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Abstract The paper investigates the probability of failure of a cohesive slope
using both simple and more advanced probabilistic analysis tools. The influence
of local averaging on the probability of failure of a test problem is thoroughly
investigated. In the simple approach, classical slope stability analysis techniques
are used, and the shear strength is treated as a single random variable. The
advanced method, called the random finite element method (RFEM), uses elasto-
plasticity combined with random field theory. The RFEM method is shown to
offer many advantages over traditional probabilistic slope stability techniques,
because it enables slope failure to develop naturally by “seeking out” the most
critical mechanism. Of particular importance in this work, is the conclusion that
simplified probabilistic analysis, in which spatial variability is ignored by assuming
perfect correlation, can lead to unconservative estimates of the probability of
failure. This contradicts the findings of other investigators using classical slope
stability analysis tools.

1 Introduction

Slope stability analysis is a branch of geotechnical engineering that is highly amenable
to probabilistic treatment, and has received considerable attention in the literature. The
earliest papers appeared in the 1970s (e.g. Matsuo and Kuroda 1974, Alonso 1976, Tang
et al. 1976, Vanmarcke 1977) and have continued steadily (e.g. D’Andrea and Sangrey
1982, Li and Lumb 1987, Mostyn and Li 1993, Chowdhury and Tang 1987, Whitman
1984, Wolff 1996, Lacasse (1994), Christian et al. 1994, Christian 1996, Lacasse and
Nadim (1996), Hassan and Wolff 1999, Duncan 2000). Most recently, El-Ramly et al.
2002 produced a useful review of the literature on this topic, and also noted that the
geotechnical profession was slow to adopt probabilistic approaches to geotechnical design,
especially in traditional problems such as slopes and foundations.

Two main observations can be made in relation to the existing body of work on this
subject. First, the vast majority of probabilistic slope stability analyses, while using novel
and sometimes quite sophisticated probabilistic methodologies, continue to use classical
slope stability analysis techniques (e.g. Bishop 1955) that have changed little in decades,
and were never intended for use with highly variable soil shear strength distributions. An
obvious deficiency of the traditional slope stability approaches, is that the shape of the
failure surface (e.g. circular) is often fixed by the method, thus the failure mechanism
is not allowed to “seek out” the most critical path through the soil. Second, while the
importance of spatial correlation (or auto-correlation) and local averaging of statistical
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geotechnical properties has long been recognized by some investigators (e.g. Mostyn and
Soo 1990), it is still regularly omitted from many probabilistic slope stability analyses.

In recent years, the present authors have been pursuing a more rigorous method of
probabilistic geotechnical analysis (e.g. Fenton and Griffiths 1993, Paice 1997, Griffiths
and Fenton 2000), in which nonlinear finite element methods are combined with ran-
dom field generation techniques. This method, called here the “Random Finite Element
Method” (RFEM), fully accounts for spatial correlation and averaging, and is also a
powerful slope stability analysis tool that does not require a priori assumptions relating
to the shape or location of the failure mechanism.

In order to demonstrate the benefits of this method and to put it in context, this
paper investigates the probabilistic stability characteristics of a cohesive slope using both
the simple and more advanced methods. Initially, the slope is investigated using simple
probabilistic concepts and classical slope stability techniques, followed by an investigation
on the role of spatial correlation and local averaging. Finally, results are presented from
a full-blown RFEM approach. Where possible throughout this paper, the Probability
of Failure (pf ) is compared with the traditional Factor of Safety (FS) that would be
obtained from charts or classical limit equilibrium methods.

The slope under consideration, known as the “Test Problem” is shown in Figure 1,
and consists of undrained clay, with shear strength parameters φu = 0 and cu. In this
study, the slope inclination and dimensions, given by β, H and D, and the saturated
unit weight of the soil, γsat are held constant, while the undrained shear strength cu

is assumed to be a random variable. In the interests of generality, the undrained shear
strength will be expressed in dimensionless form C, where C = cu/(γsatH).

β

H

Figure 1. Cohesive slope test problem
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Figure 1. Cohesive slope test problem
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2 Probabilistic description of shear strength

In this study, the shear strength C is assumed to be characterized statistically by a
lognormal distribution defined by a mean, µC , and a standard deviation σC .

The probability density function of a lognormal distribution is given by,

f(C) =
1

C σln C

√
2π

exp

{
−1

2

(
lnC − µln C

σln C

)2
}

(1)

shown in Figure 2 for a typical case with µC = 100 kN/m2 and σC = 50 kN/m2. The
function encloses an area of unity, thus the probability of the strength dropping below a
given value is easily found from standard tables. The mean and standard deviation can
conveniently be expressed in terms of the dimensionless coefficient of variation defined
as

VC =
σC

µC
(2)

Figure 2. Typical log−normal distribution, with a mean of 
100 and a standard deviation of 50 (V

C
=0.5).
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Figure 2. Typical log-normal distribution, with a mean of 100 and a standard deviation
of 50 (VC = 0.5)
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Other useful relationships relating to the lognormal function include the standard
deviation and mean of the underlying normal distribution as follows:

σln C =
√

ln {1 + V 2
C} (3)

µln C = lnµC −
1
2
σ2

ln C (4)

Rearrangement of equations (3) and (4) gives the inverse relationships:

µC = exp
(

µln C +
1
2
σ2

ln C

)
(5)

σC = µC

√
exp(σ2

ln C)− 1 (6)

Finally the median and mode of a lognormal distribution are given by:

MedianC = exp(µln C) (7)

ModeC = exp(µln C − σ2
ln C) (8)

A third parameter, the spatial correlation length θln C will also be considered in this
study. Since the actual undrained shear strength field is lognormally distributed, its
logarithm yields an “underlying” normal distributed (or Gaussian) field. The spatial
correlation length is measured with respect to this underlying field, that is, with respect
to lnC. In particular, the spatial correlation length (θln C) describes the distance over
which the spatially random values will tend to be significantly correlated in the underlying
Gaussian field. Thus, a large value of θln C will imply a smoothly varying field, while a
small value will imply a ragged field. The spatial correlation length can be estimated
from a set of shear strength data taken over some spatial region simply by performing
the statistical analyses on the log-data. In practice, however, θln C is not much different
in magnitude from the correlation length in real space and, for most purposes, θC and
θln C are interchangeable given their inherent uncertainty in the first place. In the current
study, the spatial correlation length has been non-dimensionalized by dividing it by the
height of the embankment H and will be expressed in the form,

ΘC = θln C/H (9)

It has been suggested (see e.g. Lee et al 1983, Kulhawy et al 1991) that typical
VC values for undrained shear strength lie in the range 0.1-0.5. The spatial correlation
length however, is less well documented and may well exhibit anisotropy, especially in
the horizontal direction. While the advanced analysis tools used later in this study have
the capability of modeling an anisotropic spatial correlation field, the spatial correlation,
when considered, will be assumed to be isotropic.

3 Preliminary Deterministic Study

To put the probabilistic analyses in context, an initial deterministic study has been
performed assuming a homogeneous soil. For the simple slope shown in Figure 1, the
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Factor of Safety can readily be obtained from Taylor’s (1937) charts or simple limit
equilibrium methods to give Table 1.

Table 1. Factors of Safety Assuming Homogeneous Soil

C FS

0.15 0.88
0.17 1.00
0.20 1.18
0.25 1.47
0.30 1.77

These results, shown plotted in Figure 3, indicate the linear relationship between C
and FS. The figure also shows that the test slope becomes unstable when the shear
strength parameter falls below C = 0.17.

Figure 3. Linear relationship between FS and C for a cohesive 
slope with a slope angle of β=26.57o and a depth ratio D=2.
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Figure 3. Linear relationship between FS and C for a cohesive slope with a slope angle
of β = 26.57o and a depth ratio D = 2

4 Single random variable (SRV) approach

The first probabilistic analysis to be presented here investigates the influence of giving
the shear strength C a lognormal probability density function similar to that shown in
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Figure 4. Probability of Failure vs. Factor of Safety 
(based on the mean) in a single random variable appraoch. 
The mean is fixed at µC=0.25.
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Figure 4. Probability of Failure vs. Factor of Safety (based on the mean) in a single
random variable approach

Figure 2, based on a mean µC , and a standard deviation σC . The slope is assumed to
have the same value of C everywhere, however the value of C is selected randomly from
the lognormal distribution. Anticipating the random field analyses to be described later
in this paper, this “single random variable approach” implies a spatial correlation length
of ΘC = ∞, so no local averaging is applicable.

The Probability of Failure (pf ) in this case, is simply equal to the probability that
the shear strength parameter C will be less than 0.17. Quantitatively, this equals the
area of the probability density function corresponding to C ≤ 0.17.

For example, if µC = 0.25 and σC = 0.125 (VC = 0.5), equations (3) and (4) give that
the mean and standard deviation of the underlying normal distribution of the strength
parameter are µln C = −1.498 and σln C = 0.472.

The Probability of Failure is therefore given by:

pf = p[C < 0.17] = Φ
(

ln 0.17− µln C

σln C

)
= 0.281 (10)

where Φ is the cumulative standard normal distribution function.
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This approach has been repeated for a range of µC and VC values, for the slope under
consideration, leading to Figure 4 which gives a direct relationship between the Factor of
Safety and the Probability of Failure. It should be emphasized that the Factor of Safety
in this plot is based on the value that would have been obtained if the slope had consisted
of a homogeneous soil with a shear strength equal to the mean value µC from Figure 3.

From Figure 4, the Probability of Failure (pf ) clearly increases as the Factor of Safety
decreases, however it is also shown that for FS > 1, the Probability of Failure increases
as the VC increases. The exception to this trend occurs when FS < 1. As shown in
Figure 4, the Probability of Failure in such cases is understandably high, however the
role of VC is to have the opposite effect, with lower values of VC tending to give the
highest values of the probability of failure. This is explained by the “bunching up” of the
shear strength distribution at low VC rapidly excluding area to the right of the critical
value of C = 0.17.
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Figure 5. pf vs. VC for different MedianC values

Figure 5 shows that the MedianC is the key to understanding how the Probability of
Failure changes in this analysis. When MedianC < 0.17, increasing VC causes pf to fall,
whereas when MedianC > 0.17, increasing VC causes pf to rise.

While the single random variable approach described in this section leads to simple
calculations, and useful qualitative comparisons between the Probability of Failure and
the Factor of Safety, the quantitative value of the approach is more questionable. An
important observation highlighted in Figure 4, is that a soil with a mean strength of
µC = 0.25 (implying FS = 1.47), would give a Probability of Failure as high as pf = 0.28

7



for a soil with VC = 0.5. Practical experience indicates that slopes with a Factor of Safety
as high as FS = 1.47 rarely fail.

Figure 6. Influence of different mean strength factoring 
strategies on the Probability of Failure vs. Factor of Safety 
relationship. a) linear factoring b) standard deviation factoring.
All curves assume FS=1.47 (based on Cdes=0.25).
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Figure 6. Influence of different mean strength factoring strategies on the Probability
of Failure vs. Factor of Safety relationship. a) linear factoring b) standard deviation
factoring. All curves assume FS=1.47 (based on Cdes = 0.25)
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An implication of this result is that either the perfectly correlated single random
variable approach is entirely pessimistic in the prediction of the Probability of Failure,
and/or it is unconservative to use the mean strength of a variable soil to estimate the
Factor of Safety. Presented with a range of shear strengths at a given site, a geotechnical
engineer would likely select a “pessimistic” or “lowest plausible” value for design, Cdes,
that would be lower than the mean. Assuming for the time being that the single random
variable approach is reasonable, Figure 6 shows the influence on the Probability of Failure
of two strategies for factoring the mean strength µC prior to calculating the Factor of
Safety for the test problem.

In Figure 6a, a linear reduction in the mean strength has been proposed using a factor
f1, where:

Cdes = µC(1− f1) (11)

and in Figure 6b, the mean strength has been reduced by a factor f2 of the standard
deviation, where:

Cdes = µC − f2σC (12)

All the results shown in Figure 6 assume that after factorization, Cdes = 0.25, im-
plying a Factor of Safety FS = 1.47. The Probability of Failure of pf = 0.28 with no
factorization f1 = f2 = 0, has also been highlighted for the case of VC = 0.5. In both
cases, an increase in the strength reduction factor reduces the Probability of Failure,
which is to be expected, however the nature of the two sets of reduction curves is quite
different, especially for higher values of VC . From the linear mean strength reduction
(equation 11), f1 = 0.6 would result in a Probability of Failure of about 0.6%. By com-
parison, a mean strength reduction of one standard deviation given by f2 = 1 (equation
12), would result in a Probability of Failure of about 2%. Figure 6a shows a gradual
reduction of the Probability of Failure for all values of f1 and VC , however a quite dif-
ferent behavior is shown in Figure 6b, where standard deviation factoring results in a
very rapid reduction in the Probability of Failure, especially for higher values of VC > 2.
This curious result is easily explained by the functional relationship between pf and VC ,
where the design strength can be written as:

Cdes = 0.25 = µC − f2σC = µC(1− f2VC) (13)

hence as VC → 1/f2, µC →∞. With the mean strength so much greater than the critical
value of 0.17, the Probability of Failure falls very rapidly towards zero.

5 Spatial Correlation

Implicit in the single random variable approach described above, is that the spatial corre-
lation length is infinite. In other words only homogeneous slopes are considered, in which
the property assigned to the slope is taken at random from a lognormal distribution. A
more realistic model would properly take account of smaller spatial correlation lengths
in which the soil strength is allowed to vary spatially within the slope. The parameter
that controls this is the spatial correlation length θln C as discussed previously. In this
work, an exponentially decaying (Markovian) correlation function is used of the form:
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ρ = e
− 2τ

θln C (14)

where ρ is the familiar correlation coefficient, and τ is the absolute distance between two
points in the random field. A plot of this function is given in Figure 7 and indicates,
for example, that the strength at two points separated by θln C (τ/θln C = 1) will have
an expected correlation of ρ = 0.135. This correlation function is merely a way of
representing the field observation that soil samples taken close together are more likely
to have similar properties, than samples taken from far apart. There is also the issue
of anisotropic spatial correlation, in that soil is likely to have longer spatial correlation
lengths in the horizontal direction than in the vertical, due to the depositional history.
While the tools described in this paper can take account of anisotropy, this refinement
is left for future studies.

Figure 7. Markov correlation function.
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Figure 7. Markov correlation function
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6 The Random Finite Element Method (RFEM)

A powerful and general method of accounting for spatially random shear strength pa-
rameters and spatial correlation, is the Random Finite Element Method (RFEM) which
combines elasto-plastic finite element analysis with random field theory generated using
the Local Average Subdivision Method (Fenton and Vanmarcke 1990). The methodology
has been described in detail in other publications (e.g. Griffiths and Fenton 2001), so
only a brief description will be repeated here.

A typical finite element mesh for the test problem considered in this paper is shown
in Figure 8. The majority of the elements are square, however the elements adjacent to
the slope are degenerated into triangles.

The code developed by the authors enables a random field of shear strength values to
be generated and mapped onto the finite element mesh, taking full account of element
size in the local averaging process. In a random field, the value assigned to each cell (or
finite element in this case) is itself a random variable, thus the mesh of Figure 8, which
has 910 finite elements, contains 910 random variables.

The random variables can be correlated to one another by controlling the spatial cor-
relation length θln C as described previously, hence the single random variable approach
discussed in the previous section where the spatial correlation length is implicitly set to
infinity, can now be viewed as a special case of a much more powerful analytical tool. Fig-
ures 9a and b show typical meshes corresponding to different spatial correlation lengths.
Figure 9a shows a relatively low spatial correlation length of ΘC = 0.2 and Figure 9b
shows a relatively high spatial correlation length of ΘC = 2. Dark and light regions
depict “weak” and “strong” soil respectively. It should be emphasized that both these
shear strength distributions come from the same lognormal distribution, and it is only
the spatial correlation length that is different.

In brief, the analyses involve the application of gravity loading, and the monitoring
of stresses at all the Gauss points. The slope stability analyses use an elastic-perfectly
plastic stress-strain law with a Tresca failure criterion which is appropriate for “undrained
clays”. If the Tresca criterion is violated, the program attempts to redistribute excess
stresses to neighboring elements that still have reserves of strength. This is an iterative
process which continues until the Tresca criterion and global equilibrium are satisfied at
all points within the mesh under quite strict tolerances.

Plastic stress redistribution is accomplished using a viscoplastic algorithm with 8-node
quadrilateral elements and reduced integration in both the stiffness and stress redistri-
bution parts of the algorithm. The theoretical basis of the method is described more
fully in Chapter 6 of the text by Smith and Griffiths (1998), and for a detailed discussion
of the method applied to slope stability analysis, the reader is referred to Griffiths and
Lane (1999).

For a given set of input shear strength parameters (mean, standard deviation and
spatial correlation length), Monte-Carlo simulations are performed. This means that
the slope stability analysis is repeated many times until the statistics of the output
quantities of interest become stable. Each “realization” of the Monte-Carlo process
differs in the locations at which the strong and weak zones are situated. For example,
in one realization, weak soil may be situated in the locations where a critical failure
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Figure 9. Influence of the scale of fluctuation in 
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Figure 9. Influence of the scale of fluctuation in RFEM analysis

mechanism develops causing the slope to fail, whereas in another, strong soil in those
locations means that the slope remains stable.

In this study, it was determined that 1000 realizations of the Monte-Carlo process for
each parametric group, was sufficient to give reliable and reproducible estimates of the
Probability of Failure, which was simply defined as the proportion of the 1000 Monte-
Carlo slope stability analyses that failed.
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In this study,“failure” was said to have occurred if, for any given realization, the
algorithm was unable to converge within 500 iterations. While the choice of 500 as the
iteration ceiling is subjective, Figure 10 confirms, for the case of µC = 0.25 and ΘC = 1,
that the Probability of Failure defined this way, is stable for iteration ceilings greater
than about 200.

Figure 10. Influence the plastic iteration ceiling on the
computed Probability of Failure.
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Figure 10. Influence the plastic iteration ceiling on the computed Probability of Failure

7 Local Averaging

The input parameters relating to the mean, standard deviation and spatial correlation
length of the undrained strength, are assumed to be defined at the point level. While
statistics at this resolution are obviously impossible to measure in practice, they represent
a fundamental baseline of the inherent soil variability which can be corrected through
local averaging to take account of the sample size.

In the context of the RFEM approach, each element is assigned a constant property
at each realization of the Monte-Carlo process. The “sample” is represented by the size
of each finite elements used to discretize the slope. If the point distribution is normal,
local averaging results in a reduced variance but the mean is unaffected. In a lognormal
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distribution however, both the mean and the standard deviation are reduced by local av-
eraging. This is because from equations (5) and (6), the mean of a lognormal relationship
depends on both the mean and the variance of the underlying normal log-relationship.
Thus the cruder the discretization of the slope stability problem and the larger the el-
ements, the greater the influence of local averaging in the form of a reduced mean and
standard deviation. These adjustments to the point statistics are fully accounted for in
the RFEM, and are implemented before the elasto-plastic finite element slope stability
analysis takes place.

8 Variance reduction over a square finite element

In this section, the algorithm used to compute the locally averaged statistics applied to
the mesh is described.

A lognormal distribution of a random variable C, with point statistics given by a
mean µC , a standard deviation σC and spatial correlation length θln C , is to be mapped
onto a mesh of square finite elements. Each element will be assigned a single value of
the undrained strength parameter.

The locally averaged statistics over the elements will be referred to here as the “area”
statistics with the subscript A. Thus, with reference to the underlying normal distribu-
tion of lnC, the mean, which is unaffected by local averaging, is given by µln CA

, and the
standard deviation, which is affected by local averaging is given by σln CA

.
The variance reduction factor due to local averaging γ, is defined:

γ =
(

σln CA

σln C

)2

(15)

and is a function of the element size and the correlation function from equation (14),
repeated here in the form,

ρ = exp
{
− 2

θln C

√
τ2
x + τ2

y

}
(16)

where τx is the difference between the x−coordinates of any two points in the random
field, and τy is the difference between the y-coordinates.

For a square finite element of side length αθln C as shown in Figure 11, it can be shown
(Vanmarcke 1984) that for an isotropic spatial correlation field, the variance reduction
factor is given by:

γ =
4

(αθln C)4

∫ αθln C

0

∫ αθln C

0

exp
{
− 2

θln C

√
x2 + y2

}
(αθln C−x)(αθln C−y) dx dy (17)
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Numerical integration of this function leads to the variance reduction values given in
Table 2, and shown plotted in Figure 11.

Table 2. Variance reduction over a square element

α γ
0.01 0.9896
0.1 0.9021
1 0.3965
10 0.0138

The figure indicates that elements that are small relative to the correlation length
(α → 0) lead to very little variance reduction (γ → 1), whereas elements that are large
relative to the correlation length can lead to very significant variance reduction (γ → 0).
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Figure 11. Variance reduction function over a square
element of side length  αθlnC with a Markov correlation
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The statistics of the underlying log-field, including local averaging, are therefore given
by:

σln CA
= σln C

√
γ (18)

and
µln CA

= µln C (19)

which leads to the following statistics of the lognormal field, including local averaging,
that is actually mapped onto the finite element mesh from equations (5) and (6), thus

µCA
= exp

(
µln CA

+
1
2
σ2

ln CA

)
(20)

σCA
= µCA

√
exp(σ2

ln CA
)− 1 (21)

It is instructive to consider the range of locally averaged statistics, since this helps to
explain the influence of the spatial correlation length ΘC(= θln C/H) on the Probability
of Failure in the RFEM slope analyses described in the next section.

Expressing the mean and the coefficient of variation of the locally averaged variable
as a proportion of the point values of these quantities, leads to Figures 12a and 12b
respectively. In both cases, there is virtually no reduction due to local averaging for
elements that are small relative to the spatial correlation length (α → 0). This is to be
expected, since the elements are able to model the point field quite accurately. For larger
elements relative to the spatial correlation length however, Figure 12a indicates that the
average of the locally averaged field tends to a constant equal to the median, and Figure
12b indicates that the coefficient of variation of the locally averaged field tends to zero.

From equations (18) to (21), the expression plotted in Figure 12a for the mean can
be written as,

µCA

µC
=

1
(1 + V 2

C)(1−γ)/2
(22)

which gives that when γ → 0, µCA
/µC → 1/(1 + V 2

C)1/2, thus µCA
→ eµln C = MedianC .

The expression plotted in Figure 12b for the coefficient of variation of the locally
averaged variable can be written as,

VCA

VC
=

√
(1 + V 2

C)γ − 1
VC

(23)

which gives that when γ → 0, VCA
/VC → 0, thus VCA

→ 0.
Further examination of equations (22) and (23) shows that for all values of γ,

MedianCA
= MedianC (24)
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Figure 12. Influence of element size expressed in the form
of a size parameter α on local averaging.
a) Influence on the mean, and b) Influence on the
coefficient of variation.
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Figure 12. Influence of element size expressed in the form of a size parameter α on local
averaging. a) Influence on the mean, and b) Influence on the coefficient of variation

17



In Summary,

1. local averaging reduces both the mean and the variance of a lognormal point dis-
tribution.

2. local averaging preserves the Median of the point distribution, and

3. in the limit, local averaging removes all variance, and the mean tends to the Median.

9 Locally averaged single random variable approach

In this section the Probability of Failure is reworked with the single random variable
approach using properties derived from local averaging over an individual finite element,
termed “finite element locally averaged properties” throughout the rest of this paper.
With reference to the mesh shown in Figure 8, the square elements have a side length
of 0.1H, thus ΘC = 0.1/α. Figure 13 shows the probability of failure pf as a function
of ΘC for a range of input point coefficients of variation, with the point mean fixed at
µC = 0.25. The Probability of Failure is defined, as before, by p[C < 0.17], but this
time the calculation is based on the finite element locally averaged properties, µCA

and
σCA

from equations 20 and 21. The figure clearly shows two tails to the results, with
pf → 1 as ΘC → 0 for all VC > 1.0783, and pf → 0 as ΘC → 0 for all VC < 1.0783.
The horizontal line at pf = 0.5 is given by VC = 1.0783, which is the special value of the
coefficient of variation that causes the MedianC = 0.17.
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Figure 13. Probability of Failure vs. Spatial Correlation Length
based on locally averaged properties. The mean is fixed at 
µC=0.25.

Figure 13. Probability of Failure vs. Spatial Correlation Length based on finite element
locally averaged properties. The mean is fixed at µC = 0.25

18



Recalling Table 1, this is the critical value of C that would give FS = 1 in the test
slope. Higher values of VC lead to MedianC < 0.17 and a tendency for pf → 1 as
ΘC → 0. Conversely, lower values of VC lead to MedianC > 0.17 and a tendency for
pf → 0. Figure 14 shows the same data plotted the other way round with VC along the
abscissa. This figure clearly shows the full influence of spatial correlation in the range
0 ≤ ΘC < ∞. All the curves cross over at the critical value of VC = 1.0783, and it is of
interest to note the step function corresponding to ΘC = 0 when pf changes suddenly
from zero to unity.

Figure 14. Probability of Failure vs. Coefficient of Variation
based on locally averaged properties. The mean is fixed at 
µC=0.25.
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Figure 14. Probability of Failure vs. Coefficient of Variation based on finite element
locally averaged properties. The mean is fixed at µC = 0.25

It should be emphasized that the results presented in this section involved no finite
element analysis, and were based solely on an SRV approach with statistical properties
based on finite element locally averaged properties based on a typical finite element of
the mesh in Figure 8.
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10 Results of RFEM Analyses

In this section, the results of full nonlinear RFEM analyses with Monte-Carlo simulations
are described, based on a range of parametric variations of µC , VC and ΘC .

Figure 15. Typical random field realizations and
deformed mesh at slope failure for two different 
spatial correlation lengths.
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Figure 15. Typical random field realizations and
deformed mesh at slope failure for two different 
spatial correlation lengths.

ΘC=0.5

ΘC=2

Figure 15. Typical random field realizations and deformed mesh at slope failure for two
different spatial correlation lengths

In the elasto-plastic RFEM approach, the failure mechanism is free to “seek out” the
weakest path through the soil. Figure 15 shows two typical random field realizations and
the associated failure mechanisms for slopes with ΘC = 0.5 and ΘC = 2. The convoluted
nature of the failure mechanisms, especially when ΘC = 0.5, would defy analysis by
conventional slope stability analysis tools. While the mechanism is attracted to the
weaker zones within the slope, it will inevitably pass through elements assigned many
different strength values. This weakest path determination, and the strength averaging
that goes with it, occurs quite naturally in the finite element slope stability method, and
represents a very significant improvement over traditional limit equilibrium approaches
to probabilistic slope stability, in which local averaging, if included at all, has to be
computed over a failure mechanism that is pre-set the particular analysis method (e.g.
a circular failure mechanism when using Bishop’s Method).
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Fixing the point mean strength at µC = 0.25, Figures 16 and 17 show the effect of
the spatial correlation length ΘC and the coefficient of variation VC on the probability of
failure for the test problem. Figure 16 clearly indicates two branches, with the Probability
of Failure tending to unity or zero for higher and lower values of VC , respectively. This
behavior is qualitatively similar to that observed in Figure 13, in which a single random
variable approach was used to predict the Probability of Failure based solely on finite
element locally averaged properties.

Figure 16. Probability of Failure vs. Spatial Correlation Length
from RFEM. The mean is fixed at µC=0.25.
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Figure 16. Probability of Failure vs. Spatial Correlation Length from RFEM. The mean
is fixed at µC = 0.25
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Figure 17 shows the same results as Figure 16, but plotted the other way round with
the coefficient of variation along the abscissa. Figure 17 also shows the theoretically
obtained result corresponding to ΘC = ∞, indicating that a single random variable ap-
proach with no local averaging will overestimate the Probability of Failure (conservative)
when the coefficient of variation is relatively small and underestimate the Probability of
Failure (unconservative) when the coefficient of variation is relatively high. Figure 17
also confirms that the single random variable approach described earlier in the paper,
which gave pf = 0.28 corresponding to µC = 0.25 and VC = 0.5 with no local averaging,
is indeed pessimistic. The RFEM results show that the inclusion of spatial correlation
and local averaging in this case will always lead to a smaller Probability of Failure.
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22



Comparison of Figures 13 and 14, with Figures 16 and 17, highlights the influence
of the finite element approach to slope stability, where the failure mechanism is free
to locate itself optimally within the mesh. From Figures 14 and 17, it is clear that
the “weakest path” concept made possible by the RFEM approach has resulted in the
crossover point falling to lower values of both VC and pf . With only finite element local
averaging, the crossover occurred at VC = 1.0783, whereas by the RFEM it occurred at
VC ≈ 0.65. In terms of the Probability of Failure with only finite element local averaging,
the crossover occurred at pf = 0.5 whereas by the RFEM it occurred at pf ≈ 0.38. The
RFEM solutions show that the single random variable approach becomes unconservative
over a wider range of VC values than would be indicated by finite element local averaging
alone.

Figure 18 gives a direct comparison between Figures 13 and 16, indicating clearly that
for higher values of VC , RFEM always gives a higher probability of Failure than when
using finite element local averaging alone. This is caused by the weaker elements in the
distribution dominating the strength of the slope and the failure mechanism “seeking
out” the weakest path through the soil.
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Figure 18. Comparison of the Probability of Failure predicted by RFEM and by finite
element local averaging only. The curve with plotted points comes from the RFEM
analyses.The mean is fixed at µC = 0.25
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At lower values of VC , the locally averaged results tends to overestimate the Prob-
ability of Failure and give conservative results compared with RFEM. In this case the
stronger elements of the slope are dominating the solution and the higher median com-
bined with the “bunching up” of the locally averaged solution at low values of ΘC , means
that potential failure mechanisms cannot readily find a weak path through the soil.

In all cases, as ΘC increases, the RFEM and the locally averaged solutions converge
on the single random variable solution corresponding to ΘC = ∞ with no local averaging.
The pf = 0.28 value, corresponding to VC = 0.5, and discussed earlier in the paper is
also indicated on Figure 18.

All of the above results and discussion in this section so far were applied to the test
slope from Figure 1 with the mean strength fixed at µC = 0.25 corresponding to a Factor
of Safety (based on the mean) of 1.47. In the next set of results µC is varied while
VC is held constant at 0.5. Figure 19 shows the relationship between FS (based on the
mean) and pf assuming finite element local averaging only, and Figure 20 shows the same
relationship as computed using RFEM.

Figure 19. Probability of Failure vs. Factor of Safety 
(based on the mean) using local averaging only for the test  
slope. The coefficient of variation is fixed at VC=0.5.
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Figure 19. Probability of Failure vs. Factor of Safety (based on the mean) using finite
element local averaging only for the test slope. The coefficient of variation is fixed at
VC = 0.5
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Figure 19, based on finite element local averaging only, shows the full range of behavior
for 0 ≤ ΘC < ∞. The figure shows that ΘC only starts to have a significant influence on
the FS vs. pf relationship when the correlation length becomes significantly smaller than
the slope height (ΘC << 1). The step function in which pf jumps from zero to unity,
occurs when ΘC = 0 and corresponds to a local average having zero variance. In this
limiting case, the local average of the soil is deterministic, yielding a constant strength
everywhere in the slope. With VC = 0.5, the critical value of mean shear strength that
would give µCA

= MedianC = 0.17 is easily shown by equation 22 to be µC = 0.19, which
corresponds to a FS = 1.12. For higher values of ΘC , the relationship between FS and
pf is quite “bunched up”, and generally insensitive to ΘC . For example, there is little
difference between the curves corresponding to ΘC = ∞ and ΘC = 0.5. It should also
be observed from Figure 19, that for FS > 1.12, failure to account for local averaging by
assuming ΘC = ∞ is conservative, in that the predicted pf is higher than it should be.
When FS < 1.12 however, failure to account for local averaging is unconservative.
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Figure 20. Probability of Failure vs. Factor of Safety 
(based on the mean) using RFEM for the test slope. 
The coefficient of variation is fixed at VC=0.5.
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Figure 20. Probability of Failure vs. Factor of Safety (based on the mean) using RFEM
for the test slope. The coefficient of variation is fixed at VC = 0.5
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Figure 20 gives the same relationships as computed using RFEM. By comparison with
Figure 19, the RFEM results are more spread out, implying that the Probability of Failure
is more sensitive to the spatial correlation length ΘC . Of greater significance, is that
the crossover point has again shifted by RFEM as it seeks out the weakest path through
the slope. In Figure 20, the crossover occurs at FS ≈ 1.37 which is significantly higher
and of greater practical significance than the crossover point of FS ≈ 1.12 by finite
element local averaging alone. The theoretical line corresponding to ΘC = ∞ is also
shown in this plot. From a practical viewpoint, the RFEM analysis indicates that failure
to properly account for local averaging is unconservative over a wider range of Factors
of Safety than would be the case by finite element local averaging alone. To further
highlight this difference, the particular results from Figures 19 and 20 corresponding to
ΘC = 0.5 (spatial correlation length equal to half the embankment height) have been re
plotted in Figure 21.
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Figure 21. Probability of Failure vs. Factor of Safety 
(based on the mean) using local averaging alone and RFEM 
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Figure 21. Probability of Failure vs. Factor of Safety (based on the mean) using finite
element local averaging alone and RFEM for the test slope. VC = 0.5 and ΘC=0.5
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11 Concluding remarks

The paper has investigated the probability of failure of a cohesive slope using both
simple and more advanced probabilistic analysis tools. The simple approach treated the
strength of the entire slope as a single random variable, ignoring spatial correlation and
local averaging. In the simple studies, the Probability of Failure was estimated as the
probability that the shear strength would fall below a critical value based on a lognormal
probability density function. These results led to a discussion on the appropriate choice
of a design shear strength value suitable for deterministic analysis. Two factorization
methods were proposed that were able to bring the Probability of Failure and the Factor
of Safety more into line with practical experience.

The second half of the paper implemented the random finite element method (RFEM)
on the same test problem. The non-linear elasto-plastic analyses with Monte-Carlo sim-
ulation were able to take full account of spatial correlation and local averaging, and
observe their impact on the Probability of Failure using a parametric approach. The
elasto-plastic finite element slope stability method makes no a priori assumptions about
the shape or location of the critical failure mechanism, and therefore offers very signifi-
cant benefits over traditional limit equilibrium methods in the analysis of highly variable
soils. In the elasto-plastic RFEM, the failure mechanism is free to “seek out” the weak-
est path through the soil and it has been shown that this generality can lead to higher
probabilities of failure than could be explained by finite element local averaging alone.

In summary, simplified probabilistic analysis, in which spatial variability is ignored
by assuming perfect correlation, can lead to unconservative estimates of the probability
of failure. This effect is most pronounced at relatively low factors of safety (Figure 20)
or when the coefficient of variation of the soil strength is relatively high (Figure 18).
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13 Notation

cu Undrained shear strength
C Dimensionless shear strength
Cdes Design value of C
D Foundation depth ratio
f1 Linear strength reduction factor
f2 Strength reduction factor based on standard deviation
FS Factor of Safety
H Height of slope
pf Probability of Failure
VC Coefficient of variation of C
x Cartesian x-coordinate
y Cartesian y-coordinate

α Dimensionless element size parameter
β Slope angle
γ Variance reduction factor
γsat Saturated unit weight
θC Spatial correlation length of C
θln C Spatial correlation length of lnC
ΘC Dimensionless spatial correlation length of lnC
µC Mean of C
µln C Mean of lnC
µln CA

Locally averaged mean of lnC over a square finite element
µCA

Locally averaged mean of C over a square finite element
ρ Correlation coefficient
σC Standard deviation of C
σCA

Locally averaged standard deviation of C over a square finite element
σln C Standard deviation of lnC
σln CA

Locally averaged standard deviation of lnC over a square finite element
τ Absolute distance between two points
τx x-component of distance between two points
τy y-component of distance between two points
φu Undrained friction angle
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