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A LOCAL RING HAS ONLY FINITELY MANY SEMIDUALIZING

COMPLEXES UP TO SHIFT-ISOMORPHISM

SAEED NASSEH AND SEAN SATHER-WAGSTAFF

To Wolmer V. Vasconcelos

Abstract. A homologically finite complex C over a commutative noetherian
ringR is semidualizing ifRHomR(C,C) ≃ R inD(R). We answer a question of
Vasconcelos from 1974 by showing that a local ring has only finitely many shift-
isomorphism classes of semidualizing complexes. Our proof relies on certain
aspects of deformation theory for DG modules over a finite dimensional DG
algebra, which we develop.
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1. Introduction

Convention. In this paper, R is a commutative noetherian ring with identity and
all R-modules are unital.

This paper is concerned with semidulizing R-modules, that is, the finitely gen-
erated R-modules C such that HomR(C,C) ∼= R and ExtiR(C,C) = 0 for i > 1.
These modules were introduced, as best we know, by Vasconcelos [34]. They were
rediscovered independently by several authors including Foxby [17], Golod [23], and
Wakamatsu [38], who all used different terminology for them. Special cases of these
modules include Grothendieck’s canonical modules over Cohen-Macaulay rings, and
duality with respect to a semidualizing module extends Auslander and Bridger’s
G-dimension [4, 5].

Vasconcelos posed the following in [34, p. 97].
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2 SAEED NASSEH AND SEAN SATHER-WAGSTAFF

Question 1.1. If R is local and Cohen-Macaulay, must the set of isomorphism
classes of semidualizing R-modules S0(R) be finite?

Christensen and Sather-Wagstaff [12] answer this question affirmatively in the
case when R contains a field. Their proof motivates our own techniques, so we
describe some aspects of it here. Using standard ideas, they reduce to the case where
R is complete with algebraically closed residue field F . Given a maximal R-sequence
x, they replace R with the quotient R/(x), which is a finite dimensional algebra
over F . The desired result then follows from a deformation-theoretic theorem of
Happel [27] which states that, in this context, there are only finitely many R-
modules C of a given length r such that Ext1R(C,C) = 0.

To prove Happel’s result, one parametrizes all such modules by an algebraic
variety ModRr that is acted on by the general linear group GLFr so that the iso-

morphism class of C is precisely the orbit GLFr C. A theorem of Voigt [37] (see
also Gabriel [21]) provides an isomorphism between Ext1R(C,C) and the quotient

of tangent spaces T
ModR

r

C /T
GLF

r C

C . Thus, the vanishing Ext1R(C,C) = 0 implies

that the orbit GLFr C is open in ModRr . Since ModRr is quasi-compact, it can only
have finitely many open orbits, so R can only have finitely many such modules up
to isomorphism.

The main result of this paper, stated next, provides a complete answer to Vascon-
celos’ question. Note that it does not assume that R is Cohen-Macaulay. Section 5
is devoted to its proof (see 5.3) and some consequences.

Theorem A. Let R be a local ring. Then the set S0(R) of isomorphism classes of
semidualizing R-modules is finite.

The idea behind our proof is the same as in Christensen and Sather-Wagstaff’s
proof, with one important difference, pioneered by Avramov: instead of replacing
R with R/(x), we use the Koszul complex K on a minimal generating sequence for
the maximal ideal of R. More specifically, we replace R with a finite dimensional
DG F -algebra U that is quasiisomorphic to K. (See Section 2 for background
information on DG algebras and DG modules.)

In order to prove versions of the results of Happel and Voigt, we develop certain
aspects of deformation theory for DG modules over a finite dimensional DG F -
algebra U . This is the subject of Section 4. In short, we parametrize all finite
dimensional DG U -modules M with fixed underlying graded F -vector space W by
an algebraic variety ModU (W ). This variety is acted on by a product GL(W )0
of general linear groups so that the isomorphism class of M is precisely the orbit
GL(W )0 · M . Following Gabriel, we focus on the associated functors of points

ModU (W ), GL(W )0, and GL(W )0 ·M . (Our notational conventions are spelled
out explicitly in Notations 4.1 and 4.5.) Our version of Voigt’s result for this
context is the following, which we prove in 4.11.

Theorem B. We work in the setting of Notations 4.1 and 4.5. Given an element
M = (∂, µ) ∈ ModU (W ), there is an isomorphism of abelian groups

T
ModU (W )
M /T

GL(W )0·M
M

∼= YExt1U (M,M).

As a consequence, we deduce that if Ext1U (M,M) = 0, then the orbit GL(W )0 ·M

is open in ModU (W ); see Corollary 4.12. The proof of Theorem A concludes like
that of Christensen and Sather-Wagstaff, with a few technical differences.



A LOCAL RING HAS ONLY FINITELY MANY SEMIDUALIZING COMPLEXES 3

One technical difference is the following: given DG U -modules M and N , there
are (at least) two different modules that one might write as Ext1U (M,N). This
is the topic of Section 3. First, there is the derived category version: this is the
module Ext1U (M,N) = H1(HomU (F,N)) where F is a “semi-free resolution” of M .
Second, there is the abelian category version: this is the module YExt1U (M,N) that
is the set of equivalence classes of exact sequences 0 → N → X → M → 0. In
general, one has Ext1U (M,N) ≇ YExt1U (M,N). This is problematic as the passage

from R to U uses Ext1U (M,N), but Theorem B uses YExt1U (M,N). These are
reconciled in the next result. See 3.5 for the proof.

Theorem C. Let A be a DG R-algebra, and let P , Q be DG A-modules such
that Q is graded-projective (e.g., Q is semi-free). Then there is an isomorphism

YExt1A(Q,P )
∼=
−→ Ext1A(Q,P ) of abelian groups.

We actually prove a version of Theorem A for semidualizing complexes over a
local ring. We do this in Theorem 5.2. Moreover, we prove versions of these results
for certain non-local rings, including all semilocal rings in Theorem 5.11.

2. DG Modules

We assume that the reader is familiar with the category of R-complexes and the
derived category D(R). Standard references for these topics are [6, 8, 10, 16, 22,
28, 35, 36]. For clarity, we include a few definitions and notations.

Definition 2.1. In this paper, complexes of R-modules (“R-complexes” for short)
are indexed homologically:

M = · · ·
∂M
n+2
−−−→Mn+1

∂M
n+1
−−−→Mn

∂M
n−−→Mn−1

∂M
n−1
−−−→ · · · .

Sometimes we write (M,∂M ) to specify the differential on M . The degree of an
element m ∈M is denoted |m|. The infimum, supremum, and amplitude of M are

inf(M) := inf{n ∈ Z | Hn(M) 6= 0}

sup(M) := sup{n ∈ Z | Hn(M) 6= 0}

amp(M) := sup(M)− inf(M).

The tensor product of two R-complexes M,N is denoted M ⊗R N , and the Hom
complex is denoted HomR(M,N). A chain map M → N is a cycle of degree 0 in
HomR(M,N).

Next we discuss DG algebras, which are treated in, e.g., [1, 2, 6, 8, 29, 30].

Definition 2.2. A commutative differential graded algebra over R (DG R-algebra
for short) is an R-complex A equipped with a chain map µA : A ⊗R A → A with
ab := µA(a⊗ b) that is:

associative: for all a, b, c ∈ A we have (ab)c = a(bc);
unital: there is an element 1 ∈ A0 such that for all a ∈ A we have 1a = a;
graded commutative: for all a, b ∈ A we have ab = (−1)|a||b|ba and a2 = 0

when |a| is odd; and
positively graded: Ai = 0 for i < 0.

The map µA is the product on A. Given a DG R-algebra A, the underlying al-
gebra is the graded commutative R-algebra A♮ = ⊕∞

i=0Ai. When R is a field and
rankR(⊕i>0Ai) <∞, we say that A is finite-dimensional over R.
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A morphism of DG R-algebras is a chain map f : A→ B between DG R-algebras
respecting products and multiplicative identities: f(aa′) = f(a)f(a′) and f(1) = 1.

Fact 2.3. Let A be a DG R-algebra. The fact that the product on A is a chain
map says that ∂A satisfies the Leibniz rule: ∂A|a|+|b|(ab) = ∂A|a|(a)b+(−1)|a|a∂A|b|(b).

The ring R, considered as a complex concentrated in degree 0, is a DG R-
algebra. The map R → A given by r 7→ r · 1 is a morphism of DG R-algebras. It
is straightforward to show that the R-module A0 is an R-algebra. Moreover, the
natural map A0 → A is a morphism of DG R-algebras. The condition A−1 = 0
implies that A0 surjects onto H0(A) and that H0(A) is an A0-algebra. Furthermore,
the R-module Ai is an A0-module, and Hi(A) is an H0(A)-module for each i.

Definition 2.4. Let A be a DG R-algebra. We say that A is noetherian if H0(A)
is noetherian and the H0(A)-module Hi(A) is finitely generated for all i > 0. When
R is local, we say that A is local if it is noetherian and the ring H0(A) is a local
R-algebra, that is, H0(A) is a local ring whose maximal ideal contains the extension
of the maximal ideal of R.

Fact 2.5. Assume that R is local with maximal ideal m. Let A be a local DG
R-algebra, and let mH0(A) be the maximal ideal of H0(A). The composition A →
H0(A)→ H0(A)/mH0(A) is a surjective morphism of DG R-algebras with kernel of

the form mA = · · ·
∂A
2−−→ A1

∂A
1−−→ m0 → 0 for some maximal ideal m0 ( A0. The

quotient A/mA is isomorphic to H0(A)/mH0(A). Since H0(A) is a local R-algebra,
we have mA0 ⊆ m0.

Definition 2.6. Assume that R is local. Given a local DG R-algebra A, the
subcomplex mA from Fact 2.5 is the augmentation ideal of A.

For this paper, an important example is the next one.

Example 2.7. Given a sequence a = a1, · · · , an ∈ R, the Koszul complex K =
KR(a) is a DG R-algebra with product given by the wedge product. If R is local
with maximal idealm and a ∈ m, thenK is a local DG R-algebra with augmentation
ideal mK = (0→ R→ · · · → Rn → m→ 0).

In the passage to DG algebras, we must focus on DG modules, described next.

Definition 2.8. Let A be a DG R-algebra. A differential graded module over A
(DG A-module for short) is an R-complexM with a chain map µM : A⊗RM →M
such that the rule am := µM (a ⊗ m) is associative and unital. The map µM is
the scalar multiplication on M . The underlying A♮-module associated to M is the
A♮-module M ♮ = ⊕∞

i=−∞Mi.

Example 2.9. Consider the ring R as a DG R-algebra. A DG R-module is just
an R-complex, and a morphism of DG R-modules is simply a chain map.

Fact 2.10. Let A be a DG R-algebra, and letM be a DG A-module. The fact that
the scalar multiplication onM is a chain map says that ∂M satisfies the Leibniz rule:
∂A|a|+|m|(am) = ∂A|a|(a)m + (−1)|a|a∂M|m|(m). The R-module Mi is an A0-module,

and Hi(M) is an H0(A)-module for each i.

Definition 2.11. Let A be a DG R-algebra, and let i be an integer. The ith
suspension of a DG A-module M is the DG A-module Σ

iM defined by (ΣiM)n :=
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Mn−i and ∂
Σ

iM
n := (−1)i∂Mn−i. The scalar multiplication on Σ

iM is defined by the

formula µΣ
iM (a⊗m) := (−1)i|a|µM (a⊗m).

A morphism of DG A-modules is a chain map f : M → N between DG A-
modules that respects scalar multiplication: f(am) = af(m). Isomorphisms in the
category of DG A-modules are identified by the symbol ∼=. A quasiisomorphism is
a morphism M → N such that each induced map Hi(M) → Hi(N) is an isomor-
phism; these are identified by the symbol ≃. Two DG A-modules M and N are
quasiisomorphic is there is a chain of quasiisomorphisms (in alternating directions)
from M to N ; this equivalence relation is denoted by the symbol ≃. Two DG
A-modules M and N are shift-quasiisomorphic if there is an integer m such that
M ≃ Σ

mN ; this equivalence relation is denoted by the symbol ∼.

Notation 2.12. The derived category D(A) is formed from the category of DG
A-modules by formally inverting the quasiisomorphisms; see [29]. Isomorphisms in
D(A) are identified by the symbol ≃, and isomorphisms up to shift in D(A) are
identified by ∼.

Definition 2.13. Let A be a DG R-algebra, and letM,N be DG A-modules. The
tensor product M ⊗A N is the quotient (M ⊗R N)/U where U is the subcomplex
generated by all elements of the form (am) ⊗ n − (−1)|a||m|m ⊗ (an). Given an
element m⊗ n ∈M ⊗R N , we denote the image in M ⊗A N as m⊗ n.

Fact 2.14. Let A be a DG R-algebra, and letM,N be DG A-modules. The tensor
product M ⊗A N is a DG A-module via the scalar multiplication

a(m⊗ n) := (am)⊗ n = (−1)|a||m|m⊗ (an).

Definition 2.15. Let A be a DG R-algebra. A DG A-module M is bounded below
if Mn = 0 for all n ≪ 0; it is bounded if Mn = 0 when |n| ≫ 0; it is degree-wise
finite ifMi is finitely generated over A0 for each i; it is homologically bounded below
if the total homology module H(M) is bounded below; it is homologically bounded
if H(M) is bounded; it is homologically degree-wise finite if each H0(A)-module
Hn(M) is finitely generated; and it is homologically finite if it is homologically both
bounded and degree-wise finite. The full subcategory of D(A) whose objects are
the homologically bounded below DG A-modules is denoted D+(A).

Here we discuss one type of resolution for DG modules. See Section 3 for a
discussion of other kinds of resolutions.

Definition 2.16. Let A be a DG R-algebra, and let L be a DG A-module. A
subset E of L is called a semibasis if it is a basis of the underlying A♮-module L♮.
If L is bounded below, then L is called semi-free if it has a semibasis.1 A semi-free

resolution of a DG A-module M is a quasiisomorphism F
≃
−→M of DG A-modules

such that F is semi-free. Given a semi-free resolution F
≃
−→M and a DG A-module

N , set M ⊗L

A N := F ⊗A N and TorAi (M,N) := Hi(M ⊗
L

A N).

1As is noted in [8], when L is not bounded below, the definition of “semi-free” is significantly
more technical. Using the more general notion, one can define the up-coming derived functors
M ⊗L

A
N , TorA

i
(M,N), RHomA(M,N), and Exti

A
(M,N) for any pair of DG A-modules, with

no boundedness assumptions. However, our results do not require this level of generality, so we
focus only on this case. Furthermore, for M ⊗L

A
N and TorA

i
(M,N), one only needs semi-flat

resolutions, and for RHomA(M,N) and Exti
A
(M,N), one only needs semi-projective resolutions.

Consult [8, Sections 2.8 and 2.10] for a discussion of these notions and the relations between them.
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Assume that R and A are local. A minimal semi-free resolution of M is a semi-

free resolution F
≃
−→ M such that F is minimal, i.e., each (equivalently, some)

semibasis of F is finite in each degree and the differential on (A/mA)⊗A F is 0.2

Fact 2.17. Let A be a DG R-algebra, and let M be a DG A-module that is
homologically bounded below. Then M has a semi-free resolution over A by [8,
Theorem 2.7.4.2]. For each DG A-module N , the complex M ⊗L

A N is well-defined

(up to isomorphism) in D(A); hence the modules TorAi (M,N) are well-defined over

H0(A) and over R. Given a semi-free resolution G
≃
−→ N , one has M ⊗L

A N ≃
M ⊗R G.

Assume that A is noetherian, and let j be an integer. Assume that M is ho-
mologically degree-wise finite and Hi(M) = 0 for i < j. Then M has a semi-free

resolution F
≃
−→ M such that F ♮ ∼= ⊕∞

i=jΣ
i(A♮)βi for some integers βi, and so

Fi = 0 for all i < j; see [2, Proposition 1]. In particular, homologically finite DG
A-modules admit such “degree-wise finite, bounded below” semi-free resolutions.

Assume that R and A are local with k = A/mA. Then M has a minimal semi-

free resolution F
≃
−→ M such that Fi = 0 for all i < j; see [2, Proposition 2]. In

particular, homologically finite DG A-modules admit minimal semi-free resolutions.
Moreover, the condition ∂k⊗AF = 0 shows that βi = rankk(Tor

A
i (M,k)) for all i.

Definition 2.18. Let A be a DG R-algebra, and let M,N be DG A-modules.
Given an integer i, a DG A-module homomorphism of degree i is an element f ∈
HomR(M,N)i such that f(am) = (−1)i|a|af(m) for all a ∈ A and m ∈ M . The
graded submodule of HomR(M,N) consisting of all DG A-module homomorphisms
M → N is denoted HomA(M,N).

Given a semi-free resolution F
≃
−→ M , set RHomA(M,N) := HomA(F,N) and

ExtiA(M,N) := H−i(RHomA(M,N)) for each integer i.

Fact 2.19. Let A be a DG R-algebra, and let M,N be DG A-modules. The
complex HomA(M,N) is a DG A-module via the action

(af)(m) := a(f(m)) = (−1)|a||f |f(am).

For each a ∈ A the multiplication map µM,a : M → M given by m 7→ am is a
homomorphism of degree |a|.

Assume thatM is homologically bounded below. The complexRHomA(M,N) is
independent of the choice of semi-free resolution ofM , and we have an isomorphism
RHomA(M,N) ≃ RHomA(M

′, N ′) in D(A) wheneverM ≃M ′ andN ≃ N ′; see [6,
Propositions 1.3.1–1.3.3].

In the passage from R to U in our proof of Theorem A, we use Christensen and
Sather-Wagstaff’s notion of semidualizing DG U -modules from [13], defined next.

Definition 2.20. Let A be a DG R-algebra, and let M be a DG A-module. The
homothety morphism XA

M : A → HomA(M,M) is given by XA
M (a) := µM,a, i.e.,

XA
M (a)(m) = am. When M is homologically bounded below, this induces a homo-

thety morphism χAM : A→ RHomA(M,M).
Assume that A is noetherian. Then M is a semidualizing DG A-module if M is

homologically finite and the homothety morphism χAM : A → RHomA(M,M) is a

2Note that our definition of minimality differs from the definition found in [8, (2.12.1)]. How-
ever, the definitions are often equivalent, and we do not use any technical aspects of the definition
from [8, (2.12.1)] in this paper.
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quasiisomorphism. Let S(A) denote the set of shift-isomorphism classes in D(A) of
semidualizing DG A-modules, that is, the set of equivalence classes of semidualizing
DG A-modules under the relation ∼ from Notation 2.12.

The following base-change results are used in the passage from R to U in our
proof of Theorem A.

Remark 2.21. Let A→ B be a morphism of DG R-algebras, and letM and N be
DG A-modules. The “base changed” complex B ⊗AM has the structure of a DG
B-module by the action b(b′ ⊗ m) := (bb′)⊗ m. This structure is compatible with
the DG A-module structure on B ⊗A M via restriction of scalars. Furthermore,
this induces a well-defined operation D+(A)→ D+(B) given by M 7→ B ⊗L

AM .
Given f ∈ HomA(M,N)i, define B ⊗A f ∈ HomB(B ⊗A M,B ⊗A N)i by the

formula (B ⊗A f)(b ⊗ m) := (−1)i|b|b ⊗ f(m). This yields a morphism of DG
A-modules HomA(M,N) → HomB(B ⊗A M,B ⊗A N) given by f 7→ B ⊗A f .
When M is homologically bounded below, this provides a well-defined morphism
RHomA(M,N)→ RHomB(B ⊗

L

AM,B ⊗L

A N) in D(A).

The next lemma is essentially from [30] and [32].

Lemma 2.22. Let ϕ : A→ B be a quasiisomorphism of noetherian DG R-algebras,
that is, a morphism of DG R-algebras that is also a quasiisomorphism.

(a) The base change functor B ⊗L

A − induces an equivalence of derived categories
D+(A)→ D+(B) whose quasi-inverse is given by restriction of scalars.

(b) For each DG A-module X ∈ D+(A), one has X ≃ B ⊗L

A X in D(A), and thus

inf(B ⊗L

A X) = inf(X)

sup(B ⊗L

A X) = sup(X)

amp(B ⊗L

A X) = amp(X).

(c) The equivalence from part (a) induces a bijection from S(A) to S(B).

Proof. (a) See, e.g., [30, 7.6 Example].
(b) The equivalence from part (a) implies that the map X → B ⊗L

A X is a
quasiisomorphism, and the displayed equalities follow directly.

(c) Let X be a homologically bounded below DG A-module. We show that X is a
semidualizing DG A-module if and only if B⊗L

AX is a semidualizing DG B-module.
Since the maps X → B ⊗L

A X and A → B are quasiisomorphisms, it follows that
X is homologially finite over A if and only if B⊗L

AX is homologially finite over B.
It remains to show that the homothety morphism χAX : A → RHomA(X,X) is an
isomorphism in D(A) if and only if χB

B⊗L

A
X
: B → RHomB(B⊗

L

AX,B⊗
L

AX) is an

isomorphism in D(B). It is routine to show that the following diagram commutes

A
χA
X //

ϕ ≃

��

RHomA(X,X)

ω≃

��
B
χB

B⊗L

A
X

// RHomB(B ⊗
L

A X,B ⊗
L

A X)

where ω is the morphism from Remark 2.21. As ω is an isomorphism by [32,
Proposition 2.1], the desired equivalence follows. �
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Definition 2.23. Let A be a DG R-algebra, and let M be a DG A-module. Given
an integer n, the nth soft left truncation of M is the complex

τ(M)(6n) := · · · → 0→Mn/ Im(∂Mn+1)→Mn−1 →Mn−2 → · · ·

with differential induced by ∂M .

Remark 2.24. Let A be a DG R-algebra, and let M be a DG A-module. Fix
an integer n. Then the truncation τ(M)(6n) is a DG A-module with the obvious
scalar multiplication, and the natural chain map M → τ(M)(6n) is a morphism of
DG A-modules. This morphism is a quasiisomorphism if and only if n > sup(M).
See [8, (4.1)].

Definition 2.25. Let A be a local DG R-algebra, and let M be a homologically
finite DG A-module. For each integer i, the ith Betti and Bass numbers are

βAi (M) := rankk(Tor
A
i (k,M)) µiA(M) := rankk(Ext

i
A(k,M))

respectively, where k = A/mA. The Poincaré and Bass series of M are the formal
Laurent series

PMA (t) :=
∑

i∈Z

βAi (M)ti IAM (t) :=
∑

i∈Z

µiA(M)ti.

3. DG Ext and Yoneda Ext

Given a DG R-algebra A, and DG A-modules M and N such that M is homo-
logically bounded below, we have the DG-Ext module Ext1A(M,N) from Defini-
tion 2.18. In general, this module does not parametrize the extensions 0 → N →
L → M → 0; see Example 3.2. To parametrize such extensions, we need “Yoneda
Ext”, which we describe next. The main point of this section is to prove Theorem C
which is important for our solution of Vasconcelos’ question.

Definition 3.1. Let A be a DG R-algebra. The category of DG A-modules de-
scribed in Definition 2.11 is an abelian category; see, e.g., [29, Introduction]. So,
given DG A-modules L, M , the Yoneda Ext group YExt1A(L,M), defined as the set
of equivalence classes of exact sequences 0→M → X → L→ 0 of DG A-modules,
is a well-defined abelian group under the Baer sum; see, e.g., [39, (3.4.6)].

The next example shows that YExt1A(M,N) and Ext1A(M,N) are distinct.
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Example 3.2. Let R = k[[X ]], and consider the following exact sequence of DG
R-modules, i.e., exact sequence of R-complexes:

0 // R // R // k // 0

0

��

0

��

0

��
0 // R

X //

1

��

R //

1

��

k //

1

��

0

0 // R
X //

��

R //

��

k //

��

0

0 0 0.

This sequence does not split over R (it is not even degree-wise split) so it gives
a non-trivial class in YExt1R(k,R), and we conclude that YExt1R(k,R) 6= 0. On
the other hand, k is homologically trivial, so we have Ext1R(k,R) = 0 since 0 is a
semi-free resolution of k.

In preparation for the proof of Theorem C, we require two more items.

Definition 3.3. Let A be a DG R-algebra. A DG A-module Q is graded-projective
if HomA(Q,−) preserves surjective morphisms, that is, if Q♮ is a projective graded
R♮-module; see [8, Theorem 2.8.3.1].

Remark 3.4. If Q is semi-free, then Q♮ ∼= ⊕iΣ
i(R♮)(βi) is a free (hence projective)

graded R♮-module, so Q is graded-projective.

3.5 (Proof of Theorem C). Let ζ ∈ YExt1A(Q,P ) be represented by the sequence

0→ P → X → Q→ 0. (3.5.1)

Since Q is graded-projective, the sequence (3.5.1) graded-splits (see [8, (2.8.3.1)]),
that is, this sequence is isomorphic to one of the form

...

∂P
i+1

��

...

∂X
i+1

��

...

∂
Q
i+1

��
0 // Pi

∂P
i

��

ǫi // Pi ⊕Qi

∂X
i

��

πi // Qi

∂
Q
i

��

// 0

0 // Pi−1

∂P
i−1

��

ǫi−1
// Pi−1 ⊕Qi−1

∂X
i−1

��

πi−1
// Qi−1

∂
Q
i−1

��

// 0

...
...

...

(3.5.2)
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where ǫj is the natural inclusion and πj is the natural surjection for each j. Since
this diagram comes from a graded-splitting of (3.5.1), the scalar multiplication on
the middle column of (3.5.2) is the natural one a [ pq ] = [ apaq ].

3

The fact that (3.5.2) commutes implies that ∂Xi has a specific form:

∂Xi =
[
∂P
i λi

0 ∂
Q
i

]
. (3.5.3)

Here, we have λi : Qi → Pi−1, that is, λ ∈ HomR(Q,P )−1. Since the maps in the
sequence (3.5.2) are morphisms of DG A-modules, it follows that λ is a cycle in
HomA(Q,P )−1. Thus, λ represents a homology class in Ext1A(Q,P ), and we define
Ψ: YExt1A(Q,P )→ Ext1A(Q,P ) by the formula Ψ(ζ) := λ.

We show that Ψ is well-defined. Let ζ be represented by another exact sequence

...

∂P
i+1

��

...

∂X′

i+1

��

...

∂
Q
i+1

��
0 // Pi

∂P
i

��

ǫi // Pi ⊕Qi

∂X′

i

��

πi // Qi

∂
Q

i

��

// 0

0 // Pi−1

∂P
i−1

��

ǫi−1
// Pi−1 ⊕Qi−1

∂X′

i−1
��

πi−1
// Qi−1

∂
Q
i−1

��

// 0

...
...

...

(3.5.4)

where

∂X
′

i =
[
∂P
i λ′

i

0 ∂
Q
i

]
. (3.5.5)

We need to show that λ− λ′ ∈ Im(∂
HomA(Q,P )
0 ). The sequences (3.5.2) and (3.5.4)

are equivalent in YExt1R(Q,P ), so for each i there is a commutative diagram

0 // Pi

=

��

ǫi // Pi ⊕Qi

[ ui vi
wi xi

] ∼=

��

πi // Qi

=

��

// 0

0 // Pi
ǫi // Pi ⊕Qi

πi // Qi // 0

(3.5.6)

where the middle vertical arrow is a DG A-module isomorphism, and such that the
following diagram commutes

Pi ⊕Qi
[
∂P
i λi

0 ∂
Q
i

]

��

∼=

[ ui vi
wi xi

]
// Pi ⊕Qi

[
∂P
i λ′

i

0 ∂
Q
i

]

��
Pi−1 ⊕Qi−1 ∼=

[
ui−1 vi−1
wi−1 xi−1

]

// Pi−1 ⊕Qi−1.

(3.5.7)

The fact that diagram (3.5.6) commutes implies that ui = idPi
, xi = idQi

, and
wi = 0. Also, the fact that the middle vertical arrow in diagram (3.5.6) describes
a DG A-module morphism implies that the sequence vi : Qi → Pi respects scalar

3Given R-modules M and N , we write elements of M ⊕N as column vectors [mn ] with m ∈ M

and n ∈ N . This permits us to use matrix notation for homomorphisms between such modules.
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multiplication, i.e., we have v ∈ HomA(Q,P )0. The fact that diagram (3.5.7)

commutes implies that λi − λ′i = ∂Pi vi − vi−1∂
Q
i . We conclude that λ − λ′ =

∂
HomA(Q,P )
0 (v) ∈ Im(∂

HomA(Q,P )
0 ), so Ψ is well-defined.

Next we show that Ψ is additive. Let ζ, ζ′ ∈ YExt1A(Q,P ) be represented by

exact sequences 0→ P
ǫ
−→ X

π
−→ Q → 0 and 0→ P

ǫ′

−→ X ′ π′

−→ Q → 0 respectively,
where Xi = Pi ⊕ Qi = X ′

i and the differentials ∂X and ∂X
′

are described as
in (3.5.3) and (3.5.5), respectively. We need to show that the Baer sum ζ + ζ′

is represented by an exact sequence 0 → P
ǫ̃
−→ X̃

π̃
−→ Q → 0 respectively, where

X̃i = Pi ⊕Qi and ∂
X̃
i =

[
∂P
i λi+λ

′
i

0 ∂
Q
i

]
, with scalar multiplication a [ pq ] = [ apaq ]. Note

that it is straightforward to show that the sequence X̃ defined in this way is a DG

A-module, and the natural maps P
ǫ̃
−→ X̃

π̃
−→ Q are DG-linear, using the analogous

properties for X and X ′.
We construct the Baer sum in two steps. The first step is to construct the

pull-back diagram

X ′′ π′′

//

π′′′

��

p
X ′

π′

��
X

π // Q.

The DG module X ′′ is a submodule of the direct sum X ⊕X ′, so each X ′′
i is the

submodule of

X ⊕X ′ = Xi ⊕X
′
i = Pi ⊕Qi ⊕ Pi ⊕Qi

consisting of all vectors [ xx′ ] such that π′
i(x

′) = πi(x), that is, all vectors of the form
[p q p′ q′]T such that q = q′. In other words, we have

Pi ⊕Qi ⊕ Pi
∼=
−→ X ′′

i (3.5.8)

where the isomorphism is given by [p q p′]T 7→ [p q p′ q]T . The differential
on X ⊕ X ′ is the natural diagonal map. So, under the isomorphism (3.5.8), the
differential on X ′′ has the form

X ′′
i
∼= Pi ⊕Qi ⊕ Pi

∂X′′

i =



∂P
i λi 0

0 ∂
Q
i 0

0 λ′
i ∂P

i




−−−−−−−−−−−−−→ Pi−1 ⊕Qi−1 ⊕ Pi−1
∼= X ′′

i−1.

The second step is to construct X̃ , which is the cokernel of the morphism γ : P →

X ′′ given by p 7→
[−p

0
p

]
. In other words, since γ is injective, the complex X̃ is

determined by the exact sequence 0 → P
γ
−→ X ′′ τ

−→ X̃ → 0. It is straightforward
to show that the following diagram describes such an exact sequence

0 // Pi

[
−1
0
1

]

//

∂P
i

��

Pi ⊕Qi ⊕ Pi
[ 1 0 1
0 1 0 ] //



∂P
i λi 0

0 ∂
Q
i 0

0 λ′
i ∂P

i




��

Pi ⊕Qi //

[
∂P
i λi+λ

′
i

0 ∂
Q
i

]

��

0

0 // Pi−1

[
−1
0
1

]

// Pi−1 ⊕Qi−1 ⊕ Pi−1

[ 1 0 1
0 1 0 ] // Pi−1 ⊕Qi−1

// 0.
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By inspecting the right-most column of this diagram, we see that X̃ has the desired
form. Furthermore, checking the module structures at each step of the construction,

we see that the scalar multiplication on X̃ is the natural one a [ pq ] = [ apaq ].
Next, we show that Ψ is injective. Suppose that ζ ∈ Ker(Ψ) is represented by

the displays (3.5.1)–(3.5.3). The condition Ψ(ζ) = 0 says that λ ∈ Im(∂
HomA(Q,P )
0 ),

so there is an element s ∈ HomA(Q,P )0 such that ζ = ∂
HomA(Q,P )
0 (s). This says

that for each i we have λi = ∂Pi si − si−1∂
Q
i . From this, it is straightforward to

show that the following diagram commutes:

Pi ⊕Qi
[
∂P
i λi

0 ∂
Q
i

]

��

∼=

[
1 si
0 1

]

// Pi ⊕Qi
[
∂P
i 0

0 ∂
Q
i

]

��
Pi−1 ⊕Qi−1 ∼=

[
1 si−1

0 1

]

// Pi−1 ⊕Qi−1.

From the fact that s is A-linear, it follows that the maps
[
1 si
0 1

]
describe an A-linear

isomorphism X
∼=
−→ P ⊕Q making the following diagram commute:

0 // P

=

��

ǫ // X

∼=

��

π // Q

=

��

// 0

0 // P
ǫ // P ⊕Q

π // Q // 0.

In other words, the sequence (3.5.1) splits, so we have ζ = 0, and Ψ is injective.
Finally, we show that Ψ is surjective. For this, let ξ ∈ Ext1A(Q,P ) be rep-

resented by λ ∈ Ker(∂
HomA(Q,P )
−1 ). Using the fact that λ is A-linear such that

∂
HomA(Q,P )
−1 (λ) = 0, one checks directly that the displays (3.5.2)–(3.5.3) describe an

exact sequence of DG A-module homomorphisms of the form (3.5.1) whose image
under Ψ is ξ. �

To describe higher Yoneda Ext groups, we need another variant of the notion of
projectivity for DG modules.

Definition 3.6. Let A be a DG R-algebra. Projective objects in the category of
DG A-modules are called categorically projective DG A-modules.

Remark 3.7. Let A be a DG R-algebra. Our definition of “categorically projec-
tive” is equivalent to the one given in [8, Section 2.8.1], because of [8, Theorem
2.8.7.1]. Furthermore, the category of DG A-modules has enough projectives by [8,
Corollary 2.7.5.4 and Theorem 2.8.7.1(iv)]. Thus, given DG A-modules L and M ,

for each i > 0 we have a well-defined Yoneda Ext group YExtiA(L,M), defined in
terms of a resolution of L by categorically projective DG A-modules:

· · · → Q1 → Q0 → L→ 0.

A standard result shows that when i = 1, this definition of Yoneda Ext is equivalent
to the one given in Definition 3.1.

Corollary 3.8. Let A be a DG R-algebra, and let P , Q be DG A-modules such
that Q is graded-projective (e.g., Q is semi-free). Then there is an isomorphism

YExtiA(Q,P )
∼= ExtiA(Q,P ) of abelian groups for all i > 1.
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Proof. Using Theorem C, we need only justify the isomorphism YExtiA(Q,P )
∼=

ExtiA(Q,P ) for i > 2. Let

L+
• = · · ·

∂L
2−−→ L1

∂L
1−−→ L0

π
−→ Q→ 0

be a resolution of Q by categorically projective DG A-modules. Since each Lj is

categorically projective, we have YExtiA(Lj ,−) = 0 for all i > 1. From [8, Theorem

2.8.7.1] we conclude that Lj ≃ 0 for each j, so we have ExtiA(Lj ,−) = 0 for all
i. Set Qi = Im ∂Li for each i > 1. Each Li is graded-projective by [8, Theorems
2.8.6.1 and 2.8.7.1], so the fact that Q is graded-projective implies that each Qi is
graded-projective.

Now, a straightforward dimension-shifting argument to explain the first and third
isomorphisms in the following display for i > 2:

YExtiA(Q,P )
∼= YExt1A(Qi−1, P ) ∼= Ext1A(Qi−1, P ) ∼= ExtiA(Q,P ).

The second isomorphism is from Theorem C since each Qi is graded-projective. �

The next example shows that one can have YExt0A(Q,P ) 6
∼= Ext0A(Q,P ), even

when Q is semi-free.

Example 3.9. Continue with the assumptions and notation of Example 3.2, and
set Q = P = R. It is straightforward to show that the morphisms R → R are
precisely given by multiplication by fixed elements of R, so we have the first step
in the next display:

YExt0A(R,R)
∼= R 6= 0 = Ext0A(R,R).

The third step follows from the condition R ≃ 0.

In our proof of Theorem A, we need to know when YExt respects truncations.

Proposition 3.10. Let A be a DG R-algebra, and let M and N be DG A-modules.
Assume that n is an integer such that Ni = 0 for all i > n. Then the natural
map YExt1A(τ(M)(6n), N) → YExt1A(M,N) induced by the morphism π : M →
τ(M)(6n) is a monomorphism.

Proof. Let Υ denote the map YExt1A(τ(M)(6n), N) → YExt1A(M,N) induced by

π. Let α ∈ Ker(Υ) ⊆ YExt1A(τ(M)(6n), N) be represented by the exact sequence

0→ N
f
−→ X

g
−→ τ(M)(6n) → 0. (3.10.1)
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Note that, since Ni = 0 = (τ(M)(6n))i for all i > n, we have Xi = 0 for all i > n.
Then 0 = Υ([α]) = [β] where β comes from the following pull-back diagram:

0

��

0

��

0

��
0 // 0

��

// K
= //

h̃
��

K //

h

��

0

β : 0 // N

=

��

f̃
// X̃

p

g̃
//

π̃

��

M //

π

��

0

α : 0 // N

��

f
// X

��

g
// τ(M)(6n)

��

// 0

0 0 0.

(3.10.2)

The middle row β of this diagram is split exact since [β] = 0, so there is a morphism

F : X̃ → N of DG A-modules such that F ◦ f̃ = idN . Note that K has the form

K = · · ·
∂M
n+2
−−−→Mn+1

∂M
n+1
−−−→ Im(∂Mn+1)→ 0 (3.10.3)

because of the right-most column of the diagram.

We claim that F ◦ h̃ = 0. It suffices to check this degree-wise. When i > n,

we have Ni = 0, so Fi = 0, and Fi ◦ h̃i = 0. When i < n, the display (3.10.3)

shows that Ki = 0, so h̃i = 0, and Fi ◦ h̃i = 0. For i = n, we first note that the
display (3.10.3) shows that ∂Kn+1 is surjective. In the following diagram, the faces

with solid arrows commute because h̃ and F are morphisms:

0

��

��

Kn+1

h̃n+1

##●
●
●
●
●
●
●
●

∂K
n+1

����

oo

0

��

X̃n+1

∂X̃
n+1

��

Fn+1

oo

0

��

Kn

h̃n

##●
●
●
●
●
●
●
●
●

oo

Nn X̃n
Fn

oo

Since ∂Kn+1 is surjective, a simple diagram chase shows that Fn ◦ h̃n = 0. This
establishes the claim.

To conclude the proof, note that the previous claim shows that the map K →
0 is a left-splitting of the top row of diagram (3.10.2) that is compatible with
the left-splitting F of the middle row. It is then straightforward to show that F
induces a morphism F : X → N of DG A-modules that left-splits the bottom row of
diagram (3.10.2). Since this row represents α ∈ YExt1A(τ(M)(6n), N), we conclude
that [α] = 0, so Υ is a monomorphism. �
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The next example shows that the monomorphism from Proposition 3.10 may not
be an isomorphism.

Example 3.11. Continue with the assumptions and notation of Example 3.2. The
following diagram describes a non-zero element of YExt1R(M,N):

0 // N // R // M // 0

0

��

0

��

0

��
0 // 0 //

��

R
1 //

1

��

R //

π

��

0

0 // R
X //

��

R
π //

��

k //

��

0

0 0 0.

It is straightforward to show that τ(M)(60) = 0, so we have

0 = YExt1A(τ(M)(60), N) →֒ YExt1A(M,N) 6= 0

so this map is not an isomorphism.

Proposition 3.12. Let A be a DG R-algebra, and let C be a graded-projective
(e.g., semi-free) DG A-module such that Ext1R(C,C) = 0. For n > sup(C), one has

YExt1A(C,C) = 0 = YExt1A(τ(C)(6n), τ(C)(6n)).

Proof. From Theorem C, we have YExt1A(C,C)
∼= Ext1A(C,C) = 0. For the re-

mainder of the proof, assume without loss of generality that sup(C) <∞. Another
application of Theorem C explains the first step in the next display:

YExt1A(C, τ(C)(6n))
∼= Ext1A(C, τ(C)(6n))

∼= Ext1A(C,C) = 0.

The second step comes from the assumption n > sup(C) which guarantees that the
natural map C → τ(C)(6n) is a quasiisomorphism. Proposition 3.10 implies that

YExt1A(τ(C)(6n), τ(C)(6n)) is isomorphic to a subgroup of YExt1A(C, τ(C)(6n)) =

0, so we have YExt1A(τ(C)(6n), τ(C)(6n)) = 0, as desired. �

4. Some Deformation Theory for DG Modules

The ideas for this section are from [3, 21, 27].

Notation 4.1. Let F be an algebraically closed field, and let

U := (0→ Uq
∂U
q

−−→ Uq−1

∂U
q−1
−−−→ · · ·

∂U
1−−→ U0 → 0)

be a finite-dimensional DG F -algebra. Let dimF (Ui) = ni for i = 0, . . . , q. Let

W :=
s⊕

i=0

Wi

be a graded F -vector space with ri := dimF (Wi) for i = 0, . . . , s.
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A DG U -module structure on W consists of two pieces of data. First, we need
a differential ∂. Second, once the differential ∂ has been chosen, we need a scalar
multiplication µ. Let ModU (W ) denote the set of all ordered pairs (∂, µ) making
W into a DG U -module. Let EndF (W )0 denote the set of F -linear endomorphisms
of W that are homogeneous of degree 0. Let GL(W )0 denote the set of F -linear
automorphisms of W that are homogeneous of degree 0, that is, the invertible
elements of EndF (W )0.

Let F [ǫ] := Fǫ ⊕ F be the algebra of dual numbers, where ǫ2 = 0. For our
convenience, we write elements of F [ǫ] as column vectors: aǫ+ b = [ ab ]. We identify
U [ǫ] := F [ǫ]⊗F U with Uǫ⊕ U ∼= U ⊕ U , and W [ǫ] := F [ǫ]⊗F W with Wǫ⊕W ∼=

W ⊕W . Using this protocol, we have ∂
U [ǫ]
i =

[
∂U
i 0

0 ∂U
i

]
.

We next describe geometric structures on the sets ModU (W ) and GL(W )0.

Remark 4.2. We work in the setting of Notation 4.1.
A differential ∂ on W is an element of the graded vector space HomF (W,W )−1

such that ∂∂ = 0. The vector space HomF (Wi,Wi−1) has dimension riri−1, so the
map ∂ corresponds to an element of the affine space AdF where d :=

∑
i riri−1. The

vanishing condition ∂∂ = 0 is equivalent to the entries of the matrices representing
∂ satisfying certain fixed homogeneous quadratic polynomial equations over F .
Hence, the set of all differentials on W is a Zariski-closed subset of AdF .

Once the differential ∂ has been chosen, a scalar multiplication µ is in particular
a cycle in HomF (U⊗FW,W )0. For all i, j, the vector space HomF (Ui⊗FWj ,Wi+j)
has dimension nirjri+j , so the map µ corresponds to an element of the affine space

Ad
′

F where d′ :=
∑

c

∑
i nirc−irc. The condition that µ be an associative, unital

cycle is equivalent to the entries of the matrices representing ∂ and µ satisfying
certain fixed polynomials over F . Thus, the set ModU (W ) is a Zariski-closed subset

of AdF × Ad
′

F
∼= Ad+d

′

F .

Remark 4.3. We work in the setting of Notation 4.1.
An element α ∈ GL(W )0 is an element of the graded vector space HomF (W,W )0

with a multiplicative inverse. The vector space HomF (Wi,Wi) has dimension
r2i , so the map α corresponds to an element of the affine space AeF where e :=∑
i r

2
i . The invertibility of α is equivalent to the invertibility of each “block”

αi ∈ HomF (Wi,Wi), which is an open condition. Thus, the set GL(W )0 is a
Zariski-open subset of AeF , so it is smooth over F .

Alternately, one can view GL(W )0 as the product GL(W0)×· · ·×GL(Ws). Since
each GL(Wi) is an algebraic group smooth over F , it follows that GL(W )0 is also
an algebraic group that is smooth over F .

Next, we describe an action of GL(W )0 on ModU (W ).

Remark 4.4. We work in the setting of Notation 4.1.

Let α ∈ GL(W )0. For every (∂, µ) ∈ ModU (W ), we define α · (∂, µ) := (∂̃, µ̃),

where ∂̃ := α ◦ ∂ ◦ α−1 and µ̃ := α ◦ µ ◦ (U ⊗F α
−1). It is straightforward to show

that the ordered pair (∂̃, µ̃) describes a DG U -module structure for W , that is, we

have α · (∂, µ) := (∂̃, µ̃) ∈ ModU (W ). From the definition of α · (∂, µ), it follows

readily that this describes a GL(W )0-action on ModU (W ).
It is straightforward to show that the map α gives a DG U -module isomorphism

(W,∂, µ)
∼=
−→ (W, ∂̃, µ̃). Conversely, given another element (∂′, µ′) ∈ ModU (W ), if
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there is a DG U -module isomorphism β : (W,∂, µ)
∼=
−→ (W,∂′, µ′), then β ∈ GL(W )0

and (∂′, µ′) = β · (∂, µ). In other words, the orbits in ModU (W ) under the action
of GL(W )0 are the isomorphism classes of DG U -module structures on W .

Note that the maps defining the action of GL(W )0 on ModU (W ) are regular,
that is, determined by polynomial functions. This is because the inversion map
α 7→ α−1 on GL(W )0 is regular, as is the multiplication of matrices corresponding

to the compositions defining ∂̃ and µ̃.

Notation 4.5. We work in the setting of Notation 4.1.
The set ModU (W ) is the set of F -rational points of a scheme ModU (W ) over F ,

which we describe using the functorial point of view, following [14, 15]: for each
commutative F -algebra S, we have4

ModU (W )(S) := {DG S ⊗F U -module structures on S ⊗F W}.

Sometimes we write ModS⊗FU (S ⊗F W ) in place of ModU (W )(S). Similarly,
GL(W )0 is the set of F -rational points of a scheme GL(W )0 over F : for each
commutative F -algebra S, we have

GL(W )0(S) := {homogeneous S-linear automorphisms of S ⊗F W of degree 0}.

The fact that ModU (W ) and GL(W )0 are the sets of F -rational points of these

schemes means that ModU (W ) = ModU (W )(F ) and GL(W )0 = GL(W )0(F ).
Fix a commutative F -algebra S. As in Remark 4.4, the group GL(W )0(S)

acts on ModU (W )(S): for each α ∈ GL(W )0(S) and (∂, µ) ∈ModU (W )(S), define

α ·(∂, µ) := (∂̃, µ̃), where ∂̃ := α◦∂ ◦α−1 and µ̃ := α◦µ◦((S⊗F U)⊗Sα
−1). Again,

the orbits in ModU (W )(S) under the action of GL(W )0(S) are the isomorphism
classes of DG S ⊗F U -module structures on S ⊗F W .

Let M = (∂, µ) ∈ ModU (W ). The orbit of M under GL(W )0 is the subscheme

GL(W )0 ·M of ModU (W ) defined as

(GL(W )0 ·M)(S) := GL(W )0(S) · (S ⊗F M)

which is the DG isomorphism class of S ⊗F M over S ⊗F U . Let ̺ : GL(W )0 →
GL(W )0 ·M denote the following natural map: for each commutative F -algebra S
and each α ∈ GL(W )0(S) we have ̺(α) := α · (S ⊗F M).

Given a scheme X over F and a point x ∈ X(F ), let T
X
x denote the Zariski

tangent space to X at x.

Remark 4.6. We work in the setting of Notations 4.1 and 4.5. LetM ∈ModU (W ).
From [14, II, §5, 3], we know that the orbit GL(W )0 ·M , equipped with its natural

reduced subscheme structure, is locally closed in ModU (W ), and the map ̺ is
regular and faithfully flat. Also, [14, II, §5, 2.6] tells us that GL(W )0 is smooth.

Lemma 4.7. We work in the setting of Notations 4.1 and 4.5. LetM ∈ ModU (W ).
The map ̺ : GL(W )0 → GL(W )0 ·M and the orbit GL(W )0 ·M are smooth.

Proof. We begin by showing that the fibre Stab(M) of ̺(F ) overM is smooth over
F . Since F is algebraically closed, it suffices to show that Stab(M) is regular. Since
GL(W )0 is regular, to show that Stab(M) ⊆ GL(W )0 is regular it suffices to show

4Technically, the inputs for this functor should be taken from the category of affine schemes over
Spec(F ), but the equivalence between this category and the category of commutative F -algebras
makes this equivalent to our approach.
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that Stab(M) is defined by linear equations. To find these linear equations, note
that the stabilizer condition α·M =M is equivalent to the conditions ∂ = α◦∂◦α−1

and µ = α◦µ◦ (U⊗F α
−1), that is, ∂ ◦α = α◦∂ and µ◦ (U ⊗F α) = α◦µ; since the

matrices defining ∂ and µ are fixed, these equations are described by a system of
linear equations in the variables describing α. Thus, the fibre Stab(M) is smooth.

Now, each closed fibre of ̺(F ) is isomorphic to Stab(M) by translation, so it
is smooth over F . Hilbert’s Nullstellensatz implies that ̺(F ) maps closed points
to closed points, so it follows from [26, Théorème (17.5.1)] that ̺(F ) is smooth
at every closed point of GL(W )0(F ). Since smoothness is an open condition on
the source by [25, Corollaire (6.8.7)], it follows that ̺(F ) is smooth at every point
(closed or not) of GL(W )0(F ). The fact that ̺(F ) is smooth implies that ̺ is
smooth, by [14, I.4.4.1].

Finally, because ̺(F ) is faithfully flat, it is surjective. We know that GL(W )0 is
smooth over F , and ̺(F ) is smooth, so GL(W )0 ·M is also smooth over F by [25,
Proposition (6.8.3)(ii)]. It follows from [14, I.4.4.1] that GL(W )0 ·M is smooth. �

Lemma 4.8. We work in the setting of Notations 4.1 and 4.5. Given an element

M = (∂, µ) ∈ ModU (W ), the tangent space T
ModU (W )
M is the set of all ordered pairs

(∂, µ) ∈ ModU (W )(F [ǫ]) that give rise to M modulo ǫ. Equivalently, T
ModU (W )
M is

the set of all ordered pairs (∂, µ) = ({∂i}, {µi}) satisfying the following conditions:

(1) For each i, we have ∂i =
[
∂i γi
0 ∂i

]
where γi : Wi → Wi−1 is an F -linear

transformation such that ∂iγi+1 + γi∂i+1 = 0.
(2) There is a degree-0 graded homomorphism θ : U ⊗F W → W of F -vector

spaces such that the map µ : U [ǫ]⊗F [ǫ] W [ǫ]→W [ǫ] is given by the formula

µi+j
([
a′

a

]
⊗
[
w′

w

])
=

[
θi+j(a⊗w)+µi+j(a⊗w

′)+µi+j(a
′⊗w)

µi+j(a⊗w)

]

for all
[
a′

a

]
∈ Ui ⊕ Ui and

[
w′

w

]
∈ Wj ⊕ Wj , and µ is a degree-0 graded

homomorphism of F [ǫ]-modules.
(3) For each a ∈ Ui and w ∈ Wj, we have

γi+j(µi+j(a⊗ w)) + ∂i+j(θi+j(a⊗ w))

= θi−1+j(∂
U
i (a)⊗ w) + (−1)iθi+j−1(a⊗ ∂j(w)) + (−1)iµi−1+j(a⊗ γj(w)).

(4) For each a ∈ Ui, b ∈ Up and w ∈ Wj, we have

θi+p+j((ab)⊗ w) = θi+p+j(a⊗ µp+j(b ⊗ w)) + µi+p+j(a⊗ θp+j(b⊗ w)).

Proof. The natural map F [ǫ]→ F induces a morphism

ModU [ǫ](W [ǫ]) = ModU (W )(F [ǫ])→ ModU (W )(F ) = ModU (W )

and the tangent space T
ModU (W )
M is the fibre of this morphism over M . Thus, an

element of T
ModU (W )
M is precisely a DG U [ǫ]-module structure on W [ǫ] that gives

rise to M modulo ǫ.

Let N = (∂, µ) ∈ T
ModU (W )
M ; we show that conditions (1)–(4) are satisfied. The

fact that ∂ is F [ǫ]-linear and gives rise to ∂ modulo ǫ, implies that ∂ has the form

∂i =
[
δi γi
βi ∂i

]
where βi, γi, δi : Wi →Wi−1. Since the ordered pair (∂, µ) endowsW [ǫ]



A LOCAL RING HAS ONLY FINITELY MANY SEMIDUALIZING COMPLEXES 19

with a DG U [ǫ]-module structure, the Leibniz rule must be satisfied. In particular,
for all w ∈Wj , we have

∂j
(
µj ([

1
0 ]⊗ [ 0w ])

)
= µj−1

(
∂
U [ǫ]
j ([ 10 ])⊗ [ 0w ]

)
+ µj−1

(
[ 10 ]⊗ ∂j ([

0
w ])

)

[
δj γj
βj ∂j

]
[w0 ] = 0 + µj−1

(
[ 10 ]⊗

([
δj γj
βj ∂j

]
[ 0w ]

))

[
δj(w)
βj(w)

]
= µj−1

(
[ 10 ]⊗

[
γj(w)
∂j(w)

])

[
δj(w)
βj(w)

]
=

[
∂j(w)

0

]
.

It follows that βj = 0 and ∂j = δj, so we have ∂i =
[
∂i γi
0 ∂i

]
. Also for each i the

condition ∂i∂i+1 = 0 implies that ∂iγi+1+γi∂i+1 = 0 for all i. This establishes (1).
The map µ is a chain map over F [ǫ] from U [ǫ]⊗F [ǫ] (W [ǫ], ∂) to (W [ǫ], ∂). The

fact that µ is F [ǫ]-linear and gives rise to µ modulo ǫ, implies that µ satisfies the
following conditions:

µi+j ([
0
a ]⊗ [ 0w ]) =

[
θi+j(a⊗w)

µi+j(a⊗w)

]

µi+j ([
0
a ]⊗ [w0 ]) =

[
µi+j(a⊗w)

0

]

µi+j ([
a
0 ]⊗ [ 0w ]) =

[
µi+j(a⊗w)

0

]

µi+j ([
a
0 ]⊗ [w0 ]) = [ 00 ] .

Here we have a ∈ Ui and w ∈ Wj , and θ : U ⊗F W → W is a degree-0 graded
homomorphism of F -vector spaces. Condition (2) follows by linearity. Condition (3)
follows from the Leibniz rule for elements of the form [ 0w ] ∈W [ǫ]j and [ 0a ] ∈ U [ǫ]i,
and condition (4) follows from the associativity of the scalar multiplication µ.

Similar reasoning shows that any ordered pair (∂, µ) ∈ ModU (W )(F [ǫ]) satisfying
conditions (1)–(4) is a DG U [ǫ]-module structure on W [ǫ] that gives rise to M

modulo ǫ, that is, an element of T
ModU (W )
M . Note that condition (4) implies that

θj(1⊗ w) = 0 for all w ∈Wj for all j, which is used in this implication. �

Lemma 4.9. We work in the setting of Notations 4.1 and 4.5. Given an element

M = (∂, µ) ∈ ModU (W ), the tangent space T
ModU (W )
M is an F -vector space under

the following operations: Let N (1), N (2) ∈ T
ModU (W )
M where N (n) = (∂

(n)
, µ(n)) such

that ∂
(n)

i =
[
∂i γ

(n)
i

0 ∂i

]
and

µ
(n)
i+j

([
a′

a

]
⊗
[
w′

w

])
=

[
θ
(n)
i+j(a⊗w)+µi+j(a⊗w

′)+µi+j(a
′⊗w)

µi+j(a⊗w)

]

for n = 1, 2 as in Lemma 4.8. For α1, α2 ∈ F the element α1N
(1) + α2N

(2) in

T
ModU (W )
M is given using the functions α1γ

(1) +α2γ
(2) and α1θ

(1) +α2θ
(2), that is,

we have α1N
(1) + α2N

(2) = (∂, µ) where ∂i =
[
∂i α1γ

(1)
i +α2γ

(2)
i

0 ∂i

]
and

µi+j
([
a′

a

]
⊗
[
w′

w

])
=

[
α1θ

(1)
i+j(a⊗w)+α2θ

(2)
i+j(a⊗w)+µi+j(a⊗w

′)+µi+j(a
′⊗w)

µi+j(a⊗w)

]
.

Proof. It is straightforward to show that the ordered pair (∂, µ) satisfies condi-

tions (1)–(4) from Lemma 4.8. That is, the tangent space T
ModU (W )
M is closed

under linear combinations. The other vector space axioms follow readily. �
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Lemma 4.10. We work in the setting of Notations 4.1 and 4.5. The tangent space

T
GL(W )0
idW

is the set of all elements of GL(W )0(F [ǫ]) that give rise to idW modulo ǫ.

Equivalently, T
GL(W )0
idW

is the set of all matrices of the form ξ =
[
idW D
0 idW

]
, where

D ∈ EndF (W )0.

Proof. Arguing as in the proof of Lemma 4.8, one checks readily that T
GL(W )0
idW

is the set of all elements of GL(W )0(F [ǫ]) that give rise to idW modulo ǫ. To

describe the elements of T
GL(W )0
idW

explicitly, recall from Notation 4.1 that we write

W [ǫ] as W ⊕W . Thus, the elements of T
GL(W )0
idW

⊆ GL(W )0(F [ǫ]) have the form

ξ =
[
ξ11 ξ12
ξ21 ξ22

]
where each ξij : W →W . Since ξ gives rise to idW modulo ǫ, we must

have ξ22 = idW . Also, the condition ǫξ([ 0w ]) = ξ([ w0 ]) for all w ∈ W implies that
ξ21 = 0 and ξ11 = idW , and hence ξ has the desired form. One checks similarly
that every matrix of the form

[
idW D
0 idW

]
, where D ∈ EndF (W )0 is an element of

GL(W )0(F [ǫ]) that gives rise to idW modulo ǫ, that is, it is in T
GL(W )0
idW

. �

4.11 (Proof of Theorem B). Using the notation of Lemma 4.8, let N = (∂, µ) be

an element of T
ModU (W )
M . Since N is a DG U [ǫ]-module, restriction of scalars along

the natural inclusion U → U [ǫ] makes N a DG U -module with scalar multiplication
given by the following formula

a
[
w′

w

]
:= µi+j

(
[ 0a ]⊗

[
w′

w

])
=

[
µi+j(a⊗w

′)+θi+j(a⊗w)

µi+j(a⊗w)

]
(4.11.1)

for all a ∈ Ui and
[
w′

w

]
∈ Nj =Wj ⊕Wj .

Define ρ : M → N and π : N →M by the formulas ρ(w) := [w0 ] and π
([
w′

w

])
:=

w. Using the equation ∂i =
[
∂i γi
0 ∂i

]
from Lemma 4.8, it is straightforward to show

that ρ and π are chain maps. From equation (4.11.1), we conclude that ρ and π
are U -linear. In other words, we have an exact sequence

0→M
ρ
→ N

π
→M → 0

of DG U -module morphisms. So, we obtain a map τ : T
ModU (W )
M → YExt1U (M,M)

where τ(N) is the equivalence class of the displayed sequence in YExt1U (M,M). We

show that τ is a surjective abelian group homomorphism with Ker(τ) = T
GL(W )0·M
M .

To show that τ is additive, let N (1), N (2) ∈ T
ModU (W )
M where N (n) = (∂

(n)
, µ(n))

such that ∂
(n)

i =
[
∂i γ

(n)
i

0 ∂i

]
and

µ
(n)
i+j

([
a′

a

]
⊗
[
w′

w

])
=

[
θ
(n)
i+j(a⊗w)+µi+j(a⊗w

′)+µi+j(a
′⊗w)

µi+j(a⊗w)

]

for n = 1, 2 as in Lemma 4.8. Then τ(N (n)) is represented by the exact sequence

0→M
ρ
→ N (n) π

→M → 0

for n = 1, 2.5 The Baer sum τ(N (1))+ τ(N (2)) is represented by the exact sequence

0→M
ρ′

−→ T
π′

−→M → 0 (4.11.2)

which is constructed in the following four steps:

5We abuse notation slightly here: for instance, the maps M → N(1) and M → N(2) have
different domains, so they should not both be called ρ. However, the maps of underlying vector
spaces are the same, so there should be no confusion.
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(1) Let L denote the pull-back of π : N (1) → M and π : N (2) → M , which is a
DG U -module with6

Li =
{([

w′

w

]
,
[
v′

v

])
∈ N

(1)
i ⊕N

(2)
i | π

([
w′

w

])
= π

([
v′

v

])}

=
{([

w′

w

]
,
[
v′

v

])
∈ N

(1)
i ⊕N

(2)
i | w = v

}

=
{([

w′

w

]
,
[
v′

w

])
∈ N

(1)
i ⊕N

(2)
i

}

∂Li
([
w′

w

]
,
[
v′

w

])
=

(
∂
(1)

i

([
w′

w

])
, ∂

(2)

i

([
v′

w

]))

=
([

∂i(w
′)+γ

(1)
i (w)

∂i(w)

]
,
[
∂i(v

′)+γ
(2)
i (w)

∂i(w)

])

a
([
w′

w

]
,
[
v′

w

])
=

(
a
[
w′

w

]
, a

[
v′

w

])

=
([

θ
(1)
i+j(a⊗w)+µi+j(a⊗w

′)

µi+j(a⊗w)

]
,
[
θ
(2)
i+j(a⊗w)+µi+j(a⊗w

′)

µi+j(a⊗w)

])

for all a ∈ U .
(2) The map σ : M → N (1)⊕N (2) given by σ(m) =

([
−m
0

]
, [m0 ]

)
is a well-defined

DG U -module morphism such that Im(σ) ⊆ L. Let σ : M → L denote the induced
DG U -module morphism.

(3) Set T = Coker (σ). Let the element of T represented by the ordered pair([
w′

w

]
,
[
v′

w

])
be denoted

[[
w′

w

]
,
[
v′

w

]]
. Then T is a DG U -module with differential

and scalar multiplication induced from L:

∂Ti
([[

w′

w

]
,
[
v′

w

]])
=

[[
∂i(w

′)+γ
(1)
i (w)

∂i(w)

]
,
[
∂i(v

′)+γ
(2)
i (w)

∂i(w)

]]

a
[[
w′

w

]
,
[
v′

w

]]
=

[[
θ
(1)
i+j(a⊗w)+µi+j(a⊗w

′)

µi+j(a⊗w)

]
,
[
θ
(2)
i+j(a⊗w)+µi+j(a⊗w

′)

µi+j(a⊗w)

]]

(4) Let ρ′ : M → T be given by ρ′(m) = [[m0 ] , [ 00 ]] = [[ 00 ] , [
m
0 ]]. Let π′ : T →M

be given by π′
([[

w′

w

]
,
[
v′

w

]])
= w. It is straightforward to show that ρ′ and τ ′ are

well-defined DG U -module morphisms making (4.11.2) exact.
On the other hand, Lemma 4.9 implies that the element N = N (1) + N (2) in

T
ModU (W )
M is given using the functions γ(1) + γ(2) and θ(1) + θ(2), that is, we have

N = (∂, µ) where ∂i =
[
∂i γ

(1)
i +γ

(2)
i

0 ∂i

]
and

µi+j
([
a′

a

]
⊗
[
w′

w

])
=

[
θ
(1)
i+j(a⊗w)+θ

(2)
i+j(a⊗w)+µi+j(a⊗w

′)+µi+j(a
′⊗w)

µi+j(a⊗w)

]
.

The element τ(N) is represented by the exact sequence

0→M
ρ
→ N

π
→M → 0

where ρ and π are the canonical inclusion and surjection. To prove that τ(N) =
τ(N (1)) + τ(N (2)), we need to construct a DG U -module morphism φ : T → N
making the following diagram commute:

0 // M
ρ′

//

=

��

T
π′

//

φ

��

M //

=

��

0

0 // M
ρ

// N
π // M // 0.

6We conveniently abuse our notational protocol for direct sums here.
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Define φi
([[

w′

w

]
,
[
v′

w

]])
=

[
w′+v′

w

]
for each i. It is straightforward to show that

φ is a well-defined DG U -module morphism making the above diagram commute.
Thus, the map τ is additive.

Now we show that τ is onto. Fix an arbitrary element ζ ∈ YExt1U (M,M),

represented by the sequence 0→M
f
−→ Z

g
−→M → 0. In particular, this is an exact

sequence of F -complexes, so it is degree-wise split. This implies that we have a
commutative diagram of graded vector spaces:

0 // M
f

//

=

��

Z

ϑ

��

g
// M //

=

��

0

0 // M
ρ

// W [ǫ]
π // M // 0

where ρ(w) = [w0 ], π
([
w′

w

])
= w, and ϑ is an isomorphism of graded F -vector

spaces. The map ϑ allows us to transfer a DG U -module structure to W [ǫ] as

follows: let the differential on W [ǫ] be given by the formula ∂i = ϑi−1∂
Z
i ϑ

−1
i , and

define scalar multiplication µ′ over U on W [ǫ] by the formula µ′
i+j

(
a⊗

[
w′

w

])
=

ϑi+j
(
µi+j

(
a⊗ ϑ−1

j

([
w′

w

])))
for all a ∈ Ui and

[
w′

w

]
∈ W [ǫ]j . These definitions

provide an exact sequence

0→M
ρ
−→

(
W [ǫ], ∂, µ′

) π
−→M → 0 (4.11.3)

of DG U -modules equivalent to the original sequence 0 → M
f
−→ Z

g
−→ M → 0.

Next, define scalar multiplication µ over U [ǫ] on W [ǫ] by the formulas

µi+j
(
[ 0a ]⊗

[
w′

w

])
= µ′

i+j

(
a⊗

[
w′

w

])
= ϑi+j

(
µi+j

(
a⊗ ϑ−1

j

([
w′

w

])))

µi+j
(
[ a0 ]⊗

[
w′

w

])
=

[
µi+j(a⊗w)

0

]

for all a ∈ Ui and
[
w′

w

]
∈ W [ǫ]j. These definitions endow W [ǫ] with a DG U [ǫ]-

module structure (∂, µ) that gives rise to M modulo ǫ, so N = (∂, µ) ∈ T
ModU (W )
M .

Furthermore, since the sequence (4.11.3) is equivalent to the sequence representing
ζ, we have τ(N) = ζ, so τ is surjective.

By Lemma 4.7, the map ̺ : GL(W )0 → GL(W )0 ·M defined by g 7→ g ·M

is smooth. Thus, the induced map on tangent spaces T
GL(W )
idW

̟
−→ T

GL(W )0·M
M is

surjective; see [14, I.4.4.15].

To describe T
GL(W )0·M
M as a subset of T

ModU (W )
M , consider the next commutative

diagram of morphisms of schemes where ΨM is (induced by) multiplication by M

GL(W )0
ΨM //

·M
&&◆◆

◆◆
◆◆

◆◆
◆◆

◆
ModU (W )

GL(W )0 ·M

77♦♦♦♦♦♦♦♦♦♦♦

and the unspecified arrow is the natural inclusion. Note that for each F -algebra
S, the map ΨM (S) : GL(W )0(S) → ModU (W )(S) is given by multiplication on
S ⊗F M . This diagram induces the following commutative diagram of maps of
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tangent spaces:

T
GL(W )0
idW

ψM //

̟
%%▲

▲▲
▲▲

▲▲
▲▲

▲

T
ModU (W )
M

T
GL(W )0·M
M .

υ

88qqqqqqqqqqq

Since the orbit GL(W )0 ·M is a locally closed subset of ModU (W ), the map υ

is injective. Since ̟ is surjective, it follows that T
GL(W )0·M
M is isomorphic to the

image of ψM . Thus, we identify T
GL(W )0·M
M with Im(ψM ) ⊆ T

ModU (W )
M .

To continue our description of T
GL(W )0·M
M , we describe ψM explicitly. Again,

T
GL(W )0
idW

is the fibre over idW in the map GL(W )0(F [ǫ])→ GL(W )0(F ) = GL(W )0

induced by the natural ring epimorphism F [ǫ] → F . And T
ModU (W )
M is the fibre

overM in the induced map ModU (W )(F [ǫ])→ ModU (W )(F ) = ModU (W ). Thus,

the map ψM is induced by ΨM (F [ǫ]) : GL(W )0(F [ǫ]) → ModU (W )(F [ǫ]), so it is
given by multiplication on F [ǫ]⊗FM . In a variation of the notation of Lemma 4.8,

we have F [ǫ]⊗F M = (∂′, µ′) where ∂′i =
[
∂i 0
0 ∂i

]
and

µ′
i+j(

[
a′

a

]
⊗
[
w′

w

]
) =

[
µi+j(a⊗w

′)+µi+j(a
′⊗w)

µi+j(a⊗w)

]

for all
[
a′

a

]
∈ U [ǫ]i and all

[
w′

w

]
∈ W [ǫ]j .

By definition, the map ΨM (F [ǫ]) : GL(W )(F [ǫ]) → ModU (F [ǫ]) is given by
ΨM (F [ǫ])(ξ) = (∂′′, µ′′) where ∂′′ = ξ ◦ ∂′ ◦ ξ−1 and µ′′ = ξ ◦ µ′ ◦ (U [ǫ] ⊗ ξ−1).

Then ψM is the restriction of ΨM (F [ǫ]) to T
GL(W )
idW

.

Lemma 4.10 implies that each element ξ ∈ T
GL(W )
idW

is of the form

ξ =
[
idW D
0 idW

]
(4.11.4)

where D ∈ EndF (W )0. Note that ξ−1 =
[
idW −D
0 idW

]
. It follows that

µ′′
i+j(

[
a′

a

]
⊗
[
w′

w

]
) = ξi+j

(
µ′
i+j

([
a′

a

]
⊗ ξ−1

j

([
w′

w

])))

=
[
µi+j(a

′⊗w)+µi+j(a⊗w
′)−µi+j(a⊗Dj(w))+Di+j(µi+j(a⊗w))
µi+j(a⊗w)

]

and similarly ∂′′i =
[
∂i Di−1∂i−∂iDi

0 ∂i

]
. So, we have ψM (ξ) = (∂′′, µ′′) where ∂′′ and

µ′′ are given by the above formulas.

We now show that T
GL(W )0·M
M ⊆ Ker(τ). Let N ∈ T

GL(W )0·M
M , and write N =

ψM (ξ) where ξ is as in (4.11.4). Define h : M → N by the formula hj(w) =
[
Dj(w)
w

]
.

By definition, the DG U -module structure on N gives

a
[
w′

w

]
=

[
µi+j(a⊗w

′)−µi+j(a⊗Dj(w))+Di+j(µi+j(a⊗w))
µi+j(a⊗w)

]
.

From this (using the explicit description of ψM (ξ)) it is straightforward to show
that h is a morphism of DG U -modules such that π ◦ h = idM . Therefore the

exact sequence 0→M
ρ
−→ N

π
−→M → 0 representing τ(N) splits. This means that

N ∈ Ker(τ), as desired.

We conclude the proof by showing that T
GL(W )0·M
M ⊇ Ker(τ). Given an element

N = (∂, µ) ∈ Ker(τ), the short exact sequence 0→M
ρ
−→ N

π
−→M → 0 representing
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τ(N) splits over U . Therefore there exists a morphism of DG U -modules h : M → N
such that π ◦ h = idM . The condition π ◦ h = idM implies that hj(w) =

[
Dj(w)
w

]

for some D ∈ EndF (W )0. The fact that h is a chain map implies that γi =

Di−1∂i − ∂iDi, in the notation of Lemma 4.8, so we have ∂i =
[
∂i Di−1∂i−∂iDi

0 ∂i

]
.

By checking the condition of h being a DG U -homomorphism, we get

θi,j(a⊗ w) = Di+j(µi+j(a⊗ w)) − µi+j(a⊗Dj(w))

for a ∈ Ui and w ∈ Wj . Thus

µi+j(
[
a′

a

]
⊗
[
w′

w

]
) =

[
µi+j(a

′⊗w)+µi+j(a⊗w
′)−µi+j(a⊗Dj(w))+Di+j(µi+j(a⊗w))
µi+j(a⊗w)

]
.

This means that N = ψM (ξ) ∈ Im(ψM ) = T
GL(W )0·M
M , where ξ is as in (4.11.4). �

The next result follows the ideas of Gabriel [21, 1.2 Corollary].

Corollary 4.12. We work in the setting of Notations 4.1 and 4.5. Let C be a
degree-wise finite graded-projective (e.g., semi-free) semidualizing DG U -module,
and let s > sup(C). Set M = τ(C)(6s) and W =M ♮. Then the orbit GL(W )0 ·M

is open in ModU (W ).

Proof. Proposition 3.12 implies that YExt1U (M,M) = 0, so by Theorem B we have

T
ModU (W )
M = T

GL(W )0·M
M . Lemma 4.8 implies that the orbit GL(W )0 ·M is smooth.

This explains the first step in the next sequence

dim(OGL(W )0·M,M ) = rankF (T
GL(W )0·M
M )

= rankF (T
ModU (W )
M )

> dim(OModU (W ),M )

> dim(OGL(W )0·M,M ).

The second step follows from the equality T
ModU (W )
M = T

GL(W )0·M
M . The third

step is standard, and the last step follows from the fact that GL(W )0 · M is a

locally closed subscheme of ModU (W ). It follows that ModU (W ) is smooth at
M such that dim(OModU (W ),M ) = dim(OGL(W )0·M,M ). Since GL(W )0 · M is a

locally closed subscheme of ModU (W ), the ring OGL(W )0·M,M is a localization of a
quotient of OModU (W ),M . However, since OModU (W ),M is a regular local ring, any
proper quotient or localization has strictly smaller Krull dimension. It follows that
OGL(W )0·M,M = OModU (W ),M , so GL(W )0 ·M and ModU (W ) are equal in an open

neighborhood V of M in ModU (W ).
Every closed pointM ′ ∈ GL(W )0 ·M is of the formM ′ = σ ·M for some element

σ ∈ GL(W )0. Translating by σ, we see that GL(W )0 ·M and ModU (W ) are equal

in an open neighborhood σ · V of σ ·M = M ′ in ModU (W ). Since this is true
for every closed point of GL(W )0 ·M , it is true for every point of GL(W )0 ·M .

This uses the fact that ModU (W ) is of finite type over a field. We conclude that

GL(W )0 ·M is open in ModU (W ). Hence, GL(W )0 ·M is open in ModU (W ). �

5. Answering Vasconcelos’ Question

The final steps of our proof of Theorem A begin with the next result which is
motivated by Happel [27].
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Lemma 5.1. We work in the setting of Notations 4.1 and 4.5. Let SW (U) denote
the set of quasiisomorphism classes of degree-wise finite semi-free semidualizing DG
U -modules C such that s > sup(C), Ci = 0 for all i < 0, and (τ(C)(6s))

♮ ∼= W .
Then SW (U) is a finite set.

Proof. Fix a representative C for each quasiisomorphism class in SW (U), and write
[C] ∈ SW (U) and MC = τ(C)(6s).

Let [C], [C′] ∈ SW (U). If GL(W )0 · MC = GL(W )0 · MC′ , then [C] = [C′]:
indeed, Remark 4.4 explains the second step in the next display

C ≃MC
∼=MC′ ≃ C′

and the remaining steps follow from the assumptions s > sup(C) and s > sup(C′).

Now, each orbit GL(W )0 ·MC is open in ModU (W ) by Corollary 4.12. Since

ModU (W ) is quasi-compact, it can only have finitely many open orbits. By the
previous paragraph, this implies that there are only finitely many distinct elements
[C] ∈ SW (U). �

Theorem A is a corollary of the following result whose proof uses techniques we
learned from Avramov and Iyengar. Recall the notation S(R) from Definition 2.20.

Theorem 5.2. Let (R,m, k) be a local ring. Then the set S(R) is finite.

Proof. A result of Grothendieck [24, Proposition (0.10.3.1)] provides a flat local
ring homomorphism R→ (R′,m′, k′) such that k′ is algebraically closed. Compos-
ing with the natural map from R′ to its m′-adic completion, we assume that R′ is
complete. By [19, Theorem II(c)], the induced map S(R)→ S(R′) is a monomor-
phism. Thus it suffices to prove the result for R′, so we assume that R is complete
with algebraically closed residue field.

Let t = t1, · · · , tn be a minimal generating sequence for m, and set K = KR(t),
the Koszul complex. The map S(R)→ S(K) induced by C 7→ K ⊗R C is bijective
by [31, Corollary 3.10]. Thus, it suffices to show that S(K) is finite. Note that for
each semidualizing R-complex C, we have amp(C) 6 dim(R) − depth(R) by [11,
(3.4) Corollary]. A standard result about K (see, e.g., [18, 1.3]) implies that

amp(K ⊗R C) 6 amp(C) + n 6 dim(R)− depth(R) + n. (5.2.1)

Set s = dim(R)− depth(R) + n.
Since R is complete, the Cohen Structure Theorem provides a complete regular

local ring (A,M, k) and an epimorphism A → R such that M is generated by
a sequence a = a1, . . . , an ∈ M where ai is a lifting of ti to A. The Koszul
complex KA(a) is a minimal A-free resolution of k. The lifting assumption for a
implies that K ∼= KA(a) ⊗A R. The fact that A is regular and local implies that
q := pdA(R) <∞.

From [6, Proposition 2.2.8] we know that there is a “DG algebra resolution” B
of R over A such that Bi = 0 for all i > q. This means that B is a DG A-algebra

with a quasiisomorphism of DG A-algebras B
≃
−→ R such that each Bi is finitely

generated and free over A and Bi = 0 for all i > q. Since KA(a) and B are DG
A-algebras that are bounded below and consist of flat A-modules, we have the
following (quasi)isomorphisms of DG A-algebras:

K ∼= KA(a)⊗A R
≃
←− KA(a)⊗A B

≃
−→ k ⊗A B =: U. (5.2.2)
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Note that the assumptions on B imply that U is a finite dimensional DG k-
algebra, as in Notation 4.1 with F = k. With the second paragraph of this proof,
Lemma 2.22(c) says that base change yields bijections

S(R)
∼=
−→ S(K) ∼= S(KA(a)⊗A R)

∼=
←− S(KA(a)⊗A B)

∼=
−→ S(U).

Thus, it suffices to show that S(U) is finite. Note that each algebra in (5.2.2) is a
local DG A-algebra, as is R.

Let C′ be a semidualizing DG U -module, and let C be a semidualizing R-complex
corresponding to C′ under the bijections given above. Assume without loss of gen-
erality that C is not shift-isomorphic in D(R) to R. (Removing this from consid-
eration only removes a single semidualizing DG U -module, so does not affect the
discussion of the finiteness of S(U).) Since R is local, it follows from [11, (8.1)
Theorem] that pdR(C) =∞.

From Lemma 2.22(b) and the display (5.2.1), we have

amp(C′) = amp(K ⊗R C) 6 s.

By applying an appropriate shift we assume without loss of generality that inf(C) =

0 = inf(C′), so we have sup(C′) 6 s. Let L
≃
−→ C′ be a minimal semi-free resolution

of C′ over U . The conditions sup(L) = sup(C′) 6 s imply that L (and hence C′) is

quasiisomorphic to the truncation L̃ := τ(L)6s. We set W := L̃♮ and work in the
setting of Notations 4.1 and 4.5.

We claim that βRp (C) 6 µp+depthR
R (R) for all p > 0. To see this, first note that

the isomorphism RHomR(C,C) ≃ R implies the following equality of power series
IRR (t) = PCR (t)IRC (t). See [7, (1.5.3)]. We conclude that for each m we have

µmR (R) =

m∑

t=0

βRt (C)µ
m−t
R (C).

In particular, for m < depth(R), we have

0 = µmR (R) =

m∑

t=0

βRt (C)µ
m−t
R (C) > βR0 (C)µ

m
R (C).

The equality inf(C) = 0 implies that βR0 (C) 6= 0 by [11, (1.7.1)], so it follows that
µmR (C) = 0. For m = depth(R), we conclude from this that

0 6= µ
depth(R)
R (R) =

depth(R)∑

t=0

βRt (C)µ
depth(R)−t
R (C) = βR0 (C)µ

depth(R)
R (C)

and hence µ
depth(R)
R (C) 6= 0. Similarly, for m = p+ depth(R), we have

µ
p+depth(R)
R (R) =

p+depth(R)∑

t=0

βRt (C)µ
p+depth(R)−t
R (C)

> βRp (C)µ
depth(R)
R (C)

> βRp (C)

as claimed.
Next, we claim that there is an integer λ > 0, depending only on R and U , such

that
∑s

i=0 ri 6 λ. (Recall that ri and other quantities are fixed in Notation 4.1.) To
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see this, first note that for i = 1, . . . , s we have Li =
⊕i

j=0 U
βU
i−j(C

′)

j ; see Fact 2.17.

From [1, p. 44, Proposition] and the previous claim, we conclude that

βUj (C
′) = βRj (C) 6 µ

j+depth(R)
R (R)

for all j. It follows that

ri 6 rankF (Li) =

i∑

j=0

ni−jβ
U
j (C

′) =

i∑

j=0

ni−jβ
R
j (C) 6

i∑

j=0

ni−jµ
j+depth(R)
R (R).

And we conclude that
s∑

i=0

ri 6
s∑

i=0

i∑

j=0

ni−jµ
j+depth(R)
R (R).

Since the numbers in the right hand side of this inequality only depend on R and
U , we have found the desired value for λ.

Because there are only finitely many (r0, . . . , rs) ∈ Ns+1 with
∑s
i=0 ri 6 λ, there

are only finitely many W that occur from this construction, say W (1), . . . ,W (b).
Lemma 5.1 implies that S(U) = SW (1)(U) ∪ · · · ∪SW (b)(U) ∪ {[U ]} is finite. �

5.3 (Proof of Theorem A). The set S0(R) ⊆ S(R) is finite by Theorem 5.2. �

Now, we prove versions of Theorems A and 5.2 for semilocal rings. We note that,
over a non-local ring, the set S(R) may not be finite. For instance, the Picard group
Pic(R), consisting of finitely generated rank-1 projective R-modules, is contained
in S0(R) ⊆ S(R), so S(R) can even be infinite when R is a Dedekind domain. We
use some notions from [20] to deal with this.

Definition 5.4. A tilting R-complex is a semidualizing R-complex of finite pro-
jective dimension. The derived Picard group of R is the set DPic(R) of isomo-
prhism classes in D(R) of tilting R-complexes. The isomorphism class of a tilting
R-complex L is denoted [L] ∈ DPic(R).

Remark 5.5. A homologically finite R-complex L is tilting if and only if Lm ∼ Rm

for all maximal (equivalently, for all prime) ideals m ⊂ R, by [20, Proposition 4.4
and Remark 4.7]. In [9] tilting complexes are called “invertible”.

The derived Picard group DPic(R) is an abelian group under the operation
[L][L′] := [L⊗L

R L
′]. The identity in DPic(R) is [R], and [L]−1 = [RHomR(L,R)].

The classical Picard group Pic(R) is naturally a subgroup of DPic(R). The group
DPic(R) acts on S(R) in a natural way: [L][C] := [L ⊗L

R C]. See [20, Properties
4.3 and Remark 4.9]. This action restricts to an action of Pic(R) on S0(R) given
by [L][C] := [L⊗R C].

Notation 5.6. The set of orbits in S(R) under the action of DPic(R) is denoted
S(R).7 Given [C] ∈ S(R), the orbit in S(R) is denoted 〈C〉. The set of orbits in
S0(R) under the action of Pic(R) is denoted S0(R), and the orbit in S0(R) of a
given semidualizing R-module C is denoted 〈C〉.

Fact 5.7. Given semidualizing R-complexes A and B, the following conditions are
equivalent by [20, Proposition 5.1]:

(i) there is an element [P ] ∈ DPic(R) such that B ≃ P ⊗L

R A; and

7Observe that the notations S(R) and S(R) represent different sets in [20].
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(ii) Am ∼ Bm for all maximal ideals m ⊂ R and ExtiR(A,M) = 0 for i≫ 0.

It is straightforward to show that the natural inclusion S0(R) ⊆ S(R) gives an
inclusion S0(R) ⊆ S(R).

Lemma 5.8. Assume that R is Cohen-Macaulay (not necessarily local), and let C
be a semidualizing R-complex. There is an element [L] ∈ DPic(R) such that L⊗RC
is isomorphic in D(R) to a module.

Proof. For each p ∈ Spec(R), the fact that R is Cohen-Macaulay implies that
amp(Cp) = 0 by [11, (3.4) Corollary], that is, Cp ∼ Hi(C)p 6= 0 for some i. As
amp(C) <∞, this implies that Spec(R) is the disjoint union

Spec(R) =

sup(C)⋃

i=inf(C)

SuppR(Hi(C)).

It follows that each set SuppR(Hi(C)) is both open and closed. So, if SuppR(Hi(C))
is non-empty, then it is a union of connected components of Spec(R).

Let e1, . . . , ep be a “complete set of orthogonal primitive idempotents of R” as
in [9, 4.8]. Then R ∼= Re1×· · ·×Rep and each Spec(Rei) is naturally homeomorphic
to a connected component of Spec(R). From the previous paragraph, for i = 1, . . . , p
we have Cei ≃ Σ

ui Hui
(Cei ), and Hui

(Cei) is a semidualizing Rei -module. Each
R-module M has a natural decomposition M ∼= ⊕

p
i=1Mei that is compatible with

the product decomposition of R, and it follows that C ≃ ⊕pi=1Σ
ui Hui

(Cei).
Let L = ⊕pi=1Σ

−uiRei . Then L is a tilting R-complex by Remark 5.5, and

L⊗R C ≃ (⊕pi=1Σ
−uiRei)⊗R (⊕pi=1Σ

ui Hui
(Cei))

≃ ⊕pi=1(Σ
−uiRei)⊗Rei

(Σui Hui
(Cei))

≃ ⊕pi=1 Hui
(Cei).

Since ⊕pi=1 Hui
(Cei ) is an R-module, this establishes the lemma. �

Definition 5.9. The non-Gorenstein locus of R is

nGor(R) := {maximal ideals m ⊂ R | Rm is not Gorenstein} ⊆ m-Spec(R)

where m-Spec(R) is the set of maximal ideals of R.

Remark 5.10. For “nice” rings, e.g. rings with a dualizing complex [33], the set
nGor(R) is closed in m-Spec(R), so it is small in some sense.

Theorem 5.11. Assume that R satisfies one of the following conditions:

(1) R is semilocal, or
(2) R is Cohen-Macaulay and nGor(R) is finite.

Then the sets S0(R) and S(R) are finite.

Proof. Because of the containment S0(R) ⊆ S(R), it suffices to show that S(R) is
finite. Let X = {m1, . . . ,mn} ⊆ m-Spec(R), and let f : S(R) →

∏n
i=1 S(Rmi

) be
given by the formula f(〈C〉) := ([Cm1 ], . . . , [Cmn

]). This is well-defined because if
〈B〉 = 〈C〉, then there is an element [P ] ∈ DPic(R) such that C ≃ P ⊗L

R B, and
the fact that Pm ∼ Rm for each maximal ideal m ⊂ R implies that Bmi

∼ Cmi
for

i = 1, . . . , n.
In each case (1)–(2) we show that there is a finite set X such that f is 1-1. Then

Theorem 5.2 implies that the set
∏n
i=1 S(Rmi

) is finite, so S(R) is also finite.
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(1) Assume that R is semilocal, and set X := m-Spec(R). To show that f is
1-1, let 〈B〉, 〈C〉 ∈ S(R) such that Bmi

∼ Cmi
for i = 1, . . . , n. We need to show

that there is an element [P ] ∈ DPic(R) such that C ≃ P ⊗L

R B. According to

Fact 5.7, it suffices to show that ExtjR(B,C) = 0 for j ≫ 0. Since we know that

ExtjRmi
(Bmi

, Bmi
) = 0 for all j > 1, we conclude that there are integers j1, . . . , jn

such that for i = 1, . . . , n we have ExtjRmi
(Bmi

, Cmi
) = 0 for all j > ji. Since B is

homologically finite, we have

0 = ExtjRmi
(Bmi

, Cmi
) ∼= ExtjR(B,C)mi

for all j > maxi ji. Since vanishing is a local property, it follows that ExtjR(B,C) =
0 for j ≫ 0, as desired.

(2) Now, assume that R is Cohen-Macaulay and nGor(R) is finite, and set X :=
nGor(R). To show that f is 1-1, let 〈B〉, 〈C〉 ∈ S(R) such that Bmi

∼ Cmi
for

i = 1, . . . , n. Lemma 5.8 provides tilting R-complexes L and M such that L⊗R B
and M ⊗R C are isomorphic in D(R) to modules B′ and C′, respectively. Thus, we
have 〈B〉 = 〈L ⊗R B〉 = 〈B

′〉 and 〈C〉 = 〈M ⊗R C〉 = 〈C
′〉, so we may replace B

and C with B′ and C′ to assume that B and C are modules.
We claim that Bm ∼ Cm for all maximal ideals m ⊂ R and ExtiR(B,C) = 0 for

all i > 1. (Then the desired conclusion follows from Fact 5.7.) Since B is a finitely

generated R-module, it suffices to show that Bm ∼ Cm and ExtiRm

(Bm, Cm) = 0 for
all i > 1 and for all maximal ideals m ⊂ R.

Case 1: m ∈ nGor(R). In this case, we have Bm ∼ Cm, by assumption. Since
B and C are both modules, this implies that Bm

∼= Cm, so the fact that Bm is
semidualizing over Rm implies that

ExtiRm

(Bm, Cm) ∼= ExtiRm

(Bm, Bm) = 0.

Case 2: m /∈ nGor(R). In this case, the ring Rm is Gorenstein, so we have
Bm
∼= Rm

∼= Cm by [11, (8.6) Corollary], and the desired vanishing follows. �
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de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361.
27. D. Happel, Selforthogonal modules, Abelian groups and modules (Padova, 1994), Math. Appl.,

vol. 343, Kluwer Acad. Publ., Dordrecht, 1995, pp. 257–276. MR 1378204 (97d:16016)
28. R. Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag,

Berlin, 1966. MR 36 #5145

29. B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102.
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