
Imaging protein molecules using FRET and FLIM microscopy
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Förster (or fluorescence) resonance energy transfer (FRET) and

fluorescence lifetime imaging (FLIM) have moved center stage

and are increasingly forming part of multifaceted imaging

approaches. They are complementary methodologies that

can be applied to advanced quantitative analyses. The

widening application of FRET and FLIM has been driven by

the availability of suitable fluorophores, increasingly

sophisticated microscopy systems, methodologies to

correct spectral bleed-through, and the ease with which FRET

can be combined with other techniques. FRET and FLIM

have recently found use in several applications: in the analysis

of protein–protein interactions with high spatial and temporal

specificity (e.g. clustering), in the study of conformational

changes, in the analysis of binding sequences, and in

applications such as high-throughput screening.
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Introduction
In the dynamic cellular environment, proteins and other

cellular components undergo many processes — all pri-

marily designed to maintain cellular homeostasis. Biome-

dical methods have unlocked many cellular pathways,

and continue to do so. However, the desire to capture

microsecond or nanosecond cellular changes and interac-

tions in living cells in their natural environment has led to

the development of increasingly sophisticated imaging

technologies [1–5]. In particular, the need for high spatial

and temporal specificity has fostered the application of

one-photon and two-photon/multiphoton Förster (or
ncedirect.com
fluorescence) resonance energy transfer (FRET) imaging.

In this approach, suitable fluorophores (‘donors’ and

‘acceptors’; see Table 1) are associated with proteins or

other components of interest. FRET occurs only when

the components come into close proximity and the energy

from the donor is non-radiatively transferred to the accep-

tor [6��,7,8��,9]. The transfer efficiency between donor

and acceptor can be monitored using confocal or multi-

photon microscopy, but some signal contamination has to

be taken into consideration and the measurements cor-

rected accordingly (discussed later). The necessity for

these corrections can be avoided using fluorescence life-

time microscopy (FLIM), although this is a technically

challenging technique. The fluorescence lifetime of a

molecule is a measurement of the rate of decay of the

emission, which is a property of the individual fluoro-

phore; thus, the fluorescence lifetime is unaffected by the

change in probe concentration or excitation intensity.

The fluorescence lifetime is influenced by changes in

the cellular environment, such as changes in pH and ion

concentration, and is also effected by FRET. In a com-

bined FRET-FLIM approach, the occurrence of FRET

is measured by monitoring the change in donor lifetime

in the presence and absence of acceptor. As a result,

FRET-FLIM has some significant advantages over

intensity-based FRET approaches (discussed below).

Measuring either sensitized acceptor emission, donor

quenching or donor lifetime provides a method for esti-

mating the energy transfer efficiency [10–15]. In turn, this

value can give us information on the proximity of mole-

cules under study and expand our knowledge of cell

processes. In this review we describe the basics of FRET

and FLIM and its application to studies of protein–

protein interactions. We demonstrate that the rate of

energy transfer from donor to acceptor is inversely pro-

portional to the number of unquenched donor molecules

and describe the importance of detector spectral sensi-

tivity in estimating the energy transfer efficiency.

FRET methodology
FRET, at its most basic, determines the proximity

between labeled components within the nanometer range

[16]. Depending on the target to be imaged, a range of

microscopy systems can be employed for intensity-based

FRET studies. For example, changes in the cell nucleus

or non-polarized cells might well be analyzed with wide-

field microscopy [17], whereas thicker specimens

(>100 mm) may benefit from the use of two-photon/

multiphoton microscopy [18�]. Polarized cells, or cells

where discrete focal planes are desirable, could use con-

focal microscopy [8��], but investigation at the cell surface
Current Opinion in Biotechnology 2005, 16:19–27
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Table 1

FRET fluorophore pairs for FRET and FLIM studies.

Donor Acceptor References

BFP GFP [65]

BFP YFP [17]

CFP YFP [6��,7,9,11,12,14,15,29,30,33,36–

38,41,44,46–48,50,51,54,55,59�]

YFP YFP [52]

GFP Rhod-2 [2]

FITC Rhod-2 [2]

Cy3 Cy5, Cy5.5 [31��]

Alexa488 Alexa555 [6��,8��,18�,60]

FITC Alexa546

Cy3

Alexa350 Alexa488 [32]

Alexa594

Fluorescein Cy5 [45]

Fluorescein Rhodamine [34]

Texas Red [49]

Rhodamine NBD [58]

DCIA NBD [57]

IAEDANS DABCYL [61]

Tryptophan Dansyl [64]

A general description of FRET-FLIM donor–acceptor pairs is given

in [2–5,10,13,16,26��,40,42,43]. BFP, blue fluorescent protein;

CFP, cyan fluorescent protein; DABCYL, 4-((-4-(dimethylamino)-

phenyl)-azo)-benzoic acid; DCIA, dichloroisonicotinic acid;

FITC, fluorescein isothiocyanate; GFP, green fluorescent protein;

IAEDANS, 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-

sulfonic acid; NBD, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]

ethanesulfonate; YFP, yellow fluorescent protein.
might best be done using total internal reflection fluor-

escence microscopy (TIRFM) [19] (also see the review by

Schneckenburger in this issue). FRET-FLIM requires a

more specialized set-up, as described in the literature

[11,12,20–22].

FRET occurs when two fluorophores (donor and accep-

tor) have sufficiently large spectral overlap, a favorable

dipole–dipole orientation, proximity of 1–10 nm and a

large enough quantum yield [9,16,23–25]. Upon energy

transfer, donor fluorescence is quenched and acceptor

fluorescence is increased (sensitized), resulting in a

decrease in donor excitation lifetime. The spectral over-

lap between donor and acceptor fluorophores that allows

FRET to occur is also the cause of FRET signal con-

tamination, termed spectral bleed-through (SBT). SBT

refers to that part of the donor emission spectrum that

overlaps with acceptor emission (donor SBT) and the part

of the acceptor absorption spectrum that is excited by the

donor wavelength (acceptor SBT; Figure 1). There are

several methods to avoid, minimize or correct SBT con-

tamination in intensity-based FRET, each having specific

limitations depending on the level of sensitivity desired

[6��,8��,26��,27��]. In some cases the FRET signal is also

contaminated by the acceptor wavelength exciting the

donor; however, this contamination is usually extremely

low and within the noise level [27��].
Current Opinion in Biotechnology 2005, 16:19–27
Methods that avoid the need for SBT correction are the

widely used acceptor photobleaching technique and the

less frequently used donor photobleaching [28]; however,

photobleaching is unsuitable for use in live cells or time

series. A recent paper comparing different FRET meth-

odologies draws several conclusions in relation to the

problem of SBT: that acceptor photobleaching is in good

accord with other methods, if bleaching is complete (a

problem in live-cell imaging); that post-image acquisition

SBT correction methods vary in establishing energy

transfer efficiency; and that for best results donor-

to-acceptor ratios should be within the range 0.1–10

[26��]. Another method for handling SBT is spectral

unmixing [29]. This is an image analysis technique in

which the spectral imaging software compares the experi-

mentally derived emission data with a previously

recorded reference spectrum for that fluorophore. The

use of quantum dots as donors might also reduce SBT. It

is beyond the scope of this review to discuss SBT correc-

tion further, and instead readers are referred to the

available literature [6��,8��,26��,27��]. Suffice it to say

that SBT is an important concern and, depending on

the sensitivity required, the level of the FRET signal,

and the requirement for distance estimates, employing

one of the available methods is likely to be effective. By

contrast, the use of FRET-FLIM avoids the problem of

SBT altogether [30].

Energy transfer efficiency
In one recent method to remove SBT and to establish

energy transfer efficiency [6��,27��], seven images were

required to remove the donor SBT (DSBT) and the

acceptor SBT (ASBT) from the contaminated or uncor-

rected FRET (uFRET) and to obtain the processed

FRET (PFRET) image (Figure 2), as shown in Equation

(1).

PFRET ¼ uFRET � DSBT � ASBT (1)

The non-radiative rate of energy transfer efficiency from

donor to acceptor molecule (E) can be estimated [6��]

E ¼ 1 � IDA=ID ¼ 1 � IDA=½IDA þ PFRET� (2)
IDA þ PFRET ¼ ID ¼ uD (3)

where uD is the unquenched donor and IDA and ID are

the intensity of the donor in the presence and absence of

acceptor, respectively. Using Equations (2) and (3), the

following can then be derived:

E ¼ PFRET=uD (4)

As shown in Equation (4), the energy transfer from the

donor to the acceptor can be expressed as a percentage of

the total unquenched donor fluorescence and is called

‘energy transfer efficiency’ (E%). E% should correctly be

called ‘apparent’ E%, as the computation is based on total
www.sciencedirect.com
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Figure 1
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eCFPex = 457 nm
eYFPem = 545/40 nm

A FRET pair (enhanced cyan [eCFP] and yellow [eYFP] fluorescent protein) with sufficient spectral overlap. Excitation (solid line; ex) and emission

(dashed line; em) spectra of donor (eCFP) and acceptor (eYFP). The requirement of FRET for sufficient spectral overlap (yellow) occurs at the

expense of SBT, as indicated in the figure. ASBT, acceptor spectral bleed-through; DSBT, donor spectral bleed-through.
donor fluorescence, including non-FRET donors (i.e.

donor molecules that did not participate in the energy

transfer process). As a ‘spectroscopic ruler’, E% measures

the average distance between fluorophores using Ro (the

distance at which E% is 50%, termed the Förster dis-

tance) [25]. E% decreases rapidly with increasing distance

between fluorophores. Where there is a consistent spatial

arrangement between fluorophores (e.g. in fusion proteins

or stable macromolecular assemblies), the distance mea-

surement is likely to be more accurate than in co-localiza-

tions of components where distances vary (e.g. clusters).

Moreover, it is important that PFRET should be cor-

rected for the spectral sensitivity of the detector (g�1) for

both donor and acceptor channel images [27��]. The new

En and rn are then given by:

En ¼ 1 � IDA=½IDA þ g�1ðPFRETÞ� (5)

E ¼ 1 � I =½I þ PFRET 	 ððc =c Þ
n DA DA dd aa

	 ðQd=QaÞÞ� (6)

where Qd and Qa are the quantum yield of the donor and

acceptor, respectively, and cdd and caa are the collection
www.sciencedirect.com
efficiency in the donor and acceptor channel

ðcdd=caaÞ ¼ fðphotonmultiplier tube gain of donor channel=

photonmultiplier tube gain of acceptor channelÞ
� ðspectral sensitivity of donor channel=

spectral sensitivity of acceptor channelÞg (7)

Equation (6) is the final energy transfer efficiency equa-

tion. The distance between donor and acceptor molecule

(r) is estimated using Equation (8):

rn ¼ R0fð1=EnÞ � 1g1=6
(8)

Applications of FRET
The burgeoning number of publications on the use of

FRET is a testament to the utility of this microscopy

technique, which is increasingly used as a starting point to

investigate cellular structure and function in four dimen-

sions. More quantitative analyses can then follow FRET

analysis.

If the aim of a study is proof of proximity between

components, which conventional fluorescence micro-

scopy cannot unequivocally provide, the occurrence or
Current Opinion in Biotechnology 2005, 16:19–27
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Figure 2
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Intensity-based FRET data analysis. The data analysis for the CCAAT/enhancer-binding protein a expressed in GHFT1-5 cells using Biorad

Radiance confocal/multiphoton microscopy. The donor–acceptor pair comprised cyan and yellow fluorescent protein. Seven images were required

for PFRET data analysis [6,27]. The histograms clearly demonstrate the implementation of acceptor and donor SBT correction. This correction

also accounts for variation in fluorophore expression levels within the cellular images. (a) The uncorrected FRET (uFRET) and processed FRET

(PFRET) image and their respective histograms. (b) The two-dimensional distribution of efficiency (E) and distance (r) images. Before correction

E = 54% and r = 5.1 nm; after SBT correction E = 42% and r = 5.5 nm.
lack of FRET is a sufficient indicator (after appropriate

correction for SBT) without the need for additional

computations. Qualitative FRET has enjoyed wide-

spread use in establishing co-localization, cellular orga-
Box 1 Qualitative FRET analysis: examples of recent applications.

The distribution of potassium channels [45]

Co-localization of vacuolar H+-ATPase subunits in living plant cells

[46]

The discovery of binding partners linking gap junctions to the

submembrane cytoskeleton [47]

Providing direct evidence for the formation of a ternary kinase–

scaffold–phosphatase complex [48]

The use of three-fluorophore FRET to show RNA conformational

changes and binding to ribosomal S15 in one assay [49]

Investigating conformational changes of a transcription factor [50]

Showing in intact cells that mammalian G-protein subunits undergo

molecular rearrangement rather than dissociation [51]

The characterization of lipid rafts – addressing a controversial

scientific question [52]

High-throughput screening assays [53–56]

Current Opinion in Biotechnology 2005, 16:19–27
nization, conformational changes and the like. Box 1

provides some examples.

Increasingly, quantitative analyses are being carried out

using FRET based on the calculation of E% and distance

estimates. Quantitative FRET studies can provide infor-

mation on clustered versus random distribution and can

be used to investigate spatial arrangements. Specialized

approaches, such as single-molecule and three-color

FRET (or a combination of the two), are also being

explored [31��,32]. Box 2 provides some examples.

Live-cell FRET microscopy can usefully be combined

with a range of techniques including fluorescence

correlation spectroscopy (to investigate diffusion [33]),

anisotropy measurements (to investigate structural rela-

tionships of molecules [34,35]), TIRFM (for analysis of

specimen surfaces [19,36]), and FLIM (see below).

Potentially, other microscopy approaches are feasible

using FRET as a platform for establishing proximity

and for linking quantitative parameters with whatever
www.sciencedirect.com
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Box 2 Quantitative FRET analysis: examples of recent applications.

Application of FRET to measure energy transfer efficiency (E%)

Quantifying protein–lipid binding selectivity [57]

Monomer–dimer equilibrium suggests that transmembrane peptide

helices are parallel [58]

E% was used to measure cardiomyocyte contraction in response

to titrated Ca2+ concentrations [59�]

Determining the clustered distribution of membrane receptors by

correlation of E% to donor/acceptor levels [8��,60]

Measuring the binding stoichiometry of two membrane components

[61]

Using FRET–PCR for genotyping [62]

Application of FRET to measure distance (r)

Measuring the spatial separation between nucleotide binding and

phosphorylation domains of Ca-ATPase [63]

Combining FRET with molecular dynamics simulations defines the

otherwise heterogeneous donor–acceptor distances [64]

Spatial analysis: comparison of E% between receptors at the cell

surface and the interior, as well as the fraction of either [29]

Comparing the formation of multimeric complexes in the cytoplasm

versus the nucleolus [65]

Distance distribution studies [11,25]
system is most suitable to analyze cellular structure and

function. For example, spectral sensitivity correction for

donor and acceptor channels was implemented for esti-

mating E% and distance measurements for C/EBPa

(CCAAT/enhancer binding protein a) dimerization.

The study employed a cyan fluorescent protein and

yellow fluorescent protein FRET pair and was carried

out in live GHFT1-cell nuclei [6��,27��] (Figure 2).

FRET-FLIM
A fluorophore is not only characterized by its emission

spectrum, but also by its unique lifetime. The fluores-

cence lifetime (t) is defined as the average time that a

molecule remains in an excited state before returning to

the ground state. In practice, the fluorescence lifetime is

defined as the time in which the fluorescence intensity

decays to 1/e of the initial intensity (I0) immediately

following excitation (i.e. 37% of I0). FLIM is independent

of changes in probe concentration, excitation intensity

and other factors that limit intensity-based steady-state

measurements. Instrumental methods for measuring

fluorescence lifetimes can be divided into two major

categories: frequency domain [22] and time domain

[11,14,21,37,38]. Either method can be used in one-

photon or two-photon FRET-FLIM microscopy. With

the time-domain method (or pulse method), the speci-

men is excited with a short pulse and the emitted fluor-

escence is integrated in two or more time windows [11].

The relative intensity capture in the time windows is

used to calculate the lifetime decay characteristics. As an

alternative to the time-domain method, the frequency-

domain method uses a homodyne detection scheme and

requires a modulated light source and a modulated detec-

tor. The excitation light is modulated in a sinusoidal
www.sciencedirect.com
fashion. The fluorescence intensity shows a delay or

phase-shift with respect to the excitation and a smaller

modulation depth [25].

The fluorescence lifetime is influenced by changes in the

cellular environment including the occurrence of FRET,

which shortens or changes the excited state lifetimes.

FLIM allows the measurement of dynamic events at very

high temporal resolution (ns). FRET-FLIM provides

direct evidence of interactions between proteins. More-

over, as only the donor is monitored, no SBT correction is

needed. By measuring the donor lifetime in the presence

and the absence of acceptor one can accurately calculate

the distance between the donor- and acceptor-labeled

proteins.

Whereas one-photon or two-photon FRET produces an

‘apparent’ E% (i.e. the energy transfer efficiency calcu-

lated on the basis of all donors, both FRET and non-

FRET), the double-label lifetime data in one-photon or

two-photon FRET-FLIM usually exhibits two donor

lifetimes: quenched and unquenched (FRET and non-

FRET), allowing a more precise estimate of distance

based on FRET donors only [7,12]. The unquenched

lifetime might be sufficiently accurate for many situa-

tions, but the quenched lifetime might be vital for estab-

lishing comparative distances between biomolecules.

Moreover, the intensity-based FRET methods cannot

distinguish between an increase in FRET E% (i.e. cou-

pling efficiency) and an increase in FRET population

(concentration of FRET species); FRET-FLIM metho-

dology can resolve this issue using multicomponent

analysis [7].

Applications of FRET-FLIM
FRET-FLIM microscopy has been used to characterize

intranuclear dimer formation for the transcription factor

C/EBPa in living pituitary GHFT1-5 cells [7,11]. Shown

in Figure 3, dimerization reduces the donor lifetime as a

consequence of FRET, resulting in different lifetime

distributions (tDA = 1.87 ns). On bleaching the acceptor

molecule (using illumination of acceptor wavelength

514 nm), the donor molecule returns to its natural lifetime

(tD = 2.52 ns). This clearly demonstrates the occurrence

of FRET. FRET-FLIM can separate FRET from non-

FRET donors on the basis of lifetime distributions,

resulting in more realistic measurements. E and r can

be calculated using Equations (9) and (10)

E ¼ 1 � ðtDA=tDÞ (9)

r ¼ R fð1=EÞ � 1g1=6 (10)
0

where tD and tDA are the donor excited state lifetimes in

the absence and presence of the acceptor.

FRET-FLIM technology has been used in several other

recent studies to investigate cellular functions. For
Current Opinion in Biotechnology 2005, 16:19–27
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Figure 3
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Protein localization using acceptor photobleaching FRET-FLIM microscopy. Images of cells expressing enhanced cyan fluorescent protein

coupled directly to enhanced yellow fluorescent protein through a 15 amino acid linker were acquired and analyzed using FRET-FLIM

microscopy [7,30]. The mean lifetime of the selected region of interest was 1.87 ns in the presence of acceptor (A1 and A2). Photobleaching

of the acceptor molecule demonstrates the occurrence of FRET and the lifetime returns to its natural lifetime 2.52 ns (C1 and C2). The lifetime

of the donor molecule increases by increasing the photobleaching of the acceptor molecule step-by-step, as shown in the cellular images A1,

B1 and C1 and in the three-dimensional plots A3, B3 and C3. The two-dimensional lifetime distribution shift towards increase in lifetime A2,

B2 and C2 clearly demonstrates the return of the quenched molecule to its natural lifetime 2.52 ns.
example, FRET-FLIM was used in a study of MCF-7

breast carcinoma cells, and revealed appreciable FRET at

the plasma cell membrane and cell cortex beneath the

membrane [13]. In another study, Bacskai et al. [14]

characterized the macromolecular structures in amy-

loid-b plaques in tissue sections of a transgenic Alzheimer

mouse model. In a further example, FRET-FLIM tech-

niques were used to study caspase activity in baby ham-

ster kidney cells. In this case, as a result of apoptosis, a
Current Opinion in Biotechnology 2005, 16:19–27
wider distribution of altered donor lifetimes was observed

for tert-butyl hydroperoxide (tBOOH)-treated cells

[15,39].

The distance between donor and acceptor molecules is

not linear and there is a possibility that more than one pair

of donor and acceptor molecules can come into proximity.

FRET-FLIM helps to identify the distance distribution

in the dimerization of the protein molecules [11]. More-
www.sciencedirect.com
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Figure 4
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Drivers of the increased use of FRET. The rapidly increasing application of FRET microscopy is driven by better technology (microscopy

systems and software), by the availability of a wide range of fluorophores, by various methodologies to overcome SBT signal contamination and,

most importantly, by the combination of FRET with other microscopy techniques and/or analysis tools to capture additional temporal and

spatial information, such as kinetics, cluster densities and the ability to carry out high-throughput screening in drug development. FCS,

fluorescence correlation spectroscopy; ICCS, image cross-correlation spectroscopy; PMT, photomultiplier tube.
over, as this methodology follows the excited state life-

time of the molecular interactions, it is possible to follow

one or more interacting protein molecules in a single

living cell. Using fluorescence lifetime measurements,

complete quantitative characterization of the molecular

interactions can be made.

Suitable fluorophores have been developed for FRET

and FLIM [40–43] (Table 1). However, it has been

reported that some variants of green fluorescent protein

have two-component lifetimes when fused to proteins,

and this may be an issue in FRET-FLIM imaging [30,44].

As the donor molecule lifetime is followed for the energy

transfer process, it is important to verify whether the

donor molecule has single exponential decay in the

absence of acceptor.

Conclusions
There is no question that the application of FRET

microscopy will continue to increase, driven by the

advances outlined in Figure 4 and by the growing

number of researchers that routinely use this tech-

nology. In the future, SBT and other challenges in

intensity-based FRET will most likely be handled in

real-time with suitable software — some commercial

developments are already taking place. The use of

FRET-FLIM provides many advantages and is also

likely to expand; however, not every center will have

a FLIM facility and one advantage of ‘conventional’
www.sciencedirect.com
FRET is the opportunity to use a wide range of stan-

dard microscopy systems. Three-color fluorophore

FRET systems are beginning to emerge, particularly

combined with spectral imaging and spectral unmixing.

Further advances will arise from the combination of

the basic FRET phenomenon with other technologies

such as dual-color fluorescence correlation spectro-

scopy, image cross-correlation spectroscopy and others.

New fluorophores and, in particular, quantum dots will

also expand the usefulness of FRET, both qualitatively

and quantitatively. Opportunities for further mathema-

tical modeling using E% and distance information,

donor-to-acceptor ratios, knowledge of protein structure

and so on, together with data gleaned from other

experimental methods, will lead to detailed insights

into cellular dynamics.
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