
A Comprehensive Analysis
of Indirect Branch Prediction

Oliverio J. Santana1, Ayose Falcón1, Enrique Fernández2, Pedro Medina2,
Alex Ramı́rez1, and Mateo Valero1

1 Dpto. de Arquitectura de Computadores, Universidad Politécnica de Cataluña
{osantana,afalcon,aramirez,mateo}@ac.upc.es

2 Dpto. de Informática y Sistemas, Universidad de Las Palmas de Gran Canaria
{efernandez,pmedina}@dis.ulpgc.es

Abstract. Indirect branch prediction is a performance limiting factor
for current computer systems, preventing superscalar processors from
exploiting the available ILP. Indirect branches are responsible for 55.7%
of mispredictions in our benchmark set, although they only stand for
15.5% of dynamic branches. Moreover, a 10.8% average IPC speedup is
achievable by perfectly predicting all indirect branches.
The Multi-Stage Cascaded Predictor (MSCP) is a mechanism proposed
for improving indirect branch prediction. In this paper, we show that a
MSCP can replace a BTB and accurately predict the target address of
both indirect and non-indirect branches. We do a detailed analysis of
MSCP behavior and evaluate it in a realistic setup, showing that a 5.7%
average IPC speedup is achievable.

Keywords: microarchitecture, branch prediction, Branch Target Buffer,
indirect branch, Multi-Stage Cascaded Predictor

1 Introduction

Current computer systems rely on instruction level parallelism (ILP) to achieve
high performance. Superscalar processors are designed to exploit ILP, but control
hazards prevent them from taking advantage of all the available ILP. One of
the most used mechanisms to overcome control hazards is branch prediction. A
decoupled branch prediction architecture [2] uses a direction predictor to predict
if conditional branches will be taken or not taken and a target address predictor
to predict where a taken branch will go. There is a wide amount of research
about improving the accuracy of branch direction predictors [15,9,10], but the
use of a branch target buffer (BTB) is commonly accepted as a good way of
predicting target addresses [8,16,12]. However, some authors [7,1,3,4] claim that
the target addresses of indirect branches are not accurately predicted by a simple
BTB.

In this paper, we show that indirect branch prediction is a hard problem for
computer systems and that there is room for improvement. In our benchmark
set, branch instructions are correctly predicted 91.2% of the time on average.

H. Zima et al. (Eds.): ISHPC 2002, LNCS 2327, pp. 133–145, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

134 Oliverio J. Santana et al.

If we do not take into account return instructions, indirect branches are only
correctly predicted 45.3% of the time. Overall, indirect branches are responsible
for 55.7% of all branch mispredictions, although they only stand for 15.5% of
dynamic branch instructions. A 10.8% average IPC speedup can be obtained by
perfectly predicting all indirect branches.

The Multi-Stage Cascaded Predictor (MSCP) is a mechanism described by
Driesen et al. [6] for improving the prediction of indirect branches. In their
previous study, they evaluate MSCP behavior using only indirect branch traces.
We contribute to the study of this technique by showing that MSCP can work
well with complete programs, replacing the BTB. Using a MSCP to predict
the target address of branch instructions provides an increase in target address
prediction accuracy, as well as an improvement in processor performance. This
improvement indicates that MSCP can predict accurately target addresses of
both indirect and non-indirect branches.

We do a detailed analysis of MSCP behavior in order to understand how
it works. MSCP improves processor performance by providing an important
reduction in mispredictions due to indirect branches. We show that, in a three
level configuration, the intermediate level is poorly used. Most branches, whose
target addresses are easy to predict, use the first level, while difficult to predict
branches are better predicted using the last level.

This deep analysis of MSCP allows us to find better configurations and to
optimize its performance in a realistic setup. Using a gskewed branch direction
predictor [10] and replacing the BTB with a MSCP of an equivalent hardware
budget we achieve 5.7% average IPC speedup. We show that this speedup cannot
be achieved by a larger BTB. Therefore, problems in target address prediction
in studied benchmarks are not due to conflict misses, but to the unpredictability
of indirect branches using a simple BTB.

We also analyze the behavior of some static indirect branches in our integer
benchmark suite. There is a small amount of static indirect branches that are
responsible for a great number of mispredictions in some benchmarks. These
branches are indirect jumps in high level switch structures and function calls us-
ing pointers. Therefore, not only object oriented programs will find beneficial an
improvement in indirect branch prediction. In addition, we show that a difficult
to predict indirect branch not necessarily should have a lot of different dynamic
target addresses. The predictability of an indirect branch in MSCP depends on
whether or not there is correlation of its target address with the target address
of previously executed branches.

The remainder of this paper is organized as follows. Section 2 exposes previ-
ous related work. In section 3 we describe our simulation environment and the
selected benchmark set. In section 4 we show the relative importance of indirect
branches with regards to the rest of branch instructions. In section 5 we describe
the MSCP and analyze its behavior, proposing a realistic configuration. In sec-
tion 6 we study the behavior of some static indirect branches. Finally, section 7
exposes our concluding remarks.

A Comprehensive Analysis of Indirect Branch Prediction 135

2 Related Work

One of the best known approaches to indirect branch prediction is the return
address stack (RAS) proposed by Kaeli et al. [7]. In [1] Calder et al. show that
indirect branches will be a limiting factor to performance with the increase
of popularity of object oriented programming. They analyze some static and
dynamic techniques for improving the prediction of indirect function calls. We
show in this paper that better predicting indirect branches is important not only
for object oriented programs.

In [11] Nair proposes to record the path of target addresses of recent branches
in the history register instead of a pattern of bits meaning taken or not taken
branches. This technique is used for indexing the prediction tables of MSCP. In
[3] Chang et al. propose a target cache to predict the target address of indirect
branches. This mechanism has a prediction table indexed by a value obtained
hashing the branch instruction address with the contents of a history register.
Stark et al. present in [14] a mechanism which index its prediction table using
different history lengths for each branch, according to previously collected profile
information.

The main source of inspiration of this paper is the previous work of K. Driesen
and U. Hölzle in indirect branch prediction. In [4] they explore a variety of two-
level predictor configurations dedicated to predict the target address of indirect
branches. In [5] Driesen et al. propose the cascaded predictor as a new way of
combining two prediction tables. This predictor keeps easy to predict branches in
a first level table and allows difficult to predict branches, i.e. indirect branches,
to use a second level table, which takes advantage of correlation for keeping
more information. The Multi-Stage Cascaded Predictor is a generalization of
this technique proposed in [6]. We contribute to the study of this mechanism
by showing that it is able to replace a BTB and accurately predict the target
address of both indirect and non-indirect branches. We do a detailed analysis of
its internal behavior and evaluate its impact on processor performance presenting
IPC measures.

3 Experimental Methodology

Our data has been obtained using the sim-outorder simulator from the Sim-
pleScalar 3.0 tool set. This simulator, configured to use the Alpha instruction
set architecture, models a six stage pipeline with a register update unit (RUU).
We have collected detailed information about static branch instructions from
sim-outorder. The baseline configuration is a 4-way issue processor described in
table 1. This configuration uses a 2048 entry 4-way associative BTB for target
address prediction and a 64 entry RAS for predicting return instructions. A
gskewed predictor [10] is used to predict the direction of conditional branches.
It is a 12 KB predictor with three 16K entry tables and a history length of 14
bits.

We have selected the nine programs from the SPECint 95 and 2000 bench-
marks where indirect branch prediction is a harder problem. These benchmarks

136 Oliverio J. Santana et al.

Table 1. Configuration of the baseline processor

fetch width 4
issue width 4
RUU entries 64
load/store queue entries 32
integer ALUs 4
floating point ALUs 4
integer multiplier/dividers 1
floating point multiplier/dividers 1
first level instruction cache 32 KB, 2-way associative, block size: 32 B
first level data cache 32 KB, 2-way associative, block size: 32 B
second level unified i+d cache 1 MB, 4-way associative, block size: 64 B

allow us to measure MSCP performance with complete programs instead of us-
ing only indirect branch traces. They also allow us to show that not only object
oriented programs would find MSCP beneficial. The selected benchmarks were
compiled with the Compaq C V5.8-015 compiler on Compaq UNIX V4.0 with
options -O2, -g3 and -non shared. SPECint 95 benchmarks were executed to
completion using a modified version of the test or train input set. SPECint 2000
benchmarks were executed to completion or until 500 million instructions were
executed. SPECint 2000 used the test input set, excluding 253.perlbmk, which
used the train input set.

4 The Importance of Indirect Branches

In this section we show the importance of indirect branches with regards to
the rest of branch instructions. By perfectly predicting all indirect branches, we
get a 10.8% average IPC speedup over our baseline configuration, getting 20% in
253.perlbmk or even 31% in 134.perl. This data shows the potential improvement
a mechanism for better predicting indirect branches can achieve and that such
a mechanism will be worthwhile.

Figure 1 shows the prediction accuracy of branch instructions. The first
bar represents prediction accuracy for indirect branches excluding return in-
structions, which are already correctly predicted by a RAS [7]. The second bar
represents prediction accuracy for all branch instructions. While the average
branch prediction accuracy is 91.2%, indirect branches are correctly predicted
only 45.3% of the time. This low prediction accuracy is caused by the BTB,
since indirect branches are always taken in the Alpha instruction set architec-
ture. Therefore, a BTB cannot predict accurately the target address of indirect
branches.

In figure 2 we show the percentage of indirect branches over the total number
of dynamic branch instructions and the percentage of all branch mispredictions
due to indirect branches. The first bar indicates that indirect branches are a small
percentage of branch instructions in our benchmark set. However, the second bar

A Comprehensive Analysis of Indirect Branch Prediction 137

12
4.m

88
ks

im

12
6.g

cc
13

0.l
i

13
4.p

erl

17
6.g

cc

18
6.c

raf
ty

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

av
era

ge
0

20

40

60

80

100

ac
cu

ra
cy

 (
%

)

non-return indirect branches
all branches

Fig. 1. Comparison of prediction accuracy for indirect branches, excluding returns,
and all branches

12
4.m

88
ks

im

12
6.g

cc
13

0.l
i

13
4.p

erl

17
6.g

cc

18
6.c

raf
ty

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

av
era

ge
0

20

40

60

80

100

%
 b

ra
nc

he
s

/ %
 m

is
pr

ed
ic

ti
on

s

indirect branches
mispredictions due to indirect branches

Fig. 2. Comparison of the percentage of indirect branches over the total number of
dynamic branch instructions and the percentage of all branch mispredictions due to
indirect branches

points out that indirect branches are responsible for most branch mispredictions.
On average, indirect branches represent only 15.5% of dynamic branch instruc-
tions, although they are responsible for 55.7% of all mispredictions. This makes
clear that, although research has been focused on branch direction predictors,
better ways of predicting indirect branches should be developed.

5 Analysis of Multi-stage Cascaded Predictor

In this section we analyze and evaluate the Multi-Stage Cascaded Predictor.
A more detailed study can be found in [13]. First of all, we do a description of
MSCP in section 5.1. In section 5.2 we present an analysis of MSCP behavior and
performance measures using IPC. We show the influence of MSCP in indirect
branch prediction and how different table levels are used. Finally, we evaluate

138 Oliverio J. Santana et al.

XOR

XOR

Final
PredictionGlobal History

Buffer (level 2)

Global History
Buffer (level 3)

Prediction Table (level 1)

Prediction Table (level 2)

Prediction Table (level 3)

Branch Address

Fig. 3. Multi-Stage Cascaded Predictor

MSCP in section 5.3, showing that this mechanism can outperform a BTB with
the same hardware budget in a realistic setup.

5.1 Description

The Multi-Stage Cascaded Predictor, shown in figure 3, is designed to predict
the target address of branch instructions. Therefore, this predictor replaces the
BTB in a decoupled branch prediction architecture [2]. MSCP consists on three
prediction tables that make their prediction in parallel. Each prediction table is
indexed by xoring the branch instruction PC with the contents of a history reg-
ister. This history is built using the target address of recently executed branches.

The number of branches used to build the history is called path length. The
higher the table level is, the larger its path length should be. First level table
uses a zero path length, so it is indexed only with the branch instruction PC and
behaves like a BTB. MSCP chooses the prediction from the higher level which
has information about the branch being predicted. Higher levels are supposed
to be more accurate because they keep more information about each branch by
using correlation with a larger path length.

To work well, MSCP should keep easy to predict branches in the first level
table while only difficult ones should be allowed to use higher level tables. A
new branch, that is, a branch which cannot be predicted because MSCP has no
information about it, is always introduced in the first level table. Only if the
prediction for later instances of that branch fails repeatedly it will promote to
higher level tables.

5.2 Behavior Analysis

In order to study the behavior of MSCP we evaluate a configuration with three
prediction tables. Each one is a 2048 entry 4-way associative table. Therefore,
this configuration has 6K entries, three times more than the baseline BTB. The
path length is three branches for the second level and eight branches for the
third level, as in [6].

A Comprehensive Analysis of Indirect Branch Prediction 139

12
4.m

88
ks

im

12
6.g

cc
13

0.l
i

13
4.p

erl

17
6.g

cc

18
6.c

raf
ty

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

av
era

ge
0

20

40

60

80

100

%
 u

sa
ge table 1

table 2
table 3

Fig. 4. Percentage of usage of each table prediction in MSCP over the whole number
of predictions done

The size of this MSCP configuration is large enough to analyze its behavior
without resource limitations. In this section we use a perfect branch direction
predictor to ensure that all branch mispredictions are actually target address
mispredictions. With this approach, all non-indirect branches are easily pre-
dictable, so we can focus on the predictability problems of indirect branches.

We obtain a 5.7% average IPC speedup along our benchmark set by replacing
the baseline BTB with the analyzed setup of MSCP. The benchmark 134.perl
even achieves a 21.5% IPC speedup. MSCP gets an average reduction of 55% of
this kind of mispredictions, achieving even 87% in 134.perl or 93% in 254.gap.
This data shows that MSCP improves processor performance by better predict-
ing indirect branches.

Behavior of Each MSCP Prediction Table. To better understand how
MSCP works, we analyze the use of each table. In figure 4 we show the percentage
of usage of each table prediction over the total number of predictions done. Most
predictions have been done by the first level table. This means that a majority
of branches can be easily predicted by a simple BTB without correlation and do
not need to be upgraded toward higher levels. The third level table is the one
that predicts difficult branches, while the second is rarely used.

Almost all target mispredictions are caused by predictions done by the third
level table. This happens because predictable branches remain in the first level
while only difficult branches are promoted to the third level table. Therefore,
the first and the second level tables will only predict branches that they are able
to predict, while the third level table will predict not only the branches it is able
to predict, but also those branches which cannot be predicted by any table.

Figure 5 shows the percentage of indirect branch predictions done by each
table over the total number of indirect branch predictions. Most indirect branch
predictions are done by the third level table because indirect branches are sup-
posed to be too difficult for the first level table to predict them. However, there
is a small amount of indirect branches in some benchmarks that can be correctly

140 Oliverio J. Santana et al.

12
4.m

88
ks

im

12
6.g

cc
13

0.l
i

13
4.p

erl

17
6.g

cc

18
6.c

raf
ty

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

av
era

ge
0

20

40

60

80

100

%
 u

sa
ge table 1

table 2
table 3

Fig. 5. Percentage of indirect branch predictions done by each table

predicted by the first level table. This happens to indirect branches having only
a single target address or a target address that repeats in consecutive instances
of the branch. In addition, we can observe that the second level table is poorly
used in comparison with the third level one in the majority of benchmarks. This
data points out that MSCP would work well using only two levels of prediction
tables.

5.3 Evaluation

In the previous section we analyzed a MSCP three times larger than the base-
line BTB. We explore now some possible configurations of MSCP using approx-
imately the same hardware budget than the baseline BTB, that is, 2048 entries.
We are not taking into account the little cost of global history registers and
associated logic.

Figure 6 shows IPC speedup of some MSCP configurations over the base-
line using a perfect branch direction predictor. We have simulated a three level
MSCP, labeled as 3t in figure 6. This configuration has a 1024 entry 2-way as-
sociative table in the first level and a 512 entry direct mapped table in both
the second and the third level. Path length three is used in the second level and
path length eight is used in the third level. We have also simulated three two
level MSCP configurations, labeled as 2t3, 2t8 and 2t9. These configurations
have a 1536 entry 3-way associative table in the first level and a 512 entry direct
mapped table in the second level. The second level is indexed using path length
three (2t3), eight (2t8) and nine (2t9) branches.

The best MSCP configuration shown in figure 6 is the one with two levels
using a path length of nine branches to index second level prediction table. This
configuration achieves a 6.4% average IPC speedup using 2048 entries while a 6K
entry one achieves only a 5.7% average IPC speedup, as we said in section 5.2.
This happens because 2048 entries is a size big enough and a larger path length
is more beneficial than bigger prediction tables. We can also see that the three

A Comprehensive Analysis of Indirect Branch Prediction 141

12
4.m

88
ks

im

12
6.g

cc
13

0.l
i

13
4.p

erl

17
6.g

cc

18
6.c

raf
ty

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

av
era

ge
1

1.1

1.2

IP
C

 s
pe

ed
up

MSCP 2t3
MSCP 2t8
MSCP 2t9
MSCP 3t

Fig. 6. Some 2048 entry MSCP configurations IPC speedup over baseline configuration

level MSCP performance is worse than the two level configurations with path
length eight and nine. The first level table is smaller in the three level MSCP
than in the two level one. This fact causes more conflict misses in the three level
MSCP.

We have also evaluated a 4096 entry 4-way associative BTB, twice the size of
the baseline BTB. This larger BTB achieves very little speedup over the baseline,
since a 2048 entry BTB is big enough to avoid the majority of conflict misses.
Therefore, using MSCP is a better option than increasing the size of the BTB.

Realistic Branch Direction Predictor. All previous data in this section
has been obtained using a perfect branch direction predictor. Next, we show
that MSCP outperforms the 2048 entry 4-way associative baseline BTB using
a realistic branch direction predictor. Figure 7 shows IPC speedup for the best
2048 entry MSCP configuration described above using a 12 KB gskewed branch
direction predictor. This speedup is measured over the baseline BTB using the
same gskewed predictor. This data is compared with speedup obtained perfectly
predicting all indirect branches. As we can see, this MSCP configuration achieves
5.7% average IPC speedup with regards to 10.8% average potential IPC speedup.
We should highlight that 134.perl benchmark is achieving almost all its potential
speedup, but there is still room for improvement in the remaining benchmarks.

Besides, we have simulated a path correlated target address predictor, that is,
a 2048 entry 4-way associative table managed in the same way as the second level
of MSCP and using a path length of nine branches. This mechanism is similar
to the target cache proposed by Chang et al. [3] but applied to all branches
instead of only indirect branches. Figure 7 also shows that the path correlated
BTB only achieves a 4.3% average IPC speedup and even loses performance with
regards to the baseline configuration in three benchmarks. This effect is clear in
126.gcc and 176.gcc due to conflict misses caused by their high number of static
branches. The first level table of MSCP prevents easy to predict branches from
using path correlation, avoiding aliasing; this not happens in the path correlated
BTB.

142 Oliverio J. Santana et al.

12
4.m

88
ks

im

12
6.g

cc

13
0.l

i

13
4.p

erl

17
6.g

cc

18
6.c

raf
ty

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

av
era

ge

1

1.1

1.2

1.3

IP
C

 s
pe

ed
up

path correlated BTB

MSCP 2t9

perfect indirect branches

Fig. 7. Comparison of the performance of the best MSCP 2048 entry configuration,
using a gskewed branch direction predictor, with a perfect indirect branch predictor
and a path correlated BTB

6 Analysis of Static Branches

In this section we analyze the behavior of some static indirect branches. We
have found [13] that a little number of static branches are responsible for almost
all indirect jump and indirect function call mispredictions in the majority of
benchmarks. For example, only three branches are responsible for 99% of mis-
predictions due to indirect jumps in 124.m88ksim. Only one branch is responsible
for 99% of mispredictions due to indirect function calls in 254.gap.

We have selected 10 static indirect branches for a more detailed analysis.
Table 2 shows information collected about these branches; each of the 10 entries
in the table corresponds to one of them. The first column identifies the branch
and the second one shows if it is an indirect jump or a function call. All studied
indirect jumps correspond to high level switch structures and all studied indirect
function calls correspond to calls using a pointer to the called function [13]. The
next four columns have the percentage of all mispredictions caused by the branch,
the number of different dynamic targets found for the branch, the percentage of
time the branch went to a different target address than in its latest execution
and the reduction in mispredictions achieved using MSCP.

Data of the branch selected from the benchmark 252.eon, which is written in
C++, points out that we can expect a good performance of MSCP with object
oriented programs. The number of mispredictions for this branch is reduced in a
62.5% by using MSCP. Besides, a reduction of almost all mispredictions in the
three indirect branches studied in 134.perl is achieved, so MSCP can also be
beneficial for not object oriented programs.

The number of different targets where an indirect branch can go after execu-
tion is not necessarily related with its predictability or unpredictability. Although
some difficult to predict branches have a lot of different dynamic targets, as the
branch selected from 253.perlbmk which has 43 targets, there are other difficult
branches with only three or four different targets. However, these branches have

A Comprehensive Analysis of Indirect Branch Prediction 143

Table 2. Data of the 10 selected static indirect branches

type misp tgt chn red
124.m88ksim, file dpath.c, line 444 jump 8.8% 28 81.2% 24.7%
124.m88ksim, file stats.c, line 83 jump 8.5% 9 78.2% 75.6%
130.li, file xldmem.c, line 446 jump 4.0% 3 36.5% 40.3%
130.li, file xleval.c, line 106 call 3.3% 22 83.5% 21.5%
134.perl, file eval.c, line 137 jump 36.1% 7 80% 99.9%
134.perl, file eval.c, line 450 jump 27.1% 12 99.9% 99.9%
134.perl, file cmd.c, line 224 jump 9.0% 5 66.6% 99.9%

186.crafty, file swap.c, line 165 jump 4.0% 8 92.9% 48.3%
252.eon, file mrMaterial.cc, line 50 call 5.49% 4 79.0% 62.5%

253.perlbmk, file run.c, line 30 call 41.2% 43 94.2% 55.4%

a high percentage of executions in which their target address is different than
the one observed in their latest execution. Therefore, the predictability of an
indirect branch depends not on the number of different targets it has but on
the predictability of the sequence of changes in its target address. More research
should be done in order to analyze the path of different targets that an indirect
branch follows and how we can better predict it.

7 Conclusions

In this paper we have shown that indirect branches are an important limiting
factor for computer systems. Indirect branches are responsible for 55.7% of all
mispredictions on average along our benchmark set, although they represent
only 15.5% of dynamic branch instructions. Besides, indirect branches, exclud-
ing return instructions, have a prediction accuracy of 45.3% while the average
prediction accuracy for all branch instructions is 91.2%. Taking into account this
data, it is not surprising that a 10.8% IPC speedup is achievable by perfectly
predicting all indirect branches.

We contribute to the study of Multi-Stage Cascaded Predictor [6] by showing
that it can replace a BTB and accurately predict the target address of all branch
instructions, improving processor performance. This improvement is due to an
important reduction in indirect branch mispredictions achieved by MSCP. We
have done a detailed analysis of MSCP behavior. We show that the majority of
MSCP predictions are done by first level table, since most branches are easy to
predict by a simple BTB. Difficult to predict branches are frequently upgraded
up to the third level table, so second level one is poorly used.

We have found that the best MSCP configuration is one with only two pre-
diction tables. This configuration has a 1536 entry 3-way associative first level
table and a 512 entry direct mapped second level table. Second level is indexed
using correlation with the target address of the latest nine executed branches. In
a realistic setup, using a gskewed conditional branch direction predictor, a 5.7%
IPC speedup is obtained over a BTB with the same hardware budget.

144 Oliverio J. Santana et al.

We have also shown that integer benchmarks can take advantage of better
predicting indirect branches. These benchmarks do not have as much indirect
branches as object oriented programs. However, only a little number of static
indirect branches can harm the processor performance in such a way that tech-
niques to improve their prediction will be worthwhile. Improving the prediction
of indirect branches will be beneficial for programs that call functions using
pointers, like 253.perlbmk, or which have some high level switch structures de-
pending on input data, like gcc compiler. Nevertheless, indirect branch predic-
tion would be even a more important topic in computer architecture since object
oriented programs, like 252.eon, are becoming more popular.

Acknowledgements

This research has been supported by CICYT grant TIC-2001-0995-C02-01,
CEPBA and an Intel scholarship grant. O. J. Santana is also supported by
Generalitat de Catalunya grant 2001FI-00724-APTIND. A. Falcón is also sup-
ported by Ministry of Education of Spain grant AP2000-3923. E. Fernández is
supported by Gobierno de Canarias. The authors would like to thank Jesús Cor-
bal and Fernando Latorre for their valuable comments, as well as Carlos Navarro
for his previous work in the simulation tool.

References

1. B. Calder and D. Grunwald. Reducing indirect function call overhead in C++
programs. 21st Symp. on Principles of Programming Languages, 1994.

2. B. Calder and D. Grunwald. Fast & accurate instruction fetch and branch predic-
tion. 21st Intl. Symp. on Computer Architecture, 1994.

3. P. Y. Chang, E. Hao and Y. Patt. Target prediction for indirect jumps. 24th Intl.
Symp. on Computer Architecture, 1997.

4. K. Driesen and U. Hölzle. Accurate indirect branch prediction. 25th Intl. Symp.
on Computer Architecture, 1998.

5. K. Driesen and U. Hölzle. The cascaded predictor: economical and adaptive branch
target prediction. 31st Intl. Symp. on Microarchitecture, 1998.

6. K. Driesen and U. Hölzle. Multi-Stage Cascaded Prediction. 5th Intl. Euro-Par
Conf., 1999

7. D. Kaeli and P. Emma. Branch history table prediction of moving target branches
due to subroutine returns. 18th Intl. Symp. on Computer Architecture, 1991.

8. J. Lee and A. Smith. Branch prediction strategies and branch target buffer design.
IEEE Computer Magazine, 17(1), 1984.

9. S. McFarling Combining branch predictors. Digital Equipment Corporation, WRL
Technical Note TN-36, 1993.

10. P. Michaud, A. Seznec and R. Uhlig. Trading conflict and capacity aliasing in
conditional branch predictors. 24th Intl. Symp. on Computer Architecture, 1997.

11. R. Nair. Dynamic path-based branch correlation. 28th Intl. Symp. on Microarchi-
tecture, 1995.

12. C. Perleberg and A. Smith. Branch target buffer design and optimization. IEEE
Transactions on Computers, 42(4), 1993.

A Comprehensive Analysis of Indirect Branch Prediction 145

13. O. J. Santana, A. Falcón, E. Fernández, P. Medina, A. Ramı́rez and M. Valero.
Analysis and evaluation of the Multi-Stage Cascaded Predictor. Departamento de
Arquitectura de Computadores, UPC, Technical Report DAC-UPC-2001-24, 2001.

14. J. Stark, M. Evers and Y. Patt. Variable length path branch prediction. 8th
Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems, 1998.

15. T. Y. Yeh and Y. Patt. Two level adaptive training branch prediction. 24th Intl.
Symp. on Microarchitecture, 1991.

16. T. Y. Yeh and Y. Patt. A comprehensive instruction fetch mechanism for a pro-
cessor supporting speculative execution. 25th Intl. Symp. on Microarchitecture,
1995

	1 Introduction
	2 Related Work
	3 Experimental Methodology
	4 The Importance of Indirect Branches
	5 Analysis of Multi-stage Cascaded Predictor
	5.1 Description
	5.2 Behavior Analysis
	5.3 Evaluation

	6 Analysis of Static Branches
	7 Conclusions
	References

