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Abstract

Reinforcement learning is the problem of generating optimal behav-

ior in a sequential decision-making environment given the opportunity of

interacting with it. Many algorithms for solving reinforcement-learning

problems work by computing improved estimates of the optimal value

function. We extend prior analyses of reinforcement-learning algorithms

and present a powerful new theorem that can provide a uni�ed analysis

of value-function-based reinforcement-learning algorithms. The usefulness

of the theorem lies in how it allows the convergence of a complex asyn-

chronous reinforcement-learning algorithm to be proven by verifying that

a simpler synchronous algorithm converges. We illustrate the application

of the theorem by analyzing the convergence of Q-learning, model-based

reinforcement learning, Q-learning with multi-state updates, Q-learning

for Markov games, and risk-sensitive reinforcement learning.

1 Introduction

A reinforcement learner interacts with its environment and is able to improve its

behavior from experience. Di�erent reinforcement-learning problems are de�ned

by di�erent objective criteria and by di�erent types of information available
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to the decision maker (learner). In spite of these di�erences, many di�erent

reinforcement-learning problems can be solved by a value-function-based ap-

proach. Here, the decision maker keeps an estimate of the value of the objective

criteria starting from each state in the environment, and these estimates are

updated in light of new experience. Many algorithms of this type of have been

proven to converge asymptotically to optimal value estimates, which in turn can

be used to generate optimal behavior. Introductions to reinforcement learning

can be found in an article by Kaelbling, Littman, & Moore (1996) and books

by Sutton & Barto (1998) and Bertsekas & Tsitsiklis (1996).

This paper provides a uni�ed framework for analyzing a variety of reinforcement-

learning algorithms, in the form a powerful new convergence theorem. The

usefulness of the theorem lies in how it allows the convergence of a complex

asynchronous reinforcement-learning algorithm to be proven by verifying that

a simpler synchronous algorithm converges. Section 2 states the theorem and

Section 3 applies the theorem to a collection of reinforcement-learning algo-

rithms, including Q-learning, model-based reinforcement learning, Q-learning

with multi-state updates, Q-learning for Markov games, and risk-sensitive re-

inforcement learning. Section A then proves the theorem, providing detailed

descriptions of the mathematical techniques employed.

1.1 Reinforcement Learning

The most commonly analyzed reinforcement-learning algorithm is Q-learning (Watkins

& Dayan 1992). Typically, an agent following the Q-learning algorithm interacts

with an environment de�ned as a �nite Markov decision process (mdp), with

the objective of minimizing total discounted expected cost (or maximizing total

expected discounted reward). A �nite mdp environment consists of a �nite set

of states X , �nite set of actions A, transition function Pr(yjx; a) (for x; y 2 X ,

a 2 A), and expected cost function c(x; a; y) (for x; y 2 X , a 2 A). At each

discrete moment in time, the decision maker is in some state x 2 X , known to

the decision maker. It chooses an action a 2 A, and issues it to the environment,

resulting in a state transition to y 2 X with probability Pr(yjx; a). It is charged

an expected immediate cost of c(x; a; y), and the process repeats. The decision

maker's performance is measured with respect to a discount factor 0 � 
 < 1;

the decision maker seeks to choose actions to minimize E[

P

1

t=0




t

c

t

], where c

t

is the immediate cost received on discrete time step t.

Consider a �nite mdp with let the objective criterion of minimizing total

discounted expected cost. The optimal value function v

�

, as is well known (Put-

erman 1994), is the �xed point of the optimal value operator T : B(X )! B(X ),

(Tv)(x) = min

a2A

X

y2X

Pr(yjx; a)

�

c(x; a; y) + 
v(y)

�

; (1)

0 � 
 < 1, where Pr(yjx; a) is the probability of going to state y from state

x when action a is used, c(x; a; y) is the cost of this transition and 
 is the

discount factor. It is also well known that greedy policies with respect to
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v

�

are optimal; that is, always choosing the action a 2 A that minimizes

P

y2X

Pr(yjx; a)(c(x; a; y) + 
v

�

(y)) results in optimal performance. The de�n-

ing assumption of reinforcement learning (RL) is that the probability transition

function and cost functions are unknown, so the optimal value operator T is

also unknown. Methods for RL can be divided into two parts: value-function

based, when v

�

is found by some �xed-point computation, and policy-iteration

based. Here, we will be concerned only with the �rst class of methods (policy-

iteration-based RL algorithms do not appear to be amenable to the methods of

this article). In the class of value-function-based algorithms, an estimate of the

optimal value function is built gradually from the decision maker's experience

and sometimes this estimate is used for control.

To de�ne how a value-function-based RL algorithm works, assume we have

an mdp and that the decision maker has access to unbiased samples from

Pr(�jx; a) and c; we assume that when the system's state-action transition is

(x; a; y), the decision maker receives a random value c, called the reinforcement

signal, whose expectation is c(x; a; y). In a model-based approach, a decision

maker approximates the transition and cost functions as p and c, uses the es-

timated values (p

t

; c

t

) to approximate T (the optimal value operator given in

Equation (1)) by T

t

= T (p

t

; c

t

), and then uses the operator sequence T

t

to build

an estimate of v

�

. In a model-free approach, such as Q-learning (Watkins 1989),

for example, the decision maker directly estimates v

�

without ever estimating

p or c. We describe an abstract version of Q-learning next, as it provides a

framework and vocabulary for summarizing the majority of our results.

Q-learning proceeds by estimating the functionQ

�

= Qv

�

, where (Qf)(x; a) =

P

y2X

Pr(yjx; a)

�

c(x; a; y)+
f(y)

�

) is the cost-propagation operator. Q-learning

explicitly represents values for state-action pairs: the function Q

�

(x; a) is the

total discounted expected cost received by starting in state x, choosing action

a once, then choosing optimal actions in all succeeding states. The idea be-

hind the estimation procedure is the following: from the optimality equation

v

�

= Tv

�

it follows that Q

�

is the �xed point of the operator

~

T , de�ned as

(

~

TQ)(x; a) =

X

y2X

Pr(yjx; a)

�

c(x; a; y) + 
min

b2A

Q(y; b)

�

= (QNQ)(x; a);

where N : B(X � A) ! B(X ) is the minimization operator: (NQ)(x) =

min

a2A

Q(x; a). For any function Q,

~

TQ is easily approximated by averaging;

consider the sequence Q

t

de�ned recursively by

Q

t+1

(x; a) = (2)

(

�

1�

1

n

t

(x;a)

�

Q

t

(x; a) +

1

n

t

(x;a)

(c

t

+ 
(NQ)(x

t+1

)) ; if (x; a) = (x

t

; a

t

);

Q

t

(x; a); otherwise,

where n

t

(x; a) is the number of times the state-action pair (x; a) was visited

by the process (x

t

; a

t

) before time t plus one, and (x

t

; c

t

) is a Markov process

(given a rule for selecting the sequence of actions, a

t

) with transition laws given
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by Pr(x

t+1

jx

t

; a

t

), E[c

t

jx

t

; a

t

; x

t+1

] = c(x

t

; a

t

; x

t

) and Var[c

t

jx

t

; a

t

; x

t+1

] < 1.

The above iteration can be put in the more compact form

Q

t+1

= T

t

(Q

t

; Q); (3)

where T

t

is a sequence of appropriately de�ned random operators:

(T

t

(Q

t

; Q))(x; a) =

(

�

1�

1

n

t

(x;a)

�

Q

t

(x; a) +

1

n

t

(x;a)

(c

t

+ 
(NQ)(x

t+1

)) ; if (x; a) = (x

t

; a

t

);

Q

t

(x; a); otherwise.

Thus, we can compute

~

TQ for any �xed function Q using experience: de�ne

Q

0

= Q, Q

t+1

= T

t

(Q

t

; Q) for t > 0, then Q

t

!

~

TQ. Convergence follows

easily from the law of large numbers since, for any �xed pair (x; a), the values

Q

t

(x; a) are simple time averages of c

t

+ 
(NQ)(x

t+1

) for the appropriate time

steps when (x; a) = (x

t

; a

t

). This is akin to the process of using RL to compute

an improved approximation of Q

�

from a �xed function Q.

The approximation of Q

�

=

~

TQ

�

comes, then, from the \optimistic" (in the

sense of Bertsekas & Tsitsiklis (1996)) replacement of Q in the above iteration

by Q

t

. That is, we are trying to apply the operator

~

T to a moving target. The

corresponding process, called Q-learning (Watkins & Dayan 1992), is

^

Q

t+1

= T

t

(

^

Q

t

;

^

Q

t

): (4)

Whereas the converge of Q

t

given by Equation (3) is a simple consequence

of stochastic approximation, the convergence

^

Q

t

given by Equation (4), Q-

learning, is not so straightforward. Speci�cally, notice that the componentwise

investigation of the process of Equation (4) is no longer possible since

^

Q

t+1

(x; a)

depends on the values of

^

Q

t

at state-action pairs di�erent from (x; a)|not like

the case of Q

t+1

and Q

t

in Equation (3).

Interestingly, a large number of algorithms that can be viewed as methods

for �nding the �xed point of an operator T by de�ning an appropriate sequence

of random T

t

operators. For these de�nitions, the sequence of functions as de-

�ned in Equation (3) converges to

~

TQ for all functions Q. Our main result

is, then, that under certain additional conditions on T

t

, the iteration in Equa-

tion (4) will converge to the �xed point of

~

T . In this way, we will be able

to prove the convergence of a wide range of reinforcement-learning algorithms

all at once. For example, we will get a convergence proof for Q-learning (Sec-

tion 3.1), adaptive real-time dynamic programming (Barto, Bradtke, & Singh

1995) (the iteration v

t+1

= T (p

t

; c

t

)v

t

outlined earlier), model-based reinforce-

ment learning (Section 3.2), Q-learning with multi-state updates (Section 3.3),

Q-learning for Markov games (Section 3.4), risk-sensitive reinforcement learning

(Section 3.5), and many other related algorithms.

2 The Convergence Theorem

Most learning algorithms are, at their heart, �xed-point computations. This is

because their basic structure is to apply an update rule repeatedly to seek a
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situation where learning is no longer possible nor desired. At this point, the

learned information would be at a �xed point|additional applications of the

update rule have no e�ect on the representation of the learned information.

In this section, we present a convergence theorem for a particular class of

�xed-point computations that are particularly relevant to reinforcement learn-

ing. It may also have broader application in the analysis of learning algorithms,

but we restrict our attention to reinforcement learning here.

2.1 De�nitions and Theorem

Let T : B ! B be an arbitrary operator, where B is a normed vector space with

norm k:k.

1

Let T = (T

0

; T

1

; : : : ; T

t

; : : :) be a sequence of random operators, T

t

mapping B � B to B. We investigate the conditions under which the iteration

f

t+1

= T

t

(f

t

; f

t

) can be used to �nd the �xed point of T , provided that T =

(T

0

; T

1

; : : : ; T

t

; : : :) approximates T in the sense de�ned next.

Definition 1 Let F � B be a subset of B and let F

0

: F ! 2

B

be a mapping

that associates subsets of B with the elements of F . If, for all f 2 F and all

m

0

2 F

0

(f), the sequence generated by the recursion m

t+1

= T

t

(m

t

; f) converges

to Tf in the norm of B with probability 1, then we say that T approximates T

for initial values from F

0

(f) and on the set F � B. Further, we say that T

approximates T at a certain point f 2 B and for initial values from F

0

� B

if T approximates T on the singleton set ffg and the initial value mapping

F

0

: F ! B de�ned by F

0

(f) = F

0

.

We will also make use of the following de�nition.

Definition 2 The subset F � B is invariant under T : B � B ! B if, for all

f; g 2 F , T (f; g) 2 F . If T is an operator sequence as above, then F is said to

be invariant under T if for all i � 0 F is invariant under T

i

.

In many applications, it is only necessary to consider the unrestricted case in

which F = B and F

0

(f) = B for all f 2 B. For notational clarity in such cases,

the set F and mapping F

0

will not be explicitly mentioned. The general form

of the de�nition is important in the analysis of

^

Q-learning in Section 3.5, where

the approximation property of the T

t

operators hold only for a limited class of

functions, in particular, for the non-overestimating ones. Thus, these de�nitions

make it possible to express the fact that T

t

approximates T only for functions

in F in the space of all functions B and restricted to initial con�gurations in

F

0

(F ).

The following theorem is our main result. We use the notation \w.p.1" to

mean \with probability 1."

1

In the applications below, B is usually the space of uniformly bounded functions over

a given set, the appropriate norm being the supremum norm: B = ff : X ! R : kfk =

sup

x2X

f(x) <1g.
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Theorem 3 Let X be an arbitrary set and assume that B is the space of bounded

functions over X , B(X ), i.e., T : B(X ) ! B(X ). Let v

�

be a �xed point of T

and let T = (T

0

; T

1

; : : :) approximate T at v

�

and for initial values from F

0

(v

�

),

and assume that F

0

is invariant under T . Let V

0

2 F

0

(v

�

), and de�ne V

t+1

=

T

t

(V

t

; V

t

). If there exist random functions 0 � F

t

(x) � 1 and 0 � G

t

(x) � 1

satisfying the conditions below w.p.1, then V

t

converges to v

�

w.p.1 in the norm

of B(X ):

1. for all U

1

and U

2

2 F

0

, and all x 2 X ,

jT

t

(U

1

; v

�

)(x)� T

t

(U

2

; v

�

)(x)j � G

t

(x)jU

1

(x) � U

2

(x)j;

2. for all U and V 2 F

0

, and all x 2 X ,

jT

t

(U; v

�

)(x) � T

t

(U; V )(x)j � F

t

(x)(kv

�

� V k+ �

t

);

where �

t

! 0 w.p.1. as t!1;

3. for all k > 0, �

n

t=k

G

t

(x) converges to zero uniformly in x as n!1; and,

4. there exists 0 � 
 < 1 such that for all x 2 X and large enough t,

F

t

(x) � 
(1�G

t

(x)):

Note that from the conditions of the theorem and the additional condition

that T

t

approximates T at every function V 2 B(X ), it follows that T is a

contraction operator at v

�

with index of contraction 
 (that is, T is a pseudo-

contraction at v

�

in the sense of Bertsekas & Tsitsiklis (1989)).

2

One of the most noteworthy aspects of this theorem is that it shows how to

reduce the problem of approximating v

�

to the problem of approximating T at

a particular point V (in particular, it is enough that T can be approximated

at v

�

); in many cases, the latter is much easier to achieve and also to prove.

For example, the theorem makes the convergence of Q-learning a consequence

of the classical Robbins-Monro theory (Robbins & Monro 1951).

Conditions 1, 2, and 3 are standard for this type of result; the �rst two

are Lipschitz conditions on the two parameters of the operator sequence T =

(T

0

; T

1

; : : :) and Condition 3 is a learning-rate condition.

2

The proof of this goes as follows: Let V;U

0

; V

0

2 B(X ) be arbitrary and let U

t+1

=

T

t

(U

t

; V ) and V

t+1

= T

t

(V

t

; v

�

). Let �

t

(x) = jU

t

(x)�V

t

(x)j. Then, using Conditions 1 and 2

of Theorem 3, we get that �

t+1

(x) � G

t

(x)�

t

(x) + 
(1 � G

t

(x))kV � v

�

k. By Condition 3,

Q

1

t=0

G

t

(x) = 0, and, thus, limsup

t!1

�

t

(x) � 
kV � v

�

k (see, e.g., the proof of Lemma 12

of Section A.1). Since T

t

approximates T at v

�

and also at V , we have that U

t

! TV and

V

t

! Tv

�

w.p.1. Thus, �

t

converges to kTV �Tv

�

k w.p.1 and, thus, kTV �Tv

�

k � 
kV �v

�

k

holds w.p.1. However, this equation contains only non-random objects and thus it must hold

everywhere or nowhere. Note that if Condition 1 were not restricted to v

�

, then following this

argument we would get that T is a contraction with index 
.
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The most restrictive of the conditions of the theorem is Condition 4, which

links the values of G

t

(x) and F

t

(x) through some quantity 
 < 1. If it were

somehow possible to update the values synchronously over the entire state space,

i.e., if V

t+1

(x) depended on V

t

(x) only, then the process would converge to v

�

even when 
 = 1 provided that it were still the case that

Q

1

t=n

(F

t

+ G

t

) = 0

(n � 0) uniformly in x. In the more interesting asynchronous case, when 
 = 1,

the long-term behavior of V

t

is not immediately clear; it may even be that

V

t

converges to something other than v

�

or that it diverges depending on the

strictness of the inequalities of Condition 4 and Inequality (22) (see Section A).

The requirement that 
 < 1 insures that the use of outdated information in the

asynchronous updates does not cause a problem in convergence.

Note that this theorem relates to results from standard stochastic approxi-

mation, but extends them in a useful way. In particular, stochastic approxima-

tion is traditionally concerned with the problem of solving for some value under

the assumption that the observed values are corrupted by a source of noise. The

algorithms then need to �nd the sought value while canceling noise, often via

some form of averaging. The general convergence theorem of this paper is not

directly related to averaging out noise, but it includes this as possibility (for ex-

ample, when used with noisy processes such as Q-learning in Section 3.1). In this

sense, this work extends the general area of stochastic approximation by relating

it to the contraction properties and �xed-point computations central to dynamic

programming. In addition, the present emphasis is on asynchronous processes|

more precisely, to unbalanced asynchronous processes where the update rate of

di�erent components is not �xed nor does it converge to a distribution over the

components under which each component has a positive probability (assuming a

�nite number of components). This latter type of process can be handled using

ODE (ordinary di�erential equation) methods (Kushner & Yin 1997), although

this is not the approach taken here.

It would be possible, nevertheless, to extend the theorem such that in the

Lipschitz conditions we used a conditional expectation with respect to an ap-

propriate sequence of �-�elds, which are di�erent from the usual history spaces;

we intentionally did not move in this more direction to keep the audience a bit

broader.

Section A provides all the necessary pieces for proving Theorem 3. Readers

interested primarily in applications can skip the majority of this material, in-

stead focusing on the applications presented next in Section 3. Before covering

applications, we present another useful result.

2.2 Relaxation Processes

In this section, we prove a corollary of Theorem 3 for relaxation processes of

the form

V

t+1

(x) = (1� f

t

(x))V

t

(x) + f

t

(x)[P

t

V

t

](x); (5)

where 0 � f

t

(x) � 1 is a relaxation parameter converging to zero and the

sequence P

t

: B(X ) ! B(X ) is a randomized version of an operator T in the

7



sense that the \averages"

U

t+1

(x) = (1� f

t

(x))U

t

(x) + f

t

(x)[P

t

V ](x) (6)

converge to TV w.p.1, where V 2 B(X ). A number of reinforcement-learning

algorithms, such as Q-learning with single, or multi-state updates (Section 3.3),

take the form of this process, which makes it worthy of study. It is important

to note that while V

t+1

(x) depends on V

t

(y) for all y 2 X since P

t

V

t

depends on

all the components of V

t

, U

t+1

(x) depends only on U

t

(x), x 2 X : the di�erent

components are decoupled. This greatly simpli�es the proof of convergence of

Equation (6). Usually, the following so-called conditional averaging lemma is

used to show that the process of Equation (6) converges to TV .

Lemma 4 (Conditional Averaging Lemma) Let F

t

be an increasing sequence

of �-�elds, let 0 � �

t

and w

t

be random variables such that �

t

and w

t�1

are

F

t

measurable. Assume that the following hold w.p.1: E[w

t

jF

t

; �

t

6= 0] = A,

E[w

2

t

jF

t

] < B < 1,

P

1

t=1

�

t

= 1 and

P

1

t=1

�

2

t

< C < 1 for some B;C > 0.

Then, the process

Q

t+1

= (1� �

t

)Q

t

+ �

t

w

t

converges to A w.p.1.

Note that this lemma generalizes the Robbins-Monro Theorem in that, here, �

t

is allowed to depend on the past of the process, which will prove to be essential

in our case. It is also less general than the Robbins-Monro Theorem since

E[w

t

jF

t

; �

t

6= 0] is not allowed to depend on Q

t

. The proof of this Lemma can

be found in Appendix C.

Corollary 5 Consider the process generated by the iteration of Equation (5),

where 0 � f

t

(x) � 1. Assume that the process de�ned by

U

t+1

(x) = (1� f

t

(x))U

t

(x) + f

t

(x)[P

t

v

�

](x) (7)

converges to v

�

w.p.1. Assume further that the following conditions hold:

1. there exist number 0 < 
 < 1 and a sequence �

t

� 0 converging to zero

w.p.1 such that kP

t

V � P

t

v

�

k � 
kV � v

�

k+ �

t

holds for all V 2 B(X );

2. 0 � f

t

(x) � 1, t � 0 and

P

n

t=1

f

t

(x) converges to in�nity uniformly in x

as n!1.

Then, the iteration de�ned by Equation (5) converges to v

�

w.p.1.

Note that if f

t

(x)! 0 uniformly in x and w.p.1 then the condition f

t

(x) � 1 is

automatically satis�ed for large enough t.

Proof. Let the random operator sequence T

t

: B(X ) � B(X ) ! B(X ) be

de�ned by

T

t

(U; V )(x) = (1� f

t

(x))U(x) + f

t

(x)[P

t

V ](x):

8



We know T

t

approximates T at v

�

, since, by assumption, the process de�ned in

Equation (7) converges to TV for all V 2 B(X ). Moreover, observe that V

t

as

de�ned by Equation (5) satis�es V

t+1

= T

t

(V

t

; V

t

). Because of Assumptions 1

and 2, it can be readily veri�ed that the Lipschitz coe�cients G

t

(x) = 1�f

t

(x),

and F

t

(x) = 
f

t

(x) satisfy the rest of the conditions of Theorem 3, and this

yields that the process V

t

converges to v

�

w.p.1. �

Note that, although a large number of processes of interest admit this relax-

ation form, there are some important exceptions. In Sections 3.2 and 3.5, we

will deal with some processes that are not of the relaxation type and we will

show that Theorem 3 still applies; this shows the broad utility of the conver-

gence theorem. Another class of exceptions are formed by processes when P

t

involves some additive, zero-mean, �nite conditional variance noise-term that

disrupts the pseudo-contraction property (see Condition 1 above) of P

t

. (As we

will see, this is not the case for many well-known algorithms.) With some extra

work, Corollary 5 can be extended to work in these cases. As a result, a propo-

sition almost identical to Theorem 1 of Jaakkola, Jordan, & Singh (1994) can be

deduced.

3

These extensions, however, are not needed for the applications pre-

sented in this paper and introduce unneeded complications. These extensions

are needed, and have been made, in the convergence analysis of sarsa (Singh

et al. 1998). See also the work of Szepesv�ari (1998).

3 Analysis of Reinforcement-Learning Algorithms

In this section, we apply the results described in Section 2 to prove the conver-

gence of a variety of reinforcement-learning algorithms.

3.1 Q-learning

In Section 1.1, we presented the Q-learning algorithm, but we repeat this de�ni-

tion here for the convenience of the reader. Consider an mdp with the expected

3

The proof of this rewrites the relaxed process P

t

as the sum of \noise only" (r

t

) and

\noise-free" (

^

P

t

= E[P

t

jhistory]) processes as was done by Jaakkola, Jordan, & Singh (1994).

This is possible because of the additive structure of the process. If Var[r

t

jhistory] is bounded

independently of t, then the averaging lemma (Lemma 4) yields the convergence of the process

to the right values. However, the uniform bound on the variance is too restrictive, since we

need to deal with the case in which the variance of the noise grows with the relaxed process

V

t

de�ned by Equation (5) and is bounded only by Var[r

t

jhistory] � C(1 + kV

t

� v

�

k)

2

. This

case is reduced to the bounded-noise case by breaking the noise r

t

into the sum of two parts:

r

t

= s

t

+ s

t

kU

t

� v

�

k, where s

t

is de�ned exactly by this identity and, thus, s

t

has bounded

variance (and zero mean). Now, the whole process is broken up into three parts: the �rst part

is \noise free," the second is just driven by s

t

kU

t

� v

�

k, and the third is driven by s

t

. We

know the third part goes to zero, but it is far from immediate that the second part converges

to zero. This is proved using the Rescaling Lemma (Lemma 14) by considering the �rst two

parts together; the processes that are kept bounded will converge to zero. The main di�culty

of the whole proof is that it is the property E[s

t

jhistory] = 0 that makes these processes

converge to the right values, and so the previously used machinery of taking the absolute

value and estimating cannot work in this case, since in general E[ js

t

j jhistory] > 0.
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total-discounted cost criterion and with discount factor 0 � 
 < 1. Assume that

at time t we are given a 4-tuple of experience hx

t

; a

t

; y

t

; c

t

i, where x

t

; y

t

2 X ,

a

t

2 A and c

t

2 R are the decision maker's actual and next states, the deci-

sion maker's action, and a randomized cost received at step t, respectively. We

assume that the following holds on hx

t

; a

t

; y

t

; c

t

i.

Assumption 3.1 (Sampling Assumptions) Consider a �nite mdp, (X ;A; c),

where Pr(yjx; a) are the transition probabilities and c(x; a; y) are the immediate

costs. Let f(x

t

; a

t

; y

t

; c

t

)g be a �xed stochastic process, and let F

t

be an increas-

ing sequence of �-�elds (the history spaces) for which fx

t

; a

t

; y

t�1

; c

t�1

; : : : ; x

0

g

are measurable (x

0

can be random). Assume that the following hold:

1. Pr(y

t

= yjx = x

t

; a = a

t

;F

t

) = Pr(yjx; a),

2. E[c

t

jx = x

t

; a = a

t

; y = y

t

;F

t

] = c(x; a; y) and Var[c

t

jx

t

; a

t

; y

t

;F

t

] is

bounded independently of t, and

3. y

t

and c

t

are independent given the history F

t

.

Note that one may set x

t+1

= y

t

, which corresponds to the situation in which

the decision maker gains its experiences in a real system; this is in contrast to

Monte-Carlo simulations, in which x

t+1

= y

t

does not necessarily hold. The

Q-learning algorithm is given by

Q

t+1

(x; a) = (1� �

t

(x; a))Q

t

(x; a) + �

t

(x; a)

�

c

t

+ 
min

b

Q

t

(y

t

; b)

�

; (8)

where �

t

(x; a) = 0 unless (x; a) = (x

t

; a

t

); it is intended to approximate the

optimal Q function Q

�

of the mdp. Note that as only one component of �

t

(�; �)

di�ers from zero, only one component of Q

t

(�; �) is \updated" in each step; the

resulting process is called an asynchronous process, as opposed to a synchronous

process, when, in Equation (8), �

t

(x; a) would be independent of (x; a), while c

t

would depend on it: c

t

= c

t

(x; a). The convergence of the synchronous process

follows from standard stochastic approximation arguments. Theorem 3 (and

Corollary 5) show that the convergence can be extended to the asynchronous

process. In particular, we have the following theorem (see also the related

theorems of Watkins & Dayan (1992), Jaakkola, Jordan, & Singh (1994), and

Tsitsiklis (1994)).

Theorem 6 Consider Q-learning in a �nite mdp where the sequence hx

t

; a

t

; y

t

; c

t

i

satis�es Assumption 3.1. Assume that the learning rate sequence �

t

satis�es the

following:

1. 0 � �

t

(z; a),

P

1

t=0

�

t

(z; a) = 1,

P

1

t=0

�

2

t

(z; a) < 1, and both hold uni-

formly and hold w.p.1, and

2. �

t

(x; a) = 0 if (x; a) 6= (x

t

; a

t

) w.p.1.

Then, the values de�ned by Equation (8) converge to the optimal Q function Q

�

w.p.1.
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Proof. The proof relies on the observation that Q-learning is a relaxation pro-

cess, so we may apply Corollary 5.

4

We identify the state set X of Corollary 5

by the set of possible state-action pairs X �A. If we let

f

t

(x; a) =

�

�

t

(x; a); if (x; a) = (x

t

; a

t

);

0; otherwise,

and

(P

t

Q)(x; a) = c

t

+ 
max

b2A

Q(y

t

; b)

(P

t

does not depend on a), then we see that Conditions 1 and 2 of Corollary 5

on f

t

and P

t

are satis�ed because of our Condition 1 (k�

t

(�; �)k ! 0; t ! 1

w.p.1, so, for large enough t, f

t

(�) � 1.) So, it remains to prove that for a �xed

function Q 2 B(X �A), the process

^

Q

t+1

(x; a) = (1� �

t

(x; a))

^

Q

t

(x; a) + �

t

(x; a)

�

c

t

+ 
min

b

Q(y

t

; b)

�

(9)

converges to TQ, where T is de�ned by

(TQ)(x; a) =

X

y2X

Pr(yjx; a)

�

c(x; a; y) + 
min

b

Q(y; b)

�

: (10)

Using the conditional averaging lemma (Lemma 4), this is straightforward.

First, observe that the di�erent components of

^

Q

t

are decoupled, i.e.,

^

Q

t+1

(x; a)

does not depend on

^

Q

t

(x

0

; a

0

) and vice versa whenever (x; a) 6= (x

0

; a

0

). Thus, it

is su�cient to prove the convergence of the one-dimensional process

^

Q

t

(x; a) to

(TQ)(x; a) for any �xed pair (x; a). So, pick up any such pair (x; a) and identify

Q

t

of Lemma 4 with

^

Q

t

(x; a) de�ned by Equation (9). Let F

t

be the �-�eld

that is adapted to

(x

t

; a

t

; �

t

(x; a); y

t�1

; c

t�1

; x

t�1

; a

t�1

; �

t�1

(x; a); y

t�2

; c

t�2

; : : : ; x

0

; a

0

);

if t � 1 and let F

0

be adapted to (x

0

; a

0

), �

t

= �

t

(x; a), w

t

= c

t

+
min

b

Q(y

t

; b).

The conditions of Lemma 4 are satis�ed, namely,

1. F

t

is an increasing sequence of �-�elds by its de�nition;

2. 0 � �

t

� 1 by the same property of �

t

(x; a) (Condition 1 of Theorem 6);

3. �

t

and w

t�1

are F

t

measurable because of the de�nition of F

t

;

4. E[w

t

jF

t

; �

t

6= 0] = E[c

t

+
min

b

Q(y

t

; b)jF

t

] =

P

y2X

Pr(yjx; a)(c(x; a; y)+


min

b

Q(y; b)) = (TQ)(x; a) because of the �rst part of Condition 2;

5. E[w

2

t

jF

t

] is uniformly bounded because y

t

can take on �nite values since,

by assumption, X is �nite, the bounded variance of c

t

given the past

(see the second part of Condition 2) and the independence of c

t

and y

t

(Condition 3);

4

Alternatively, one could directly apply Theorem 3, but we felt it more convenient to

introduce Corollary 5 for use here and later.
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6.

P

1

t=1

�

t

=1 and

P

1

t=1

�

2

t

<1 (Condition 1).

Thus, we get that

^

Q

t+1

(x; a) converges to E[w

t

jF

t

; �

t

6= 0] = (TQ)(x; a), which

proves the theorem. �

The proof of the convergence of Q-learning provided by Theorem 6, while

not particularly simpler than earlier proofs, does serve as an example of how

Theorem 3 (speci�cally, Corollary 5) can be used to prove the convergence of a

reinforcement-learning algorithm. Similar arguments appear in later sections in

proofs of several novel theorems.

To reiterate, our approach attempts to decouple the di�culties related to

estimation (learning the correct values) from those of asynchronous updates,

which is inherent when control and learning are interleaved. This means that,

besides checking some obvious conditions, the convergence proofs for Q-learning

and other algorithms reduce to the proof that a one-dimensional version of the

learning rule (the estimation part) works as intended.

3.2 Model-Based Reinforcement Learning

Q-learning shows that optimal value functions can be estimated without ever

explicitly learning the transition and cost functions; however, estimating these

functions can make more e�cient use of experience at the expense of additional

storage and computation (Moore & Atkeson 1993). The parameters of the func-

tions can be learned from experience by keeping statistics for each state-action

pair on the expected cost and the proportion of transitions to each next state.

In model-based reinforcement learning, the transition and cost functions are es-

timated on line, and the value function is updated according to the approximate

dynamic-programming operator derived from these estimates. Interestingly, al-

though this process is not of the relaxation form, still Theorem 3 implies their

convergence for a wide variety of models and methods. In order to capture

this generality, let us introduce a class of generalized mdps. In generalized

mdps (Szepesv�ari & Littman 1996), the cost-propagation operator Q takes the

special form

(QV )(x; a) =

M

y2X

(x;a)

(c(x; a; y) + 
V (y)) :

Here,

L

(x;a)

f(�) might take the form

P

y2X

Pr(yjx; a)f(y), which corresponds

to the case of expected total-discounted cost criterion, or it may take the form

max

y:Pr(yjx;a)>0

f(y);

which corresponds to the case of the risk-averse worst-case total discounted

cost criterion. One may easily imagine a heterogeneous criterion, when

L

(x;a)

would be of the expected-value form for some (x; a) pairs, while it would be of

the worst-case criterion form for other pairs expressing a state-action dependent

risk attitude of the decision maker. In general, we require only that the operation

12



L

(x;a)

: B(X ) ! R be a non-expansion with respect to the supremum-norm,

i.e., that

�

�

�

�

M

(x;a)

f(�)�

M

(x;a)

g(�)

�

�

�

�

� kf � gk

for all f; g 2 B(X ). Earlier work (Littman & Szepesv�ari 1996; Szepesv�ari &

Littman 1996) provides an in-depth discussion of non-expansion operators.

As was noted above, in model-based reinforcement learning, the transition

and cost functions are estimated by some quantities c

t

and p

t

. As long as ev-

ery state-action pair is visited in�nitely often, there are a number of simple

methods for computing c

t

and p

t

that converge to the true functions. Model-

based reinforcement-learning algorithms use the latest estimates of the model-

parameters (e.g. c

t

and p

t

) to approximate operator Q, and in particular oper-

ator

L

. In some cases, a bit of care is needed to insure that

L

t

, the latest esti-

mate of

L

, converges to

L

, however (here, convergence should be understood

in the sense that k

L

t

f �

L

fk ! 0; t!1 holds for all f 2 B(X )). There is

no problem with expected-cost models; here the convergence of p

t

to the tran-

sition function guarantees the convergence of

L

(x;a)

t

f =

P

y2X

p

t

(x; a; y)f(y)

to

L

. For worst-case-cost models, it is necessary to approximate the transition

function in a way that insures that the set of y such that p

t

(x; a; y) > 0 con-

verges to the set of y such that Pr(yjx; a) > 0. This can be accomplished easily,

however, by setting p

t

(x; a; y) = 0 if no transition from x to y under a has been

observed.

In this framework, the adaptive real-time dynamic-programming algorithm (Barto,

Bradtke, & Singh 1995) takes the form

V

t+1

(x) =

�

min

a2A

L

t

(x;a)

(c

t

(x; a; �) + 
V

t

(�)) ; if x 2 �

t

V

t

(x); otherwise,

(11)

where c

t

(x; a; y) is the estimated cost-function and �

t

is the set of states up-

dated at time step t. This algorithm is called \real time" if the decision maker

encounters its experiences in the real system and x

t

2 �

t

, where x

t

denotes the

actual state of the decision maker at time step t, i.e., the value of the actual

state is always updated.

Theorem 7 Consider a �nite mdp and, for any pair (x; a) 2 X � A, let

L

(x;a)

t

;

L

: B(X )! R. Assume that the following hold w.p.1:

1.

L

t

!

L

in the sense that

lim

t!1

max

(x;a)2X�A

�

�

�

�

M

(x;a)

t

f(�)�

M

(x;a)

f(�)

�

�

�

�

= 0

for all functions f .

2.

L

(x;a)

t

is a non-expansion for all (x; a) 2 X �A and t.

3. c

t

(x; a; y) converges to c(x; a; y) for all (x; a; y).
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4. 0 � 
 < 1.

5. Every state x is updated in�nitely often (i.o.), that is, x 2 �

t

i.o. for all

x 2 X .

Then, V

t

de�ned in Equation (11) converges to the �xed point of the operator

T : B(X )! B(X ), where

(TV )(x) = min

a2A

M

y2X

(x;a)

(c(x; a; y) + 
V (y)) :

Proof. We apply Theorem 3. Let the appropriate approximate dynamic-

programming operator sequence fT

t

g be de�ned by

T

t

(U; V )(x) =

�

min

a2A

L

(x;a)

t

(c

t

(x; a; �) + 
V (�)) ; if x 2 �

t

U(x); otherwise.

Now, we prove that T

t

approximates T .

5

Let x 2 X and let U

t+1

= T

t

(U

t

; V ).

Then, U

t+1

(x) = U

t

(x) if x 62 �

t

. Since, in the other case, when x 2 �

t

,

U

t+1

(x) does not depend on U

t

and, since x 2 �

t

i.o., it is su�cient to show

that D

t

= jmin

a2A

L

(x;a)

t

(c

t

(x; a; �) + 
V (�)) � (TV )(x)j converges to zero as

t!1. Now,

D

t

� max

a2A

�

�

�

�

M

(x;a)

t

(c

t

(x; a; �) + 
V (�)) �

M

(x;a)

(c(x; a; �) + 
V (�))

�

�

�

�

� max

a2A

�

�

�

�

M

(x;a)

t

(c

t

(x; a; �) + 
V (�)) �

M

(x;a)

t

(c(x; a; �) + 
V (�))

�

�

�

�

+max

a2A

�

�

�

�

M

(x;a)

t

(c(x; a; �) + 
V (�)) �

M

(x;a)

(c(x; a; �) + 
V (�))

�

�

�

�

� max

a2A

max

y2X

jc

t

(x; a; y)� c(x; a; y)j

+max

a2A

�

�

�

�

M

(x;a)

t

(c(x; a; �) + 
V (�)) �

M

(x;a)

(c(x; a; �) + 
V (�))

�

�

�

�

;

where we made use of the triangle inequality and Condition 2. The �rst term

on the right-hand side converges to zero because of our Condition 3, while the

second term converges to zero because of our Condition 1. This, together with

Condition 5 implies that D

t

! 0, which, since x 2 X was arbitrary, shows that

T

t

indeed approximates T .

Returning to checking the conditions of Theorem 3, we �nd that the functions

G

t

(x) =

�

0; if x 2 �

t

;

1; otherwise,

5

Note that U

t+1

= T

t

(U

t

; V ) can be viewed as a composite of two converging processes

and, thus, Theorem 15 of Section A.3 could easily be used to prove that U

t

! TV . Here, we

give another direct argument.
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and

F

t

(x) =

�


; if x 2 �

t

;

0; otherwise,

satisfy the remaining conditions of Theorem 3, as long as

L

t

is a non-expansion

for all t (which holds by Condition 2), each x is included in the �

t

sets in�nitely

often (this is required by Condition 3 of Theorem 3), and the discount factor 
 is

less than 1 (see Condition 4 of Theorem 3). But, these hold by our Conditions 5

and 4, respectively, and, therefore, the proof is complete. �

This theorem generalizes the results of Gullapalli & Barto (1994), which deal

only with the expected total-discounted cost criterion, i.e., when

M

y2X

(x;a)

f(y) =

X

y2X

Pr(yjx; a)f(y):

Note that in the above argument, min

a2A

could have been replaced by any

other non-expansion operation (this holds also for the other algorithms pre-

sented in this article). As a consequence of this, model-based methods can

be used to �nd optimal policies in mdps, alternating Markov games, Markov

games (Littman 1994), risk-sensitive models (Heger 1994), and exploration-

sensitive (i.e., sarsa) models (John 1994; Rummery & Niranjan 1994). Also, if

we �x c

t

(x; a; y) = c(x; a; y) and p

t

(x; a; y) = Pr(yjx; a) for all t, x; y 2 X and

a 2 A, this result implies that asynchronous dynamic programming converges

to the optimal value function (Barto, Sutton, & Watkins 1989; Bertsekas &

Tsitsiklis 1989; Barto, Bradtke, & Singh 1995).

3.3 Q-learning With Multi-State Updates

Ribeiro (1995) argued that the use of available information in Q-learning is

ine�cient: in each step it is only the actual state and action whose Q value is

re-estimated. The training process is local both in space and time. If some a

priori knowledge of the \smoothness" of the optimal Q value is available, then

one can make the updates of Q-learning more e�cient by introducing a so-called

\spreading mechanism," which updates the Q values of state-action pairs in the

vicinity of the actual state-action pair as well.

The rule studied by Ribeiro is as follows: let Q

0

be arbitrary and

Q

t+1

(z; a) = (1� �

t

(z; a)s(z; a; x

t

))Q

t

(z; a) +

�

t

(z; a)s(z; a; x

t

)

�

c

t

+ 
min

a

Q

t

(y

t

; a)

�

; (12)

where �

t

(z; a) � 0 is the learning rate associated with the state-action pair

(z; a), which is 0 if a 6= a

t

, s(z; a; x) is a �xed \similarity" function satisfying

0 � s(z; a; x), and hx

t

; a

t

; y

t

; c

t

i is the experience of the decision maker at time t.

The di�erence between the above and the standard Q-learning rule is that here

we may allow �

t

(z; a) 6= 0 even if x

t

6= z, i.e., the values of states di�erent from

the state actually experienced may be updated, too. The similarity function
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s(z; a; x) weighs the relative strength at which updates occur at z when state

x is experienced. (One could also use a similarity that extends spreading over

actions, or time. The similarity could be made time-dependent by making

it converge to the Dirac-delta function at an appropriate rate. In this way,

convergence to the optimal Q-function could be recovered (Ribeiro & Szepesv�ari

1996). For simplicity, we do not consider these cases here.)

Our aim here is to show that, under the appropriate conditions, this learning

rule converges; also, we will be able to derive a bound on how far the limit values

of this rule are from the optimal Q function of the underlying mdp.

Theorem 8 Consider the learning rule of Equation (12), assume that the sam-

pling conditions of Assumption 3.1 are satis�ed, and further assume that

1. the states, x

t

, are sampled from a probability distribution p

1

2 �(X )

2. 0 � s(z; a; �) and s(z; a; z) 6= 0,

3. �

t

(z; a) = 0 if a 6= a

t

, and 0 � �

t

(z; a),

P

1

t=0

�

t

(z; a) =1,

P

1

t=0

�

2

t

(z; a) <

1.

Then, Q

t

, as given by Equation (12), converges to the �xed point of the operator

^

T : B(X �A)! B(X �A),

(

^

TQ)(z; a) =

X

x2X

ŝ(z; a; x)

X

y2X

Pr(yjx; a)

�

c(x; a; y) + 
min

b

Q(y; b)

�

; (13)

where

ŝ(z; a; x) =

s(z; a; x)p

1

(x)

P

y

s(z; a; y)p

1

(y)

:

Proof. Note that

^

T as de�ned is a contraction with index 
 since

P

x

ŝ(z; a; x) =

1 for all (z; a). Since the process of Equation (12) is of the relaxation type,

we apply Corollary 5. As in the proof of the convergence of Q-learning in

Theorem 6, we identify the state set X of Corollary 5 by the set of possible

state-action pairs X �A. We let

(P

t

Q)(x; a) = c

t

+ 
max

b2A

Q(y

t

; b);

but now we set f

t

(z; a) = s(z; a; x

t

)�

t

(z; a). The conditions on f

t

and P

t

are

satis�ed by Condition 2, and the conditions on the learning rates �

t

(x; a) are

also satis�ed (in particular, k�

t

(�; �)k ! 0; t ! 1 w.p.1, so f

t

(�) � 1 for large

enough t), so it remains to prove that for a �xed function Q 2 B(X �A), the

process

Q

t+1

(z; a) = (1� �

t

(z; a)s(z; a; x

t

))Q

t

(z; a) +

�

t

(z; a)s(z; a; x

t

)

�

c

t

+ 
min

b

Q(y

t

; b)

�

; (14)
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converges to

^

TQ. We apply a modi�ed form of the conditional averaging lemma

(Lemma 4), which concerns processes of the form Q

t+1

= (1��

t

s

t

)Q

t

+�

t

s

t

w

t

and is presented and proved in Appendix C as Lemma 20. This lemma states

that, under some bounded-variance conditions,Q

t

converges to E[s

t

w

t

jF

t

]=E[s

t

jF

t

],

where F

t

is an increasing sequence of �-�elds that is adapted to fs

t�1

; w

t�1

; �

t

g.

In our case, let F

t

of Lemma 20 be the �-�eld generated by

(a

t

; �

t

(x; a); y

t�1

; c

t�1

; x

t�1

; : : : ; a

1

; �

1

(x; a); y

0

; c

0

; x

0

; a

0

; �

0

(x; a)))

if t � 1 and let F

0

be adapted to (a

0

; �

0

(x; a)). Easily,

(

^

TQ)(z; a) =

E[s(z; a; x

t

)(c

t

+ 
min

b2A

Q(y

t

; b))jF

t

; �

t

(z; a) 6= 0]

E[s(z; a; x

t

)jF

t

; �

t

(z; a) 6= 0]

:

E[s

2

(z; a; x

t

)(c

t

+ 
min

a

Q(y

t

; a))

2

jx

t

;F

t

] < B < 1 for some B > 0 by Con-

ditions 2 and 3. Moreover, E[s(z; a; x

t

)jF

t

] =

P

x2X

p

1

(x)s(z; a; x) > 0 by

Conditions 1 and 2, and E[s

2

(z; a; x

t

)jF

t

] =

P

x2X

p

1

(x)s

2

(z; a; x) <

^

B < 1,

for some

^

B > 0, by the �niteness of X . Finally, �

t

(z; a) obviously satis�es the

assumptions of Lemma 20 and, therefore, all the conditions of the quoted lemma

are satis�ed. So, Q

t

(z; a), de�ned by Equation (14), converges to (

^

TQ)(z; a). �

Note that if we set s(z; a; x) = 1 if and only if z = x and s(z; a; x) = 0 then

Equation (12) becomes the same as the Q-learning update rule of Equation (8).

However, the condition on the sampling of x

t

is quite strict, so Theorem 8 is

less general than Theorem 6.

It is interesting and important to ask how close is

^

Q

�

, the �xed point of

^

T

where

^

T is de�ned by Equation (13), to the \true" optimal Q

�

, which is the

�xed point of T de�ned by Equation (10). The following proposition (related to

Theorem 6.2 of Gordon (1995)) answers this question in the general case. The

speci�c case we are concerned with here comes from taking the operator F to

be

(FQ)(z; a) =

X

x2X

ŝ(z; a; x)Q(x; a):

Proposition 9 Let B be a normed vector space, T : B ! B be a contraction

and F : B ! B be a non-expansion. Further, let

^

T : B ! B be de�ned by

^

TQ = F (TQ), Q 2 B. Let Q

�

be the �xed point of T and

^

Q

�

be the �xed point

of

^

T . Then,

k

^

Q

�

�Q

�

k �

2 inf

Q

f kQ�Q

�

k : FQ = Q g

1� 


: (15)

Proof. Let Q denote an arbitrary �xed point of F .

6

Then, since kT

^

Q

�

�Q

�

k =

kT

^

Q

�

� TQ

�

k � 
k

^

Q

�

� Q

�

k, k

^

Q

�

� Q

�

k = kFT

^

Q

�

� Q

�

k � kFT

^

Q

�

� Qk+

kQ�Q

�

k = kFT

^

Q

�

� FQk+ kQ�Q

�

k � kT

^

Q

�

�Qk+ kQ�Q

�

k � kT

^

Q

�

�

Q

�

k+2kQ�Q

�

k � 
k

^

Q

�

�Q

�

k+2kQ�Q

�

k. Rearranging the terms and taking

the in�mum over the possible Qs yields the bound of Inequality (15). �

6

If F does not have a �xed point, then the in�mum is in�nity, so the proposition is still

correct (trivially).
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Inequality (15) helps us to de�ne the spreading coe�cients s(z; a; x). Specif-

ically, let n > 0 be �xed and let

s(z; a; x) =

�

1; if i=n � Q

�

(z; a); Q

�

(x; a) < (i+ 1)=n for some i;

0; otherwise,

(16)

then we get that the learned Q function is within 1=n of the optimal Q function

Q

�

.

7

Of course, the problem with this de�nition is that we do not know in

advance the optimal Q function, so we can't de�ne s(z; a; x) precisely as shown

in Equation (16). However, the above example gives us a guideline for how

to de�ne a \good" spreading function (by good here, we mean that the error

introduced by the spreading function is kept as small as possible): s(z; a; x)

should be small (zero) for states z and x for which Q

�

(z; a) and Q

�

(x; a) di�er

substantially, otherwise s(z; a; x) should take on larger values. In other words,

it is a good idea to de�ne s(z; a; x) as the degree of expected di�erence between

Q

�

(z; a) and Q

�

(x; a).

Note that the above learning process is closely related to learning on aggre-

gated states (Bertsekas & Casta~non 1989; Schweitzer 1984; Singh, Jaakkola, &

Jordan 1995). An aggregated state is simply a subset X

i

of X . The idea is that

the size of the Q table (which stores the Q

t

(x; a) values) could be reduced if

we assigned a common value to all of the states in the same aggregated state

X

i

. By de�ning the aggregated states fX

i

g

i=1;2;:::;n

in a clever way, one may

achieve that the common value assigned to the states in X

i

are close to the

actual values of the states. In order to avoid ambiguity, the aggregated states

should be disjoint, i.e., fX

i

g should form a partitioning of X . For convenience,

let us introduce the equivalence relation \�" among states with the de�nition

that x � y if and only if x and y are elements of the same aggregated state.

Now, observe that if we set s(z; a; x) = 1 if and only if z � x and s(z; a; x) = 0

otherwise, then, by iterating Equation (12), the values of any two state-action

pairs will be equal when the corresponding states are in the same aggregated

states. In mathematical terms, Q

t

(x; a) = Q

t

(z; a) will hold for all x; z with x �

z, i.e., Q

t

is compatible with the \�" relation. Of course, this holds only if the

initial estimate Q

0

is compatible with the \�" relation, too. The compatibility

of the estimates with the partitioning enables us to rewrite Equation (12) in

terms of the indices of the aggregated states:

Q

t+1

(i; a) =

8

<

:

(1� �

t

(i; a))Q

t

(i; a)

+�

t

(i; a) (c

t

+ 
min

a

Q

t

(i(y

t

); a)) ; if i(x

t

) = i; a

t

= a;

Q

t

(i; a); otherwise.

(17)

Here, i(z) stands for the index of the aggregated state to which z belongs. Then,

we have the following:

Proposition 10 Let n = f1; 2; : : : ; ng and let

~

T : B(n � A) ! B(n � A) be

7

The s(z; a; x) function can also be de�ned in terms of the absolute di�erence of Q

�

(z; a)

and Q

�

(x; a). This may lead to better approximation bounds, but it doesn't allow us to

develop the \equivalence class" discussion later in this section.
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given by

(

~

T

~

Q)(i; a) =

X

x2X

i

;y2X

P (X

i

; x) Pr(yjx; a)

�

c(x; a; y) + 
min

b

~

Q(i(y); b)

�

;

where P (X

i

; x) = p

1

(x)=

P

y2X

i

p

1

(y). Then, under the conditions of Theo-

rem 8, Q

t

(i; a) de�ned by Equation (17) converges to the �xed point of

~

T .

Proof. Since

~

T is a contraction, its �xed point is well de�ned. The proposition

follows from Theorem 8.

8

Indeed, let Q

0

(x; a) = Q(i(x); a) for all (x; a) pair.

Then, Theorem 8 yields that Q

t

(x; a) converges to

^

Q

�

(x; a), where

^

Q

�

is the

�xed point of operator

^

T . Observe that ŝ(z; a; x) = 0 if z 6� x and ŝ(z; a; x) =

P (X

i

(z); x) if z � x. The properties of ŝ yield that if Q is compatible with the

partitioning (i.e., if Q(x; a) = Q(z; a) if x � z), then

^

TQ will also be compatible

with the partitioning, since the right-hand side of the following equation depends

only on the index of z and

~

Q(i; b), which is the common Q value of state-action

pairs for which the state is the element of X

i

:

(

^

TQ)(z; a) =

X

x2X

i(z)

;y2X

P (X

i(z)

; x) Pr(yjx; a)

�

c(x; a; y) + 
min

b

Q(y; b)

�

=

X

x2X

i(z)

;y2X

P (X

i(z)

; x) Pr(yjx; a)

�

c(x; a; y) + 
min

b

~

Q(i(y); b)

�

:

Since

^

T is compatible with the partitioning, its �xed point must be compatible

with the partitioning, and, further, the �xed point of

~

T and that of

^

T are equal

when we identify functions of B(X �A) that are compatible with the given

partitioning with the corresponding functions of B(n � A) in the natural way.

Putting the above pieces together yields that Q

t

as de�ned in Equation (17)

converges to the �xed point of

~

T . �

Note that Inequality (15) still gives an upper bound for the largest di�erence

between

^

Q

�

and Q

�

, and Equation (16) de�nes how a 1=n-precise partitioning

should ideally look.

The above results can be trivially extended to the case in which the decision

maker follows a �xed stationary policy that guarantees that every state-action

pair is visited in�nitely often and that there exists a non-vanishing limit prob-

ability distribution over the states X . However, if the actions that are chosen

depend on the estimated Q

t

values, then there does not seem to be any sim-

ple way to ensure the convergence of Q

t

unless randomized policies are used

during learning whose rate of change is slower than that of the estimation pro-

cess (Konda & Borkar 1997).

8

Note that Corollary 5 could also be applied directly to this rule. Another way to deduce

the above convergence result is to consider the learning rule over the aggregated states as a

standard Q-learning rule for an induced mdp whose state space is fX

1

; : : : ;X

n

g, whose tran-

sition probabilities are p(X

i

; a;X

j

) =

P

x2X

i

;y2X

j

p

1

(x) Pr(yjx; a) and whose cost-structure

is c(X

i

; a;X

j

) =

P

x2X

i

;y2X

j

p

1

(x) Pr(yjx; a)c(x; a; y).
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Other extensions of the results of this section are to the case in which the

spreading function s decays to one that guarantees convergence to an optimal

Q function, and the case in which learned values are a function of the chosen

exploratory actions (the so-called sarsa algorithm) (John 1994; Rummery &

Niranjan 1994; Singh & Sutton 1996; Singh et al. 1998).

3.4 Q-learning for Markov Games

In an mdp, a single decision maker selects actions to minimize its expected

discounted cost in a stochastic environment. A generalization of this model

is the alternating Markov game, in which two players, the maximizer and the

minimizer, take turns selecting actions|the minimizer tries to minimize its ex-

pected discounted cost, while the maximizer tries to maximize the cost to the

other player. The update rule for alternating Markov games is a simple variation

of Equation (11) in which a max replaces a min in those states in which the max-

imizer gets to choose the action; this makes the optimality criterion discounted

minimax optimality. Theorem 7 implies the convergence of Q-learning for alter-

nating Markov games because min and max are both non-expansions (Littman

1996).

Markov games are a generalization of both mdps and alternating Markov

games in which the two players simultaneously choose actions at each step in

the process (Owen 1982; Littman 1994). The basic model is de�ned by the

tuple hX ;A;B;Pr(�j�; �); ci (states, min actions, max actions, transitions, and

costs) and discount factor 
. As in alternating Markov games, the optimality

criterion is one of discounted minimax optimality, but because the players move

simultaneously, the Bellman equations take on a more complex form:

v

�

(x) = min

�2�(A)

max

b2B

X

a2A

�(a)

0

@

c(x; (a; b)) + 


X

y2X

Pr(yjx; (a; b))v

�

(y)

1

A

: (18)

In these equations, c(x; (a; b)) is the immediate cost for the minimizer for taking

action a 2 A in state x at the same time the maximizer takes action b 2 B,

Pr(yjx; (a; b)) is the probability that state y is reached from state x when the

minimizer takes action a and the maximizer takes action b, and �(A) represents

the set of discrete probability distributions over the set A. The sets X , A, and

B are �nite.

Optimal policies are in equilibrium, meaning that neither player has any

incentive to deviate from its policy as long as its opponent adopts its policy. In

every Markov game, there is a pair of optimal policies that are stationary (Owen

1982). Unlike mdps and alternating Markov games, the optimal policies are

sometimes stochastic; there are Markov games in which no deterministic policy

is optimal (the classic playground game of \rock, paper, scissors" is of this type).

The stochastic nature of optimal policies explains the need for the optimization

over probability distributions in the Bellman equations, and stems from the fact

that players must avoid being \second guessed" during action selection. An

20



equivalent set of equations to Equation (18) can be written with a stochastic

choice for the maximizer, and also with the roles of the minimizer and maximizer

reversed.

The obvious way to extend Q-learning to Markov games is to de�ne the cost-

propagation operator Q analogously to the case of mdps from the �xed-point

Equation (18). This yields the de�nition Q : B(X )! B(X ��(A)) as

(QV )(x; �) = max

b2B

X

a2A

�(a)

0

@

c(x; (a; b)) + 


X

y2X

Pr(yjx; (a; b))V (y)

1

A

:

Note that Q is a contraction with index 
.

Unfortunately, because Q

�

= Qv

�

would be a function of an in�nite space

(all discrete probability distributions over the action space), we have to choose

another representation. If we rede�ne Q to map functions over X to functions

over the �nite space X � (A�B):

[QV ](x; (a; b)) =

0

@

c(x; (a; b)) + 


X

y2X

Pr(yjx; (a; b))V (y)

1

A

then, for Q

�

= Qv

�

, the �xed-point Equation (18) takes the form

v

�

(y) = min

�2�(A)

max

b2B

X

a2A

�(a)Q

�

(y; (a; b)):

Applying Q on both sides yields

Q

�

(x; (a

0

; b

0

)) = c(x; (a

0

; b

0

))+


X

y2X

Pr(yjx; (a

0

; b

0

)) min

�2�(A)

max

b2B

X

a2A

�(a)Q

�

(y; (a; b)):

The corresponding Q-learning update rule (Littman 1994) given the step t ex-

perience hx

t

; a

t

; b

t

; y

t

; c

t

i has the form

Q

t+1

(x

t

; (a

t

; b

t

)) = (19)

(1� �

t

(x

t

; (a

t

; b

t

)))Q

t

(x

t

; (a

t

; b

t

)) + �

t

(x

t

; (a

t

; b

t

))

�

c

t

+ 


�

O

Q

t

�

(y

t

)

�

;

where

�

O

Q

�

(y) = min

�2�(A)

max

b2B

X

a2A

�(a)Q(y; (a; b))

and the values of Q

t

not shown in Equation (19) are left unchanged.

This update rule is identical to Equation (8), except that actions are taken

to be simultaneous pairs for both players. The results of Section 3.1 prove

that this rule converges to the optimal Q function under the proper sampling

conditions. It is worth noting that similar results could also be derived by

extending previous Q-learning convergence proofs.

In general, it is necessary to solve a linear program to compute (

N

Q)(y).

It is possible that Theorem 3 can be combined with the results of Vrieze &

Tijs (1982) on solving Markov games by \�ctitious play" to prove the conver-

gence of a linear-programming-free version of Q-learning for Markov games. Hu

& Wellman (1998) extended the results of this section to non-zero-sum games.
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3.5 Risk-Sensitive Reinforcement Learning

The optimality criterion for mdps in which only the worst possible value of the

next state makes a contribution to the value of a state is called the worst-case

total discounted cost criterion. An optimal policy under this criterion is one that

avoids states for which a bad outcome is possible, even if it is not probable; for

this reason, the criterion has a risk-averse quality to it. Following Heger (1994),

this can be expressed by changing the expectation operator of mdps used in the

de�nition of the cost-propagation operator Q to

(QV )(x; a) = max

y:Pr(yjx;a)>0

(c(x; a; y) + 
V (y)) :

The argument in Section 3.2 shows that model-based reinforcement learning

can be used to �nd optimal policies in risk-sensitive models, as long as the

transition probabilities are estimated in a way that preserves its zero vs. non-

zero nature in the limit. Analogously, a Q-learning-like algorithm, called

^

Q-

learning (Q-hat learning) can be shown and will be shown here to converge

to optimal policies. In essence, the learning algorithm uses an update rule

that is quite similar to the rule in Q-learning with a max replacing exponential

averaging and no learning rate, but has the additional requirement that the

initial Q function be set optimistically; that is, Q

0

(x; a) � Q

�

(x; a) for all x and

a.

9

Like Q-learning, this learning algorithm is a generalization of the LRTA*

algorithm of Korf (1990) to stochastic environments.

Theorem 11 Assume that both X and A are �nite. Let

Q

t+1

(x; a) =

�

max (Q

t

(x; a); c

t

+ 
min

b2A

Q

t

(y

t

; b)) ; if (x; a) = (x

t

; a

t

);

Q

t

(x; a); otherwise,

where hx

t

; a

t

; y

t

; c

t

i is the experience of the decision maker at time t, y

t

is se-

lected at random according to Pr(�jx; a), and c

t

is a random variable satisfy-

ing the following condition: If t

n

(x; a; y) is the subsequence of ts for which

(x; a; y) = (x

t

; a

t

; y

t

), then c

t

n

(x;a;y)

� c(x; a; y) and lim sup

n!1

c

t

n

(x;a;y)

=

c(x; a; y) w.p.1. Then, Q

t

converges to Q

�

= Qv

�

provided that Q

0

� Q

�

and

every state-action pair is updated in�nitely often.

Proof. The proof is another application of Theorem 3, but here the de�nition

of the appropriate operator sequence T

t

needs some more care. Let the set of

\critical states" for a given (x; a) pair be given by

M(x; a) =

�

y 2 X

�

�

�

�

Pr(yjx; a) > 0; Q

�

(x; a) = c(x; a; y) + 
min

b2A

Q

�

(y; b)

�

:

9

The necessity of this condition is clear since in the

^

Q-learning algorithm we need to

estimate the operator max

y:Pr(yjx;a)>0

from the observed transitions, and the underlying

iterative method is consistent with max

y:Pr(yjx;a)>0

only if the initial estimate is overesti-

mating. Since we require only that T

t

approximates T at Q

�

, it is su�cient for the initial

value of the process to satisfy Q

0

� Q

�

. Note that Q

0

= �M=(1� 
) satis�es this condition,

where M = max

(x;a;y)

c(x; a; y).
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The set M(x; a) is non-empty, since X is �nite. Since the costs c

t

satisfy

c

t

n

(x;a;y)

� c(x; a; y) and

lim sup

n!1

c

t

n

(x;a;y)

= c(x; a; y);

we may also assume (by possibly rede�ning t

n

(x; a; y) to become a subsequence

of itself) that

lim

n!1

c

t

n

(x;a;y)

= c(x; a; y): (20)

Now, let T (x; a; y) = ft

k

(x; a; y) j k � 0 g and T (x; a) = [

y2M(x;a)

T (x; a; y).

Consider the following sequence of random operators:

T

t

(Q

0

; Q)(x; a) =

�

max (c

t

+ 
min

b2A

Q(y

t

; b); Q

0

(x; a)) ; if t 2 T (x; a),

Q

0

(x; a); otherwise,

and the sequence Q

0

0

= Q

0

and Q

0

t+1

= T

t

(Q

0

t

; Q

0

t

) with the set of possible initial

values taken from

F

0

= fQ 2 B(X �A) jQ(x; a) � Q

�

(x; a) for all (x; a) 2 X �Ag:

Clearly, F

0

is invariant under T

t

. We claim that it is su�cient to consider the

convergence of Q

0

t

. Since there are no more updates (increases of value) in the

sequence Q

0

t

than in Q

t

, we have that Q

�

� Q

t

� Q

0

t

and, thus, if Q

0

t

converged

to Q

�

, then necessarily so did Q

t

. It is immediate that T

t

approximates T at

Q

�

(since w.p.1 there exist an in�nite number of t > 0 such that t 2 T (x; a)),

and also that we can safely de�ne the Lipschitz function

G

t

(x; a) =

�

0; if (x; a) = (x

t

; a

t

) and y

t

2 M(x; a),

1; otherwise,

since T

t

(Q;Q

�

)(x; a) = Q

�

(x; a) if (x; a) = (x

t

; a

t

) and y

t

2M(x; a).

Now, let us bound the quantity jT

t

(Q

0

; Q)(x; a)�T

t

(Q

0

; Q

�

)(x; a)j. For this,

assume �rst that t 2 T (x; a). This means that (x; a) = (x

t

; a

t

) and y

t

2M(x; a).

Since Q

0

2 F

0

and F

0

is invariant we may assume that the functions Q;Q

0

below

satisfy Q;Q

0

� Q

�

(they over non-overestimating):

jT

t

(Q

0

; Q)(x; a) � T

t

(Q

0

; Q

�

)(x; a)j

� (c(x; a; y

t

) + 
min

b2A

Q

�

(y

t

; b))�max(c

t

+ 
min

b2A

Q(y

t

; b); Q

0

(x; a))

�

�

c(x; a; y

t

) + 
min

b2A

Q

�

(y

t

; b)

�

�

�

c

t

+ 
min

b2A

Q(y

t

; b)

�

� 
kQ

�

�Qk+ jc(x; a; y

t

)� c

t

j: (21)

We have used the fact that T

t

(Q

0

; Q

�

)(x; a) � T

t

(Q

0

; Q)(x; a) (since T

t

is mono-

tone in its second variable) and that

T

t

(Q

0

; Q

�

)(x; a) � max

�

c(x; a; y

t

) + 
min

b2A

Q

�

(y

t

; b); Q

0

(x; a)

�

= c(x; a; y

t

) + 
min

b2A

Q

�

(y

t

; b)
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since y

t

2 M(x; a) and Q

0

� Q

�

.

Let �

t

(x; a) = jc(x; a; y

t

)� c

t

j. Note that by Equation (20),

lim

t!1;t2T (x;a)

�

t

(x; a) = 0

w.p.1. In the other case (when t 62 T (x; a)),

jT

t

(Q

0

; Q)(x; a)� T

t

(Q

0

; Q

�

)(x; a)j = 0:

Therefore,

jT

t

(Q

0

; Q)(x; a)� T

t

(Q

0

; Q

�

)(x; a)j � F

t

(x; a)(kQ�Q

�

k+ �

t

);

where

F

t

(x; a) =

�


; if t 2 T (x; a),

0; otherwise,

and �

t

= �

t

(x

t

; a

t

)=
 if t 2 T (x; a), and �

t

= 0, otherwise. Thus, we get that

Condition 2 of Theorem 3 is satis�ed since �

t

converges to zero w.p.1 (which

holds because there are only a �nite number of (x; a) pairs).

Condition 3 of the same theorem is satis�ed if and only if t 2 T (x; a) i.o.

But, this must hold due to the assumptions on the sampling of (x

t

; a

t

) and y

t

,

and since Pr(yjx; a) > 0 for all y 2 M(x; a). Finally, Condition 4 is satis�ed,

since for all t, F

t

(x) = 
(1� G

t

(x)), and so Theorem 3 yields that

^

Q-learning

converges to Q

�

w.p.1. �

In this section, we have proven Theorem 11 concerning the convergence of

^

Q-learning under a worst-case total discounted cost criterion, �rst stated by

Heger (1994). Note that, once again, this process is not of the relaxation type

(that is, Equation (5)) but Theorem 3 still applies to it.

Another interesting thing to note is that, in spite of the absence of any

learning rate sequence,

^

Q-learning converges. It does require that the initial Q

function be set optimistically, however.

4 Conclusions

This article presents and proves a general convergence theorem useful for analyz-

ing reinforcement-learning algorithms. This theorem enables proofs of conver-

gence of some learning algorithms outside of the scope of the earlier theorems;

novel results include the convergence of reinforcement-learning algorithms in

game environments and under a risk-sensitive assumption. At the same time,

the theorem enables the derivation of the earlier general convergence results.

However, the generality of these earlier results is not always needed|as for Q-

learning|and the present approach shows simple ways to prove the convergence

of practical algorithms. The purpose of the theorem is to extract the basic tools

needed to prove convergence and decouple di�culties rising from stochasticity

and asynchronousness: The theorem enables the treatment of non-stochastic
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algorithms like asynchronous value iteration, along with stochastic ones (Q-

learning) with asynchronous components. (Synchronous stochastic algorithms

are subject of standard stochastic approximation theory.) Note also that the

methods developed in this paper can be used to obtain an asymptotic con-

vergence rate results for averaging-type asynchronous algorithms (Szepesv�ari

1997).

Similarly to Jaakkola, Jordan, & Singh (1994) and Tsitsiklis (1994), we

develop the connection between stochastic approximation theory and reinforce-

ment learning in mdps. Our work is similar in structure and spirit to that of

Jaakkola, et al. We believe the form of Theorem 3 makes it particularly con-

venient for proving the convergence of reinforcement-learning algorithms; our

theorem reduces the proof of the convergence of an asynchronous process to a

simpler proof of convergence of a corresponding synchronized one. This idea

enables us to prove the convergence of asynchronous stochastic processes whose

underlying synchronous process is not of the Robbins-Monro type (e.g., risk-

sensitive mdps, model-based algorithms, etc.) in a uni�ed way.

There are many areas of interest in the theory of reinforcement learning

that we would like to address in future work. The results in this paper con-

cern reinforcement-learning in discounted models (
 < 1), and there are impor-

tant non-contractive reinforcement-learning scenarios, for example, reinforce-

ment learning under an average-reward criterion (Schwartz 1993; Mahadevan

1996).

In principle, the analysis of actor-critic-type learning algorithms (Williams

& Baird 1993; Konda & Borkar 1997) could bene�t from the type of convergence

results developed in this paper. Our early attempts to apply these techniques to

actor-critic learning have been unsuccessful, however. The fact that the space

of policies is not continuous presents serious di�culties for the type of metric-

space arguments used here, and we have yet to �nd a way to achieve the required

contraction properties in the policy-update operators.

Another possible direction for future research is to apply the modern ODE

(ordinary di�erential equation) theory of stochastic approximations. If one is

given a de�nite exploration strategy, then this theory may yield results about

convergence, speed of convergence, �nite sample size e�ects, optimal explo-

ration, limiting distribution of Q-values, etc.

The presented mathematical tools help us to understand how reinforcement-

learning problems can be attacked in a well-motivated way and pave the way to

more general and powerful algorithms.
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A Proof of the Convergence Theorem

This section proves Theorem 3 (Section 2.1).

Let U

0

be a value function in F

0

(v

�

) and let U

t+1

= T

t

(U

t

; v

�

). Since T

t

approximates T at v

�

, U

t

converges to Tv

�

= v

�

w.p.1 uniformly over X . We

will show that kU

t

�V

t

k converges to zero w.p.1, which implies that V

t

converges

to v

�

. Let

�

t

(x) = jU

t

(x)� V

t

(x)j

and let

�

t

(x) = jU

t

(x) � v

�

(x)j:

We know that �

t

(x) converges to zero because U

t

converges to v

�

.

By the triangle inequality and the conditions on T

t

(invariance of F

0

and

the Lipschitz conditions), we have

�

t+1

(x) = jU

t+1

(x) � V

t+1

(x)j

= jT

t

(U

t

; v

�

)(x) � T

t

(V

t

; V

t

)(x)j

� jT

t

(U

t

; v

�

)(x) � T

t

(V

t

; v

�

)(x)j + jT

t

(V

t

; v

�

)(x) � T

t

(V

t

; V

t

)(x)j

� G

t

(x)jU

t

(x)� V

t

(x)j+ F

t

(x)(kv

�

� V

t

k+ �

t

)

= G

t

(x)�

t

(x) + F

t

(x)(kv

�

� V

t

k+ �

t

)

� G

t

(x)�

t

(x) + F

t

(x)(kv

�

� U

t

k+ kU

t

� V

t

k+ �

t

)

= G

t

(x)�

t

(x) + F

t

(x)(k�

t

k+ k�

t

k+ �

t

): (22)

It is not di�cult to prove that a process �

t

satisfying Inequality (22) con-

verges to zero when, in Inequality (22), the \perturbation term" k�

t

k + �

t

equals zero for all t � 0. This is shown in Lemma 12 in Section A.1 below. The

problem of transferring this proof to the general case when k�

t

k + �

t

> 0 is

that the boundedness of �

t

cannot be checked directly. However, the proof still

applies for a modi�ed process

^

�

t

, which is the version of �

t

kept bounded by

rescaling it; i.e.,

^

�

t

is de�ned in the same way as �

t

, but whenever k

^

�

t

k grows

above a �xed limit C > 0, we rescale it (by multiplying it appropriately) so that

k

^

�

t

k � C holds for all t � 0. In Section A.2, we prove that it is indeed su�cient

that

^

�

t

converges to zero since �

t

is a homogeneous process, i.e., it can be written

in the form �

t+1

� G

t

(�

t

; k�

t

k + �

t

) such that �G

t

(x; y) = G

t

(�x; �y) holds

for all � > 0. Finally, still in Section A.2, we �nish the proof of Theorem 3 by

showing that

^

�

t

converges to zero (Lemma 16).

It is interesting to note the connection between this last lemma and the gen-

eral problem of unboundedness of stochastic approximation processes. When

using the ODE technique, it is typical that probability one convergence can be

proved only when the boundedness of the process is proven beforehand (Ben-

veniste, M�etivier, & Priouret 1990). Then, the boundedness is shown using other

techniques. As such, this lemma may also �nd some applications in standard

stochastic approximation. Another way to cope with unboundedness, known as

the projection technique, is advocated by Kushner & Clark (1978), Ljung (1977),
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and others. This technique modi�es the original process in a way that its bound-

edness is guaranteed. It is interesting to note that the proof of the lemma below

shows that if one of the arti�cially bound-kept process converges (to zero), then

so does the original, under the additional assumptions of the lemma.

Note that our results, most importantly in the proof of Lemma 16, use

the methods of Jaakkola, Jordan, & Singh (1994); our theorem illustrates the

strength of their approach.

A.1 Convergence in the Perturbation-Free Case

First, we prove our version of Lemma 2 of Jaakkola, Jordan, & Singh (1994),

which concerns the convergence of the above process �

t

from the process of

Inequality (22) in the perturbation-free case. Note that both our assumptions

and our proof are slightly di�erent from theirs|we make some further comments

on this after the proof.

Lemma 12 Let Z be an arbitrary set and consider the random sequence

x

t+1

(z) = G

t

(z)x

t

(z) + F

t

(z)kx

t

k; z 2 Z (23)

where x

1

; F

t

; G

t

� 0 are random processes, and kx

1

k < C < 1 w.p.1 for some

C > 0. Assume that for all k lim

n!1

Q

n

t=k

G

t

(z) = 0 uniformly in z w.p.1 and

F

t

(z) � 
(1 � G

t

(z)) for some 0 � 
 < 1 w.p.1. Then, kx

t

k converges to 0

w.p.1.

Proof. We will prove that for each "; � > 0 there exist an index M =

M("; �) <1 (possibly random, see Appendix B) such that

Pr

�

sup

t�M

kx

t

k < �

�

> 1� ": (24)

Fix arbitrary "; � > 0 and a sequence of numbers p

1

; : : : ; p

t

; : : : satisfying 0 <

p

t

< 1 to be chosen later.

We have that

x

t+1

(z) = G

t

(z)x

t

(z) + F

t

(z)kx

t

k

� G

t

(z)kx

t

k+ F

t

(z)kx

t

k

= (G

t

(z) + F

t

(z))kx

t

k

� kx

t

k;

since, by assumption, G

t

(z)+F

t

(z) � G

t

(z)+ 
(1�G

t

(z)) � 1. Thus, we have

that kx

t+1

k � kx

t

k for all t and, particularly, kx

t

k � C

1

= kx

1

k holds for all t.

Consequently, the process

y

t+1

(z) = G

t

(z)y

t

(z) + 
(1�G

t

(z))C

1

; (25)

with y

1

= x

1

, estimates the process fx

t

g from above: 0 � x

t

� y

t

holds for all

t. The process y

t

converges to 
C

1

w.p.1 uniformly over Z . (Subtract 
C

1

from
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both sides to get (y

t+1

(z) � 
C

1

) = G

t

(z)(y

t

(z) � 
C

1

). Now, convergence of

ky

t

� 
C

1

k follows since lim

n!1

Q

n

t=k

G

t

(z) = 0 uniformly in z). Therefore,

lim sup

t!1

kx

t

k � 
C

1

w.p.1. Thus, there exists an index, say M

1

, for which if t > M

1

then kx

t

k �

(1 + 
)=2C

1

with probability p

1

. Assume that up to some index i � 1 we have

found numbers M

i

such that when t > M

i

then

kx

t

k �

�

1 + 


2

�

i

C

1

= C

i+1

(26)

holds with probability p

1

p

2

: : : p

i

. Now, let us restrict our attention to those

events for which Inequality (26) holds. Then, we see that the process

y

M

i

= x

M

i

y

t+1

(z) = G

t

(z)y

t

(z) + 
(1�G

t

(z))C

i+1

; t �M

i

bounds x

t

from above from the index M

i

. Now, the above argument can be

repeated to obtain an index M

i+1

such that Inequality (26) holds for i+1 with

probability p

1

p

2

: : : p

i

p

i+1

.

Since (1 + 
)=2 < 1, there exists an index k for which ((1 + 
)=2)

k

C

1

< ".

Then, we get that Inequality (24) is satis�ed when we choose p

1

; : : : ; p

k

in a

way that p

1

p

2

: : : p

k

� 1� " and we set M = M

k

(where M

k

will depend upon

p

1

; p

2

; : : : ; p

k

). �

A signi�cant contrast between Lemma 12 and the results of Jaakkola, Jor-

dan, & Singh (1994) lies in the use of the constants F

t

and G

t

. Jaakkola et

al. relate these quantities through their conditional expectations (E[F

t

jP

t

] �


(1�E[G

t

jP

t

]), where P

t

is the history of the process), whereas our result uses

the relation F

t

� 
(1 � G

t

). Ours is a stronger assumption, but it has the

advantage of simplifying the mathematics while still being su�cient for a wide

range of applications. If only the conditional expectations are related, then two

additional assumptions are needed, namely that

lim

N!1

k

N

X

t=0

F

2

t

k = 0; and

lim

n!1

k

N

X

t=0

G

2

t

k = 0 (27)

w.p.1 and a version of the conditional averaging lemma (Lemma 4, presented in

Section 2.2) can be used to show the convergence of kx

t

k to zero. Note that F

t

andG

t

correspond to the Lipschitz functions of Theorem 3, respectively. In some

of the applications (see Sections 3.2 and 3.5), the appropriate Lipschitz constants

do not satisfy this assumption (Equation 27), but Condition 4 is satis�ed in all

the applications. These applications include the model-based and risk-sensitive
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RL algorithms. Note that our approach still requires the above assumptions in

the proof of Q-learning (Section 3.1).

When the process of Equation (23) is subject to decaying perturbations, say

"

t

(see, e.g., the process of Inequality (22)), then the proof no longer applies.

The problem is that kx

t

k � kx

1

k (or kx

M+t

k � kx

M

k, for large enough M) can

no longer be ensured without additional assumptions. For x

t+1

(z) � kx

t

k to

hold, we would need that 
"

t

� (1� 
)kx

t

k, but if lim inf

t!1

kx

t

k = 0 (which,

in fact, is a consequence of what should be proved), then we could not check

this relation a priori . Thus, we choose another way to prove that the perturbed

process converges to zero. Notice that the key idea in the above proof is to bound

x

t

by y

t

. This can be done if we assume that x

t

is kept bounded arti�cially,

e.g., by scaling. The next subsection shows that such a change of x

t

does not

e�ect its convergence properties.

A.2 The Rescaling of Two-Variable Homogeneous Pro-

cesses

The next lemma is about two-variable homogeneous processes, that is, processes

of the form

x

t+1

= G

t

(x

t

; "

t

); (28)

where G

t

: B �B ! B is a homogeneous random function (B denotes a normed

vector space, as before), i.e.,

G

t

(�x; �") = �G

t

(x; ") (29)

holds for all � > 0, x and ".

10

We are interested in the question of whether x

t

converges to zero or not. Note that when the inequality de�ning �

t

(Inequal-

ity (22)) is an equality, it becomes a homogeneous process in the above sense.

The lemma below says that, under additional technical conditions, it is enough

to prove the convergence of a modi�ed process that is kept bounded by rescaling

to zero, namely the process

y

t+1

=

�

G

t

(y

t

; "

t

); if kG

t

(y

t

; "

t

)k � C;

C G

t

(y

t

; "

t

)=kG

t

(y

t

; "

t

)k; otherwise,

(30)

where C > 0 is an arbitrary �xed number.

We denote the solution of Equation (28) corresponding to the initial condi-

tion x

0

= w and the sequence " = f"

k

g by x

t

(w; "): Similarly, we denote the

solution of Equation (30) corresponding to the initial condition y

0

= w and the

sequence " by y

t

(w; ").

Definition 13 We say that the process x

t

is insensitive to �nite perturbations

of " if it holds that if x

t

(w; ") converges to zero then so does x

t

(w; "

0

), where

10

Jaakkola, Jordan, & Singh (1994) considered a question similar to that investigated in our

Lemma 14 for the case of single-variable homogeneous processes, which would correspond to

the case when "

t

= 0 for all t � 0 (see Equation (28)). The single-variable case follows from

our result. The extension to two variables is needed in our proof of the lemma in Section A.3.
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"

0

(!) is an arbitrary sequence that di�ers only in a �nite number of terms from

"(!), where the bound on the number of di�erences is independent of !. Further,

we say that the process x

t

is insensitive to scaling of " by numbers smaller than

1, if for all random 0 < c � 1 it holds that if x

t

(w; ") converges to zero then so

does x

t

(w; c").

Lemma 14 (Rescaling Lemma) Let us �x an arbitrary positive number C and

an arbitrary w

0

and sequence ". Then, a homogeneous process x

t

(w

0

; ") con-

verges to zero w.p.1 provided that (i) x

t

is insensitive to �nite perturbations of

"; (ii) x

t

is insensitive to the scaling of " by numbers smaller than one and (iii)

y

t

(w

0

; ") converges to zero.

Proof. We state that

y

t

(w; ") = x

t

(d

t

w; c

t�

") (31)

for some sequences fc

t�

g and fd

t

g, where c

t�

= (c

t0

; c

t1

; : : : ; c

ti

; : : :), fc

t�

g and

fd

t

g satisfy 0 < d

t

; c

ti

� 1, and c

ti

= 1 if i � t. Here, the product of the

sequences c

t�

and � should be understood to be componentwise: (c

t�

�)

i

= c

ti

�

i

.

Note that y

t

(w; ") and x

t

(w; ") depend only on "

0

; : : : ; "

t�1

. Thus, it is possible

to prove Equation (31) by constructing the appropriate sequences c

t

and d

t

.

Set c

0i

= d

i

= 1 for all i = 0; 1; 2; : : :. Then, Equation (31) holds for t = 0.

Let us assume that fc

i

; d

i

g is de�ned in a way that Equation (31) holds for t.

Let S

t

be the \scaling coe�cient" of y

t

at step (t + 1) (S

t

= 1 if there is no

scaling, otherwise 0 < S

t

< 1 with S

t

= C=kG

t

(y

t

; "

t

)k):

y

t+1

(w; ") = S

t

G

t

(y

t

(w; "); "

t

)

= G

t

(S

t

y

t

(w; "); S

t

"

t

)

= G

t

(S

t

x

t

(d

t

w; c

t

"); S

t

"

t

):

We claim that

Sx

t

(w; ") = x

t

(Sw; S") (32)

holds for all w, " and S > 0.

For t = 0, this obviously holds. Assume that it holds for t. Then,

Sx

t+1

(w; ") = SG

t

(x

t

(w; "); "

t

)

= G

t

(Sx

t

(w; "); S"

t

)

= G

t

(x

t

(Sw; S"); S"

t

)

= x

t+1

(Sw; S"):

Thus,

y

t+1

(w; ") = G

t

(x

t

(S

t

d

t

w; S

t

c

t

"); S

t

"

t

);

and we see that Equation (31) holds if we de�ne c

t+1;i

as c

t+1;i

= S

t

c

ti

if

0 � i � t, c

t+1;i

= 1 if i > t and d

t+1

= S

t

d

t

.
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Thus, we get that with the sequences

c

t;i

=

�

Q

t�1

j=i

S

j

; if i < t;

1; otherwise,

d

0

= 1, and

d

t+1

=

t

Y

i=0

S

i

;

Equation (31) is satis�ed for all t � 0.

Now, assume that we want to prove for a particular sequence " and initial

value w that

lim

t!1

x

t

(w; ") = 0 (33)

holds w.p.1. It is enough to prove that Equation (33) holds with probability

1� � when � > 0 is an arbitrary, su�ciently small number.

We know that y

t

(w; ")! 0 w.p.1. We may assume that � < C. Then, there

exists an index M =M(�) such that if t > M then

Pr(ky

t

(w; ")k < �) > 1� �: (34)

Now, let us restrict our attention to those events ! for which ky

t

(w; "(!))k < �

for all t > M : A

�

= f! : ky

t

(w; ")(!)k < �g. Since � < C, we get that there

is no rescaling after step M : S

t

(!) = 1 if t > M . Thus, c

t;i

= c

M+1;i

for all

t �M+1 and i, and speci�cally c

t;i

= 1 if i; t �M+1. Similarly, if t > M then

d

t+1

(!) =

Q

M

i=0

S

i

(!) = d

M+1

(!). By Equation (31), we have that if t > M

then

y

t

(w; "(!)) = x

t

(d

M+1

(!)w; c

M+1

(!)"(!)):

Thus, it follows from our assumption concerning y

t

that x

t

(d

M+1

(!)w; c

M+1

"(!))

converges to zero almost everywhere (a.e.) on A

�

and, consequently, by Equa-

tion (32), x

t

(w; c

M+1

"(!)=d

M+1(!)

) also converges to zero a.e. on A

�

. Since x

t

is insensitive to �nite perturbations, and since, in c

M+1

, only a �nite number of

entries di�ers from 1, x

t

(w; "(!)=d

M+1

(!)) also converges to zero, and, further,

since d

M+1

(!) < 1, x

t

(w; "(!)) = x

t

(w; d

M+1

(!)("(!)=d

M+1

(!))) converges to

zero, too (x

t

is insensitive to scaling of " by d

M+1

). All these hold with prob-

ability at least 1 � �, since, by Equation (34), Pr(A

�

) > 1 � �. Since � was

arbitrary, the lemma follows. �

A.3 Convergence of Perturbed Processes

We have established that Inequality (22) converges if not perturbed. We now

extend this to more general perturbed processes so we can complete the proof

of Theorem 3.

For this we need a theorem that gives su�cient conditions under which

the cascade of two converging processes still converges. The theorem itself is

very simple (the proof requiring just elementary analysis). However, it is quite
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useful in the context of the current work, with applications to the convergence

of both model-based reinforcement-learning in Section 3.2 and to that of the

perturbed di�erence sequence in Lemma 16. Therefore, although, this theorem

is somewhat of a digression from the main stream of the present work, it provides

a convenient analysis of a common phenomenon.

Theorem 15 Let X and Y be normed vector spaces, U

t

: X � Y ! X (t =

0; 1; 2; : : :) be a sequence of mappings, and �

t

2 Y be an arbitrary sequence. Let

�

1

2 Y and x

1

2 X . Consider the sequences x

t+1

= U

t

(x

t

; �

1

); and y

t+1

=

U

t

(y

t

; �

t

); and suppose that x

t

and �

t

converge to x

1

and �

1

, respectively, in

the norm of the appropriate spaces.

Let L

�

k

be the uniform Lipschitz index of U

k

(x; �) with respect to � at �

1

and,

similarly, let L

�

k

be the uniform Lipschitz index of U

k

(x; �

1

) with respect to x.

11

Then, if the Lipschitz constants L

�

t

and L

�

t

satisfy the relations L

�

t

� C(1�L

�

t

);

and

Q

1

m=t

L

�

m

= 0; where C > 0 is some constant and t = 0; 1; 2; : : :, then

lim

t!1

ky

t

� x

1

k = 0:

Proof. For simplicity, assume that x

0

= y

0

; this assumption could be easily

removed at the cost of additional complication. Since ky

t

� x

1

k � ky

t

� x

t

k+

kx

t

� x

1

k, it is su�cient to prove that ky

t

� x

t

k converges to zero. Since

kx

t+1

� y

t+1

k = kU

t

(x

t

; �

1

)� U

t

(y

t

; �

t

)k,

kx

t+1

� y

t+1

k � kU

t

(x

t

; �

1

)� U

t

(y

t

; �

1

)k+ kU

t

(y

t

; �

1

)� U

t

(y

t

; �

1

)k

� L

�

t

kx

t

� y

t

k+ L

�

t

ktheta

t

� �

1

k:

Then, it is easy to prove by induction on r that

kx

r

� y

r

k �

r

X

s=0

k�

s

� �

1

kL

�

s

r

Y

t=s+1

L

�

t

(35)

(the assumption x

0

= y

0

was used here). Now, �x an arbitrary positive ". We

want to prove that for r big enough, kx

r

� y

r

k < ".

Using L

�

s

� C(1� L

�

s

), we get from Equation (35)

kx

r

� y

r

k � C

r

X

s=0

k�

s

� �

1

k(1� L

�

s

)

r

Y

t=s+1

L

�

t

:

Now, consider S

r

=

P

r

s=0

k�

s

� �

1

k(1� L

�

s

)

Q

r

t=s+1

L

�

t

. Let K be big enough

such that sup

s>K

k�

s

� �

1

k < "=(2C) (such a K exists since �

s

converges to

�

1

). Now, split the sum into two parts (assuming r > K + 1):

S

r

=

K

X

s=0

k�

s

� �

1

k(1� L

�

s

)

r

Y

t=s+1

L

�

t

+

r

X

s=K+1

k�

s

� �

1

k(1� L

�

s

)

r

Y

t=s+1

L

�

t

� max

0�s�K

k�

s

� �

1

k

K

X

s=0

(1� L

�

s

)

r

Y

t=s+1

L

�

t

+ sup

s>K

k�

s

� �

1

k

r

X

s=K+1

(1� L

�

s

)

r

Y

t=s+1

L

�

t

:

11

That is, for all x 2 X and � 2 Y kU

k

(x; �)�U

k

(x; �

1

)k � L

�

k

k���

1

k and for all x; y 2 X

kU

k

(x; �

1

)� U

k

(y; �

1

)k � L

�

k

kx� yk.
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For r big enough, the �rst term is easily seen to become smaller than "=(2C),

since max

0�s�K

k�

s

� �

1

k is �nite and the rest is the sum of K + 1 sequences

converging to zero (since

Q

r

t=s+1

L

�

t

converges to zero). In the second term,

sup

s>K

k�

s

��

1

k � "=(2C), by assumption. The sum can be further bounded by

above by increasing the lower bound of the summation to 0 (here, we exploited

the fact that 0 � L

�

t

� 1). The increased sum turns out to be a telescopic sum,

which in turn is equal to 1 �

Q

r

t=0

L

�

t

. This, in fact, converges to 1, but for

our purposes it is su�cient to notice that 1 upper bounds it. Thus, for r big

enough, S

r

� "=(2C) + "=(2C) = "=C and, therefore, kx

r

� y

r

k � ", which is

what was to be proven. �

Now, we are in the position to prove that Lemma 12 is immune to decaying

perturbations.

Lemma 16 Assume that the conditions of Lemma 12 are satis�ed but Equa-

tion (23) is replaced by

x

t+1

(z) = G

t

(z)x

t

(z) + F

t

(z)(kx

t

k+ "

t

); (36)

where "

t

� 0 and "

t

converges to zero with probability 1. Then, x

t

(z) still

converges to zero w.p.1 uniformly over Z.

Proof. We follow the proof of Lemma 12. First, we show that the process

of Equation (36) satis�es the assumptions of the Rescaling Lemma (Lemma 14)

and, thus, it is enough to consider the version of Equation (36) that is kept

bounded by scaling.

First, note that x

t

is a homogeneous process of the form of Equation (28)

(note that Equation (29) was required to hold only for positive �). Let us prove

that x

t

is immune to �nite perturbations of ". To this end, assume that "

0

t

di�ers only in a �nite number of terms from "

t

and let

y

t+1

(z) = G

t

(z)y

t

(z) + F

t

(z)(ky

t

k+ "

0

t

):

Take

k

t

(z) = jx

t

(z)� y

t

(z)j:

Then,

k

t+1

(z) � G

t

(z)k

t

(z) + F

t

(z)(kk

t

(z)k+ j"

t

� "

0

t

j):

For large enough t, "

t

= "

0

t

, so

k

t+1

(z) � G

t

(z)k

t

(z) + F

t

(z)kk

t

(z)k;

which we know to converge to zero by Lemma 12. Thus, x

t

and y

t

both converge

or do not converge and if one converges then the other must converge to the

same value.

The other requirement that we must satisfy to be able to apply the Rescaling

Lemma (Lemma 14) is that x

t

is insensitive to scaling of the perturbation by

numbers smaller than one; let us choose a random number 0 < c � 1 and assume
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that x

t

(w; ") converges to zero with probability 1. Then, since 0 � x

t

(w; c") �

x

t

(w; "), x

t

(w; c") converges to zero w.p.1, too.

Now, let us prove that the process that is obtained from x

t

by keeping it

bounded converges to zero. The proof is the mere repetition of the proof of

Lemma 12, except a few points that we discuss now. Let us denote by x̂

t

the

process that is kept bounded and let the bound be C

1

. It is enough to prove

that kx̂

t

k converges to zero w.p.1. Now, Equation (25) is replaced by

y

t+1

(z) = G

t

(z)y

t

(z) + 
(1�G

t

(z))(C

1

+ "

t

):

By Theorem 15, y

t

still converges to 
C

1

, as the following bindings show:

X ;Y := R �

t

:= "

t

, U

t

(x; �) := G

t

(z)x + 
(1�G

t

(z))(C

1

+ �), where z 2 Z is

arbitrary. Then, L

�

t

= G

t

(z) and L

�

t

= 
(1 �G

t

(z)), satisfying the conditions

of Theorem 15.

Since it is also the case that 0 � x̂

t

� y

t

, the whole argument of Lemma 12

can be repeated for the process x̂

t

, yielding that kx̂

t

k converges to zero w.p.1

and, consequently, so does kx

t

k. �

This completes the proof of Theorem 3.

B Random Indices

Recall that, by de�nition, a random sequence x

t

converges to zero w.p.1 if for all

�; � > 0 there exist a �nite number T = T (�; �) such that Pr

�

sup

t�T

jx

t

j � �

�

<

�. In this section, we address the fact that the bound T might need to be

random. Note that, in the standard treatment, T is not allowed to be random.

However, we show that T can be random and almost sure convergence still holds

if T is almost surely bounded.

Lemma 17 Let x

t

be a random sequence. Assume that for each �; � > 0 there

exist an almost surely �nite random index M =M(�; �) such that

Pr

�

sup

M�t

jx

t

j � �

�

< �: (37)

Then, x

t

converges to zero w.p.1.

Proof. Inequality (37) di�ers from the condition in the standard de�nition

because M is allowed to be random.

Notice that, ifM(!) � k, then sup

t�k

jx

t

(!)j � sup

t�M(!)

jx

t

(!)j and, thus,

�

! j sup

t�k

jx

t

(!)j � �; M(!) � k

�

�

(

! j sup

t�M(!)

jx

t

(!)j � �; M(!) � k

)

:

Now,

A =

�

! j sup

t�k

jx

t

(!)j � �

�
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=

�

A \ f! jM(!) � kg

�

[

�

A \ f! jM(!) > kg

�

�

(

! j sup

t�M(!)

jx

t

(!)j � �; M(!) � k

)

[ f! jM(!) > kg :

Thus,

Pr

�

sup

t�k

jx

t

j � �

�

� Pr

�

sup

t�M

jx

t

j � �

�

+Pr(M > k):

Now, pick up an arbitrary �; � > 0. We want to prove that, for large enough

k > 0, Pr(sup

t�k

jx

t

j � �) < �. LetM

0

=M(�; �=2) be the random index whose

existence is guaranteed by assumption and let k = k("; �) be a natural number

large enough such that Pr(M

0

> k) < �=2. Such a number exists sinceM

0

<1

w.p.1. Then, Pr(sup

t�k

jx

t

j � �) � Pr(sup

t�M

jx

t

j � �) + Pr(M

0

> k) < �,

showing that k is a suitable (non-random) index. �

C Convergence of Certain Stochastic Approxi-

mation Processes

In this section, we prove two useful stochastic approximation theorems, which

are used in the applications involving averaging-type processes. We will make

use of the following \super-martingale"-type lemma due to Robbins & Sieg-

mund (1971).

Lemma 18 Suppose that Z

t

; B

t

; C

t

; D

t

are �nite, non-negative random vari-

ables, adapted to the �-�eld F

t

, which satisfy

E[Z

t+1

jF

t

] � (1 +B

t

)Z

t

+ C

t

�D

t

: (38)

Then, on the set f

P

1

t=0

B

t

< 1;

P

1

t=0

C

t

< 1g, we have

P

1

t=0

D

t

< 1 and

Z

t

! Z <1 almost surely.

The following could be regarded as a typical Robbins-Monro stochastic ap-

proximation theorem; however, it is also motivated by Dvoretzky's theorem,

resulting in a mixture of the two. The main purpose here is to provide a short

proof of the conditional averaging lemma (Lemma 4, presented in Section 2.2),

which itself is a very useful result in this particular form.

12

Theorem 19 Let F

0

� F

1

� : : : � F

t

� F

t+1

� : : : be an increasing sequence

of �-�elds and consider the process

x

t+1

= x

t

+H

t

(x

t

); t = 0; 1; 2; : : : (39)

where H

t

(�) is real-valued and almost surely bounded function. Assume that

x

t

is F

t

-measurable and let h

t

(x

t

) = E[H

t

(x

t

) jF

t

]. Assume that the following

assumptions are satis�ed:

12

Interestingly, in a probabilistic setup, the convergence of the outstar-learning algorithm

of Grossberg (1969) used, for example, in counter-propagation networks (Hecht-Nielsen 1991),

could be analyzed directly with this type of lemma.

35



1. A number x

�

exists such that

(a) (x� x

�

)h

t

(x) � 0 for all t � 0.

and if for any �xed " > 0 we let

h

t

(") = sup

"�jx�x

�

j�1="

h

t

(x)

x� x

�

then w.p.1

(b)

P

1

t=0

h

t

(") = �1;

(c)

P

1

t=0

h

+

t

(") <1, where r

+

= (r + jrj)=2 as usual; and

2. E[H

2

t

(x

t

) jF

t

] � C

t

(1+(x

t

�x

�

)

2

), for some non-negative random sequence

C

t

which satis�es

P

1

t=1

C

t

<1 w.p.1.

Then, x

t

converges to x

�

w.p.1.

Proof.

Begin with Lemma 18. In our case, let Z

t

= (x

t

� x

�

)

2

. Then,

E[Z

t+1

jF

t

] � Z

t

+ C

t

(1 + Z

t

) + 2(x

t

� x

�

)h

t

(x

t

)

� (1 + C

t

)Z

t

+ C

t

+ 2(x

t

� x

�

)h

t

(x

t

)

and, therefore, by Lemma 18 (since by assumption C

t

� 0,

P

1

t=0

C

t

< 1

and (x

t

� x

�

)h

t

(x

t

) � 0), Z

t

! Z < 1 w.p.1 for some random variable Z

and

P

1

t=0

(x

t

� x

�

)h

t

(x

t

) > �1. If 1 > Z(!) 6= 0 for some !, then there

exist an " > 0 and N > 0 (which may depend on !) such that if t � N then

" � jx

t

(!)� x

�

j �

1

"

. Consequently,

�1 <

1

X

s=0

(x

s

(!)� x

�

)h

s

(x

s

(!))

�

1

X

s=0

(x

s

(!)� x

�

)

2

h

s

(";!)

�

N�1

X

s=0

(x

s

(!)� x

�

)

2

h

s

(";!) + "

2

X

s�N;h

s

(";!)�0

h

s

(";!) +

1

"

2

X

s�N;h

s

(";!)>0

h

s

(";!)

= �1

by Condition 1b. This means that f! jZ(!) 6= 0 g must be a null-set, �nishing

the proof of the theorem. �

The theorem could easily be extended to vector-valued processes. Then,

the de�nition of h

t

(") would become h

t

(") = sup

"�kx�x

�

k

2

�1="

(x � x

�

)

T

h

t

(x),
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and Condition 1a becomes (x � x

�

)

T

h(x) � 0, but not another word of the

proof needs to be changed if we de�ne Z

t

= kx

t

� x

�

k

2

2

. Note that Theo-

rem 19 includes as a special case (i) the standard Robbins-Monro process of

the form x

t+1

= x

t

+ 


t

H(x

t

; �

t

), where �

t

are random variables whose distri-

butions depend only on x

t

, 


t

� 0,

P

t




t

= 1 and

P

t




2

t

< 1, and (ii) one

form of the Dvoretzky process x

t+1

= T

t

+ �

t

, where T

t

= G

t

(x

t

� x

�

) + x

�

,

E[�

t

jG

t

; �

t�1

; G

t�1

; : : : ; �

0

; G

0

] = 0,

P

t

E[�

2

t

] <1, G

t

� 1, and

P

t

(G

t

� 1) =

�1.

For our purposes, however, the following simple lemma (part of this lemma

appeared in Lemma 4) is su�cient.

Lemma 20 (Conditional Averaging Lemma) Let F

t

be an increasing se-

quence of �-�elds, let 0 � �

t

, s

t

and w

t

be random variables such that �

t

, w

t�1

and s

t�1

are F

t

measurable. Assume that the following hold w.p.1: E[s

t

jF

t

; �

t

6=

0] =

^

A > 0, E[s

2

t

jF

t

] <

^

B <1, E[s

t

w

t

jF

t

; �

t

6= 0] = A, E[s

2

t

w

2

t

jF

t

] < B <1,

P

1

t=1

�

t

=1, and

P

1

t=1

�

2

t

< C <1 for some B;C > 0. Then, the process

Q

t+1

= (1� s

t

�

t

)Q

t

+ �

t

s

t

w

t

(40)

converges to A=

^

A w.p.1.

Proof. Without loss of generality, we may assume that E[s

t

jF

t

] =

^

A and

E[s

t

w

t

jF

t

] = A. Rewriting the process of Equation (40) in the form of Equa-

tion (39) we get Q

t+1

= Q

t

+ �

t

s

t

(w

t

� Q

t

) and, thus, h

t

(Q) = E[�

t

s

t

(w

t

�

Q)jF

t

] = �

t

(E[s

t

w

t

jF

t

] � QE[s

t

jF

t

]) == �

t

^

A(A=

^

A � Q) and h

t

(") = ��

t

^

A

independently of ". Thanks to the identity jxj � 1 + x

2

, jE[s

2

t

w

t

jF

t

]j �

E[s

2

t

jw

t

j jF

t

] � E[s

2

t

(1 + w

2

t

) jF

t

] �

^

B + B and making use of jxj � 1 + x

2

again, we have E[H

2

t

(Q

t

)jF

t

] = �

2

t

E[s

2

t

(w

t

�Q

t

)

2

jF

t

] � �

2

t

(B + 2(

^

B + B)(1 +

Q

2

t

)+

^

BQ

2

t

) � �

2

t

C

0

(1+(Q

t

�A=

^

A)

2

) for some C

0

> 0. Thus, the lemma follows

from Theorem 19. �
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