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Numerical Evaluation of the Lambert W Function
and Application to Generation of Generalized

Gaussian Noise With Exponent 1/2
François Chapeau-Blondeau, Member, IEEE,and Abdelilah Monir

Abstract—We address the problem of synthesizing a general-
ized Gaussian noise with exponent 1/2 by means of a nonlinear
memoryless transformation applied to a uniform noise. We show
that this transformation is expressable in terms of a special func-
tion known under the name of the Lambert W function. We re-
view the main methods for numerical evaluation of the relevant
branch of the (multivalued) Lambert W function with controlled
accuracy and complement them with an original rational function
approximation. Based on these methods, synthesis of the general-
ized Gaussian noise can be performed with arbitrary accuracy. We
construct a simple and fast evaluation algorithm with prescribed
accuracy, which is especially suited for Monte Carlo simulation re-
quiring large numbers of realizations of the generalized Gaussian
noise.

Index Terms—Generalized Gaussian noise, Lambert W func-
tion, noise synthesis.

I. INTRODUCTION

M ANY modern engineering processes, including
signals, images and communication systems, often

have to operate in complex environments dominated by
non-Gaussian noises [1], [2]. Efficient design, control, and
performance evaluation in these contexts depend on the
capability of modeling and synthesizing such non-Gaussian
noises. A random variable with prescribed cumula-
tive distribution function can be generated [3] as

, from a random variable uniform over [0,
1) and universally available with most scientific-computation
softwares through congruential recurrences [3]. In this paper,
we address the synthesis of as a generalized Gaussian
noise with exponent 1/2 and show that the corresponding
inverse is expressable by means of a special function
known under the name of the Lambert W function. We
provide numerical methods for explicit evaluation of the
relevant branch of the (multivalued) Lambert W function with
controlled accuracy. Based on these methods, we construct
a simple and fast algorithm with prescribed accuracy that is
especially suited for computation requiring large numbers of
realizations of the generalized Gaussian noise.
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Fig. 1. Two real branches of the Lambert W function. Solid line:W (z)
defined for�1=e � z < 0 (of interest to us in this paper). Dashed line:W (z)
defined for�1=e � z < +1. The two branches meet at point(�1=e; �1).

II. L AMBERT W FUNCTION

The Lambert W function is defined to be the inverse of the
function . This function , which thus veri-
fies , is a multivalued function defined in gen-
eral for complex and assuming values complex. If is
real and , then is multivalued complex. If is
real and , there are two possible real values of

: The branch satisfying is denoted by
and called theprincipal branchof the W function, and the other
branch satisfying is denoted by . If is
real and , there is a single real value for , which
also belongs to the principal branch . It is the real branch

for that will be useful to us in the
sequel. Both real branches and , for real, are
represented in Fig. 1.

Consideration of the Lambert W function can be traced back
to J. Lambert around 1758, and later, it was considered by
L. Euler [4]. This function has progressively been recognized in
the solution to many problems in various fields of mathematics,
physics, and engineering, up to a point at which the authors of
[4] convincingly argued to establish the Lambert W function as
a special function of mathematics on its own. These elements
also motivated the introduction of the Lambert W function in
the Maple mathematical software [5]. Here, we will present
an additional application of the Lambert W function, which is
especially relevant for signal processing, for the synthesis of a
generalized Gaussian noise with exponent 1/2.
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III. GENERALIZED GAUSSIAN NOISE

Generalized Gaussian noise is characterized by a probability
density function of the form

(1)

with parameters expressed in terms of the Gamma function:
and

, and an exponent . Equation (1) charac-
terizes a zero-mean unit-variance random quantity; in the
sequel we restrict our attention to these conditions knowing
that arbitrary mean and variance can straightforwardly be
restored by the change of variable .

For , is a heavy-tailed density [1], [2],
yet with all its moments finite (in contrast to other heavy-tailed
densities like stable densities [6]), making it suitable for phys-
ical modeling of many processes with heavy tails. Applications
have recently been found for speech, audio, or video signals
[7]–[9], images [10]–[13], or turbulence [14]. Efficient simu-
lation of generalized Gaussian noise can thus benefit to better
understanding and control of such processes.

We address here the case associated with the prob-
ability density

(2)

and cumulative distribution function

for

for
(3)

We want to invert of (3) and show that this inverse can
be expressed in terms of the Lambert function . We first
consider the branch for of of (3), and for its inver-
sion, this branch is written under the form

(4)

where . Equation (4) leads to

(5)

invertible under the form

(6)

to yield

(7)

The correct branch of the Lambert function is identified
since the mapping passes through the points
and .

Similar arguments can be applied to invert the branch for
of of (3). This finally leads, for (3), to the inverse

function

for

for

(8)

Equation (8) solves the problem of synthesizing a generalized
Gaussian noise with from a uniform noise as exposed
in the Introduction, provided we are able to handle the numerical
evaluation of the function . We now address this problem.

IV. NUMERICAL EVALUATION OF

We come to the numerical evaluation of for
. As we mentioned, this numerical evaluation is directly

accessible in the Maple mathematical software [5], [15]. Be-
yond, the Lambert W function, although it is useful in many
domains, is not yet available in standard mathematical software
libraries. We will thus describe here explicit elements for its nu-
merical evaluation, allowing us to write Fortran or C routines,
for instance.

A. Arbitrary-Precision Evaluation

A specificity of the Lambert W function is that it is defined
as an inverse function. As a consequence, arbitrary-precision
evaluations can be obtained by means of iterative root-finding
methods. For a given, one can find as the root (in )
of the equation while also keeping track of the correct
branch. Numerous iterative methods are available for this pur-
pose. A choice has to trade off between complexity of imple-
mentation, conditions, and number of iterations to convergence
at given precision. These properties are usually controllable via
the order of the method (the highest order of the derivatives
of the function to be zeroed used by the algorithm). Newton’s
method [3] is a simple first-order method that is appropriate but
with relatively slow convergence. A better compromise is real-
ized by Halley’s method, which is a third-order method that con-
stitutes the choice implemented by Maple and leads to high-pre-
cision evaluation in reasonable time [4], [5]. It is based on the
iteration scheme

(9)

Fourth-order methods, which are faster but more complicated,
are proposed in [16] and [17] but are limited as they are exposed
to the principal branch .

Again, since the Lambert function is an inverse function, a
simple way is available for controlling the error, or accuracy,
of a given numerical evaluation. At a givenin , the
value is evaluated as the (approximated) root of

with the function . If the exact root
is denoted [it is the “true” value of ], then the
residue provides access to the evaluation error
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. For any reasonable root-finding algorithm,
is very close to , and one has as a very good approximation

(10)

whence the evaluation error

(11)

With (9) controlled by (11), arbitrary-precision evaluation of
the Lambert W function can be realized, as done by Maple.

B. Fast Approximation

In addition to iterative schemes, more direct evaluation
methods based on series or asymptotic expansions exist,
offering a different tradeoff between accuracy and speed.

1) Series Expansion for : For in the vicinity of
, one has the series expansion [4]

(12)

where . This series can be computed to any
desired order from the recurrence relations

(13)

(14)

(15)

The series of (12) converges for , that is, for
, which covers the whole domain of existence of

. The first terms of the series of (12) are

(16)

2) Asymptotic Series for : Now, for approaching ,
the Lagrange inversion theorem provides an asymptotic series
expansion, with and , which
reads [4]

(17)

The coefficients are expressable as
, where is a non-negative Stirling

number of the first kind [18], computable via the generating
function

(18)

and for . It follows from (18) that ,
one has and . The recursion

(19)

is also available.
The first terms of the series of (17) are

(20)

3) Taylor Series for : Now, for
, the Lambert function remains

bounded, with derivatives existing at all ordersand easily
expressable (since is an inverse function) as [4]

for (21)

where the polynomials are defined by the recurrence re-
lation

for (22)

and the initial polynomial .
For any and both in , one thus has the Taylor

series

(23)

Equation (21) reveals an interesting property: Although the
Lambert function is a special function, the value of
any of its derivatives at any point
can be expressed solely by way of standard functions applied
to . Thus, approximation of with (23) in the
vicinity of only requires knowledge of , which is
obtainable, for instance, from Section IV-A.

4) Rational Function Approximation for
: Rational functions are usually able to provide a more

compact expression for a given level of accuracy, compared
with the polynomial expansion of the Taylor series. Since

is an inverse function, such a rational approximation
is easy to construct based only on standard (avoiding special
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Fig. 2. One-shot evaluation algorithm for the Lambert functionW (z) over
its domain of existencez 2 [�1=e; 0), realizing an approximation with relative
error strictly below 10 for anyz 2 [�1=e; 0).

functions) computations. One first settles a rational function of
prescribed orders and under the parametric form

(24)

One then constructs a set of points , and
the discrepancy is minimized by any stan-
dard method to find a set of coefficients and defining an
acceptable . The quality of the resulting approximation

can then be assessed via (11) or against a high-pre-
cision evaluation from Section IV-A, and it can be controlled
through the orders and and through the range and resolu-
tion covered by the training points .

A possible rational function approximation is (25), shown
at the bottom of the page, which we have constructed from
100 points with the s equispaced over
the interval [ 5, 1.5]. We have devised the rational function

of (25) to provide a relative approximation error for
of less than 10 for any (see

Fig. 3).
5) Fast Algorithm With Prescribed Accuracy:For fast

one-shot evaluation of over its full domain of
existence , we have devised the numer-
ical algorithm presented in Fig. 2. This algorithm, for

, implements the series expansion of (16).
For , it implements the rational function
approximation of (25). For , it implements the
asymptotic expansion of (20).

The algorithm of Fig. 2 evaluates the approximation
for . We have devised it to provide a rel-

ative approximation error
strictly below 10 for any . We have evaluated

Fig. 3. Relative errorjW (z) � W (z)j=jW (z)j for one-shot
evaluations W (z) of the Lambert functionW (z) given by
(a) the series expansion of (16), (b) rational function approximation of
(25), and (c) asymptotic expansion of (20). The vertical dashed lines have
abscissaz = �0:333 and z = �0:033. Over the domain of existence
z 2 [�1=e � �0:368; 0) of W (z), the one-shot evaluation algorithm
of Fig. 2 realizes a relative approximation error everywhere below 10
by implementing branch (a) forz 2 [�1=e; �0:333), branch (b) for
z 2 [�0:333; �0:033], and branch (c) forz 2 (�0:033; 0).

the behavior of this relative error of against a
high-precision evaluation for based on the iterative
scheme of Section IV-A, and the result is presented in Fig. 3.

V. GENERATION OF GENERALIZED GAUSSIAN NOISE

WITH EXPONENT 1/2

We have implemented, as a C routine, the one-shot evalua-
tion of the Lambert function realized by the algorithm
of Fig. 2. When run on a Pentium III 500-MHz processor, this
routine typically can perform 10evaluations of in
about 10 sec, whereas only 10evaluations can be performed
in the same time by Maple with its standard implementation of

. A speed increase by a factor of order 10can thus
be obtained with the limited-precision one-shot evaluation of

of Fig. 2. A realization of the resulting generalized
Gaussian noise with exponent 1/2 is shown in Fig. 4.

We have performed an estimation of its probability density
based on 10values drawn for the generalized Gaussian noise
and collected into bins of width . The estimated den-
sity presented in Fig. 5 is compared with the theoretical model
of (2) and shows very good agreement. The region of the tails of
the density , for large arguments , corresponds to values
of the generalized Gaussian noise that are produced, according
to (8), when the Lambert function approaches . In
this region, the Lambert function is expressed by the asymp-
totic expansion of (17), which is absolutely convergent [4]. The
terms left out when this expansion is truncated as in Fig. 2 are

(25)
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Fig. 4. Realization of a generalized Gaussian noise with exponent 1/2
generated with the algorithm of Fig. 2 to implement the function of (8)
performing the transformation of a uniform noise.

Fig. 5. Probability density function estimated for the generalized Gaussian
noise with exponent 1/2 synthesized as in Fig. 4, superimposed to the theoretical
model of (2) (continuous solid line).

[4], [18] and clearly form an approximation error
vanishing asymptotically. This translates into an approximation
scheme capable of an accurate representation of the tails of the
density , even in the far tails asymptotically, in principle.
This capability is visible in Fig. 5, up to the limitation due to
finite counts that get sparse in the tails.

This fast synthesis of generalized Gaussian noise based on the
algorithm of Fig. 2 is especially suited for Monte Carlo simula-
tion requiring large numbers of noise realizations. We have used
it, for instance, to estimate the probability of error of nonlinear
detectors designed for generalized Gaussian noise [19].

VI. CONCLUSION

We have shown that a generalized Gaussian noise with
exponent 1/2 can be generated from a uniform noise subjected
to a nonlinear transformation expressed in terms of the Lambert
function . We have reviewed the main methods for
numerical evaluation of with controlled accuracy. We
have complemented these methods with an original rational
function approximation for . By collecting these
methods, we have constructed a simple and fast algorithm

for numerical evaluation of over its full domain of
existence with a prescribed level of accuracy. This algorithm
can be straightforwardly coded in any programming language
with standard algebra. It is especially suited for Monte Carlo
simulation, requiring large numbers of realizations of the
generalized Gaussian noise. Such a tool can contribute to better
understanding and control of heavy-tailed processes.
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