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ABSTRACT 
Complex applications in many areas, including scientific 
computations and business-related web services, are created from 
collections of components to form workflows. In many cases end 
users have requirements and preferences that depend on how the 
workflow unfolds, and that cannot be specified beforehand. 
Workflow editors enable users to formulate workflows, but the 
editors need to be augmented with intelligent assistance in order to 
help users in several key aspects of the task, namely: 1) keeping 
track of detailed constraints across the components selected and 
their connections; 2) specifying the workflow flexibly, e.g., top-
down, bottom-up, from requirements, or from available data; and 3) 
taking partial or incomplete descriptions of workflows and 
understanding the steps needed for their completion. We present an 
approach that combines knowledge bases (that have rich 
representations of components) together with planning techniques 
(that can track the relations and constraints among individual steps). 
We illustrate the approach with an implemented system called CAT 
(Composition Analysis Tool) that analyzes workflows and generates 
error messages and suggestions in order to help users compose 
complete and consistent workflows. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentations]: User Interfaces – 
User interface management systems; I.2.0 [Computing 
Methodologies]: Artificial Intelligence 

General Terms: Verification, Algorithms, Human Factors 

Keywords: Knowledge acquisition, workflow composition, 
web service composition, workflow editors, interactive planning 

1. INTRODUCTION 
Composing computational workflows is essential in many areas, 
including scientific computations and business-related web services. 
A new kind of science is emerging from the integration of models 
developed by individual scientists and groups: end-to-end scientific 
applications that result from the composition of those individual 
models. Another example is the composition of web services to 

create new applications from existing software components 
(typically as web services) given a customer’s needs.  

Workflow editors (e.g., [1,2,3]) have been developed to enable users 
to select components from a library, and to link their inputs and 
outputs. However, these tools lack the kind of intelligent assistance 
required in order to: 

• keep track of details to ensure that a correct workflow is 
formulated:  Manual composition of workflows, as any user-
driven process, is a task prone to errors and inconsistencies. As 
users edit the workflow by adding components, linking their 
inputs and outputs, etc., there are many constraints that need to 
be tracked in terms of the validity of the links and the steps 
added.  

• support mixed-initiative interaction: Users can drive the 
process when they have a clear idea of what to specify about 
the workflow, whether they follow a top-down or a bottom-up 
approach. At any point in time, the system should be able to 
take a partially specified workflow from the user and make 
suggestions about how to complete it. 

• systematically generate and manage all of the choices 
throughout the process: At any point during the workflow 
composition, there may be many choices to make: add a 
component (and if so which one), add a link, replace an 
existing component with a more appropriate one, etc. Ideally, 
all these possible choices should be generated systematically, 
and they should be presented according to how each 
contributes to the configuration of the workflow.  

This paper presents an approach to interactive workflow 
composition that incorporates 1) knowledge-rich descriptions of the 
individual components and their constraints; 2) a formal algorithmic 
understanding of partial workflows, based on AI planning 
techniques. Using this approach, a system can analyze a partial 
workflow composed by the user, notify the user of issues to be 
resolved in the current workflow, and suggest to the user what 
actions could be taken next. Using this approach, we have developed 
CAT (Composition Analysis Tool) and used it in two distinct 
domains: a scientific application for earthquake simulation, and a 
simple travel-planning domain to illustrate the approach. 

The paper begins by describing our motivations and goals based on 
a scientific application. We then describe the knowledge bases that 
we have developed to represent components, and present the 
algorithm to analyze a partial workflow and help a user complete it. 
We illustrate the resulting intelligent interaction with a detailed 
scenario of use. 
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2. MOTIVATING GOALS AND 
REQUIREMENTS  
 

 
Figure 1. A computational workflow for earthquake simulation 

analysis. 

To motivate the goals of this research we use a concrete scenario 
from our work with the Southern California Earthquake Center [11], 
though the basic requirements and problems are shared in other 
sciences as well [4,10]. 

Seismic hazard analysis (SHA) enables building engineers to 
estimate the impact of potential earthquakes at a construction site 
and on their building designs. Scientists have developed many 
models that can be used to simulate various aspects of an 
earthquake: the rupture of a fault and the ground shaking that 
follows, the shape of the wave as it propagates through different 
kinds of soil, the vibration effects on a building structure, etc. Some 
of these models are based on physics; others are empirical based on 
historical data on past earthquakes. The models are complex, 
heterogeneous, and come with many constraints on their parameters 
and their use with other models. 

Our ultimate goal is to develop intelligent user interfaces that enable 
unsophisticated users, such as building engineers and safety 
officials, to create end-to-end workflows composed of complex 
scientific models. As a first step to this goal, our work concentrates 
on assisting users to create a complete and correct workflow, 
focusing on relatively simple (though still realistic) models and 
workflows to make the problem more manageable. Currently CAT 
supports development of valid composition of components 
(workflow) that can be executed by providing specific data.  

Figure 1 shows an example of a workflow. Each component has 
several inputs; some are provided values directly by the user (e.g., 
the Duration-Year of the Fault Rupture Model). The user may also 
choose to have an input take the default value provided by the 
knowledge base (e.g., the Wave Propagation Model’s Standard-
Deviation-Type; default = “Total”), and a third group of inputs will 
take values linked from the results of the execution of other 
components (e.g., the simulated Rupture data output by the Fault 
Rupture Model is passed to the input of the Wave Propagation 
Model). 

Engineers may design the workflow in many different ways. One 
way is to think about it in terms of simulation models. They know 
they need two main steps: first, simulation of fault rupture; then, 

simulation of the wave propagation. They may prefer physics-based 
models or empirical models, and are a bit familiar with the scientific 
community and the methodology involved in creating each model. 
But another way to think about the workflow is the particular data 
they want to look at. Sometimes they want the wave's velocity at the 
site, or its acceleration. Sometimes they want the probability of 
earthquake above a certain magnitude affecting that site. Different 
models provide different types of results. Another way to think 
about the workflow is the situation they want to simulate. The 
engineer may start with a specific site, then look at its characteristics 
like basin depth, and then select models that incorporate these 
characteristics. 

In summary, users may design workflows using a variety of 
strategies, including: 1) top-down selection of components, starting 
from abstract types of models and then replacing them with more 
specific versions; 2) result-based selection of components, working 
from desired data to select models that can generate those results; 3) 
situation-based selection of components, working from the initial 
data available to select components whose constraints are consistent 
with those data. 

3. APPROACH 
Given the goals just described, we are developing a mixed-initiative 
approach where users can drive the process and the system 
proactively suggests useful next steps and ensures that the final 
workflow is correct.  
At any time, the user may: 
 select a component for inclusion in the workflow. It may be an 

abstract type of component, or a specific executable one. 
 specialize a component to a more specific one 
 establish a link between two components to indicate that the 

output of  one should be the input of another. 
 specify input data to the overall workflow 
 specify desired results 

(Users can also delete components and links.) 
At any time, the system should analyze the workflow, and suggest 
possible next actions to the user.  
We use two key techniques in our approach:  
1) knowledge-based descriptions of simulation models that 
support reasoning about multiple abstraction hierarchies of 
components. A given executable simulation model may be 
categorized in several abstract classes depending on the features 
being abstracted. In order to reason adequately about an abstract 
type of model, the system should be able to represent common 
features that apply to all models of that type. We use description 
logic to reason about ontologies of component descriptions. 
2) analysis of partially constructed workflows based on AI 
planning techniques. In our current framework, a workflow is a 
directed acyclic graph: components are nodes and links are directed 
edges. At any point during composition, the system can search this 
graph for missing components, for links that are inconsistent with 
the descriptions of the components, for unnecessary components, 
etc. Planning algorithms provide a useful framework to relate steps 
to goals and initial states, and can help us formalize a user's actions 
in terms of incremental plan generation. The next two sections 
describe each of these two techniques in turn. 
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3.1 Supporting Knowledge Base 
In order to support the kinds of interactions described above, our 
knowledge base defines the components that can be used in a 
workflow and their input and output parameters. The component 
ontology has hierarchies of components that describe abstract-level 
components as well as specific executable components. The domain 
term ontology defines data types for representing input and output 
parameters and the constraints associated with them. It also defines 
how parameters of different components are related with each other. 
For example, it represents how parameters of abstract components 
are mapped to parameters of more specific ones.  

In developing the domain term ontology, pre-existing definitions 
and constraints can be exploited whenever they are available, 
though new terms and their associated constraints may need to be 
added. The component ontology is built based on the domain term 
ontology by relating inputs and outputs. For example, when a 
component is available as a web service and defined in WSDL 
(Web Service Description Language) [13], we can map its 
“operations” into component types in the component ontology 
based on input parameters in the request messages and output 
parameters in the response messages. Currently these ontologies are 
built by hand but we are exploring approaches for generating 
component ontologies semi-automatically from existing descriptions 
of the components, such as WSDL descriptions.   

Figure 2 shows a part of the ontologies that we are using in a travel-
planning domain. For example, component Car-Rental represents 
car rental operations, covering different types of car rental services. 
It can be specialized based on operation sites (Car-Rental-by-City or 
Car-Rental-by-Airport), vendors (Car-Rental-Enterprise, Car-
Rental-Breezenet, etc.), or both (Car-Rental-Enterprise-by-City). 
That is, the ontology contains features that characterize and 
categorize component subclasses. The parameters of the 
components are mapped to data types in the domain term ontology, 
as shown in the figure. For example, Car-Rental-by-City has two 
input parameters (Arrival-City and Arrival-Date) and one output 
parameter (Car-Reservation). 

 
Figure 2. Example Component Ontology and Domain Term 

Ontology. 

Note that because the component ontology describes abstract 
component types as well as specific components, users can start 
from a high-level description of what they want without knowing 

the details of what actual components are available. We often find 
that users have only partial description of what they want initially, 
and our tool can help users find appropriate ones by starting with a 
high-level component type and then specializing it. The ontology of 
data types can be used in a similar way when users have incomplete 
or high-level description of the desired outcome, as described below. 
These ontologies also play a key role in relating components in 
workflows, detecting gaps and errors, and producing suggestions. 
For example, a link between an output of a component to an input of 
another can be checked to see whether the output type is subsumed 
by the input data type. The hierarchy of component types can guide 
the user to specialize an abstract-level component into one he/she 
likes. (The details of errors and suggestions are described in the 
following section.) 
The CAT queries to the knowledge base include: 

• Get-Input-Parameters (Component) 
• Get-Output-Parameters (Component) 
• Subsumes (Data-Type1, Data-Type2) 
• Subsumes (Component1, Component2) 
• Executable (Component): check whether Component is an 

actual executable Component and not an abstract type 
• Get-specializations (Component[,role, val]): retrieve 

subconcepts of Component1, optionally only where value 
for role “role” is “val”.  

• Find-Component-with-Output-data-type (Data-Type) 
• Find-Component-with-Input-data-type (Data-Type) 
• Get-system-default-value (Component, Parameter) 
 

3.2 An Algorithm to Analyze Partial Workflows  
The analysis of partial workflows created by the user is done using 
an AI planning framework [14]. Each component is treated as a step 
in the plan, the inputs of a component are the preconditions of that 
step and the outputs are its effects, the links between components are 
treated as causal links, any data provided by the user form the initial 
state, and the desired end results are the goals for the planning 
problem. Each action taken by the user (add/remove component, 
specialize component, add/remove link) are akin to a refinement 
operator in plan generation. User Provided Data (initial data) and 
End Results (desired data) are handled uniformly as any other 
component, the former as a component with no input parameters and 
the latter as a component with no outputs. While automatic planning 
systems can explore the space of plans systematically and guarantee 
that the final plans are correct, interactive workflow composition 
requires an approach that lets the user decide what parts of the 
search space to explore and that can handle incorrect partial 
workflows.  

We have developed a domain-independent algorithm to support 
mixed-initiative workflow creation that assists the user by ensuring 
that the workflow is well-formed and executable. Specifically the 
final workflow must be compliant with a set of desirable properties: 

• Tasked — contains one or more End Results 

• Satisfied — all input parameters of all components are 
provided by other components, by default values, or as user 
inputs     

• Grounded — all components are executable (i.e., not 
abstract) 
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• Justified — at least one output parameter of each component 
is linked to an End Result or to another Justified component  

• Consistent — each link connects an output of a component to 
the input parameter of another component, where the former 
subsumes the latter (its type is more general in the ontology 

• Unique — no link or component is redundant with any other 
one 

A full formalization of these properties and the algorithms below is 
provided elsewhere [5]. 
Note that these properties can also help relate the workflows 
generated by a user to workflows that an automated approach could 
generate. Workflows that contain errors of consistency and 
uniqueness would never be generated automatically. Two additional 
properties are then useful. A partial workflow is correct if it is 
consistent and unique. A workflow is complete if it is satisfied and 
tasked. Automated approaches always form workflows that are 
complete, correct, and justified. Our algorithm considers also the 
space of workflows that do not have these three properties, due to 
user error and non-systematic exploration of options that are natural 
in mixed-initiative approaches. Also note that our approach could be 
combined with an automated approach if our system is configured to 
help the user create a correct and justified workflow, which then the 
planner could use it as a starting point to fulfill the other properties 
and create a complete and grounded workflow. 

A workflow contains an error for each item that does not comply 
with these properties: links may be inconsistent or redundant, 
components may be unjustified, ungrounded, and the workflow 
itself may be untasked. 

Now the potential effects of the user’s primitive actions can be 
described more fully, in terms of the errors that they may introduce 
and the properties that they satisfy. Note the symmetry between add 
and remove actions, in terms of the potential fixes and errors 
generated.  
 
Add Component  

Possible Fixes: Tasked workflow if new component is the only 
End Result. 

    Possible New Errors: New component may not be Satisfied, 
Grounded, or Justified.  

Remove component 
Possible Fixes: Removed component may have been  

not Satisfied,  Grounded, or Justified.  
Possible New Errors: Tasked workflow if removed 

component was the only End Result, inconsistent links  if 
component had any links. 

Add Link 
Possible Fixes: Satisfied component if it now has no   input 

parameters without values. Justified component, if now linked 
to an End Result (or to a component linked to an End Result). 

Possible New Errors: New link may not be Consistent  or Unique. 
Remove Link        
    Possible Fixes: Removed link may have been not 

Consistent or Unique. 
 Possible New Errors: Not Satisfied component if it now has any 

input parameters without values. Unjustified component if now 

not linked to an End Result (or to a component linked to an 
End Result). 
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ErrorScan Algorithm 
Input: workflow 
Output: errors and corresponding suggestions 
I. If workflow is not Tasked 
   Suggestions: add [choose from possible End Results] 
II. For each component within workflow  

a. If component is not Justified  
Suggestions: Remove component and its links, or link 
to [choose from list of already Justified components].

b. If component is not Grounded  
Suggestions: Specialize component to [choose from 
specialized versions of component]. 

      c. For each input parameter of component 
1. If input parameter is not Satisfied 

    Suggestions: link from [choose from list of 
workflow and knowledge base components’ 
appropriate output parameters], use [parameter 
default value] from knowledge base, or enter a 
value manually.  

III. For each link within workflow 
If link is not Consistent  
 Suggestions: Remove link, or fix link by  
 interposing and linking [choose from appropriate 

components]. 
If link is not Unique  

          Suggestions: Remove link. 
Figure 3. The ErrorScan Algorithm 

e have developed the ErrorScan algorithm to check whether a 
iven workflow is compliant with the properties above. Each 
eviation from these properties, by the workflow or by one of its 
lements is reported as an error to the user. Based on the analysis of 
ser actions shown above, the algorithm also generates specific 
uggestions to the user for how to fix each error found. Also, any fix 
uggested by CAT is an ordered sequence of the primitive actions 
bove. The algorithm is shown in Figure 3. 

he algorithm consults the knowledge base to check the properties 
e.g., the consistency of a link based on the parameter type 
efinitions in the ontologies), and to generate suggestions (e.g., if an 
put parameter is not satisfied, ErrorScan will return from the 

nowledge base a list of components that have outputs that subsume 
e type of that parameter). 

n the interest of providing intelligent assistance, the algorithm 
ilters its choice of suggestions, in that each suggestion must be a 
equence of actions that, as a whole, fixes more errors than it causes. 
or instance, the system would never suggest adding an inconsistent 
nk to fix an unsatisfied component. The suggestions tend to be 
dditive or corrective, i.e., the system will not suggest removing a 
omponent or link unless added incorrectly by a user not following 
revious suggestions. In summary, if the user consistently applies 
uggested fixes, this will help to generate a workflow whose 
omponents conform to the desirable properties listed above.  



 

 

 
Figure 4. CAT Interface, showing the workflow on the left and the system’s suggestions on the right. 

 
We also incorporated heuristics into the algorithm for ordering 
errors and suggestions as they appear in the interface. Errors are 
ordered most recent first (i.e., generated by the most recent user 
actions), and then by the more serious errors before warnings. For 
example, a non-unique link would only generate a warning, as a 
workflow with redundant links may still be correct. Suggestions are 
ordered with specific fixes listed before informational messages, and 
the algorithm filters out fixes that involve the addition of new 
components to the workflow, if similar fixes can be applied using 
components already in the workflow. 
 

4. EXAMPLE    
Figure 4 shows the current web-based interface (for earthquake 
science domain). On the left of the screen are components and links 
currently in the workflow. On the right are workflow errors, and 
suggestions for the selected error. For illustration purposes, the 
example detailed below will use a simpler travel-planning domain. 
Also, subsequent screenshot figures will be cut/pasted from the 
various areas of the interface; each figure will contain elements from 
the components/links area followed by elements from the 
errors/suggestions area.   
The user wants to find a flight reservation number and, based on the 
flight details, a car rental reservation at the arrival airport. The user 
adds “Reserve Flight” component and “Car Rental” component, and 
links these components’ outputs to the appropriate End Results. Fig. 
5 shows the errors that are now present in the workflow. Note that 

the added components are both not executable (i.e., they represent 
generic families of services). Suggestions for specializing “Car 
Rental” are also shown in Fig. 5, based on the component ontology 
(i.e., how they are related to each other). 

 
Figure 5. Component added by applying system’s suggestion; 
system points out that some components are not executable. 
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This case represents the system’s “top-down” flexibility, in which 
the user can compose a workflow using abstract components, and 
when desired, specialize those components as necessary.  
 

 
Figure 6. Abstract component specialized by applying system’s 

suggestion; system finds more unsatisfied inputs. 

 
In Fig. 6, the user has fully specified (by location and vendor) “Car 
Rental” to “Car-Rental-Enterprise-by-City”. “Reserve Flight” has 
similarly been fully specialized to “Reserve-Domestic Flight-Orbitz-
by-City”. The value of CAT’s mixed-initiative interface is notable 
here. Instead of having to encode preferences and evaluate multiple, 
similarly valid plans, CAT allows user preference to resolve 
unconstrained choices at each step. Note also that the link from the 
newly specialized “Car Rental: Car-Reservation” parameter, to “End 
Result 1: Car-Reservation”, remains intact between Figures 5 and 6. 
In order to provide this automated intelligent assistance, CAT’s 
component ontology defines how the parameters of different 
component types are related with each other, and can track 
parameter equivalencies between parent (less specific) and child 
(more specific) components.  

Now, most of the remaining errors in the workflow are the inputs to 
the two components, which have no values assigned. However, note 
that the system suggests that at least one of these inputs, “Car 
Rental: Arrival Date” can be satisfied by linking the similarly-typed 
output from “Reserve Flight: Arrival Date” (Figure 6). 

In Fig. 7, the user has provided additional data (Departure City, 
Arrival City, and Departure Date), and linked these to the 
appropriate input parameters of the “Car Rental” and “Reserve 
Flight” components, so that no components are not Satisfied. This 
demonstrates CAT’s flexibility: even when the necessary user data 
is not provided at the start of the composition, the system can still 
provide useful suggestions to make progress. The figure represents a 
correct workflow; the only error remaining is a warning about 
unused output, which may be ignored. 

 
Figure 7. User-provided data is linked to unsatisfied inputs. 

 
Figure 8. Extending a previous workflow for a new situation. 

 
Figure 9. Inconsistency fixed by applying system’s suggestion. 
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Suppose after several times using the same workflow to arrange 
domestic trips, the user decides to change “Reserve Flight” to book 
a foreign flight. There is a new wrinkle: foreign flights reservations 
require a Visa number. The user, realistically, attempts to provide 
her passport number for this input (Fig. 8), though this action was 
not suggested by the system. When invoked, ErrorScan reports that 
the link input and output types are mismatched (inconsistent). 
However, the system notes that there is a component "Visa Service" 
which can be interposed into the inconsistent link, creating two 
correct links (as shown in Fig. 9, wherein the error level is resolved 
to warnings-only as in Figure 7). This example demonstrates the 
potential of the system to suggest intelligent solutions to workflow 
errors. Another point of this scenario is that the system can find 
fixes for any user errors, although the interface is flexible enough to 
allow the user to disregard suggestions by manually adding and 
deleting components and links.  

5. RELATED WORK 
Graphical tools to lay out a workflow and draw connections among 
steps abound (e.g., [1,2,3]) but the tools are limited to simple checks 
on the process models, because there is no semantics associated with 
the individual steps and links. In contrast, we assume a knowledge-
rich environment where the system can check whether the workflow 
makes sense within the background knowledge that it has.  

AI planning approaches for web service composition focus on 
automatically generating compositions that satisfy user given goals 
[7,8]. Our work provides an alternative and complementary 
approach addressing the issues that arise when users want to 
influence the composition process, including selection of 
components and their configuration. Our interactive framework also 
helps when the user has an incomplete description of goals or initial 
state since he/she can start from high-level task types and then 
gradually introduce new requirements and preferences while the 
workflow is being built. 

There has been increased interest in mixed-initiative approaches to 
constructing plans [9, 12] but they are not designed to exploit 
background knowledge and ontologies, which we believe is crucial 
technology to providing the strong guidance needed by end users. 
 
6. SUMMARY AND FUTURE WORK 
We presented an approach to interactive workflow composition that 
combines knowledge bases that have rich representations of 
components together with planning techniques that can track the 
relations and constraints among individual steps. The tool we have 
developed has been applied to two different applications: 
constructing workflows in travel planning domain and constructing 
computational workflows in earthquake science domain.  

Our plans for future work include dynamic generation of component 
ontologies, by deriving abstract component classes from initial 
component descriptions, incorporation of automatic composition 
approaches to our interactive framework, and user evaluations. 
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