAR, MORSE, SMALL and FOWLER
{1981) was used to calculate fecal pellet fluxes. This model applies to the complete range
of fecal pellet sizes encountered on our samples:

2

Ws = 0.0790/n * Ap * g * d° * (d/w)_1'664 cm 5_1

(1

where Ws is the settling velocity of the particle, n is sea water viscosity, Ap is the density
contrast of the particle with sea water, g is acceleration due to gravity, d is particle

length, and w is particle width. Based on microscopic analysis of the different fecal pellet

classes, Ap was assigned a value of 0.3g cm'3 for elliptical and spherical pellets, 0.2g cm_3

3

for tubular pellets and 0.1g cm™~ for thin tubular pellets. These assumed densities, based
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on the transparency of the different groups of pellets, are consistent with those published
by KOMAR et al (1981).

Fecal matter fluxes were calculated using the empirical settling velocity relationship of
BISHOP et al.(1978, 1980):
Ws = 0.098/n *Ap * g * h *d* e 7+38d ey 57 (2)
h = 0.052d + 0.0045cm
A1l terms are the same as in Equation 1 with the addition of h for particle thickness and
d which is diameter of a disk having the same crossectional area as the particle. Ap of
fecal matter was assigned a value of 0.1g cm'1 based on measurements of particle density
by BISHOP et aZ (1978).

Recent studies have identified and characterised settling rates of particles which because
of their shape and morphology would be included in the fecal matter classification. ROBISON
and BAILEY (1981) measured settling rates of 1-5mm sized fecal matter from 6 species of
midwater fish in 5-27°C water. Their data for 5-10°C water showed settling rates ranging
from 0.2 to 1.3cm 3'1, whereas at warmer temperatures they ranged from 0.3 to 3.1cm 5_1,
demonstrating the fundamental importance of water viscosity in determining settling rates
of these particles. According to equation 2, 1-5mm sized fecal matter sinks at between 0.25 -
0.5cm s_1 through 7°C water. Thus, the midwater fish fecal matter studied by ROBISON and
BAILEY (1981) sank faster than predicted by Equation 2. BRULAND and SILVER (1981) measured
0.5-3cm s_1 sinking rates for salp fecal material. These rates also exceed those predicted
by Equation 2. In the same paper, however, they reported settling rates of doliolid fecal
material which were half those predicted by Equation 2. SILVER and ALLDREDGE (1981) measured
0.06-0.12cm 5'1 sinking velocities for marine snow, which are also much slower than predicted
by Equation 2. However, this later result is expected since the particles classified as
fecal matter have higher than average densities and are only a component of the marine snow
populations in the water column (BISHOP et al., 1977, 1980). Typical marine snow aggregates
are nearly transparent in transmitted Tight, whereas fecal matter is optically dense.

Many groups of gelatinous and non-gelatinous zooplankton, and nekton besides the few groups
described above are 1likely contributors to the fecal matter class of particles. Because
the predictions of fecal matter sinking velocities derived from Equation 2 are intermediate
between the observed rates for doliolid fecal material and those for salp and midwater fish
fecal material, and because Equation 2 was derived empirically from settling experiments
with particles of this class, we conclude that Equation 2 provides reasonable mean estimates
of fecal matter settling velocities.

Elemental fluxes for organic carbon, phosphorus, biogenic Si and Ca (Table 6) were calculated
using the compositional data for the >53um fraction corrected for contributions of organisms
to Si and Ca {BISHOP et al., 1980). The magnitude of error of each of these steps is diffic-
ult to assess but the aim of STIE was to compare calculated particle fluxes with fluxes
determined by sediment traps.
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2.3 Zooplankton

Zooplankton samples were collected during the July-August cruise using the Multiple Opening/
Closing Net and Environmental Sensing System (MOCNESS; WIEBE, BURT, BOYD and MORTON, 1976;
Table 7). The MOCNESS was equipped with nine 1m2 333um mesh nets and collected eight depth
stratified samples per tow. MOCNESS sampling was not possible in November, and zooplankton
samples from the upper 200m were collected also using oblique hauls of a 333um mesh Im dia-
meter ring net during both cruises (see page 376 in SVERDRUP, JOHNSON, and FLEMING, 1942).

Major taxonomic groups of zooplankton were enumerated from MOCNESS tows 125, 126, 128 and
129 because of their close proximity in time to LVFS sampling (Table 8). Similar analysis
of a pair of ring net tows from each cruise was also done to compare zooplankton data between
cruises. A1l MOCNESS samples were measured for wet displacement volume 4-6 weeks after
collection.  Conversion of wet displacement volume to carbon biomass was estimated using
the regression relationship of WIEBE, BOYD and COX, (1975).

The comparison of >53ym copepod counts from LVFS samples with those determined by the MOCNESS
allows a test of the extent to which actively swimming organisms are captured by the LVFS
during sampling. Contamination of samples with Tiving organisms is a problem particularly
affecting shallow sediment trap sampling as evidenced by the fact that "swimmers" contribute
substantially to the material recovered by poisoned traps (see eg., KNAUER, MARTIN, and
BRULAND, 1979; FELLOWS, KARL and KNAUER, 1981; KARL and KNAUER, 1984). Copepod abundances
determined by LVFS sampling were integrated and then averaged over the upper 100m and were
compared to MOCNESS data from the same depth interval. LVFS data showed copepod abundances
averaging 156m™> in the 0-100m interval whereas MOCNESS data (Table 8) gave abundances of
404m_3. Compared to the MOCNESS, the LVFS undersampled by at least 60%, since some individ-
ual copepods are small enough to be extruded through the 333um mesh used in the MOCNESS.

This undersampling is not surprising given the fact that tow speeds of the MOCNESS (100cm s_1

)
exceed the maximum LVFS flow velocities (1.7c¢cm 5_1) substantially, so that animals which
cannot swim fast enough to avoid the MOCNESS might easily avoid capture by the LVFS. This
provides direct evidence that swimming organisms actively avoid capture by the LVFS during
sampling. Thus, one advantage of the LVFS over shallow sediment traps is the substantial

reduction in contamination by living organisms in the collected samples.

2.4 Other data

Methods for the determination of 14C productivity, chlorophyll, and phaeopigments are des-
cribed by MARRA et al. (in press). Twelve-kHz echo sounding records of the upper 750m were
taken continuously during all LVFS casts to provide a record of migratory scatterers. The
12-kHz data were also used to monitor LVFS depth during deployment.

Nephelometer data (an optical measure of suspended particulate matter concentrations, BISCAYE
and EITTRIEM, 1977) were collected during both LVFS casts and deep hydrocasts on the July-
August cruise and have been described by GARDNER et al. (1984). The data obtained during
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20 J. K. B. Bistiop et al.

LVFS casts have been regressed against total suspended particulate matter {(SPM) dry weight
(Table 2) to produce the first shallow water calibration reported for the nephelometer:

e1.65*L0G(E/ED)

SPM = 6.8 WETE (3)

R2

= 0.94
where E/ED is the ratio of scattered to direct Tight intensities recorded by photographic
film in the instrument. No nephelometer data were obtained during the November-December

cruise.

3. RESULTS AND DISCUSSION

In the sections that follow we will present STIE/C-FATE data from the July-August and
November-December cruises.

3.1 Hydrography of the water column

The vertical distributions of hydrographic and nutrient properties in the euphotic zone
play an important role in determining the rates of particle formation during photosynthesis.
During both cruises, the euphotic zone (defined by the 1% 1ight level) was 70m thick and
could be divided into two major layers (Fig.3) based on thermal structure (BISHOP and MARRA,
1984). The upper mixed layer was approximately 18m deep during the July-August cruise and
approximately 35m deep during the November-December cruise. It was warm, had low salinity,
and was depleted in nutrient elements. The lower layer of the euphotic zone contained the
upper thermocline where levels of nutrient elements sharply increased. Maxima of 0.3 and
0.7 umol kg_1 ammonia and nitrite concentrations respectively were found a few meters below
the base of the mixed layer and highest salinities observed were near 70m at the base of
the lower layer.

The distributions of temperature and salinity in the entire water column reveal three Tlayers
in addition to the two described above (Fig.4). A weakly developed thermostad (T = 12-14°C
and S = 34.85-34.92 x 10_3) was evident between 100 and 250m both in XBT profiles (not shown)
and could also be seen in the water column profiles of silica concentrations (Fig.4). The
fourth and fifth layers were respectively a broad salinity minimum between 700-800m (T = 6°C,
S = 34,58 x 10'3) and a region of nearly constant properties below 3000m.

The low salinity of the surface mixed layer is largely due to the excess of runoff over
evaporation in the Panama Bight (FORSBERGH, 1969). The shallow salinity maximum is believed
to be a relict feature of the equatorial undercurrent which has been identified at O0°N,
84°W (STEVENSON and TAFT, 1971) and is thought to have a southern origin in Subtropical
Surface Water. The mid-depth salinity minimum is derived from the Antarctic Intermediate
Water mass (WYRTKI, 1966). The waters of the thermostad are also thought to have a southern
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origin and have been traced to the Tasman Sea north of New Zealand (TSUCHIYA, 1981).

Comparison of isotherm depths found during the July-August and November-December cruises
with historijcal data for the upper 100m (ROBINSON, 1973) showed that temperatures at 30
and 60m were colder by 2-3°C than the historical mean during July-August but had recovered
to mean values by the November-December cruise. The abnormally cold values in July-August
were probably related to the equatorial upwelling event contemporaneously observed at 153°W
by WYRTKI and ELDIN (1982).

The phosphate concentration profile was typical for the eastern equatorial Pacific. Concen-
trations increased ten-fold from <0.2umol kg_1 in the mixed layer to 2umol kg—1 at 70m.
Concentrations increased slowly to a broad maximum of 3.2pmol kg'1 between 500m and 800m
and decreased to 2.8umol kg_1 in deeper waters. Silica also increased ten-fold between
the surface and 70m. Silica concentrations were nearly constant at 20umol kg'1 between
100m and 250m in the thermostad and increased to 155umol kg‘1 below 3000m. Dissolved oxygen

decreased strongly from surface values of 210umol kg'1 to 40umol kg_1

at 100m. Oxygen con-
centrations continued to decrease to very low but measurable values (2-5umo]l kg—1) in the
layer between 250m and 400m but subsequently increased with depths to levels greater than

100umo] kg™ | below 2000m.

Nephelometer data were used to calculate the mean suspended particulate matter (SPM) profile
in July-August. The optically determined SPM values decreased from near surface values

! {not shown in the figure) to a broad minimum of 17ug kg"1 at

of approximately 100ug kg~
900m and then increased to near bottom values of >30ug kg_1. Two 22ug kg_1 secondary maxima
were observed in the SPM profile and may have been caused by lateral transport of resuspended
sediments from nearby topography (Fig.1). The first at 400-500m, located below the oxygen
minimum zone, coincided with the daytime depths of migratory organisms and so may be the
result of biological activity. The second maximum near 1500m occurred at a depth where

a step was observed in the dissolved oxygen profile.

3.2 Euphotic zone pigments, primary and new production

The chlorophyll maximum (Fig.3) and productivity maximum (MARRA et al., in press) was located
5-10m deeper than the base of the mixed layer. Consistent with differences in mixed layer
depths, the highest chlorophyll concentrations were found between 20-30m and between 35-50m
during the July-August and November-December cruises, respectively. Integrated chlorophy]l
concentration in the euphotic zone was 20mg m_2 during July-August and 15mg m ° during the
November-December cruise. Although the integrated chlorophyll Tlevels decreased by only
25% between cruises, the increase in mixed layer depth between July-August and November-
December resulted in a 40% reduction of primary production during the latter cruise. Simi-
larly new production was estimated to be 60% lower (BISHOP and MARRA, 1984; Table 9).

Phaeopigment concentration distributions, in contrast to those of chlorophyll, showed little
difference between the two cruises. These pigments were mostly composed of phaeophorbide,
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a chlorophyll degradation product produced during the digestion of phytoplankton by zooplankton
(WELSCHMEYER and LORENZEN, 1985). On both cruises, phaeopigments showed a broad peak at
30-50m and had integrated euphotic zone values of approximately 11mg m_z.

3.3 Macrozooplankton and midwater fish distributions

Zooplankton are important contributors to and modifiers of the particles found in the > 53um
fraction sampled by the LVFS and derive their energy from carbon originally fixed by phyto-
plankton. Once started on the way to the bottom within fecal material, most particles must
undergo multiple processing (KARL and KNAUER, 1984) before reaching the sediments.

3.3.1 July-August data. Distributions of >333um zooplankton biomass (expressed as zoo-
plankton carbon) derived from MOCNESS tows (Fig.5) show that the upper 2000m may be divided
into several major zones. The first zone was coincident with the 70m deep euphotic zone
and contained most zooplankton biomass. Maxima of 1200 (day) and 2400 (night) nmol C kg'1
were found in the 25-50m depth interval. This zone also coincided with the maximum chloro-
phyl1l concentrations and the highest rates of primary production. The 100-500m zone was
dominated during daylight hours by migratory species which swam up into the euphotic zone
to feed at night. Hence biomass in this zone fluctuated between 400 (day) and 200 (night)

nmol C kg—1.

The observed increases in zooplankton biomass in the upper zone at night can
be entirely explained by this upward migration of zooplankton from the deeper zone. A third
zone extended below 600m, where there was Tittle day versus night variability in zooplankton
Toat 600m to 100mnmol C kg'1

-1 by 2000m.

carbon concentrations. Biomass decreased from 150nmol C kg~
by 1000m. Concentrations dropped sharply to between 10 and 50nmol C kg

The vertical distributions of major groups of zooplankton (Figs.6 and 7) further enhance
the picture of biological zonation of the water column. The five most numerically dominant
groups of organisms were copepods, chaetognaths, ostracods, larvaceans, and euphausiids
(Table 8). A1l of these groups showed strong concentration gradients in the upper 100m
with a strong bias to the upper 50m where most primary production occurred (MARRA et al,
in press). Many groups showed maximal abundances at night in the 37-50m interval. Euphausiids
were the only group of the five exhibiting significant day-night differences due to their
daily migrations between 500m and the surface. On the other hand, larvaceans were almost
exclusively Timited to the upper 100m and showed 1ittle tendency to migrate.

Next in abundance were siphonophores, pteropods, salps, amphipods, and polychaetes. The
siphonophores and pteropods migrated diurnally over the upper 200 and upper 300m respectively.
Both groups had highest nighttime concentrations in the upper 25m. Salps consistently pre-

ferred the upper 50m and showed little evidence of migration. Amphipod distributions were
correlated with those of salps (Amphipod abundance = 1.0 (salp) + 0.6, R2 = 0.60 n=32),

consistent with their frequent association with salps (MADIN and HARBISON, 1977).

Fish Tarvae were next in abundance in the upper 100m and showed 1ittle evidence of diurnal
migration. They showed a secondary layer between 400m and 750m centred on 500m. A number
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of midwater fish species (which were probably undersampled by the MOCNESS) migrated from
500-600m to the upper 100m. Highest migrator abundances were observed at night in the 25-50m
interval (MOC-1-120 and 121) and between 37.5m and 50m (MOC-1-125). The migratory fish,
although numerically small, contributed equally with euphausiids to the day versus night
biomass differences in the 400-550m depth interval. No species of midwater fish appeared
to migrate from 600m.

Other zooplankton groups sampled included medusae, scyphozoans, heteropods, gymnosomes,
mysids, isopods, decapods, mollusc larvae, crustacean larvae and fish eggs, but were not
present in all samples and, when they did occur, were only present in small numbers (Table 8)

The oxygen minimum zone between 250m and 400m (Fig.4) appeared to exclude some groups but
not others. No adult or larval fish were sampled in the oxygen minimum zone, nor were any
salps or amphipods. On the other hand, the distribution of copepods, chaetognaths, ostracods
polychaetes, pteropods and euphausiids appeared unaffected by the low oxygen waters.

3.3.2 November-December data.  An intercomparison of the zooplankton population differ-
ences between the two cruises was based on average abundances for the 0-200m depth interval
sampled by meter net tows (Table 9). Without exception, all >333um zooplankton groups dec-
lined by at least 60% relative to abundances observed during the July-August cruise. This
decline 1is also consistent with the 60% seasonal decrease of zooplankton biomass in the
Panama Bight observed by FORSBERGH {1969).

The Teast change was observed for copepods, chaetognaths, ostracods, euphausiids and salps
(losses of 64-75%). Pteropods, midwater fish, and larvaceans declined in abundance by 92%,
93% and 95% respectively from their July-August values. These differences will be important
in Sections 3.7 and 3.8 where we describe inter-cruise differences in fecal pellet and fecal
matter abundances and flux in the water column.

The decline observed for midwater fish seems extreme in the context of the low seasonal
variability observed by BLACKBURN, LAURS, OWEN and ZEITZSCHEL (1970) for micronekton fish
in this region. This may be due to the inadequacy of the meter net as a collector for these
fishes. However, the absence of large scatterers on the 12 kHz records in November (below)
supportsthe notion that some decline took place.

3.4 12kHz scatterer distributions

Twelve kilohertz echo sounding records were used during both cruises to investigate semi-
guantitatively the distributions of animals unsampled by the MOCNESS and the meter net but
yet which may have been responsible for some of the production of fecal material sampled
by the LVFS (Figs.8 and 9). Sound-scattering data collected from the upper 75m during one
nighttime LVFS cast on the 6th August (Fig.8) showed many intense patches of scattering
in the upper 20m which persisted from the start of sampling near midnight until 0300h, but
fewer occurred after 0300h. No such patches were observed during the November-December
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TABLE 9: MEAN BIOLOGICAL PROPERTIES OF THE UPPER WATER COLUMN

1 2 ratio
JULY-AUG  NOV-DEC 2:1
EUPHOTIC ZONE 0-70 m
1] primary production (mg C m-2d-1) 286. 174. 0.60
1] new production ” 138. 59. 0.42
2] chlorophyll (mg m-2) 19.8 14.5 0.73
[2] phaeophorbide ” 12.1 10.7 0.88
>53 um PHYTOPLANKTON ( numbers 1-1)
3] dinoflagellates 2.88 544 1.889
3] silicoflagellates 24.51 36.00 1.469
3] centrate diatoms 57.63 18.89 0328
3] pennate diatoms 30.68 2091 0.682
>53 um ZOOPLANKTON ( numbers I-1)
3] sticholonche 1.52 829 5.45
3] tintinnids 098 s 5.83
3] Foraminifera 213 4.14 1.94
3] nassellaria 788 9.64 122
3] Spumellaria 1.44 1.76 122
3] Phaeodaria 0.327 0.117 0.358
3] Acantharia 13.04 14.81 1.136
3 pteropods 0.197 0.042 0.213
3] copepods 0.206 0.133 0.646
0-200 m ZONE
>333 um ZOOPLANKTON ( numbers m-3 )
4] copepods 180.9 65.7 0.36
4] larvaceans 15.5 0.77 0.05
4] chaetognaths 147 342 0.24
4] ostracods 12.1 3.02 0.25
5] Foraminifera 73 130 0.18
4] euphausiids 45 118 0.27
4] pteropods 3.7 03 0.08
4] siphonophores 31 0.59 0.19
4] amphipods 22 0.76 0.36
4] gastropods 2.1 0.2 0.10
4] polychaetes 20 038 0.20
4] fish larvae 13 0.29 023
4] salps 1.1 0.31 0.27
4] other 32 0.7 022
4] mid-water fish* 0.025 0.0015 0.06

[ 1] - BISHOP and MARRA (1984); [ 2] - This paper; [ 3] - This paper, Table 3; [ 4] -
This paper; [ 5 ] - BE, BISHOP, SVERDLOVE and GARDNER (1985); * - mid-water fish
are probably undersampled by the MOCNESS and meter nets.
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cruise. Apart from these patches, most scattering (on both occasions where complete records
were obtained) during the July-August cruise occurred at night between 20m and 50m and was
generally most intense in the vicinity of the chlorophyil maximum. Strongest scattering
occurred deeper during the November-December cruise centred at 50m, which was again close
to the depth of the chlorophyll maximum.

Distributions of 12 kHz sound scattering in the 0-750m interval during both cruises (Fig.9)
showed that the scatterers were undertaking diel migrations. At first 1ight they migrated
down from the upper 100m to depths ranging from 200m to 500m, and returned to the surface
layer at dusk. Otherwise the characteristics and behaviour of scatterers changed markedly
between the two sets of observations. During July-August scattering layers migrating to
the surface in late afternoon showed great vertical variability over short horizontal distan-
ces and time, consistent with the population being dominated by one or more species of high
mobility. For example, between 1500h and 1900h on both July 29 and 31 (not shown) scattering
layer depths were observed to change by 100m within 2-3 minutes on several occasions. In
contrast in November-December no short-term changes in scattering layer depth exceeded 20m
and those which did occur were gentle undulations at periods of 15-20 minutes. Comparable
12-kHz data collected at 1°N 86°W in July 1976 showed scattering patterns similar to those
observed in November-December but of weaker scattering intensity (BISHOP et al 1980).

As a subscript we note that large pelagic fish, such as tunas, were very abundant in July-
August but less so in November-December.

3.5 >63um Microzooplankton and phytoplankton abundances

Microzooplankton are important consumers of primary produced carbon and, therefore, also
greatly influence particle distributions and fluxes (WELSCHMEYER and LORENZEN, 1985). Micro-
zooplankton group abundances, as determined on >53um LVFS filters (Table 3), were integrated
over the 0-70m euphotic zone using depths normalised to the mean temperature profile and
sample temperatures determined by XBTs shot during each cast. This normalisation was done
to reduce variability due to internal waves. The integrated standing stocks were then divided
by the 70m euphotic zone depth to yield mean euphotic zone microzooplankton concentrations
(Table 9).

Unlike the macrozooplankton and the 12-kHz scatterers described above, most microzooplankton
groups increased during the November-December period compared to  July-August values.
Sticholonche and tintinnids increased by over 500%; Foraminifera in the >53-<333um fraction
doubled; radiolarians in the Spumellaria and Massellaria groups increased by 25%; and Acanth-
aria increased by 15%. Only Phaeodaria and juvenile pteropods decreased, following the
macrozooplankton trends.

The Foraminifera were interesting in that abundances of >333pum individuals decreased by
82% between the two cruises but smaller individuals increased in abundance. BE, BISHOP,
SVERDLOVE and GARDNER (1985) concluded that not only were Foraminifera in the >333um fraction
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more abundant in July-August but also most were in a state of reproductive maturity as a
consequence of an elevated food supply at that time. The higher populations of smaliler
Foraminifera in November and December is attributed to lower mortality due to predation

in this season as discussed below.

We hypothesise that the more numerous macrozooplankton grazers and fish present during the
July-August cruise had suppressed the populations of microzooplankton through predation.
The subsequent decline of macrozooplankton between the two cruises through either migration
or advection out of the STIE area or enhanced mortality caused by predation by higher organ-
isms, would have allowed the faster growing populations of microzooplankton to attain higher
abundances by November-time.

Limited evidence to support the above hypothesis comes from the comparison of abundances
of >53um microzooplankton and phytoplankton abundances in two LVFS samples collected from
12m on successive nights during the July-August cruise. On the first night (sample 13,
Table 3), >53um organism abundances were double (excluding Phaeodaria and pennate diatoms
which were greater than 15 times higher) those on the second night (sample 17). Sample
13 was taken when few 12kHz scatterers were present (5 August, 0212-024Zhrs) whereas sample
17 was taken when abundant 12kHz scatterers were present (6 August, 0025-0055hrs, Fig.8).
A Tlink between reduced microzooplankton concentrations and the presence of 12kHz scatterers
is also indicated by the seven-fold increase in long tubular fecal pellet volume concen-
trations (Table 4, Section 3.7 below) in sample 17 compared to sample 13. While spatial
patchiness cannot be ruled out as a cause for these observations, they are consistent with
the idea that the feeding activities of macrozooplankton and nekton were important factors
in regulating the >53um phytoplankton and microzooplankton populations during the July-August
cruise.

3.6 Particulate matter distributions and chemistry

The above discussion has focused on the distributions of particle producers and consumers
in the water column. Now we examine profiles of 1-53um and >53um sized particulate matter
and how they may be governed by these organisms. The smaller particle size class has long
settling or residence times in the water column relative to the material in the >53um frac-
tion (McCAVE, 1975). However, exchange between the two size classes can occur through both
repackaging and disintegration in the water column.

Particulate dry weight, organic carbon, biogenic silica, calcium and phosphorus (Figs.10
and 11) occurred in greater concentrations throughout the upper 1000m during July-August
when primary production was higher, than during November-December. This was especially
true for the >53um fraction for which concentrations in the euphotic zone in July-August
were double those in November-December.

Besides this temporal difference, concentration ranges over the upper 1000m were much
greater for particles in the >53um fraction compared to the 1-53um fraction. For example,



J. K. B. Bistior et al.

‘uogued oruebuo “qybram Aup ajenorjded wrlgg-| pue wWrigg< JO SUOLINGLAISL(Q

=2
-

[ "N,

0071 08 09 134 0Z
4 Ja1rew oluedig wrl €¢-

—O-—
—r — =)
0

0061

0001

00¢%

0061

0001

006§

061 0% 09 0% 02
% Janep diuedip wvl €¢ <

*SaSLNUD (@) 43queda(
-4aquanoy pue (@) 3snbny-A|np dy3y Buranp but|dwes S4yp7 Ag pauLwualsp
4917w DLuebuo 40 pasodwod qybirom Aup o93e|norjded 4o abejusaduad pue

0061
[ ]
L 4
o 0001
[ ]
]
[ ]
[m]
& 00§
o
&
o
N 4
®_» 0
000¢ 00¢ 0¢ 01

(.8 Jowu ) vogJe) d1ULSIQ W £~

ﬁoomﬁ
[ 2
*
a 0001
L 2
o
a
C 00¢
in
h=N
= 3
S og,® 0
0008 00¢ 0¢ ol

(,.9Y jowu ) voqJe) djuedip wH ¢¢ <

0L 914

D+D¢

o 3
w]
b
o

00ST

0001

00¢

(w)
yidaq

- &Y
&Noww 05 "oz o1 ¢ " Z I

(.83 870 ) 1UBlam A1q Wi G-

o

-
-
a
-
O

.D
ﬁ.
w]
*%
[ &

o2’

006t

0001

00¢

(w)
yidag

006z00T0¢ 0z of ¢ Z 1
(.83 81 ) ydrom AJg wr ¢¢ <

0
&



]
o

Particulate matter distributions

-314J2 2y} Ut uoL1INP3J 3| qeqodd e 01 pPaIINgLAIIe Sem SLy]

*Burzedab uojyue | doozoudew 03 aALlR|aJ Bul
-zeJb uojzjyue|doozoudLw uL 3SPILOUL ue 3q 03 padeadde 9J3Y3 UBYM JBQUDII(
-J43QUWAAON UL 3UO0Z WOQZ-0 dU3 woh) S3|dL34ed JO 3J0dSURJII PUBMUMOD 4O ADUBL

*3snbny-Anp

ulL ueyl Jaquedsg-J4aqwsAoN buianp wopz +addn 8y3 ut Sijuatpeub uoried
-JUB2U0D [BILJABA UBMO| PaILGLYUX3 uOoL3Ided4 BZLS wrlgg-| 3yl ul SIudWd|d
3SOl  *SJ431[ L} oauodaponN wriytg ybnouyyl paudl{Ly so|dwes 2113109 ULYSLN
woJdj pauLtwadlap sem (94nbry 8yl Jo jaed 4SMO| BYJ UL UMOYS) elep BIL[LS
oLusboig *ssstnuo (O) ssquedag-4aquwasoN pue (@) isnbny-Ainp ayy Buranp

snaoydsoyd pue wniojed ‘edpis oruaborq wrnigg-| pue wWNMgg< 40 SI[ L4044

0061
[ ]
[
o 0001
®
]
o
o
°Y 00¢
a
&
o«
g @ ¢
0
0oz 0i ¢ ¢z 17¢ "¢ 17¢o
(,.8% jowu ) snioydsoyqd wi ¢G-1
0061
[ ]
®
ato0o1
®
a]
[ ]
a
© ® o 100g
O
m [ ]
® 0
ﬁ_ ol
oy o°®
——==0

T —
oz ol ¢ 2 T ¢ ¢ 1780
( ,.8Y Jowu ) snioydsoyd wr ¢€¢ ¢

002007106 0z ol ¢ "¢ {1 ¢

06zodT0¢ oz ol ¢ ¢ (&
(-8 Jowvu ) wAd[E) W €G-

L ©
|||x\\JLWM|.Dw =0

( (.83 jowu ) wnydfel wn ¢¢ <

7 0061
®
[ ]
a 0001
[ ]
a
[ ]
[=}
% 00§
a
o
DD.O\

[

0061

o 10001

8" 00¢

L1914
— 00¢1
o 0001
a
u 00¢
s
(w)
[ ]
a yidaq
«
.‘Dmv D 0
00¢ 00Z001 0C 0z 01 & ¢ |
(.83 Jowu ) B211IS d1UaB0Ig
0061
®
[
o 0001
®
a
[ ]
u}
@ 00§
a
L ]
g ()
e o yidag
® 0
L. n%DnU 0
06¢ oowom“ 0¢ "oz o ¢ 7 i

( (-8 Jowu ) BO11S druagolg wif ¢¢ <



36 J. K. B. BisHop er al.

July-August >53um dry weight decreased 20-fold between 12 and 200m whereas 1-53um concen-
trations dropped only by 6-fold over the same depth interval. The greatest vertical concen-
tration gradient of >53um particles coincided with the zone of greatest zooplankton biomass.
Thus, the differences in the profiles of the 1-53um and >53um size fractions are probably
due to the larger particles being more available and so, more efficiently utilised by the
coprophagous zooplankton and fish. If fragmentation of large particles occurs during feed-
ing, it would add particles to the smaller size class and so reduce the vertical concen-
tration gradients of small particles; conversely, any scavenging of small particles by,
for example, discarded mucus feeding webs would have the opposite effect.

SHELDON et al. (1972) investigated the partitioning and size distributions of carbon in part-
iculate and 1living pools. They showed that there was more living carbon compared to partic-
ulate carbon in many parts of the ocean, especially in the upper several hundred metres.
To examine if this is true of the macrozooplankton (particle consumers) versus >53um part-
icles (the sinking fraction), we compared >333um zooplankton biomass (Fig.5) to >53um organic
carbon (Fig.10) from the July-August cruise. In the upper 50m at night, zooplankton biomass
exceeded the >53um particulate carbon by factors of 2-4. Between 200m and 500m, the ratio
of swimming to >53um carbon ranged from 3:1 (night) to 10:1 (day). This ratio decreased
below 500m to 2:1 at 1000m and further to 1:1 by 1300m. Even when compared to total partic-
ulate carbon { <1um) the macrozooplankton carbon to particulate carbon ratic exceeded unity
between 200m and 500m. These ratios are underestimates since not all animal biomass was
sampled by the MOCNESS.

An interesting feature of the 1-53um fraction element distributions during the two cruises
was that Tower vertical concentration gradients were found for most elements in the upper
100m during the November-December cruise than during the July-August cruise. This difference
was most extreme for 1-53um calcium which was predominantly of coccolithophorid origin (see
e.g. BISHOP et al [ 1977; HONJO, 1982). In July-August calcium concentrations in the 1-53um
fraction dropped from 80nmol kg'1 at 32m to 20nmol kg_1 at 50m but then remained below 20nmol
kg_1 throughout the 50-1300m depth interval. In November-December the concentrations only

1

decreased from 65nmol kg_1 at 40m to 41nmol kg ' at 77m and continued to decrease to 30nmol

kg_1 at 100m, and down to 20nmo! kg'1 at 200m. These lower calcium concentration gradients
in November-December are interpreted to result from the reduction in macrozooplankton and
fish feeding activity (see Section 3.5) leading to a lower efficiency of small particle

export within sinking fecal material from the upper 100m.

3.6.1 Organic Matter percentages and Element ratios. The ratio of organic matter to dry
weight in >53um fraction remained nearly constant at 60-70% between the surface and 1300m.
In contrast, the 1-53um organic percentages decreased with depth from 45-85% in the upper
100m to 25-40% below 1000m. Generally higher organic percentages were found in the 1-53um
fraction in July compared with November (Fig.10).

The only comparable data from sediment traps deployed in the same depth interval are those
reported by MARTIN and KNAUER (1983). Their traps deployed in the upper 2000m showed organic
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matter percentages ranging from 60-80% in the upper 200m decreasing to 30-40% near 1000m.
These data follow more the depth trends of the 1-53um fraction than of the >53um fraction.

org) and dissolution of calcium carbonate con-

tribute to the dissolved inorganic carbon pool in the ocean. In the >53um fraction, most

Oxidation of particulate organic carbon (C

particulate calcium occurs as calcium carbonate and calcium carbonate is the dominant con-
tributor to particulate inorganic carbon (BISHOP et a«l., 1978). The changes in the ratio
of Corg to Ca in the >53pm fraction as a function of depth indicates the relative release
rates of these two particulate carbon species to the water column.

The >53um Corg/Ca ratios ranged between 13:1 and 35:1 in the euphotic zone (Fig.12) with
the most extreme 1limits being found in the July-August samples. Between 200 and 1000m,
>53um ratios averaged 30:1 on both cruises. The nearly constant Corg/Ca ratio in the >53um
fraction over the upper 1000m indicates that there is no differential regeneration of organic
and inorganic carbon in the STIE/C-FATE water column. The 1-53um fraction had Cor /Ca ratios
ranging from 20:1 to 30:1 in the euphotic zone, and decreasing with depth to a ratio of
10:1 by 1000m. This decrease is consistent with a preferential loss of organic carbon from
small particles.

The >53um Si/Ca ratios are a measure of the relative dominance of siliceous to carbonate
organisms as sources of particulate matter and of the relative dissolution behaviour of
these two elements. Ratios were lowest in the euphotic zone indicating either a preference
of calcareous organisms (e.g. Foraminifera) for the near-surface waters or the occurrence
of preferential dissolution of carbonate below the euphotic zone.

Phosphorus to carbon ratios in the 1-53 and >53um fractions were very similar in the euphotic
zone but strongly diverged from one another in deeper waters. In the euphotic zone, the
>53um Corg/P ratio was 125:1 in July-August and 138:1 in November-December, but this ratio
increased rapidly to >500:1 in deeper waters during both cruises. BISHOP etal . {1980)
reported that >53um Corg/P averaged 200:1 in the euphotic zone and >500:1 in deeper samples.
Values as high as 1000:1 were found in all three data sets. In contrast, the 1-53um fraction
showed a much lower range of variation in the upper 1000m. Euphotic zone values were 127:1
in July-August and 160:1 in November-December and during both cruises were 160:1 below 200m.
BISHOP et al. (1980) observed Corg/P ratios averaging 195:1 in the euphotic zone and 240:1
below 200m. Thus, all three LVFS profiles from the Panama Basin showed there to be rela-
tively close correspondence between the Corg/P ratios of the >53um and 1-53um material in
the euphotic zone, but that a strong divergence in the ratios of these two fractions occurred
below 100m. Lowest euphotic zone values were observed during the July-August cruise when
water column primary production was highest.

Phosphorus is more easily released than carbon from organic particles (KNAUER et a7 . 1979;
COLLIER and EDMOND, 1984). Our evidence suggests that in spite of its short residence time
in the upper 1000m, the >53um fraction is extensively reworked by biological processes,
which explains the observed loss of particulate phosphorus relative to carbon. The data
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for the 1-53um fraction cannot be explained in this way. Because of their small size, these
particles have longer setting residence times in the water column, increasing the opportunity
for phosphorus loss to surrounding waters. The small dynamic range in Corg/P ratio for
this size fraction can only be explained if (1) bacteria with Tow Corg/P ratio contribute
significantly to the 1-53um fraction (e.g. BISHOP et al . 1977); (2) there is a refractory
phosphorus particle phase present in the small size fraction or (3) the release of P relative
to carbon from small particles is less than from large particles at depths below the euphotic

zone.

The 1-53um Corg/N ratios in July-August averaged 6.8 in the euphotic zone and ranged between
8 and 8.7 below 200m. In November-December, the similar Corg/N ratios again averaged 6.9
in the euphotic zone but remained near this value in deeper samples. The 20% decrease in
1-53 um Corg/N below 200m between the July-August and November-December cruises indicates
that small particles in the upper 1500m can turnover on time scales of months, possibly
as a result of the period of higher primary productivity and particle flux which occurred
between the two cruises (BISHOP and MARRA, 1984). Changes in the bacteria abundances in
the 1-53um fraction or horizontal advection may have alsoc caused these changes. Increased
bacteria during November-December as a cause for the lower Corg/N appears to be ruled out
since the Corg/P ratios would also be expected to be Jower in the same samples. The time
scale of several months for turnover of small particles is much faster than the residence
time of several years based on particle settling rates (assuming 10um particles with density
contrast (Ap) = 0.5g cm_1; Equation 2 in BISHOP et aZ. 1977).

3.7 Fecal matter and fecal pellet distributions

We have discussed above the impact that biota have on particles in the water column. Now
we look at how the distributions of fecal material in the water column can be used to under-
stand the distributions and activities of particle consumers. With few exceptions, higher
abundances of fecal material were found throughout the water column during July-August than
in November-December (Fig.13).

Fecal matter, as opposed to fecal pellets, was by far the most important contributor to
the total volume of fecal material. As noted in Section 2.2, these large macroscopic aggre-
gates are a subset of particles usually described as marine snow. Unlike typical marine
snow particles which are usually nearly transparent to transmitted light, fecal matter is
optically dense. SMETACEK (1985) suggested that diatoms may be a source of large aggregates.
Microscopic analysis of our samples suggests that diatoms do not play a major role in the
formation of this class of particles in Panama Basin waters. Furthermore, a centrate diatom
maximum found at 500m (BISHOP et alZ. 1980) where diatoms were 100 times more concentrated
than in surfce waters, was not coincident with a maximum in fecal matter abundance. Fecal
matter appears to be produced by zooplankton and nekton.

Fecal matter volumes during the July-August cruise were the highest ever observed and ranged

fFrom 50,000um° m1™' in the shallowest sample at 12m to 3000um> m1™' at 1300m in a smoothly
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decreasing profile. Volume distributions in November-December ranged from 7000um3 ml'1 in

3 m1—1

the shallowest sample at 25m, to Tess than 1000um by 1000m. The six-fold decrease
in mean fecal matter concentration in the euphotic zone between July-August and November-
December matched the general decrease in macrozooplankton abundances observed between these
two periods. No single zooplankton group could be identified as the primary source of fecal
matter. Larvaceans and pteropods do not appear to be a major source of fecal matter because
the declines of their populations of over an order of magnitude between cruises greatly

exceeded that of fecal matter concentrations.

Tubular fecal pellets exhibited very high volume concentrations in the July-August surface

3 -1

waters, decreasing 500-fold from a mean of 15,000um™ ml in the layer <25m to a minimum

of 28um3 m1_1 at 200m. Below 200m, concentrations increased again 4-fold to a maximum at
500m and from there on down remain unchanged. Note that the 500m maximum corresponded to
the deepest 1imit of migration by zooplankton and midwater fish, and therefore its presence
may be related to the activities of these migrators.

1

The November-December tubular pellet profile showed a maximum of 6OOum3 ml” " in the euphotic

zone at 40m (a 25-fold decrease from July-August values) and decreased 6-fold to 100um3 m1_1
values at >100m which were then comparable to those observed during the July-August period.
Once again, the lowest volume concentration of this material occurred at 200m, repeating

the pattern found in the July-August data. For comparison, the highest tubular pellet vol-

3 1

ume concentration observed by BISHOP et al.(1980) was 200um~ m1~

-1

at 60m with a strong dec-
rease to between 2 and 5pm3 ml at 1000m. Thus this particle class may differ in con-

centration by many orders of magnitude in the upper 1000m of the Panama Basin.

There are several groups of zooplankton which, based on abundance and vertical distribution,
may have produced the long tubular fecal pellets. Copepods, although very abundant, produce
elliptical or spherical pellets and so are ruled out, as are larvaceans (ALLDREDGE, 1984)
During the July-August cruise euphausiids, pteropods, chaetognaths, siphonophores, and crust-
acean larvae exhibited highest abundances in the upper 25m at night and therefore may have
produced the pellets (Fig.6). Euphausiids, although clearly a source of long tubular pellets
(FOWLER and SMALL, 1972) were not abundant enough to produce the quantity of these particles
found in the surface waters in July-August. A similar argument may be used to eliminate
chaetognaths. The pteropods and crustacean larvae do not appear to be numerous enough to
explain the abundances and number fluxes (Table 5) of this particle class. Siphonophores
and other gelatinous organisms (although potentially undersampled by the nets) are not known
to produce these kinds of particles.

The 12kHz echo sounder observations (Section 3.4, Fig.8) during the shallow LVFS casts pro-
vide additional clues to the origin of the long tubular fecal pellets. Intense but patchy
scattering (most T1ikely due to schools of fish) was observed in the 0-20m interval during
the July-August cruise. As noted above (Section 3.5), there was a positive association
between the presence of 12kHz scatterers and the enhanced abundances of long tubuiar fecal
pellets in the two LVFS samplies from 12m taken on successive nights. We suspect that the
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bulk of the pellets were produced either by the 12kHz scatterers or by the scatterers' prey.
The 25-fold decrease in euphotic zone loadings of tubular pellets between the July-August
and November-December cruises also was consistent with the 12kHz data which showed little
evidence for the shallow patchy scatterers in November-December. Euphausiids may have been
the dominant producers of these particles at this time. Thus we conclude that most of the
long tubular pellets found in abundance in near surface waters during the July-August cruise
were produced by organisms associated with 12kHz scattering and which were probably not
sampled by our nets.

Birefringent elliptical fecal pellets produced by copepods {SMALL, FOWLER and UNLU, 1979)
had least variation in concentration in the water column during both the July-August and
November-December cruises. Although there were only two shallow LVFS casts in July-August,
there appeared to be a bimodal distribution in this fecal pellet class in the upper 100m
(Table 4). BISHOP et al. (1980) reported a similar bimodal distribution to the southwest.
In this case, the pellet minimum at approximately 50m corresponded to a subsurface maximum
in copepod abundance. This zone was also occupied by maximum nighttime populations of ostra-
cods, euphasiids, fish larvae, amphipods, mid-water fish and crustacean larvae (MOC-1-126,
Fig.6) suggesting that detritovores in these groups may have been consuming proportionately
more fecal pellets at this depth. Deeper in the water column, elliptical pellet volumes
decreased to a minimum of 7Oum3 m1'1 at 200m, increased to approximately 200pm3 ml'1 by
1300m. Once again, the maximum at 500m corresponded to the deepest limit of migratory zoo-
plankton. November-December elliptical pellet volumes ranged from the 100um3 m]’1 max imum

at 40m and 55m in the euphotic zone to 3Oum3 m1'1 at 1000m. The three-fold decrease in
elliptical pellet abundances in the shallow euphotic zone between July-August and November-
December cruises paralleled the abundance differences found for copepods in the upper 200m

over the same period (Table 9).

Spherical birefringent pellets during the July-August cruise had highest concentrations
of 320pm3 m]‘1 at 12m and decreased through the euphotic zone to levels between 20 and 50
um3 ml_q. These pellets are larger than the spherical minipellets described by GOWING and
SILVER {1985) and may have been produced by small cyclopoid copepods. Data from deeper

3 -1

down showed little trend below 200m and concentrations ranged between 10 and 30un” ml

During November-December, a maximum of 3Oum3 m1_1 was found just below the euphotic zone
at 77m which was only a tenth of the maximum concentrations in July-August. From deeper

down, the concentration data varied between 2 and 41um3 m1'1 with no discernible trend.

In Jduly-August non-birefringent pellets in all categories had volume concentrations averaging
4Oum3 3 ! at 200m, and showed
a secondary maximum of 10-15um 3 L

ml'1 in surface waters, which declined to a minimum of 5um~ ml1~

3

m~ at 500m, below which there was a decrease to 3um” ml~

by 1300m. In November-December volume concentrations decreased from ‘IOum3 -1

1

ml in surface
waters to approximately 1um3 ml~

by BISHOP et aZ.(1980).

by 1000m, in an almost identical profile to that observed
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3.8 Fecal matter and fecal pellet flurxes

The sinking of fecal pellets and fecal matter is a major transport mechanism for chemical
elements in the water column. Vertical fluxes (Fig.14) were calculated using the settling
models of KOMAR et al.(1981) and BISHOP et al, (1980) in conjunction with the measured size
distributions of these particle classes (Section 2.2). As in the particle volume profiles
(Fig.13), these estimated fluxes of fecal matter and fecal pellets throughout the upper
1300m were generally higher in July-August than in November-December.

Foraminifera are also important contributors to the vertical transport of elements. However,
Bf et al.(1985) have shown that foraminiferan fluxes varied by over two orders of magnitude
during the July-August cruise. Because of this variability, we will only briefly refer
to variability of foraminiferan fluxes at 530m later.

We assume that fluxes of fecal material in the water column may be combined to form a single
profile. This assumption is reasonable given the fact that fecal material production is
related to feeding activity which must go on daily. A series of samples was collected over
24 hours at 530m to test the validity of this assumption. Combining samples in this way
to describe foraminiferan fluxes in the water column would not be reasonable since the pro-

duction of empty foraminiferan shells is due to time-variable reproductive processes.

ALLDREDGE (personal communication) has suggested that heavy fecal material may accumulate
in the mixed layer due to turbulence and shear at the base of the mixed layer. Such pro-
cesses may cause these particles to be reentrained into the mixed layer and so prevent them
from settling into the thermocline. During the July-August cruise, there was evidence for
shear at the base of the mixed layer and therefore the July-August distributions of fecal
material may be affected by the physical processes. We do not believe that reentrainment
processes dominated the distributions of fecal material in our samples because no class
of fecal material was unusually concentrated in the mixed layer relative to the upper thermo-
cline as would be consistent with her suggestion. Therefore, we conciude that biological
processes and sinking dominated in controlling the distribution of these particles in the
water column.

Fecal matter was the dominant contributor to the vertical flux of the seven types of fecal
material (Fig.14). The two fecal matter profiles were almost identical in shape, but
November-December fluxes were five times lower than in July-August. This decreased flux
followed both the trends established for zooplankton group abundances and for new production
(BISHOP and MARRA, 1984; Table 9).

However, the July-August tubular pellet flux profile was substantially different in shape
from the fecal matter flux profiles just described. Tubular pellet flux averaged 1500mg
2 24~ by 100m. The settling velocity of this

material is calculated to be approximately 30m hr_1 (Equation 1) so the residence time

a1 above 50m but fell sharply to 10mg m~

of this material in the upper 100m can only be several hours. The almost total absence
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of tubular pellets below 100m provides direct evidence for active coprophagy in the top
100m, especially as there was no increase in fragments of this material with depth which
rules out particle breakup being responsible for its disappearance.

July-August tubular pellet fluxes continued to decrease to a minimum between 200m and 350m
{also the oxygen minimum zone)} but increased five-fold to a maximum at 530m, further evidence
for the link between this type of fecal material and diel migrators (Section 3.7). Fluxes
decreased two fold below 700m. In November-December the tubular pellet fluxes decreased
by a factor of two across the euphotic zone from 70mg m'zd'1 above 40m down to 40mg m_zd'1
at 77m. Fluxes in deeper water averaged 14mg m2q7" (range 6-23mg m'zd-1).

Fluxes of birefringent elliptical fecal pellets in July-August showed a bimodal distribution
in the upper 100m, decreased to a minimum between 200m and 350m, increased to a maximum
by 700m and thereafter decreased slowly in deeper samples. In November-December their fluxes

were generally lower throughout the water column.

Spherical pellet fluxes were only a few percent of total mass flux. There was little differ-
ence between cruises. Non-birefringent elliptical and spherical pellet fluxes contributed
insignificantly to total flux during both the July-August and November-December cruises.

3.8.1 Temporal variability of particle flux at 530m. Temporal variability of fluxes of
fecal matter and fecal pellet classes was determined at 530m during the July-August cruise
over a 24 hour period (Fig.15). This depth corresponded to the deepest 1imit of euphausiid
migration as well as to the zone occupied by migratory midwater fish during the day. The
sample from 500m, collected 2 days earlier, was also included to provide some check for
temporal consistency. Fecal matter was the most important contributor to flux and showed
lowest values near midnight and a factor of two increase by midday. It is not clear that
the diel cycle in this data set is significant because of the small number of observations.
On the other hand, tubular fecal pellets exhibited a clearly defined diel variation of flux
ranging over an order of magnitude with highest values near midnight and Towest values in
the early morning. Elliptical fecal pellets showed no discernible trend over the sampling
period nor did the fluxes of foraminiferan shells. The single sample from 500m, collected
two days earlier showed good agreement with the temporal trends of fecal matter and tubular
pellet flux established by the six 530m samples. This suggested that the variation observed
was temporal and was not due to the collection of samples at slightly different locations
(Fig.1).

ANGEL (1984) suggested that migratory animals might feed in the upper 70m at night, and
defecate after they have descended to deeper depths, thus short circuiting particle sedimen-
tation over their migration interval. The long tubular pellet class exhibited diel varia-
tion and if this variation at 530m was caused by such a process, then the perturbation in
flux due to migratory inputs was approximately 20% of the total fecal material transport
through that depth.
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FIG.15. Temporal variability of flux of fecal matter (fb), tubular fecal pellets
(§), elliptical fecal pellets (©), and Foraminifera (0) at 530m during
the July-August cruise. Horizontal bars denote the time period of samp-
ling. Fecal matter exhibited a midday peak in calculated flux, whereas
tubular fecal pellets showed highest fluxes at night. Little diurnal
variation was found for elliptical fecal pellets or for Foraminifera
at this depth. Flux data from sample 4, collected 2 days earlier from
500m, were included in the plot to test for temporal consistency in
the data and showed reasonable agreement with trends for fecal matter
and tubular fecal pellets established by other samples.

The phasing of the diel cycle of tubular fecal pellet flux suggests that the bulk of this
material was produced at depths shallower than 530m.

3.9 Mass and chemical fluxes

Mass fluxes carried by fecal material were calculated by summing the mass fluxes of fecal
peliets and fecal matter. This total has been used to compute chemical fluxes by multi-
plying the mass flux by molar contributions of organic carbon, phosphorus, biogenic silica,
and calcium to >53um dry weight (Fig.16). The contributions of organisms to >%2um Si and
Ca have been subtracted prior to the estimation of the molar contributions of these elements
to >53um dry weight (BISHOP et az. 1977).

2 -1

d ' at 12m
by 200m, showed 1little change to 500m and then decreased slowly to below

24V pear

Calculated fecal material mass fluxes in July-August decreased from 3000mg m~
to 200mg m 2d”]
100mg m%¢"" at 800m. In November-December the mass fluxes were only 300mg m~
the surface, dropped sharply to below 100mg n 2471 at 150m, and then more slowly to 30mg
Zd'1 by 1000m. Fecal matter was the dominant contributor to particle flux compared to
fecal pellets everywhere in the water column except in near surface waters during the July-

m..

August cruise and in waters deeper than 800m during November-December where tubular fecal
pellets were important contributors to flux.
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FIG.17. Organic carbon flux (#; mmol m—zd_1) Zooplankton biomass (e; nmol C kg_1)
distributions in July-August 1979. The horizontal Tines where shown
denote 1 standard deviation of the data. Vertical lines denote depth
interval of MOCNESS samples.

3.9.1 Organic carbon flur. Organic carbon flux was obtained by multiplying the mass
flux for each sample by the fraction of organic matter in the >53um fraction (Table 2) and
dividing by 2.5 to convert to organic carbon mass units (BISHOP et «Z.1980). Molar fluxes
were calculated by dividing the carbon mass flux by 12, the atomic weight of carbon. The

2 -1

organic carbon flux during July-August decreased from 8Cmmol m “d” in near surface waters

2d—1

tinued to decline to 5mmol Corg m

to approximately 20mmol m~ at 70m, the base of the euphotic zone. The carbon flux con-

Zd'1 at 200m, but remained nearly constant to 500m before
decreasing again to approximately 2mmol C m-

org 2471 below 1000m. 1In the comaprative data

for carbon fluxes in November-December there was a decrease from 7mmol C_ m 2™t at 25m,
2 .-1

d”' at the bottom of the euphotic zone which was still at

_Zd_1 by 300m and dropped to 0.8nmol

to approximately 3mmol Corg m
70m. ‘Z1gﬁes decreased to approximately Tmmol Corg m
Corg m d by 1000m.

3.9.1.1 LVFS carbon flux and zooplankton. The nighttime zooplankton biomass pro-
file and the carbon flux profile in July-August were highly correlated (Fig.17; ZOOPL =
0.06 (FLUX? %%, R? = 0.929, n = 14) suggesting a close link between particle flux and the
distributions of particle consumers in the water column. The greatest gradient in flux
was observed in the upper 100m where all zooplankton groups were most abundant. Within
the 200-500m depth interval flux showed Tlittle decrease, and here it is speculated that
migratory zooplankton feeding at the surface and then defecating within the 200-500m zone
contribute to the deep fecal pellet pool, thus compensating any decrease in fecal matter flux
resulting from grazing or disintegration. Below 500m, the lower 1limit of this pellet re-
charge zone, fluxes decreased in proportion to the zooplankton biomass distribution.



Particulate matter distributions 19

We have derived a zooplankton biomass - particle removal function in two ways. Firstly,
carbon flux data from 25m and deeper were regressed against depth using a function of the
form: FLUX = A . DEPTHB which yielded values of 1032 and -0.904 for the A and B coefficients
respectively (R2 = 0.94, n = 14). The depth derivative of this function yields a smoothed
estimate of flux gradient as a function of depth. The results were regressed against night-
time zooplankton biomass, since near surface flux estimates were made at night-time using
a function of the form: dFLUX/dz = C . ZOOPLD (Fig.18), to yield values of 6 x 10_7 and
1.92 for C and D respectively (R2 = 0.94, n = 14).

The second method involved averaging pairs of carbon flux estimates at successive depths
to provide a smoothed flux profile and then calculating flux gradients by finite difference
methods. The regression of flux gradient (ignoring 2 negative values) on night-time zoo-
plankton biomass resulted in values of 0.6 x 10_7 and 2.33 for the constants C and D respec-
tively (R2 = 0.93, n = 10). Statistically, the results from either method are not signific-
antly different, but since more deep data were used in the first regression, we prefer the
results of the first method.

3.9.1.2 LVFS carbon flux and new production. Calculated carbon fluxes showed good
agreement with estimates of euphotic zone new production for both cruises. New production
measurements during July-August (Table 9) indicated that an average of 11.5mmol Corg m g
passed through the base of the euphotic zone at 70m. The night-time doubling of the LVFS
organic carbon flux at 70m is consistent with the nocturnal increase zooplankton and nekton
populations in the euphotic zone. It would be expected that fluxes out of the upper 70m
would be Tower during the day-time. BISHOP and MARRA (1984) estimated the average particu-
late carbon flux through the base of the euphotic zone during the November-December cruise
to be 5mmol Corg m'zd'1, but LVFS fluxes were 40% lower. Euphotic zone sampling by LVFS,
however, was conducted during midday when lower than average fluxes of fecal material would

be expected.

3.9.1.3 LVFS carbon fluzes and sediment trap carbon fluxes . A further comparison
of shallow carbon fluxes is possible with the shallow drifting sediment trap data of GARDNER,
HINGA and MARRA (1983) who found that an unpoisoned sediment trap deployed at 30m for 24
hrs on July 30-31 collected 2mmol Corg m_zg_11whereas a trap deployed at 100m at night on
July 31 - August 1 collected Tmmol Corg m ~d '. These fluxes were 10-20 times lower than
fluxes estimated from LVFS data at a similar depth several days later. If anything, the
results of BE et aZ. (1985) suggest that the trap organic carbon fluxes should have been
higher since the mixed layer showed higher nutrient content in late July than during LVFS
sampling in early August. DOrifting trap carbon fluxes at 300m averaged 2mmol Corg m_zd_1,
roughly 40% of those estimated by LVFS at similar depths. There were no shallow drifting

trap data for comparison of carbon fluxes during the November-December cruise.

The most likely cause of disagreement between LVFS and drifting trap carbon data is feeding
activities of the numerous zooplankton and fish present at the depth of sampling. Evidence
to support this hypothesis comes from the comparison of differences between LVFS and drifting



S0

J. K. B. Bistior ¢t al.

FI1G.18.

ZOOPLANKTON BIOMASS
.50 100 200  500.10002000,

] Jo
F
o C),’ @
O s
—] ’
] /
] y L ]
’
1 /
4 ® ,
: ]
—_ ® 4
[ O //
~N O .
o - //
> J
< ®
D -
— b
., N ‘ ®
I
.O o: O ,,
. 7 O
—] ,"
] ./
/@
3 ’
o
0 s
D | e !
O] ‘.
v—l: /,O
B s
R ’
/
3

Regressions of carbon flux gradient (mmol m~ d_1) versus zooplankton
biomass (nmol C kg'1). In order to calculate carbon flux gradient,
carbon flux data smoothed by fitting a function of the form FLUX = A.ZB
(8; line) or by successive two point averaging (0 ; dashed line). Zoo-
plankton biomass data were interpolated to the depth at which the flux
gradient was evaluated. Data are fit by a function of the form: log
(dFLUX/dZ) = C' + D-log(ZOOPL). At 95% confidence limits C' = 6.221:0.64
and D = 1.92+0.25, n = 14, for the solid line, and C' = 7.2+1.06 and
D =2.33#0.42, n = 10 for the broken line.
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trap flux estimates which showed worst agreement in the region of the water column where
zooptankton biomass was highest. One drifting trap deployed during the November cruise
contained a school of fish on recovery, so biota entering the traps to feed on its contents
could result in serious underestimates of the fluxes. On the other hand, there is no evid-
ence to support any upward bias of LVFS results caused by organism congregation near the
instrument since swimming organisms like copepods avoid capture by the LVFS (Section 2.3)

Time series sediment trap observations of organic carbon flux at 1268m were made over two
week periods for 125 days by LEE, WAKEHAM and FARRINGTON (1983). Degradation of the samples
occurred since they were not poisoned (LEE et al. 1983). Their carbon flux for the time

interval July 28 - August 10 was Tmmol C m 2d™ .

Such degradation is unlikely to seriously
influence LVFS flux estimates because the LVFS samples were only several hours old when
preserved. So the increase, by a factor of two, in the LVFS flux estimates is not unexpec-

ted.

The Tlast reliable time series trap sample at 1268m corresponded to the period October 20
- November 2 when fluxes of 0.4mmo!} Cor m_zd—1 were recorded. Based on the temporal trends
of primary production and particulate carbon flux from the euphotic zone (BISHOP and MARRA,
1984) we would expect Tower carbon fluxes to have been recorded by traps at 1268m had they
been operating during the November-December sampling period. Again LVFS fluxes indicated

a factor of two higher carbon flux.

In spite of the large difference in time over which trap and LVFS samples were collected
(weeks versus 4 hours) and the problem of trap sample degradation, the agreement of the
two methods was remarkably good in waters below the euphotic zone.

3.9.2 Phosphorus, Phosphorus showed much greater flux gradients in the water column

during both cruises compared to the other measured biogenic elements. During the July-August
2 -1
d

100m, thereafter it decreased at a slower rate to less than 0.003mmol P m~

period, the P flux decreased from 0.5mmol m~ at 12m to an order of magnitude less by
24=1 by 1300m.
In November-December phosphorus fluxes were Tower throughout the water column, declining
2471 at 25m to <0.0005mmo1 P m~2d™
from the large fraction is not unexpected knowing the higher Tability of this element rela-

tive to carbon (BISHOP et al.1980; COLLIER and EDMOND, 1984).

from 0.07mmol P m~ at 1000m. The rapid loss of phosphorus

3.9.3 Calceium, The dominant source of calcium in fecal material and in the 1-53um frac-
tion in the water column is coccoliths composed of calcium carbonate (BISHOP et al. 1977,
1978). Coccoliths have on occasion formed the dominant fraction of carbonate collected
by deep sediment traps in this basin (HONJO, 1982). In July-August calcium carbonate fluxes
carried by fecal material declined with depth very much like organic carbon fluxes, and
the unvarying Corg/ca content of the >53um material indicated no preferential fractionation
of these twg ﬁJements. Calcium fluxes gef{eased by an order of magnitude from close to
d

dmmol Ca m “d” " at 12m to 0.4mmol Ca m
0.1mmo1 m'zd'1 below 1000m. As for phosphorus, the calcium fluxes in November-December

at 100m, and then more sltowly to less than
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were lower than July-August values throughout the whole water column, and decreased from

0.5mmol Ca m™2d™" at 25m to less than 0.02mmol Ca m™2d”" by 1000m.
3.9.3.1  LVFS calcium fluzes and sediment traps . Total Ca fluxes in July-August
were determined by shallow trap deployments (BE et al. 1985) and were 0.7mmol Ca m'zd'1

Zd'1 at 300m. Foraminifera >149um accounted for approximately

at 30m and 70m and 1.2mmol m~
25% of the carbonate flux in the trap samples. Smaller Foraminifera and migrating pteropods
may have contributed a further 25% to the carbonate in the traps. Thus most of the trap
carbonate flux was not due to fecal material, and hence the LVFS calcium fluxes being lower
at 100m and 300m than determined by the traps can be explained. But why the 30m trap samples
had a factor of 4 lower fluxes than predicted by LVFS sampling, needs an alternate explian-
ation such as feeding activities of zooplankton in the trap or by the poor performance of
the trap in the conditions of strong currents and turbulence present at the depth of deploy-
ment (strong currents and turbulencewere experienced on a number of occasions in July-August
during MOCNESS tows, andwere the cause of strong temperature gradients and temperature inver-
sions; cf Fig.6).

Foraminiferan fluxes, calculated for the six LVFS samples from 530m, averaged 0.30mmo]l m'zd'1
(range 0.16-0.46mmo1 Ca m2q™!
of the water column below 500m, and if we sum the foraminiferan flux with the fecal material

; Fig.15). If we assume these fluxes to be representative

flux for the samples below 1000m, then reasonable agreement is found with the 0.32mmol Ca

Zd_1 flux recorded by the time series trap at 1268m during the July-August period.

=
Besides dissolution, an alternate explanation for the decrease in fecal material calcium
flux would be that coccoliths were lost from the large particles into the small fraction
due to fragmentation processes. However, this would have resulted in an accumulation of
Ca in the 1-53um fraction in deeper wamples which was not observed. Therefore it must be
concluded that carbonate dissolution occurs in the shallow waters of the Panama Basin.
In contrast, HONJO (1982) reported a minimal effect of dissolution on samples collected
deeper than 890m.

BISHOP et a7.(1980) first described carbonate dissolution in the shallow waters of the Panama
Basin and concluded that the process had to be biologically mediated because the upper 1500m
were at, or exceeded, calcite saturation, and herein further evidence is provided in support
of this conclusion. Firstly, the calculated Ca flux shows a strong decrease through the
upper 1300m.  Secondly, small fecal pellets devoid of coccoliths were found in the water
column during both STIE/C-FATE cruises. Thirdly, calcium concentrations in the 1-53um frac-
tion in deep samples was the lowest ever observed in spite of high surface concentrations.
Additional evidence for shallow carbonate dissolution has been found in Atlantic thermocline
waters (TAKAHASHI, BROECKER and LANGER, 1985).

3.9.4 Biogenic silica. Calculated silica fluxes during the July-August period decreased

2 -1 2.-1

from 10mmol Si m “d” ' above 25m to less than 0.2mmol Si m™“d”" below 1000m. Once again

in November-December Si fluxes were generally an order of magnitude lower and decreased
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2 1

from a maximum of 0.7mmol Si m~
beTow 800m.

- _r) -
a1 within the euphotic zone at 50m to <0.02mmol Si m™“d

The dissolution of siltica at shallow depths within the water column is a well known pheno-
menon (NELSON and GOERING, 1977) and so it is not surprising to find it occurring in the
shallow waters of the Panama Basin. No shallow silica flux data are available from the
traps and so the time series from the 1268m trap provides the only comparable data set.
Biogenic silica was not determined in these samples, so the analyses of total silicate and
aluminium have to be used for this estimate. During July-August the 1268m trap flux of
2d_T, respectively (ANDERSON and BACON, 1981).
Unfortunately, the A1/Si ratio of the silicate minerals in the Panama Basin is too pocrly

silicate and aluminium was 38.6 and 3.5mg m~

known for an accurate estimation of biogenic silica. However clay particles are alumirium
rich at Tow latitudes (BISHOP and BISCAYE, 1982) and so the alumino-silicate component is
roughly estimated here by multiplying aluminium flux by 8 rather than the more commonly
used factor of 10 (LAMBERT, BISHOP, BISCAYE and CHESSELET, 1984). Hence an estimated 70%
of the collected "silicates" was alumino-silicate and therefore the remaining 10mg m'gd—1
was in biogenic opal. By dividing the resultant weight by 60 to convert to mole units we

2d‘1, which is in remarkably good agreement

calculate a biogenic Si flux of 0.17mmol Si m~
with calculated LVFS fluxes. The dominance of alumino-silicates in the 1268m trap was con-
sistent with the resuspension of sediments from nearby topography as indicated in the nephel-

ometer data (Fig.4).

4. SUMMARY AND CONCLUSIONS

This study has characterised the particle cycle in the biologically active upper kilometre
of the eastern equatorial Pacific ocean. Our interdisciplinary approach is unique in that
components of the particle cycle governing both the production and the destruction of part-
iculate matter have been simultaneously determined and related to particle profiles in the
upper 1000m.

It has already been demonstrated that rates of primary production and particulate carbon
flux through the base of the euphotic zone (calculated based on new production estimates)
at the STIE/C-FATE area are closely controlled by the nutrient and light fields of the euph-
otic zone; these in turn, may be inferred from a knowledge of surface marine conditions
and mixed layer depth (BISHOP and MARRA, 1984). Highest primary production and particulate
carbon flux through the base of the euphotic zone occurred at times when the nutrient-
depleted mixed layer was shallowest (18m in July-August versus 35m in November-December)
or after nutrients had been entrained from below into the mixed Tlayer (during several one
week periods between the two cruises; BISHOP and MARRA, 1984). The findings of this paper
are the following:

1. Samples of particulate matter collected by the Large Volume in-situ Filtration
System (LVFS) were not positively biased by the presence of organisms near the sampling
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equipment during deployment. In fact, we estimate that >60% of the copepods present in
the upper 100m avoided capture by the LVFS during sampling.

2. Particles beginning their downward journey from the euphotic zone to the sediments
pass through a series of zones of biological activity in the water column prior to reaching
the sediments (KARL and KNAUER, 1984). Our zooplankton biomass and taxonomic group data
from the Panama Basin show that the water column was divided into several layers: the layer
shallower than 100m contained most zooplankton biomass and was coincident with the zone
of primary production; the Tlayer between 100-600m was dominated by migrating zooplankton
and fish which swam into the upper layer at night to feed; and the layer below 600m contained
organisms which did not migrate. This zonation has a significant impact on the particle
distributions in the upper 1000m.

3. Investigations of carbon partitioning between zooplankton and particulate pools
during the July-August cruise showed that the carbon biomass of >333um zooplankton (represent-
ing particle consumers) exceeded carbon concentrations in the >53um particulate fraction
(representing the sinking fraction of particulate matter) everywhere shallower than 1000m.
The fact that the ratio of zooplankton carbon to >53um particulate carbon was as great as
10, underscores the rapidity with which the >53um fraction may be processed by the zooplank-
ton consumers present in the upper 1000m.

4. Cruise to cruise differences in zooplankton abundance and vertical distributions
permitted an examination of which organisms were important in controlling the particle dis-
tributions in the water column. No single zooplankton group could be identified as the
source of the large irregular macroscopic aggregates termed fecal matter, although inter-
and intra-cruise variations in this class of particle were related to changes in gross zoo-
plankton abundance in the water column. We identified some zooplankton groups which were
Tikely sources of some classes of fecal pellets. Elliptical fecal pellet abundances matched
the inter-cruise variations in copepod abundances, and the abundances of the long (1-4mm)
tubular fecal pellets in near surface waters in July-August coincided with the presence
of dense patches of organisms (most Tikely schools of fish) which scattered 12kHz sound.
Thus in this season, most long fubular fecal pellets found in near surface waters were pro-
duced by highly mobile species which were not sampled by nets. Later in November-December
euphausiids were probably major contributors to the long tubular fecal pellet class.

5. In July-August the data on long tubular fecal pellet abundances and flux provided
direct evidence for feeding activity by coprophagous organisms. Given the fast settling rates
of these particles (30m hr—1), the five hundred fold decrease between surface waters and 200m
cannot be explained without consumption by coprophagous zooplankton and nekton. The secondary
maximum and a diel cycle of abundance and flux of these particles near 500m also suggested
the abundances of this pellet class below 200m was controlled by migratory organisms.

6. Microzooplankton increased between July-August and November-December, contrasting
with decreases observed for macrozooplankton, fish and 12kHz scatterers. We conclude that
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predation by macrozooplankton and fish may have suppressed microzooplankton populations
during July-August.

7. We examined bulk properties of the >53um and 1-53um particle size classes to under-
stand how particle distributions reflected biological processes in the upper 1000m. Mass
and chemical distributions of >53um particulate matter showed lower concentrations throughout
the water column during November-December compared with July-August, following decreases

in primary production, new production, and macrozooplankton group abundances.

A1l elements in the >53um particle size fraction sampled on both cruises showed greater
vertical concentration gradients in the upper 100m compared with the 1-53um fraction which
is explainable if there is enhanced consumption of Tlarge particles by the macrozooplankton
which had its greatest biomass in this depth interval.

For most 1-53um elements the vertical concentration gradients in the upper 200m were reduced
during November-December compared to during July-August. The cause of this reduction in
the concentration gradients was probably a decrease in macrozooplankton abundance and hence
grazing, leading to less efficient particle export via fecal material sinking from the upper
200m during the later period.

8. Organic carbon to phosphorus ratios in both 1-52um and >53um fractions were similar
in value in the euphotic zone (126:1 in July-August; 138:1 in November-December). But the
ratios diverged strongly in deeper waters, for the >53um fraction the ratio rose as high
as 1000:1 in waters between 100 and 1300m, whereas for the 1-53um fraction it remained at
an average of 160:1 below 100m during both cruises. These differences are taken to reflect
greater lability of phosphorus relative to organic carbon in the >53um fraction and the
possible presence of a refractory phosphorus phase in the 1-53um fraction, and differences
in the processes affecting the two particle size fractions below the euphotic zone.

9. We examined particulate carbon fluxes through the base of the euphotic zone cal-
culated from LVFS data and how they compared to carbon fluxes through the same depth based
on new production (BISHOP and MARRA, 1984). LVFS carbon fluxes, based on night-time samples,
during July-August were twice the particulate carbon flux based on new production estimates
whereas November-December LVFS carbon fluxes, based on midday measurements, were 40% lower
than carbon flux estimates based on new production. Diurnal variability of particle flux
was assumed to be the major cause of the differences between the two sets of data. But
we conclude that on the time scale of days new production is in balance with particulate

carbon flux.

10. Calculated organic carbon fluxes based on both LVFS data and new production esti-
mates were an order of magnitude higher than fluxes determined by surface-tethered, un-
poisoned sediment traps deployed in the upper 100m during the July-August cruise. We attri-
bute the difference to a combination of the feeding activities of zooplankton in the traps
during their deployment and to poor performance of the traps in the conditions of high
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current shear and turbulence prevailing in the upper 100m.

11. Organic carbon fluxes through 1260m based on LVFS data were twice those determined
by unpoisoned time-series traps deployed at 1268m for a two week period during July-August.
It is thought that the traps underestimated the fluxes because the organic material in the
traps had undergone degradation during the four month period between sample isolation and
recovery, but differences in the time scales of sampling {(days versus weeks) could have
accounted for some of the disparity between the two methods in deeper waters.

12. The profiles of >333um zooplankton biomass and of particle flux in the upper 1300m
were strongly similar during July-August. Because of this similarity, we were able to cal-
culate a relationship between vertical carbon flux gradient and zooplankton biomass:

1.92

dFLUX/dz = 6x10_7 « Z00OPL " 3

1

mmol C m “d”
where zooplankton biomass in in nmol C kg_1.
13. Calculated fluxes of dry weight, organic carbon, phosphorus, calcium carbonate,

and biogenic silica carried in fecal material all indicated strong regeneration in the upper
100m.  This pattern matched the strong gradients of dissolved phosphate and silica down
through the euphotic zone and was consistent with the vertical distribution of zooplankton
biomass in the same depth interval. Flux data showed that substantial dissolution of part-
jculate calcium carbonate (mostly produced by coccolithophores) occurs in the upper water
column of the Panama Basin. Foraminifera were implicated as major contributors to deep
carbonate flux since their shells have substantially higher sinking rates than fecal
material.

To conclude, we have demonstrated that particulate matter distributions, chemistry and fluxes
in the upper 1000m are related to rates of primary production and new production in the
euphotic zone and to the instantaneous distributions and activities of zooplankton and fish
over the upper 1000m. These results support the hypothesis that particle distributions
and fluxes in the upper 1000m are linked to the physical and biological environments of
the euphotic zone and deeper layer on the time scale of days.
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