
Comput Mech (2010) 46:103–114
DOI 10.1007/s00466-009-0436-x

ORIGINAL PAPER

The PDE framework Peano applied to fluid dynamics: an efficient
implementation of a parallel multiscale fluid dynamics solver
on octree-like adaptive Cartesian grids

Hans-Joachim Bungartz · Miriam Mehl ·
Tobias Neckel · Tobias Weinzierl

Received: 17 September 2009 / Accepted: 13 October 2009 / Published online: 4 November 2009
© Springer-Verlag 2009

Abstract This paper presents the general purpose frame-
work Peano for the solution of partial differential equations
(PDE) on adaptive Cartesian grids. The strict structuredness
and inherent multilevel property of these grids allows for very
low memory requirements, efficient (in terms of hardware
performance) implementations of parallel multigrid solvers
on dynamically adaptive grids, and arbitrary spatial dimen-
sions. This combination of advantages distinguishes Peano
from other PDE frameworks. We describe shortly the under-
lying octree-like grid type and its most important properties.
The main part of the paper shows the framework concept of
Peano and the implementation of a Navier–Stokes solver as
one of the main currently implemented application exam-
ples. Various results ranging from hardware and numeri-
cal performance to concrete application scenarios close the
contribution.

Keywords PDE framework · Octree-like grids · Cartesian
grids · Computational fluid dynamics · Moving geometries ·
Multigrid methods · Parallelisation · Memory efficiency

H.-J. Bungartz · M. Mehl (B) · T. Neckel · T. Weinzierl
Technische Universität München, Boltzmannstr. 3,
85748 Garching, Germany
e-mail: mehl@in.tum.de

H.-J. Bungartz
e-mail: bungartz@in.tum.de

T. Neckel
e-mail: neckel@in.tum.de

T. Weinzierl
e-mail: weinzier@in.tum.de

1 Introduction

Methods to treat partial differential equations (PDE) numer-
ically are part of the foundations of many disciplines in
science and engineering. The progress in these disciplines,
with computational fluid dynamics (CFD) among them, relies
on a permanently improving software base—software that
facilitates the realisation of sophisticated algorithms, soft-
ware that is able to handle bigger and bigger data sets as
well as systems of equations, and software that makes the
most of the hardware of supercomputers. Within a CFD pro-
ject, developing such high-end codes from scratch is usually
impossible due to a lack of development time and due to a
lack of experience in the individual fields such as numeri-
cal methods, hardware-aware algorithms, and software engi-
neering. As a result, more and more CFD codes are based
on frameworks, i.e. code ecosystems that provide several
tools and features (e.g. visualisation, data import, paralleli-
sation), provide a clear encapsulation and separation-of-con-
cerns design, and provide an environment for the interplay,
exchangeability, and integration of individual application
parts.

This paper describes our framework Peano. As a use case,
we apply it to CFD. Peano is a general-purpose environ-
ment for matrix-free PDE solvers on adaptive Cartesian grids.
It brings together hardware-efficiency paradigms with state-
of-the-art numerical methods, it is able to handle large
numbers of degrees of freedom, and it provides a rigourous
separation-of-concerns design. In this paper, we introduce
our framework from a CFD point of view, i.e. we focus on
the Navier–Stokes equations implemented within the frame-
work and the framework design and paradigm itself.

Peano is not the first general-purpose code (see [4,19]).
However, its focus on exploiting the full potential of
supercomputers in combination with sophisticated numerical

123

104 Comput Mech (2010) 46:103–114

methods is, to our knowledge, rather unique. This combina-
tion is possible, as the whole framework relies on adaptive
Cartesian grids induced by k-spacetrees—a generalisation
of the well-known quad- and octrees. They are traversed
along a space-filling curve. What sounds like a restriction
(other frameworks provide a zoo of different grids) proves
of value. Concentrating on Cartesian grids simplifies, first,
the coding of the solver. Second, the focus on this struc-
tured grid type and the fact that the framework’s solvers are
matrix-free allow Peano to come along with a very small
memory footprint: One bit per unknown is sufficient to store
a dynamically adaptive grid, and the solver exhibits a high
cache hit rate. Third, features such as the support for arbi-
trary dimensions, domain decomposition, dynamical load
balancing, geometric multigrid solvers, and multicore sup-
port fit seamlessly into the concept—the major insight of
[32]. Fourth, instead of an iterator to traverse the grid, Peano
implements an event-driven concept: Its PDE solvers plug
into the traversal due to call-back points (events) and imple-
ment there their PDE-specific actions. Thus, traversal, par-
allelisation, grid storage, and PDE-specifics, are separated
from each other, while the individual components properties
intertwine for the resulting solver—a property first studied
in [23] for a computational fluid dynamics solver.

The remainder is organised as follows: In Sect. 2, we pre-
sent the underlying spacetree grids, their traversal, Peano’s
data management, and the framework’s unique selling points.
The framework concept itself is described in Sect. 3. Sec-
tion 4 introduces the implementation of a fluid dynamics
solver. Several results are given in Sect. 5. While the paper
presents our particular software environment, which is the
one primary aim of this text, these results show that fluid
dynamics profit from adaptive Cartesian grids. The frame-
work opens, due to its unique selling points, the opportunity
to tackle new challenges not manageable before. A short con-
clusion with an outlook close the discussion.

2 Spacetrees and adaptive Cartesian grids

Peano is a framework for solvers on adaptive Cartesian grids.
These grids stem from k-spacetrees which are a generalisa-
tion of the well-known quad- and octree idea looking back
to a long tradition in computational sciences and engineer-
ing [8,22,25] and are more and more frequently used for
efficient implementations of computational methods in data
management, computer graphics, engineering, and numer-
ical simulation ([2,3,5,17,18,32] and references therein).
To construct a grid for an arbitrary computational domain, we
embed the domain into a hypercube. This hypercube is cut
equidistantly into a fixed number of k pieces along each coor-
dinate axis. The result is kd smaller hypercubes. We continue
recursively until a (local) termination criterion is met. The
actual geometry of the computational domain is defined in

Fig. 1 Examples for two-dimensional and three-dimensional (k = 3)-
spacetree grids. Above the grids, the corresponding trees of grid cells
are shown

a marker-and-cell like manner [14,28]. The overall structure
of the grid equals a tree (Fig. 1).

The k-spacetree construction process yields a sequence of
finer and finer adaptive Cartesian grids where hanging nodes
occur at the interface of cells refined further and cells not
refined further. It is very easy to refine or coarsen the space-
tree locally: just refine individual leaves or remove subtrees,
respectively. Furthermore, the spacetree yields a multiscale
representation of the grid, as the tree comprises all the coarser
geometric cells, too.

For grid-based numerical simulations, spacetrees offer a
lot of advantages due to their strict structuredness: fast and
straightforward grid generation, support for dynamical
refinement as well as coarsening, a grid hierarchy for multi-
level and multigrid algorithms, and one can, finally, encode
them very economically as we discuss in a moment. Such,
they have established as an attractive alternative to unstruc-
tured grids, e.g. (see for example [10,26,27,29]). With
matrix-free algorithms, these low memory and flexibility
arguments hold for any solver implemented on the space-
tree, as no additional data structures impose additional over-
head in terms of memory and maintenance work. However,
the spacetree traversal then has to be fast: It is the lynch-
pin of the solver since each operation on the grid (such as a
multigrid smoothing operation) has to traverse the grid data
structure.

Our framework provides solely one traversal type imple-
mented by an automaton. This traversal follows the depth-first
idea, i.e. it runs through the spacetree along a depth-first
order. Such a classical backtracking-like processing equals an
element-wise grid traversal, i.e. Peano supports strict
element-wise algorithms exclusively. While the traditional
quadtree equals the parameter combination d = 2, k = 2,
and while an octree equals d = 3, k = 2, Peano uses (k = 3)-
spacetrees. The reason for that choice is the Peano space-fill-
ing curve [24]: It is used to make our traversal definition
deterministic. So far, there is no order defined on the kd chil-
dren of any refined cell. Here, we apply the space-filling
curve to sort them (Fig. 2), which allows for efficient data
structures and data access patterns. This important additional

123

Comput Mech (2010) 46:103–114 105

Fig. 2 A depth-first traversal of a spacetree (here d = 2 and k = 3)
is non-deterministic as the children of a refined node have no order,
i.e. a traversal has to be made deterministic due to an order on the chil-
dren. Left arbitrary enumeration; middle lexicographic enumeration;
right enumeration along the iterates of the Peano curve

effect could not be achieved with any other curve such as the
Hilbert curve.

With a deterministic element-wise traversal at hand, PDE
solvers plug into the automaton’s transitions to implement
the solver behaviour directly on the grid. The grid storage
and the traversal implementation are hidden from the PDE
programmer, and properties of the traversal realisation—its
performance, its low memory requirements, its parallelisa-
tion, e.g.—carry directly over to the PDE solver. From our
point of view, the following properties [32] are especially
outstanding:

First, the k-spacetree can be applied for any dimension
d ≥ 2. In the code, d is just a compile-time parameter. For the
parabolic problems discussed here, d ∈ {2, 3, 4} is of value
with the fourth dimension representing time in a space–time
adaptive approach.

Second, the tree structure of the k-spacetree grids naturally
translates to multilevel data stored on the grid which is useful
for the implementation of multiscale solvers—in particular
geometric multigrid algorithms—without losses in hardware
efficiency compared to single level solvers.

Third, each refinement step of the k-spacetree construc-
tion recursively splits up grid cells into kd smaller, disjoint
cells. This property is used in Peano to implement a parallel
recursive construction of a non-overlapping domain decom-
position and a distributed dynamical load balancing.

Fourth, each refined cell of the k-spacetree holds exactly
kd children. Operator evaluations on these children can run
in parallel. Peano’s multicore extension exploits this prop-
erty. In addition, it unrolls several recursion levels wherever
patches with equal refinement depth are detected.

Fifth, due to the strict structuredness of k-spacetree grids,
due to the uniquely defined depth-first traversal order along
the Peano curve, and due to the cell-wise operator evaluation,
one bit per spacetree node (refined or not refined) is sufficient
to store the whole grid information.

Sixth, the whole data management during a grid traversal
uses a fixed number of 2 × d + 2 stacks. As any sequence of
memory accesses to a small, fixed number of stacks—which
possess a typical size of several megabytes only—exhibits a
high spatial and temporal locality, a high cache hit-rate is the
consequence.

Seventh, it is easy to add additional leaves to the
k-spacetree or to remove complete subtrees without affect-
ing the efficiency of the data structures and data access algo-
rithms. Consequently, all Peano plugins are able to update
the adaptive grid seamlessly throughout the solving process.
This, of course, holds in particular for matrix-free solvers
that do not have to update any global system matrices.

A seemingly disadvantages of Cartesian grids is that they
approximate arbitrary domain boundaries with O(h) accu-
racy, only, while almost all operator discretisation approaches
exhibit at least second order accuracy. Peano compensates
this with a local adaptivity coming along with a very low
memory overhead. Of course, this grid adaptivity has to
enhanced with a more sophisticated boundary treatment such
as cut-cell [12], immersed boundary [21], or extended finite
element [9,13] approaches in the future. Structured but still
adaptive Cartesian grids such as spacetree grids come along
with very low memory demands and no assembly overhead if
combined with matrix-free solvers. However, only with this
restriction to matrix-free solvers and the tight connection
between the grid, traversal algorithms, and solver numerics,
it is possible to implement solvers with optimal efficiency on
dynamically adaptive (that is fastly changing) grids. Among
others, this prevents a non-tolerable overhead for re-assembly
of system matrices. Peano’s k-spacetrees yield an especially
tailored, plain, and simple type of grid. Such a fixed spatial
discretisation together with a fixed traversal and the matrix-
free solver concept restricts the algorithmic freedom, the fea-
ture flexibility, and the concrete realisation of any solver
implemented within the framework. In particular, it inhib-
its the usage of out-of-the-box solvers for systems of linear
equations and sophisticated external preconditioners. How-
ever, only with this restriction to matrix-free solvers and the
tight connection between the grid, traversal algorithms, and
solver numerics, it is possible to implement solvers with
optimal efficiency on dynamically adaptive (that is fastly
changing) grids. Among others, this prevents a non-tolera-
ble overhead for re-assembly of system matrices and ensures
low memory demands and an inherent multilevel grid hierar-
chy at all stages of the solver algorithm. Any plugin benefits
directly from these properties. At least for CFD, the advan-
tages outnumber any restrictions as this paper illustrates.

123

106 Comput Mech (2010) 46:103–114

3 The Peano framework

The grid, its traversal, the data management, the domain
decomposition, the load balancing, and so forth, are fixed
in Peano. However, the application domain to be tackled as
well as the spatial discretisation method on the grid, how-
ever, can be freely chosen. Section 4 presents a lower and
a higher order discretisation for computational fluid dynam-
ics. Such a PDE solver plugs into the traversal automaton’s
transitions, and, in this section, we describe this plugin mech-
anism, i.e. Peano’s framework idea, that is the basis for any
plugin.

Peano’s architecture follows a rigourous encapsulation
and information-hiding paradigm, and the code is a pure C++
implementation following first-of-all the composite and visi-
tor pattern [11]. As a result, the framework is easy to use and
extend, and any improvements of the grid traversal and man-
agement immediately carry over to any plugin of the frame-
work. Due to a rigourous application of the flyweight pattern,
the performance overhead induced by object-oriented tech-
niques is reduced to a constant simulation startup penalty.

The user-defined plugins solving different (parts of the)
PDE and the individual substeps of a PDE solver differ in
the operations called during the grid traversal. In contrast to
other frameworks (e.g. [4,19]), Peano implements an event-
based approach instead of an iterator-based interface: The
grid traversal and data management algorithms are fixed and
Peano provides so-called traversal-events (see Table 1) such
as enterElement, touchVertexFirstTime, and touchVertexLast
Time. Users implementing a new solver or a new application
in Peano can plugin their operations in these events.

Peano’s optimised grid traversal is realised with a finite
automaton. The traversal is similar to a depth-first search of
the k-spacetree and provides the traversal events as a fixed
set of call-back points, i.e. whenever the finite automaton

performs a state transition, it gives the application the pos-
sibility to interact with the grid constituents. The plugins
register for the call-back points (events), and, whenever an
event is triggered, all registered plugin methods are invoked,
i.e. one event can be mapped onto multiple components real-
ising different features (solver iterations, dynamic refinement
criteria, visualisation, and so forth). The implementations
of these features are independent of each other. Further-
more, the shared- and distributed-memory parallelisation as
well as the load balancing are hidden from the PDE imple-
mentation, as each subdomain invokes in parallel a set of
events on its own. Finally, realising all the call-backs with
a static polymorphism [31], the flexibility to exchange and
combine arbitrary plugins does not introduce a performance
breakdown.

A typical Peano application exhibits a three-layered archi-
tecture (Fig. 3): As foundation, Peano itself provides the
adaptive Cartesian grid together with the traversal algorithm
and several basic modules for data structures and communi-
cation (bottom layer). The grid is distributed among several
computing nodes, and if it changes, the Peano core auto-
matically redistributes the partitions. The grid component is
a generic class structure parameterised over the application
data. To realise an application, a user writes a runner steering
the whole application, setting up and shutting down the com-
putation, providing a user interface and so forth (top layer).
This runner also selects and instantiates the PDE-specific
plugins—the sandwich layer. Whenever the runner invokes
the iterate operations on the grid component, the whole grid
is traversed and the corresponding events are delegated to all
the plugins chosen by the runner.

The event concept hides the grid management and the
traversal details from the plugin developer. In accordance
with this information hiding principle, Peano also hides the
grid construction process and any grid modifications. As grid

Table 1 Subset of events triggered by the Peano framework

Event Description

createDoF Traversal creates cell or vertex with degree of freedom (DoF) due to the grid construction process or
dynamic refinement. Application sets initial conditions, boundary information, and so forth

destroyDoF Counterpart of createDoF. Is triggered by a grid coarsening
beginTraversal Invoked whenever traversal starts
endTraversal Invoked after traversal has terminated
enterElement Traversal automaton enters a cell. Operation provides both the element, its spatial position, and the

adjacent vertices
leaveElement Traversal automaton leaves a cell
touchVertexFirstTime Traversal automaton reads a vertex the first time throughout a traversal. Passes the vertex together with the

spatial position
touchVertexLastTime Traversal automaton has used a vertex for the last time throughout the traversal. It will not need this vertex

afterwards
createTemporaryVertex Create a hanging node. The hanging nodes are created on-the-fly, i.e. at least once per traversal
destroyTemporaryVertex Counterpart of createTemporaryVertex

Plugins catch these events and modify the event arguments to implement PDE-specific behaviour

123

Comput Mech (2010) 46:103–114 107

Fig. 3 Schematic view of the
layers of the Peano software
design. The layers below the fat
black line (traversal events) are
completely hidden from users
implementing their application
in Peano

construction and dynamical adaptivity are central function-
alities in Peano, we describe the underlying algorithms in
more detail: A (local) change of the refinement depth in
the Peano grid is split up into two phases. Any plugin is
allowed to invoke a refine or coarse operation on any ver-
tex. Thereby, it indicates that all the cells that are adjacent
to the vertex on the same level shall be refined or coarsened,
respectively. Peano internally keeps book of all the refine-
ment and coarsening wishes and executes them before the
affected grid (parts) are used in the next iteration. That is,
if a refinement is invoked, the actual refinement takes place
one iteration later (Fig. 4). In-between the refinement/coars-
ening invocation and the actual change of the refinement
depth, the corresponding events createDoF or destroyDoF
are triggered and create new data or eliminate obsolete data
before the event touchVertexFirstTime of the respective new
or eliminated vertices are called. Consequently, two invari-
ants hold for any vertex. On the one hand, each touchVertex
FirstTime is followed by a touchVertexLastTime event. On
the other hand, all the 2d cells adjacent to a vertex have

Fig. 4 A sphere is moving through a rectangular domain. If a refine-
ment for a vertex is triggered (left illustration, grey rectangular box), all
the 2d adjacent cells on the respective level are refined in the iteration
afterwards (right illustration)

been traversed whenever the traversal triggers touchVertex
LastTime for this vertex.

4 Computational fluid dynamics in Peano

Within the discussion of the benefits arising from Peano,
we study the simulation of incompressible laminar flows
as discussed in [6]. Here, we give a more technical accent
to our research work and present new features of the flow
solver such as moving geometries in adaptively refined grids
and higher order discretisation. The implementation is based
on the Navier–Stokes equations discretised with tri-/bilinear
finite elements or, alternatively, a higher order interpolated
differential operator (IDO) approach [1,15,16]. For the time
discretisation, different explicit schemes (forward Euler,
fourth order Runge–Kutta) and implicit schemes (backward
Euler (adaptive), trapezoidal rule) are provided.

As shown in Fig. 3, Peano’s CFD application consists of
several components implemented on top of the grid traversal
events: The fluid component realises the evaluation of spa-
tial operators via element matrices, the (staggered) Poisson
component solves the occurring linear and nonlinear systems
of equations with a built-in matrix-free multigrid solver. The
ODE (ordinary differential equations) component finally pro-
vides the different time integrations schemes. All three com-
ponents are realised and tested independently of each other
and can be used for different PDE, too.

In the following, we describe the CFD realisation by means
of a forward Euler time-step using the Chorin projection
method. Applying a spatial discretisation of the Navier–
Stokes equations with a diffusion matrix Dh , a convection
tensor Ch , a divergence matrix Mh , and the discrete pressure
gradient operator MT

h , one time step contains the following

123

108 Comput Mech (2010) 46:103–114

equations:

u(n+1)
h = u(n)

h + dt

(
1

Re
Dhu(n)

h −
(

u(n)
h

)T
Chu(n)

h

)
︸ ︷︷ ︸

=: rhs(n)

, (1)

MT
h Mh ph = − 1

dt
MT

h u(n+1)
h , (2)

u(n+1)
h = u(n+1)

h − dt Mh ph (3)

with the discrete velocity field u(n)
h and u(n+1)

h at time t (n)

and t (n+1), respectively, Reynolds number Re, and discrete
pressure ph . In the implementation, velocity values are stored
in the vertices of the elements, whereas pressure values are
stored in the element midpoints.

First, a preliminary velocity is computed in Eq. (1). After-
wards, a pressure Poisson equation (2) has to be solved and,
last, the new, divergence-free velocity field is computed
according to Eq. (3). Hereby, the fluid component takes care
of the computation of the right-hand side rhs(n) in (1), the
ODE component performs the time-step in (1), the Poisson
(staggered) component solves (2) using an iterative solver
(Gauss–Seidel, SOR, or geometric multiplicative multigrid),
and the fluid component finally updates u(n+1)

h according
to (3).

Tables 2 and 3 give two examples how actions of the
Navier–Stokes solver are mapped to the grid traversal events.
Most of these mappings are straightforward at least for a sec-
ond order discretisation, where the evaluation of the right-
hand side of Eq. (1), e.g. for each vertex only involves data
from directly neighbouring vertices (Fig. 5, left). Such a
scheme fits to Peano’s element-wise traversal. The splitting
of the operators into cell-parts is trivial: each cell contributes
a part that can be calculated using only the values at its ver-
tices and adds it to the operator value. Such, the whole oper-
ator value is readily computed after all neighbouring cells
of the respective vertex have been visited. For the evaluation
of the pressure operator MT

h Mh ph in (2), the splitting into
cell-parts is not so obvious but still can be done with the
same efficiency: The pressure Laplacian in a second order
discretisation requires pressure values stored at the midpoints
of neighbouring elements (see Fig. 5, middle and right).
As these values are not directly available, we make them
accessible indirectly by storing pressure gradients gradh :=
Mh ph at the element vertices. Thus, the residual of Eq. (2)
can be calculated locally within an element as

resp = − 1

dt
MT

h u(n+1)
h − MT

h gradh . (4)

The residual is calculated in the event enterElement and
immediately used both to update the pressure value and the
pressure gradients at the element vertices using the element-
parts of the matrix Mh for all adjacent vertices. Thus, no
additional grid traversal is required. In a more sophisticated

version, even the storage of the pressure gradient gradh can
be omitted as the residual (4) can also be computed from

resp = − 1

dt
MT

h u(n+1)
h (5)

if we immediately update the velocities u(n+1)
h according to

u(n+1)
h = u(n+1)

h − dt Mhresp. (6)

This is again done using element-parts of the matrix Mh .
Such, neither an additional grid traversal nor additional stor-
age are required to solve the pressure Poisson equation (2)
that, at first sight, possesses an operator that contradicts the
element-wise traversal strategy of Peano. This single level
scheme can be extended to a matrix-free multigrid solver
also working in a cell-wise manner. For the interlevel oper-
ations restriction and interpolation, data of a cell and the
corresponding son cells but not of neighbouring cells are
required. An additional difference to single level solvers is
that not the whole spacetree but only the tree parts up to
the current grid level are required within a multiplicative
multigrid solver. For this purpose, Peano implements a han-
dling mechanism for multigrid coarsening and refinement
that works almost the same as the coarsening and refine-
ment for dynamical grid adaptivity with the only difference
that data are not thrown away completely during coarsen-
ing but written to suitable auxiliary data structures and not
newly created during refinement but read from these auxil-
iary data structures. With a careful design of these auxiliary
data structures as data stacks, these operations do not lower
the hardware efficiency of the multigrid solver compared to
a single level solver such as Gauss–Seidel.

The evaluation of higher order discretisations can be real-
ised with Peano’s cell-oriented approach as shown in [23].
Similar to the pressure Laplacian, auxiliary values storing
contributions of neighbouring values that are not directly
accessible are used. If we look at the example of the inter-
polated differential operator approach (IDO) [1], face and
cell integrated velocity data have to be stored in addition
to the vertex values (Fig. 6, left). As Peano technically only
allows to store data at vertices or cell midpoints, face data are
stored in the respective left or lower grid vertex in the two-
dimensional case, face and edge data in the three-dimensional
case have to be stored in vertices in a similar way. For the
evaluation of the higher order discretisation version of the
right-hand side in Eq. (1), However, not only such vertex,
face, edge, and cell data of one cell are required but also data
of neighbouring cells. Here, data of the respective neighbours
written to the current cell’s vertices in a first step to allow for
the operator accumulation in a second step (Fig. 6, middle
and right). Within a linear solver, the second step again can be
intertwined with the updating of degrees of freedom and the
respective transported neighbour values in one grid traversal
analogue to the case of the pressure Poisson equation.

123

Comput Mech (2010) 46:103–114 109

Table 2 Actions taken in traversal events during the calculation of the right-hand side in Eq. (1)

Traversal event Action

createDoF Create new velocity and pressure data by interpolation from existing vertex data
destroyDoF Delete velocity and pressure data
beginTraversal –
endTraversal –
enterElement Evaluate cell-parts of Dhu(n)

h and u(n)
h CT

h u(n)
h and add it to the accumulated

values of the right-hand side
leaveElement –
touchVertexFirstTime Reset accumulated value of the right-hand side to zero
touchVertexLastTime –
createTemporaryVertex Calculate interpolated velocity values from vertices of the respective father cell
destroyTemporaryVertex Restrict cell-parts of operator values to vertices of the respective father cell,

eliminate interpolated velocity values

Table 3 Actions taken in traversal events during one (Gauss–Seidel) smoother iteration of the solver for the pressure Poisson Eq. (2)

Traversal event Action

createDoF –
destroyDoF –
beginTraversal Reset the residual norm to zero
endTraversal Finish the calculation of the residual norm
enterElement Calculate the local residual and immediately update the pressure value at the element midpoint and the

pressure gradients at the element vertices
leaveElement –
touchVertexFirstTime –
touchVertexLastTime) –
createTemporaryVertex Interpolate pressure gradients from pressure gradients at the vertices of the respective father cell
destroyTemporaryVertex Restrict gradient updates to the gradients at the vertices of the respective father cell

Fig. 5 Values required for the evaluation of the right-hand side of (1)
at a vertex (left); values required for the evaluation of the pressure
Laplacian in (2) in the midpoint of a cell (middle and right). The modi-
fied cell-wise evaluation of the pressure Laplacian in (2) first computes
pressure gradients at the cells vertices (middle) and then computes the
pressure Laplacian from the gradients (right). In a solver, both parts are
intertwined in one grid traversal: each time, a pressure value is updated,
for example during a Gauss–Seidel solver iteration, immediately the
values of the gradients at all cell vertices are updated as well. Opti-
mised solver versions purely work with pressure values at midpoints
and velocities at vertices

5 Numerical results

This section presents different results of simulations carried
out with Peano. We first focus on performance aspects such
as memory efficiency, parallel speedup, and multigrid perfor-
mance. Afterwards, different flow scenarios are presented

Fig. 6 Usage of auxiliary values for the evaluation of the diffusion
coefficient in (1) following the higher order IDO [1]

that show the correctness of the implementation and the
support for complex and moving geometries of Peano’s CFD
solver. All experiments were conducted on standard 32 bit
Intel Pentium dual core processing units with two MB L2
cache size, and on the processing units of the HLRB II
(Höchstleistungsrechner Bayern II) at the Leibniz Supercom-
puting Centre in Munich—an SGI Altix 4700 with 64 bit Ita-
nium2 Montecito dual cores with 256 KB L2 and 9MB L3
caches.

123

110 Comput Mech (2010) 46:103–114

5.1 Performance results

In this section, we present some general performance results
concerning both hardware and numerical efficiency. As men-
tioned in Sect. 2, a great advantage of spacetree grids in com-
bination with our data structures and data access algorithms
is the high memory efficiency. For CFD simulations with
Peano, Table 4 shows the necessary memory in bytes for cells
and vertices in two and three dimensions. Depending on the
time integration scheme chosen at runtime (forward Euler,
fourth-order Runge–Kutta, or adaptive trapezoidal rule), not
more than 200 bytes are consumed for a grid vertex includ-
ing values of degree of freedom (velocities) and all grid data.
This is substantially less than several thousand bytes that typ-
ically are necessary in comparable PDE frameworks based on
flexible grid types or unstructured grids and explicit matrix
assembly.

Note that due to the efficient combination of spacetrees,
stack data structures, and the space-filling Peano curve all
simulations with Peano show a very high cache hit-rate above
98% independent of the dimension d, the adaptivity pattern
of the grid, and the type of solver and PDE in use.

The grid traversal component runs in parallel and, thus,
provides parallelisation support for any application. Figure 7
shows the (weak) speedup of a linear solver running on the
HLRB II with up to 900 processors. Each partition contains
approximately 6 × 104 (d = 2) or 7 × 105 (d = 3) vertices,
respectively. Note that not only solver iterations but also the
domain decomposition itself run in parallel. The breakdown
of the speedup at certain numbers of processors is induced
by the partitioning strategy and improved in currently
ongoing work.

To validate the multigrid performance of our pressure
Poisson solver executed in each time step, we solved a pres-
sure Poisson equation with an artificial right-hand side for
which the exact solution is known. Figure 8 shows the corre-
sponding resolution-independent convergence speed of the
multiplicative V-cycle.

5.2 Applications

This section presents results of CFD applications computed
with Peano. Benchmark simulations allow to compare the

Fig. 7 Weak speedup of a matrix-free linear solver on the HLRB II at
the Leibniz-Rechenzentrum in Munich (results taken from [32])

results with hard reference data to judge the benefit of
adaptivity. Furthermore, we present flow simulations using
moving and more complex geometries in combination with
Peano’s spacetree grids.

5.2.1 Benchmark flow around a cylinder

The well-known “Benchmark computations of laminar flow
around a cylinder” [30] consist of several two- and three-
dimensional scenarios with an obstacle located near the entry
of a channel. Besides other data, the drag and lift coefficients
of the force exerted by the flow onto the cylinder serve as
reference values to compare the accuracy of results. Figure 9
visualises the adaptive Cartesian grid and the horizontal
velocity solution of the steady-state setup 2D–1 at Reynolds
number Re = 20.

For a suite of simulations of 2D–1 on different adaptive
grids, Table 5 shows the minimum and maximum level of
refinement of the underlying spacetree, the corresponding
number of degrees of freedom (DoF), the drag and lift coef-
ficients, and the CPU time in seconds per time step are indi-
cated. The keyword “box” refers to manual refinement boxes
used to identify regions of refinement (as in Fig. 9) instead
of refinement due to the mere geometry boundaries.

Table 4 Memory requirement of the Navier–Stokes solver in Peano with different time integration schemes on adaptive grids in Peano

Dimension Cell in bytes Vertex in bytes

Default TR adap. FE RK TR adap.

d = 2 40 48 92 124 144

d = 3 44 52 124 172 200

As a spatial discretisation, a second order finite element method is used. The values are indicated in bytes

123

Comput Mech (2010) 46:103–114 111

1.0e-12

1.0e-10

1.0e-08

1.0e-06

1.0e-04

1.0e-02

1.0e+00

1.0e+02

0 10 20 30 40 50 60

|e
| m

ax

Cycles

V(1,1) cycle (d=2)

4.00 * 1000

6.40 * 1001

6.76 * 1002

6.40 * 1003

5.86 * 1004

5.30 * 1005

1.0e-12

1.0e-10

1.0e-08

1.0e-06

1.0e-04

1.0e-02

1.0e+00

1.0e+02

0 10 20 30 40 50 60

|e
| m

ax

Cycles

V(1,1) cycle (d=3)

8.00 * 1000

5.12 * 1002

1.76 * 1004

5.12 * 1005

1.42 * 1007

Fig. 8 V-cycle behaviour of the PPE solver for a stationary problem
on a regular grid. The analytical solution of the continuous problem is
known. After a few v-cycles, the error (measured in the |.|max norm)
converges to the discretisation error. The convergence speed is inde-
pendent from the grid resolution

The first two rows of Table 5 demonstrate exemplarily the
expected benefit of adaptivity: A significantly lower number
of unknowns, resulting in a shorter runtime, is sufficient to
obtain nearly the same results as in the regular case (indi-
cated by identical maximum and minimum refinement level
of eight). Investing in more DoF near to the obstacle results
in better approximations of the reference data as the remain-

ing three rows of Table 5 clearly show. Besides, the runtimes
behave quasi-linearly and, thus, are independent of the bal-
ance of the spacetree, i.e. Peano does not pay a higher price
for a very steep adaptivity compared to a more regular grid.

The evaluation of the benefit of dynamical adaptivity using
an automatic refinement criterion instead of the geometry
boundaries or manual boxes is subject to current work. This
and an enhanced boundary treatment at the circle surface,
for example by a boundary-adapted grid refinement, will
increase the accuracy of the solver that obviously is not sec-
ond order yet in Table 5.

Comparisons with Peano’s straightforward regular grid
implementation and other solvers showed that the overhead
of adaptivity is about 30–80% (decreasing with increasing
problem size) in 2D and drops to only about 3% for three-
dimensional scenarios (see [23]).

5.2.2 Moving geometries

To demonstrate the correct implementation of moving geom-
etries in Peano’s CFD solver, we use a solid sphere moving
with a constant velocity from right to left in a box that pos-
sesses an outlet on the right-hand side. Figure 10 shows qual-
itative results of this scenario with a coarse grid resolution:
The adaptive Cartesian grid is changing (i.e. refining and
coarsening) near the geometry boundaries, and the stream-
lines in grey indicate the changing flow behaviour. A compar-
ison of the forces on the sphere with results of an equivalent
scenario with a fixed sphere and constant flow from the left-
hand side (see [23]) showed good accordance of the reference
values. This example shows the great potential of Peano:
The dynamical grid adaptivity is very cheap. Refinements
and coarsenings fit seamlessly into the cache-optimised data
storage and data access concept of Peano and require only
one single grid traversal, that, in addition can include at the
same time the next solver computations. This allows for a
very fast realisation of even large geometry or even topology
changes within a fixed grid approach compared to Lagrang-
ian or arbitrary Lagrangian–Eulerian (ALE) approaches.

Table 5 Survey of adaptive simulation results of the benchmark 2D–1 [30] for different maximum and minimum tree levels

Max. level Min. level # DoF cd cl CPU time per time step

8 8 1,051,253 5.682 0.0146 9.35 s
8 6 (box) 88,857 5.680 0.0150 0.71 s
9 7 125,041 5.591 0.0113 1.03 s
9 8 10,57,877 5.561 0.0112 9.46 s
9 6 (box) 261,501 5.586 0.0115 2.46 s
ref. data − 5.580 0.0107 –

The drag (cd) and lift (cl) coefficients of the cylinder and the runtime of one time step in seconds are shown in the last three columns. The reference
data from [30] are given in the last line

123

112 Comput Mech (2010) 46:103–114

Fig. 9 Horizontal velocity distribution and adaptive Cartesian grid of
the benchmark 2D–1 [30] at Re = 20 with maximum and minimum
tree level nine and six, respectively

Fig. 10 Snapshots of a box scenario with outlet on the right-hand side
containing a sphere that moves from right to left (see streamlines in
grey). The adaptive Cartesian grid (black) is refined and coarsened
accordingly

5.2.3 Complex geometries

Peano is able to handle more complex geometries. One exam-
ple is the drift ratchet scenario that uses sinusoidal, asymmet-
ric pore geometries which are implicitly defined (see [7,20]
for details on the scenario and preliminary results). Here,
we performed a two-dimensional simulation on four subse-
quent pores using time-dependent pressure boundary con-
ditions resulting in an oscillating flow scenario. Figure 11
shows the channel-like pressure distribution in the four pores
as well as a snapshot of the curvilinear geometry of a single
pore with the resulting adaptive grid. The maximum level of
the underlying spacetree at the boundary of the geometry is
nine whereas a minimum level of six is used in the rest of
the domain. This results in 98,521 cells, 82,144 vertices and
33,948 hanging nodes.

6 Conclusion and outlook

The aim of this paper is twofold: On the one hand, it intro-
duces the Peano framework. On the other hand, it shows
that the adaptive Cartesian grids underlying the framework
are well-suited for state-of-the-art CFD applications. It thus

Fig. 11 Pressure distribution (top) and snapshot of the corresponding
adaptive grid (bottom) of a 2D drift ratchet scenario (cf. [7,20]) with
maximum and minimum spacetree refinement level of nine and six,
respectively

bridges the gap from a pure software presentation to a real
world application scenario.

Peano combines, in a novel way, modern multiscale algo-
rithms for higher-order methods running on dynamically
adaptive grids with a very low memory footprint. It runs on
massive parallel multicore clusters and efficiently exploits
the memory hierarchy of today’s computers. Due to this
efficiency, we can afford to refine the grid flexibly, and we
show that computational fluid dynamics on such adaptive
Cartesian grids are able to cope with unstructured adaptive
grid approaches in terms of accuracy. At the same time, Pea-
no fully exploits all advantages of well-structured grids in an
optimised implementation.

Besides the fact that we meanwhile use Peano for applica-
tions different from fluid dynamics, we next use Peano’s CFD
plugin to tackle challenges that were out of scope before. On
the one hand, these are challenges such as turbulence research
via direct numerical simulation where the experimental setup
requires an extremely fine grid. Here, Peano’s low mem-
ory footprint proves of value whereas other codes cannot
resolve the problem spatially with sufficient accuracy. On the
other hand, these are classical fluid-structure interaction chal-
lenges where the grid structure and, consequently, the load
balancing, and the global system matrix have to change per-
manently. Here, Peano’s on-the-fly adaptivity, its low mem-
ory overhead, and its matrix-free philosophy prove of value
whereas other codes depend on an expensive re-meshing,
re-assembling, and re-balancing from time to time. While
Peano already laid the foundations of some new scientific

123

Comput Mech (2010) 46:103–114 113

insights (e.g. [6,7]), the overall potential is, from our point
of view, far from exhausted, will be subject of further studies,
and will be starting point for methodological extensions.

Methodologically, Peano offers at least three additional
charming chances for CFD codes: First, the current CFD
implementation does not exploit a dimension d ≥ 4. How-
ever, the d-dimensional concept of Peano allows for a
straightforward enhancement to higher-dimensional grids for
of an explicit resolution of the time (together with space–
time adaptivity), parameter studies, and optimisation sce-
narios. Second, the current implementation does not offer
p-adaptivity, yet. The integration of p-adaptivity will facil-
itate an efficient usage of today’s massive parallel vector
arithmetic units, i.e. yield impressing MFlop rates, while
improving the solution’s accuracy, too. Finally, the current
framework is a stand-alone solution. To make it a tool used
by many scientists and engineers to produce new insight, it
has to be integrated into today’s scientific computing land-
scapes. To open Peano’s signature to the public is the first
step towards such an integration. In return, Peano has to sup-
port, connect, and integrate to de facto standard interfaces
such as standard geometry formats, postprocessing and visu-
alisation toolkits, as well as computational steering environ-
ments. First steps in this direction have already been made by
defining a triangulation-based geometry interface and clearly
defined output interfaces.

Download

Peano is open-source software and available at www5.in.
tum.de/peano under a BSD-like license.

Acknowledgments Thanks are due to Christoph Zenger for a lot
of valuable input and fruitful discussions. Kristof Unterweger imple-
mented the moving geometry feature within the Peano framework
throughout his master’s thesis. The ongoing financial support of TUM’s
International Graduate School of Science and Engineering (IGSSE) is
gratefully acknowledged.

References

1. Aoki T (1997) Interpolated differential operator (IDO) scheme
for solving partial differential equations. Comput Phys Comm
102:132–146

2. Bader M, Bungartz H-J, Frank A, Mundani R-P (2002) Space tree
structures for PDE software. In: Proceedings of the International
Conference on Computer Science (3), vol 2331, p 662

3. Bader M, Frank A, Zenger C (2002) An octree-based approach for
fast elliptic solvers. High Perform Sci Eng Comput 21:157–166

4. Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Ohlberger M,
Sander O (2008) A generic grid interface for parallel and adap-
tive scientific computing. Part I: Abstract Framework. Computing
82(2–3):103–119

5. Borrmann A, Schraufstetter S, Rank E (2009) Implementing
metric operators of a spatial query language for 3d building

models: octree and b-rep approaches. J Comput Civil Eng
23(1):34–46

6. Brenk M, Bungartz H-J, Daubner K, Mehl M, Muntean IL,
Neckel T (2008) An Eulerian approach for partitioned fluid-struc-
ture simulations on Cartesian grids. Comput Mech (accepted)

7. Brenk M, Bungartz H-J, Mehl M, Muntean IL, Neckel T, Wein-
zierl T (2008) Numerical simulation of particle transport in a drift
ratchet. SIAM J Sci Comput 30(6):2777–2798

8. Deering M (1995) Geometry compression. In: SIGGRAPH ’95:
proceedings of the 22nd annual conference on computer graphics
and interactive techniques. ACM Press, New York, pp 13–20

9. Düster A, Bröker H, Heidkamp H, Heißerer U, Kollmannsberger S,
Krause R, Muthler A, Niggl A, Nübel V, Rücker M, Scholz D
(2004) AdhoC4—user’s guide. Lehrstuhl für Bauinformatik, Tech-
nische Universität München

10. Fuster D, Baguéa A, Boeckc T, Le Moynea L, Leboissetierd A,
Popinete S, Raya P, Scardovellif R, Zaleskia S (2009) Simulation
of primary atomization with an octree adaptive mesh refinement
and vof method. Int J Multiph Flow 35(6):550–565

11. Gamma E, Helm R, Johnson RE, Vlissides J (1994) Design
patterns—elements of reusable object-oriented software, 1st edn.
Addison-Wesley, Longman

12. Gao F, Ingram DM, Causon DM, Mingham CG (2007) The devel-
opment of a Cartesian cut cell method for incompressible viscous
flows. Int J Numer Meth Fluids 64(9):1033–1053

13. Gerstenbrger A, Wall WA (2007) An extended finite element
method/mortar method based approach for fluid-structure inter-
actions. Comput Methods Appl Mech Eng 197:1699–1714

14. Harlow FH, Welch JE (1965) Numerical calculation of time-
dependent viscous incompressible flow of fluid with a free surface.
Phys Fluids 8(12):2182–2189

15. Imai Y, Aoki T (2006) A higher-order implicit IDO scheme and its
CFD application to local mesh refinement method. Comput Mech
38:211–221

16. Imai Y, Aoki T, Takizawa K (2008) Conservative form of inter-
polated differential operator scheme for compressible and incom-
pressible fluid dynamics. J Comput Phys 227:2263–2285

17. Klass O, Shephard MS (2000) Automatic generation of octree-
based three-dimensional discretisations for partition of unity meth-
ods. J Comput Mech 25(2–3):296–304

18. Lam TW, Yu KM, Cheung KM, Li CL (1998) Octree reinforced
thin shell objects rapid prototyping by fused deposition modelling.
Int J Adv Manufact Technol 14(9):631–636

19. Long K (2009) Sundance: a rapid prototyping toolkit for par-
allel pde simulation and optimization. In: Heinkenschloss M,
Biegler LT, Ghattas O, van Bloemen Waanders B (eds) Large-scale
PDE-constrained optimization. Lecture notes in computational sci-
ence and engineering, vol 30. Springer, Berlin, pp 331–339

20. Matthias S, Müller F (2003) Asymmetric pores in a silicon mem-
brane acting as massively parallel brownian ratchets. Lett Nat
424:53–57

21. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu
Rev Fluid Mech 37:239–261

22. Morton GM (1966) A computer oriented geodetic data base and
a new technique in file sequencing. Technical report, IBM Ltd.,
Ottawa, Ontario

23. Neckel T (2009) The PDE framework Peano: an environment for
efficient flow simulations. Verlag Dr. Hut, München

24. Sagan H (1994) Space-filling curves. Springer, New York
25. Samet H (1984) The quadtree and related hierarchical data struc-

tures. ACM Comput Surv 16(2):187–260
26. Sampath RS, Adavani SS, Sundar H, Lashuk I, Biros G (2008)

Dendro: parallel algorithms for multigrid and amr methods on 2:1
balanced octrees. In: SC ’08: proceedings of the 2008 ACM/IEEE
conference on supercomputing, Piscataway, NJ, USA. IEEE Press,
New York, pp 1–12

123

www5.in.tum.de/peano
www5.in.tum.de/peano

114 Comput Mech (2010) 46:103–114

27. Sundar H, Sampath RS, Biros G (2008) Bottom-up construction
and 2:1 balance refinement of linear octrees in parallel. SIAM J
Sci Comput 30(5):2675–2708

28. Tomé MF, McKee S (1994) GENSMAC: a computational marker
and cell method for free surface flows in general domains. J Comput
Phys 110:171–186

29. Tu T, O’Hallaron DR, Ghattas O (2005) Scalable parallel octree
meshing for terascale applications. In: SC ’05: proceedings of the
2005 ACM/IEEE conference on supercomputing, Washington, DC,
USA. IEEE Computer Society, New York, p 4

30. Turek S, Schäfer M (1996) Benchmark computations of laminar
flow around a cylinder. In: Hirschel EH (ed) Flow simulation
with high-performance computers II, NNFM, vol 52. Vieweg,
Braunschweig

31. Vandevoorde D, Josuttis N (2003) C++ templates—the complete
guide. Addison-Wesley, Reading

32. Weinzierl T (2009) A framework for parallel PDE solvers on mul-
tiscale adaptive Cartesian grids. Verlag Dr. Hut, München

123

	The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids
	Abstract
	1 Introduction
	2 Spacetrees and adaptive Cartesian grids
	3 The Peano framework
	4 Computational fluid dynamics in Peano
	5 Numerical results
	5.1 Performance results
	5.2 Applications
	5.2.1 Benchmark flow around a cylinder
	5.2.2 Moving geometries
	5.2.3 Complex geometries

	6 Conclusion and outlook
	Download
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e0020000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d00280063002900200032003000300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

