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Abstract

This paper studies optimal bandwidth and power allocation in a cognitive radio network where

multiple secondary users (SUs) share the licensed spectrumof a primary user (PU) under fading channels

using the frequency division multiple access scheme. The sum ergodic capacity of all the SUs is taken

as the performance metric of the network. Besides all combinations of the peak/average transmit power

constraints at the SUs and the peak/average interference power constraint imposed by the PU, total

bandwidth constraint of the licensed spectrum is also takeninto account. Optimal bandwidth allocation

is derived in closed-form for any given power allocation. The structures of optimal power allocations are

also derived under all possible combinations of the aforementioned power constraints. These structures

indicate the possible numbers of users that transmit at nonzero power but below their corresponding

peak powers, and show that other users do not transmit or transmit at their corresponding peak power.

Based on these structures, efficient algorithms are developed for finding the optimal power allocations.
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I. INTRODUCTION

Cognitive radio is a promising technology for improving spectrum utilization in wireless

communications systems [1]. A secondary user (SU) in a cognitive radio network is allowed to

access the licensed spectrum allocated to a primary user (PU) if the spectrum is not utilized by the

PU. Such a spectrum sharing strategy, which is referred to asspectrum overlayor opportunistic

spectrum access(OSA) [2], requires correct detection of spectrum opportunities by the SU.

Existing works on spectrum overlay have mainly studied spectrum sensing and access policies

at the medium access control (MAC) layer [3]- [6]. An alternative strategy, which is known as

spectrum underlay[7]– [12], enables the PU and the SU to transmit simultaneously, provided

that the received interference power by the PU is below a prescribed threshold level. A number

of works have recently studied information theoretic limits for resource allocation in the context

of spectrum underlay.

In [13], the optimal power allocation which aims at maximizing the ergodic capacity achieved

by an SU is derived for various channel fading models subjectto the peak interference power

(PIP) constraint or average interference power (AIP) constraint imposed by a PU. In [14],

the authors derive the optimal power allocation for the ergodic capacity, outage capacity, and

minimum-rate capacity of an SU under both the PIP and AIP constraints from a PU. The ergodic

capacity, delay-limited capacity, and outage capacity of an SU is studied in [15] under different

combinations of the peak transmit power (PTP) constraint oraverage transmit power (ATP)

constraint at the SU and the PIP constraint or AIP constraintfrom a PU. However, all the

papers mentioned above consider the setup of a single SU. Themost recent work [16] studies

a cognitive radio network of multiple SUs under multiple access channel and broadcast channel

models, where the optimal power allocation is derived to achieve the maximum sum ergodic

capacity of the SUs subject to various mixed transmit and interference power constraints. The

optimality conditions for the dynamic time division multiple access scheme are also derived.

In this paper, we focus on a cognitive radio network where multiple SUs share the licensed

spectrum of a PU using the frequency division multiple access (FDMA) scheme. The sum ergodic

capacity of the SUs, which is a relevant network performancemetric for delay-tolerant traffics, is

studied. Besides the transmit power constraints at the SUs and the interference power constraint

imposed by the PU, which are also considered in [13]- [16], wealso take into account the total
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bandwidth constraint of the shared spectrum. Such study is motivated by the fact observed for

a number of different applications that joint bandwidth andpower allocation can significantly

improve the performance of systems with limited both individual (power) and public (bandwidth)

resources [17]– [23]. Thus, in this paper, instead of conventional fixed and equal bandwidth

allocation used in FDMA, we investigate dynamic and unequalbandwidth allocation, where

the bandwidth allocation varies for different SUs at different channel fading states. Moreover,

different from the existing works [13]- [16], all combinations of the transmit power constraints

and the interference power constraints are considered, including both PTP and ATP constraints

combined with both PIP and AIP constraints.

We first derive the optimal bandwidth allocation for any given power allocation in any channel

fading state, which results in equivalent problems that only involve power allocation. Using

the convexity of the resultant power allocation problems, we apply dual decomposition which

transforms these problems into equivalent dual problems, where each dual function involves a

power allocation subproblem associated with a specific channel fading state. The dual problems

can be solved using standard subgradient algorithms. For the power allocation subproblem

under all combinations of the power constraints, we derive the structures of the optimal power

allocations. These structures indicate the possible numbers of users that transmit at nonzero

power but below their corresponding peak powers, and show that other users do not transmit or

transmit at their corresponding peak power. Based on these structures, we develop algorithms

for finding the optimal power allocations in each channel fading state.

The rest of the paper is organized as follows. Section II summarizes the system model and

formulates corresponding sum ergodic capacity maximization problems. Section III derives the

optimal bandwidth allocation for the problems formulated in Section II subject to the bandwidth

constraint. Section IV obtains the optimal power allocations from the resultant problems in

Section III under all combinations of the transmit power constraints and interference power

constraints. Numerical results for the maximum sum ergodiccapacity under different combina-

tions of the power constraints and the bandwidth constraintare shown in Section V. Section VI

concludes the paper.
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II. SYSTEM MODEL

Consider a cognitive radio network ofN SUs and one PU. The PU occupies a spectrum of

bandwidthW for its transmission, while the same spectrum is shared by the SUs. The spectrum

is assumed to be divided into distinct and nonoverlapping flat fading channels with different

bandwidth, so that the SUs share the spectrum through FDMA toavoid interferences with each

other. The channel power gains between theith SU transmitter (SU-Tx) and theith SU receiver

(SU-Rx) and between theith SU-Tx and the PU receiver (PU-Rx) are denoted byhi and gi,

respectively. The channel power gains, i.e.,g , [g1 g2 · · · gN ] andh , [h1 h2 · · · hN ], are

assumed to be drawn from an ergodic and stationary vector random process. We further assume

that full channel state information (CSI), i.e., the joint probability density function (PDF) of the

channel power gains and the instantaneous channel power gains, are known at the SUs.1 The

noise at each SU-Rx plus the interference from the PU transmitter (PU-Tx) is assumed to be

additive white Gaussian noise (AWGN) with unit power spectral density (PSD).

We denote the transmit power of theith SU-Tx and the channel bandwidth allocated to the

ith SU-Tx aspi(g,h) andwi(h, g), respectively, for the instantaneous channel power gainsg

andh. Then the total bandwidth constraint can be expressed as

N
∑

i=1

wi(h, g) ≤ W, ∀ h, g. (1)

The PTP constraints are given by

pi(h, g) ≤ P pk
i , ∀ i,h, g (2)

whereP pk
i denotes the maximum peak transmit power of theith SU-Tx. The PIP constraint is

given by
N
∑

i=1

gipi(h, g) ≤ Qpk, ∀ h, g (3)

where Qpk denotes the maximum peak interference power allowed at the PU-Rx. The ATP

constraints are given by

E{pi(h, g)} ≤ P av
i , ∀ i (4)

1Note that the full CSI assumption is typical in the context ofcognitive radio and is also made in other works such as [13]-

[16]. Indeed, under this assumption we aim at investigatingthe information-theoretic limits on the sum ergodic capacity.
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where the expectation is taken overh andg, andP av
i denotes the maximum average transmit

power of theith SU-Tx. The AIP constraint is given by

E

{

N
∑

i=1

gipi(h, g)

}

≤ Qav (5)

whereQav denotes the maximum average interference power allowed at the PU-Rx.

The objective is to maximize the sum ergodic capacity of the SUs, which can be written as

max
{wi(h,g),pi(h,g)}∈F

E

{

N
∑

i=1

wi(h, g) log

(

1 +
hipi(h, g)

wi(h, g)

)

}

(6)

whereF is a feasible set specified by the bandwidth constraints (1) and a particular combination

of the transmit power constraints{(2), (4)} and the interference power constraints{(3), (5)}. Note

that the constraints on nonnegativity of the bandwidth and power allocations, i.e.,wi(h, g) ≥ 0

andpi(h, g) ≥ 0, ∀i,h, g, are natural and, thus, omitted through out the paper for brevity.

It can be shown that the objective function of the problem (6)is concave with respect to

{wi(h, g), pi(h, g)}, ∀i,h, g. It can also be seen that the bandwidth and power constraints(1)–

(5) are linear and, thus, convex. Therefore, the sum ergodiccapacity maximization problem (6)

under different combinations of the constraints (1)–(5) isa convex optimization problem.

III. OPTIMAL BANDWIDTH ALLOCATION

Given that the power allocationpi(h, g), ∀i,h, g, is fixed, the maximum sum ergodic capacity

can be expressed as E{f0(h, g)}, wheref0(h, g) is given by

f0(h, g) , max
{wi(h,g)}

N
∑

i=1

Gi (wi(h, g)) (7a)

s.t.
N
∑

i=1

wi(h, g) ≤ W (7b)

(7c)

whereGi(wi(h, g)) , wi(h, g) log (1 + hipi(h, g)/wi(h, g)) is an increasing and concave func-

tion of wi(h, g). The problem (7a)–(7b) is similar to the classical water-filling power allocation

problem. Thus, the optimal solution of the problem (7a)–(7b), denoted by{w′
i(h, g)}, must

satisfy
∂Gi(wi(h, g))

∂wi(h, g)

∣

∣

∣

∣

wi(h,g)=w′
i(h,g)

=
∂Gj(wj(h, g))

∂wj(h, g)

∣

∣

∣

∣

wj(h,g)=w′
j (h,g)

, ∀ i 6= j. (8)
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Since we have
∂Gi(wi(h, g))

∂wi(h, g)

∣

∣

∣

∣

wi(h,g)=w′
i
(h,g)

= log

(

1+
hipi(h, g)

w′
i(h, g)

)

−
hipi(h, g)

w′
i(h, g)+hipi(h, g)

=Y

(

hipi(h, g)

w′
i(h, g)

)

(9)

whereY (x) , log(1 + x) − x/(1 + x) is a monotonically increasing function, we can obtain

from (8) that
hipi(h, g)

w′
i(h, g)

=
hjpj(h, g)

w′
j(h, g)

, ∀ i 6= j (10)

It follows from (7b) that at optimality we have
∑N

i=1w
′
i(h, g) = W . Furthermore, using (10),

we can obtain that

w′
i(h, g) = W

hipi(h, g)
∑N

i=1 hipi(h, g)
. (11)

Substituting the optimalwi(h, g) given by (11) into (6), we can equivalently rewrite (6) as

max
{pi(h,g)}∈F ′

E

{

W log

(

1 +

∑N
i=1 hipi(h, g)

W

)}

(12)

whereF ′ is a feasible set specified only by a particular combination of the power constraints

{(2), (3), (4), (5)}. Therefore, the optimal power allocation obtained from theproblem (6) and

denoted by{p∗i (h, g)}, can also be obtained by solving the equivalent problem (12). Then the

optimal bandwidth allocation obtained from the problem (6)and denoted by{w∗
i (h, g)}, can be

found as

w∗
i (h, g) = W

hip
∗
i (h, g)

∑N
i=1 hip

∗
i (h, g)

. (13)

IV. OPTIMAL POWER ALLOCATION

In this section, we study the optimal power allocation obtained from the problem (12) with

F ′ specified by different combinations of the power constraints.

A. Peak transmit power with peak interference power constraints

ConsiderF ′ = {the constraints (2) and (3)}. Then the optimal value of the problem (12) can

be expressed as E{f1(h, g)}, wheref1(h, g) is given by

f1(h, g) , max
{pi(h,g)}

W log

(

1 +

∑N
i=1 hipi(h, g)

W

)

(14a)

s.t. pi(h, g) ≤ P pk
i , ∀ i (14b)

N
∑

i=1

gipi(h, g) ≤ Qpk. (14c)

June 29, 2010 DRAFT
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For brevity, we drop the dependence onh andg that specifies instantaneous channel power gains.

Also let {p∗i } denote the optimal solution of the problem (14a)–(14c). Introducingqi , gipi, the

problem (14a)–(14c) can be equivalently rewritten as

max
{qi}

N
∑

i=1

hi

gi
qi (15a)

s.t. qi ≤ giP
pk
i , ∀ i (15b)

N
∑

i=1

qi ≤ Qpk. (15c)

Let {q∗i } denote the optimal solution of the problem (15a)–(15c) and(s1, s2, · · · , sN) denote

a permutation of the SU indexes such thaths1/gs1 > hs2/gs2 > · · · > hsN/gsN . It is assumed

thathi/gi 6= hj/gj, ∀i 6= j, sincehi, gi, hj , andgj are drawn from a continuous-valued random

process. Then the following lemma is in order.

Lemma 1: There existsk, 1 ≤ k ≤ N , such thatq∗si = gsiP
pk
si

, ∀i, 1 ≤ i ≤ k − 1, 0 < q∗sk ≤

gskP
pk
sk

, and q∗si = 0, ∀i, k + 1 ≤ i ≤ N .

Proof: Let q∗sj > 0 for somej and letl < j for somel. First we prove thatq∗sl = gslP
pk
sl

by

contradiction. Ifq∗sl < gslP
pk
sl

, then we can always find∆q > 0 and define a feasible solution

{q′si} of the problem (15a)–(15c)q′sj , q∗sj −∆q, q′sl , q∗sl +∆q, q′si , q∗si, ∀i, i 6= j, i 6= l such

that the objective function in (15a) achieves larger value for {q′si} than for the optimal solution

{q∗i }, since we have

N
∑

i=1

hsi

gsi
q′si −

N
∑

i=1

hsi

gsi
q∗si =

(

hsl

gsl
−

hsj

gsj

)

∆q > 0. (16)

Therefore, it contradicts the fact that{q∗si} is the optimal solution of the problem (15a)–(15c).

Let q∗sj < gsjP
pk
sj

for somej and letl > j for somel. Using the result obtained above, it can

be proved also by contradiction thatq∗sl = 0. This completes the proof. �

Lemma 1 shows that for the optimal power allocation under theconstraints (2) and (3), there

exists at most one user that transmits at nonzero power and below its peak power, while any

other user either does not transmit or transmits at its peak power.

Note that either the constraints (15b) or the constraint (15c) must be active at optimality.

Using the structure of{q∗i } given in Lemma 1,k can be found by Algorithm 1.

June 29, 2010 DRAFT
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Algorithm 1 Algorithm for finding k in Lemma 1
Initialize: k = 1

while
∑k

i=1 gsiP
pk
si

< Qpk andk ≤ N − 1 do

k = k + 1

end while

Output: k

Sincep∗si = q∗si/gsi, we obtain

p∗si =



















P pk
si
, 1 ≤ i ≤ k − 1

min{P pk
si
, (Qpk −

∑k−1
i=1 gsiP

pk
si
)/gsi}, i = k

0, k + 1 ≤ i ≤ N.

(17)

Note that for brevity, we say in this paper that
∑n

i=1 xi = 0 if n = 0 with a little abuse of

notation.

B. Average transmit power with average interference power constraints

ConsiderF ′ = {the constraints (4) and (5)}. Then the dual function of the problem (12) can

be written as

f2({λi}, µ) , E{f ′
2(h, g)}+

N
∑

i=1

λiP
av
i + µQav (18)

where{λi|1 ≤ i ≤ N} andµ are the nonnegative dual variables associated with the correspond-

ing constraints in (4) and (5) andf ′
2(h, g) is given by

f ′
2(h, g) , max

{pi(h,g)}
W log

(

1 +

∑N
i=1 hipi(h, g)

W

)

−
N
∑

i=1

γipi(h, g) (19)

with γi , λi + µgi. Let {p∗i } denote the optimal solution of the problem (19), where we drop

the dependence onh andg for brevity. Also letF ({pi}) denote the objective function in (19).

If p∗i > 0 for somei, the following must hold

∂F ({pi})

∂pi

∣

∣

∣

∣

{pi}={p∗i }

=
hi

1 +
∑N

i=1 hip∗i /W
− γi = 0. (20)

Then the following lemma is of interest.

Lemma 2: If hi ≤ γi for somei, thenp∗i = 0.

June 29, 2010 DRAFT
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Proof: If p∗j = 0, ∀j, thenp∗i = 0. If p∗j 6= 0 for somej, it can be seen that (20) can not be

satisfied sincehi ≤ γi. Thus,p∗i = 0. �

If p∗i = 0 for somei, the following must hold

∂F ({pi})

∂pi

∣

∣

∣

∣

{pi}={p∗i }

=
hi

1 +
∑N

i=1 hip
∗
i /W

− γi ≤ 0. (21)

Then the next lemma is in order.

Lemma 3: p∗i = 0, ∀i, if and only ifhi ≤ γi, ∀i.

Proof: It can be seen from Lemma 2 that ifhi ≤ γi, ∀i, thenp∗i = 0, ∀i. Moreover, it can

be seen from (21) that ifp∗i = 0, ∀i, thenhi ≤ γi, ∀i. �

Let (s1, s2, · · · , sN) denote a permutation of the SU indexes such thaths1/γs1 > hs2/γs2 >

· · · > hsN/γsN . Then we can also prove the following lemma.

Lemma 4: There exists at most onek such thatp∗k > 0. Moreover,k = s1.

Proof: We prove it by contradiction. It can be seen from (20) that ifp∗i > 0 andp∗j > 0 for

somei 6= j, the following must hold
hi

γi
=

hj

γj
. (22)

Sincehi, γi, hj , andγj are independent constants given in the problem (19), (22) can not be

satisfied. Letp∗k > 0 andp∗i = 0, ∀i, i 6= k. Then it follows from (20) and (21) that the following

must hold
hk

γk
≥

hi

γi
, ∀ i 6= k. (23)

Therefore, we must havek = s1. �

Lemma 4 shows that for the optimal power allocation under theconstraints (4) and (5), there

exists at most one user that transmits at nonzero power, while any other user does not transmit.

Case 1: Consider the case whenhi ≤ γi, ∀i. It follows from Lemma 3 thatp∗i = 0, ∀i.

Case 2: Consider the case whenhi ≤ γi does not hold for somei. Using Lemma 4, let

p∗k > 0 and p∗i = 0, ∀i, i 6= k. Substituting{p∗i } into (20), we havep∗s1 = W (1/γs1 − 1/hs1).

Therefore, we obtain

p∗si =







W (1/ (λs1 + µgs1)− 1/hs1) , i = 1

0, 2 ≤ i ≤ N.
(24)
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C. Peak transmit power with average interference power constraints

ConsiderF ′ = {the constraints (2) and (5)}. Then the dual function of the problem (12) can

be written as

f3(µ) , E{f ′
3(h, g)}+ µQav (25)

whereµ is the nonnegative dual variable associated with the constraint (5), andf ′
3(h, g) is given

by

f ′
3(h, g) , max

{pi(h,g)}
W log

(

1 +

∑N
i=1 hipi(h, g)

W

)

− µ
N
∑

i=1

gipi(h, g) (26a)

s.t. pi(h, g) ≤ P pk
i , ∀ i. (26b)

Let {p∗i } denote the optimal solution of the problem (26a)–(26b) after dropping the dependence

on h andg for brevity. The following cases are of interest.

Case 1: Consider the case whenhi ≤ µgi, ∀i. Since the problem (26a)–(26b) without the

constraints (26b) has the same form as the problem (19), andpi = 0, ∀i, satisfies the constraint

(26b), it can be seen from Lemma 3 thatp∗i = 0, ∀i.

Case 2: Consider the case whenhi ≤ µgi does not hold for somei. The problem (26a)–(26b)

is equivalent to

max
{qi}

W log

(

1 +

∑N
i=1 hiqi/µgi

W

)

−
N
∑

i=1

qi (27a)

s.t. qi ≤ µgiP
pk
i , ∀ i (27b)

where qi , µgipi. Let {q∗i } denote the optimal solution of the problem (27a)–(27b) and

(s1, s2, · · · , sN) denote a permutation of the SU indexes such thaths1/µgs1 > hs2/µgs2 > · · · >

hsN/µgsN . Then the following lemma is in order.

Lemma 5: There existsk, 1 ≤ k ≤ N , such thatq∗si = gsiP
pk
si

, ∀i, 1 ≤ i ≤ k − 1, 0 < q∗sk ≤

gskP
pk
sk

, and q∗si = 0, ∀i, k + 1 ≤ i ≤ N .

Proof: Consider the following intermediate problem

max
{qi}

N
∑

i=1

hi

µgi
qi (28a)

s.t. qi ≤ µgiP
pk
i , ∀ i (28b)

N
∑

i=1

qi = Q (28c)
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whereQ ,
∑N

i=1 q
∗
i and it is unknown since{q∗i } is unknown. Let{q′i} denote the optimal

solution of the problem (28a)–(28c). If{q′i} 6= {q∗i }, we have
∑N

i=1 hiq
′
i/µgi ≥

∑N
i=1 hiq

∗
i /µgi

since{q∗i } is a feasible solution of the problem (28a)–(28c). Then we have

F ({q′i})− F ({q∗i }) = W log

(

1 +

∑N
i=1 hiq

′
i/µgi

W

)

−W log

(

1 +

∑N
i=1 hiq

∗
i /µgi

W

)

≥ 0 (29)

whereF ({qi}) denotes the objective function in the problem (27a)–(27b).Since{q′i} is a feasible

solution of the problem (27a)–(27b), it contradicts the fact that {q∗i } is the optimal solution of

the problem (27a)–(27b). Therefore, it must be true that{q′i} = {q∗i }.

It can be seen from the constraints (27b) that
∑N

i=1 q
′
i =

∑N
i=1 q

∗
i = Q ≤

∑N
i=1 µgiP

pk
i . Then

the problem (28a)–(28c) is equivalent to the following problem

max
{qi}

N
∑

i=1

hi

µgi
qi (30a)

s.t. qi ≤ µgiP
pk
i , ∀ i (30b)

N
∑

i=1

qi ≤ Q (30c)

since the constraint (30c) is active at optimality. Therefore, the problem (27a)–(27b) is equivalent

to the problem (30a)–(30c). Since the problem (30a)–(30c) is similar to the problem (15a)–(15c)

in Section IV-A, we conclude that{q∗i } has the same structure as that given in Lemma 1.�

The result of Lemma 5 is similar to that of Lemma 1. Specifically, it shows that for the optimal

power allocation under the constraints (2) and (5), there exists at most one user that transmits

at nonzero power and below its peak power, while any other user either does not transmit or

transmits at its peak power.

Using Lemma 5, letq∗si = µgsiP
pk
si

, ∀i, 1 ≤ i ≤ k − 1, 0 < q∗sk ≤ µgsiP
pk
si

, and q∗si = 0, ∀i,

k + 1 ≤ i ≤ N . Then we only need to findk andq∗sk to determine{q∗i }.

Consider the case when0 < q∗sk < µgskP
pk
sk

, 1 ≤ k ≤ N . Then the following must be true

∂H(qsk)

∂qsk

∣

∣

∣

∣

qsk=q∗sk

=
hsk/µgsk

1 +
(

∑N
i=1,i 6=k hsiq

∗
si
/µgsi + hskq

∗
sk
/µgsk

)

/W
− 1 = 0 (31)

where

H(qsk) , W log

(

1 +

∑N
i=1,i 6=k hsiq

∗
si
/µgsi + hskqsk/µgsk
W

)

−
N
∑

i=1,i 6=k

q∗si − qsk . (32)
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Substituting{q∗si} into (31), we obtainq∗sk = W (1 − µgsk/hsk)− µgsk
∑k−1

i=1 hsiP
pk
si
/hsk . Since

q∗sk must satisfy0 < q∗sk < µgsiP
pk
si

, it must be true that

k−1
∑

i=1

hsiP
pk
si

< W

(

hsk

µgsk
− 1

)

<
k
∑

i=1

hsiP
pk
si
. (33)

Consider the case whenq∗sk = µgskP
pk
sk

, 1 ≤ k ≤ N − 1. Then the following must hold

∂H(qsk)

∂qsk

∣

∣

∣

∣

qsk=q∗sk

=
hsk/µgsk

1 +
(

∑N
i=1,i 6=k hsiq

∗
si
/µgsi + hskq

∗
sk
/µgsk

)

/W
− 1 ≥ 0 (34)

and

∂H(qsk+1
)

∂qsk+1

∣

∣

∣

∣

qsk+1
=q∗sk+1

=
hsk+1

/µgsk+1

1 +
(

∑N
i=1,i 6=k+1 hsiq

∗
si
/µgsi + hsk+1

q∗sk+1
/µgsk+1

)

/W
− 1 ≤ 0. (35)

Substituting{q∗i } into (34) and (35), we obtain

W

(

hsk+1

µgsk+1

− 1

)

≤
k
∑

i=1

hsiP
pk
si

≤ W

(

hsk

µgsk
− 1

)

, 1 ≤ k ≤ N − 1. (36)

If q∗sk = µgskP
pk
sk

, k = N , then only (34) must be true and it follows that

k
∑

i=1

hsiP
pk
si

≤ W

(

hsk

µgsk
− 1

)

, k = N. (37)

Lemma 6: There exists only one set of values for{q∗i } that satisfies only one of the necessary

conditions(31), (34) or (35).

Proof: It is equivalent to prove that there exists only onek that satisfies only one of (33),

(36) or (37). LetLj ,
∑j

i=1 hsiP
pk
si

andMj , W (hsj/µgsj − 1) for brevity. Then it must be

true thatL0 < L1 < · · · < LN , M1 > M2 > · · · > MN andL0 < M1. It can be seen that if (37)

holds, i.e., ifLi < Mi, ∀i, 1 ≤ i ≤ N , then (33) and (36) do not hold.

If (37) does not hold, then these exists suchl thatLi < Mi, ∀i, 1 ≤ i ≤ l − 1 andLi > Mi,

∀i, 1 ≤ i ≤ N . The following two cases should be considered. (i) IfLl−1 < Ml < Ll, (33)

holds fork = l. SinceLi < Mi, ∀i, 1 ≤ i ≤ l − 1, (33) does not hold fork < l as well. Since

Mi < Ml < Ll ≤ Li−1, ∀i, l + 1 ≤ i, (33) does not hold fork > l. SinceLi < Li+1 < Mi+1,

∀i, 1 ≤ i ≤ l − 2, (36) does not hold fork < l − 1. SinceLl−1 < Ml, (36) does not hold also

for k = l − 1. Moreover, sinceMi < Li, ∀i, l ≤ i, (36) does not hold fork > l − 1. Therefore,

only (33) holds for onlyk = l. (ii) If Ml < Ll−1 < Ml−1, (36) holds fork = l − 1. Similar to

the case (i), it can be proved that only (36) holds for onlyk = l − 1. �
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Algorithm 2 Algorithm for finding k in Lemma 5
Initialize: k = 0, c = 0

while c = 0 do

k = k + 1

if
∑k−1

i=1 hsiP
pk
si

< W (hsk/µgsk − 1) <
∑k

i=1 hsiP
pk
si

then

c = 1

end if

if {W (hsk+1
/µgsk+1

− 1) ≤
∑k

i=1 hsiP
pk
si

≤ W (hsk/µgsk − 1) andk ≤ N − 1} or

{
∑k

i=1 hsiP
pk
si

≤ W (hsk/µgsk − 1) andk = N} then

c = 2

end if

end while

Output: k, c

Using Lemma 6, Algorithm 2 is developed to find the uniquek in Lemma 5. Note thatk

satisfies (33) and (36) or (37) if the output of Algorithm 2 isc = 1 and c = 2, respectively.

Sincep∗si = q∗si/µgsi, whenc = 1, we obtain

p∗si =



















P pk
si
, 1 ≤ i ≤ k − 1

W (1/µgsk − 1/hsk)−
∑k−1

i=1 hsiP
pk
si
/hsk , i = k

0, k + 1 ≤ i ≤ N

, 1 ≤ i ≤ N (38)

and whenc = 2, we obtain

p∗si =







P pk
si
, 1 ≤ i ≤ k

0, k + 1 ≤ i ≤ N
, 1 ≤ i ≤ N. (39)

D. Average transmit power with peak interference power constraints

ConsiderF ′ = {the constraints (3) and (4)}. Then the dual function of the problem (12) can

be written as

f4({λi}) , E{f ′
4(h, g)}+

N
∑

i=1

λiP
av
i (40)
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where{λi|1 ≤ i ≤ N} are the nonnegative dual variables associated with the corresponding

constraints (4) andf ′
4(h, g) is given by

f ′
4(h, g) , max

{pi(h,g)}
W log

(

1 +

∑N
i=1 hipi(h, g)

W

)

−
N
∑

i=1

λipi(h, g) (41a)

s.t.
N
∑

i=1

gipi(h, g) ≤ Qpk. (41b)

Let {p∗i } denote the optimal solution of the problem (41a)–(41b) where the dependence onh

andg is dropped for brevity. The following three cases are of interest.

Case 1:Consider the case whenhi ≤ λi, ∀i. Similar to Case 1 in Section IV-C, it can be

seen from Lemma 3 thatp∗i = 0, ∀i.

Case 2:Consider the case whenhi ≤ λi does not hold for somei and the constraint (41b)

is inactive at optimality. Let(s1, s2, · · · , sN) denote a permutation of the SU indexes such that

hs1/λs1 > hs2/λs2 > · · · > hsN/λsN . Since the problem (41a)–(41b) without the constraint (41b)

has the same form as the problem (19), it can be seen from (24) that p∗s1 = W (1/λs1 − 1/hs1)

andp∗si = 0, ∀i, 2 ≤ i ≤ N , if it satisfies the constraint (41b), i.e.,
∑N

i=1 gsip
∗
si
= gs1W (1/λs1 −

1/hs1) < Qpk.

Case 3:Consider the case whenhi ≤ λi does not hold for somei and the constraint (41b) is

active at optimality, i.e.,gs1W (1/λs1 − 1/hs1) ≥ Qpk. The dual function of the problem (41a)–

(41b) can be written asf ′′
4 (µ) , f ′′′

4 +µQpk, whereµ is the nonnegative dual variable associated

with the constraint (41b), andf ′′′
4 is given by

f ′′′
4 , max

{pi}
W log

(

1 +

∑N
i=1 hipi
W

)

−
N
∑

i=1

λipi − µ

N
∑

i=1

gipi. (42)

Let µ∗ denote the optimal dual variable. Also letF ({pi}) denote the objective function in the

problem (42). Ifp∗i > 0 for somei, the following must hold

∂F ({pi})

∂pi

∣

∣

∣

∣

{pi}={p∗i }

=
hi

1 +
∑N

i=1 hip∗i /W
− λi − µ∗gi = 0. (43)

If p∗i = 0 for somei, the following must hold

∂F ({pi})

∂pi

∣

∣

∣

∣

{pi}={p∗i }

=
hi

1 +
∑N

i=1 hip
∗
i /W

− λi − µ∗gi ≤ 0. (44)

Note that since the problem (41a)–(41b) is convex, the necessary conditions (43) and (44) for

the optimal solution{p∗i } are also sufficient conditions.

June 29, 2010 DRAFT



15

Lemma 7: There exists at most twoj 6= k such thatp∗j > 0 and p∗k > 0.

Proof: We prove it by contradiction. It can be seen from (43) that ifp∗i > 0, p∗j > 0, and

p∗k > 0 for somei 6= j, j 6= k, i 6= k, the following must hold

hi

λi + µ∗gi
=

hj

λj + µ∗gj
=

hk

λk + µ∗gk
. (45)

Since hi, λi, gi, hj , λj, gj, hk, λk, and gk are independent constants given in the problem

(41a)–(41b), and onlyµ∗ is a variable, (45) can not be satisfied. �

Lemma 7 shows that for the optimal power allocation under theconstraints (3) and (4), there

exists at most two users that transmit at nonzero power, while any other user does not transmit.

Then Case 3 can be further divided into the following two subcases.

Case 3.1:Consider the subcase whenp∗k > 0 andp∗i = 0, ∀i 6= k. Since the constraint (41b) is

active at optimality, i.e.,
∑N

i=1 gip
∗
i = gkp

∗
k = Qpk, we obtain thatp∗k = Qpk/gk. Then substituting

{p∗i } into (43) we have

µ∗ =
1

gk/hk +Qpk/W
−

λk

gk
. (46)

Note thatµ∗ given in (46) must satisfyµ∗ ≥ 0. Substituting{p∗i } into (44), we can see thatµ∗

given in (46) also must satisfy

µ∗ ≥
hi/gi

1 + hkQpk/gkW
−

λi

gi
, ∀ i, i 6= k. (47)

Then Algorithm 3 can be used to findk. Note that{p∗i } does not exist in Case 3.1 if the output

Algorithm 3 Algorithm for finding k in Case 3.1

k = argmax{i}W log
(

1 + hiQ
pk

giW

)

− λiQ
pk

gi

µ∗ = 1
gk/hk+Qpk/W

− λk

gk

if µ∗ < max{i 6=k}
hi/gi

1+hkQpk/gkW
− λi

gi
or µ∗ < 0 then

k = 0

end if

Output: k

of Algorithm 3 is k = 0.

Case 3.2:Consider the subcase whenp∗j > 0, p∗k > 0, j 6= k and p∗i = 0, ∀i, i 6= j, i 6= k. It

follows from (43) that
hj

λj + µ∗gj
=

hk

λk + µ∗gk
. (48)
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Therefore, we obtain that

µ∗ =
λj/hj − λk/hk

gk/hk − gj/hj
. (49)

Note thatµ∗ given in (49) must satisfyµ∗ ≥ 0. Using (43) and the fact that the constraint (41b)

is active at optimality, we have






hjp
∗
j + hkp

∗
k = Whj/(λj + µ∗gj)−W

gjp
∗
j + gkp

∗
k = Qpk.

(50)

Solving the system of equation (50), we obtain

p∗j =
Qpk/gk − a/hk

gj/gk − hj/hk
, p∗k =

a/hj −Qpk/gj
hk/hj − gk/gj

(51)

wherea , Whj/(λj + µ∗gj) −W . Note thatp∗j and p∗k given in (51) must satisfyp∗j > 0 and

p∗k > 0. Substituting{p∗i } andµ∗ into (44), we can see thatj andk must satisfy

λj/hj − λk/hk

gk/hk − gj/hj
≥

λj/hj − λi/hi

gi/hi − gj/hj
, ∀ i, i 6= j, i 6= k. (52)

Then Algorithm 4 can be used to findj and k. Note that{p∗i } does not exist if the output of

Algorithm 4 is j = 0 andk = 0.

E. Combinations of more than two power constraints

ConsiderF ′ = {the constraints (2), (4), and (5)} orF ′ = {the constraints (3), (4), and (5)}.

It can be shown that the corresponding dual functions of the problem (12) under these two

combinations of the power constraints have the same form as those in Subsections IV-C and

IV-D, respectively. Therefore, optimal solutions can be found similarly therein and, thus, are

omitted here.

ConsiderF ′ = {the constraints (2), (3), and (4)} or F ′ = {the constraints (2), (3), and (5)}

or F ′ = {the constraints (2), (3), (4), and (5)}. It can be shown that the corresponding dual

functions of the problem (12) under the first two combinations of the power constraints have

the same form as that under the third combination. Therefore, we only focus on the case

F ′ = {the constraints(2), (3), (4), and (5)}. Then the dual function of the problem (12) can be

written as

f5({λi}, µ) , E{f ′
5(h, g)}+

N
∑

i=1

λiP
av
i + µQav (53)
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Algorithm 4 Algorithm for finding j andk in Case 3.2
Initialize: I = ∅

for j = 1, · · · , N − 1 do

for k = j + 1, · · · , N do

µ∗ =
λj/hj−λk/hk

gk/hk−gj/hj

if µ∗ ≥ 0 then

a = Whj/(λj + µ∗gj)−W

p∗j =
Qpk/gk−a/hk

gj/gk−hj/hk
, p∗k =

a/hj−Qpk/gj
hk/hj−gk/gj

if p∗j > 0 andp∗k > 0 then

I = I ∪ {(j, k)}

vj,k = W log
(

1 +
hjp∗j+hkp

∗
k

W

)

− λjp
∗
j − λkp

∗
k

end if

end if

end for

end for

(j, k) = argmax{(i,l)∈I} vi,l

if λj/hj−λk/hk

gk/hk−gj/hj
< max{i 6=j,k}

λj/hj−λi/hi

gi/hi−gj/hj
then

j = 0, k = 0

end if

Output: j, k

where{λi|1 ≤ i ≤ N} andµ are the nonnegative dual variables associated with the correspond-

ing constraints in (4) and (5) andf ′
5(h, g) is given by

f ′
5(h, g) , max

{pi(h,g)}
W log

(

1+

∑N
i=1 hipi(h, g)

W

)

−
N
∑

i=1

λipi(h, g)−µ
N
∑

i=1

gipi(h, g) (54a)

s.t.
N
∑

i=1

gipi(h, g) ≤ Qpk (54b)

pi(h, g) ≤ P pk
i , ∀ i. (54c)

Let {p∗i } denote the optimal solution of the problem (54a)–(54c) where the dependence onh

andg is dropped for brevity. The following cases are of interest.
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Case 1:Consider the case whenhi ≤ λi+µgi, ∀i. Similar to Case 1 in Subsections IV-C and

IV-D, it can be seen from Lemma 3 thatp∗i = 0, ∀i.

Case 2:Consider the case whenhi ≤ λi + µgi does not hold for somei and the constraint

(54b) is inactive at optimality. Since the problem (54a)–(54c) without the constraint (54b) has

the same form as the problem (26a)–(26b),{p∗i } can be found using Algorithm 2 and (38) or

(39) if it satisfies the constraint (54b).

Case 3:Consider the case whenhi ≤ λi + µgi does not hold for somei and the constraint

(54b) is active at optimality. The dual function of the problem (54a)–(54c) can be written as

f ′′
5 (β) , f ′′′

5 + βQpk, whereβ is the nonnegative dual variable associated with the constraint

(54b) andf ′′′
5 is given by

f ′′′
5 , max

{pi}
W log

(

1 +

∑N
i=1 hipi
W

)

−
N
∑

i=1

γipi − β
N
∑

i=1

gipi (55a)

s.t. pi ≤ P pk
i , ∀ i. (55b)

whereγi , λi+µgi. Let β∗ denote the optimal dual variable andF ({pi}) stands for the objective

function in the problem (55a). IfP pk
i > p∗i > 0 for somei, the following must hold

∂F ({pi})

∂pi

∣

∣

∣

∣

{pi}={p∗i }

=
hi

1 +
∑N

i=1 hip∗i /W
− γi − β∗gi = 0. (56)

If p∗i = P pk
i for somei, the following must hold

∂F ({pi})

∂pi

∣

∣

∣

∣

{pi}={p∗i }

=
hi

1 +
∑N

i=1 hip∗i /W
− γi − β∗gi ≥ 0. (57)

Moreover, ifp∗i = 0 for somei, the following must hold

∂F ({pi})

∂pi

∣

∣

∣

∣

{pi}={p∗i }

=
hi

1 +
∑N

i=1 hip
∗
i /W

− γi − β∗gi ≤ 0. (58)

Note that since the problem (54a)–(54c) is convex, the necessary conditions (56), (57) and (58)

for the optimal solution{p∗i } are also sufficient conditions.

Lemma 8: There exists at most twoj andk, j 6= k such thatP pk
j > p∗j > 0 andP pk

k > p∗k > 0.

Proof: We prove it by contradiction. It can be seen from (56) that ifP pk
i > p∗i > 0, P pk

j >

p∗j > 0, andP pk
k > p∗k > 0 for somei 6= j, j 6= k, i 6= k, the following must be true

hi

γi + β∗gi
=

hj

γj + β∗gj
=

hk

γk + β∗gk
. (59)
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Since hi, γi, gi, hj , γj, gj, hk, γk, and gk are independent constants given in the problem

(54a)–(54c), and onlyβ∗ is a variable, (59) can not be satisfied. �

Lemma 8 shows that for the optimal power allocation under theconstraints (2), (3), (4) and

(5), there exists at most two user that transmit at nonzero power and below their peak power,

while any other user either does not transmit or transmits atits peak power.

Then Case 3 can be further divided into the following two subcases.

Case 3.1:Consider the subcase whenP pk
k > p∗k > 0 andp∗i ∈ {P pk

i , 0}, ∀i 6= k. Let N1 and

N0 denote the sets of SU indexes such thatp∗i = P pk
i , ∀i ∈ N1 and p∗i = 0, ∀i ∈ N0. Since

the constraint (54b) is active at optimality, i.e.,
∑N

i=1 gip
∗
i = gkp

∗
k +

∑

i∈N1
giP

pk
i = Qpk, we

obtainp∗k = (Qpk −
∑

i∈N1
giP

pk
i )/gk. Note thatp∗k given here must satisfyP pk

k > p∗k > 0. Then

substituting{p∗i } into (56) we obtain

β∗ =
hk/gk

1 +
(

hk(Qpk −
∑

i∈N1
giP

pk
i )/gk +

∑

i∈N1
hiP

pk
i

)

/W
−

γk
gk

. (60)

Note thatβ∗ given by (60) must satisfyβ∗ ≥ 0. Substituting{p∗i } into (57) we can see thatβ∗

given by (60) must satisfy

β∗ ≤
hi/gi

1 +
(

hk(Qpk −
∑

i∈N1
giP

pk
i )/gk +

∑

i∈N1
hiP

pk
i

)

/W
−

γi
gi
, ∀ i ∈ N1. (61)

Substituting{p∗i } into (58), we can see thatβ∗ given in (60) also must satisfy

β∗ ≥
hi/gi

1 +
(

hk(Qpk −
∑

i∈N1
giP

pk
i )/gk +

∑

i∈N1
hiP

pk
i

)

/W
−

γi
gi
, ∀ i ∈ N0. (62)

Let S(1)
i ,S(2)

i , · · · ,S(2N−1)
i denote all the subsets of the setN\{i} where \ denotes the set

difference operator. Then Algorithm 5 can be used to findk, N1, andN0. Note that{p∗i } does

not exist if the output of Algorithm 5 isk = 0.

Case 3.2:Consider the subcase whenP pk
j > p∗j > 0, P pk

k > p∗k > 0 and p∗i ∈ {P pk
i , 0},

∀i 6= j, k. Let N1 and N0 denote the sets of SU indexes such thatp∗i = P pk
i , ∀i ∈ N1 and

p∗i = 0, ∀i ∈ N0, respectively. It follows from (56) that

hj

γj + β∗gj
=

hk

γk + β∗gk
. (63)

Therefore, we obtain that

β∗ =
γj/hj − γk/hk

gk/hk − gj/hj

. (64)
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Algorithm 5 Algorithm for finding k, N1, N0 in Case 3.1
Initialize: I = ∅

for k = 1, 2, · · · , N do

for l = 1, 2, · · · , 2N−1 do

N1 = S(l)
k

p∗k = (Qpk −
∑

i∈N1
giP

pk
i )/gk

if P pk
k > p∗k > 0 then

I = I ∪ {l}

rl = W log

(

1 +
hkp

∗
k
+
∑

i∈N1
hiP

pk
i

W

)

− γkp
∗
k −

∑

i∈N1
γiP

pk
i

end if

end for

vk = max{i∈I} ri, t = argmax{i∈I} ri

S∗
k = S(t)

k

I = ∅

end for

k = argmax{i} vi

N1 = S∗
k

N0 = N\N1\{k}

β∗ = hk/gk
1+(hk(Qpk−

∑
i∈N1

giP
pk
i )/gk+

∑
i∈N1

hiP
pk
i )/W

− γk
gk

if β∗ < 0 or β∗ > hi/gi

1+(hk(Qpk−
∑

i∈N1
giP

pk
i )/gk+

∑
i∈N1

hiP
pk
i )/W

− γi
gi
, ∃i ∈ N1

or β∗ < hi/gi

1+(hk(Qpk−
∑

i∈N1
giP

pk
i )/gk+

∑
i∈N1

hiP
pk
i )/W

− γi
gi
, ∃i ∈ N0 then

k = 0

end if

Output: k, N1, N0

Note thatβ∗ given in (64) must satisfyβ∗ ≥ 0. Following (56) and the fact that the constraint

(54b) is active at optimality, we have






hjp
∗
j + hkp

∗
k = Whj/(γj + β∗gj)−W −

∑

i∈N1
hiP

pk
i

gjp
∗
j + gkp

∗
k = Qpk −

∑

i∈N1
giP

pk
i .

(65)
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Solving the system of equation (65), we obtain

p∗j =
a/gk − b/hk

gj/gk − hj/hk

, p∗k =
b/hj − a/gj
hk/hj − gk/gj

(66)

wherea , Qpk −
∑

i∈N1
giP

pk
i andb , Whj/(γj +β∗gj)−W −

∑

i∈N1
hiP

pk
i . Note thatp∗j and

p∗k given in (66) must satisfyP pk
j > p∗j > 0 andP pk

k > p∗k > 0. Substituting{p∗i } andβ∗ given

by (64) into (57), we obtain

γj/hj − γk/hk

gk/hk − gj/hj

≤
γj/hj − γi/hi

gi/hi − gj/hj

, ∀ i ∈ N1. (67)

Moreover, substituting{p∗i } andβ∗ given by (64) into (58), we also obtain

γj/hj − γk/hk

gk/hk − gj/hj

≥
γj/hj − γi/hi

gi/hi − gj/hj

, ∀ i ∈ N0. (68)

Let S(1)
i,j ,S

(2)
i,j , · · · ,S

(2N−2)
i,j denote all the subsets of the setN\{i, j}. Then Algorithm 6 can be

used to findj, k, N1, andN0. Note that{p∗i } does not exist if the output of Algorithm 6 is

j = 0 andk = 0.

V. SIMULATION RESULTS

Consider a cognitive radio network which consists of one PU and four SUs. For simplicity,

we assume that only Rayleigh fading is present in all links. The variance of the channel power

gain is set toσ2 = 1. We also setW = 1, P pk
i = 10, ∀i, P av

i = 10, ∀i, Qpk = 1, andQav = 1 as

default values if no other values are specified otherwise. The AWGN with unit PSD is assumed.

We use 1000 randomly generated channel power gains forh and g in our simulations. The

results are compared under the following five combinations of the power constraints: the PTP

with PIP constraints (PTP+PIP), the PTP with AIP constraints (PTP+AIP), the ATP with PIP

constraints (ATP+PIP), the ATP with AIP constraints (ATP+AIP), the PTP and ATP with PIP

and AIP constraints (PTP+ATP+PIP+AIP).

First, we aim at showing by Fig. 1 that the information-theoretic limit for the sum ergodic

capacity is indeed significantly higher when bandwidth is allocated optimally as compared to the

case when it is allocated equally among SUs. In this figure, OBPA stands for optimal bandwidth

and power allocation, while EBPA stands for equal bandwidthand power allocation. The case

of PTP+PIP is only depicted in Fig. 1, but the conclusion about the superiority of optimal

bandwidth and power allocation holds true for other combinations of power constraints. Then
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Algorithm 6 Algorithm for finding j, k, N1, N0 in Case 3.2
Initialize: I = ∅

for j = 1, 2, · · · , N − 1 do

for k = j + 1, · · · , N do

for l = 1, 2, · · · , 2N−2 do

N1 = S(l)
j,k

β∗ =
γj/hj−γk/hk

gk/hk−gj/hj

if β∗ ≥ 0 then

a , Qpk −
∑

i∈N1
giP

pk
i , b , Whj/(γj + β∗gj)−W −

∑

i∈N1
hiP

pk
i

p∗j =
a/gk−b/hk

gj/gk−hj/hk
, p∗k =

b/hj−a/gj
hk/hj−gk/gj

if P pk
j > p∗j > 0 andP pk

k > p∗k > 0 then

I = I ∪ {l}

rl = W log

(

1 +
hjp∗j+hkp

∗
k
+
∑

i∈N1
hiP

pk
i

W

)

− γjp
∗
j − γkp

∗
k −

∑

i∈N1
γiP

pk
i

end if

end if

end for

vj,k = max{i∈I} ri, t = argmax{i∈I} ri

S∗
j,k = S(t)

j,k

I = ∅

end for

end for

(j, k) = argmax{(i,l)} vi,l

N1 = S∗
j,k

N0 = N\N1\{j, k}

if γj/hj−γk/hk

gk/hk−gj/hj
>

γj/hj−γi/hi

gi/hi−gj/hj
, ∃i ∈ N1 or γj/hj−γk/hk

gk/hk−gj/hj
<

γj/hj−γi/hi

gi/hi−gj/hj
, ∃i ∈ N0 then

j = 0, k = 0

end if

Output: j, k, N1, N0
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Fig. 2 shows and compares the maximum sum ergodic capacity under PTP+PIP, PTP+AIP and

PTP+ATP+PIP+AIP constraints versusP pk whereP pk = P pk
i , ∀i is assumed. It can be seen

from the figure that the maximum sum ergodic capacity achieved under PTP+AIP is larger than

that achieved under PTP+PIP for any givenP pk. This is due to the fact that the AIP constraint

is more favorable than the PIP constraint from SUs’ perspective, since the former allows for

more flexibility for SUs to allocate transmit power over different channel fading states. It is also

observed that the performance under PTP+ATP+PIP+AIP is very close to that under PTP+PIP

that is because the PTP constraint dominates over the ATP, PIP, and AIP constraints for all

values ofP pk.

Fig. 3 shows the maximum sum ergodic capacity under ATP+PIP,ATP+AIP and PTP+ATP+

PIP+AIP constraints versusP av whereP av = P av
i , ∀i is assumed. The maximum achievable

sum ergodic capacity achieved under ATP+AIP is larger than that achieved under ATP+PIP for

all values ofP av since the PIP constraint is stricter than the AIP constraint. The sum ergodic

capacity under PTP+ATP+PIP+AIP is much smaller than that under ATP+PIP and ATP+AIP

due to the fact that the PTP constraint is dominant over otherconstraints for all values ofP av.

Fig. 4 shows the maximum sum ergodic capacity under PTP+PIP,ATP+PIP and PTP+ATP+

PIP+AIP constraints versusQpk. It can be seen from the figure that the maximum sum ergodic

capacity achieved under ATP+PIP is larger than that achieved under PTP+PIP for any given

Qpk. This is because the power allocation is more flexible for SUsunder the ATP constraint

than under the PTP constraint. The sum ergodic capacity under PTP+ATP+PIP+AIP saturates

earlier than that under PTP+PIP and ATP+PIP, because it is restricted by the AIP constraint.

Fig. 5 shows the maximum sum ergodic capacity under PTP+AIP,ATP+AIP and PTP+ATP+

PIP+AIP constraints versusQav. Due to the same reasons as for the results in Fig. 4, the sum

ergodic capacity achieved under ATP+AIP is larger than thatachieved under PTP+AIP. The

sum ergodic capacity under PTP+ATP+PIP+AIP saturates earlier than that for PTP+AIP and

ATP+AIP because of the presence of the PIP constraint.

Finally, Fig. 6 shows the maximum sum ergodic capacity underPTP+PIP, PTP+AIP, ATP+PIP,

ATP+AIP and PTP+ATP+PIP+AIP versusW . Similar performance comparison results as in the

previous figures can be observed. One difference is that the sum ergodic capacities do not saturate

with the increase ofW .
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VI. CONCLUSION

A cognitive radio network where multiple SUs share the licensed spectrum of a PU using the

FDMA scheme has been considered. The maximum achievable sumergodic capacity of all the

SUs has been studied subject to the total bandwidth constraint of the licensed spectrum and all

possible combinations of the peak/average transmit power constraints at the SUs and interference

power constraint imposed by the PU. Optimal bandwidth allocation has been derived in each

channel fading state for any given power allocation. Using the structures of the optimal power

allocations under each combination of the power constraints, algorithms for finding the optimal

power allocations have been developed too.
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Fig. 1. Sum ergodic capacity vsP pk.
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