
On Sliding Block PuzzlesFilip R. W. KarlemoTellabs OyPorarinkatu 102600 Espoo, FinlandPatric R. J. �Osterg�ard�Department of Computer Science and Engineering,Helsinki University of Technology,P.O. Box 1100, 02015 HUT, FinlandAbstractA graph of a puzzle is obtained by associating each possible po-sition with a vertex and by inserting edges between vertices i� thecorresponding positions can be obtained from each other in one move.Computational methods for �nding the vertices at maximumdistance� from a vertex associated with a goal position are presented. So-lutions are given for small sliding block puzzles, and methods forobtaining upper and lower bounds on � for large puzzles are con-sidered. Old results are surveyed, and a new upper bound for the24-puzzle is obtained: � � 210.1. IntroductionIn the early 1980s, it was impossible to avoid hearing about Rubik's cube,a puzzle that became very popular all over the world. Very soon, math-ematicians became interested in this puzzle, and several books have beenwritten on the subject (for example, [4]). Another popular|and mucholder|puzzle is the 15-puzzle, which was invented by Sam Loyd in the 19thcentury. This puzzle, and its variants, will be considered in this paper. The15-puzzle is discussed in many books on games [1], discrete mathematics[6], and computer algorithms [8, 12]. In particular, it has turned out to be�The research was supported by the Academy of Finland and the Alfred KordelinFoundation.

a good test case for search methods in arti�cial intelligence (path planningand scheduling problems); see [5] and its references.A puzzle is solved by restoring a given position to a goal position. Amathematician might not be satis�ed with just a solution, but might wantto determine the minimum number of moves required to solve the puzzle.Furthermore, it is very natural to try to �nd the \most di�cult" initialpositions, that is, the positions that require most moves to be restored tothe goal position; in this paper, this problem is considered.The paper proceeds as follows. In Section 2 the 15-puzzle and its vari-ants are discussed and mathematical notations are introduced. Positionsare mapped to vertices of a graph, which makes it possible to discuss theproblem in graph theoretical terms. Computational methods for analyzingpuzzles are considered in Section 3. It turns out that it is the memorysize of the computer used rather than time available that sets the limitsof how large puzzles can be analyzed. Solutions of sliding block puzzles ofsize up to 3 � 4 are given in Section 4. Methods for obtaining bounds onthe number of moves required to solve the 15-puzzle and larger puzzles arediscussed in Section 5.2. The 15-Puzzle and Its VariantsThe 15-puzzle is a 4� 4 puzzle with 15 blocks (numbered 1 to 15) and oneempty square. A move consists of sliding a block adjacent to the emptysquare into that place. The aim is to restore an initial position to thefollowing goal position (other di�erent but equivalent numberings of theblocks can often be seen): 1 2 3 45 6 7 89 10 11 1213 14 15Methods have been developed for �nding solutions of the 15-puzzle withas few moves as possible from a given initial position; see, for example,[3, 5, 7, 10, 11, 13, 16]. This is a di�cult problem; in fact, the n � nextension of it is NP-hard [15].In the general case, we consider a p�q puzzle. Let n = pq. The squaresof such a puzzle are here numbered row-wise from 1 to n, with 1 in theupper left corner and n in the lower right corner. The goal position isachieved when block i is in square i for 1 � i � n � 1 and square n isempty. (It is important to distinguish between the numbering of the blocksand the numbering of the squares.)

There are n! possible positions of a p� q puzzle. Now a graph G withn! vertices can be constructed by associating each possible position with avertex, and by inserting edges between two vertices i� the correspondingpositions can be obtained from each other in one move (since a move canalways be reversed, we let G be undirected).Properties of a puzzle can now be discussed in graph-theoretic terms.For example, an initial position can be restored to the goal position exactlywhen its vertex in G is in the same connected component as the vertex ofthe goal position (the goal vertex). This matter is thoroughly discussed in[20].For a p � q sliding block puzzle, it was shown more than 100 yearsago [9, 19] that not all n! possible positions can be restored to the goalposition. Namely, when the empty square is in a given place, to obtainanother position with the empty square in the same place clearly requiresan even number of moves. If the empty square is identi�ed as block numbern, a move is a transposition of the blocks, so only n!=2|which is the orderof the alternating group An|positions can be restored to the goal position.3. Computing Maximum Distances in a Puz-zle GraphWe shall now discuss computational methods for �nding the vertices in thesame connected component of G that are at maximum distance � from thegoal vertex. This is done by an exhaustive search. Since there are n!=2vertices in the connected component, it is clear that such a method worksonly for small values of n.The search method used is a breadth-�rst search. That is, we start withthe goal vertex, which is at distance 0 from itself. The set of vertices atdistance d+1 is calculated by considering the vertices at distance d from thegoal vertex and checking which of its (at most 4) adjacent vertices have notbeen encountered earlier in the search. The adjacent vertices are actuallyat distances either d � 1 or d + 1 from the goal vertex. This procedure isrepeated until all n!=2 vertices of the component have been encountered.(For n� n puzzles, the number of vertices that have to be searched can bereduced by another factor of approximately 2 due to symmetry of the goalposition.)In the search, we are primarily interested in the distances from verticesto the goal vertex. Thus, to save memory, we do not save the edges betweenvertices. We use three data structures: one table with vertices (positions)at distance d, one table with vertices (positions) at distance d+1, and onetable that for each vertex indicates whether it has been encountered earlier.The two former tables can be saved in a secondary memory, since, for each

level, they are written and read once and sequentially. The last table, themain table, should, however, be in the primary memory, since its elementsare accessed in a nonsequential order.For the 3� 4 puzzle, the largest puzzle that we have solved completely,the number of entries in the main table is 239500800. (Actually, to obtainTheorem 1 to be presented later, larger puzzles than the 3� 4 puzzle withdi�erent shapes have been solved.) We use one bit of memory for each entry,that is, the total memory requirement is approximately 30 MB|whichmany modern computers can manage. The 15-puzzle, however, requiresabout 1300 GB, which certainly still is beyond reach.Let Ci be the number of the block in square i (the empty square is blockn). For the main table we need a bijective function from (C1 C2 � � �Cn) toan index 0 � I � n!=2�1. We modify a function that maps permutations ofthe elements f1; 2; : : : ; ng bijectively to the set of integers f0; 1; : : : ; n!�1g;for such functions, see [17] or any other book on combinatorial algorithms.Many of these functions have the property that for any i, the �rst n � ielements of a permutation are mapped to an integer 0 � a0 � n!=i!� 1, thelast i elements are mapped to an integer 0 � b0 � i!� 1, and I = a0 � i! + b0.We now choose i = 3, a = a0, and let I = 3a + b, where b indicates theplace of the largest of the last three elements (which possibly is block n,the empty square). The order of the other two of the last three elements isthen �xed.It is clear that, as the total number of moves tried in a run (and thusindex calculations) is at most 3n!=2 (we save the move to a new position,so that we need not try its inverse) and the total number of memory bitsrequired for the main table is n!=2, it is the memory size that sets the limitsof how large puzzles can be analyzed with this approach.4. Complete Solutions of Small PuzzlesThis section is mostly a survey of old results. Although we do not havereferences to all those results, they have all been presented and discussedin several forums (for example, in electronic newsgroups). The fact thatthese results, which are based on computer searches, have been presentedby several independent researchers, indicates that they are correct.The smallest possible nontrivial sliding block puzzle is the 2� 2 puzzle.Since it has 4!=2 = 12 possible positions, the case is easily solved by hand.We can also argue as follows. The empty cell is always in a corner, so thereare always two possible moves. Since the graph of the puzzle is connectedand is regular of degree 2, it is a circuit graph. Thus, � = 12=2 = 6.For larger puzzles, the use of computer is inevitable. We shall here givea complete solution of puzzles of sizes 2� 3, 2 � 4, 3 � 3, and 3 � 4. The

goal positions of these puzzles are as follows:1 2 3 1 2 3 4 1 2 3 1 2 3 44 5 5 6 7 4 5 6 5 6 7 87 8 9 10 11The results of the calculations can be found in Table I, where the numberof vertices at each depth is given. The values of � for the puzzles consideredare obtained directly from the table.TABLE I. Solutions of small puzzlesDepth 2� 2 2� 3 3� 3 2� 4 3� 40 1 1 1 1 11 2 2 2 2 22 2 3 4 3 43 2 5 8 6 94 2 6 16 10 205 2 7 20 14 376 1 10 39 19 637 12 62 28 1228 12 116 42 2329 16 152 61 43110 23 286 85 78111 25 396 119 139212 28 748 161 249413 39 1024 215 444214 44 1893 293 785415 40 2512 396 1389916 29 4485 506 2421517 21 5638 632 4180218 18 9529 788 7116719 12 10878 985 11988820 6 16993 1194 19836321 1 17110 1414 32320622 23952 1664 51577823 20224 1884 81100024 24047 1999 124801125 15578 1958 188527926 14560 1770 2782396

TABLE I. (Continued)Depth 2� 2 2� 3 3� 3 2� 4 3� 427 6274 1463 400972228 3910 1076 562135429 760 667 764787230 221 361 1006580031 2 190 1276041332 88 1557078633 39 1817160634 19 2029987635 7 2158724836 1 2184115937 2090690538 1889935739 1605833540 1277260341 951521742 658318143 424275344 250387345 135026846 64324547 27030348 9231149 2711650 539051 111552 8653 18Weaker variants of 2 � 3 and 3 � 3 puzzles were solved in [18]. Fur-thermore, in that research the empty square of the goal position was notin a corner. The 3� 3 case, also called the 8-puzzle, has recently also beensolved in [16] (there is a misprint in [16, Figure 1]|the number of stateson level 12 is 748, not 749).5. The 15-Puzzle and BeyondUntil recently, the �rst unsolved case was the 15-puzzle. A complete so-lution of the 15-puzzle by a computer search using the approach in theprevious sections requires an amount of memory that is not available in

contemporary computers. For this and larger puzzles, we can try to �ndgood upper and lower bounds on �. There are several methods for obtainingsuch bounds, some of which will be discussed here.5.1. Lower BoundsMethods have been developed in arti�cial intelligence to �nd the shortestdistance from a position to the goal position. Any such distance is then alower bound on �. We do not discuss the search methods here, but referthe reader to [5].For large problems, good lower bounds are then obtained by makinggood guesses about which positions are di�cult. Methods have also beendeveloped to �nd sets of di�cult positions [5]. A good approach is usually toreect the goal position in the center of the puzzle, which for the 15-puzzleleads to the following position: 15 14 1312 11 10 98 7 6 54 3 2 1This is certainly a good guess, since it is at distance 78 from the goalposition, and for the 15-puzzle we have that � = 80, proved in [2]. Thirteenpositions with distance 80 to the goal position are presented in [5]. Threesuch positions are given below:12 9 1315 11 10 143 7 5 64 8 2 1 12 9 1315 11 10 148 3 6 24 7 5 1 12 9 1315 11 10 143 7 6 24 8 5 1For the 24-puzzle and even larger puzzles, the search methods are inmost cases not able to �nd the exact distance to the goal position withinreasonable time. For such cases, the more CPU time is used, the betterlower bound on the exact distance we get.5.2. Upper BoundsAn upper bound is obtained by giving a method that guarantees that thepuzzle is solved within a given number of moves, whatever the position is.

This can be done in a way that humans solve these puzzles, which is usuallya row-by-row manner.The 15-puzzle, for example, can be solved in the following way, see [5].First, the following puzzle is solved. The puzzle contains indistinguishableblocks, which are marked I, and it has 16!=8! = 518918400 possible states.1 2 3 45 I I9 I I I13 I I IWe now obtain an upper bound for the 15-puzzle. Namely, the above-mentioned position can be obtained in � = 62 moves, and thereafter we cansolve an 8-puzzle in at most 31 moves to get a total of 93 moves. To get aneven better upper bound, however, we calculate the maximum distance tothe goal position from any position with the empty square in a given ini-tial position. These distances, in the corresponding positions of the emptyspace, are 30 29 3029 30 3130 31 30Hence, for the 15-puzzle, � � 62 + 29 = 91. This idea has been furtherdeveloped in [5] to lower the record down to 87. Recently, Marzetta et al.[2] announced a further improvement to 80 using more sophisticated meth-ods. Since this upper bound equals the best known lower bound mentionedearlier, the problem of determining � has hence been settled.We end the discussion of upper bounds by presenting a new upper boundfor the 24-puzzle.Theorem 1 For the 24-puzzle, � � 210.Proof: The approach is very much the same as the approach for the 15-puzzle, outlined above. Now, however, the bound is obtained in three steps,rather than in two. We go in the \wrong" direction. The 3 � 4 puzzle,depicted earlier, has the following maximum distances to the goal positionwith the empty square in di�erent initial positions:53 52 51 5252 51 52 5153 52 51 52

This table is used to �nd a good place for the empty square in the goalposition of the next puzzle: 7 8 9 1011 I I I16 I I I I21 I I I IThis puzzle has � = 75, but, again, we do not use this value, but cal-culate maximum distances to the goal position with the empty square indi�erent initial places: 75 74 73 7475 74 75 74 7374 75 74 73 7475 74 75 74 75Finally, we solve the following puzzle:1 2 3 4 56 I I II I I I II I I I II I I I IThis puzzle has � = 86, which means that for the 24-puzzle, � � 86 + 73 +51 = 210. 2The last two intermediate puzzles in the proof of Theorem 1 have3047466240 and 2422728000 possible states, respectively. The earlier bestknown bound was 219, proved in [5].AcknowledgmentsThe authors thank Ralph Gasser and Aapo Rautiainen for rewarding dis-cussions. The Center for Scienti�c Computing (CSC), Espoo, Finland, isacknowledged for providing computing resources.

References[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy, \Winning Ways forYour Mathematical Plays; Vol. 2: Games in Particular," AcademicPress, London, 1982.[2] A. Br�ungger, A. Marzetta, K. Fukuda, and J. Nievergelt, The parallelsearch bench ZRAM and its applications, Ann. Oper. Res., to appear.[3] J. C. Culberson and J. Schae�er, \E�ciently Searching the 15-Puzzle,"Technical Report TR 94-08, University of Alberta, Canada, 1994.[4] A. H. Frey, Jr. and D. Singmaster, \Handbook of Cubik Math," En-slow, Hillside, NJ, 1982.[5] R. U. Gasser, \Harnessing Computational Resources for E�cient Ex-haustive Search," Ph.D. Thesis, ETH, Z�urich, 1995.[6] L. J. Gerstein, \Discrete Mathematics and Algebraic Structures," Free-man, New York, 1987.[7] O. Hansson, A. Mayer, and M. Yung, Criticizing solutions to relaxedmodels yields powerful admissible heuristics, Inform. Sci. 63 (1992),207{227.[8] E. Horowitz and S. Sahni, \Fundamentals of Computer Algorithms,"Computer Science Press, Rockville, MD, 1978.[9] W. W. Johnson and W. E. Storey, Notes on the \15" puzzle, Amer. J.Math. 2 (1879), 397{404.[10] R. E. Korf, Depth-�rst iterative deepening: An optimal admissible treesearch, Artif. Intel. 27 (1985), 97{109.[11] R. E. Korf, Linear-space best-�rst search, Artif. Intel. 62 (1993), 41{87.[12] S. R. Lerman, \Problem Solving and Computation for Scientists andEngineers: An Introduction Using C," Prentice-Hall, Englewood Cli�s,NJ, 1993.[13] E. P. M. van Liempd, \Limited-Search Algorithms," Report TI-IR-93-1875, PTT Research Groningen, The Netherlands, 1993.[14] I. Parberry, A real-time algorithm for the (n2 � 1)-puzzle, Inform.Process. Lett. 56 (1995), 23{28.

[15] D. Ratner and M. Warmuth, Finding a shortest solution for the (N �N)-extension of the 15-puzzle is intractable, J. Symbolic Comput. 10(1990), 111{137.[16] A. Reinefeld, Complete solution of the eight-puzzle and the bene�t ofnode ordering in IDA�, in: \IJCAI-93: Proceedings of the 13th In-ternational Joint Conference on Arti�cial Intelligence," Morgan Kauf-mann, San Mateo, CA, 1993, pp. 248{253.[17] E. M. Reingold, J. Nievergelt, and N. Deo, \Combinatorial Algorithms:Theory and Practice," Prentice-Hall, Englewood Cli�s, NJ, 1977.[18] P. D. A. Scho�eld, Complete solution of the \eight-puzzle", in: N.L. Collins and D. Mitchie (eds.), \Machine Intelligence 1," Oliver &Boyd, Edinburgh, 1967, pp. 125{134.[19] P. G. Tait, Note on the theory of the \15" puzzle, Proc. Roy. Soc.Edinburgh 10 (1880), 664{665.[20] R. M. Wilson, Graph puzzles, homotopy and the alternating group, J.Combin. Theory Ser. B 16 (1974), 86{96.

