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A review of modern multiple hypothesis
testing, with particular attention to the false
discovery proportion
Alessio Farcomeni Università di Roma ‘La Sapienza’, Roma, Italy

In the last decade a growing amount of statistical research has been devoted to multiple testing, motivated by
a variety of applications in medicine, bioinformatics, genomics, brain imaging, and so on. Research in this
area is focused on developing powerful procedures even when the number of tests is very large. This paper
attempts to review research in modern multiple hypothesis testing with particular attention to the false
discovery proportion, loosely defined as the number of false rejections divided by the number of rejections.
We review the main ideas, stepwise and augmentation procedures; and resampling based testing. We also
discuss the problem of dependence among the test statistics. Simulations make a comparison between the
procedures and with Bayesian methods. We illustrate the procedures in applications in DNA microarray
data analysis. Finally, few possibilities for further research are highlighted.

1 Motivation

In many areas of application of statistics, in particular in bioinformatics, conclusions
are drawn by simultaneous testing of a large number of hypotheses. In these high-
dimensional situations common single inference approaches are well known to fail,
leaving open the problem of making a small number of false discoveries by controlling a
suitable error rate, and maximizing the power of each test at the same time. Such prob-
lem of simultaneous inference is usually referred to as multiple testing. Applications in
multiple testing include identifying neuronal activity in the living brain or the identifica-
tion of differentially expressed genes in DNA microarray experiments.1−10 For a review
of multiple testing methods in the context of microarray data analysis, see Ref. [11]
and Ref. [12] for an excellent review of genomics and statistical challenges in genomics.
Among the other possible applications, there are general medicine,13 pharmacology,14

epidemiology,15 psychometrics16 and even marketing.17

Moreover, multiple tests can be used as a key part of statistical procedures, like vari-
able selection,18,19 item-response modeling,20 structural equation modeling,21 decision
trees,22 wavelet thresholding,23,24 and so on.

Many of these applications have arisen recently, posing new kinds of multiplicity prob-
lems and stimulating a tremendous interest and fast developments in multiple hypothesis
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testing. This paper attempts to review research in modern multiple hypothesis testing,
with particular attention to the false discovery proportion (FDP), the basis for some
of the newly introduced error rates. The FDP can be defined to be the number of false
positives divided by the number of rejections.

In this paper we will mainly consider distribution-free methods for testing on a simple
hypotheses with the use of significance levels (p-values).

The paper is organized as follows: Section 2 will describe the multiple testing frame-
work, and introduce the most popular Type I error rates. Section 3 will introduce the
main concepts about multiple testing procedures (MTPs). Section 4 will review some
MTPs controlling classical and modern error rates. Section 5 will give a general compari-
son of the procedures through simulations, and show the performance of (not corrected)
Bayesian procedures in terms of classical error measures. Section 6 will review exten-
sions under dependence among the test statistics. In Section 7, we show some real life
applications and finally, Section 8 will conclude with a brief discussion, and point out
some possibilities for further research in this area.

2 The multiple hypothesis framework

Consider a multiple testing situation in which m tests are being performed. Suppose M0
of the m hypotheses are true, and M1 are false. Table 1 shows the possible outcomes
in testing m hypotheses: we denote with R the number of rejections, with N0|1 and
N1|0 the exact (unknown) number of errors made after testing; and with N1|1 and N0|0
the number of correctly rejected and correctly retained null hypotheses. The number of
rejected hypotheses R is random, and consequently all Ni|j; while M0 and M1 can either
be considered as random or just not observable, depending on the specific application.
For the time being we assume all the test statistics are independent, and will discuss
below generalizations to dependent test statistics.

In the usual (single) test setting, one controls the probability of false rejection (Type I
error) while looking for a procedure that possibly minimizes the probability of observing
a false negative (Type II error).

In the multiple case, despite each uncorrected level α test falsely rejects the null
hypothesis with small probability (namely, α), as m increases the number of false pos-
itives can explode. For instance, if m = 30 000 true null hypotheses are simultaneously
tested at level α = 0.05, around R = N1|0 = 1500 false discoveries are expected. The
consequences of so high a number of false discoveries in real applications would usually
be extremely deleterious.

Table 1 Outcomes in testing m hypotheses

H0 not rejected H0 rejected Total

H0 True N0|0 N1|0 M0
H0 False N0|1 N1|1 M1
Total m − R R m
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From a different point of view it can be said that a p-value around, for instance, 0.05
is unlikely to be correspondent to a true discovery, since it is very likely under the null
hypothesis that such a small p-value will occur when many are computed at once.

Corrections arise from the control of specific Type I error measures, and there are
a variety of functions of the counts of false positives N1|0 that can serve as possible
generalizations of the probability of Type I error. Control of the chosen Type I error
rate can be loosely defined to be achieved when the error rate is bounded above by a
pre-specified α ∈ (0, 1). A more detailed discussion is given below.

The most classical multiple Type I error rate is based only on the distribution of N1|0,
that is, on what happens for the tests corresponding to the true null hypotheses:

• Family-wise error rate (FWER), the probability of a least one Type I error:

FWER = Pr(N1|0 ≥ 1) (1)

Here and in what follows, unless stated otherwise probability and expectations are
computed conditionally on the true parameter configuration, that is, on which and
how many hypotheses are true. In common approaches equal importance is given to
each hypothesis. Holm25 discusses adjustments of certain FWER controlling procedures
when different importance is explicitly given to the hypotheses, by weighting; and26

generalize it to enhance power in high-dimensional situations. See also Section 3.4.
Many modern Type I error rates are based on the FDP; defined to be the proportion

of erroneously rejected hypotheses, if any:

FDP =
⎧
⎨

⎩

N1|0
R

if R > 0

0 if R = 0
(2)

The FDP is then based also on the distribution of R, that is, on what happens
for the hypotheses for which H0 is false. Benjamini and Hochberg27 propose to con-
trol the expectation of the FDP, commonly refereed to as False Discovery Rate (FDR).
The first to consider this error measure was probably Seeger28 who advocated control
of FWE but additional checking of the proportion of false nulls. Dudoit et al.29 and
independently Genovese and Wasserman30 along similar lines propose to control the
tail probability of the FDP (tFDP(c)). This error measure is sometimes referred to as
false discovery exceedance (FDX):

• FDR, expected proportion of Type I errors:

FDR = E[FDP] (3)

• FDX, tail probability of the FDP:

tFDP(c) = Pr(FDP > c) (4)
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Control (in expectation or in the tail) of the FDP is justified by the idea that any
researcher is prepared to bear a higher number of Type I errors when more rejections
are made. We note that the only assumptions needed to control the FDR or FDX are
usually related to the dependence among the test statistics.

Further generalizations of the FWER and FDR are proposed in Refs. [31–34]. Storey32

for instance introduced the positive FDR, defined as pFDR = E[FDP|R > 0]. Control of
this error measure is more appropriate when the probability of making no rejections is
high, so that FDR control may be misleading; and can moreover lead to more powerful
multiple testing procedures in certain situations. Note that for any number of rejected
hypotheses FDR ≤ pFDR. Storey32 suggested how to estimate and thus control pFDR
fixed rejection region, and introduce the q-value, a pFDR analogue of the p-value. An
interpretation of the pFDR and q-value as Bayesian posterior probabilities is in Ref. [35],
that also shows connections to classification theory. A discussion of weighted FDR
controlling procedures, instead in Refs. [36] and [37], also show how to give difference
importance to each hypothesis, and also how to enhance power by weighting.

It is straightforward to see that FDR and FDX control is also a weak control on the
FWER, in the sense that FWER is controlled if all the null hypotheses are true, and that
tFDP(0) = FWER.

The introduction of FDP-based error measures was motivated by some modern appli-
cations, in which the number tests can be very large. In these settings, FWER controlling
procedures tend to become conservative and finally lead to rejection of a very limited
number of hypotheses, if any. Conversely, FWER control is more desirable when the
number of tests is small, so that a good number of rejections can be made, and all can
be trusted to be true findings.

A general comparison of the error rates may be summarized by the inequalities

E[N1|0]
m

≤ min(FDR, FDX) ≤ max(FDR, FDX)

≤ FWE ≤ E[N1|0]

that are straightforward to prove. The last term E[N1|0] is sometimes referred to as per
family Type I error rate, and the first E[N1|0]/m as per comparison error rate; as in fact
E[N1|0] is the expected number of type I errors and E[N1|0]/m is the expected marginal
probability of erroneously rejecting a given hypothesis.

Genovese and Wasserman38 and independently Sarkar39 generalize the concept of
Type II error to the multiple case by introducing the False Negatives Rate (FNR), the
dual of the FDR, defined as:

E
[

N0|1
m − R + 1(m−R)=0

]

(5)

Sarkar39 also introduces the concept of unbiasedness of an FDR-controlling procedure,
as a procedure satisfying the inequality FDR + FNR ≤ 1.
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2.1 Relationship between FDR and FDX control
FDX and FDR are closely related, being functionals of the same random variable,

namely, the FDP.
It is straightforward to see30 that in general if tFDP(c) is controlled at level α, then

FDR is controlled at level c + (1 − c)α. In Section 5.2 we will give some ideas on how
to choose c in order to use a tFDP(c) controlling procedure to suitably control the FDR.

A partial converse is given by an application of Markov inequality, which yields: if
FDR < α then tFDP(c) < α/c.

Moreover, note that FDR = E[FDP] = ∫ 1
0 tFDP(c) dc, that is, FDR control is a control

on the average tFDP(c) (with respect to Lebesgue measure). Following this statement,
we can apply the mean value theorem and prove that at least asymptotically there exist
ξ ∈ [0, 1] such that tFDP(ξ) = FDR. That is, if FDR ≤ α, there exist ξ ∈ [0, 1] for which
tFDP(c) ≤ α for any c > ξ . Simulations (Section 5.1) suggest that this ‘mean value’ ξ is
often not small, as FDR control rarely implies FDX control with the typical choice
c = 0.1; while the converse is often true.

2.2 The statistical model
In this section we will formalize the framework for multiple testing. Let X1, . . . , Xn be

n random vectors in Rm: Xi = (Xij: j = 1, . . . , m). To fix the ideas suppose we observe n
replicates of m variables, arising from a certain multivariate distribution P, depending
on unknown parameters. The n replicates are combined to compute test statistics, finally
arising a vector of m p-values.

The sample size n is typically much smaller than m: for instance, one can measure
the expression level of thousands of genes in less than one hundred patients, together
with biological covariates and risk factors. This obviously complicates the shape and
definition of P.

2.2.1 Parameters
We define a parameter to be a function of the unknown distribution P. Parameters

of interest typically include means, differences in means, variances, ratios of variances,
regression coefficients, and so on.

2.2.2 Null hypotheses
We claim that a null hypothesis is true if a specified model holds, while the alternative is

true if the data is not distributed according to the specified model. In this paper, anyway,
we focus on testing simple one-parameter hypotheses, that is, the null hypothesis specifies
a value for a parameter of interest. For instance, testing to see whether a difference in
means is zero, like in paired T-testing.

Let S0 be the set of all true null hypotheses. The goal of a multiple testing procedure is
the accurate estimation of S0, while probabilistically controlling a pre-specified function
of the number of false rejections N1|0 = {S0 ∩ Ŝc

0}, that is, a Type I error rate.
When m = 1, we have a classical statistical test, which can be seen as a procedure par-

titioning the sample space in two: a subset X1 ⊆ X n such that observing a realization of
X1, . . . , Xn in X1 leads to rejection of the single null hypothesis; and the complementary
subset, leading to failure of rejection.
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This idea can be generalized to the m > 1 case: a multiple test is a procedure parti-
tioning the sample space in 2m subsets, each corresponding to one of the 2m possible
estimates of S0, that is, to a set of rejected hypotheses.

2.2.3 Test statistics and p-values
Partitioning of the sample space is made through a vector of m test statistics, Tn =

(Tn(j): j = 1, . . . , m), that are functions of the data X1, . . . , Xn. We define the j-th p-value
to be

pj = Pr(|Tn(j)| > |tn(j)| |the j-th null is true) (6)

where tn(j) is the observed value of the test statistic Tn(j). Throughout we adopt the
notation p(j) to denote the j-th ordered statistic of the vector of p-values, with p(0) = 0
and p(m+1) = 1. The p-value pj is again a random variable, when the null hypothesis is
simple, and the distribution of the test statistics is continuous and known, it is uniformly
distributed on [0, 1] under the null; while it is stochastically dominated by the uniform if
the distribution is discrete. In certain practical situations, the probability in Equation (6)
cannot be directly computed, and an estimate of the p-value must be computed, often
by a resampling method. The estimates are not in general uniformly distributed, and
these are what many methods use. For further discussion on estimation of p-values see
Section 3.2.

It is equivalent to work with test statistics or p-values. Providing corrections for p-
values is usually more convenient since they are bounded and their distribution under
the null is invariant with respect to the data generating distribution.

2.2.4 Families
An important issue in multiple testing is what set of hypotheses to consider in the

computation of the error rate. In many situations the hypotheses can be divided in
families, groups of different types and usually of limited size. In large surveys and
multifactorial experiments families usually arise naturally by groups of variables, time
periods, phases of the study, category of the endpoints, etc. That is to say, questions
form natural units indexed by a time point and kind of issue. For real life examples see
Ref. [40] (Chapter 7), and Section 7.1.

Westfall and Young40 note also that it may be sensible to consider as a whole family
the tests computed for a publication.

Issues in deciding a family are considered moreover in Refs. [41,42], while Ahmed [43]
suggests strategies that involve the consideration of several different families in large
surveys.

The choice of a family is in part subjective, and different choices may lead to sensibly
different results. The effect is particularly strong when the majority of the tested nulls
are in fact true. To avoid the possibility of data snooping, families should be defined
before seeing the data whenever possible, and a clear description and justification of the
grouping considered should be reported together with the results.

In other cases there is no basis for a natural division into groups, and all the hypotheses
involved must be considered as a single family. In bioinformatics applications for instance
the definition of a family is not an issue, as genes, neurons, and so on will always be
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considered together. In these applications the number of hypotheses tested together can
be very large, magnifying the problems related with the multiplicity of the comparisons.

3 General properties of multiple testing procedures

A MTP produces a set SMTP = {j: pj ≤ T} for the (random) cut-off T of rejected
hypotheses, which is an estimation of the set Sc

0 of false null hypotheses. Since p-values
(and test-statistics) live in R, the complex procedure of partitioning an high-dimensional
space in 2m slices reduces to fixing a cut-off T such that all the hypotheses corresponding
to p-values below T are rejected and the others retained. Control of Type I error rates
substantially reduces to just showing how to choose such T, that in general (but not
necessarily) will be below the single inference cut-off α. Note that even if in stepwise
methods there is comparison of each p-value pj with a different constant, αj, we still can
set T as the biggest rejected p-value. In that case T will be random by definition.

For a fixed MTP, the set SMTP depends on:

• The data, often only through the vector of p-values p1, . . . , pm• A level α, that is, an upper bound for an appropriate Type I error rate.

Some authors, for example,11,40,44,45 prefer to leave the cut-off T fixed to α and intro-
duce the concept of adjusted p-value, a level of significance related to the entire MTP. In
practice, this involves defining a new p-value p̃j, which will be a function (often, a scale
transformation) of the old pj. More formally, define the adjusted p-value

p̃j = inf{α: The j-th hypothesis is rejected by the procedure with nominal error rate α}.
For instance, if each of the hypotheses is tested with the Bonferroni correction at level
α/m, the adjusted p-value for each hypothesis is just p̃j = mpj. Then, it is possible
to define S′

MTP = {j: p̃j < α}. Strategies to compute adjusted p-values when complex
multiple testing procedures are used are given in Ref. [44]. It can be shown that, for
each MTP procedure, it is perfectly equivalent to consider adjustment of threshold or
of p-values. The additional computation of adjusted p-values is often very useful in
practice, since adjusted p-values are easily interpretable, directly comparable with other
multiple testing experiments, and a more intuitive choice of the level of the test is possible.

3.1 Types of multiple testing procedures
MTPs are usually categorized as:

• One-step: In one-step procedures, all p-values are compared to a predetermined
cut-off, usually only a function of α and m, with no dependence on the data.

• Step-down: In step-down procedures, each p-value is compared with a cut-off
dependent on its rank. The p-values are examined in order, from smallest to largest.
At each step, the p-value is rejected if smaller than its cut-off. Once a p-value is
greater than its cut-off, it is not rejected together with all the higher ones.

• Step-up: Step-up procedures are similar to step-down procedures. p-values are
examined from the largest to the smallest. At each step, the p-value is not rejected if
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larger than its cut-off. Once a p-value is found to be significant, it is rejected together
with all the smaller ones.

In step-up and step-down methods it is not uncommon to talk about ‘step-up/step-
down’ constants αj. This is referring to the threshold with which the j-th ordered p-value
is compared. Hochberg and Tamhane46 note that if a step-up and a step-down procedure
are based on the same constants, the step-up version will reject at least the same number
of hypotheses, thus being at least as powerful as the step-down version. Finner and
Roters47 provide the distribution of the number of false discoveries for stepwise methods.
Finally, note that setting J = max{j: pj ≤ αj}, the index of the biggest p-value below the
step-up constant αj in step-up methods, and J = min{j: pj > αj} − 1, the index of the
largest p-value smaller than the smallest p-value above the step-down constant αj; one
can refer to a single random cut-off T = p( J).

Multiple testing procedures may also be augmentation based. Augmentation proce-
dures proceed iteratively, first rejecting a certain number of hypotheses and then rejecting
an additional number chosen as function of the number rejected at the first step.

3.2 Resampling based testing
Resampling based testing relies mainly on the idea that the data can often be resampled

in a way that reflects the null hypothesis. As an example, consider the case of compar-
ing a quantitative response between two groups. Under the hypothesis of no difference
between groups, observations arise just from a random assignment to the groups. When
data are resampled and randomly assigned to the groups, one can expect to see no
systematic differences. If the original test statistic is unusual with respect to the resam-
pling distribution, then null hypothesis and data are in conflict. This conflict can be
measured, as usual, with a (resampling-based) p-value: the proportion of times the
resampled statistic is at least as extreme as the original observed test statistic.

On can resample each variable and determine individual p-values independently. In our
context it is anyway more frequent that the whole multivariate distribution is used, for
instance by resampling vectors. This is particularly useful, since the joint distribution can
be explored without explicitely modelling dependence. Resampling procedures achieve
(exact or asymptotic) error control under general dependence, and further they will be
less conservative because the information provided by actual dependence in the data will
be exploited.

3.2.1 Permutation methods
In permutation testing48 the data is sampled without replacement: at each iteration

of the algorithm the observations are simply randomly shuffled. Note that this implies
that certain statistics (for instance, the overall mean in the previous single test example)
are constant with respect to resampling; and this can be sometimes used to speed up the
algorithms. For an example, see for instance40 (Chapter 5.3).

Permutation methods can be seen in many settings as a nonparametric and condi-
tionally exact approach to testing; in the sense that the permutation p-values will not
depend on the underlying population distribution and that, under the permutation null
hypothesis that all permutations are equally likely, they are exact.
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It is intuitive that the p-values, unconditionally, need not be uniformly distributed.
Nevertheless, they are conservative: their distribution is stochastically larger than the
uniform for any finite n. For this reason, the p-values obtained are valid, in the sense
that they lead to error rate control in finite samples.

Permutation methods anyway require certain assumptions, in particular exchange-
ability under the null hypothesis, which is not guaranteed to hold in a few relevant cases;
and furthermore exhaustive permutation is sometimes not feasible, so that only a ran-
dom sample of permutations are considered and only approximate Type I error control
is guaranteed.

3.2.2 Bootstrap methods
In bootstrap testing40,49 the data is sampled with replacement.
The main idea is that while the dependency structure can be preserved (by resampling

the multivariate distribution), it is possible to resample with strategies that essentially
remove the systematic effects from the data, obtaining an estimate of the null distribu-
tion: it often happens that bootstrap samples are re-centered (while permutation samples
are not).

Bootstrap p-values can either be conservative or anti-conservative. In the second
case, the Type I error rate is inflated; and only asymptotic control is guaranteed.
The finite sample properties of the bootstrap still need much investigation. On the
other hand bootstrap is more general than permutation since exchangeability is not
required, and furthermore more complex models can be accommodated with bootstrap
strategies.

3.2.3 Discussion about resampling methods
In general resampling based testing provides powerful procedures that are also

often valid under general dependence. Furthermore, complex situations in which other
solutions are not available can be often tackled with resampling methods.

Main drawbacks are that 1) methods may have poor properties in small sample situa-
tions, in our context expecially whenever n � m; and 2) they are often time consuming
and computationally intensive. The latter problem, even in the presence of powerful
computing facilities, may be considerable in large m situations.

In cases in which the number of samples is small compared to the number of tests
it may even be inappropriate or not useful to apply resampling methods. As a referee
pointed out, it is known for instance that if n is sufficiently small relative to m the
permutation methods will never reject, thus having zero power. A similar low power
problem is likely to happen for bootstrap methods:50 argue in a simulation study that
when the sample sizes are small, bootstrap can lead to testing procedures that have much
lower power than permutation tests.

A further problem is given by a lack of generality: usually ad-hoc strategies need to be
derived in order to implement a bootstrap or permutation method. Additional ad-hoc
considerations are often useful in order to speed up the methods and increase precision,
expecially when performing many tests at once.

As pointed out by Pollard, van der Laan,51 there are many possibilities for estimating
the null distribution through a given resampling strategy. They suggest projecting the
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true test statistic distribution onto the space of null (mean zero) distributions by boot-
strapping centered test statistics. They prove that bootstrapping centered test statistics
provides asymptotic strong control of the desired error measure. An illustration of this
methodology in a resampling-based method for controlling the FDX will be given below.
Results of Ref. [51] are further discussed in Ref. [45], who show a general characterization
of null distributions leading to asymptotic control of the error measures.

Ge et al.52 review resampling based multiple testing in the setting of Microarray data
analysis. Some examples of resampling based multiple testing procedures are given in
Section 4.

3.3 Types of Error control
Let now ERm(P) be any error rate for a fixed m and conditionally on distribution P

for the data. The control of the error rate can be categorized as:

• Weak control: there is weak control of the Type I error rate ERm(P) if there is finite
sample control of ERm(P0), where P0 is the distribution that would have generated
the data if all the null hypotheses were true (the so called ‘complete null’).

• Strong control: there is strong control of the Type I error rate ERm(P) if there is
finite sample control of max

I⊆{1,...,m} ERm(PI), where PI is the distribution that would

have generated the data if the null hypotheses indexed in I were true and the other
false. That is, strong control implies that the Type I error measure is bounded above
no matter the configuration of true and false hypotheses.

• Exact control: The control of ERm(P), that is, the achievement of ERm(P) ≤ α, where
P is the true parameter configuration.

We do not want to control errors under configurations that are not the true ones,
possibly losing power. Weak and strong control are nevertheless introduced since it
may not be doable to work with ERm(P), with unknown P. Obviously, strong con-
trol implies weak control; and if attaining weak control, one hopes that the error rate
under the true distribution, as often happens, is bounded by the error rate under the
complete null. The same idea applies to strong control, since it is intuitive that the
error rate under the true distribution is bounded by the maximal error rate under
all possible configurations, max

I⊆{1,...,m} ERm(PI). Moreover, the results of a weak con-

trolling procedure can be used only to imply that there is some false hypothesis
among the m, but do not allow the researcher say which hypotheses are false. For
this reason, weak FWE controlling procedures are sometimes referred to as ‘omnibus’
tests.

A multiple testing procedure provides asymptotic exact control of a pre-specified Type
I error rate at level α if lim supn ERm(P) ≤ α, where P is the true distribution. Asymptotic
weak and strong control can be defined similarly.

While asymptotic is usually meant in n, there also are some works which consider the
possibility of a growing number of tests, like,47,53,54 and some references therein. These
results are useful for applications in which m 	 n.

Note also that weak and strong control of pFDR is not possible, since by definition if
M0 = m then pFDR = 1.
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We also introduce the idea of subset pivotality, as defined in Condition 2.1 of Ref. [40].
Subset pivotality holds for the vector of p-values if, for any k ∈ 1, . . . , m, it happens that

{pj1 , . . . , pjk} d= {pj′1 , . . . , pj′k}. In words, the multivariate distribution of any subset of
p-values is unaffected by hypotheses not considered in the subset, and in particular by the
truth or falsehood. If subset pivotality holds, strong control is implied by weak control
of the Type I error rate. This is a technical condition which is often trivially satisfied,
for instance by the existence of no logical constraint making impossible a particular
combination of null and false hypotheses. A situation in which subset pivotality fails is
when testing on the elements of a correlation matrix.51,55

In this paper we focus on distribution free methods, that is, procedures that control
the chosen Type I error rate under any distribution for the p-values under the alterna-
tive pi|Hi = 1, which we denote by F(·); and any configuration of the true and false
nulls.

There are also many methods that are based on parametric assumptions, which
dominated the early literature. Some of them can, for instance, be found in Ref. [46].

3.4 A special case: multiple endpoints
While the aim of the paper is to review general procedures for multiple testing cor-

rection, it is interesting to mention the multiplicity problems arised by the evaluation of
multiple endpoints in clinical studies.

In clinical trials the evaluation of multiple endpoints is one of the most common
problems arising multiplicity issues. While the multiple testing procedures we review
are directly applicable in this setting, there often is a hierarchy among the tests that
allows for further considerations. In many cases in fact one is able to classify the tests in
groups of primary and secondary (and even thertiary) endpoints. The number of primary
endpoints is usually limited, and often a single primary endpoint is encountered (for
instance, reduced mortality); while the number of secondary endpoints (for instance,
side effects) may be very large. Furthermore, even if there still is the necessity to be
very careful about conclusions, the researcher usually expects that a large proportion of
the primary endpoints is in fact significant, while a large proportion of the secondary
endpoints may in fact be non-significant. For a general discussion about clinical trials
with multiple outcomes, see Refs [56] and [57].

There are many possible approaches to tackle this case.
The easiest approach would be to ignore the hierarchy in the definition of the

endpoints, and control a suitably chosen Type I error rate on the whole set of tests.
In the case of a single primary endpoint, furthermore, it is a common approach

not to apply any correction for multiplicity. However, while the results for the primary
endpoint are reliable, for what concerns the secondary endpoints the tests would only
have an exploratory value.57,58 In particular, Chi58 suggests that, without significance
of the primary endpoint, no significance can be claimed for any secondary endpoint
independently on the correponding p-values magnitude.

A further more elegant possibility is to do error allocation59,60. See also Ref. [36].
Suppose that the nominal FWER level for the entire experiment is set to αE, say αE =
0.05. Under independence (or positive orthant dependence, see Section 6), this error rate
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can be differentially allocated between primary and secondary endpoints according to
the formula:

αE = 1 − (1 − αP)(1 − αS) (7)

where αP is the error rate for primary endpoints and αS is the error rate for secondary
endpoints. The formula comes from simple probability considerations. Suppose there
are nS secondary endpoints. The overall error rate for secondary endpoints can then be
allocated to each endpoint according to the formula:

αS = 1 −
nS∏

i=1

(1 − αSi)

and similarly if there is more than one primary endpoint. Of course the researcher can not
choose any value for αE, αP and αS, since any two will force the other, and similarly for
the individual endpoint error rates αSi . For instance, choosing αE = 0.05 and αP = 0.03
will force αS = 0.021.

Under general dependence the previous formulas do not hold, and should be replaced
with their Bonferroni equivalents:

αE = αP + αS (8)

and for instance

αS =
nS∑

i=1

αSi

Such Bonferroni values are in many situations only slightly more conservative than the
ones relying on assumptions on the dependence.

Note that of course αP or αS must be in all cases set to a smaller value than the
experimental rate αE.

There are many remarks related to error allocation methods. First, the entire procedure
must be performed before the experiment. In fact, there are several different ways to
allocate an overall error αE, which can potentially lead to very different conclusions.
Allocating the error rate after seeing the data is data snooping and leads to inflated error
rates, possibly higher than the nominal levels. This also implies that the strategy can be
applied only if the endpoints are prospectively determined. Moreover, while there is an
historical justification for the use of overall errors of 5%, there is no agreed convenction
for the allocation of such errors, so that when doing error allocation the choices should
be clearly indicated, justified, and also the non-significant p-values should be reported.
A choice that is usually easily justifiable is to set constant the error rate within each
level, that is, αS1 = αS2 = · · · = αSns

and similarly for the primary endpoints; unless
there is a clear reason. We also note that the allocation procedure is conservative under
dependence of the test statistics.

In certain cases it may be justifiable the division of the hierarchy in separate families.
In that case a different error rate may be controlled on each. FWER may be more
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appropriate for the primary endpoints and FDR/FDX for the secondary endpoints, due
to the previous considerations. Note however that endpoints are naturally depedent, so
that one should use procedures valid under general dependence.

There are also approaches that use omnibus multivariate tests based on parametric
assumptions (like multivariate analysis of variance, Hotelling’s T-test, and similar). See
for instance.61−64 In particular, O’Brien 61 develop a least-squares test statistic that is
more powerful than Hotelling’s test statistic when the endpoints are positively corre-
lated, under the assumption of normality; and Pocock et al.62 generalize the idea to
test statistics that are asymptotically normal. These ideas are then applied to survival
analysis by Wei and Lachin65 and Wei et al. 66 Recall anyway that omnibus tests provide
only weak control of the FWE and then when using this approach it is not possible to
drive conclusions about the individual endpoints. Nevertheless, in certain cases omnibus
testing may be more useful for other purposes:67 note that Bonferroni and stepdown tests
strongly controlling the FWE are more suitable for detecting one highly significant dif-
ference, while omnibus tests can be more powerful in rejecting the global null when each
individual test statistic is barely significant.

A further common approach is to compute a single aggregate test statistic (for instance,
time to first event or a summary score) for each level of endpoints. This is useful if one
is not interested in the results of individual endpoints.

Apart from primary and secondary endpoints in clinical studies, there are other
relevant settings for which special adjustment procedures and specific considerations
can be made. We mention for instance simultaneous comparison of more than two
groups.46

4 Multiple testing procedures

4.1 General ideas behind a multiple testing procedure
Before reviewing the procedures that control each Type I error rate, we summarize the

general ideas:

• We want to fix a cut-off T such that the error rate is at most equal to a prespecified
α ∈ [0, 1].

• This cut-off should be as high as possible, provided the specified error rate is
controlled. The higher T, the more tests are rejected and the more powerful the
procedure.

• Consequently, if two procedures control the same error rate, we prefer the one
achieving a smaller Type II error rate.

Multiple testing procedures aim at a balance between false positives (given by larger Ts)
and false negatives (given by smaller Ts). We follow here the principle that, as long as the
Type I error rate is controlled at the desired level, we prefer to make more false positives
in order to have less false negatives. To simplify the exposure, we will say ‘reject p( j)
such that. . .’ to indicate ‘reject the hypotheses corresponding to p( j) such that’.

All the procedures we will review provide (finite sample or asymptotic) strong control
of the considered error rate, unless stated otherwise.
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4.2 Procedures controlling the FWER
In this subsection, we briefly review procedures to control the FWER, as defined in

Equation (1). More details can be found in the books by Westfall, Young40 or Hochberg
and Tamhane.46

Bonferroni Bonferroni correction is a one-step method at level T = α/m.
Step-down Holm25 propose to improve on Bonferroni by using the step-down

constant αj = α/(m − j + 1).
Step-up Hochberg68 proves the same constant of Holm can be used in a (more

powerful) step-up method.
Step-down minP Let Fr,α(·) indicate the α percentile of the distribution of the mini-

mum of the last r p-values. The ‘Step-down minP’ procedure fixes a step-down constant
αj = Fj,α(p(m−j+1), . . . , p(m)).

One-step Sidak The one-step Sidak procedure consists in controlling each test at a
level 1 − m

√
1 − α.

Step-down Sidak A step-down version of Sidak correction consists in using the
step-down constant αj = 1 − m−j+1

√
1 − α.

A classical procedure to control the FWER is the Bonferroni correction, which is a
one-step method fixing T = α/m. Hence, one would reject only the hypotheses for which
pj ≤ α/m. It is easily seen that this controls the FWER under arbitrary dependence.

Step-up Hochberg can be more powerful than step-down Holm, but as we will point
out later it is less robust with respect to dependence.

For the step-down minP procedure, quantiles arise from the distribution of the minima
of the last k p-values. The minP procedure was first proposed in Ref. [40], who propose
to estimate Fj,α(·) through resampling, and give a double-permutation algorithm. This
algorithm is slow since it involves resampling the null distribution within a resampling
scheme. Pesarin48 and independently Ge et al.52 suggest a much quicker permutation
algorithm which we briefly describe:

1. Set i = m
2. For the hypothesis corresponding to the i-th ordered p-value, compute B permuta-

tion p-values pi,1, . . . , pi,B.
3. Compute the successive minima qi,b = min(qi+1,b, pi,b), with qm+1,b = 1, and

estimate the i-th adjusted p-value as p̃i = ∑
b 1qi,b≤p(i)/B. Set i := i − 1.

4. If i > 0, go to step 2. If i = 0, enforce monotonicity of the estimated p-values:
p̃i = max(p̃i−1, p̃i), i = 2, . . . , m. Reject the hypotheses for which the estimated
adjusted p-values are below α.

This algorithm is particularly useful when m is large, as resampling is done just once
and iterations are particularly quick. The main idea is that it is possible to proceed
one hypothesis at a time, unlike the classical algorithm. The procedures starts with an
estimate of the least significant adjusted p-value. It computes B permutation testing
p(m),1, . . . , p(m),B, and estimates the least significant p-value as the proportion of resam-
pled maxima above the observed p(m). Each p(m),1 comes from a permutation of the test
statistics for the (m)-th hypothesis. The procedure is then repeated for the second least
significant p-value, and the trick suggested in Ref. [48, 52] is to make sure that each
permuted p-value is below the permuted p-value for the least significant hypothesis, that
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is, p(m−1),i ≤ p(m),i for each i = 1, . . . , B. This is the idea behind computation of the
successive minima qi,b. After this, the second least significant adjusted p-value can be
estimated as the proportion of successive minima below the observed p(m−1), and the
procedure iterated until the most significant p-value p(1) is used. Finally, monotonicity
of the estimated adjusted p-values is enforced to preserve the ordering implied by the
observed p-values.

An approach closely connected with the minP procedure is given in Ref. [40] and
further studied in Refs. [45, 69], and is usually referred to as max T method. The pro-
cedure is a straightforward dual to a min P method, main difference is that it uses only
the test statistics. Let F′

r,1−α(·) indicate the 1 − α percentile of the distribution of the
maximum of the last r test statistics. Suppose, without loss of generality that the test
statistics are ordered. The ‘Step-down max T’ procedure fixes Cj = F′−1

j,1−α(Tn(m − j +
1), . . . , Tn(m)), and proceeds in a step-down fashion stopping the first time Tn(j) ≤ Cj;
and rejecting the hypotheses corresponding to Tn(1), . . . , Tn(j − 1).

The functions F′
r,α(·) can be estimated through permutation in the usual fashion.

Although being based on test statistics, the methods are nevertheless distribution free
in FWER control. min P and max T methods are equivalent when the test statistics are
identically distributed under the null hypothesis, while may lead to different results
otherwise. As a referee pointed out, maxT methods for instance have some advantages
in situations in which n � m.

Genovese and Wasserman30 propose to use a ‘complete null’ assumption, thereby
letting Fj,α(·) be the α-th percentile of a Beta distribution with parameters m − j and
1. It is straightforward to see that this choice leads to equivalent step-down constants
as in the Step-down Sidak procedure. See also Ref. [69] for further comments on this
procedure and an extension under dependence. For the Sidak procedures.70,71

A huge amount of work has been done on FWER control. For instance,
Finner and Roters72 compared step-up and step-down procedures, assuming the
p-values were exchangeable; showing that step-up procedures controlling the
FWER use constants very close to the constants used by step-down proce-
dures, thus being more powerful in general. Dunnet and Tahmane73 propose a
step-up multiple testing procedure, optimal in terms of power, when the test
statistics are distributed like a Student’s T. Seneta and Chen74,75 investigate a
step-down procedure sharpening step-down Holm, by taking into account the
degree of association between the test statistics. We will not attempt to review
the great amount of work on FWER here, but instead point the reader for
instance.41,46,76

4.3 Procedures controlling the FDR
The FDR, as defined in Equation (3), was introduced by Benjamin and Hochberg27 in

response to the need of an error measure that would allow for good power, in particular
with large m. While the use of FWER controlling methods is preferable in many situa-
tions, they can have low power in certain ‘large m’ applications. There are no additional
assumptions for achieving control of the FDR, apart from considerations on the depen-
dence of p-values (see Section 6). Assumptions on the distribution of p-values under
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the alternative or about the true proportion of false nulls may be used to improve the
procedures in terms of power, but are usually not needed.

We review four procedures to control the FDR:
BH BH procedure consists in fixing a step-up constant equal to αj = jα/m.77

Plug-in A direct improvement of BH procedure is given by using the step-up con-
stant αj = jα/m(1 − â), where â is any estimator of a (the proportion of true false
hypotheses).78

Step-Down BL Step-down BL method consists in fixing the step-down constant αj =
1 − [1 − min(1, (m/m − j + 1)α)]1/(m−j+1).79

Resampling-based YB55 suggest to improve power and deal with dependence through
the following resampling-based procedure:

1. Bootstrap the data to obtain B vectors of resampled p-values
2. Without loss of generality let the ordered p-values p(k) be the possible thresholds.

For each sample let r(p(k)) be the number of resampled p-values below p(k), and let
rβ(p(k)) be the 1 − β quantile of r(p(k)) for a small β (say β = 0.05). Then, for each
threshold compute Q∗(p(k)) as the resample based mean of the function

Q(p(k)) =
⎧
⎨

⎩

r(p(k))

r(p(k)) + k − p(k) ∗ m
If p(k) ∗ m ≤ k − rβ(p(k))

1 Otherwise
(9)

3. Let kα = maxk{Q∗(p(k)) ≤ α} and set threshold T = p(kα).

The BH procedure was originally proposed in Ref. [77], but it did not receive much
attention at that time since it did not control the FWER in the strong sense (while it did
in the weak sense). It can be seen that it controls the FDR at level (1 − a)α, and hence
at level α (see,27 or80 for a shorter and elegant version of the proof ).

Asymptotic results for the BH and plug-in procedures can be found in Ref. [30] and
[38]. In particular, Genovese and Wasserman38 prove that the BH procedure is asymp-
totically equivalent to a one-step procedure in which the cut-off is the solution u∗ of the
equation:

F(u)

u
= (1 − α)(1 − a)

(aα)
(10)

where F(u) is the distribution of the p-values under the alternative. If the distributions
of the p-values under the alternative are strictly concave and their densities are bounded
below at zero by the right hand side of Equation (10), there will be a positive number of
rejections. Concavity of F(·) will be given for instance by test statistics whose density is
eventually strictly decreasing. Genovese and Wasserman81 introduce also estimators for
a and F(·), suggest ways to build confidence thresholds for the FDP and provide limiting
distributions of the quantities of interest. Finally, Sarkar39 proves that the BH procedure
is unbiased, being a special case of FDR-controlling generalized step-up–step-down
unbiased procedures proposed in Ref. [82].
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The plug-in procedure was first proposed in Ref. [78]. This is the only procedure
reviewed in this paper that does not achieve strong control of the corresponding error
rate. In fact, if all the null hypotheses are true and a > 0, it is straightforward to see
that FDR control is not guaranteed by the plug-in procedure. The idea is that additional
information given by the sequence of p-values can be exploited through a suitable esti-
mator of a. This leads to exact, or, in the78 terminology, adaptive control of the FDR,
with the advantage of sensibly and often greatly increased power over the BH procedure.
It should be furthermore noticed that uncertainty brought about by the estimation of a is
not usually incorporated and only asymptotic control may be guaranteed. It is straight-
forward to see that only if the estimator for a is conservative ( â ≤ a) there is (exact)
FDR control and whenever â > a FDR can be above α by a factor of (1 − â)/(1 − a). A
review of possible estimators for a is given below. A further improvement of the plug-in
method can be found in Ref. [83], in which the procedure is repeated iteratively. They
note that the two-step version of their procedure can be seen as a first step in which a is
estimated, and a second step in which plug-in is applied.

The step-down BL procedure was proposed in Ref. [79], who argued with extensive
simulations that it neither dominates or is dominated by the BH procedure. In particular,
they argue in a large simulation study that it is more powerful than BH procedure when
the number of tested hypotheses is small and many of the hypotheses are far from being
true. Note that the most common case in applications is that the number of true nulls is
the large majority, so that the step-down BL procedure may not be the best choice.

It is worth noticing that resampling-based BY55 is not guaranteed to yield FDR control.
They only argue by simulation that their procedure gives FDR control, and suggest
also how to improve it under subset pivotality. Finally, they show an application to the
estimation of correlation maps in meteorology.

Storey et al.80 propose a unified estimation approach for the FDR, showing methods
to estimate the FDR fixing the threshold or the rejection region, or asymptotically over
all rejection regions simultaneously. They suggest a way to control the FDR through
their estimates. In particular, they present several theorems that all require almost sure
pointwise convergence of the empirical distributions of the subsequence of p-values for
which the null is true and the subsequence of p-values for which the alternative hypothesis
is true.

Tusher et al.84 introduce the significance analysis for microarrays (SAM), a
resampling-based method that controls a functional of the FDP and is appropriately
devised for DNA microarray data. As11 note, it is not clear if SAM does directly control
the FDR, even if Storey and Tibshirani85 suggest possible ways to achieve FDR control.
The main problem is that the data are used both to estimate the FDR and the tuning
parameters.

Benjamini and Hochberg36 and Genovese et al.37 describe algorithms that allow to
control the propensity of rejection for certain hypotheses if one has prior information.
For instance, it is well known that in neurology experiments false nulls are likely to be
clustered. Benjamini and Hochberg36 used the weights in the definition of the error rate
(loss weighting), hence changing the error rate to be a ‘weighted’ false discovery rate.
Genovese et al.,37 following,25 used p-value weighting leaving the error rate unchanged;
and showed that if the magnitude of the weights is positively associated with the null
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hypothesis being false, power is improved; while power loss is surprisingly negligible for
misspecification of the weights.

4.3.1 Estimation of the proportion of false nulls
In this section, we will review some estimators for a, the proportion of false nulls.
The most common estimator used was proposed in Ref. [86], and suggested by Storey32

for the FDR controlling context. It is defined as:

â = Ĝ(t0) − t0

1 − t0
(11)

where Ĝ(t) = 1/m
∑

1pj<t (the empirical distribution of the p-values), and t0 is fixed in
the interval (0, 1). Note that mĜ(t0) is simply the count of p-values smaller than t0. An
high t0 (for instance t0 = 0.5) is used in Ref. [86], since p-values corresponding to true null
hypotheses will cluster above high thresholds. A bootstrap method is, instead described
in Ref. [32], with the aim of minimizing the (estimated) risk. Another possibility given
in Ref. [87] is to choose t0 as the smallest p-value not rejected by a test for uniformity,
for instance a threshold T of any FWER controlling procedure.

Note that Schweder and Spjøtvoll86 proposed estimator in Equation (11) for an adap-
tive control of FWER, improving Bonferroni procedure by using the one-step constant
α/m(1 − â).

Swanepoel,88 in a different context, proposes a consistent estimator for a defined as
â = max(0, 1 − min

0<x<1
ĝ(x)); where ĝ(·) is an estimate of the marginal density of the

vector of p-values, based on maximal symmetric 2sn-spacings. This estimator is seen
to converge very fast to the true a but turns out to break down under dependence
(simulations not shown).

A slight modification of Equation (11) is in Ref. [89], based on bounding sequences of
the weighted empirical distribution of the p-values. The idea is to obtain an estimator
that is conservative with high probability. Note that the other estimators reviewed here
can lose this conservative property, even under independence.

Another recent result is achieved in Ref. [90], who propose to use a non parametric
maximum likelihood estimator of the p-value density yielding an expression very similar
to Equation (11): â = (Ĝ(t0) − t0)/(p(m) − t0). They also propose a less conservative
estimator based on the assumption that the p-value density is decreasing or convex
decreasing, and show by simulations that such estimators have got a good performance
also under dependence.

Note that estimation of the number of true/false null hypotheses may be of interest
per se, especially in applications in functional magnetic resonance imaging87 or source
detection in astrophysics.88,91

4.4 Procedures controlling the FDX
FDX, as defined in Equation (4), is a much more recent error rate proposed almost at

the same time by van der Laan et al.29 and Genovese and Wasserman.30
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In FDX control interest is taken in the tails of the distribution of the FDP rather
than in its central part. This is useful in cases in which the random variable FDP is
not concentrated around its mean, the FDR: while on average it is guaranteed that the
proportion of false rejections is low, the realized FDP may be high if there is a weak
concentration around the mean. This can be caused for instance by an high variance
of the FDP, which can be further increased by dependence among the test statistics.
Owen92 for instance suggests that it may not even be meaningful to control the FDR
under dependence since the variance may be too high. FDX control implies that large
FDP is realized with small probability; thus being more protective against extremal
situations in all cases.

In general, anyway, FDX and FDR control respond differently to the distribution of the
p-values under the alternative, F(·); and FDX control may lead to more or less rejections
than FDR control on a case by case basis.

We review four procedures to control the FDX:

Augmentation Augmentation was first proposed in Ref. [29]. The steps are given by:

1. Control the FWER with any procedure, and reject |SFWER| hypotheses.
2. If |SFWER| > 0, let

kn(c, α) = max
{

j ∈ {0, . . . m − |SFWER|}: j
j + |SFWER| ≤ c

}

.

The number kn(c, α) is easily computed by starting from j = 0 and increasing the
counter as long as the fraction j/( j + |SFWER|) is below c.

3. Any choice of kn(c, α) additional hypotheses will control FDX at the desired level.
For power considerations, the kn(c, α) most significant p-values not previously
rejected will be selected.

Inversion Inversion was proposed in Ref. [30]. The steps are given by:

1. For every possible subset of p-values test at level α the hypothesis that the p-values
are identically distributed like a uniform.

2. Call U the collection of all subsets not rejected in the previous step. The hypotheses
in U are candidate to rejection.

3. For any C �= ∅ let �̄(C) = maxB∈U(|C ∩ B|/|C|). Let R be the biggest set such that
�̄(R) ≤ c. R is a rejection set that yields tFDP(c) ≤ α.

They also note that the entire procedure can be substituted by a simple augmentation
of the Sidak step-down procedure, as we will point out below.

Step-Down LR Lehmann and Romano33 show that FDX control is achieved by using
the step-down constants αj = (�cj� + 1)α/(m + �cj� + 1 − j).

Resampling-Based LBH A resampling-based procedure is proposed in Ref. [93]:

1. Bootstrap the data, compute the resampled test statistics and center each vector of
test statistics by its own mean. This is an estimate of the null distribution Q0(t).
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2. Estimate the density of the test statistics, for instance by bootstrapping. Sample the
indicator of each null hypothesis to be false from a Bernoulli with parameter given
by an estimated ratio of the null and marginal density q0(Tn(j))/g(Tn( j)).

3. Estimate the realized FDX for each possible cut-off p(1), . . . , p(k).
4. Repeat steps 1–3 B times.
5. Estimate the FDX for each cut-off as the average of the realized FDX for each

iteration. Set the cut-off for the p-values as the highest cut-off giving FDX below α.
More details on this procedure are given below.

Dudoit et al.29 introduce the augmentation procedure. They start from the idea that
any procedure requiring something less stringent than FWER control will result in the
rejection of at least the same hypotheses. For this reason, they start by controlling
the FWER and then they augment by rejecting the previously selected hypotheses and
an opportune additional number. In this sense, they propose a universal method to
identify additional rejections among the hypotheses which were not rejected with a
procedure controlling the FWER (asymptotically or exactly). For power considerations,
one obviously adds the k most significant p-values not yet rejected. This method is very
flexible and shares the robustness to dependence of FWER controlling procedures. The
great advantage of augmentation is in fact that it is valid under general dependence if
the FWER is controlled under dependence; and computationally very fast. As we will
show later via simulations, the main drawback is that the power may be low for large
number of tests. The reason is easily understood just by looking at the definition of
kn(c, α): when no test is rejected at the first stage (something not uncommon for FWER
controlling procedures), none will be at the second stage for any c < 1.

The resampling-based method in Ref. [93] was proposed mainly to overcome this
problem. In their approach, first a null distribution for the test statistics is estimated
via the bootstrap or permutation by resampling the data itself and forming each time
a vector of test statistics, then each vector is centered by its respective mean. The result
is a sample from a null distribution,51 which we call Q0(t). Secondly, the indicator
of each null hypothesis to be false is sampled from a Bernoulli, with parameter given
by an estimated ratio of the null and marginal density q0(Tn( j))/g(Tn( j)). In many
applications the null density is known, while the marginal density can be estimated by
the bootstrapped test statistics before centering. Finally, the realized FDX is estimated
and the operation repeated B times. The cut-off for the p-values is set as the highest
cut-off giving a proportion of estimated FDX over c smaller than α. The procedure
combines a clever null estimation by the bootstrap with an adaptive FDX estimation and
control, and it is seen in simulation to be more powerful than the augmentation methods.
The main drawback is the high computational cost: in fact it is a double-resampling
procedure mostly like the classical resampling Min P of Westfall and Young40 and this
is particularly cumbersome for big m. Moreover, only asymptotic control is guaranteed,
and FDX control may not be achieved when the number of observations is very small,
like in certain applications in DNA Microarrays data analysis; even if a finite sample
rationale is established in Ref. [93]. Code for resampling-based LBH is available for the
software R,94 in the package multtest.

The inversion method was proposed in Ref. [30], and involves inverting a set of
uniformity tests and forming a confidence upper envelope for the FDP. Genovese and
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Wasserman30 suggest a few possible uniformity tests, among which the min P test of69

under the complete null (as we pointed out, the step-down Sidak test). They prove that,
with this choice, the augmentation and inversion procedures lead to the same rejection
regions under mild conditions. For this reason, if step-down Sidak test is used at the
first step, the number of uniformity tests reduces from 2m to m, and this is equivalent to
do augmentation of step-down Sidak. We call this ‘p(1)-approach’ throughout. Perone
Pacifico et al.95 propose a continuous analogue of the inversion method in the context
of random fields, where the number of null hypotheses is uncountable; providing also
bounds on the (continuous version) of the FNR.

Finally, Lehmann and Romano33 propose to control the FDX with a step-down proce-
dure (step-down LR) whose constants arise mainly from combinatorial and probabilistic
reasoning; and give extensions of their method under dependence which we will discuss
in Section 6. We will see in simulations that step-down LR procedure likely dominates
the other methods in terms of power.

5 Simulations

We will now provide some simulations in order to illustrate the methods. We point out
that the simulation settings are limited, and only narrow generalization of the evidence
provided by the simulations in this section is recommended. In particular, we only use
independent test statistics, while a broad experiment would require the comparison of
different dependence structures. Furthermore, different considerations may arise with
the use of different distributions under the alternative.

5.1 Comparison of the multiple testing procedures
In this section, we will briefly compare the procedures on the basis of the counts of

errors N1|0 and N0|1. This provides a direct comparison among procedures in terms
of what really happens in applications. We will also use the introduced error measures
and the FNR to compare procedures in terms of power. We generated normal random
variables, with expected values under the alternative sampled from a random uniform
in (0, 5); and then we applied the multiple testing procedures to the vector of p-values
arising from one-sided testing with known variance equal to 1.

Table 2 shows the results for B = 1000 simulated normal data sets, with m = 100
and M0 = 90; Table 3 shows the same for m = 5000 and M0 = 4500, and Table 4 for
m = 100 000 and M0 = 90 000. These are realistic situations, as in most applications
M0 is close to m (sparseness).

From the tables we see that the average number of Type I errors tends to grow fast with
m under no correction. FWER controlling procedures fail to reject more or less 90% of
the true false hypotheses, while FDR controlling methods about a half. This is of course
depending on the specific simulation setting, and in particular on the distribution used
to sample the normal means under the alternative. Step-down BL procedure performed
worse than BH and plug-in (with estimator in Equation (11)) procedures, since M0 ∼= m:
it is known from Ref. [79] that step-down BL may dominate BH and plug-in in terms of
power only when M0 is far from m. Among the FDX controlling procedures,33 method
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Table 2 Average error counts for m = 100 tests, M0 = 90 for different methods
controlling different error measures at level α = 0.05

Method E [N1|0] E [N0|1] FWE FDR FDX FNR

Control of singleType I Error
Uncorrected 4.49 3.27 0.989 0.386 0.980 0.0366
Control of FWER
Bonferroni 0.044 6.60 0.044 0.013 0.044 0.068
Step-down Holm 0.048 6.54 0.048 0.015 0.048 0.066
One-step Sidak 0.044 6.59 0.044 0.012 0.044 0.068
Step-down Sidak 0.050 6.48 0.050 0.014 0.050 0.066
Step-up Hochberg 0.048 6.52 0.048 0.014 0.048 0.066
Step-down Min P 0.046 6.46 0.046 0.015 0.046 0.066
Control of FDR
BH 0.264 5.53 0.221 0.044 0.219 0.058
Plug-in 0.298 5.45 0.241 0.049 0.238 0.057
Step-down BL 0.042 6.44 0.042 0.010 0.042 0.065
BY 0.030 6.657 0.030 0.008 0.030 0.069
Control of tFDP (0.1)

p(1)-approach 0.050 6.48 0.050 0.014 0.050 0.066
Augmentation with

Bonferroni at first step 0.044 6.60 0.044 0.013 0.044 0.068
Step-down LR 0.046 6.53 0.045 0.012 0.045 0.067

proves sensibly less stringent than the others. It can be seen that, as m grows, the FDX
is slightly lower than its upper bound α. This suggests one could set c as a decreasing
function of m, and also that there may be room for improvement of FDX controlling
procedures.

Table 3 Average error counts for m = 5000 tests, M0 = 4500 for different methods
controlling different error measures at level α = 0.05

Method E [N1|0] E [N0|1] FWE FDR FDX FNR

Control of SingleType I Error
Uncorrected 225.12 166.12 1.000 0.402 1.000 0.037

Control of FWER
Bonferroni 0.045 412.68 0.044 0.000 0.000 0.0840
Step-down Holm 0.046 412.36 0.045 0.000 0.000 0.0839
One-step Sidak 0.046 412.23 0.045 0.000 0.000 0.0839
Step-down Sidak 0.047 411.90 0.046 0.000 0.000 0.0838
Step-up Hochberg 0.046 412.36 0.045 0.000 0.000 0.0839
Step-down Min P 0.047 411.90 0.046 0.000 0.000 0.0838

Control of FDR
BH 10.24 282.40 1.000 0.045 0.000 0.0592
Plug-in 11.51 279.03 1.000 0.049 0.000 0.0585
Step-down BL 0.050 411.59 0.048 0.000 0.000 0.0838
BY 0.735 355.309 0.517 0.005 0.000 0.0732

Control of tFDP (0.1)

p(1)-approach 0.082 402.70 0.079 0.001 0.000 0.0821
Augmentation with

Bonferroni at first step 0.077 403.55 0.075 0.001 0.000 0.0822
Step-down LR 0.719 356.74 0.498 0.005 0.000 0.0734
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Table 4 Average error counts for m = 100000 tests, M0 = 90000 for different methods
controlling different error measures at level α = 0.05

Method E [N1|0] E [N0|1] FWE FDR FDX FNR

Control of single type I error
Uncorrected 4497.59 3334.47 1.000 0.040 1.000 0.037

Control of FWER
Bonferroni 0.047 9089.72 0.045 0.000 0.000 0.0917
Step-down Holm 0.047 9087.17 0.045 0.000 0.000 0.0917
One-step Sidak 0.048 9083.76 0.046 0.000 0.000 0.0917
Step-down Sidak 0.048 9081.76 0.046 0.000 0.000 0.0916
Step-up Hochberg 0.047 9087.17 0.046 0.000 0.000 0.0917
Step-down MinP 0.048 9081.77 0.046 0.000 0.000 0.0916

Control of FDR
BH 203.92 5669.27 1.000 0.045 0.000 0.0594
Plug-in 298.07 5596.54 1.000 0.050 0.001 0.0587
Step-down BL 0.049 9079.70 0.047 0.000 0.000 0.0912
BY 10.15 7291.05 1.000 0.037 0.000 0.0750

Control of tFDP(0.1)

p(1)-approach 0.069 8980.32 0.066 0.000 0.000 0.0907
Augmentation with
Bonferroni at first step 0.065 8988.43 0.063 0.000 0.000 0.0908
Step-down LR 13.161 7166.89 1.000 0.005 0.000 0.0738

It is the case to make also a comparison across error measures. It can be noted that
while the differences within procedures controlling the same error measure are not very
marked, there are dramatic differences between error measures. This is well acknowl-
edged. A further remark is that the discrepancies are more and more evident as m
grows. It is important to add that there is a clear difference in spirit between FWER and
FDR/FDX control; since while FWER is based only on the number of Type I errors, the
other two criteria aim at a balance between Type I errors and number of rejections, and
hence, power.

Furthermore, while as m changes the controlled error measure is kept more or less
constant below α by many procedures, the other error measures can vary wildly; so that
simultaneous control of FDR and FDX should not usually be expected.

5.2 FDR control via FDX control: Choice of c
In this section, we will give insights on how to choose a value for c if an FDX controlling

procedure is to be used for FDR control. Recall that any FDX controlling procedure
controls the FDR at level c + (1 − c)α. Hence, if tFDP(c) < (α − c)/(1 − c), FDR ≤ α.
We will now get a sense, via simulation, of what happens for different values choices of
c ∈ (0, α). Simulations suggest that the optimal c may usually be close to zero. We will
declare the optimal c as the one yielding the lowest FNR as defined in Ref. [5].

Figure 1 shows the results of the simulations for m = 100 and M0 = 90. For each
value of c, at each of B = 1000 iterations we generated normal random variables, with
expected values under the alternative sampled from a random uniform in (0, 5); and
then we applied the augmentation procedure with Bonferroni at first step to the vector
of p-values arising from one-sided testing with known variance equal to 1. The dots
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Figure 1 Augmentation procedure, m = 100, M0 = 90.

represent the obtained FDR and FNR, while the line is a fitted cubic smoothing spline,
with amount of smoothness estimated by cross validation (see for instance96 for these
non-parametric methods). We can see that, unless the number of true nulls is very small,
the optimal c is always very close to zero. Moreover, the procedure is always conservative.
In this setting, there is a price to pay for using an FDX controlling procedure to control the
FDR. Similar results are observed in Figure 2, where simulations are done for M0 = 50.
Slightly different conclusions are observed in Figure 3, where M0 = 10, as in that case
the low values for the FNR are seen for values of c around 0.035.
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Figure 2 Augmentation procedure, m = 100, M0 = 50.
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Figure 3 Augmentation procedure, m = 100, M0 = 10.

5.3 Bayesian multiple testing: a simulation
As noted by Berry and Hochberg,97 in the case of multiple testing

“In the simplest Bayesian view, there is no need for adjustments and the Bayesian
perspective is similar to that of the frequentist who makes inferences on a per-
comparison basis.”

They make a review of available Bayesian procedures to control frequentist error mea-
sures, and propose a hierarchical model based on a Dirichlet process prior distribution
to allow for exchangeability of the tests. If independent priors are used, they formally
conclude that from a Bayesian point of view no modification is needed to the stan-
dard single setting procedure. Along the same lines, Berry98 presented an empirical
Bayes approach to multiple testing, utilizing hierarchical models that directly controlled
the FWE. This view is strenghtened in Refs. [99] and [100], who claim that a correct
adjustment is automatic within the Bayesian paradigm. In this light, Bayesian testing of
many hypotheses does not pose different problems than testing a single hypothesis, no
adjustment is needed. An early reference for a decision theoretic framework for Bayesian
multiple testing is Ref. [101]. Duncan’s approach actually corresponds to a different
outlook in which there is no true null hypothesis, and the aim is to prevent Type III
errors, that is a directional error: claiming superiority when there actually is inferiority.
Duncan’s approach was further studied in this sense by Schaffer.102 For a discussion on
Type III errors see for instance.103–105

A way to choose suitable prior distributions on the quantities of interest is proposed
in Ref. [99], who also develop efficient importance sampling strategies106 to deal with
multiplicity.
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An empirical Bayes framework for FDR controlling procedures is given in Ref. [35]
and [107], when proposing the positive false discovery rate, discusses an interesting
Bayesian interpretation: the pFDR of the procedure is the posterior probability that a
null hypothesis is true given that the corresponding test statistic belongs to a (fixed)
rejection region. A Bernoulli prior is assumed for the probability of a null hypothesis
being true, and surprisingly this posterior probability does not depend on m. The FDX
controlling procedure in Ref. [93] can also be seen to be incorporating a Bayesian prior.

In this section we try to support the view of Berry and Hochberg by simulating a
classical Bayesian test and reporting average count of errors and error rates. We will
simulate large-m–small-n situations and we will see that the FDR is often automatically
controlled. We will test m hypotheses on the mean μ of n = 30 normal random variables,
with known variance fixed to σ 2 = 1 and a conjugate normal prior on μ, centered on
the null hypothesis and with variance equal to a certain ξ . It is well known that the Bayes
factor of the null against the two-sided alternative is then:

B(x̄i) = √
nξ + 1e−(ξn2x̄2

i )/(2(nξ+1)) (12)

where x̄i is the observed sample average for the i-th test.
We will compare now two choices for the loss function, namely a 0–1 loss, which

leads to rejection of all the hypotheses corresponding to a Bayes factor smaller than
1; and a more conservative loss that makes a false positive 19 times worse than a
false negative. This leads to rejection in case the posterior probability of the null is
smaller than 0.05 (while in the first case the cut-off is 0.5), or in our setting in case the
Bayes factor is smaller than 0.0526. For a discussion of generalized 0-1 losses refer to
Ref. [108].

We will compare different choices of the prior parameter ξ . The choices ξ = 1 and
ξ = 2 are two default choices, the first being suggested in Ref. [109] to give the prior
same weight as that of a single observation, and the second in Ref. [110] to give the prior
a shape close to that of a Cauchy with parameters 0 and σ 2, suggested in Ref. [111] as
a possible default prior. The other choices of the parameter ξ yield increasingly diffuse
priors (clearly, a choice of ξ = +∞ would yield an improper flat prior).

Tables 5 to 7 show the error counts and error measures for respectively m =
100, 5000, 100 000, n = 30, M0 = 0.9 m and cut off 1 for the Bayes factor. Tables 8–10
show the error counts and error measures for respectively m = 100, 5000, 100 000,
n = 30, M0 = 0.9 m and cut-off 0.0526 for the Bayes factor.

Our simulation study is not extensive, but the tables arise anyway the following
comments:

• In our setting, there is a strong sensitivity to the prior. Flat priors are in favor of the
null hypothesis and tend to make more Type II errors.

• Unlike the uncorrected frequentist setting, the error counts do not explode as the
number of tests m grows. In this sense, a correction is not needed, at least for our
simple simulation setting.

• If the prior is diffuse enough, both FDR and tFDP(0.1) may be under control.
• FDR and FNR for fixed ξ do not seem to vary very much with m. On the other hand,

FDX is strongly affected by changes in the number of tests.
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Table 5 Average error counts for m = 100 tests, M0 = 90 for
Bayesian testing, n = 30, cut-off 1

ξ E [N1|0] E [N0|1] FWE FDR tFDP (0.1) FNR

1 5.43 0.69 0.99 0.35 0.98 0.008
2 3.63 0.75 0.98 0.27 0.91 0.008

15 1.18 0.87 0.70 0.11 0.41 0.009
30 0.82 1.00 0.56 0.08 0.30 0.011
60 0.52 0.99 0.43 0.05 0.18 0.011
75 0.49 1.02 0.38 0.05 0.16 0.011

100 0.41 1.00 0.35 0.04 0.13 0.011
500 0.16 1.10 0.16 0.02 0.06 0.012

1000 0.12 1.18 0.12 0.01 0.05 0.013
1500 0.07 1.24 0.07 0.01 0.03 0.013

Table 6 Average error counts for m = 5000 tests, M0 = 4500 for
Bayesian testing, n = 30, cut-off 1

ξ E [N1|0] E [N0|1] FWE FDR tFDP (0.1) FNR

1 267.45 34.12 1.00 0.36 1.00 0.008
2 183.72 37.21 1.00 0.28 1.00 0.008

15 60.05 45.50 1.00 0.12 0.90 0.010
30 40.56 47.60 1.00 0.08 0.07 0.010
60 27.64 49.97 1.00 0.06 0.00 0.011
75 24.42 50.91 1.00 0.05 0.00 0.011

100 20.65 51.92 1.00 0.04 0.00 0.011
500 8.50 56.54 1.00 0.02 0.00 0.012

1000 5.79 58.94 1.00 0.01 0.00 0.013
1500 4.80 59.36 0.99 0.01 0.00 0.013

• When we were protective against Type I errors, like in the classical setting, and used a
cut off of 0.0526, apart from a single exception FDR and FDX were always controlled
at level α = 0.05.

As a final comment, note that giving a different weight to each null hypothesis is
straightforward in the Bayesian setting.

Table 7 Average error counts for m = 100 000 tests, M0 = 90 000 for
Bayesian testing, n = 30, cut-off 1

ξ E [N1|0] E [N0|1] FWE FDR tFDP (0.1) FNR

1 5361.24 690.57 1.00 0.36 1.00 0.008
2 3679.83 745.10 1.00 0.28 1.00 0.008

15 1199.79 902.68 1.00 0.12 1.00 0.010
30 815.45 951.32 1.00 0.08 0.00 0.010
60 553.69 1001.54 1.00 0.06 0.00 0.011
75 490.71 1014.55 1.00 0.05 0.00 0.011

100 418.11 1031.92 1.00 0.04 0.00 0.011
500 173.96 1132.39 1.00 0.02 0.00 0.012

1000 119.22 1172.65 1.00 0.01 0.00 0.013
1500 94.96 1193.80 1.00 0.01 0.00 0.013
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Table 8 Average error counts for m = 100 tests, M0 = 90 for Bayesian
testing, n = 30, cut-off 0.0526

ξ E [N1|0] E [N0|1] FWE FDR tFDP (0.1) FNR

1 0.18 1.14 0.16 0.017 0.068 0.012
2 0.13 1.14 0.12 0.013 0.040 0.012

15 0.050 1.30 0.06 0.005 0.016 0.014
30 0.04 1.21 0.03 0.004 0.015 0.013
60 0.01 1.36 0.03 0.001 0.005 0.015
75 0.03 1.39 0.02 0.001 0.006 0.015

100 0.02 1.35 0.02 0.002 0.010 0.015
500 0.01 1.47 0.01 0.001 0.004 0.016

1000 0.01 1.49 0.00 0.000 0.003 0.016
1500 0.00 1.48 0.01 0.000 0.002 0.016

Table 9 Average error counts for m = 5000 tests, M0 = 4500 for Bayesian
testing, n = 30, cut-off 0.0526

ξ E [N1|0] E [N0|1] FWE FDR tFDP (0.1) FNR

1 8.56 56.57 1.00 0.019 0.000 0.012
2 6.47 57.92 1.00 0.014 0.000 0.013

15 2.33 63.55 0.92 0.005 0.000 0.014
30 1.63 65.24 0.82 0.004 0.000 0.014
60 1.19 66.80 0.69 0.003 0.000 0.014
75 1.02 67.65 0.64 0.002 0.000 0.015

100 0.89 68.26 0.59 0.002 0.000 0.015
500 0.39 71.90 0.29 0.001 0.000 0.016

1000 0.25 73.66 0.23 0.001 0.000 0.016
1500 0.19 74.08 0.17 0.000 0.000 0.016

Table 10 Average error counts for m = 100 000 tests, M0 = 90 000 for
Bayesian testing, n = 30, cut-off 0.0526

ξ E [N1|0] E [N0|1] FWE FDR tFDP (0.1) FNR

1 172.26 1136.39 1.00 0.019 0.000 0.012
2 128.95 1160.87 1.00 0.014 0.000 0.013

15 46.87 1264.93 1.00 0.005 0.000 0.014
30 33.02 1300.85 1.00 0.004 0.000 0.014
60 22.81 1338.02 1.00 0.003 0.000 0.014
75 20.01 1346.49 1.00 0.002 0.000 0.015

100 17.66 1358.77 1.00 0.002 0.000 0.015
500 7.41 1437.57 1.00 0.001 0.000 0.016

1000 5.21 1469.02 0.99 0.000 0.000 0.016
1500 4.13 1486.47 0.98 0.000 0.000 0.016

6 Type I error rates control under dependence

6.1 FWER control
Control of FWER under dependence has never been an issue. It is easily seen that

the Bonferroni correction is valid under arbitrary dependence, together with step-
down Holm. Step-up Hochberg, like many step-up procedures, is based on so-called
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Simes inequality. This inequality can be proved to be valid under certain dependency
structures, as proved by Sarkar112 for positively dependent test statistics. More pre-
cisely, Sarkar112 shows that Simes inequality holds for multivariate totally positive of
order two (MTP2) test statistics. The condition is satisfied by multivariate normals
with non-negative correlations; and certain types of multivariate t, F and gamma
distributions (see also Ref. [113] for examples of a subclass of MTP2 random vari-
ables). Sidak procedures are valid under the condition of positive orthant dependence:
Pr(|T1| ≤ t1, . . . , |Tm| ≤ tm) ≤ ∏

Pr(|Ti| ≤ ti); where Ti are the test statistics. Sidak70

showed that this property holds for instance for any multivariate normal distribution
with non-negative correlations, and few other cases, while114 extended the results to a
larger class of distributions, including some t and F distributions. Main reason behind the
development of resampling methods is the possibility to efficiently use the information
given by dependence.40 In fact, resampling based step-down minP procedure controls
the FWE under arbitrary dependence and may be slightly more powerful than the other
methods in certain settings. Dudoit et al. 69 propose it for the setting of DNA Microar-
rays. In that setting, van der Laan and Bryan115 argue that one needs n/log(m) → ∞ as
n, m → ∞ for consistent estimates of the correlation matrix of the test statistics. Note
that in these applications the number of observations n is usually much smaller than
the number of p-values m, so that estimators of the null distribution may be unstable in
certain cases, as pointed out in Section 3.2.

6.2 FDR and FDX control
When they introduced the FDR, Benjamini and Hochberg27 proved that the77 proce-

dure controlled the FDR under independence of the M0 test statistics corresponding to
the true nulls. Providing results under dependence of the whole sequence of p-values has
been an open problem since then.

The best results in our opinion are achieved in Ref. [116], who prove that the
BH procedure can never control the FDR at level higher than α

∑m
i=1 1/i (using

an inequality formerly shown in Ref. [117]), so that taking into account a factor
of

∑m
i=1 1/i will allow to control the FDR under general dependence. We call this

corrected and possibly conservative method BY throughout. They also prove that,
under conditions of positive regression dependency (PRD) on S0, the BH procedure
is still valid. The condition of PRDS introduced in Ref. [116] is as follows: recall
that a set is said to be increasing if for any x ∈ D and y ≥ x, y ∈ D. A vector X
is PRDS if for any increasing set D and for each i ∈ S0, Pr(X ∈ D|Xi = x) is non
decreasing in x. This is a relaxed version of PRD, a slightly more general form of
association.118 Benjamini and Yekutieli116 note, together with Sarkar,82 that PRDS
distributions include multivariate normal distributions with positive correlations, all
uni-dimensional latent variable distributions, and few other cases. Sarkar82 also extends
the results of Ref. [116] by generalizing their results to a whole class of step-up/step-
down procedures to control the FDR. An extensive simulation study can be found in
Ref. [119].

The plug-in procedure is directly extended under dependence under the same con-
ditions whenever the estimator for the proportion of false nulls a is conservative (i.e.,
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â ≤ a). Another possibility for FDR control under dependence is using the resampling
based procedure in Ref. [55], described above.

As said several theorems that prove FDR control of the plug-in procedure under almost
sure pointwise convergence of the empirical distributions of the null and alternative
p-values are given in Ref. [80]. They argue that this may be true also under dependence;
and in fact Bickel120 shows a process with long-range correlations that satisfies the
conditions of.80 It is the case to note that120 uses the cited example to argue that FDR
control under dependence, even if feasible, may not be appropriate and it may be more
sensible to control the FDX. Finally, Farcomeni53 shows that under conditions of weak
dependence both plug-in and BH procedures control the FDR, and suggests robust
estimators for the proportion of false nulls a. The direct consequence is that the BH
method and plug-in with a robust estimator for a can be used without any correction
for the analysis of time-course DNA microarray data, change-point detection in time
series, and few other applications.

The pFDR, positive false discovery rate of,35 can be efficiently estimated under
dependence for pre-fixed rejection region.121

Augmentation procedures that control the FDX are proved by van der Laan et al.29

to be valid under arbitrary dependence, provided the FWER controlling procedure at
the first step is valid under dependence. Moreover, the resampling based procedure in
Ref. [93] is adaptive and provides asymptotic control also under dependence.

Lehmann and Romano33 prove their procedure controls the FDX under two forms
of dependence. First, they assume independence between the groups of true and false
p-values, with arbitrary dependence within. Secondly, they adopt the same assumptions
of the step-up Hochberg procedure. Finally, they suggest a more conservative proce-
dure controlling the FDX under general dependence (they take into account a factor of
∑�cm�+1

i=1 1/i, mimicking116 results for FDR control).

7 Applications

There is a long list of possible applications of MTPs in the medical literature. We will
revisit here a classical example and then focus on two case studies in genomics.

7.1 Multiple endpoints in clinical trials
As said, multiple endpoints analysis is one of the most frequently encountered mul-

tiplicity problem in medical research. We will revisit here an example about testing for
many endpoints in clinical trials, taken from Ref. [122] and used by Ref. [27] to support
the use of FDR.

In a randomized multicentre trial of 421 patients with acute myocardial infarction, a
new front-loaded administration of rt-PA (thrombolysis with recombinant tissue-type
plasminogen activator) has been compared with APSAC (anisoylated plasminogen strep-
tokinase activator). The treatments are both known to reduce mortality in myocardial
infarction.
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The researchers defined in this study four families of respectively 11, 8, 6 and 15
hypotheses, without distinction between primary and secondary endpoints:

1. base-line comparisons
2. patency of infarct-related artery
3. reocclusion rates of patent infarct-related artery
4. cardiac and other events after the start of the thrombolitic treatment.

In the fourth family a careful Type I error rate control is desired, since we do not
wish to conclude that one treatment is better with respect to a few cardiac or other
events if it is merely equivalent to the other one. The ordered p-values from the fourth
family are: 0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344, 0.0459, 0.3240,
0.4262, 0.5719, 0.6528, 0.7590, 1.000; and authors would like to make a statement about
reduced in-hospital mortality rate, which corresponds to p(4). If a value of pj = 0.0095
can be declared statistically significant, then rt-PA is to be preferred for reducing the in-
hospital mortality rate (and there would also be a difference with respect to other three
endpoints). All the FWER controlling procedures considered would lead to the rejection
of 3 p-values, together with step-down procedure of Benjamini and Liu, augmentation
procedures and step-down LR; thus not supporting a statement about different mortality
rate. On the other end, other FDR controlling procedures prove a bit more liberal. The
classical procedure of Benjamini and Hochberg leads to rejection of 4 hypotheses, and
plug-in to 9, the same number as uncorrected testing; thus supporting a statement about
the possibility to decrease in-hospital mortality rate due to myocardial infarction with
the use of rt-PA treatment in the clinical course.

7.2 DNA microarrays
7.2.1 The setting of DNA microarrays

We will not attempt here a review of the analysis of DNA microarrays, a field of
biostatistics which is receiving more and more attention. We will point the reader to
detailed reviews123−126 also for a survey of the impressive spectrum of biological appli-
cations) and only sketch a very simplified explanation of the problem. Refer to Bolsover
et al.127 and Garret and Grisham128 for background on biochemistry and genetics. For a
survey on microarray literature, refer also to web sites http://genomicshome.com
and http://www.nslij-genetics.org/microarray, and to http://www.
bioconductor.org for software support. For a review of multiple testing methods
in the context of microarray data analysis see also Ref. [11].

Advances of the technology have made it possible to obtain the expression levels of tens
of thousands of genes from a single biological sample. The essential aim of microarray
analysis is to measure the messenger RNA abundance in some sampled cells. The result
of the experiment is thus a data matrix of n rows (n cDNA samples, in general from
the same kind of tissue of individuals in two or more biological conditions) with m
columns (one for each gene) with the (log2) of the expression of the gene. The sample
size n typically ranges from 4 to 100 individuals, while the number of genes from a
few hundreds to many thousands. It is apparent that a data set in which the number
of rows is much smaller than the number of columns presents statistical challenges not
traditionally dealt with. Among the immediate statistical issues there is cleaning of such
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a massive data set by filtering of bad spots, normalization within and between slides.
Finally, a test statistic is computed for each gene (usually, a t or F statistic).

The filtering phase consists in getting rid of badly measured genes. The microarray
experiment is subject to a lot of experimental artifacts. For instance, a tiny grain of dust
on the slide can invalidate the expression measure for few genes, and the measurements
should be discarded. Usually, genes with expression too close to the saturation level (the
maximum expression recordable by the machine) are not considered in the analysis,
together with records not passing a number of quality tests (signal to noise ratio, spot
uniformity, dimension of hybridized area, level of background noise, and so on). Then,
normalization is performed to get rid of part of the experimental variability and sys-
tematic bias inside a single slide and between the slides (for a discussion of the problem,
see129−131). Again, the conditions under which the experiment is done are crucial to the
results: the heat in the room where the experiment is performed, tiny differences in the
duration of exposure, and so on. The variability of these conditions introduces bias and
increases the variance of the recorded expression levels.

The task of the researcher is then to restrict the number of suspect genes from possibly
the whole genome to some tens, which will then be biologically validated with real-
time polymerase chain reaction (RT-PCR), RNA blotting, or other techniques: see for
instance.132 Microarrays are often only the first step before further investigation, the
validation phase. Hence, a small proportion of false positives is allowed; while too
many false positives would make the validation phase impossible from an economical
point of view: control of FDR or FDX is naturally desirable in the microarray setting,
while FWER controlling procedures usually prove to be too strict and end up in an
unsatisfactory list of prospective differentially expressed genes.

Even if the problem is sometimes ignored in the literature, it is intuitive that test
statistics arising from DNA microarrays are dependent. Genes measured with the same
technology in the same laboratory are subject to common sources of noise. Moreover,
changes in expression are part of the same biological mechanism, and hence the expres-
sion of each gene is not unrelated to the expression of the other genes. Genes are likely
to present at least a form of block dependence, with blocks identified by groups of sim-
ilar mRNA codes and/or more frequently by pathways, that is, groups of genes that
activate in sequence, structured ordering, or interact. Blocks of dependent genes are
reasonably expected to be small (literature investigates pathways of two to five genes,
while a maximum of 50 is thought of being possible).

There are many purposes behind microarray experiments. We list four: first, compar-
ing RNA abundance (the expression of a single gene) with the expression of genes from
samples of other individuals in different biological conditions, and identify genes that
are less expressed (down-regulated) or over expressed (up-regulated) in the biological
condition of interest. For instance, if a particular gene is significantly up-regulated in a
sample from a group of people having cancer, it is reasonable to view it as associated
with the disease. The second purpose can be to identify genes that are not expressed. It is
well known that a great part of our genome is constituted by DNA that never activates.
Again, it is particularly interesting to find genes that that are somehow ‘turned off’ or
‘turned on’ by the disease. The third purpose can be identifying the pathways. Com-
monly clustering techniques are applied, like Partitioning Around Medoids (PAM) of
Ref. [133]. Clustering is used also to identify groups of active genes without formal
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testing. A fourth purpose is to build classifiers, and predict the biological condition. If a
good predictor can be formed, then the genes in the classifier are related to the disease;
and moreover the disease can be diagnosed by measuring the expression levels of some
particular genes. Usually, a test is done on each gene to determine if it is differentially
expressed between the biological conditions, and a test is done under each biological
condition to determine if the gene is not expressed in that case. The third and fourth
task (clustering and classification) are also relevant, in the sense that significance testing
is usually performed before, in order to select a subset of relevant genes. Using irrelevant
genes for class prediction or clustering may lead to inconsistent results. We conclude
by saying that in microarray data analysis there usually is no basis for a division of the
hypotheses into groups, which must then be considered all together as a single family.
This leads to a very large number of tests, and hence to the need of careful and powerful
procedures for multiple testing. We will now show two examples of DNA microarray
analysis, focusing first on the identification of differentially expressed genes and then on
the construction of a classifier.

7.2.2 Genetic patterns of colon cancer
Alon et al. 134 analyze data on colon cancer. The expression of around 6500 genes

is recorded in 40 tumor and 22 normal samples from the colon of 62 patients. After
filtering, 2000 genes were normalized, and a two-sample t-statistic was computed for
each gene to verify if there was a significant difference between the biological conditions.
Figure 4 shows an histogram of the 2000 t-statistics. p-values are computed from the
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Figure 4 Histogram of 2000 two-sample t -statistics for134 data.
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Table 11 Colon Cancer Data:
number of rejections

Bonferroni 11
Step-down Holm 11
One-step Sidak 11
Step-down Sidak 11
Step-up Hochberg 11
Step-down Min P 11
BH 190
BY 38
Plug-in 217
Step-down Benjamini-Liu 11
p(1)-approach 12
Augmentation with

Bonferroni at first step 12
LR 33

statistics. Colon cancer is well known to be associated with variations in the expression
of many genes, and in fact the histogram itself suggests the presence of a few significant
genes.

Now, p-values are computed from the test statistics. The number of rejections is
summarized in Table 11. It can be seen that the number of rejections here can vary wildly.
While in the application of Section 7.1 there just are m = 15 tests, here the number of
tests is much higher and this leads to a stronger differentiation among FWER, FDR and
FDX controlling procedures. BH and plug-in lead to a much higher number of rejections
than the other methods.

7.2.3 Classification of lymphoblastic and myeloid leukemia
The approach to cancer classification based on gene expression monitoring by DNA

microarrays has been firstly described and applied to human acute leukemia by Golub
et al.135 Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) are
two variants of leukemia, which are treated differently. The goal of this experiment is
to build a classifier in order to distinguish between the two variants only through gene
expression profiling. After pre-processing as described in Ref. [136], 3051 different genes
were ready for the analysis, with 27 samples from ALL and 11 from AML.

We decided to build a classifier by using the k-nearest neighbor,137 with k = 3; and
by feeding the classifier with the genes selected by a carefully chosen multiple testing
procedure.

In order to evaluate the performance of the classifier we split the data into a training
set of 15 samples, 9 chosen at random from the ALL samples and 6 chosen at random
from the AML samples. A t-test was performed on each gene, obtaining a vector of
m = 3051 p-values; and multiple testing procedures in Table 12 were used for gene
selection. For each set of selected genes the remaining test set of 34 samples, of which
18 ALL and 5 AML, was used to estimate the classification error, that is, the proportion
of samples in the test set that were misclassified by the k-NN classifier using the genes
selected by the corresponding multiple testing procedure. The operation was repeated
1000 times. The average number of selected genes and the estimated classification error
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Table 12 Leukemia Data: average number of
rejections and estimated classification error

Bonferroni 15.68 0.0684
Step-down Holm 15.73 0.0683
One-step Sidak 15.88 0.0673
Step-down Sidak 15.93 0.0669
Step-up Hochberg 15.73 0.0682
Step-down Min P 15.92 0.0669
BH 240.46 0.0251
BY 33.66 0.0571
Plug-in 368.45 0.0248
Step-down Benjamini-Liu 15.98 0.0668
p(1)-approach 17.11 0.0663
Augmentation with

Bonferroni at first step 16.84 0.0666
LR 35.18 0.0521

are reported in Table 12. The results give a further confirmation of the fact that FDR
and FDX controlling procedures may be preferred over FWER control in the setting
of DNA microarray analysis. In this application in fact they achieve a good balance
between number of genes used by the classifier, and classification error (and consequently
relevance of the selected genes).

8 Discussion

Multiple hypothesis testing is concerned with maintaining low the number of false
positives when testing several hypotheses simultaneously, while retaining a reasonable
power for tests of the individual hypotheses. A multiple testing situation presents many
substantial differences with the single hypothesis setting, and in particular, a correction
on the significance level is needed.

There are quite a few distinct and competing methodologies to deal with multiple
tests, some of which we reviewed and we summarize in Table 13. Unless stated other-
wise, strong control of the error measure is achieved. We did not attempt to propose
a unification here, but rather argued that this diversity is a tool to the researcher, who
should know the properties and behavior of the procedures in the different situations
that go under the wide multiple hypotheses framework. No one solution is acceptable
for all situations.

In this review we tried to argue that when doing many tests at once 1) a sensible
choice of Type I error rate is to be made, 2) control of this error rate is to be achieved
through a correction, that is, a multiple testing procedure; and 3) the multiple testing
procedure is to be chosen as the possibly most powerful for the experimental situation
(dependence, possibility to do resampling, information about the proportion of false
nulls, and so on). Research in the area of multiple testing is open from the point of view
of giving guidelines to choose the Type I error rate, and an optimality criterion, devising
powerful and robust procedures especially under dependence of the test statistics, and
finally promulgating FDP controlling procedures in certain applications.
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Table 13 Multiple testing procedures and their characteristics

Name Type Control Dependence

Control of singleType I error
Uncorrected One-step Finite sample Arbitrary

Control of FWER
Bonferroni One-step Finite sample Arbitrary
Step-down Holm Step-down Finite sample Arbitrary
One-step Sidak One-step Finite sample Positive orthant
Step-down Sidak Step-down Finite sample Positive orthant
Step-up Hochberg Step-up Finite sample MTP2
Step-down Min P Step-down (Permutation) Finite sample Arbitrary

Control of FDR
BH Step-up Finite sample PRDS
Plug-in Step-up (Exact) Finite PRDS

sample/Asymptotic
BL Step-down Finite sample Independence
YB Step-up (Bootstrap) Asymptotic (?) Arbitrary
BY Step-up Finite sample Arbitrary

Control of FDX
p(1)-approach Augmentation/step-down Finite sample Positive orthant
Augmentation with Augmentation Finite sample Arbitrary
Bonferroni at first step
LR Step-down Finite sample Positive
Lehmann and Romano Step-down Finite sample Arbitrary
conservative version
van der Laan Bootstrap Asymptotic Arbitrary
Birkner and Hubbard

While there practically was the only choice of the FWE up to some years ago; nowadays
there is a continuously growing number of Type I error rates among which to choose. We
stressed that these error rates are not only different in the number of rejected hypotheses.
While methods that control the FWE (and generalizations) rely only on the number of
Type I errors, control of other error rates (FDR, FDX, and generalizations) aims at a
balance between Type I and Type II errors.

FDR/FDX control is nowadays a common choice in certain applications mainly
because of two reasons: in these applications m is too large to control stringent error rates
like the FWE, and moreover statistical procedures serve often only as an exploratory tool
for pre-screening of the hypotheses, and after that a formal confirmation takes place. For
instance in DNA Microarray studies among the genes declared significant certain are
selected for more accurate validation using low-throughput procedures like polymerase
chain reaction.

The most pressing advance is in our opinion the discovery of a multiple testing pro-
cedure that controls the FDR under arbitrary dependence but it is competitive with BH
method in terms of power. As we saw, moreover, there may be room for improvement
in terms of power for FDX controlling procedures, and the ‘default’ choice of c = 0.1
should probably be discussed more formally in dependence of the specific application
and the number of tests at stake.

There are many other open questions for research in multiple testing: until now for
instance the literature on FDP and multiple testing in general does not seem to be
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interested in extensions to composite null hypotheses. It is well known that when the
null hypothesis is composite the interpretation of p-values is more complex (see for
instance138), and furthermore the distribution under the null hypothesis need not be
uniform. The only practical solution at this point seems to be estimation of p-values
through resampling. As an aside, we refer the reader to,139 where an objective Bayesian
approach is used to derive alternative significance levels (that is, alternative p-values)
that are uniformly distributed under the null. If one makes use of their partial posterior
predictive p-value, U-conditional predictive p-value, or similar alternative p-values; the
procedures may be directly extended to the case of composite null hypotheses. A similar
idea is developed in Ref. [140]. Among other open problems, there is the derivation of a
framework for power analysis; and a closely related problem, that is, a method to choose
the sample size for each test. This has been tackled for instance by Müller et al.141 in the
setting of DNA Microarrays.
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