

An Intelligent Assistant for Interactive Workflow
Composition

Jihie Kim, Marc Spraragen and Yolanda Gil

University of Southern California/Information Sciences Institute
Marina del Rey, CA 90292 USA

+1 310 448 8769
{jihie,marcs,gil}@isi.edu

ABSTRACT
Complex applications in many areas, including scientific
computations and business-related web services, are created from
collections of components to form workflows. In many cases end
users have requirements and preferences that depend on how the
workflow unfolds, and that cannot be specified beforehand.
Workflow editors enable users to formulate workflows, but the
editors need to be augmented with intelligent assistance in order to
help users in several key aspects of the task, namely: 1) keeping
track of detailed constraints across the components selected and
their connections; 2) specifying the workflow flexibly, e.g., top-
down, bottom-up, from requirements, or from available data; and 3)
taking partial or incomplete descriptions of workflows and
understanding the steps needed for their completion. We present an
approach that combines knowledge bases (that have rich
representations of components) together with planning techniques
(that can track the relations and constraints among individual steps).
We illustrate the approach with an implemented system called CAT
(Composition Analysis Tool) that analyzes workflows and generates
error messages and suggestions in order to help users compose
complete and consistent workflows.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentations]: User Interfaces –
User interface management systems; I.2.0 [Computing
Methodologies]: Artificial Intelligence

General Terms: Verification, Algorithms, Human Factors

Keywords: Knowledge acquisition, workflow composition,
web service composition, workflow editors, interactive planning

1. INTRODUCTION
Composing computational workflows is essential in many areas,
including scientific computations and business-related web services.
A new kind of science is emerging from the integration of models
developed by individual scientists and groups: end-to-end scientific
applications that result from the composition of those individual
models. Another example is the composition of web services to

create new applications from existing software components
(typically as web services) given a customer’s needs.

Workflow editors (e.g., [1,2,3]) have been developed to enable users
to select components from a library, and to link their inputs and
outputs. However, these tools lack the kind of intelligent assistance
required in order to:

• keep track of details to ensure that a correct workflow is
formulated: Manual composition of workflows, as any user-
driven process, is a task prone to errors and inconsistencies. As
users edit the workflow by adding components, linking their
inputs and outputs, etc., there are many constraints that need to
be tracked in terms of the validity of the links and the steps
added.

• support mixed-initiative interaction: Users can drive the
process when they have a clear idea of what to specify about
the workflow, whether they follow a top-down or a bottom-up
approach. At any point in time, the system should be able to
take a partially specified workflow from the user and make
suggestions about how to complete it.

• systematically generate and manage all of the choices
throughout the process: At any point during the workflow
composition, there may be many choices to make: add a
component (and if so which one), add a link, replace an
existing component with a more appropriate one, etc. Ideally,
all these possible choices should be generated systematically,
and they should be presented according to how each
contributes to the configuration of the workflow.

This paper presents an approach to interactive workflow
composition that incorporates 1) knowledge-rich descriptions of the
individual components and their constraints; 2) a formal algorithmic
understanding of partial workflows, based on AI planning
techniques. Using this approach, a system can analyze a partial
workflow composed by the user, notify the user of issues to be
resolved in the current workflow, and suggest to the user what
actions could be taken next. Using this approach, we have developed
CAT (Composition Analysis Tool) and used it in two distinct
domains: a scientific application for earthquake simulation, and a
simple travel-planning domain to illustrate the approach.

The paper begins by describing our motivations and goals based on
a scientific application. We then describe the knowledge bases that
we have developed to represent components, and present the
algorithm to analyze a partial workflow and help a user complete it.
We illustrate the resulting intelligent interaction with a detailed
scenario of use.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.
Copyright 2004 ACM 1-58113-815-6/04/0001…$5.00.

125

2. MOTIVATING GOALS AND
REQUIREMENTS

Figure 1. A computational workflow for earthquake simulation

analysis.

To motivate the goals of this research we use a concrete scenario
from our work with the Southern California Earthquake Center [11],
though the basic requirements and problems are shared in other
sciences as well [4,10].

Seismic hazard analysis (SHA) enables building engineers to
estimate the impact of potential earthquakes at a construction site
and on their building designs. Scientists have developed many
models that can be used to simulate various aspects of an
earthquake: the rupture of a fault and the ground shaking that
follows, the shape of the wave as it propagates through different
kinds of soil, the vibration effects on a building structure, etc. Some
of these models are based on physics; others are empirical based on
historical data on past earthquakes. The models are complex,
heterogeneous, and come with many constraints on their parameters
and their use with other models.

Our ultimate goal is to develop intelligent user interfaces that enable
unsophisticated users, such as building engineers and safety
officials, to create end-to-end workflows composed of complex
scientific models. As a first step to this goal, our work concentrates
on assisting users to create a complete and correct workflow,
focusing on relatively simple (though still realistic) models and
workflows to make the problem more manageable. Currently CAT
supports development of valid composition of components
(workflow) that can be executed by providing specific data.

Figure 1 shows an example of a workflow. Each component has
several inputs; some are provided values directly by the user (e.g.,
the Duration-Year of the Fault Rupture Model). The user may also
choose to have an input take the default value provided by the
knowledge base (e.g., the Wave Propagation Model’s Standard-
Deviation-Type; default = “Total”), and a third group of inputs will
take values linked from the results of the execution of other
components (e.g., the simulated Rupture data output by the Fault
Rupture Model is passed to the input of the Wave Propagation
Model).

Engineers may design the workflow in many different ways. One
way is to think about it in terms of simulation models. They know
they need two main steps: first, simulation of fault rupture; then,

simulation of the wave propagation. They may prefer physics-based
models or empirical models, and are a bit familiar with the scientific
community and the methodology involved in creating each model.
But another way to think about the workflow is the particular data
they want to look at. Sometimes they want the wave's velocity at the
site, or its acceleration. Sometimes they want the probability of
earthquake above a certain magnitude affecting that site. Different
models provide different types of results. Another way to think
about the workflow is the situation they want to simulate. The
engineer may start with a specific site, then look at its characteristics
like basin depth, and then select models that incorporate these
characteristics.

In summary, users may design workflows using a variety of
strategies, including: 1) top-down selection of components, starting
from abstract types of models and then replacing them with more
specific versions; 2) result-based selection of components, working
from desired data to select models that can generate those results; 3)
situation-based selection of components, working from the initial
data available to select components whose constraints are consistent
with those data.

3. APPROACH
Given the goals just described, we are developing a mixed-initiative
approach where users can drive the process and the system
proactively suggests useful next steps and ensures that the final
workflow is correct.
At any time, the user may:
 select a component for inclusion in the workflow. It may be an

abstract type of component, or a specific executable one.
 specialize a component to a more specific one
 establish a link between two components to indicate that the

output of one should be the input of another.
 specify input data to the overall workflow
 specify desired results

(Users can also delete components and links.)
At any time, the system should analyze the workflow, and suggest
possible next actions to the user.
We use two key techniques in our approach:
1) knowledge-based descriptions of simulation models that
support reasoning about multiple abstraction hierarchies of
components. A given executable simulation model may be
categorized in several abstract classes depending on the features
being abstracted. In order to reason adequately about an abstract
type of model, the system should be able to represent common
features that apply to all models of that type. We use description
logic to reason about ontologies of component descriptions.
2) analysis of partially constructed workflows based on AI
planning techniques. In our current framework, a workflow is a
directed acyclic graph: components are nodes and links are directed
edges. At any point during composition, the system can search this
graph for missing components, for links that are inconsistent with
the descriptions of the components, for unnecessary components,
etc. Planning algorithms provide a useful framework to relate steps
to goals and initial states, and can help us formalize a user's actions
in terms of incremental plan generation. The next two sections
describe each of these two techniques in turn.

126

3.1 Supporting Knowledge Base
In order to support the kinds of interactions described above, our
knowledge base defines the components that can be used in a
workflow and their input and output parameters. The component
ontology has hierarchies of components that describe abstract-level
components as well as specific executable components. The domain
term ontology defines data types for representing input and output
parameters and the constraints associated with them. It also defines
how parameters of different components are related with each other.
For example, it represents how parameters of abstract components
are mapped to parameters of more specific ones.

In developing the domain term ontology, pre-existing definitions
and constraints can be exploited whenever they are available,
though new terms and their associated constraints may need to be
added. The component ontology is built based on the domain term
ontology by relating inputs and outputs. For example, when a
component is available as a web service and defined in WSDL
(Web Service Description Language) [13], we can map its
“operations” into component types in the component ontology
based on input parameters in the request messages and output
parameters in the response messages. Currently these ontologies are
built by hand but we are exploring approaches for generating
component ontologies semi-automatically from existing descriptions
of the components, such as WSDL descriptions.

Figure 2 shows a part of the ontologies that we are using in a travel-
planning domain. For example, component Car-Rental represents
car rental operations, covering different types of car rental services.
It can be specialized based on operation sites (Car-Rental-by-City or
Car-Rental-by-Airport), vendors (Car-Rental-Enterprise, Car-
Rental-Breezenet, etc.), or both (Car-Rental-Enterprise-by-City).
That is, the ontology contains features that characterize and
categorize component subclasses. The parameters of the
components are mapped to data types in the domain term ontology,
as shown in the figure. For example, Car-Rental-by-City has two
input parameters (Arrival-City and Arrival-Date) and one output
parameter (Car-Reservation).

Figure 2. Example Component Ontology and Domain Term

Ontology.

Note that because the component ontology describes abstract
component types as well as specific components, users can start
from a high-level description of what they want without knowing

the details of what actual components are available. We often find
that users have only partial description of what they want initially,
and our tool can help users find appropriate ones by starting with a
high-level component type and then specializing it. The ontology of
data types can be used in a similar way when users have incomplete
or high-level description of the desired outcome, as described below.
These ontologies also play a key role in relating components in
workflows, detecting gaps and errors, and producing suggestions.
For example, a link between an output of a component to an input of
another can be checked to see whether the output type is subsumed
by the input data type. The hierarchy of component types can guide
the user to specialize an abstract-level component into one he/she
likes. (The details of errors and suggestions are described in the
following section.)
The CAT queries to the knowledge base include:

• Get-Input-Parameters (Component)
• Get-Output-Parameters (Component)
• Subsumes (Data-Type1, Data-Type2)
• Subsumes (Component1, Component2)
• Executable (Component): check whether Component is an

actual executable Component and not an abstract type
• Get-specializations (Component[,role, val]): retrieve

subconcepts of Component1, optionally only where value
for role “role” is “val”.

• Find-Component-with-Output-data-type (Data-Type)
• Find-Component-with-Input-data-type (Data-Type)
• Get-system-default-value (Component, Parameter)

3.2 An Algorithm to Analyze Partial Workflows
The analysis of partial workflows created by the user is done using
an AI planning framework [14]. Each component is treated as a step
in the plan, the inputs of a component are the preconditions of that
step and the outputs are its effects, the links between components are
treated as causal links, any data provided by the user form the initial
state, and the desired end results are the goals for the planning
problem. Each action taken by the user (add/remove component,
specialize component, add/remove link) are akin to a refinement
operator in plan generation. User Provided Data (initial data) and
End Results (desired data) are handled uniformly as any other
component, the former as a component with no input parameters and
the latter as a component with no outputs. While automatic planning
systems can explore the space of plans systematically and guarantee
that the final plans are correct, interactive workflow composition
requires an approach that lets the user decide what parts of the
search space to explore and that can handle incorrect partial
workflows.

We have developed a domain-independent algorithm to support
mixed-initiative workflow creation that assists the user by ensuring
that the workflow is well-formed and executable. Specifically the
final workflow must be compliant with a set of desirable properties:

• Tasked — contains one or more End Results

• Satisfied — all input parameters of all components are
provided by other components, by default values, or as user
inputs

• Grounded — all components are executable (i.e., not
abstract)

127

• Justified — at least one output parameter of each component
is linked to an End Result or to another Justified component

• Consistent — each link connects an output of a component to
the input parameter of another component, where the former
subsumes the latter (its type is more general in the ontology

• Unique — no link or component is redundant with any other
one

A full formalization of these properties and the algorithms below is
provided elsewhere [5].
Note that these properties can also help relate the workflows
generated by a user to workflows that an automated approach could
generate. Workflows that contain errors of consistency and
uniqueness would never be generated automatically. Two additional
properties are then useful. A partial workflow is correct if it is
consistent and unique. A workflow is complete if it is satisfied and
tasked. Automated approaches always form workflows that are
complete, correct, and justified. Our algorithm considers also the
space of workflows that do not have these three properties, due to
user error and non-systematic exploration of options that are natural
in mixed-initiative approaches. Also note that our approach could be
combined with an automated approach if our system is configured to
help the user create a correct and justified workflow, which then the
planner could use it as a starting point to fulfill the other properties
and create a complete and grounded workflow.

A workflow contains an error for each item that does not comply
with these properties: links may be inconsistent or redundant,
components may be unjustified, ungrounded, and the workflow
itself may be untasked.

Now the potential effects of the user’s primitive actions can be
described more fully, in terms of the errors that they may introduce
and the properties that they satisfy. Note the symmetry between add
and remove actions, in terms of the potential fixes and errors
generated.

Add Component

Possible Fixes: Tasked workflow if new component is the only
End Result.

 Possible New Errors: New component may not be Satisfied,
Grounded, or Justified.

Remove component
Possible Fixes: Removed component may have been

not Satisfied, Grounded, or Justified.
Possible New Errors: Tasked workflow if removed

component was the only End Result, inconsistent links if
component had any links.

Add Link
Possible Fixes: Satisfied component if it now has no input

parameters without values. Justified component, if now linked
to an End Result (or to a component linked to an End Result).

Possible New Errors: New link may not be Consistent or Unique.
Remove Link
 Possible Fixes: Removed link may have been not

Consistent or Unique.
 Possible New Errors: Not Satisfied component if it now has any

input parameters without values. Unjustified component if now

not linked to an End Result (or to a component linked to an
End Result).

W
g
d
e
u
s
s
a

T
(
d
in
k
th

I
f
s
F
li
a
c
p
s
c

128
ErrorScan Algorithm
Input: workflow
Output: errors and corresponding suggestions
I. If workflow is not Tasked
 Suggestions: add [choose from possible End Results]
II. For each component within workflow

a. If component is not Justified
Suggestions: Remove component and its links, or link
to [choose from list of already Justified components].

b. If component is not Grounded
Suggestions: Specialize component to [choose from
specialized versions of component].

 c. For each input parameter of component
1. If input parameter is not Satisfied

 Suggestions: link from [choose from list of
workflow and knowledge base components’
appropriate output parameters], use [parameter
default value] from knowledge base, or enter a
value manually.

III. For each link within workflow
If link is not Consistent
 Suggestions: Remove link, or fix link by
 interposing and linking [choose from appropriate

components].
If link is not Unique

 Suggestions: Remove link.
Figure 3. The ErrorScan Algorithm

e have developed the ErrorScan algorithm to check whether a
iven workflow is compliant with the properties above. Each
eviation from these properties, by the workflow or by one of its
lements is reported as an error to the user. Based on the analysis of
ser actions shown above, the algorithm also generates specific
uggestions to the user for how to fix each error found. Also, any fix
uggested by CAT is an ordered sequence of the primitive actions
bove. The algorithm is shown in Figure 3.

he algorithm consults the knowledge base to check the properties
e.g., the consistency of a link based on the parameter type
efinitions in the ontologies), and to generate suggestions (e.g., if an
put parameter is not satisfied, ErrorScan will return from the

nowledge base a list of components that have outputs that subsume
e type of that parameter).

n the interest of providing intelligent assistance, the algorithm
ilters its choice of suggestions, in that each suggestion must be a
equence of actions that, as a whole, fixes more errors than it causes.
or instance, the system would never suggest adding an inconsistent
nk to fix an unsatisfied component. The suggestions tend to be
dditive or corrective, i.e., the system will not suggest removing a
omponent or link unless added incorrectly by a user not following
revious suggestions. In summary, if the user consistently applies
uggested fixes, this will help to generate a workflow whose
omponents conform to the desirable properties listed above.

Figure 4. CAT Interface, showing the workflow on the left and the system’s suggestions on the right.

We also incorporated heuristics into the algorithm for ordering
errors and suggestions as they appear in the interface. Errors are
ordered most recent first (i.e., generated by the most recent user
actions), and then by the more serious errors before warnings. For
example, a non-unique link would only generate a warning, as a
workflow with redundant links may still be correct. Suggestions are
ordered with specific fixes listed before informational messages, and
the algorithm filters out fixes that involve the addition of new
components to the workflow, if similar fixes can be applied using
components already in the workflow.

4. EXAMPLE
Figure 4 shows the current web-based interface (for earthquake
science domain). On the left of the screen are components and links
currently in the workflow. On the right are workflow errors, and
suggestions for the selected error. For illustration purposes, the
example detailed below will use a simpler travel-planning domain.
Also, subsequent screenshot figures will be cut/pasted from the
various areas of the interface; each figure will contain elements from
the components/links area followed by elements from the
errors/suggestions area.
The user wants to find a flight reservation number and, based on the
flight details, a car rental reservation at the arrival airport. The user
adds “Reserve Flight” component and “Car Rental” component, and
links these components’ outputs to the appropriate End Results. Fig.
5 shows the errors that are now present in the workflow. Note that

the added components are both not executable (i.e., they represent
generic families of services). Suggestions for specializing “Car
Rental” are also shown in Fig. 5, based on the component ontology
(i.e., how they are related to each other).

Figure 5. Component added by applying system’s suggestion;
system points out that some components are not executable.

129

This case represents the system’s “top-down” flexibility, in which
the user can compose a workflow using abstract components, and
when desired, specialize those components as necessary.

Figure 6. Abstract component specialized by applying system’s

suggestion; system finds more unsatisfied inputs.

In Fig. 6, the user has fully specified (by location and vendor) “Car
Rental” to “Car-Rental-Enterprise-by-City”. “Reserve Flight” has
similarly been fully specialized to “Reserve-Domestic Flight-Orbitz-
by-City”. The value of CAT’s mixed-initiative interface is notable
here. Instead of having to encode preferences and evaluate multiple,
similarly valid plans, CAT allows user preference to resolve
unconstrained choices at each step. Note also that the link from the
newly specialized “Car Rental: Car-Reservation” parameter, to “End
Result 1: Car-Reservation”, remains intact between Figures 5 and 6.
In order to provide this automated intelligent assistance, CAT’s
component ontology defines how the parameters of different
component types are related with each other, and can track
parameter equivalencies between parent (less specific) and child
(more specific) components.

Now, most of the remaining errors in the workflow are the inputs to
the two components, which have no values assigned. However, note
that the system suggests that at least one of these inputs, “Car
Rental: Arrival Date” can be satisfied by linking the similarly-typed
output from “Reserve Flight: Arrival Date” (Figure 6).

In Fig. 7, the user has provided additional data (Departure City,
Arrival City, and Departure Date), and linked these to the
appropriate input parameters of the “Car Rental” and “Reserve
Flight” components, so that no components are not Satisfied. This
demonstrates CAT’s flexibility: even when the necessary user data
is not provided at the start of the composition, the system can still
provide useful suggestions to make progress. The figure represents a
correct workflow; the only error remaining is a warning about
unused output, which may be ignored.

Figure 7. User-provided data is linked to unsatisfied inputs.

Figure 8. Extending a previous workflow for a new situation.

Figure 9. Inconsistency fixed by applying system’s suggestion.

130

Suppose after several times using the same workflow to arrange
domestic trips, the user decides to change “Reserve Flight” to book
a foreign flight. There is a new wrinkle: foreign flights reservations
require a Visa number. The user, realistically, attempts to provide
her passport number for this input (Fig. 8), though this action was
not suggested by the system. When invoked, ErrorScan reports that
the link input and output types are mismatched (inconsistent).
However, the system notes that there is a component "Visa Service"
which can be interposed into the inconsistent link, creating two
correct links (as shown in Fig. 9, wherein the error level is resolved
to warnings-only as in Figure 7). This example demonstrates the
potential of the system to suggest intelligent solutions to workflow
errors. Another point of this scenario is that the system can find
fixes for any user errors, although the interface is flexible enough to
allow the user to disregard suggestions by manually adding and
deleting components and links.

5. RELATED WORK
Graphical tools to lay out a workflow and draw connections among
steps abound (e.g., [1,2,3]) but the tools are limited to simple checks
on the process models, because there is no semantics associated with
the individual steps and links. In contrast, we assume a knowledge-
rich environment where the system can check whether the workflow
makes sense within the background knowledge that it has.

AI planning approaches for web service composition focus on
automatically generating compositions that satisfy user given goals
[7,8]. Our work provides an alternative and complementary
approach addressing the issues that arise when users want to
influence the composition process, including selection of
components and their configuration. Our interactive framework also
helps when the user has an incomplete description of goals or initial
state since he/she can start from high-level task types and then
gradually introduce new requirements and preferences while the
workflow is being built.

There has been increased interest in mixed-initiative approaches to
constructing plans [9, 12] but they are not designed to exploit
background knowledge and ontologies, which we believe is crucial
technology to providing the strong guidance needed by end users.

6. SUMMARY AND FUTURE WORK
We presented an approach to interactive workflow composition that
combines knowledge bases that have rich representations of
components together with planning techniques that can track the
relations and constraints among individual steps. The tool we have
developed has been applied to two different applications:
constructing workflows in travel planning domain and constructing
computational workflows in earthquake science domain.

Our plans for future work include dynamic generation of component
ontologies, by deriving abstract component classes from initial
component descriptions, incorporation of automatic composition
approaches to our interactive framework, and user evaluations.

7. ACKNOWLEDGEMENTS
We would like to thank researchers at the Southern California
Earthquake Center for very valuable discussions. We would also like
to thank Varun Ratnakar and Sid Shaw for their help with the CAT
system implementation. This research was funded by the National
Science Foundation (NSF) with award number EAR-0122464.

8. REFERENCES
1. Chin Jr, G., Leung, L. R., Schuchardt, K., and Gracio, D. New

paradigms in problem solving environments for scientific
computing. Proceedings of Intelligent User Interfaces’02, pp.
39-46, 2002.

2. Edge Diagrammer. http://www.pacestar.com/edge/.
3. KHOROS PRO 2001. http://www.khoral.com/.
4. GriPhyN. http://www.griphyn.org/.
5. Kim, J., Gil, Y., and Spraragen, M. A Knowledge-Based

Approach to Interactive Workflow Composition. ISI Internal
Project Report, 2003.

6. Kim, J. and Gil, Y. User Studies of an Interdependency-Based
Interface for Problem-Solving Knowledge. Proceedings of the
Intelligent User Interface, 2000.

7. McIlraith, S. and Son, T. Adapting Golog for programming in
the semantic web. Fifth International Symposium on Logical
Formalizations of Commonsense Reasoning, 2001.

8. McDermott, D. Estimated-Regression Planning for Interactions
with Web Services. AI Planning Systems Conference, 2002.

9. Myers, K., Jarvis, P., Tyson, M., and Wolverton, M. A
Mixed-Initiative Framework for Robust Plan Sketching.
Proceedings of Int’l Conf. on Automatic Planning and
Scheduling, 2003.

10. NVO (US National Virtual Observatory). http://www.us-vo.org/.
11. SCEC (Southern California Earthquake Center).

http://www.scec.org/.
12. Smith, S., Lassila, O., and Becker, M. Configurable mixed

initiative systems for planning and scheduling. In A. Tate,
editor, Advanced Planning Technology. AAAI Press, 1996.

13. W3C: WSDL specification.
http://www.w3c.org/TR/WSDL/.

14. Weld, D. Recent Advances in AI Planning. AI Magazine, 1999.

131

