
 

 

  
Abstract— The development of accurate binocular vision relies on 
the acquisition of disparity tuning and the calibration of vergence 
eye movements. Both processes are fundamentally limited by 
visual acuity, which increases only gradually during the first year 
of life. Next to limiting performance, however, early limitations of 
visual acuity may also aid rapid learning analogous to Newport’s 
“less-is-more” hypothesis. Here we use computational modeling 
to assess the potential impact of early acuity limitations on the 
development of binocular vision. Our starting point is a previous 
model of the development of binocular vision, formulated in the 
Active Efficient Coding framework. We extend this model to 
incorporate the development of visual acuity between birth and 8 
months. We find that the model does in fact learn faster if visual 
acuity starts out poor and increases with time, supporting the 
less-is-more hypothesis. Furthermore, we find that the speed of 
acuity improvement needs to be “just right”, i.e., neither too 
rapid nor too slow for fastest learning. Overall, our model 
suggests that early limitations of visual acuity may aid infants in 
acquiring binocular vision skills and it provides a good starting 
point for computational modeling of developmental disorders of 
binocular vision. 
 

Index Terms—binocular vision, contrast sensitivity function, 
disparity tuning, vision development, vergence eye movements, 
active efficient coding, efficient coding.  

I. INTRODUCTION 
Human infants have limited perceptual, motor and cognitive 

abilities. These limitations have at least two possible 
explanations. An earlier one states that they are barriers that 
must be overcome if an infant wants to achieve adult function 
[1]. An alternative newer one states that these limitations are 
necessary for learning and development. It has been argued 
that such limitations reflect simple neural representations, 
which mature through development stages towards complex 
neural structures [2]. A popular concept supporting the stage-
based idea is Newport’s “less-is-more” hypothesis [3]. It states 
that children learn a language from small parts towards 
complex structures. The limited cognitive skills of children are 
useful in learning a language, because they help in identifying 
and recognizing language components. Such a “simple to 
complex” approach may also apply to visual development.  

Early work in this direction was performed by Dominguez 
and Jacobs on the acquisition of binocular disparity                            

                                                                  
sensitivity [4]. They showed that learning can benefit from a 
proper developmental progression. They studied four different 
models, which were trained to detect binocular disparities in  
image pairs. In three of these models the authors changed the 
visual input corresponding to different developmental 
progressions. These models received simple visual input early 
in training and the quality and richness of the input changed 
with progressing training. The visual input to the last model 
stayed unchanged during the whole training phase. Results of 
these simulations showed that developing models 
outperformed non-developmental ones. 
 Our study is based on a recently proposed computational 
model that learns binocular disparity representations jointly 
with eye movement control [5] in the recently developed 
Active Efficient Coding framework. In this approach a sparse 
coding model learns to encode the sensory data while a 
reinforcement learner directs the eyes so as to make the sparse 
coding model work as efficiently as possible. This approach 
leads to a fully self-calibrating sensory-motor learning of 
binocular vision. To study the effect of early perceptual 
limitations we incorporated the development of visual acuity 
between one and eight months. The visual input was filtered 
according to the measured contrast sensitivity functions at 
different ages [6,7]. Our results show that under such 
developmental conditions, the performance and speed of 
learning increases as compared to a non-developmental one. 
This supports the “less-is-more” hypothesis [3] and the results 
of [4]. Additionally, we found that the speed of the 
developmental progression should be properly configured to 
achieve the best performance. We therefore suggest that 
carefully scheduled limitations of visual acuity may aid infants 
in acquiring proper binocular vision. 

II. MATERIALS AND METHODS 
In this section, we first explain the basic architecture of the 

model, then we describe how we model the development of 
visual acuity. Finally, we describe the OpenEyeSim simulator 
used to run the experiments. 

 

A. Model architecture 
The model consists of two main components (Fig. 1):  
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• Sensory encoding by a sparse coding model: The input 

images are decomposed into sets of binocular patches, 
concatenated from left and right eyes. Each patch is 
represented by a linear combination of basis functions. The 
basis functions adapt to the binocular patches and learn to 
represent binocular disparities. 

 
• Motor control by reinforcement learning: The basis 

function activations are passed to the motor control 
component that learns to generate the motor commands, 
which adjust the eyes’ vergence angle. 
 

B. Sparse Coding 
Similar to the model presented by Lonini et al. [5] we use a 

multi-scale approach - two sparse coding models for fine and 
coarse scales corresponding to foveal and parafoveal vision. 
The inputs are two RGB images with size 320x240 pixels. We 
convert each of these images into gray scale and extract fine 
and coarse scale windows. For the fine scale we use a 80x80 
region around the center and for the coarse scale we use a 
128x128 region. For the coarse scale we subsample the image 
by a factor of eight in a Gaussian pyramid hierarchy, for the 
fine scale we subsample the image by a factor of two. 
Subsequently patches of 8x8 pixels are extracted from each 
foveal window (81 for each scale). The patches are 
preprocessed to have zero mean and unit norm. Corresponding 
patches from left and right windows are concatenated into a 
stereo patch. Each stereo patch is vectorized and approximated

                       
through the sparse coding model by a linear combination of 

binocular basis functions 
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where D is the total number of basis functions in a sparse 
coding model, ai  are the weighting coefficients, k is the patch 
number and          are the vectorized stereo patches taken from 
left and right image, respectively.  are the original 

patches, are the reconstructed ones. 

Each of the sparse coding models is trained to represent the 
original image as accurately as possible. The driving signal for 
this training is the total squared reconstruction error over all 
the stereo patches, normalized by the energy in the original 
image. This signal shows the loss of information due to the 
encoding and is defined in the same way for coarse and fine 
models: 
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where N (N=81) is the number of stereo patches. 
 Learning the basis functions is a two-stage procedure in our 
model. For the first learning step we use a modified version of 
the matching pursuit algorithm [8], which selects a set of 
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Figure 1. Detailed architecture of the proposed model. The binocular visual input, taken from the region around the center of the image, is 
cropped at both coarse and fine scales. Each scale is divided in a set of image patches (different size for coarse and fine scales). Such 
patches from corresponding spatial locations at a particular scale from left & right eyes taken together to obtain binocular patch. These 
binocular patches are encoded by a set of basis functions using the modified matching pursuit [8]. The reconstruction error is used as the 
reward signal to reinforcement learner, which performs actions on eye rotations based on encoded data coming from sparse coding models. 
The reinforcement component is represented as an actor-critic network and learns to minimize reconstruction error (maximize coding 
efficiency).  
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coefficients 𝑎! and basis functions 𝜙! from the basis dictionary 
to approximate the input patch. In order to ensure that all basis 
functions are used during learning, we add a homeostatic 
constraint to the matching pursuit [9]. Homeostasis acts at any 
time step, ensuring that the probability to choose a basis 
function is uniform across the dictionary. In the second step, 
the chosen bases are adapted through gradient descent on the 
reconstruction error.  

At each training iteration we calculate a feature vector, s(t), 
by averaging the squared weighting coefficient over the N 
patches at each of the two scales: 
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where !!ai

(k )  is the coefficient of basis i for patch k, and N is the 

number of patches, and D is the size of the dictionary.    
      

 

C. Reinforcement learning 
 

The reinforcement learning (RL) agent maps the current 
state, as represented by the activations of basis functions s(t) 
of the sparse coding models, to a vergence command. A 
natural actor-critic algorithm is employed [10], where neural 
networks model the policy and value functions. The goal of 
the RL agent is to select actions to maximize the discounted 
cumulative future reward R(t): 

 
     𝑅 𝑡 = −𝛾![𝑒!!!!"#$%& + 𝑒!!!

!"#$!
!!! ],                (4) 

 
where ecoarse

 and efine are the reconstruction errors for the 
coarse and fine scale sparse coding models, respectively, and γ 
(γ=0.3) is a discount factor. We use a modified natural actor-
critic algorithm with an additional regularization factor to 
keep the weights of the policy bounded [10]. We use two 
neural networks, which serve as actor and critic components. 
The critic component receives the input state s(t) and produces 
as output the value estimate V(t) of the current state: 
 

𝑉 𝑡 = 𝒗! 𝑡 𝒔 𝑡 ,           (5) 
 

where v(t) are the weights of the network at time t. The 
actor maps states to actions. Its output layer has as many 
neurons as the number of actions. We use a discrete set of 11 
actions: J = {0, ±0.5, ±1, ±2, ±4, ±8}, which correspond to 
changes in vergence angles in degrees. The activation of the 
output neurons is calculated as: 

  𝑞! 𝑡 = 𝜽!! 𝑡 𝒔 𝑡 ,              (6) 
 

where θj(t) are the weights from the state s to an action !j∈ J  

at time t. We use a softmax operation on the activation of 
output neurons to calculate the probabilities of choosing 
actions: 
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where the amount of exploration/exploitation is controlled by 
the temperature T (T=1 during training and T=0.01 during 
testing). 

D. Contrast Sensitivity function 
Contrast sensitivity is an aspect of the human visual system  

that is highly connected to visual acuity. It is a measure of the 
ability to discern between luminance levels in a static image. It 
is limited by two main factors: optical and neural.  

Similar to a camera an eye has a lens, which can be 
characterized by a modulation transfer function. This function 
corresponds to a low-pass filter and has a cut-off at high 
spatial frequencies [11,12]. On the other side the neural 
component of contrast sensitivity provides a cut-off at low 
spatial frequencies [12]. This happens mainly because of 
processing in the retina and lateral geniculate nucleus, which 
can be modeled by isotropic spatial filters. Together they 
implement a band-pass filter, which has been characterized 
psychophysically by the contrast sensitivity function (CSF). 
The CSF gives the contrast detection thresholds for sine-wave 
gratings at different spatial frequencies. Such measurements 
can be performed by behavioral (forced-choice) or objective 
methods (measurement of visual evoked potentials).  

In young infants, contrast sensitivities at all spatial 
frequencies are highly reduced compared to adults. The CSF 
tends to be a bandpass filter with a peak that shifts toward 
higher sensitivities and higher spatial frequencies with age 
[6,7]. In our studies we modeled the development of the CSF 
over the period from 1 to 8 months, where the most drastic 
changes occur. For modeling we used the fitting function 
presented by Kiorpes et al. [13]: 

       !!CSF(w)= f (wb)
d exp(−cwb) ,     (8) 

where w is the spatial frequency and b,c,d,f are free 
parameters, which control the gradient of the ascent and 
descent in the curve, as well as lateral and vertical shifts along 
the axes. Our CSFs are presented in Figure 2. The contrast 
sensitivity function has been measured for the set of ages of 
{1, 3, 6, 8} months. We interpolate the contrast sensitivity 
function in a piecewise-linear manner between these ages by 
changing the free parameters in (8). 

To model the effect of the CSF, we transform the image to 
the frequency domain using the Fourier transform, multiply by 
the CSF and then take the inverse Fourier transform. 
Examples of such simulations are shown in Figure 3. 

E. OpenEyeSim 
We use OpenEyeSim [14] as a simulation platform in our 
studies. OpenEyeSim is a detailed three-dimensional model of 
human extraocular muscles that includes the rendering of 3D 
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Figure 2. Contrast sensitivity functions from 1 to 8 months. We used a 
functional representation by Kiorpres [13] and fitted free parameters in order 
to fit the experimental data measured in infants at different ages [6,7].  

Figure 3. Simulations of different contrast sensitivity functions. These pictures 
were obtained by using the fast Fourier transform and corresponding CSFs.  
 
scenes from a virtual environment perceived by the eyes. The 
oculomotor plant is designed to mimic the nonlinear dynamics 
of the eye, based on a model of the extraocular muscles 
(EOMs). The simulator is able to work in two different 
regimes: kinematic and dynamic. In the dynamic regime, 
given EOM innervations, this model generates realistic gaze 
trajectories.  In the kinematic regime, the simulator receives as 
an input eye positions and moves the eyes accordingly. 
Compared to the dynamic regime, this allows faster 
simulations for studies where the detailed movement dynamics 
can be neglected. In the present study we used the kinematic 
regime for the sake of simplicity and faster simulations. 

III. RESULTS 

A. Experimental setup 
A flat textured object is placed in front of the eyes at 

different depths and the agent learns to produce proper 
vergence eye movements. The object stays fixed at one depth 
for 10 iterations, after which the depth is changed according to 
a uniform distribution over the range [0.5, 2] meters. The 
textures applied to this object are natural images. The object 
size is such that it usually fills the fine and coarse scale 
windows. 
 For the evaluation of the learned policy we perform testing 
phases after every 10% of the total training time. During the 
testing phases we use a more greedy policy and do not 
perform any changes to the weights of the reinforcement 
learner or the sparse coding basis functions. For all of our 

experiments we set the whole training time to 50k iterations 
(100%). We vary the amount of training, where changes in 
contrast sensitivity happen. For example, for a 16% setting the 
contrast sensitivity develops from newborn values to 8-
months-old values during the first 16% of the simulation and 
afterwards it stays fixed at the 8-months-old level. As a 
control experiment we used a setting where the CSF stayed 
static at the level of an 8-months-old during the whole 
training. A schematic representation of these experiments is 
shown in Figure 4. 

B. Performance evaluation 
The smallest non-zero action that the reinforcement learner 

is able to perform is a vergence change of 0.5 deg. For all four 
of the developmental schemes the error of the learned 
vergence policy eventually reaches a level close to this. 
However, the time at which this level is reached varies among 
the different developmental schemes. Figure 5 summarizes our 
findings on the performance of our system at its early stages 
under different developmental schemes. This figure shows the 
performance of the system averaged over 4 different trials for 
each of our experimental settings. After every 10% of training 
we performed testing phases of 1000 iterations where we 
measured the performance of the system in its ability to do 
proper vergence eye movements and focus on the object at 
different depths. The vergence error is defined as the absolute 
difference between the actual vergence angle and the ideal 
vergence angle that would put the object in the plane of 
fixation. During these testing phases we “froze” the sparse-
coding and reinforcement learning models. Figure 5 provides 
clear evidence that using a developmental strategy leads to 
faster learning. Additionally, it shows that the speed of the 
development of visual acuity should be “just right” for 
maximizing learning speed. This can also be seen in Figure 6, 
where we plot the percentage of training time required for the 
performance to reach an average vergence error of 1 degree.  

 

C.  Analysis of the basis functions 
It has been shown that receptive fields in the primary visual 

cortex have a Gabor-like structure [15]. We use the following 
function to fit the basis functions: 

 (9) 

         (10) 

          (11) 

               (12) 
where λ is the wavelength of the sinusoidal factor, θ represents 
the orientation, ψ is the phase offset, σ is the standard 
deviation of the Gaussian envelope, β is the spatial aspect ratio 
which specifies the ellipticity , and ,  are the centers. 

We fit these Gabor functions to the left and right parts of the 
basis functions, which are constrained to only differ in phase. 
An illustration of obtained Gabor fits with reference to learnt  
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Figure 5. Learning performance under different experimental settings. Bold 
lines show the mean performance over 4 trials, shaded regions shows standard 
deviations. Performance of the system is measured every 10% of training. 

 

 
 
Figure 6. The percentage of training time required for reaching an 
average vergence error of 1 degree. 
 
 
 
 
 
 
 
Figure 7. Qualitative evaluation of the Gabor fitting for three example basis 
fits from the fine scale. Results are similar for the coarse scale.  
 
 

  

        
 
Figure 8. Histogram of orientation preferences (fine scale). It can be observed 
that the most dominant orientation is vertical. This is in line with results 
reported in [14] which concludes that the majority of receptive fields are 
biased to either horizontal or vertical orientations. 
 
 
basis functions is given in Fig. 7 for the purpose of qualitative 
evaluation.  Figure 8 shows the histograms of basis function 
orientations. The most dominant preferred orientation is 
vertical. This is in line with [16], which reports that more 
receptive fields have vertical or horizontal orientation 
preference compared to oblique ones. 

We compare the changes of basis functions for two different 
experimental settings: with 8 months static filter used during 
the whole training time and with time-varying filter that 
changes in a piecewise linear fashion from 1 to 8 months of 
CSF development during 20% of the training time, and then 
stays constant.  Figure 9 compares the preferred disparities at 
the beginning and the end of training for the fine scale.  

The same behavior is observable also for the coarse scale. 
Initially, the system starts with a broad distribution of 
preferred disparities. During training, as the system achieves 
binocular coordination, most basis functions come to prefer 
zero disparity. Results show that for both coarse and fine 
scales, the cells develop their preferred tuning for zero 
disparity rapidly. For the fine scale at the end of training the 
number of cells with zero disparity preference is 1.7 times 
larger for the training under the development constraint.  

 

Figure 4. Schematic representation of the 4 experimental settings. In the bottom right one, which we call static 8 months, the contrast sensitivity corresponds 
to that of an 8-month-old during the entire training. In the other 3 settings our contrast sensitivity starts at the level of a 1-month-old and increases gradually 
to that of an 8-month-old with different speed of this improvement. In the “red” setting, the final contrast sensitivity of an 8-month-old is reached at 16% of 
the learning time, for green it is reached at 20% and for cyan at 60%. The same color labeling is also used for Figures 5 and 6. 
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Figure 9. Preferred disparities for fine scale in the beginning and at the end of 
learning for experimental settings under the developmental constraint (green) 
and with static filter of 8-month-old infant (blue).  

IV. CONCLUSION 
We have analyzed the influence of a developmental 
constraint 

on the joint learning of visual representations and motor 
control. Our simulations were based on the Active Efficient 
Coding framework, an extension of the classic efficient coding 
hypothesis to active perception [17, 18]. We considered the 
contrast sensitivity of the visual system and based on available 
psychophysiological data of contrast sensitivity at different 
ages modeled the reduction of contrast sensitivity in young 
infants. Our findings support the “Less-is-More” hypothesis 
initially presented by Newport [3]. They also match the results 
of Dominguez and Jacobs, who also studied developmental 
constraints in binocular vision [4]. The learning under such a 
developmental constraint is faster compared to non-
developmental learning. We found that the change in the 
development speed has to be “just right” to achieve fastest 
learning. We also showed that the developmental constraint 
influences not only the motor control part, but also the sensory 
representation. Under the developmental constraint the 
sensory representation specialized for close-to-zero disparities 
more quickly. Overall our study shows that developmental 
constraints on contrast sensitivity can speed up the self-
calibration of sensory-motor loops.  
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