
1

Organizing and Accessing Web Services on Air
Xu Yang, Athman Bouguettaya, Senior Member, IEEE,

Brahim Medjahed, Student Member, IEEE, Hao Long, and Weiping He

Abstract— Mobile commerce (m-commerce) refers to the con-
duct of business using wireless devices and communications.
Driven by the success of e-commerce and impressive progress in
wireless technologies, m-commerce is rapidly taking place in the
business forefront. However, most of the concepts developed for e-
commerce may not be easily applicable to wireless environments.
This is due to the peculiarities of these environments such as
limited bandwidth, unbalanced client-server communication, and
limited power supply. Web services are undeniably one of the
most significant e-commerce concepts worth of being adapted
to the wireless world. Mobile services, also called m-services,
promise several benefits compared with their wired counterparts.
They provide larger customer base and cater for “anytime and
anywhere” access to services. In this paper, we propose an
infrastructure for organizing and efficiently accessing m-services
in broadcast environments. We define a multi-channel model
to carry information about m-services available within a given
geographic area. The UDDI channel includes registry information
about m-services. The m-service channel contains the description
and executable code of each m-service. The data channel contains
the actual data needed while executing the m-service. We also
introduce three techniques to enable efficient access to wireless
channels. These techniques extend well-known mobile databases’
access methods to m-services: B+ tree, signature indexing, and
hashing. We finally present an analytical model and conduct
an extensive experimental study to evaluate and compare the
proposed techniques.

I. INTRODUCTION

The recent advances in hardware, networking, and Web
technologies radically changed the way companies conduct
their daily business. While initially aimed at enabling the
sharing of information among scientists, the Web has evolved
to become a promising medium for e-commerce activities
[1], [2]. A broad spectrum of e-commerce applications is
already available on today’s Web such as on-line banking and
shopping. However, most of these applications were developed
for wired infrastructures with fixed or stationary users [3].
The past years has witnessed a boom in wireless technologies
[4]. Sophisticated wireless devices such as cellular phones
and PDAs (Personal Digital Assistants) are now available at
affordable prices. Emerging technologies including 3G and
4G (third and fourth generation) are under development to
increase the bandwidth of wireless channels. Driven by the
success of e-commerce and impressive progress in wireless
technologies, mobile commerce (m-commerce) is rapidly tak-
ing place in the business forefront. M-commerce refers to the
conduct of business over wireless communications and devices

This research is supported by the National Science Foundation under grant
9983249-EIA and by a grant from the Commonwealth Information Security
Center (CISC).

The authors are with the Department of Computer Science, Virginia Tech,
7054 Haycock Road, Falls Church, VA 22043, USA.

Email:
�
xuyang, athman, brahim, halong, weiping � @vt.edu

[5]. Examples of m-commerce applications include mobile
office (e.g., working while on the move) mobile advertising
(e.g., location sensitive advertisements), and mobile financial
applications (e.g., banking and payment for mobile users) [6].

Enabling technologies for e-commerce have been around for
almost three decades. They provide businesses with means for
interacting with their peers (B2B e-commerce) and customers
(B2C e-commerce). Web services are undeniably one of the
most significant e-commerce technologies. A Web service is a
set of related business functions that can be programmatically
accessed through the Web [7], [8]. The widespread adoption
of Web services has spurred an intense research activity to
address Web services issues (e.g., organization, access, compo-
sition) [9]. However, most of the proposed techniques dealing
with those issues cannot or may not be easily applicable
to m-commerce. This is due to the peculiarities of wireless
environments including limited bandwidth, unbalanced client-
server communication, limited power supply, and frequent
unavailability of wireless networks [10]. For example, using
UDDI (Universal Description, Discovery and Integration) [11]
for discovering Web services requires multiple costly round
trips over wireless networks [12]. Invoking Web services using
SOAP (Simple Object Access Protocol) [13] may increase
mobile hosts’ power consumption and waiting time. This calls
for new techniques to adapt Web services to the wireless
world [14].

To support wireless-oriented services, a new generation of
Web services called mobile services (m-services) has emerged.
An m-service is a Web service that is accessible by mobile
hosts through wireless networks [3], [12]. An example of m-
service is a stock quote service providing stock quote
prices to users on the move. M-services promise several
benefits compared with their wired counterparts. They provide
larger customer base. It is expected that by 2004, 50 percent
of Internet access in the US will originate from wireless
devices [4]. M-services also cater for “anytime and anywhere”
access to services. Users need no longer to sit in front of their
desktop computers to conduct their business transaction.

An important issue in wireless-oriented service environ-
ments is organizing and accessing m-services. Key require-
ments for accessing m-services include minimizing power
consumption and client’s waiting time. We identify three
modes for accessing m-services: at-hand, on-demand, and
broadcast. In the at-hand mode, services are pre-installed on
users’ wireless devices. This mode is clearly inappropriate in
open environments where users’ requests are unpredictable and
the number of m-services is large and dynamic. In the on-
demand mode, mobile users send their operation invocations
along with the requested parameters (e.g., stock name) to the
m-service provider (generally in wired network) through an

2

uplink channel (client-to-server channel). After executing the
operation, the provider replies by sending back the operation’s
results (e.g., stock price) through a downlink channel (server-
to-client channel). Since sending data from a wireless device is
a power consuming process, this mode may be inefficient for
applications where several requests are issued by mobile users
(e.g., stock market applications). In the broadcast mode, a
service broker periodically broadcasts the available m-services
over the wireless channel. Clients listen to the channel, identify
the m-service of interest, and download it to the mobile host
for local execution. Broadcasting avoids power consuming
uplink transmissions. It has been demonstrated to save con-
siderable amount of power [15], [16]. Broadcast is suitable
for a large number of clients with overlapping interests (as
in m-commerce applications). Additionally, performance does
not depend on the number of clients. Finally, the server is
prevented from being overwhelmed by client requests. In this
paper, we propose an infrastructure for organizing and effi-
ciently accessing m-services in broadcast environments. More
precisely, this paper’s contributions include the following:

� Multi-channel model for m-services – We propose a
multi-channel model for organizing and accessing m-
services. Multiple channels are defined to carry different
types of information about m-services available within the
same geographical area (cell or registration area). The
UDDI channel includes registry information about m-
services. The m-service channel contains the description
and executable code of each m-service. The data channel
contains the actual data needed while executing the m-
service in the mobile host.

� Wireless channels access methods – Broadcast requires
techniques for efficiently locating m-services on the wire-
less channel. We present three indexing techniques for
accessing wireless channels in the proposed m-service ar-
chitecture. The aim of these techniques is to reduce power
consumption and client’s waiting time. The proposed
techniques extend well-known access methods in mobile
databases to m-services: B+ tree, signature indexing, and
hashing.

� Analytical and experimental study – We present an
analytical model of each proposed access method. We
have also conducted an extensive experimental study to
evaluate and compare those methods.

The remainder of this paper is organized as follows. In
Section II, we propose a multi-channel model for m-services.
In Section III, we present some techniques for accessing
wireless channels. In Section IV, we describe the analytical
model for assessing the wireless channels access methods. In
Section V, we present the simulation experiments and their
results. In Section VI, we give an overview of the related
work. We finally provide concluding remarks in Section VII.

II. PROPOSED INFRASTRUCTURE FOR M-SERVICES

Two major approaches are possible for executing m-
services: remote and local. By executing an m-service, we
mean invoking one of its operations. The remote approach,
applicable to the on-demand access mode, is similar to the

traditional client-server approach. M-services are executed by
their providers at the server side. Remote execution is par-
ticularly suitable for wireless devices with limited processing
capabilities. While this approach is generally adopted in Web
services, it may be inappropriate for m-service environments
where mobile devices lose network connectivity much more
than fixed hosts do in wired networks. In the local approach,
applicable to at-hand and broadcast access modes, wireless
devices act as a computing platform for m-services. This
requires fat clients with advanced processing capabilities. Such
requirement is nowadays technically feasible with the current
progress in wireless devices technologies. For example, it is
today possible to install Web/application servers and servlet
engines in PDAs. It is expected that more powerful wireless
devices will be available in the near future [4]. Figure 1
presents a novel architecture to support local execution of m-
services in broadcast environments.

Designing an m-service infrastructure for broadcast envi-
ronments requires an effective organization of the m-service
space. Such organization would empower mobile users with
the the ability to (1) discover m-services of interest; (2) down-
load the m-service code; (3) find out the way to invoke the
m-service (e.g., which inputs are required); and (4) download
the data needed during m-service execution. Figure 1 depicts
our architecture to deal with the aforementioned issues.

Components – The proposed architecture involves three
types of participants: mobile clients, m-service providers, and
m-service brokers (Figure 1). Mobile clients are end-users
equipped with wireless devices. They have access to m-
services that are available within their current geographic
area. A geographic area may be a cell or a registration area
(i.e., group of few cells) as defined in North America’s IS-41
(Interim Standard 41) standard for wireless communication
[17]. M-service providers are the entities that offer business
services to mobile clients. Each provider has to subscribe
with one of the brokers available in its geographic area.
During the subscription process, providers need to give registry
information and descriptions of their m-services. They also
need to provide the code of each m-service and data required
during its execution. We assume that m-service codes are
simple enough to be runnable by wireless devices. Brokers
act as intermediaries between m-service providers and mobile
clients. They broadcast information about m-services (registry,
description, code, and data) to mobile clients through wireless
networks. Since these m-services are available for certain
geographic areas, we assume that each broker has the capacity
of broadcasting up to a few hundred m-services. This will
guarantee the performance of accessing m-services provided
by each broker. For areas where only a small number of m-
services are available, a single broker may be enough for
broadcasting all m-services. For areas with high population
density, there may be a large number of m-services pro-
vided for users in each area. In this case, m-services can
be categorized into different families. Multiple brokers will
be used to broadcast these m-services, with one or more
broker broadcasting one family of m-services. In this paper,
we consider the case of one broker per area.

To illustrates interactions between participants

3

��������� 	�
 �
���������������

���������������������

������ ����!���������

��"�#�
 � �
�$�
 ���%�

&�'
()+* ,-'�. &�'/()/* ,0'21

354560* 17'/6-6/8�109 * 9 :�. 354565* 1+'560658�1;9 * 9 :�<

=�>+9 >�? 9 '
<@. =�>59 >�? 9 '
<BA

����C��D� 	�
 ���
EF��"DG/���

HI��"�JK�L�DM���
 �
N������

OLP�Q�R�SUT�V
W2X�Y�Z�R

[�\]/^�\]`_
acb/d5eLf�g
h f�]5e d

ijhL\ k
\]/_
ic\ h b�l-e�\ m�]%d

O�OLP�n$o�o�R�Z!Z
W2X�Y�Z�R

��"D#�
 � �
�F��� 	�
 �
��C

pL���U�F��� 	�
 ����C`q

r�"!���������2��
s2��J�
 C
�t� u

v�6-'
(%'
1-9 '
(/>215'xwzy+'/{5y
(>/A%|5* ,j>/('%>
}
~������/� �0�
���!~�~��5�5�%� � � �/�j� �L�7����~K~D�

�-� �/�5�`�0�5� �F�2�0�/� � � � �5�0�

v�6-'
(/>/,;,0'5606j��'5�5'5,54-9 '�>
1�<j� 67'
()5* ,-'�}
~��
���/� �5�/��� � �c��� �0�0�-��� � � � �5�%�j�/�
�
�L�/�+�5� �L�/�F�5�%� ��� �j�2�5�5� � � � �/�-�

C!��� 	�
 �����j��u
������rI����C����L
 M
��
 "��
����C���� 	!
 �
����"����
� �����¡G
�`u
� �����¢	��D� £��

r��!J������c¤

Fig. 1. Multi-channel Based Architecture for M-services

in the proposed architecture, let us consider a
restaurant finder m-service. This m-service allows
mobile users to find restaurants based on user’s location and
restaurants’ specialties (e.g., Chinese food, Italian food). The
m-service provider feeds the broker with the m-service code
and list of restaurants available within the local area. This
list includes restaurants’ names, locations (street address),
and phone numbers. Among other information, the broker
broadcasts the m-service code and list of available restaurants.
This list is used by the m-service code during execution at
the wireless device. Such execution involves the following
simple steps. The mobile user first gives its current street
address and the restaurant specialties. The m-service then
compares user’s inputs with the broadcast data. If a matching
is found, the m-service returns the relevant restaurant names
with their addresses and phone numbers.

UDDI Channel – The use of “traditional” UDDI for
discovering m-services incurs several costly round trips over
wireless networks. To avoid such problems, we associate a
UDDI channel within each geographic area (Figure 1). The
UDDI channel contains the directory information of all m-
services provided within that area. This information is given
by m-service providers and broadcast by brokers. Each entry
in the UDDI channel is identified by a businessKey. The
information contained in the UDDI channel is customized

to fit the characteristics of wireless environments. For ex-
ample, the accessPoint attribute within UDDI’s bind-
ingTemplate structure no longer contains the HTTP or
FTP addresses to access the service [11]. It rather contains the
frequency of the wireless channel through which the m-service
can be accessed. Additionally, UDDI’s businessService
will contain no URL link to the service description.

As depicted in Figure 1, whenever mobile clients enter
a new geographic area (setup phase), they download the
UDDI channel’s content to their mobile device and store it
for later use. Caching the directory of m-services in users’
devices avoids frequent access to the UDDI channel and
hence minimizes power consumption. Note that the number
of m-services within a given area is relatively small. Hence,
downloading the UDDI registry to the wireless device is
technically feasible. To keep the cached UDDI registry
updated, a version number is associated to each UDDI
channel’s broadcast cycle. Before users access the cached
UDDI registry, its version number is checked against the
broadcast version number. If they are different, a new UDDI
registry will need to be downloaded from this channel again.

M-service and Data Channels – Once an m-service is
discovered, another important issue concerns service access
and execution. To cope with this issue, we associate two
other wireless channels to each geographic area: m-service

4

Algorithm execute-m-service

/* executed whenever a mobile client wants to access an m-service */
/* in the local geographic area */

Begin
1: find m-services having a given category in the local UDDI registry.

UDDI inquiry API is used for that purpose.
2: select an m-service and retrieve its serviceKey K from businessService.
3: retrieve the frequency of the m-service and data channels.
4: listen to m-service channel in the local geographic area.
5: download the description and code of the m-service having K as a

serviceKey.
6: select the m-service operation that needs to be invoked.
7: determine the input parameters required by that operation from the

m-service description.
8: execute the m-service code locally.
9: if the execution requires a set of data D then listen to the data

channel in the local geographic area.
10: use primary data key to download all data in D from the data channel.
11: continue m-service execution at the wireless device.
12: return results to the user.
End

Fig. 2. Algorithm for Executing M-Services

and data channels (Figure 1). Each entry in the first channel
contains the executable code and description of a given
m-service. For better access performance, information within
the m-service channel is indexed using serviceKey.
A serviceKey takes the form of a UUID (Universally
Unique ID) that uniquely identifies m-services [11]. It is
similar to the serviceKey defined within a UDDI’s
businessService. The m-service description allows
mobile users to find out the way to invoke the m-service:
parameters that are needed, their type, etc. It uses a subset
of WSDL language that contains types, message,
and portType elements [18]. The remaining elements
(binding, port, and service) are not used since they
are specific to Internet-based invocation of Web service(e.g.,
HTTP and MIME). The data channel contains all data needed
to execute each m-service within the m-service channel.
For better access performance, information within the data
channel is also indexed using a primary key (e.g., restaurant
address).

Executing M-services – We present in Figure 2 an
algorithm with the main steps that need to be performed to
execute an m-service (i.e., invoking one of its operation).
Mobile users generally start by looking for m-service based
on their category (e.g., restaurants, hotels). They may also
look for m-services based on their names. If the m-service
serviceKey is known a priori by the mobile user then
steps 1 and 2 in the algorithm are skipped.

Walk-through Scenario – To illustrate our approach, let
us use the restaurant finder m-service as an example.
Consider a tourist in Washington DC equipped with a wireless

device. After enjoying different attractions in the city, the
tourist would like to go to a Chinese restaurant. For that
purpose, she/he accesses the cached UDDI registry looking
for an m-service that returns the list of local restaurants.
The tourist executes a UDDI inquiry that returns m-services
having “restaurants” as a category. Assume the registry returns
two m-services. Since the first m-service does not search for
restaurants based on their specialties (Chinese food), the tourist
selects the second m-service i.e., restaurant finder.
The wireless device then listens to the m-service channel
and uses the servicekey returned by the UDDI inquiry
to download the restaurant finder’s code and descrip-
tion. The restaurant finder’s description specifies an
operation return list of restaurants that requires
the user’s street address and restaurant specialty as input.
The tourist invokes that operation by giving the required
input (i.e., her/his current location and “Chinese food” as
a specialty). During restaurant finder’s execution, the
wireless device listens to the data channel and downloads
all data whose address (primary data key) corresponds to
the tourist’s current location. The m-service execution is
then resumed. The data downloaded from the data channel
is filtered out. Only restaurants providing Chinese food are
returned to the tourist.

III. WIRELESS CHANNEL ACCESS METHODS

Two important factors are normally used to measure the
performance of data access in wireless environments: Access
Time and Tuning Time. Access time refers to the total time
mobile clients need to wait for the request to complete. Tuning
time is the actual time spent by mobile clients to actively listen
to wireless channels and process requests. Processing requests

5

requires CPU to be active and listening to wireless channels
implies that receiving devices are receiving data from wireless
channels. Since most power consuming parts of a mobile unit
are CPU and receiving devices [19], the tuning time of a
request is usually proportional to the power consumed by a
mobile unit on the request.

Applying this concept to our m-service environment, the
access time and tuning time reflect two important aspects of
the m-service system, the response time and energy efficiency.
In the context of m-service system, we define access time and
tuning time as follows:

� Access Time: This is the total client waiting time,
starting from the issuance of a service request till its
completion.

� Tuning Time: Tuning time is the time when CPU
and/or wireless receiving devices are active, which means
mobile clients are either actively processing requests
and/or retrieving data from wireless channels. Tuning
time includes the time to download or update the UDDI
registry (if required), find and download the requested m-
service, execute the m-service, and retrieve the requested
data items.

Mobile clients in m-service environment are usually
equipped with limited power supply, such as batteries. This
requires more power efficient access to wireless channels. In
[10], a few typical wireless data access techniques, namely B+
tree indexing, signature indexing and hashing, are discussed.
These techniques can improve the access efficiency to wireless
channels. All of these techniques are based on the idea of
using extra information in wireless channels to help locate
the requested data. As a result, mobile clients do not need
to actively listen to wireless channels all the time in order
to preserve power consumed by receiving devices. We define
bucket as the logical broadcast unit in wireless channels. For
different access methods, buckets may have fixed or varied
sizes. There are also different types of buckets based on their
contents. For example, we refer to buckets containing only
broadcast data as data buckets. In B+ tree indexing, buckets
containing indices are called index buckets, and signature
buckets in signature indexing contain only signatures.

In this section, we will discuss how these techniques can
be applied to our m-service infrastructure. For each data
access techniques, we consider the following three scenarios:
(1) access to m-service channel broadcasting fixed-size m-
services; (2) access to m-service channel broadcasting varied-
size m-services; and (3) access to data channel We make the
reasonable assumption that data items in the data channel have
the same size.

A. B+ Tree Indexing

The use of B+ tree indexing in wireless environments is
very similar to that of traditional disk based environments.
Indices are organized in B+ tree structure to accelerate search
processes. An offset value is stored in each index node
pointing at corresponding data item or lower level index
node. However, there are some differences that introduce
new challenges to wireless environments. For example, in

disk based environments, offset value is the location of the
data item on disk, whereas in wireless environments, offset
value is the arrival time of the bucket containing the data
item. Moreover, indices and data in wireless environments
are organized in one-dimensional mode in broadcast channel.
Missing the bucket containing index of the requested data
item may cause the client to wait until the next broadcast
cycle to find it again. Two indexing techniques, (1,m) indexing
and distributed indexing, which are both based on B+ tree
data structure, are presented in [15]. We compared these
two techniques in [10] and found that they exhibit similar
performance except that (1,m) indexing has slightly better
tuning time and distributed indexing has better access time.
In this paper, we only focus on (1,m) indexing.

Generally, we refer to the information being broadcast in
wireless channel as data items. In the context of m-service
system, the broadcast data items can be either m-services or
database records. In broadcast channel using (1, m) indexing as
the access method, every broadcast data is indexed on its key
attribute. For m-services, the key attribute is the service key of
each m-service and for database it is the primary key of each
database record. Indices are organized in B+ tree structure,
which is referred to as index tree.

Each index node has a number of pointers pointing at its
child nodes. The pointers of the bottom level indices point at
the actual data nodes. To find a specific broadcast data item,
the search follows a top-down approach. The top level index
node is searched first to determine which child node contains
the data item. Then the same process will be performed on that
node. This procedure continues till it finally reaches the data
item at the bottom. The sequence of the index nodes traversed
is called the index path of the data item. A node in the index
tree represents an index bucket in the broadcast channel. A
broadcast data item is represented by a data bucket. In the
traditional disk-based systems, index and data are usually
stored in different locations. The index tree is searched first
to obtain the exact location of the requested data item. This
process often requires frequent shifts between index nodes or
between index and data nodes. As data in a wireless channel
is one-dimensional, this kind of shift is difficult to achieve.
Therefore, in (1, m) indexing, data and index are interleaved
in the broadcast channel. The broadcast data is partitioned
into several data segments. The index tree precedes each data
segment in the broadcast. Users traverse the index tree first
to obtain the time offset of the requested data item. Then
they switch to doze mode until the data item arrives. Figure 3
illustrates how index and data are organized in the broadcast
channel.

In (1,m) indexing, the whole index tree precedes each data
segment in the broadcast. Each index bucket is broadcast a
number of times, m, equal to the number of data segments.
Each index bucket contains pointers to the buckets containing
its child nodes. When a mobile client tunes into the broadcast
channel, it is redirected to the beginning of the next index
segment. From there, it follows the index path to find the
requested data item. Between any two consecutive probes, the
mobile client can go to doze mode to save power.

In the original (1,m) indexing method, all broadcast buckets

6

Index

Offset to the next broadcast

Last broadcasted key

Offset to the next Index Segment

Index Segment

Broadcast Cycle

Offset to the next Index Segment

Data

Data Segment

Fig. 3. Index and data organization of (1,m) indexing

are of the same size. The bucket size is determined by the
length of a broadcast data item (in this case, a m-service)
plus an offset value. Each bucket may contain a few index
entries depending on the size of data items and their primary
keys. However, in the m-service channel, where m-services
are much larger than the service keys, a bucket with the size
equivalent to a m-service may contain many index entries up
to the whole index tree. This obviously loses the flexibility of
(1,m) indexing, because every time a mobile client needs to
read index information, it has to download many unnecessary
index entries or maybe even the whole tree. To preserve the
flexibility of (1,m) indexing, for m-service channel, we use an
improved (1,m) indexing method, in which index buckets have
smaller size than m-services. The structure of the broadcast
channel will still be the same as shown in Figure 3, except
that the index buckets are smaller. Since the pointers stored
in each index bucket are the absolute time offset to the child
index nodes or data buckets, the size of the data buckets does
not have any impact on the wireless channel structure.

B. Signature Indexing

A signature is essentially an abstraction of the information
stored in a record. It is generated by a specific signature
function. By examining a data item’s signature, one can tell
if the record possibly has the matching information. Since
the size of a signature is much smaller than that of the
data item itself, it is considerably more power efficient to
examine signatures first instead of simply searching through
all data items. In [20], three signature indexing schemes are
proposed: simple signature, integrated signature, and multi-
level signature. In this section, we introduce the basic signature
indexing technique these schemes are based on and discuss
how this technique can be applied to m-service system.

When used with databases, the signatures are generated
based on all attributes of data records. A signature is formed
by hashing each field of a record into a random bit string
and then superimposing together all the bit strings into a
record signature. The number of collisions depends on how
perfect the hashing function is and how many attributes a data
record has. Collisions in signature indexing occur when two
or more data records have the same signature. Usually the
more attributes each data record has, the more likely collisions
will occur. Such collisions would translate into false drops,
where clients download wrong data records but with matching
signatures.

With basic signature indexing technique, signatures are
broadcast together with data records. The broadcast channel

consists of signature buckets and data buckets. Each broadcast
of a data bucket is preceded by a broadcast of the signature
bucket, which contains the signature of the data record. All
signature buckets have equal length. Mobile clients must sift
through each broadcast bucket until the required information
is found. The data organization of signature indexing is
illustrated in Figure 4.

Broadcast Cycle

Data RecordSignature

Fig. 4. Data organization of signature indexing

We now discuss how the signature indexing technique can
be used in our m-service infrastructure. In m-service channel,
the broadcast data items are the m-services. Preceding each
m-service, the corresponding service key is broadcast as the
signature of that m-service. Mobile clients will read the service
key first before downloading the whole m-service. Since the
service key is unique, there will be no false drops if service key
is used as signature directly. If the m-service size is fixed, the
m-service channel structure will be the same as what is shown
in Figure 4. When the sizes of m-services are different, an
extra field indicating the size of the followed m-service bucket
is needed in each signature bucket in the m-service channel.
In other words, each signature bucket shown in Figure 4 will
consist of two parts: the signature and the size of the m-service
that follows. The size of the m-service here is expressed as the
time offset to the next signature bucket. In the data channel,
since we assume that all database records are equal in length,
the data channel structure will be the same as in Figure 4.

C. Hashing

Hashing techniques store hashing parameters in data buckets
without requiring separate index buckets or segments [16].
Each data bucket consists of two parts: Control part and
Data part. The Data part contains actual data records and the
Control part is used to guide clients to the right data bucket.
The data organization of the broadcast channel using simple
hashing is illustrated in Figure 5.

Broadcast CycleBucket

Data PartControl Part

Shift: pointer to the actual bucket

Hash Function: h

Fig. 5. Index and data organization of simple hashing

The control part of each data bucket consists of a hashing
function and a shift value. The hashing function maps the
key value of the broadcast data into a hashing value. Each
bucket has a hashing value H assigned to it. In the event
of a collision, the colliding data is inserted right after the

7

bucket which has the same hashing value. This will cause
the rest of the buckets to shift, resulting in broadcast data
being “out-of-place”. The shift value in each bucket is used
to find the right position of the corresponding data. It points
to the first bucket containing the data with the right hashing
value. Assume the initial allocated number of buckets is ��� .
Because of collisions, the resulting length of the broadcast
cycle after inserting all the broadcast data will be greater than
� � . The control part of each of the first � � buckets contains
a shift value (offset to the bucket containing the actual data
with the right hashing value), and the control part of each of
the remaining data buckets contains an offset to the beginning
of the next broadcast.

In m-service channel with fixed-size m-services and data
channel, the broadcast channel will have the same structure
as shown in Figure 5 because all broadcast items are equal in
size. For m-service channel with varied-size m-services, the
same technique cannot be directly applied due to the fact that
all m-services have different sizes. We propose a improved
hashing technique that can deal with varied-size broadcast
items. In the improved hashing technique, we use a small size
broadcast bucket. As a result, every m-service may take one
or more buckets to store. The broadcast channel is constructed
as follows:

� Allocate ��� empty buckets, where ��� is the number of
m-services.

� Generate a hash code for each m-service using the service
key.

� Place each m-service in the allocated bucket based on its
hash code.

� Calculate the number of buckets used to store this m-
service and place the value in the first bucket of this
m-service.

� For each m-service, consider the following scenarios:

– If the m-service size is larger than the bucket size,
keep creating new buckets until the m-service can fit
in and shift all the rest of buckets forward.

– When there is a hash code conflict, create one or
more buckets to fit the m-service and shift the rest
of buckets forward.

– Change the shift value accordingly whenever a
bucket is shifted forward.

There are two cases that can cause a bucket to shift forward:
(1) when there is a hashing conflict, this is the same as in fixed
size case; (2) when a m-service is larger than the bucket size.
As a result, in the broadcast channel, all buckets will still be
equal in size, except that some m-services may occupy several
buckets. However, the structure of the broadcast channel is still
the same as that in fixed size m-service channel. Therefore,
the way of accessing m-service channel with varied-size m-
services will be the same too.

Upon tuning into the broadcast channel, a mobile client will
download the first complete bucket it comes across. Then the
mobile client calculates the hash code of the request service
key or primary key of the requested data item and compare the
calculated hash code with the hash code stored in the current
bucket to find the time offset to the right bucket (hashing

position), which means the bucket with the matching hash
code. The mobile client then goes to doze mode and wakes up
when the right bucket arrives. If the shift value in that bucket is
not empty, it means the actual bucket has been shifted because
of collisions or varied-size m-services. The mobile client then
goes to the bucket indicated by the shift value (shift position)
to retrieve the requested service or data item.

IV. ANALYTICAL MODEL

In this section, we present the analytical model for each
access method. The total access time for each service request
will be the sum of the time to obtain UDDI registry, download
and execute the selected m-service, and retrieve the data items.
The tuning time will be the time spent to actively listen to the
m-service and data channels plus the time to execute the m-
service. Table I defines the parameters and symbols used in
this section. The access time and tuning time can be expressed
as follows:

���
	��
������� � ����� � ���������������������� �
	��
��� � � � ������� � ���

Variables�
�
Number of registered m-services� �
M-service program size� �!
Size of m-service key�!"
Number of operations per service�!#
Number of data items in database� #
Key size of data items� #
Data item size�%$
Logical broadcast unit (bucket) size&('
Broadcast cycle - the length of all contents in the broadcast channel& �
M-service wireless channel bandwidth&(#
Database wireless channel bandwidth

Performance measurement parameters)+*
Total access time, *
Total tuning time- *
Time to obtain UDDI information. * �
Time to switch to m-service channel)+* �
Access time to obtain m-service, * �
Tuning time to obtain m-service/ *
Time to execute m-service. * #
Time to switch to data channel) * #
Access time to retrieve data items, * #
Tuning time to retrieve data items& *
Broadcast cycle time - time to scan the whole broadcast channel

TABLE I

SYMBOLS AND PARAMETERS

Our focus of this paper is on access methods for m-services
and data channels. To simplify the analysis, we assume that
the time to obtain UDDI registry is a fixed value. It is
also reasonable to assume that the switch time between two
channels is a fixed value. Thus, in the above formulas,

� �
,��� � ,

�0�
, and

�����
are constants. Now what account for the

access efficiency of each service request are the access time
and tuning time of m-service and data channels. In the rest
of this section, we will show how to derive access and tuning

8

times for accessing m-service channel and data channel with
different access methods.

A. Accessing m-service channel

In this section, we investigate three different access methods
that can be used to make m-service channel access more
efficient, namely, signature indexing, hashing, and B+ tree
indexing. We consider two scenarios for each method: (1) m-
service channel contains fixed-size m-services; (2) m-service
channel contains varied-size m-services.

1) No data access method: As a comparison benchmark,
we present the performance of accessing m-service chan-
nel without access methods. Mobile clients need to traverse
through the whole broadcast channel until the requested m-
service is found. Therefore, the expected access and tuning
times will not be dependent on whether the m-service size
is fixed or not. When a mobile client tunes into a broadcast
channel, it may hit any position of a broadcast bucket. The
mobile client has to stay active until the first complete bucket
is retrieved so as to acquire enough access information. We
define the time spent for the first complete broadcast bucket
to arrive as the initial wait time (� �). The average access time
and tuning time are both half of the whole broadcast cycle
time, plus the initial wait time:

� � � 	 � � � 	������� � � � �
	�����
	 ��� � ��� �
 �� �

On average, the initial wait time is equal to the time to
retrieve half of a bucket, which is �� ������ � . The initial wait
time will be part of the access time and tuning time of every
access method, but the calculation may vary.

2) M-service channel with fixed-size m-services:
Signature indexing: In this method, mobile clients always

examine the preceding service key before downloading a m-
service. Since the service key of each m-service is unique,
there will be no false drop. The average access time is half
of the broadcast cycle time plus the initial wait time. The
tuning time consists of the initial wait time, time to retrieve� �� signature buckets and download the requested m-service.
The average initial wait time here is half of the time to scan
a signature bucket and a m-service bucket, which is as �� �	
 � �
 ��� ��� � � . There are � � signature buckets and � �
m-service buckets in a broadcast cycle. Thus, the broadcast
cycle time is � ����	
 � �
 ��� ��� � � . Based on the above
analysis, we have:

��� � 	��� � 	
 � �
 ��� �� � ���� � � ��� 	
 � �
 ��� �� �
	 ����
	 � � � ��� � 	
 � �
 ��� �� �

� � � 	��� � 	
 � �
 ��� �� � ���� � � ���
 ���� � �
 �� �
	 	 � �� �
 � ���� �
	 � � � � � �
 ��� ��� � �

Hashing: In this method, each service key is hashed to an
integer value. The hashing function precedes each m-service
to help locate the requested service key. The hash value of
each service key also precedes the corresponding m-service.
In cases of collisions, buckets in broadcast channel may be out
of place. Therefore, an offset value is required at the beginning
of each bucket to indicate the right position of the m-service
with the correct hashing value. Let

"!
be the hashing function

size,

#! � be the hash value size, and

%$'&
be the offset value

size. Thus, the size of each bucket

"(

is

 � �
%! �
#! � �
#$'&

.
The access time of the hashing method consists of the initial

wait time (� �), time to reach the hashing position () �), time to
reach the shift position (

 �
), time to retrieve colliding buckets

(
� �

), and time to download the required bucket (* �). * � is
the time to read one complete bucket, which is �,+� � . Let �.- be
the number of colliding buckets, if the collisions are uniformly
distributed among all m-services, the average number of shifts
for each bucket is thus

�0/� . Therefore, we have

 �!	 �0/� � �,+� � .

Furthermore, the average number of colliding buckets for each
hashing value is

�0/� � . Thus, we have
� � 	 �0/� � � �,+� � . There

is more involved in the calculation of) � . Assume the number
of initially allocated buckets is the number of m-services � �
and the number of colliding buckets is � - . The resulting total
number of buckets in the broadcast cycle is � 	 ��� � � - . We
calculate) � based on the position of the first arriving bucket
and whether the requested information has been broadcast or
not. Assuming that the position of the first arriving bucket is
n,) � consists of the following three parts:

) �21 	
34 5) � � 	26�7 ��� �) � � 	86:9 � � and ;�<�= >@?A< B CD;�E�FHGJIKFHLM? 	 �NFHOPLM< �) �2Q 	26�9 ��� and ;�<�= >@?A< B CR;�E�FHGSITFULM? 	 � ;�VW< �

The req item broadcast above designates if the requested
information has already been broadcast in the current broad-
cast cycle. Each part of) � is derived as follows:

) � � 	 �.-
� ��	 �����	 � - � ��� ��� �
 (

� � 	 ���� � - �
 (
� �) � � 	����� � �� � � �XY�
#(

� �) �2Q 	��� � � �� �
	 � �X � �Z- � � �X � �
 (
� �

The first part of each formula above is the probability
the scenario will happen. As a result, we have) �) � � �) � � �) �2Q . Based on the above discussion, the
access time can be derived as:

� � � 	 � � �) � �
 � ��� � � * �
	 	 � - ������ ��� � � -

� �
� � �� �

� 	
 � �
 ! �
 ! � �
 $'& �� �
The tuning time consists of the initial wait time, the time to

read the first bucket to obtain the hashing position (read one
bucket), time to obtain the shift position (read one bucket), and

9

time to retrieve the colliding buckets (
���

), and time to down-
load the required bucket (read one bucket). The probability of
collision is

� /� � . Thus, we have
���
	 � /� � �
 (� � � . For those

requests that tune in at the time which the requested bucket has
already been broadcast, one extra bucket read is needed to start
from the beginning of the next broadcast cycle. The probability
of this scenario occurrence is 	 � - � �� � � � �'� 	 � - � ��� � . As
a result, the expected tuning time is:

� � � 	 	 � - � �� � � �
�Z- � � � � � -

� �
� X �� � �
#(

� �
where

 (
 � �
 ! �
 ! � �
 $�&
.

B+ tree indexing: Let 6 be the number of index entries
can be stored in a bucket, intuitively 6 	�� � �� ��� � . Let k be
the number of levels of the index tree. It is also intuitive that� 	��	��

��� 	 ��� ��� . The access time consists of three parts: the
initial wait time, initial index probe time, and broadcast wait
time. Let

 1 (
be the size of index bucket and

 � (be the size
of m-service buckets. We have the following derivations:

initial wait (� �): The calculation of the initial wait is
different from that of signature indexing because the number
of index buckets is not the same as the number of m-service
buckets. When a client tunes into the broadcast channel, it
may hit an index or a data bucket arbitrarily. Let � 1

be the
number of index buckets in a broadcast cycle, the probability
of hitting a index bucket is

��� ��� � � � +� / and m-service bucket
is

� � � � � +�#/ . Therefore, the initial wait is:

� �
	��� ��	 B � � 1 �
 1 (
� - �
 1 (� � ���
 � (� - �
 � (�'� � �

initial index probe (� �): This part is the time to reach the
first index segment. It can be expressed as the average time to
reach the next index segment, which is calculated as the sum
of the average length of index segments and data segments.
With an n-ary index tree of k levels, the number of index
buckets (� 1

) is:

� 1 	 � � 6 ������� � 6 ��� � 	 6 ��� �6 � �
where

� 	�����
 ��!#" � +" ��� $ 	 � � �%� . The average number of data

buckets in a data segment is
� �� . Therefore, the initial index

probe is calculated as:

� � 	 �����	 6 �&� �6 � � �
 1 (� � �B �
 � (��� � �
broadcast wait (' �): This is the time from reaching the

first indexing segment to finding the requested m-service. It
is approximately half of the whole broadcast cycle time � - ,
which is 	 B � � 1 �
 1 (� � � �
 � (��� � � . Thus, the total
access time is:

� � � 	 � � � � � � ' �

The tuning time is easier to calculate than access time,
because during most of the probes clients are in doze mode.
It includes the initial wait � � , the time to read the first bucket
to find the first index segment (read one index or data bucket,
which is

� � � �), the time to traverse the index tree (read
�

buckets), and the time to download the m-service (read one
bucket). Thus, the tuning time can be derived as:

� � � 	 � � � � � � ��� 	 � �
 1 (�
 � (�'� � �
	 X � � ��� � �
 1 (�
 � (� �

3) M-service channel with varied-size m-services:
Signature indexing: Since the m-services have different

sizes, in front of each m-service we also need the size of the
m-service to direct the mobile clients to the next m-service.
Assume the size of the variable containing m-service size is
 �)(, we have

� � � 	�����
	 ��� � � � �
 � �
 ��� �
 �)(� �
� � � 	 �� ��	
 � �
 ��� �
 �)(� � �� � � � �
	
 ��� �
 �)(� �
 �� �

	 � �� �
 � � �� ��	 � � � ��� ��	
 ��� �
 �)(�� �
Hashing: The analysis process of the analytical model for

hashing in case of varied m-service size will be the same as
that of fixed m-service size. All m-services will still be hashed
into different positions in the broadcast channel by using a
hash function. However, each m-service may need one or more
buckets to store it. Furthermore, now we have two reasons that
could cause m-services to be out of place: the large size of m-
services and the collisions. Let � - $ be the sum of conflict and
offset items, 6 be the average number of buckets per service.
Following the same analysis process in Section IV-A.2, we
can derive the access time and tuning time as follows:

� �
	��� �
 (
� �) � � 	 � - $

� �
	 ����
	 � - $ � ��� ��� �
%(
� �) � � 	��� � ���� � � �X �
#(

� �) �2Q 	����� ���� �
	 � �X � � - � � �X � �
#(
� �
 � 	 � - $� �
#(

� �
� � 	 �.-

� � �
 (
� �* � 	 6:�
#(

� ���� � 	 � � �) � �
 ��������� * �
	 	 �Z- $ ���� � �

�
�

���� � � � �Z-
�

� �.-
� �

� 6 ���� ��
 (� � �
� � � 	 	 �Z- $ � �� � � �

� - � ��� � 	 �.-
� �

� � � � 6 � � �� � �
 (
� �

B+ tree indexing: The analytical model of B+ tree indexing
for varied-size m-service channel is the same as the one for
fixed-size m-service channel. The time offset values contained

10

in each bucket are absolute values. The differences in the m-
services sizes only result in the differences in the values of
those time offsets. The expressions of the access time and
tuning time are still the same as those presented in Section IV-
A.2.

B. Accessing data channel

In this section, we present the analytical model for each
access method being applied to the data channel when each
request acquires one or more data items. Let � $

be the number
of operations per mobile service and � � $ be the number of
data items requested by an operation. The total number of
data items requested per m-service is thus � $ � � � $. Without
losing the generality, to simplify the analysis, we assume that
every operation only requests for one data item. Therefore, for
each m-service, � $

data items will be requested.
No data access method: In this case, no access method

is used to access data in the data channel. Mobile clients
need to traverse through the whole broadcast channel until
all the requested � $

data items are found. If all data items
are uniformly distributed in the data channel, the average
traversing distance to reach the last requested data item will
be

���� ��� � of the whole broadcast cycle time plus the initial
wait time. Thus, we have

� ��� 	 � ��� 	 � $
� $ � � ��� � � � �

	 	 � $
� $ � � � � ������ � �
 �

� �
Signature indexing: Mobile clients always examine the

primary key first before downloading the whole data item.
To find all requested data items, mobile clients need to finish
listening to

���� ��� � of the whole broadcast cycle. The access
time and tuning time can be derived as follows:

����� 	 	 � $
� $ � � � � ������ � �
 ���
 � �� �

� ��� 	 �� �
	
 � �
 � � � � � ���� � � � � � �
 � � � � $ �
 �
� �

Hashing: The access time and tuning time of hashing
for data channel can be derived based on the analysis in
Section IV-A.2. The only difference is that for data channel,
� $

data items are acquired for each request. When tuning
into the data channel, a mobile client downloads the first
complete bucket to obtain the hashing function and the hash
code of the current bucket. Then the mobile client calculates
the hash code for each request key and compares it with the
hash code stored in the current bucket. From the comparisons,
the distance to the hashing position of each data item can be
derived. The mobile client then saves these distance values in
a distance list in the order of the distances and goes to them
one by one following the distance list. After reaching each
hashing position, the mobile client follows the same procedure
as described in Section IV-A.2 to find the requested data item.
At each step, the distance list is updated with any new distance
value obtained. Since all these steps are done sequentially, the

total access time to retrieve all � $
data items will be the access

time spent to retrieve the farthest data item from the point the
mobile client tunes in. The same applies to the tuning time.
With this in mind, our analysis can be simplified as requesting
only one data item given that the item is the farthest one of
� $

uniformly distributed data items from the point a mobile
client tunes in.

Based in the analysis in Section IV-A.2, the access time still
consists of: � � ,) � ,
 � , and

� �
, plus the time to download the

requested data items (read � $
buckets). If the position of the

first arriving bucket is after � � , the average time to get the
farthest data item will be

���� ��� � � 	 �.- � � � � � �,+��� ; if the first
arriving bucket is in � � , and any of the requested items is not
broadcast yet, the average time to get the farthest data item will
be

� ���� � � � � � � �,+��� ; if the first arriving bucket is in � � , and one
of the requested items is not broadcast yet, the average time
to get the farthest data item will be 	 � ��� ���� � � � � � � � - � � �,+� � .
With the special consideration of the probability, each of this
time can be derived as follows:

) � � 	 � -
� �
	 � $

� $ � � �
	 �Z- � � � � � 	 � $
� $ � � � �.- �
#(

� �) � � 	 �
� $ � � � � �� � � $

� $ � ��� � � �
 (
� �) �2Q 	 � $

� $ � � � � �� ��	 � $ � �
� $ � � � � ��� �.- � �
#(

� �
 � 	 ���� � - �
 (
� �

� � 	 � $� � � -
� � �
#(

� �* � 	 � $ �
 (
� �� � 	�����
#(

� �
The bucket size

%(
above is equal to

 � �
#! �
#! � �
#$'&
.

The access time can be derived from the above formulas as
follows:

��� �) ���
 ������� � * � � � �
The tuning time consists of the initial wait time, the time

to read the first bucket to obtain the hashing positions for all
requested data items (read one bucket), time to obtain the shift
position (read � $

bucket), and time to retrieve the colliding
buckets (

��� � � $
), and time to download the required bucket

(read � $
buckets). The probability of collision is

� /��� . Thus,
we have

� � 	 � /��� � � +��� . For those requests that tune in at
the time when the farthest requested bucket has already been
broadcast, one extra bucket read is needed to start from the
beginning of the next broadcast cycle. The probability of this
scenario occurrence is 	 	 � - � � �� ��� � � � � �'� 	 �Z- � � � � � � �,+��� . As
a result, considering the initial wait time, the expected tuning
time is:

� � � 	 	 � �� � � $ � �.-
� � � � $ � � $ � � - � ���� ��� � � � �

� - � � � �
�
#(

� �

11

B+ tree indexing: When requesting for multiple data items
(� $

), we need a local list to save a sequence of time offset
values to the buckets to be visited next. Figure 6 shows a
typical full index tree consisting of 81 data items, with each
index containing three child nodes. Using Figure 6 as an
example, we illustrate how multiple data items are retrieved
by a request.

Assume we are requesting for data items 12 and 66. The
following steps are taken to retrieve these two data items:

� Mobile client tunes into data channel.
� Goes to doze mode and wakes up at the beginning of the

closest index segment.
� Compares the keys of the requested data items (12 and

66) with the index entries in the root node/bucket. And
saves the time offset values to a1 and a3 in a local list
with a1 in front because a1 is closer.

� Goes to bucket containing node a1 and compares the keys
again. Then saves b2 in the list with the new sequence
a3, b2 because a3 is closer. Offset value to a1 is removed
because it is already visited.

� Goes to bucket containing a3 and compares the keys.
Removes a3 and saves b8 in the list with the sequence
b2, b8.

� Goes to b2, compares the keys, and saves c5 after b8 in
the list.

� Goes to b8, compares the keys, and saves c23 after c5 in
the list.

� Goes to bucket containing data item 12 and download the
data item.

� Goes to bucket containing data item 66 and download the
data item.

Following the above procedure, the access time is equal
to the time spent to retrieve the data item pointed by the
index entry stored in the right most index bucket in the index
tree. Based on the analysis in Section IV-A.2, the access time
consists of the initial wait time (� �), the initial index probe
(� �) and the broadcast wait (' �). Let

 � (
be the size of data

buckets. Since the index and data buckets have same size in
data channel, the initial wait time can be simplified as follows:

� � 	 ����
 � (
� �

The derivation of initial index probe is unchanged, which
is:

� � 	 �� �
	 6 �&� �6 � � � �
�

B � �
 � (
� �

The broadcast wait will be approximately
� ���� � � of the

whole broadcast cycle, which is
� �� ��� � � � � � � � +��� . Thus, the

total access time is:
����� 	 � � � � ��� ' �

	 	 �� � 6 � � �� 	26 � ��� � �
�� B � � $ � � �

� $ � � � �
 � (
� �

where
� 	 �	��

��! " �" � �

$ 	 � � �%� .
The tuning time includes the initial wait time � � , the time

to read the first bucket to find the first index segment (read

one bucket), the time
� 1

to traverse the index tree for � $
data

items, and the time
� �

to download all � $
data items, which

is � $ � � � +��� . It is hard to derive the exact value of
� 1

because
it depends on the distribution of the � $

requested data items
in the index tree. Instead, we derive the average value of

� 1
.

The minimum value of
� 1

is achieved when all � $
data items

are siblings in the index tree, in which
�

index bucket probes
are required. The value of

� 1
reaches maximum when all � $

requested data items are distributed uniformly in the index
tree. In this case we need

��

����� ��� 	 � � � probes for each data
item. Therefore, the average

� 1
is:

� 1 	 F���	 � 	 � � � $ � ��
 �
� � ��� 	 � $ �� �
 � (
� �

As a result, the tuning time is:
� ��� 	 � � � � � � � 1 	 F���	 � � � �

V. SIMULATION AND EXPERIMENTS

In this section, we present our experiments to evaluate
the performance of the proposed methods. The experiments
are performed using an adaptive testbed [10] developed to
simulate wireless data access. We further enhanced the testbed
to simulate the proposed m-service environment and to be
capable of supporting fixed-size and varied-size m-service
channel. Since the bandwidth of wireless channels may vary in
the real world, all the analytical and simulation results in this
paper are presented in the form of the length of the broadcast
data that has been traversed, instead of the actual time spent.
Another reason that we do not use the actual time as the
performance measurement is that there are several factors that
may affect time measurement during simulation, such as CPU
speed, network delay, CPU workload, etc. The access time
for each method is represented by the length of all broadcast
buckets passed by when requesting an m-service or data item.
The tuning time of a request is calculated as the length of all
buckets actively accessed (listened and downloaded) by the
request.

We assume that every service request starts with requesting
for an m-service, and after the execution of the mobile service,
the mobile client will start listening to the data channel until
the requested data item(s) are found and downloaded. The
mobile client does not have to go back and forth between
the mobile services channel and data channel. Based on this
assumption, we consider the performance measurement of
accessing mobile services and accessing data items to be two
sequential processes and can be analyzed separately.

The experiments consist of three cases: (1) accessing fixed-
size m-service channel; (2) accessing varied-size m-service
channel; (3) accessing data channel. For each case, we present
the simulation settings we used to evaluate the m-services and
data access. The outcome of each experiment will be measured
by access and tuning times.

Table II lists all common simulation settings used in our
experiments. The Confidence level and Confidence accuracy

12

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 780

I

c1 c2 c3 c4 c14c13c12c11c10c9c8c7c6c5 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26 c27

b1 b2 b3 b4 b5 b6 b7 b8 b9

a2a1 a3

Fig. 6. A sample index tree

Mobile service key size (
� �

) 16 bytes
Data record key size (

� #
) 10 bytes

Data record size (
� #

) 100 bytes
Number of requests �������������
Confidence level 0.95
Confidence accuracy 0.05
Requests interval exponential distribution
Requests generation distribution uniform distribution

TABLE II

PARAMETERS IN THE EXPERIMENTS

in the table are used to control the accuracy of the simulation
results1. Users can specify the values of confidence level
and accuracy before starting simulation. The simulation will
not end until the expected confidence level and accuracy are
achieved. By using these two parameters, we ensure that
simulation results we obtained are stable. A a rule of thumb,
to achieve the confidence level and accuracy of 0.95 and 0.05,
it normally takes more than 10,000 requests. The interval time
between any two requests follows exponential distribution. In
this paper, we assume that all mobile services or data items
have equal probability of being accessed, which means the
requested mobile services and data items in our simulation are
selected following uniform distribution. We use the standard
mobile service key size, which is 16 bytes [11].

A. Performance measurement of accessing fixed-size mobile
services channel

Table III lists all the experiments we conducted for access-
ing fixed-size mobile services channel and their simulation
settings.

Figure 7 shows the simulation results for accessing fixed-
size mobile services channel using plain broadcast, (1,m)

1Given N sample results 	�
 , 	
� , ..., 	
� , the confidence accuracy is defined
as H/Y, where H is the confidence interval half-width and Y is the sample
mean of the results (�����	�
���	�������������	������ �). The confidence level
is defined as the probability that the absolute value of the difference between
the Y and � (the true mean of the sample results) is equal to or less than H.
H is defined by !�#" $�% �'& �)(
+*-, ��. � where , � is the sample variance
given by , � ��/102��	30546	7� � �8� � 49�'� (thus , is the standard deviation),
and t is the standard t distribution.

Access Method
� � � �

Experiment 1 plain 1 - 1000 50 KB
Experiment 2 Signature indexing 1 - 1000 50 KB
Experiment 3 Hashing 1 - 1000 50 KB
Experiment 4 B+ tree indexing 1 - 1000 50 KB

TABLE III

ACCESSING BROADCAST CHANNEL WITH FIXED-SIZE MOBILE SERVICES

indexing, signature indexing and hashing. The lines marked
with (S) are simulation results. Those marked with (A) are
analytical results. We observe in both figures that the simula-
tion results match the analytical results very well.

As shown in Figure 7, signature indexing exhibits the best
performance in both access time and tuning time. The reason
is that the size of the mobile services is much bigger than
that of the service key, which is used as the signature for each
mobile service. Therefore, the overhead introduced by adding
signature for each mobile service in the broadcast channel is
very small compared to the whole broadcast cycle. This results
in an access time close to the plain broadcast (as shown in
Figure 7), which has the optimum access time performance.
The tuning time of signature indexing is determined by both
signature size and the number of false drops. As we mentioned
in Section IV-A.2, since all service keys are unique, there is
no false drop for signature indexing. So the tuning time of
signature indexing consists of the reading time of a series of
signatures (looking for a match) and the time to download
the requested mobile service. This value is smaller than other
methods because the signature size is considerably smaller
than m-service size.

To help us better understand the performance trends shown
in the figures, we define two terms here, access method
overhead and conflict overhead. The access method overhead
means the overhead introduced to the broadcast cycle to apply
access methods to the broadcast channel, such as hashing
values, hashing functions, signatures, and indices. And the
conflict overhead designates the overhead produced by data
conflicts when applying access methods to broadcast channel.
Examples of conflict overhead are false drops in signature in-

13

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

0 200 400 600 800 1000

A
cc

es
s

T
im

e
 (

A
t)

No. of Mobile Services

(a) Access Time vs. Number of Mobile Services

plain broadcast (S)
plain broadcast (A)
(1,m) indexing (S)
(1,m) indexing (A)

hashing (S)
hashing (A)

signature indexing (S)
signature indexing (A)

0

50000

100000

150000

200000

250000

300000

350000

400000

0 200 400 600 800 1000

T
un

in
g

T
im

e
 (

T
t)

No. of Mobile Services

(b) Tuning Time vs. Number of Mobile Services

(1,m) indexing (S)
(1,m) indexing (A)

hashing (S)
hashing (A)

signature indexing (S)
signature indexing (A)

Fig. 7. Compare all access methods for fixed size m-services channel

dexing and hashing conflicts in hashing method. It is intuitive
that the access method overhead is determined by the number
and size of the extra information required by different access
methods. For example, the access method overhead in (1,m)
indexing is determined by the number of index buckets in the
index tree and the number of segments. On the other hand,
the conflict overhead is usually determined by the conflict
rate and the size of the broadcast data, in this case, the
mobile services. In the experiments covered by this section,
the conflict overhead is much greater than the access method
overhead because the size of m-services is a lot larger than
that of service keys, which are used as signatures in signature
indexing and primary key in (1,m) indexing. Since hashing is
the only method that may have conflict overhead, it has the
worst performance in both access and tuning times, which is
also proven by the simulation results.

The performance of (1,m) indexing falls in the middle. The
reasons are, on one hand, (1,m) indexing does not have conflict
overhead, it thus has better performance than hashing. On
the other hand, it needs to broadcast index tree m times in
a broadcast cycle, which results in a greater access method
overhead. Therefore, the resulting performance is not as good
as signature indexing.

As a result, it is obvious that signature indexing is the most
suitable access method for accessing broadcast channel with
fixed-size mobile services.

B. Performance measurement of accessing varied-size mobile
services channel

In this section, we present the simulation experiments
we conducted for accessing broadcast channel that contains
varied-size m-services. In these experiments, we define a range
for size of m-services being broadcast and assume that the
sizes follow uniform distribution in that range. Table IV shows
the simulation settings. The simulation and analytical results
for different methods are presented in Figure 8. Again, we
observe that the simulation results match the analytical results
very well.

Access Method
�
� � �

Experiment 6 None 1 - 1000 1 - 100 KB
Experiment 7 Signature indexing 1 - 1000 1 - 100 KB
Experiment 8 Hashing 1 - 1000 1 - 100 KB
Experiment 9 B+ tree indexing 1 - 1000 1 - 100 KB

TABLE IV

ACCESSING BROADCAST CHANNEL WITH VARIED-SIZE MOBILE SERVICES

The access time performance shown in Figure 8(a) is very
similar to that in accessing fixed-size m-service channel.
The only difference is that the values are slightly larger.
This is because in each method (except plain broadcast),
extra information is broadcast to store the size of every m-
service/bucket. (1,m) indexing and signature indexing exhibit
similar performance trends in tuning time as well. However,
we observe a great tuning time improvement for hashing
method. This improvement is caused by the technique we
used to apply hashing to varied-size m-service channel. Since
hashing methods requires all buckets to the the same size,
we cannot directly put every m-service in a single bucket
and place the in the broadcast channel. As introduced in
Section IV-A.2, we use a small size bucket as the basic
broadcast unit. Every m-service may take up one or more
buckets to store. By using this technique, we can still take
advantage of hashing method in varied-size m-service channel.
Another improvement achieved by this technique on hashing
method is the improved tuning time. The conflict overhead on
tuning time is now determined by the bucket size instead of
the m-service size because a mobile client only needs to read
the first bucket of an m-service to find out if it is the requested
m-service. If not, with the help of the extra information stored
in the broadcast channel indicating the size of the current m-
service, the mobile client will go to doze mode and wake up
when the next m-service arrives. Since the bucket size now is
much smaller than the average m-service sizes, the resulting
tuning time will be consequently much smaller too.

Even though the hashing method exhibits similar and some-
times even better tuning time performance than the signature

14

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

5.5e+07

0 200 400 600 800 1000

A
cc

es
s

T
im

e
 (

A
t)

No. of Mobile Services

(a) Access Time vs. Number of Mobile Services

plain broadcast (S)
plain broadcast (A)
(1,m) indexing (S)
(1,m) indexing (A)

hashing (S)
hashing (A)

signature indexing (S)
signature indexing (A)

0

50000

100000

150000

200000

250000

300000

350000

400000

0 200 400 600 800 1000

T
un

in
g

T
im

e
 (

T
t)

No. of Mobile Services

(b) Tuning Time vs. Number of Mobile Services

(1,m) indexing (S)
(1,m) indexing (A)

hashing (S)
hashing (A)

signature indexing (S)
signature indexing (A)

Fig. 8. Compare all access methods for varied size m-services channel

indexing, the latter is still preferred in varied-size m-service
channel because of its good performance in access time.
Therefore, we conclude that the signature indexing is the most
suitable access method for m-services channel, either with
fixed-size or varied-size m-services.

C. Performance measurement of accessing data channel

As a result of executing m-services, mobile clients will tune
into data channel to request data items. In [10], we conducted
extensive experimental study on performance evaluation of
accessing data channel for different access methods. However,
all the completed experiments assume that a mobile client
only requests for one data item at a time. This is obvious
not applicable in the m-service environment, where each m-
service may have one or more operations, and each of such
operation may request one or more data items. As discussed
in Section IV-B, without losing generality, we assume that
each operation requests one data item only. Therefore, each
m-service requests � $

data items, where � $
is the number of

operations contained in the m-service.
In this section, we present the simulation experiments for

accessing data channel with multiple operations for each m-
service. We consider two scenarios: (1) every m-service has
fixed number of operations; and (2) every m-service has varied
number of operations.

Accessing data channel with fixed number of operations:
Table V lists all simulation experiments we conducted for the
scenario that each m-service has 5 operations. We assume that
the data channel may contain up to 100,000 data items.

Access Method
� " �!#

Experiment 11 None 5 10,000 - 100,000
Experiment 12 Hashing 5 10,000 - 100,000
Experiment 13 B+ tree indexing 5 10,000 - 100,000
Experiment 14 Signature indexing 5 10,000 - 100,000

TABLE V

ACCESSING DATA CHANNEL WITH FIXED NUMBER OF OPERATIONS

We observe from Figure 9 that plain broadcast and signature
still have the best access time performance which is consistent
with our previous study in [10]. However, we also observe
that hashing method exhibits better performance than (1,m)
indexing, which is contradictory to the results of the simulation
experiments we conducted before, where only one data item is
acquired by a request. This phenomenon can be explained as
follows: With (1,m) indexing, the whole index tree is broadcastB times in each broadcast cycle. When only one data item is
requested, on average a request will traverse though about half
of these trees. But when � $

data items are requested, a request
will have to traverse through most of these trees depending on
the value of � $

. This overhead results in a larger access time
for (1,m) indexing.

Figure 9 only shows the tuning time for (1,m) indexing and
hashing method because the tuning time for plain broadcast
and signature indexing are too large to fit into this figure. We
therefore exclude them from our analysis. As we can see from
Figure 9, hashing method still has the best tuning time among
all methods, which is also consistent with our previous study.

Accessing data channel with varied number of operations:
We now consider the scenario that each m-service has different
number of operations. This scenario is closer to the real world.
We assume that the data channel contains 50,000 data items.
Table VI lists all the experiment settings.

Access Method
� " �
#

Experiment 15 None 1 - 10 50,000
Experiment 16 Hashing 1 - 10 50,000
Experiment 17 B+ tree indexing 1 - 10 50,000
Experiment 18 Signature indexing 1 - 10 50,000

TABLE VI

ACCESSING DATA CHANNEL WITH VARIED NUMBER OF OPERATIONS

Figure 10 shows the simulation results for accessing the
data channel with varied number of operations. We observe
that both access time and tuning time of every access method
increase with the number of operations per m-service. It is
noticeable that the increase of access time is not linear. The

15

0

5e+06

1e+07

1.5e+07

2e+07

0 20000 40000 60000 80000 100000

A
cc

es
s

T
im

e
 (

A
t)

No. of Data Items

(a) Access Time vs. Number of Data Items

plain broadcast (S)
plain broadcast (A)
(1,m) indexing (S)
(1,m) indexing (A)

hashing (S)
hashing (A)

signature indexing (S)
signature indexing (A)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20000 40000 60000 80000 100000

T
un

in
g

T
im

e
 (

T
t)

No. of Data Items

(b) Tuning Time vs. Number of Data Items

(1,m) indexing (S)
(1,m) indexing (A)

hashing (S)
hashing (A)

Fig. 9. Compare all access methods for data channel with fixed number of operations

increase becomes slower when the number of operations gets
larger. This can be explained by using plain broadcast as an
example. When requesting one data item in plain broadcast, a
mobile client needs to traverse averagely half of the broadcast
cycle to obtain the data item. With two data items, the mobile
client needs to go through two thirds of the broadcast cycle
on average, and three fourth of the broadcast cycle for three
data items, four fifth for four, and so on. As the number of
data items increases, the increase value of the traverse length
decreases, which indicates the access time will increase more
slowly with the number of operations. On the other hand, since
the tuning time directly relates to the number of data items
mobile clients download, it increases linearly with the number
of operations.

Comparing the access methods, we still see the same
performance trends as in the last section. Plain broadcast and
signature indexing have the best access time performance.
Hashing method still has the best tuning time performance
and has better access time performance than (1,m) indexing.

VI. RELATED WORK

M-commerce has attracted considerable attention during the
past years. The Wireless Access Protocol (WAP) initiative is
working on standard protocols to enable access to services
from mobile hosts [21]. WAP defines a 3-tier architecture
where the central component, the gateway, is responsible for
encoding and decoding requests from wireless devices to Web
servers and vice-versa. Contrary to our approach which uses
the broadcast mode, WAP is mainly based on the on-demand
access mode. Broadcast has been proven to be more efficient
(in terms of power consumption) than the on-demand mode
[15], [16]. Additionally, the use of a centralized gateway
represents a single point of failure in WAP architecture.
Finally, WAP does not address the issue of discovering m-
services.

Mobile Data Services (MDS) is an architecture that imple-
ments SOAP protocol for wireless devices [14]. The architec-
ture consists of two main components: an MDS portal server,
which implements a SOAP server, and an MDS client which

sends requests ti the MDS portal server using SOAP remote
procedure calls. MDS uses the on-demand access mode for
accessing m-services. Additionally, it inherits the scalability
problems of SOAP protocol [1]. [22] presents an agent-
based architecture to support m-services. In this architecture,
storage servers play the role of intermediaries between users’
and providers’ agents. They store m-services to be sent to
wireless devices for execution. Device-agents are defined to
wrap m-services before they are sent to wireless devices. The
cost of downloading m-services from storage servers to the
wireless device still needs to be evaluated. Additionally, no
performance study has been conducted to assess the scalability
of this approach. Indexing methods have been developed
to enable efficient access to wireless channels in broadcast
environments [15], [16]. However, these methods are designed
for mobile databases not for m-services. Other techniques
to address location [23] and dependability [24] issues in m-
commerce have also been proposed. However, these techniques
do not deal with m-services organization and access.

Several companies are developing platforms to support m-
services [25]. These platforms are at various development
stage and operate at different levels of disclosure. IBM has
released a Services Toolkit for Mobile Devices which provides
tools for building Web services that can be accessed from dif-
ferent types of wireless devices (e.g., Palm devices, Windows
CE-based Pocket PCs). Microsoft offers tools based on .NET
technology for building Web services that run on the Pocket
PC and Windows CE platforms. Nokia introduced the Nokia
Multimedia Message Service which links wireless devices with
Web application servers. Other industry leaders involved in
Web services, such as HP, BEA Systems, and Oracle, are
also providing utilities for m-services. Note that most of the
exist commercial products use at-hand or on-demand modes
for accessing m-services.

VII. CONCLUSION

In this paper, we proposed a novel infrastructure for orga-
nizing and accessing m-services in broadcast environments.
Key requirements for designing such infrastructure are min-

16

0

5e+06

1e+07

1.5e+07

2e+07

0 2 4 6 8 10

A
cc

es
s

T
im

e
 (

A
t)

No. of Operations per Service

(a) Access Time vs. Number of Operations per Services

plain broadcast (S)
plain broadcast (A)
(1,m) indexing (S)
(1,m) indexing (A)

hashing (S)
hashing (A)

signature indexing (S)
signature indexing (A)

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10

T
un

in
g

T
im

e
 (

T
t)

No. of Operations per Service

(b) Tuning Time vs. Number of Operations per Services

(1,m) indexing (S)
(1,m) indexing (A)

hashing (S)
hashing (A)

Fig. 10. Compare all access methods for data channel with varied number of operations

imizing power consumption and clients’ waiting time. We
presented a multi-channel model for m-services. Three types of
information are accessible through those channels: advertised
information about m-services (UDDI channel), m-services’
descriptions and codes (m-services channel), and data needed
by m-services during their execution (data channel). To enable
efficient access to wireless channels, we extend three well-
known indexing techniques to the context of m-services: B+
tree, signature indexing, and hashing.

To illustrate the viability of our approach, we conducted
analytical and experimental analysis of the aforementioned
techniques. From the experiments, we note the following
observations: (1) Plain broadcast (no access method) has
the best access time but the worst tuning time. Since the
tuning time of plain broadcast is far larger than that of
any access method, it is usually not a preferred method in
power limited wireless environments; (2) Signature indexing
is the most suitable access method for m-service channel since
it exhibits better access time and tuning time performance
than all other methods; (3) When broadcast information has
very large size (e.g. m-services), using smaller broadcast
buckets can increase the performance of hashing method;
(4) Access methods can be applied to varied-size m-service
channel without introducing considerable overhead. (5) In
data channel, signature indexing achieves better access time
than most of the other access methods schemes. However,
the tuning time of signature indexing is pretty large. When
energy is of little concern compared to waiting time, signature
indexing is a preferred method. (6) Hashing achieves the best
tuning time and good access time in data channel. For energy
critical applications or at least when energy is not a negligible
factor, hashing method will be the preferred method in data
channel. The experiments showed that the best techniques
for m-services and data channels are signature indexing and
hashing methods respectively.

As future work, we propose to organize m-services and
data into multiple channels. M-services would be grouped
into different communities based on their category (e.g., air-
lines, hotels, finance). Each m-services channel would contain

m-services (description and code) that belong to the same
community. Similarly, each data channel would contain data
accessible by m-services within a specific community. Com-
bined with the proposed indexing techniques, such organiza-
tion would accelerate access to m-services and data. Instead
of looking into all m-services and data within the current
geographic area, mobile users would focus on m-services that
correspond to their category of interest.

Acknowledgment. The authors would like to thank he anony-
mous reviewers and Mourad Ouzzani for their valuable com-
ments on earlier drafts of this paper.

REFERENCES

[1] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K.
Elmagarmid, “Business-to-Business Interactions: Issues and Enabling
Technologies,” The VLDB Journal, vol. 12, no. 1, May 2003.

[2] R. Kalakota and A. B. Whinston, Frontiers of Electronic Commerce.
Addison Wesley (ISBN: 0-201-84520-2), February 2000.

[3] Z. Maamar, B. Benatallah, and Q. Z. Sheng, “Towards a Composition
Framework for E-/M-Services,” in First International Workshop on M-
Services - Concepts, Approaches, and Tools, Lyon, France, June 2002.

[4] J. A. Senn, “The Emergence of M-Commerce,” IEEE Computer, vol. 33,
no. 12, December 2000.

[5] U. Varshney and R. J. Vetter, Eds., Special Issue on Mobile Commerce,
ser. MONET 7(3), June 2002.

[6] U. Varshney and R. J. Vetter, “Mobile Commerce: Framework, Appli-
cations and Networking Support,” MONET, vol. 7, no. 3, June 2002.

[7] B. Medjahed, A. Rezgui, A. Bouguettaya, and M. Ouzzani, “Infrastruc-
ture for E-Government Web Services,” IEEE Internet Computing, vol. 7,
no. 1, January 2003.

[8] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the Web Services Web: An Introduction to SOAP,
WSDL, and UDDI,” IEEE Internet Computing, vol. 6, no. 2, February
2002.

[9] B. Benatallah and F. Casati, Eds., Special Issue on Web Services, ser.
Distributed and Parallel Databases, an International Journal, 12(2),
November 2002.

[10] X. Yang and A. Bouguettaya, “Broadcast-based Data Access in Wireless
Environments,” in 8th International Conference on Extending Database
Technology, Prague, Czech Republic, March 2002.

[11] W3C, Universal Description, Discovery, and Integration (UDDI),
http://www.uddi.org.

[12] Z. Maamar, W. Mansoor, and H. Yahyaoui, “E-Commerce through
Wireless Devices,” in IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, Cambridge, MA,
USA, June 2001.

17

[13] W3C, Simple Object Access Protocol (SOAP),
http://www.w3.org/TR/soap.

[14] D. Dahlem, J. H. Jahnke, A. Onabajo, and O. Wang, “The Challenges of
Implementing Web Services on Small Devices,” in OOPSLA Workshop
on Pervasive computing: Going Beyond Internet for Small Screens,
Seattle, Washington, USA, November 2002.

[15] T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Energy Efficient
Indexing on Air,” in Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data, Minneapolis, Minnesota,
March 1994.

[16] ——, “Power Efficient Filtering of Data an Air,” in Proceedings
of 4th International Conference on Extending Database Technology
(EDBT’94), Cambridge, United Kingdom, March 1994.

[17] I. Akyildiz, J. McNair, J. Ho, H. Uzunalioglu, and W. Wang, “Mobility
Management in Next-Generation Wireless Systems,” in Proceedings of
the IEEE, vol. 87, August 1999.

[18] W3C, Web Services Description Language (WSDL),
http://www.w3.org/TR/wsdl.

[19] G. F. Welch, “A Survey of Power Management Techniques in Mobile
Computing Operating Systems,” Operating Systems Review, vol. 29,
no. 4, 1995.

[20] W.-C. Lee and D. Lee, “Using Signature Techniques for Information
Filtering in Wireless and Mobile Environments,” Special Issue on
Databases and Mobile Computing, Journal on Distributed and Parallel
Databases, vol. 4, no. 3, July 1996.

[21] WAP, Wireless Access Protocol, http://www.wapforum.org/what.
[22] Z. Maamar, W. Mansoor, and Q. Mahmoud, “Software Agents to Support

Mobile Services,” in International Conference on Autonomous Agents
and Multi Agents Systems, Bologna, Italy, July 2002.

[23] U. Varshney, “Addressing Location Issues in Moble Commerce,” in
IEEE Conference on Local Computer Networks, Tampa, Florida, USA,
November 2001.

[24] A. D. Malloy, U. Varshney, and A. P. Snow, “Supporting Mobile Com-
merce Applications Using Dependable Wireless Networks,” MONET,
vol. 7, no. 3, June 2002.

[25] L. D. Paulson, “Going Mobile with Web Services,” IEEE Computer,
vol. 36, no. 2, February 2003.

Xu Yang received B.E. degree from HuaZhong Uni-
versity of Science and Technology, China in 1996
and M.S. in Computer Science from Queensland
University of Technology, Australia in 1998. He is a
doctoral candidate in Computer Science at Virginia
Tech. His research interests include mobile com-
puting and Web Services, with particular emphasis
on Wireless Access Methods, Wireless Indexing and
Data Broadcast. He also works as a senior software
engineer with Spirent Communications.

Athman Bouguettaya is Program Director of Com-
puter Science at Virginia Tech. He is also Director of
the E-Commerce and E-Government Research Lab
at Virginia Tech. He is on the editorial boards of the
Distributed and Parallel Databases Journal and the
International Journal of Web Services Research. He
guest co-edited a special issue of the IEEE Internet
Computing on Database Technology on the Web. He
served as the Program co-chair of the IEEE RIDE
Workshop on Web Services for E-Commerce and
E-Government (RIDE-WS-ECEG’04). He served on

numerous conference program committees. He is the author of more than
60 publications. His latest research interests are in Web databases and Web
services.

Brahim Medjahed is a PhD candidate in the De-
partment of Computer Science at Virginia Tech. He
received a BSc and MSc in computer science from
USTHB University (Algeria) with First Honor. His
research interests include Web services, workflows,
and Web databases. The focus of his PhD disserta-
tion is on the automatic selection and composition
of Web services on the Semantic Web. Brahim has
published several papers on Web services in interna-
tional journals and conferences including the VLDB
Journal, IEEE Internet Computing, IEEE Computer,

VLDB, SOC, WIDM, and TES. He was nominated as outstanding reviewer by
IEEE Internet Computing. Brahim also serves in the program committees of
workshops on ubiquitous computing and M-Services. He is student member
of IEEE, IEEE Computer Society, and ACM.

Weiping He received the B.E. degree from
Huangzhong University of Science and Technology
(P. R. China) in 1996. M.S. in Computer Science
from Virginia Tech in 2002. He is a doctoral can-
didate in Computer Science at Virginia Tech. His
research interests include reliability in mobile com-
puting and Web Services, with particular emphasis
on failure recovery in M-Commerce. He is also the
system administrator for the Computer Science de-
partment. He has considerable experience in system
administration.

Hao Long received her Bachelor’s degree in
Aerospace Engineering from Beijing University of
Aero. and Astro. (P. R. China) in 1996 and her
Master’s degree in Computer Science from Virginia
Tech in 2002. After graduation, She had been work-
ing as a research assistant in E-Commerce and E-
Government Lab in Virginia Tech for one year. Now
she works for Georgetown University as programmer
analyst. Hao has a special interest in leveraging the
power of Web Services to provide cross-platform e-
business solutions in both wired and wireless envi-

roment. She has extensive hands-on experience in Java, J2EE, XML, and Web
Services (SOAP/WSDL/UDDI), to name but a few.

