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H   and closely related engineered 

systems (such as irrigation systems) are naturally con-

tinuous. Th at is, fl uxes of water are continuous between the 

atmosphere, the surface, and the subsurface, regardless of the 

water state (phase). Nevertheless, large diff erences in the time 

scales associated with the fl ow of water within these three fl ow 

domains leads to breaking of the hydrologic cycle into three indi-

vidual components. Th e major components and the interaction 

between them are shown schematically in Fig. 1. Atmospheric 

water, in the form of precipitation, is the source for both surface 

runoff  and vadose zone water through direct infi ltration. Surface 

water also infi ltrates into the vadose zone or, in cases of shal-

low groundwater, directly into the saturated zone. Groundwater, 

whether perched or regional, is a source for surface streams 

through springs. Other connections illustrated in Fig. 1 are out 

of the scope of this review.

To achieve this system breakdown, neighboring systems are 

simplifi ed dramatically to simple boundary conditions. For most 

applications, this breaking into subsystems is benefi cial for sci-

ence, both for its ability to simplify systems to an acceptable level 

of understanding and for practical reasons such as the mathemati-

cal ability to solve problems.

Th e oversimplifi cation of neighboring systems is natural, but 

leads to incompleteness of the models. For example, surface water 

modeling largely depends on the subsurface conditions at the 

headwater for both soil moisture and spring fl ow. It becomes clear 

that to achieve higher accuracy in the modeling of the systems, 

a higher level of interaction with neighboring systems must be 

taken into account. Of the three major components of the hydro-

logic cycle, namely the atmospheric or oceanic, the surface, 

and the subsurface, we focus in this review on the way surface 
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Surface and subsurface fl ow systems are inherently unifi ed systems that are o  en broken into sec  ons for logical (e.g., 
 me scales) and technical (e.g., analy  cal and computa  onal solvability) reasons. While the basic physical laws are com-

mon to surface and subsurface systems, spa  al and temporal dimensions as well as the con  nuum approach used for 
the subsurface lead to diff erent formula  ons of the governing par  al diff eren  al equa  ons. While in most applica  ons 
such decoupling of the systems works well and allows a very accurate and effi  cient descrip  on of the individual system 
by trea  ng the adjacent system as a boundary condi  on, in the case of water fl ow over a porous medium, it does not. 
Therefore coupled models are in increasing use in this fi eld, led mostly by watershed and surface irriga  on modelers. 
The governing equa  ons of each component of the coupled system and the coupling physics and mathema  cs are 
reviewed fi rst. Three diff erent coupling schemes are iden  fi ed, namely the uncoupled (with the degenerated uncou-
pled scheme being a special case of the uncoupled), the itera  vely coupled, and the fully coupled. Next, the diff erent 
applica  ons of the diff erent coupling schemes, sorted by fi eld of applica  on, are reviewed. Finally, some research gaps 
are discussed, led by the need to include ver  cal momentum transfer and to expand the use of fully coupled models 
toward surface irriga  on applica  ons.

F . 1. Rela  ons between diff erent components of the hydrologic 
cycle. Black lines indicate vapor processes, blue lines indicate 
non-vapor processes. The solid, bold lines are the focus of this 
discussion.
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and subsurface flows interact and how this interaction is mod-

eled mathematically.

In recent years, the use of mega-models (in terms of scale as 

well as of scope) has fl ourished (see e.g., Dudhia, 1993). Typically, 

these computational tools primarily model the atmosphere, but 

also include surface and subsurface components. Th e last two are 

important for the atmospheric system as boundary conditions; 

however, the surface (and certainly the subsurface) systems are 

typically simplifi ed as a model of buckets, and physical aspects 

of the systems, other than rough mass balance, are ignored. 

Furthermore, the development of remote sensing tools (see, e.g., 

Crosson et al., 2002) allows the physics of the surface–subsurface 

systems (with regard to modeling atmospheric processes) to be com-

pletely ignored. Th is review does not touch these models at all.

A surface hydrology computational model typically includes 

a temporal portion where rainfall is the water supply to a surface–

subsurface system. Infi ltration to the subsurface system at this stage 

depends on water availability (i.e., rain rate) and soil infi ltration 

capacity (without completely defi ning the ability of the soil surface 

to absorb water). Th e point where the infi ltration capacity becomes 

smaller than the water availability is the point where runoff  starts 

to be generated. Infi ltration models (such as, e.g., Horton, 1933, 

1939) are often used to detect that point. In many of the models 

presented here, this stage, or rain-controlled infi ltration, is an inher-

ent part of the model. Th at is, many models cover temporally both 

the prerunoff  and runoff  times. Th e focus here, however, is in the 

surface–subsurface coupling (i.e., when runoff  exists) and therefore 

the review barely touches this point.

Th is review starts with the governing equations (partial dif-

ferential equations) that describe the fl ow in both the surface and 

subsurface components of the coupled system. First, a relatively 

complex (and complete) system is presented and some frequently 

used simplifi cations are shown. Next, the physical alternatives for 

internal (interfacial) boundary conditions and numerical alterna-

tives for coupling of the systems are discussed. Th is is essentially 

the heart of the review. An overview of the diff erent applications 

of the diff erent coupling methods is also presented.

Although the subject of coupled surface–subsurface fl ow is 

covered well in this review, it is clear that with the enormous 

volume of literature available, such a review can never cover all 

the research that was performed. Several recent reviews address 

the same fi eld but have diff erent focuses: Khanna and Malano 

(2006) reviewed the basin irrigation technique with a good sec-

tion on empirical infi ltration functions; Singh and Woolhiser 

(2002) reviewed the mathematics of watershed hydrology; Aksoy 

and Kavvas (2005) covered the fi eld of watershed and hillslope 

erosion and sediment transport, which is closely related to the 

focus of this review; Sophocleous (2002) covered the conceptual 

models of surface–groundwater interaction, but with very little 

mathematical and numerical notation; and fi nally, Morita and 

Yen (2000) covered similar themes as this review, but focused 

more on the numerical aspects of modeling.

Governing Equa  ons
A complete coupled surface–subsurface fl ow system includes 

the surface component, the subsurface component, interfacial 

(i.e., between the surface and the subsurface) boundary conditions, 

external boundary conditions, and initial conditions. External 

and initial conditions, as well as system parameters, are generally 

a function of the specifi c problem of concern, and therefore will 

not be discussed here in detail. Th is section reviews the partial 

diff erential equations used to describe the two major systems, i.e., 

the surface and the subsurface components. Interfacial boundary 

conditions will be discussed separately.

Water fl ow in both domains, i.e., above and below surface, 

obeys the basic physical laws of conservation of mass and con-

servation of momentum. Th erefore, a common ground would be 

at the level of fl uid mechanics, i.e., the Navier–Stokes equation 

and the mass conservation equation. Each domain has seen a dif-

ferent development through history, however, leading the surface 

component to the Saint-Venant equations and the subsurface 

component to the aquifer equation or the Richards equation.

Surface Flow Equa  ons

Equations for describing unsteady fl ow in natural and non-

natural channels mostly result directly from the Saint-Venant 

equations or one of its approximations (often called the shallow 
water equation). Th e Saint-Venant equations are originally one 

dimensional and include a mass conservation equation and a 

momentum conservation equation. Th e way two-dimensional 

fl ow is modeled is discussed below. Th ree-dimensional treatment 

of surface fl ow practically does not exist in the literature, other 

than the full Navier–Stokes equation. Th e most complete version 

of the equations (Yen and Tsai, 2001) is
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where Q [L3 T−1] is the fl ow discharge in the channel, A [L2] 

is the fl ow cross-sectional area, H [L] is the fl ow depth, qs [L
2 

T−1] is a sink term (e.g., infi ltration or lateral losses, in terms of 

volume per unit length per unit time), qr [L
2 T−1] is channel 

sources (due to, e.g., rain, in terms of volume per unit length 

per unit time), Usx [L T−1] and Urx [L T−1] are x components 

of the channel sinks and sources, x [L] is the direction along the 

channel, S0 and Sf (both dimensionless) are channel and friction 

slopes, respectively, t [T] is the time, g [LT−2] is the acceleration 

due to gravity, and c1 through c4 (dimensionless) are Boolean 

parameters used to reduce the general equation to its subversions. 

Note that Eq. [1] is a mass balance equation, while Eq. [2] is a 

momentum conservation equation (sometimes known as a force 
equilibrium equation). Also note that there are nonconservative 

versions of these equations, expressed in terms of the water level 

(rather than discharge).

Th e sink–source terms are worth a short discussion. While 

for the mass balance equation both rain and infi ltration are well 

understood, this is not the case for momentum transfer. When 

horizontal surface fl ow is considered, as is almost always the case, 

the horizontal component of the rain (due to wind speed) can 

be signifi cant, especially if the surface area of the surface water 

is large (i.e., shallow fl ow). On the other hand, the infi ltration 
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horizontal component of momentum transfer is hardly evident 

and indeed hardly accounted for. It is speculated that it should 

be used only when modeling very steep fl ow.

By setting diff erent values to the Boolean parameters, dif-

ferent versions of the surface fl ow models are obtained, namely, 

the kinematic wave:

0 f 0S S− =  [3]

which is obtained by setting c1 = c2 = c3 = 0 and c4 = 1; the 

non-inertial wave (also known as zero inertia and sometimes mis-

takenly [see Yen and Tsai, 2001] referred as the diff usion wave) 

approximation:
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obtained by setting c1 = c2 = 0 and c3 = c4 = 1; the gravity wave 

approximation:
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which is obtained by setting c1 = c2 = c3 = 1 and c4 = 0; the quasi-

steady dynamic wave:
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which is obtained by setting c2 = c3 = c4 = 1 and c1 = 0; and 

the (hydro) dynamic wave, which is the full partial diff erential 

equation (Eq. [2] with c1 = c2 = c3 = c4 = 1). Th is classifi cation is 

commonly accepted throughout the literature, though in some 

cases the terminology diff ers (compare, e.g., Yen and Tsai [2001] 

to Lamberti and Pilati [1996]).

All equations leave large space for empiricism—especially 

with regard to the way the friction slope, Sf, is modeled, where 

Manning’s equation is typically used.

As for the one-dimensional case, there exist several versions 

of the governing Saint-Venant-like equations for two-dimensional 

cases. Th e version used by Morita and Yen (2002) is introduced 

fi rst (depth averaged, horizontal in the x, y plane, where y [L] is 

the second horizontal coordinate). Th e diff erences found when 

compared with the one-dimensional case are primarily when 

breaking the cross-sectional area into components and when 

velocities are considered in two directions:
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where H [L] is the fl ow depth, u and v [L T−1] are velocities in 

the x and y directions, respectively, and the additional subscripts 

x and y indicate bottom and friction slopes in the x and y direc-

tions, respectively. Note that the dimensions of qr and qs here are 

[L T−1], diff erent than the defi nition in Eq. [1].

Playan et al. (1994a), following Akanbi and Katopodes (1988), 

used similar version of the partial diff erential equations but instead 

of the direct momentum transfer used by Morita and Yen (2002) 

(qrurx and qrury), they introduced extra terms D1x and D1y [L
2 

T−2] to take the place of the zero on the right-hand side of Eq. 

[8] and [9], respectively. In both cases, however, only horizontal 

components of the momentum are transferred as the models are 

depth averaged. Note also that Playan et al. (1994a) developed 

their model for surface irrigation and therefore did not consider 

the eff ect of additions to the stream by (for example) rain (i.e., qs 

is omitted)—in such cases, extra terms would need to be added to 

account for momentum transfer between the rain and the stream. 

Note that the momentum transfer is a function of both the fl ow 

rate and its velocity. Th e momentum transfer function (horizontal 

only) is approximated (Akanbi and Katopodes, 1988; Strelkoff , 

1969) for one-dimensional fl ow by

r r
1 1,     

2 2
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Th e diff erent versions of the Saint-Venant equations shown above 

assume that the interface between the surface water and the sub-

surface does not change. In practice, shear forces may cause soil 

particles to detach from the streambed and move with the pos-

sibly turbulent water. Th is review strictly does not discuss cases 

where signifi cant interface geometry change is involved (e.g., a 

dam break), but does cover cases of minor change such as water-

shed erosion. For completeness, refer to the appendix , which 

describes a formulation (by Bradford and Katopodes, 1998) for 

two-dimensional vertical fl ow.

Subsurface Flow Equa  ons

Subsurface systems typically are modeled by embedding 

Darcy’s law into a mass conservation operator. For the sake of 

completeness, however, we start with the volume-averaged Stokes 

equation:
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where q is the fl ux [L T−1], k [L2] is the permeability, and Φ [L] 

is the hydraulic head. Without going into further detail, this 

equation is composed of four components, where the middle two 

typically are not seen in Darcy’s law. Th e second term is typically 

neglected as it lasts only for a short fraction of a second when 

conditions change. Th e third term is called the Brinkman term 

(Brinkman, 1947). While this term is (with practically no excep-
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tion) omitted when pure porous media are of concern, it is often 

used in problems that include an interface between a porous medium 

and free water (see, e.g., Shavit et al., 2002; COMSOL, 2007).

As mentioned above, for most subsurface problems (and for 

practically all such problems at regions far from interfaces), the 

simpler version of Darcy’s law can be used:

q K=− ∇Φ   [12]

where K is the hydraulic conductivity [L T−1]. Darcy’s law gener-

ally applies for saturated fl ow, but it is widely accepted that the 

Buckingham (1907) extension can be used to apply it to unsatu-

rated fl ow with a correction for the hydraulic conductivity:

s rK K K=   [13]

where Ks is the saturated hydraulic conductivity [L T−1] and Kr 

(dimensionless) is the relative hydraulic conductivity, generally a 

function of the water content or the pressure head. Th e relative 

hydraulic conductivity is typically described using semiempirical 

models such as Gardner (1958), Brooks and Corey (1964), van 

Genuchten (1980), and others.

Two major forms of the continuity equation result from 

embedding Darcy’s law into a mass conservation scheme—the 

aquifer equation:

S K
t

∂Φ
=∇ ∇Φ

∂
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and the Richards equation, which is used for variably saturated 

conditions:
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where S (dimensionless) is a storage coeffi  cient composed of 

media and fl uid elasticity, θ (dimensionless) is the volumetric 

water content, and h [L] is the (possibly negative) pressure head 

(Φ = h + z). In Eq. [14], the storage coeffi  cient takes diff erent 

forms depending on the dimensionality of the equation (one, 

two, or three dimensional), its orientation (horizontal or vertical 

if fewer than three dimensions are considered), and the type of 

aquifer (confi ned or phreatic). Th ere are several mixed formula-

tions that allow the use of a single partial diff erential equation 

for both unsaturated and aquifer systems (see, e.g., Dogan and 

Motz, 2005). Also, the Richards equation may be presented in 

terms of the head, the water content, or in a mixed form (which is 

the one presented here; see, e.g., Warrick, 2003). Naturally, both 

equations have diff erent forms when fewer than three dimensions 

or a diff erent coordinate system are used.

Th e aquifer equation (Eq. [14]) is generally linear. In some 

cases, however, such as when a phreatic aquifer is considered, it 

may become nonlinear due to the identity between the boundary 

and the unknown equation, the head. Further nonlinearity is due 

to vertical averaging when fewer than three dimensions are consid-

ered. Th e Richards equation (Eq. [15]) is inherently nonlinear. Its 

solution requires formulation of head–water content relations, defi -

nition of an unsaturated conductivity function, and linearization.

Conceptual Models for Coupling: Physics
As discussed above, although of similar origin (the Navier–

Stokes equations) and of similar concept (mass and momentum 

conservation), the surface and subsurface systems follow diff er-

ent partial diff erential equations. Th erefore, boundary conditions 

need to be defi ned at the interface between the systems.

In general, boundary conditions are defi ned at the interface 

between domains, whether external interfaces, bounding one 

system from the exterior world, or internal ones; however, sub-

surface systems, which are naturally two- or three-phase systems, 

are modeled as a continuum using the representative elementary 

volume (REV) concept (see, e.g., Bear, 1972; Warrick, 2003). 

Th erefore, the exact location of the interface between the surface 

and subsurface systems is somewhat vague. Furthermore, the 

eff ective value of some REV-averaged parameters (such as poros-

ity or hydraulic conductivity) near the interface may deviate from 

its value in locations that are far from interface. It is clear that 

the interface between the two fl ow systems is not “mathemati-

cally sharp.” Nevertheless, for most engineering problems (i.e., of 

signifi cant scale), this issue can be ignored and the boundary can 

be considered to be sharp.

Th is discussion generally follows Alazmi and Vafai (2001). 

Th e problem of interfacial boundary conditions between a porous 

medium and a homogenous fl uid has been investigated by many 

researchers. Beavers and Joseph (1967) pioneered the performance 

of experimental studies that created the foundation for research in 

this fi eld. Th e most important fi nding was the detection of a slip 

condition at the interface. Th at is, the porous medium cannot be 

treated as an impervious boundary as it had been (and to some 

degree still is) treated in the past. Neale and Nader (1974; we 

rely here on Alazmi and Vafai [2001]) proposed a continuity in 

both the velocity and its gradient at the interface by introducing 

the Brinkman term in the momentum equation for the porous 

side (see Eq. [1]). Several other formulations for boundary con-

tinuity, following the same approach using the extended Darcy 

form, were presented by, e.g., Vafai and Tien (1981), Vafai and 

Kim (1990b), and Kaviany (1991). Other signifi cant advances 

were made by Larson and Higdon (1987a,b), and by Sahraoui 

and Kaviany (1992). Whitaker (e.g., Whitaker, 1992; Ochoa-

Tapia and Whitaker, 1995a,b, 1997) used the volume-averaging 

method to defi ne a jump in the velocity across the interface.

Alazmi and Vafai (2001) summarized the diff erent approaches 

for treating boundary conditions between porous and free fl uid 

domains. Th ey distinguish between fi ve diff erent categories of 

boundary conditions as follows.

The first category, which is perhaps the most intuitive, 

requires the continuity of velocity and its gradient across the 

interface:

PM FFu u=  [16]

PM FF

d d

d d

u u

n n

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜=⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
 [17]

where u [L T−1] is the water velocity (perpendicular to the inter-

face), n is the direction normal to the interface, PM denotes 

porous medium, and FF denotes free fl uid. Th is type of boundary 

condition was used by, e.g., Neale and Nader (1974), Vafai and 

Kim (1990a,b), and Jang and Chen (1992).

Th e second category still requires the continuity of veloc-

ity across the interface (Eq. [16]), but the velocity gradients are 

weighted by the kinematic viscosity, μ [M L−1 T−1], where on 

the porous medium side an eff ective viscosity term, μeff , is used:
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eff
PM FF
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Th is category was used by Vafai and Th iyagaraja (1987), Poulikakos 

and Kazmierczak (1987), and later by Kim and Choi (1996).

Th e third category, used by Whitaker and Kuznetsov (e.g., 

Ochoa-Tapia and Whitaker, 1995a,b; Kuznetsov, 1996, 1997, 

1998a,b, 1999), includes a jump condition in the gradient, while 

the velocity is assumed to be continuous across the interface:

1
PM FF
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u u
u

n n k
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 [19]

where β1 is a dimensionless coeffi  cient, φ (dimensionless) is the 

porosity, and k is the permeability [L2]. Th is jump condition 

allows for a diff erence between the porous medium and the free 

fl uid, and therefore allows treatment of both domains with their 

classical partial diff erential equations.

Th e fourth category, presented by Ochoa-Tapia and Whitaker 

(1998), is very similar to the third category, i.e., continuity of the 

velocity and a jump in its derivative. Th e jump here has two terms, 

however—one proportional to the velocity (as in the third category) 

and an additional term proportional to the velocity squared:

2
1 2

PM FF

d d
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u u
u u
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 [20]

where β2 is a dimensionless coeffi  cient and ρ [M L−3] is the fl uid 

density.

Th e fi fth and last category deals only with the velocity deriva-

tive from the free-fl uid side, which is defi ned by

( )int inf
FF

d *

d

u
u u

n k

⎛ ⎞ α⎟⎜ = −⎟⎜ ⎟⎜⎝ ⎠
 [21]

where an interface velocity uint [L T−1] is defi ned independently 

of the free-fl uid velocity, uinf [L T−1]. Th e velocity gradient is 

a function of these two velocities and a dimensionless slip coef-

fi cient, α*. Th is approach, originally used by Beavers and Joseph 

(1967), was later used by Sahraoui and Kaviany (1992).

In general, it is important to understand that two conditions 

must be satisfi ed—the continuity of the momentum and the con-

servation of mass. It is customary to represent these two conditions 

as velocity and its normal gradient; however, other representational 

options are equally valid. In many of the cases that will be presented 

below, boundary conditions have been represented in terms of fl ux 

and energy (head), which is more customary in fi elds such as porous 

media internal boundaries (see, e.g., Janković and Barnes, 1999; 

Furman and Neuman, 2003; Furman and Warrick, 2005). Th e 

diff erent approaches presented above result from (i) the diff erent 

formulations of the fl ow equations in the two regions (i.e., mostly 

due to the treatment of the porous medium as a continuum); (ii) the 

diffi  culty in defi ning a sharp interface; and (iii) the desire to simplify 

the boundary conditions to allow practical application.

Conceptual Models for Coupling: Numerics
Generally, a complete system of coupled surface–subsurface 

fl ow systems involves a mathematical description of the surface 

process, a mathematical description of the subsurface process, a 

mathematical description of external boundary conditions, and a 

mathematical description of the internal boundary conditions (i.e., 

at the surface–subsurface interface). Th e surface system is often 

described as a hyperbolic or parabolic partial diff erential equation 

(PDE) and the subsurface system is described by a parabolic PDE.

Th ree diff erent levels of coupling between surface and sub-

surface processes, illustrated in Fig. 2, can be distinguished. Th ese 

include the no-coupling, the iterative coupling, and full coupling. 

All three components are described below. In theory, the higher 

the level of coupling, the higher the accuracy. As the coupling 

involves numerics (rather than analytics), however, this is not 

necessarily true. Th e three diff erent coupling levels are briefl y 

described here. A review of the diff erent applications of the three 

levels is provided farther below.

Th e fi rst level of numerical coupling actually means no 

coupling. Th at is, at each time step, each system is solved inde-

pendently, where typically the surface water component is solved 

fi rst (mostly because of the faster dynamics). Based on the solu-

tion, an internal boundary condition value is specifi ed and then 

the other system is solved. No feedback is used to correct the fi rst 

system. As the boundary condition at the interface between the 

systems applies (in general) to both systems, an approximation 

is necessary. It is convenient to use conditions from the previous 

time step as a guess of boundary conditions for the system that 

is solved fi rst. We refer to this level of coupling, following Morita 

and Yen (2000), as uncoupled. Note that this coupling level was 

referred to in the past as externally coupled by Freeze (1972).

Th e fi rst coupling level can actually be split into two sub-

groups, the fi rst of which is described above. Th e second subgroup 

includes the mimicking of one of the involved systems (surface 

or subsurface) into an algebraic formulation (typically a spe-

cifi c solution for one of the systems). Th is approach is popular 

among surface irrigation modelers, and is referred to here as 

degenerated uncoupled.

Th e second level of coupling involves feedback between the 

two systems. Th e fi rst stages are similar to the uncoupled level: one 

system is solved, interfacial boundary conditions are formulated, 

and the second system is solved using these boundary condi-

tions. Th e diff erence is that the solution of the second system 

is now used to update the internal boundary condition within 

the same time step. Th e fi rst system is solved again using this 

updated boundary condition, and the whole process is repeated 

until convergence criteria are achieved (typically until there is no 

signifi cant change in one of the solved components). Morita and 

Yen (2000) referred to this coupling level as alternating iterative. 
We refer to this coupling level as iterative coupling.

Th e third coupling level, which is the most complete, involves 

solving the two systems and the internal boundary conditions 

F . 2. The four diff erent numerical coupling schemes: (I) uncou-
pled; (Ia) degenerated uncoupled; (II) itera  ve coupling; and (III) 
fully coupled.
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together. Th at is, the two PDEs and the interface equation (which 

may be an ordinary diff erential equation) are solved simultane-

ously. Th is coupling level is referred to here as fully coupled (note 

that Morita and Yen [2000], although at the time they could not 

identify a single application of this coupling level, referred to it 

as coupled simultaneous solution).

It is important to note that it is not clear that full coupling is 

superior to iterative coupling. Full coupling involves discretizing and 

solving parabolic and hyperbolic equations in a single set. Th is may 

lead to numerical diffi  culties resulting from the diff erent natures of 

the equations. Th e full coupling also leads to larger systems that need 

to be solved. As a numerical solution typically involves the iterative 

solution of spatially and temporally discretized equations, at the most 

basic level the diff erence (from the computational effi  ciency point of 

view) may be between external (in the case of iterative coupling) and 

internal (in the case of full coupling) iterations.

Overview of Computa  onal Tools 
and Applica  ons

As discussed above, coupling surface and subsurface fl ow pro-

cesses is a diffi  cult mathematical task. Th erefore, in most practical 

cases, the attempt is to decouple the two processes, focus on one 

of the two, and simplify the other process to a set of (typically) 

empirical parameters and functions. At present, the higher levels 

of coupling (fully coupled and iterative coupling) codes tend to be 

associated with academic studies with lesser practical application, 

although this “sharp boundaries” observation has tended to blur 

in recent years.

Th e overview of computational codes begins by reviewing 

the way coupled fl ow processes are treated in some of the most 

widely used codes: MODFLOW and HEC-RAS. Following the 

review of these megacodes, other commercial and noncommercial 

applications in diff erent disciplines associated with coupled sur-

face–subsurface fl ow are reviewed. Some representative examples 

of the models described are summarized in Table 1.

MegaCodes
MODFLOW

Several popular codes are in intensive use in the fi eld of 

groundwater, clearly led (in terms of popularity) by MODFLOW 

(McDonald and Harbaugh, 1988) and its many descendants 

(e.g., MODFLOW 96 [Harbaugh and McDonald, 1996]; 

MODFLOW 2000 [Harbaugh et al., 2000]) and interfaces (e.g., 

Argus ONE [Winston, 2000]; GMS [Environmental Modeling 

Systems, 2007]; Groundwater Vistas [Environmental Simulations 

T  1. Selected coupled surface–subsurface fl ow models.

Reference
Commercial name or 

nickname Surface† Subsurface‡ Coupling§

Irriga  on
Strelkoff  et al. (1998); U.S. Arid-Land Agricultural Research Center (2006) SRFR/WinSRFR 1D ZI EA DU
Utah State University (1999, 2003) SIRMOD 1D KW/ZI/HD EA DU
Katopodes and Strelkoff  (1977) 1D HD EA DU
Singh and Bhallamudi (1996, 1997) 1D HD EA DU
Akanbi and Katopodes (1988) 2D HD EA DU
Zerihun et al. (2003) 1D ZI EA DU
Zerihun et al. (2005a,b,c) 1D ZI 1D R IC
Schwankl et al. (2000) 1D ZI EA DU
Abbasi et al. (2003a,b) ZIMOD 1D ZI EA DU
Wöhling et al. (2004, 2006) 1D ZI 2D R IC
Watershed
U.S. Army Corps of Engineers (2000) HEC-HMS 1D KW/TL/UH EA DU
VanderKwaak (1999) InHM 2D 3D R FC
Panday and Huyakorn (2004) MODHMS 1D+2D HD 3D R FC/IC
Refsgaard and Storm (1995) MIKE-SHE 1D+2D ZI 1D R/EA UC/DU
Bixio et al. (2002) 1D ZI 3D R UC
Fiedler and Ramirez (2000) 2D HD EA DU
Gandolfi  and Savi (2000) 2D HD 1D R UC
Singh and Bhallamudi (1998) 1DS1DSS/1DS2DSS 1D HD 1D/2D R UC
Smith and Woolhiser (1971) 1D KW 1D R UC
Govindaraju and Kavvas (1991) 1D ZI 2D R IC
Liang et al. (2007) 2D HD GW FC
Gunduz and Aral (2005) 1D HD GW FC
Subsurface
McDonald and Harbaugh (1988) MODFLOW VB GW DU
Cheng and Anderson (1993) MODFLOW VB GW DU
Council (1999) MODFLOW VB GW DU
Other
Kouznetsov et al. (2007) 1D HD 3D R IC

† 1D, one-dimensional; 2D, two-dimensional; ZI, zero iner  a; KW, kinema  c wave; HD, dynamic wave (hydrodynamic, full iner  a); TL,  me lag; UH, unit 
hydrograph; VB, mass (volume) balance.

‡ EA, empiric or algebraic; R, Richards’ equa  on; 3D, three-dimensional; GW, groundwater.
§ DU, degenerated uncoupled; IC, itera  ve coupling; FC, full coupling; UC, uncoupled.
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Incorporated, 2007]; and others). To some degree, MODFLOW 

codes can be considered as a de facto standard. Th e MODFLOW 

codes primarily consider the saturated zone. Some, but purely 

vertical, interaction (i.e., interaction between a MODFLOW cell 

and the area just above it) with surface water is allowed through 

some of the original and later developed packages. Th e number of 

external packages that were developed for MODFLOW is enor-

mous. Only a few of the packages, and mostly the “mainstream” 

ones (i.e., that were developed in, or in close cooperation with, 

the USGS) are discussed here.

Two levels of surface–subsurface interaction within the 

MODFLOW framework can be diff erentiated: (i) prescribed 

recharge; and (ii) linear dependence of recharge in groundwater 

and surface water heads. For the second case, several modifi cations 

exist but with no signifi cant change in the recharge calculations. 

In the fi rst case, surface (or atmospheric) processes aff ect the 

groundwater system in a manner that (can be approximated as 

one that) does not depend on the state of the groundwater system. 

Within this category fall the recharge package (RCH, McDonald 

and Harbaugh, 1988); the river package (RIV, McDonald and 

Harbaugh, 1988); the reservoir package (RES1, Fenske et al., 

1996); and several “out of the mainstream” (i.e., out of the USGS 

framework) modifi cations (e.g., Osman and Bruen, 2002) to the 

river package. Th ese modifi cations were primarily designed to 

achieve a more accurate estimation of infi ltration in the case 

where the water level is signifi cantly below the stream (i.e., h < 

RBOT), but treatment of the streams as a dynamic hydrologic 

unit is made only (to my knowledge) through the streamfl ow 

packages. Note that for most packages the recharge function 

includes (at least) two cases: (i) cases where groundwater level 

aff ects recharge, and (ii) cases where it does not. In this zero-level 

interaction category, we include only those cases where ground-

water is deeper than the bottom level of the surface water body 

(e.g., the lower end of the streambed).

Th e next level of interaction models the intermediate fl ux 

as linear to the diff erence between surface conditions (that are 

assumed to be prescribed) and groundwater level. Th at is, the fl ux 

between the surface water and the groundwater system is of the 

form Q = C(hS − hGW), where Q [L3 T−1] is the interaction fl ux, 

C [L2 T−1] is a constant (that typically is composed of geometry 

factors and hydraulic properties), hS [L] is the head at the sur-

face system (typically prescribed but not necessarily constant in 

time), and hGW [L] is the head in the groundwater system. In this 

group are included, e.g., RIV, for the case where the groundwater 

level is above the river bottom level (McDonald and Harbaugh, 

1988), and RES1, for the case of shallow groundwater (Fenske 

et al., 1996).

In the same category (i.e., of fi rst-order interaction) are some 

packages that include a more sophisticated treatment of the sur-

face system but still assume a linear interaction form for the fl ux 

between the surface and the subsurface systems. Th e lake pack-

ages (LAK1 [Cheng and Anderson, 1993] and LAK2 [Council, 

1999]) allow computation of the lake (or reservoir) level as a func-

tion of all its inputs and outputs (a lake may cover more than one 

MODFLOW cell, hence the water level depends on the infl ows 

and outfl ows from more than a single cell). Th e computation 

is based on a simple mass-balance equation (assuming pseudo-

steady state), hence at each time step the water level of the lake 

can be assumed to be prescribed. In a similar way, the streamfl ow 

routing package (SFR1 and its predecessor STR1, Prudic et al., 

2004) computes the head at each segment of the river, assuming 

steady fl ow conditions and that the stage can be computed using, 

e.g., Manning’s equation. Th e outfl ow from each stream segment 

is computed in a manner similar to the basic river package (i.e., 

using the aggregated Darcy’s law), with the limitation that the 

infi ltration cannot exceed the saturated hydraulic conductivity.

Another alternative for a groundwater model that includes 

streamflow routing is the DAFLOW package (Jobson and 

Harbaugh, 1999). Th e approach to modeling the streamfl ow here 

is diff erent than the one used in previous (and later) packages in 

that not only is the mass balance solved, but momentum is also 

conserved. Th e conceptual model of the surface water assumes 

that the dynamic behavior of the stream system is composed 

of steady segments (i.e., segments in which steady fl ow occurs) 

and transition zones. Th ese transition zones are approximated 

as shock waves (i.e., discontinuities in the fl ow rate and depth) 

and are routed through the channel system in velocities that are 

computed using the normal (steady) velocities in the channel 

before and after the shock. While this solution is interesting in 

terms of the modeling of the surface water, the coupling between 

the surface and subsurface systems is still fi rst order.

The MODBRANCH model is another combination of 

MODFLOW, this time with a surface channel fl ow model. In 

this case, Swain and Wexler (1996) coupled the channel fl ow 

model BRANCH (Schaff ranek, 1987; Schaff ranek et al., 1981) 

with MODFLOW. Th e BRANCH model solves the Saint-Venant 

equations. Since the time scales between the two components 

are signifi cantly diff erent, the computational interface “calls” the 

BRANCH module several times during each MODFLOW time 

step. Th e interaction between the two modules uses a simple leak-

age term similar to that discussed, e.g., for the SFR1 module. To 

account for the changing head in the aquifer, an iterative scheme 

is necessary.

Th e SFR1 package, while a great advance for MODFLOW 

in terms of modeling a surface system (as are the DAFLOW and 

most other MODFLOW-related surface interaction models), 

still does not deal with the vadose zone, and most importantly 

(from the groundwater system point of view) does not consider 

the temporal delay in the arrival of recharge. Th at is, any drop 

of water leaving one system (in all previously discussed pack-

ages) was assumed to arrive immediately in the other system. 

Th e streamfl ow-routing package (SFR2, Niswonger and Prudic, 

2005) is specifi cally designed to answer the question of timing 

the arrival of recharge to groundwater when there is no direct 

(i.e., saturation) connection between the river and the aquifer. 

Its action can be described in several stages. First, the recharge 

rate is computed in a manner similar to that used in the river 

package; however, the infi ltration rate is limited by the saturated 

hydraulic conductivity of the vadose zone. At the second stage, 

the infi ltration is routed through the vadose zone. Vadose zone 

fl ow is modeled using a kinematic-wave approximation of the 

one-dimensional Richards equation, assuming that fl ow is driven 

only by gravitational forces:

( )
0

K

t z

∂ θ∂θ
+ =

∂ ∂
 [22]

Th is approximation of the Richards equation is solved using the 

method of characteristics, where the Brooks and Corey (1966) 
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function (K = KsSe
α, where Se [dimensionless] is the eff ective sat-

uration) is used to specify the unsaturated hydraulic conductivity 

function. Infi ltration waves created by a change in the infi ltra-

tion rate at each time step (an increase in the rate will create the 

wave lead and a decrease will create the wave tail [trailing wave 
in MODFLOW language], with infi ltration fl uxes computed by 

Darcy’s law as noted above) are routed through the vadose zone. 

Boundary conditions for this method of characteristics solution 

are given in terms of water content, and for that purpose the fl ux 

is translated using
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where θr (dimensionless) is the residual water content and Sy 

(dimensionless) is the specifi c yield, taken here as a more realis-

tic evaluation of the diff erence between saturated and residual 

water content.

It is important to understand that in the case of the 

MODFLOW SFR1 module and especially the SFR2 module, 

although the surface water and the unsaturated zone are mod-

eled in a signifi cantly nonempirical way, the level of interaction 

between the surface and the subsurface system is limited to a 

simple computation of fl uxes through a direct solution of the 

aggregated Darcy’s law. Coupling therefore, at least in terms 

of mass, between surface water and groundwater, bypasses the 

vadose zone. A higher level of coupling does not exist at this 

stage in the framework of MODFLOW (but see MODHMS 

below). Note, however, that two recently developed programs 

already couple the vadose zone fl ow with MODFLOW (the VSF 

package [Th oms et al., 2006] that couples the three-dimensional 

Richards equation with MODFLOW and the HYDRUS package 

for MODFLOW 2000 [Seo et al., 2007; see also Twarakavi et 

al., 2008] that couples the one-dimensional Richards equation 

with MODFLOW). Th e availability of such programs suggests 

that full coupling of surface fl ow and MODFLOW through full 

simulation of the vadose zone fl ow is near.

HEC-RAS

Th e U.S. Army Corps of Engineers’ River Analysis System 

(HEC-RAS) is software that allows performance of one-dimen-

sional steady and unsteady fl ow river hydraulics calculations. Th e 

HEC-HMS (U.S. Army Corps of Engineers, 2000) is a modifi ed 

version (of HEC-RAS) designed to deal with watershed hydrology 

(while the original HEC is a more hydraulic version) utilizing a 

simplifi ed version of the full Saint-Venant equation:

f 0
Q QV z
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Several alternatives are available for routing rainfall to runoff  

(including several unit hydrographs, but also a kinematic wave 

option), and to route fl ow through the watershed channels. Th e 

HEC-HMS model includes several loss functions, including 

constant, exponential (with time), Green and Ampt (1911), Soil 

Conservation Service (1971) curve number loss, and soil mois-

ture accounting loss. Th e latter means that the whole system is 

divided into fi ve layers (including canopy, surface, vadose, and 

two groundwater layers), and losses are computed in a hierarchy 

according to abstraction coeffi  cients and allowed rates.

Irriga  on Models

Modeling surface irrigation is among the most diffi  cult 

tasks for modeling surface fl ow. Th is is primarily because of the 

high nonlinearity of the fl ow tip (the front of the surging water 

wave). Researchers in the fi eld of surface irrigation have primarily 

focused their attention on descriptions of the surface fl ow, and 

approximated the infi ltration losses by empirical formulas. It is 

only in recent years that applications of a higher level of coupling 

in surface irrigation modeling have been developed signifi cantly.

Irrigation techniques can be split into two major catego-

ries: volume irrigation and precise irrigation (sometimes referred 

to as pressurized and nonpressurized, or surface irrigation and 

microirrigation). Th e fi rst group includes primarily surface (fl ood) 

irrigation techniques (furrow, basin, and border), while the second 

group includes drippers, sprinklers, and spray techniques. Our 

distinction between these two groups is based primarily on the 

fact that when a precise irrigation scheme is properly designed, 

it is relatively easy to decouple the surface and subsurface pro-

cesses. Th at is, when the drip or sprinkler discharge is designed 

in accordance with the soil properties, very little surface runoff  

is generated (see, e.g., Cuenca, 1989; Benami and Ofen, 1983). 

In such cases, the hydraulic problem (of fl ow in pipes and drip 

maze) and the fl uid mechanics problem (in the case of sprinkler 

irrigation, the path of the drops through the air) barely aff ect the 

subsurface fl ow. Boundary conditions for the subsurface problem 

are of the prescribed fl ux (Neumann) type. Th is is especially true 

with modern discharge-regulated (pressure-compensated) devices 

and for buried drippers.

Flood irrigation systems are commonly used in most coun-

tries. In the United States, an estimated total area of roughly 

115,000 km2 is irrigated using fl ood techniques (USGS, 2000), 

accounting for roughly half of the irrigated land. In India, 

>500,000 km2 of land are fl ood irrigated (FAO, 2007). Th ree 

techniques are used: furrow, mostly in row crops and in the 

absence of modern machinery; borders, for close-growing crops; 

and basins, mostly for fi eld crops but also orchards. Although 

some claim that high effi  ciency can be achieved in fl ood irriga-

tion, it is commonly accepted that these systems are inherently 

ineffi  cient in their water use.

Most fl ood irrigation modeling tools apply the most basic 

coupling scheme, i.e., the degenerated uncoupled approach. Th is 

approach includes reduction of the subsurface fl ow process into a 

relatively simple algebraic equation that depends directly or indi-

rectly on the solution of the surface system, most commonly the 

modifi ed Kostiakov equation and its variations (Kostiakov, 1932; 

Haverkamp et al., 1988; Clemmens, 1981; FAO, 1989—note 

that the modifi ed Kostiakov equation is also known as Kostiakov–

Lewis or Mezencev):

0* aI k f= τ + τ  [25]

where I [L] is the cumulative infi ltration, τ [T] is the oppor-

tunity time, and k* [L T−a], a (dimensionless), and f0 [L T−1] 

are empirical parameters. Some variations of this equation exist, 

mostly by omitting the second term (which is linear with time) 

or splitting between using the fi rst and second terms (aka the 

branch method). Th e addition of a constant (e.g., Walker et al., 

2006) is useful to account for crack fi lling or other nontemporal 

abstractions. Th e opportunity time indicates the cumulative time 
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that the surface (at a specifi c location) was fl ooded. Th erefore, 

when the Kostiakov equation is used, the “coupling” parameter 

is the time, and it is activated at a location depending on whether 

the solution for the surface component indicated that location 

as fl ooded.

Quite a few researchers and engineers have used the Kostiakov 

equation to model “uncoupled” surface–subsurface fl ow. Only a 

small portion of many are listed here. Th e two most commonly 

used codes (at least in the USA) are SRFR (Strelkoff  et al., 1998; 

U.S. Arid-Land Agricultural Research Center, 2006) and SIRMOD 

(Utah State University, 1999). Th e SRFR program considers a one-

dimensional zero inertia fl ow for simulating the fl ow in a single 

furrow, border, or basin. Th e interaction with the subsurface is 

calculated through the use of an algebraic infi ltration function, 

where the user has the option to choose between several subver-

sions of the Kostiakov (1932) infi ltration function, as well as the 

Soil Conservation Service (1974) method and the time-rated 

intake families (Merriam and Clemmens, 1985). Applications of 

the SRFR program are numerous. For example, Alazba (1999) used 

SRFR in its zero-inertia mode to examine the infl uence of the inlet 

signal (infl ow hydrograph) on irrigation performance.

Th e SIRMOD (Utah State University, 1999, 2003) program 

solves several versions of the Saint-Venant equations: a reduced 

version of the full dynamic wave equation (omitting mostly 

sinks and sources), the zero inertia equation, and the kinematic 

wave equation. It uses the Preissmann (roughly equivalent to the 

Crack–Nicolson method, which is better known in the subsurface 

literature) double-sweep algorithm (Liggett and Cunge, 1975) 

in conjunction with deformable control volume. As with most 

irrigation modeling schemes, diff erent phases of the irrigation 

(i.e., advance, wetting, depletion, and recession) are solved using 

slightly diff erent numerical simplifi cations, listed in Walker and 

Skogerboe (1987). Similar to SRFR, the subsurface system is 

considered as an algebraic equation, utilizing several versions of 

the Kostiakov (1932) equation and the Soil Conservation Service 

(1974) method (but not the original Soil Conservation Service 

curves; see Walker et al., 2006).

In addition to the previously mentioned codes, quite a vari-

ety of surface irrigation codes have been developed, in most cases 

for research purposes. Schwankl et al. (2000) used the zero inertia 

formulation, combined with the modifi ed Kostiakov infi ltration, 

to examine furrow irrigation performance under spatially vary-

ing parameters (the spatially variable parameters included furrow 

geometry [embedded with the Kostiakov infi ltration], roughness, 

and infi ltration coeffi  cients). Katopodes and Strelkoff  (1977) 

solved a one-dimensional zero inertia (called diff usion wave by 

them) equation (see further details in Walker and Skogerboe, 

1987). Abbasi et al. (2003a,b) used a zero inertia model and the 

branch-modifi ed Kostiakov equation to model water fl ow and 

solute transport in the surface system. Zerihun et al. (2003) used 

the Kostiakov infi ltration function to solve the zero inertia equa-

tion with several simplifi cations of the diffi  cult phases of irrigation 

(advance and recession). Singh and Bhallamudi (1996, 1997) 

used both the Kostiakov equation and the Parlange–Haverkamp 

equation (see below; the user has the option of choosing between 

the models) to solve the one-dimensional diff usion wave equation. 

Akanbi and Katopodes (1988) used the Kostiakov equation to 

solve a two-dimensional hydrodynamic wave surface fl ow system. 

Zapata and Playan (2000), following Playan et al. (1994a,b), 

used two-dimensional full inertia with the Kostiakov equation 

to model basin irrigation. Among other issues, they focused on 

the microtopography of the basin.

Alternatives to the Kostiakov equation (but still in the 

framework of representing the subsurface system as an algebraic 

equation) include the classic Green and Ampt (1911) equation:
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where i [L T−1] is the infi ltration rate and h0 [L] is the eff ective 

pressure head at the dry part of the soil. Th e Green and Ampt 

(1911) model is implicit in that the infi ltration rate depends on 

the cumulative infi ltration. Th is approach (of using the Green and 

Ampt model) was used by, e.g., Savabi (1993) in the framework 

of the Water Erosion Prediction Project. Warrick et al. (2005) 

used the Green and Ampt approach to examine the temporal 

variability of surface infi ltration under ponding conditions, but 

used actual fi eld records and not model results. Th e other (rela-

tively) used alternative to an algebraic equation for simulating 

the subsurface infi ltration is the Parlange equation (Haverkamp 

et al., 1990):
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where S [L T−0.5] denotes sorptivity, δ is a dimensionless shape 

parameter that roughly scales the ratio between advection and 

diff usion, and hstr [L] is the minimum allowed pressure head. Th e 

advantage of this equation over the Kostiakov or other equations 

is in its use of subsurface accepted parameters.

Zerihun et al. (2005a,b,c) combined the zero-inertia surface 

fl ow model of Zerihun et al. (2003) with multiple modules of 

HYDRUS-1D (Šimůnek et al., 2005) and also added solute trans-

port for the surface and subsurface components. Wöhling et al. (2004, 

2006) and Wöhling and Schmitz (2007a,b) combined an analytical 

solution of the one-dimensional zero inertia wave equation with the 

popular HYDRUS-2D code (Šimůnek et al., 1999). Th e coupling 

between the surface and the subsurface modules is done iteratively. 

Unique in this model is that the subsurface component includes 

root water uptake, making it suitable for whole-season modeling. 

Furman and Zerihun (unpublished data, 2004) did the same with 

the numerical zero inertia model of Zerihun et al. (2003), where the 

output of the surface component are water levels. Th ese are passed to 

the subsurface component as boundary conditions. After solution of 

the subsurface component, the surface fl uxes are passed back to the 

surface component as sink terms.

A fi xed infi ltration rate is obviously less accurate than a full 

solution of the Richards equation; however, the use of such a rate 

has several advantages. One advantage is the reduction of the 

need to iterate between surface and subsurface modules, as dem-

onstrated below (the use of zero depth means practically that). 

Another advantage is that it allows an analytical solution of the 

surface component. Rivlin and Wallach (1995) used a fi xed infi l-

tration rate to derive an analytic solution to the kinematic wave 

equation, and used the solution as a base for a coupled surface–

subsurface solute transport model. Th ey solved the problem for 

both the rising and receding stages of irrigation. Earlier similar 
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solutions are by Emmerich et al. (1989), also for solute transport, 

and by Lane et al. (1988) for erosion.

Iteratively coupling surface and subsurface fl ow is computa-

tionally demanding. Th is is especially true for surface irrigation 

where the nonlinearity associated with surge fl ow, and especially 

with the surge tip, is extreme. An interesting new approach (intro-

duced by Schmitz et al., 2005; Schütze et al., 2005) is to replace 

the full solution of the subsurface component with a trained 

neural network. By that, the computational eff ort is dramatically 

reduced but the advantages associated with the physical modeling 

of subsurface fl ow are essentially maintained.

As discussed above, many of the irrigation models apply the 

degenerated uncoupling approach. Th at is, the subsurface system 

is simplifi ed to an algebraic equation that depends on a parameter 

that is directly (e.g., water level) or indirectly (e.g., time) related 

to the solution of the surface system. I am not aware of the reverse 

alternative (that the surface system is embedded as an algebraic 

equation in the subsurface system), except perhaps in cases where 

a surface reservoir is considered. In these cases, the whole surface 

system is treated as a simple algebraic equation (as momentum 

is not considered and global [whole reservoir] mass balance is 

applied). Such mass balance is applied within the framework of 

HYDRUS-1D (Šimůnek et al., 2005). Th e simple MODFLOW 

packages (RES1 and LAK1) can also be considered as degenerated 

uncoupled models.

Watershed Models

Other than irrigation, coupled surface–subsurface fl ow is 

mostly used in watershed applications. Variations range from 

fl ood forecasting to erosion modeling. In comparison to irriga-

tion practices, the spatial (and therefore also the temporal) scale is 

larger. While irrigation models are typically used for fi elds ranging 

in length from several 10s to several 100s of meters, with time 

scales of minutes to several days, watershed applications may cover 

much larger areas and lengths, with the minimum scale at the 

100s of meters (and maximum at the 1000s of kilometers), result-

ing in simulation times that may well span more than a season 

(and sometimes decades). Nevertheless, the associated physics 

is the same. Th e spatial, and in particular the temporal, scales 

should allow higher validity to empirical infi ltration equations. 

Natural systems, however, typically show higher heterogeneity.

River fl ow routing is one of the most common hydrologic 

practices. Techniques for river routing are frequently based on 

the Saint-Venant equations and often simplifi ed to the kinematic 

wave equation. See Chow et al. (1988) for a brief description of 

classical methods such as the Runge–Kutta and the Muskingum–

Conge methods. Signifi cant attention is not paid here to the 

solution methods (which are the focus of the work of many); 

focus is on the interaction with the subsurface.

Singh and Woolhiser (2002) provided a comprehensive over-

view of models used to simulate watershed hydrology. A smaller 

portion of the available models is covered here but discussion is 

of the whole scope in terms of the coupling between the surface 

and subsurface.

Smith and Woolhiser (1971) were perhaps the fi rst to couple 

the problems of surface–subsurface fl ow without embedding one 

of the two as a simplifi ed algebraic equation. Th ey solved the 

kinematic wave with a one-dimensional Richards equation. As 

long as there is no ponding on the surface, water fl ux (rain) is 

used as a boundary condition for the subsurface model. Once 

ponding starts, the boundary condition becomes a zero pressure 

head (expressed as saturation). Th is simplifi cation reduces the 

need to iterate or to solve equations simultaneously.

Govindaraju and Kavvas (1991) solved a combination of 

the one-dimensional zero inertia equation for a hillslope, the 

one-dimensional zero inertia equation for a stream, and the two-

dimensional Richards equation. For the surface–subsurface, they 

used an iterative scheme (although they called it internal coupling).
Fiedler and Ramirez (2000) solved the two-dimensional full 

inertia equations using a fi nite diff erences scheme by considering 

the Green and Ampt (1911) infi ltration capacity and correct-

ing for actual infi ltration according to time-step available water. 

Gandolfi  and Savi (2000) also solved the two-dimensional full 

inertia version of the Saint-Venant equations but considered a 

one-dimensional model for the Richards equation for the sub-

surface. To avoid iterations, it was assumed that the pressure head 

boundary condition for time steps and locations where ponding 

occurs was zero.

Singh and Bhallamudi (1998) solved the one-dimensional 

full inertia equation for the surface part, combined with either 

multiple one-dimensional modules (a model named 1DS1DSS) 

or a two-dimensional module (model name 1DS2DSS) of the 

Richards equation. To avoid iterations, subsurface conditions 

from the previous time step are used to compute infi ltration. 

Woolhiser et al. (1996) combined the kinematic wave equation 

with the Smith and Parlange (1978) infi ltration function, which 

explicitly includes the saturated hydraulic conductivity, to exam-

ine its eff ect on the fl ow.

Together with the HEC family of models, the MIKE-SHE 

system (Refsgaard and Storm, 1995) is one of the most compre-

hensive watershed models. It includes modules for estimation of 

snowmelt, canopy interception, evapotranspiration, overland and 

channel fl ow, unsaturated and saturated fl ow, solute transport, 

erosion, and more.

Th e MIKE-SHE model solved the two-dimensional zero 

inertia version of the Saint-Venant equations. Th e interface 

between the surface and the subsurface waters is diff erent for 

overland and for channel fl ow. Th e channel interaction is simpler 

conceptually and computes the fl uxes using a simple Darcy’s law 

equation (similar to that done in the MODFLOW RIV package, 

above) where streambed fl ux resistance may be considered. In the 

case of overland fl ow, a full solution of the vertical one-dimen-

sional Richards equation is used to compute fl uxes, where the 

upper boundary condition may switch between prescribed fl ux 

(in the case where there is no ponding) and prescribed head (for 

ponding conditions).

Th e Richards equation is primarily used to compute the time 

lag for water arrival to groundwater. A secondary algorithm can 

be used to represent faster fl owing water (through macropores). 

In such a case, a percentage of the net rainfall is simply defi ned as 

recharge and is transferred instantaneously to the groundwater.

Bixio et al. (2002) combined a three-dimensional Richards’ 

equation module with a one-dimensional zero inertia surface fl ow 

module (Muskingum–Cunge; see, e.g., Chow, 1964; Chow et al., 

1988) to study some eff ects of the morphogenic depression on the 

infi ltration of radionuclides originated by the Chernobyl disaster. 

Th ey used a noniterative scheme that computes surface fl ows, and 

“passes” water levels (as boundary conditions) to the subsurface 
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component. Th e fl uxes are computed by the subsurface system 

only for answering the question of eventual surface storage (that 

is important for switching between soil- and atmosphere-limiting 

boundary conditions).

Modeling fully coupled surface–subsurface systems was 

not available until recently (see, e.g., Morita and Yen, 2002) 

for actual applications. Recently, VanderKwaak (1999) devel-

oped the Integrated Hydrological Model (InHM), which fully 

couples a two-dimensional zero inertia formulation with the three-

dimensional dual-continua Richards’ equation formulation. His 

formulation, leading to functions that resemble the formulation 

for the subsurface (i.e., linear fl ow law) is based on, for example, 

Vieira (1983). Th e InHM model also couples solute transport. 

Th e interaction between the surface and subsurface systems is 

done through a secondary soil layer, with thickness proportional 

to the hydraulic properties of the actual subsurface system. Water 

fl uxes (solute fl uxes are treated in a similar way) are considered to 

vary linearly with the pressure head gradient across the secondary 

soil layer. Th at is, the intermediate layer acts as a one-dimensional 

variably saturated Darcy’s law layer, with the conductivity deter-

mined by the wetness of the layer.

Th e InHM system was further developed and applied, pri-

marily at Stanford University. Several of these modifi cations and 

some applications are listed at http://www.inhm.org (verifi ed 

30 Mar. 2008).

The second fully coupled surface–subsurface watershed 

model is by Panday and Huyakorn (2004). Th e MODHMS 

model includes a two-dimensional zero inertia overland fl ow, a 

one-dimensional zero inertia channel fl ow, and a three-dimen-

sional Richards’ equation-based subsurface flow. All three 

components are coupled (that is, direct fl ow is allowed between 

all three systems without the need to go through another system). 

Th e two surface components are modifi ed to include storage (i.e., 

in surface depressions). Flow between the surface and the sub-

surface components are assumed to be a linear function of the 

head diff erence between the systems, but without the use of an 

intermediate layer. (Th erefore, fl uxes are computed as functions 

of head diff erences and not head gradients, making it practically 

the same as in InHM.) Fluxes between the surface systems (i.e., 

the one- and two-dimensional components) are assumed to be 

through weirs, with possible submergence.

Th e MODHMS model allows several levels of coupling: (i) 

full coupling of all three systems (i.e., surface–subsurface bound-

ary conditions are explicitly solved by the model); (ii) full coupling 

of only the two surface systems, where interaction between the 

surface and the subsurface is achieved through iterative (or time 

lagging) coupling passing the fl uxes as boundary conditions to 

the subsurface system; (iii) coupling only the surface components 

and iterating (or time lagging) in a similar manner to ii, but the 

head is passed as a boundary condition to the subsurface system 

instead of the fl ux.

A third application of full coupling is by Gunduz and 

Aral (2005). Th ey combined the one-dimensional full inertia 

model with the two-dimensional (horizontal) phreatic aquifer 

equation. Th e link between the models is through a Darcy-like 

diff erence equation across the river bed thickness (similar to the 

MODFLOW approach).

Th e last, somewhat simplifi ed, application of fully coupled 

surface–subsurface fl ow is by Liang et al. (2007). Th ey combined 

a horizontal two-dimensional surface fl ow (full inertia) with the 

two-dimensional (horizontal) Boussinsq equation for ground-

water fl ow in an unconfi ned aquifer. Th e coupling between the 

submodels here is horizontal (i.e., there is no location where verti-

cal coupling occurs).

Erosion and Sediment Transport Models

Modeling erosion and sediment transport is closely related to 

surface fl ow. Th e detachment of soil particles from the soil body 

can occur via two diff erent mechanisms. Th e fi rst is related to 

drag forces between the surface water and the soil surface. Th ese 

forces are highly aff ected by water velocity. Th e second mecha-

nism is related to water seepage and typically occurs in regions 

of high surface curvature.

Th e fi rst mechanism is highly related to both the creation 

and mobility of eroded materials, while the second may be related 

more closely to the creation of the materials. For this reason (and 

for higher complexity in modeling), greater emphasis has typically 

been given to the overland fl ow than to the subsurface fl ow, where 

the subsurface fl ow is typically considered only as a means to 

make the surface component more accurate. Several surface fl ow 

models were developed with the specifi c goal of modeling erosion 

processes. A comprehensive review of these models can be found 

in Aksoy and Kavvas (2005). Here we present two examples: 

the Water Erosion Prediction Project (Lane and Nearing, 1989; 

Savabi, 1993) used the one-dimensional kinematic wave formu-

lation uncoupled with the Green and Ampt (1911) solution for 

infi ltration; the KINEROS (Smith et al., 1995; Woolhiser et al., 

1990) combines a one-dimensional kinematic wave formulation 

with a more complex subsurface algebraic equation.

Groundwater Models

Direct groundwater interaction with surface water was dis-

cussed above in the context of the MODFLOW code. In general, 

surface water is considered groundwater’s upper boundary condi-

tion; however, as groundwater is often modeled as a horizontal 

two-dimensional system, interaction with surface water becomes 

a source term in the governing equation.

Th e way boundary conditions (or source terms) related to 

surface water are modeled depends primarily on the vertical dis-

tance between surface water and groundwater, and the type of 

fl ow between them (i.e., whether there is a full saturation regime 

or not). In the latter case, obviously the vadose zone needs to be 

modeled to preserve the physical nature of the problem. Th is is 

not always the case, however, and very often (see MODFLOW 

above for examples) a simple empirical fi rst-order diff erence 

equation is used to model the fl ow, in most cases without any 

consideration of temporal delays.

In the second case, surface–subsurface interaction is mod-

eled in a manner somewhat closer to physics. Even in the simple 

MODFLOW interactions (RIV and LAK modules), a retarding 

layer (riverbed) is considered. Hunt et al. (2003) and Sophocleous 

(2002) discussed several ways that lake–groundwater is modeled, 

from the groundwater model point of view. In general, there are 

three ways to approach lake–groundwater interaction: (i) through 

a prescribed head boundary condition; (ii) through defi nition of 

the lake as a high-conductivity (and high-storage) zone; (iii) by 

coupling its mass balance equation with the groundwater system 

(as done in the LAK MODFLOW packages). Th eoretically, the 
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second option means that the surface system is solved in a cou-

pled way; however, as Darcy’s law is used (and not the actual 

hydrodynamics) this is meaningless.

Langevin et al. (2005) combined the two-dimensional full 

inertia model with the three-dimensional anisotropic ground-

water fl ow equation for a wetland (the southern Everglades of 

Florida). Coupling, however, was based on lagging so that previ-

ous time step solutions for the subsurface system could act as 

boundary conditions for the surface one.

Th e analytic element method (for basics and applications 

of the method, see, e.g., Strack, 1989, 2003; Haitjema, 1985) is 

often used for combined surface–groundwater interactions. In 

most (if not all) cases, however, the surface system is treated as 

prescribed (see, e.g., Bakker, 2007).

Other Models

Th ere are several important applications of surface–subsur-

face coupled fl ow that do not fall under the discussions above.

“Th e EPA Storm Water Management Model (SWMM) is a 

dynamic rainfall–runoff  simulation model used for single event or 

long-term (continuous) simulation of runoff  quantity and quality 

from primarily urban areas” (USEPA, 2005). Th is model uses 

Manning’s equation to compute fl ow in conduits. Th at is, steady 

fl ow conditions are assumed. Th e SWMM model is a hydrau-

lic model and coupling with the subsurface is allowed through 

simplifi ed infi ltration. Th ree infi ltration models are available: 

Horton (1933) infi ltration, Soil Conservation Service (1971) 

curve number abstraction, and Green and Ampt (1911).

Kouznetsov et al. (2007) combined the one-dimensional 

full inertia with the three-dimensional Richards equation (using 

FEMWATER for the subsurface) to investigate bacteria transport 

above and below the surface.

Coupling Error Es  ma  on
Diff erent coupling methods are subject to diff erent errors; 

however, since diff erent error patterns are also associated with 

the numerical schemes used to solve the surface and subsurface 

components, it is practically impossible to attribute error to the 

coupling method. Without intensively investigating the numeri-

cal schemes, several points associated directly or indirectly with 

the numerical coupling of surface and subsurface modules can 

be highlighted.

First, we refer to the “uncoupled” coupling group. Th is group 

includes full solution of the governing PDE (i.e., Saint-Venant or 

one of its simplifi cations for the surface and the Richards equation 

for the subsurface). As iterations are avoided, however, very often 

a specifi c water level (often of zero depth) is used as a boundary 

condition for the subsurface at times when the surface is fl ooded. 

Using a fi xed level regardless of the specifi c event causes error in 

the estimation of the boundary fl uxes. At the same time, the sur-

face component is computed using a biased infi ltration (typically 

a value from a previous time step is used).

Th e error associated with the fi xed boundary condition was 

investigated by several researchers. Wallach et al. (1997) com-

pared infi ltration using a one-dimensional numerical solution of 

Richards’ equation considering water depths (determined from 

a one-dimensional kinematic wave model) and considering zero 

level depth. Wallach et al. (1997) bounded the infi ltration error 

for three diff erent cases by roughly 5%. Th e error in water level 

(found by considering the correct or approximated infi ltration) 

is bounded by 1.2%, except for locations where the diff erence 

in infi ltration means that the surface may get dry (e.g., near the 

fl ow tip).

Warrick et al. (2005) examined the error in infi ltration when 

considering a constant (temporally averaged and spatially–tempo-

rally averaged) water depth compared with a variable one. Th ey 

also examined the zero-depth option. Warrick et al. (2005) used 

actual fi eld data (water levels from border and basin irrigation 

experiments) and computed the infi ltration by the Green and 

Ampt (1911) infi ltration function (but also verifi ed the approach 

using a numerical solution of the Richards equation). Th ey con-

cluded that the error in infi ltration is highest for the zero-depth 

assumption (bounded by roughly 15% for the cumulative event 

infi ltration) and lower for the spatially–temporally averaged depth 

(roughly 7%) and the temporally averaged depth (2%). Note, 

however, that the maximal relative error is roughly at the end 

of the advance phase. Furman et al. (2006) examined the error 

associated with using Kostiakov parameters in an event that is 

diff erent than the calibration event. Th ey found errors similar to 

those found by Warrick et al. (2005) and suggested a simple cor-

rection method that can theoretically reduce most of the error.

Side Aspects: State-Dependent 
Boundary Condi  ons

System-dependent boundary conditions are a side aspect that 

relate to the coupling of surface and subsurface fl ow systems. Th at 

is, boundary conditions that cannot be treated as prescribed but 

depend on the state of the modeled system. Such boundaries 

frequently occur when two systems are naturally coupled but the 

modeler tries to avoid the need to model a fully coupled system.

Here are several examples where such boundary conditions 

are used. Šimůnek et al. (2005) included three diff erent bound-

ary conditions in the framework of the HYDRUS-1D program: (i) 

evaporative fl uxes that depend on soil surface wetness; (ii) buildup 

of water on top of the surface due to the soil’s inability (due to low 

hydraulic conductivity) to pass fl ux; and (iii) seepage face—a bound-

ary condition that changes its nature (from no fl ow to prescribed 

head) depending on the solution. Some of these boundary condi-

tions were also embedded in the other models of the HYDRUS 

family (see www.pc-progress.cz; verifi ed 30 Mar. 2008).

Furthermore, in most watershed applications there is a time 

when infi ltration capacity becomes smaller than the quantity of 

applied water. At that temporal point, the boundary condition for 

the subsurface governing equation needs to be switched (typically 

from second [prescribed fl ux] type to fi rst [prescribed head] type). 

Th e same problem occurs in surface irrigation, at the time when 

the surging wave arrives at a location. Boundary conditions need 

to be switched from no fl ow to prescribed head. At the recession 

phase of irrigation, the reverse process happens. When including 

the furrow shape (e.g., FIM, Wöhling et al., 2006; Furman and 

Zerihun, unpublished data, 2004), nodes of the boundary need 

to be switched according to the water level in the furrow. Th at 

is, the type of the boundary condition needs to be changed from 

prescribed head to prescribed fl ux, and vice versa. Th is switching 

often causes numerical diffi  culties that need to be addressed (Jirka 

Šimůnek, personal communication, 2006). In FIM (Wöhling et 

al., 2006), numerical instabilities were overcome by an effi  cient 

second-order convergent iterative solution. A wide range of 
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system-dependent boundary conditions were embedded in the 

HYDRUS (2D/3D) code (Šimůnek et al., 2006).

Discussion and Conclusions
In the literature presented above, there is not yet a full con-

sensus regarding the right mathematical formulation for interfacial 

boundary conditions. Several of the alternatives provided in the 

literature were presented. It is clear, however, that conservation 

both of mass and of momentum need to be addressed. While 

the conservation of mass is simple to formulate (see Eq. [16]), 

the conservation of momentum is not. It is possible that some of 

the discrepancies result from the inherent problem of defi ning 

a sharp boundary to an averaged based (continuum approach) 

system such as the subsurface system, which leads to a diff erence 

between observations and theory.

Regardless of the discrepancy in the formulation of momen-

tum across the free surface–porous medium interface, momentum 

transfer is generally ignored in practice. Th is is because most of 

the formulations for water fl ow over a porous medium consider 

the depth-averaged formulation of the Navier–Stokes equations 

that lead to the Saint-Venant equations (Eq. [1] and [2]), with 

no momentum transfer component across the lower boundary 

(a sink–source term in the depth-averaged formulation). While 

for large-scale applications (e.g., watersheds), this seems to be a 

more than reasonable approximation (as large spatial and tem-

poral scales allow smooth averaging), it may be less accurate 

for small-scale applications. For example, in surface irrigation 

(or in surge fl ow in desert rivers), it is clear that the tip of the 

advancing water is experiencing more complex physics than the 

already-wetted locations along the water path. Furthermore, as 

calibration of these models is often performed based on the tem-

poral behavior of the tip (see, e.g., Zerihun et al., 2005b), it is 

clear that ignoring the momentum transfer may lead to inherent 

error. In fact, only a single application (Bradford and Katopodes, 

1998) was found of a coupled surface–subsurface process that 

includes vertical components. Of the diff erent aspects of the cou-

pled surface–subsurface fl ow covered here, this is believed to be 

the one that needs the most attention in research. It is important 

to note, however, that higher accuracy of models can probably 

be achieved through tackling the problems associated with the 

diff erent components, e.g., inclusion of surface microtopography 

or subsurface heterogeneity.

Earlier applications of surface–subsurface interactions 

focused mostly on the surface component, embedding the sub-

surface as a simple, typically empirical, algebraic equation for the 

infi ltration. Recent years have seen a systematically increasing 

number of models with higher level coupling, starting with lagged 

solutions and later iterative solutions. While computational eff ort 

becomes more and more signifi cant, both the accuracy and the 

applicability of the solutions increase. Th is is especially true for 

surface irrigation methods, where until recently the subsurface 

distribution of water (and nutrients) was not considered at all, 

while the purpose of irrigation is to bring it to the root zone.

Very recent years have seen several applications of fully cou-

pled processes (i.e., solution of both the surface and the subsurface 

components as one system), led by VanderKwaak (1999) and 

Panday and Huyakorn (2004). While this is a big step forward, 

primarily in terms of robustness, it is not yet clear if the coupled 

formulation is benefi cial in terms of accuracy and computational 

eff ort. In a discrete numerical world, the tradeoff  is between exter-

nal and internal iterations (in terms of computational eff ort) and 

between convergence criteria and numerical errors (in terms of 

accuracy). It is assumed that in the near future these models will 

also penetrate the fi eld of surface irrigation.

Appendix
For completeness, a formulation by Bradford and Katopodes, 

1998) of the surface fl ow governing equations for a vertical two-

dimensional case is presented:
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where (mostly consistent with the original notation) p [M L−1 

T−2] is pressure, ρ [M L−3] is the water density, and gx and gz 

[L T−2] are components of the gravity force (due to the slope of 

the channel) in the x- and z-coordinate directions, respectively 

(z [L] is the vertical coordinate). Th e term k [L2 T−2] here is the 

turbulent kinetic energy and ν [L2 T−1] here is the eddy viscos-

ity given by ν = Cμk2/ε, where ε [L2 T−3] is the rate of kinetic 

energy dissipation and Cμ  is a dimensionless empirical coeffi  cient. 

Th e solution of this equation requires solution of k − ε diff usion-

like equations that will not be discussed here. See Bradford and 

Katopodes (1998) and Rodi (1980) for further detail.
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